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ON A FAMILY OF GENERALIZED WIENER SPACES AND APPLICATIONS

Ian D. Pierce, Ph. D.

University of Nebraska, 2011

Adviser: David L. Skoug

We investigate the structure and properties of a variety of generalized Wiener spaces. Our

main focus is on Wiener-type measures on spaces of continuous functions; our generalizations

include an extension to multiple parameters, and a method of adjusting the distribution and

covariance structure of the measure on the underlying function space.

In the second chapter, we consider single-parameter function spaces and extend a fun-

damental integration formula of Paley, Wiener, and Zygmund for an important class of

functionals on this space. In the third chapter, we discuss measures on very general function

spaces and introduce the specific example of a generalized Wiener space of several parame-

ters; this will be the setting for the fourth chapter, where we extend some interesting results

of Cameron and Storvick. In the final chapter, we apply the work of the preceding chapters

to the question of reflection principles for single-parameter and multiple-parameter Gaussian

stochastic processes.



iii

COPYRIGHT

c© 2011, Ian D. Pierce



iv

ACKNOWLEDGMENTS

I owe a great deal of thanks and acknowledgement to many people for inspiration, assistance,

and patient forbearance. At the risk of omitting some, I particularly note the following:

I thank my advisor, David Skoug, who has been very patient with me and endured much

aggravation in shepherding me to this point. I also thank Jerry Johnson and Lance Nielsen,

for their helpful comments and suggestions, for enduring my endless seminar presentations,

and for going the extra ten miles in reading and commenting on this work. To the other mem-

bers of my committee, I also extend my appreciation: to Sharad Seth and Allan Peterson,

and also to Mohammad Rammaha, who taught me much about Analysis.

I am grateful to my entire family, my friends, and my former teachers for their help

and encouragement through the years; my parents certainly deserve special mention in this.

Finally, I must thank my own little family - Maria, Patrick, and “Baby Joe” - for their

support, and for bearing with me and tolerating my absence and lack of attention during

the completion of this dissertation.

Whatever is of quality in this dissertation is built upon the foundation, earnest efforts,

and good offices of those who preceded and assisted me; any failures or shortcomings are

mine alone. I lay this work at the feet of God, the Father, Son, and Holy Spirit, to whom

be all glory and honor unto the ages of ages. Amen.



v

Contents

Contents v

1 Background and Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Questions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Single Parameter Spaces 10

2.1 An Introduction to the Function Space Ca,b[0, T ] . . . . . . . . . . . . . . . . 10

2.2 Stochastic Integrals on Ca,b[0, T ] . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Paley-Wiener-Zygmund Theorem . . . . . . . . . . . . . . . . . . . . . . . . 31

3 General Spaces 41

3.1 Cylinder sets and cylindrical Gaussian measures . . . . . . . . . . . . . . . . 41

3.2 Centered Gaussian measures on Lebesgue spaces . . . . . . . . . . . . . . . . 46

3.3 General construction and properties . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Measures on C(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Measurability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6 Bounded Variation and Absolute Continuity . . . . . . . . . . . . . . . . . . 78

3.7 Measures on the space C0(Q) . . . . . . . . . . . . . . . . . . . . . . . . . . 83



vi

3.8 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4 Integration Over Paths 104

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 One-line Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3 n-line Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.4 Applications and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 Reflection Principles 119

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 A reflection principle for the general function space Ca,b[0, T ] . . . . . . . . . 120

5.3 Reflection principles for two parameter Wiener space . . . . . . . . . . . . . 127

5.4 A positive reflection result for C2(Q) . . . . . . . . . . . . . . . . . . . . . . 137

Bibliography 141



1

Chapter 1

Background and Introduction

1.1 Background

For finite-dimensional spaces, Lebesgue measure serves as a canonical example; it has the

important (and intuitive) properties of scale and translation invariance. However, it is

well-known that there can be no reasonable translation invariant measure on an infinite-

dimensional space. The problem of defining a somewhat reasonable measure on such a

space was first solved by Norbert Wiener in [58]. Wiener constructed his measure on the

space C[0, 1] of continuous functions on the unit interval. Elements of the support of this

measure satisfy the conditions to be sample paths of an ordinary Brownian motion; thus

Wiener’s work made mathematically rigorous the model proposed by Albert Einstein (thus

foreshadowing the significant applications to problems in mathematical physics which were

to follow).

A standard Brownian motion is a model originally intended to describe the apparently

random motion of a particle moving in a liquid. For a Brownian motion, the particle trajec-

tories must satisfy several conditions, the first being continuity. In addition, the position at

time t must be normally distributed with mean 0 and variance t, and this distribution must
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have independent increments. Viewing the path of a particle as a stochastic process and

using these properties, one can show that the transition probabilities for a discretization of

the process using the partition 0 = t0 < t1 < . . . < tn = 1 have density functions

1√
2π(tj+1 − tj)

exp

(
−(uj+1 − uj)2

2(tj+1 − tj)

)
,

as per Einstein’s proposed model.

Wiener’s task was to start with sets defined in terms of finite discretizations of this type,

and from them to obtain a countably additive set function on the Borel algebra of subsets

of C[0, T ]. This is quite involved, and is all the more impressive when one recalls that the

Lebesgue Theory was really quite new at the time, and that much of the modern machinery

of functional analysis was unavailable to Wiener.

From the basic facts discussed above we can easily obtain the ability to integrate “tame”

functionals of the form F (x) = f(x(t1), . . . , x(tn)), where f : Rn → C is Lebesque measurable

against Wiener’s measure w using the formula

∫
C[0,1]

F (x)w(dx) =

(
n∏
j=1

(2π(tj − tj−1))

)−1
2 ∫

Rn
f(u1, . . . , un)

exp

(
−1

2

n∑
j=1

(uj − uj−1)2

tj − tj−1

)
dun · · · du1. (1.1)

A considerable amount of work was accomplished with little more than this formula and

very clever estimation and limiting arguments, and the additional theorem from [42] of

Paley, Wiener, and Zygmund stating that for {h1, . . . , hn} an orthonormal collection (in the

L2-sense) of functions of bounded variation on [0, 1] and for F : C[0, 1] → C defined by
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F (x) = f
(∫ 1

0
h1dx, . . . ,

∫ 1

0
hndx

)
, the following holds:

∫
C[0,1]

F (x)w(dx) = (2π)−
n
2

∫
Rn
f(u1, . . . , un) exp

(
−

n∑
j=1

u2
j

2

)
dun · · · du1. (1.2)

Perhaps the best-known contributers to the field following Paley, Wiener, and Zygmund

were R.H. Cameron and W.T. Martin and their disciples. Of great significance was the

Cameron-Martin translation theorem, which drew on the underlying structure hinted at by

(1.2). This translation theorem showed that while the Wiener measure was not translation

invariant, it was quasi-invariant with respect to translation by a certain subset of C[0, 1]. Now

called the Cameron-Martin space, this is the collection of absolutely continuous functions

with L2 derivatives, ( i.e. the Sobolev space H2
0 [0, 1]). If T : C[0, 1] → C[0, 1] is defined by

x 7→ x+ x0, where x0 is in the Cameron-Martin Space and x′0 is of bounded variation, then

the translation theorem asserts that the Radon-Nicodym derivative of the measure γ ◦ T

with respect to the untranslated measure γ is given by

d(γ ◦ T )

dγ
(x) = exp

(
−1

2
||x′0||

2
2 −

∫ 1

0

x′0(t)dx(t)

)
. (1.3)

The condition that x′0 be of bounded variation can be relaxed by substituting a stochastic

integral for the Riemann-Stieltjes integral in (1.3). This translation theorem has many

significant implications. As a connection to the theory of probability, we note also that this

is a special case of the Girsanov Theorem.

Considerable development and generalization was accomplished by many of Cameron’s

students and associates; of particular note for my research have been Donsker, Baxter,

Varberg, Kuelbs, Yeh, C. Park, and Skoug. Two forms of generalization are of particular

interest to us; the first is in considering a wider variety of transition probability densities

and the second is in allowing for parameter sets other than the interval [0, 1].
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Speaking quite generally, a measure γ on a Banach space E is Gaussian if for every

x∗ ∈ E∗, the “push forward” of γ by x∗ is a Gaussian measure on R; that is, the image

measure γ ◦ (x∗)−1 is either a Dirac mass δa or has density

φ(u) =
1√

2πσ2
exp

(
−(u− a)2

2σ2

)

for some a ∈ R and σ > 0. Our discussion will be primarily concerned with Gaussian

measures on function spaces, including the Lebesgue spaces Lp(S : ν), where ν is a Borel

measure on the compact metric space S and 1 ≤ p <∞, and particularly with the “canoni-

cal” space C(S) of continuous functions from S to R, equipped with usual supremum norm.

A considerable amount of work has been done to describe the behavior and structure of

Gaussian measures on very general spaces. A compendium of many of these results is found

in Bogachev’s informative text [5].

In 1968, Leonard Gross simultaneously codified and extended the relationship of the

Cameron-Martin space, the larger Banach space containing it, and the corresponding Gaus-

sian measure γ in [28], christening the construction an Abstract Wiener Space (AWS). This

development opened a floodgate of new work in the area, and additional significant results

were obtained by many researchers; some commonly seen names include Dudley, Feldman,

LeCam, Kallianpur, and Kuo. A good representation of where the subject stood in 1975 can

be found in [36] and in [2]. A more recent retrospective is given by Strook in [53].

Gross’ work on Abstract Wiener Spaces was partially inspired by the extension of the

Cameron-Martin translation theorem obtained by his advisor Segal, and drew on the notion

of a cylindrical measure (for a very general treatment see [49]). Briefly, the basic idea of the

AWS recognizes that the structure of a Gaussian measure is captured by its Cameron-Martin

space; in some sense, the larger Banach space is merely needed to “fill in” what is lacking in

a Hilbert space in order to allow the canonical centered cylindrical Gaussian measure having
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Fourier transform

γ̂(f) = exp

(
−1

2
||f ||2

)
(1.4)

to extend to a countably additive measure with nontrivial support. This is probably the

most studied case of what is generally termed the radonification problem: when does a

cylindrical set measure on a Banach space extend to a countably additive Radon measure?

For interesting and general work on the radonification problem, one might consult Fernique,

Fernholz, Linde, Pietsch, Kwapién, etc. Van Neerven has a very nice survey article [57] that

discusses many of these endeavors.

1.2 Overview

A natural starting point is to begin with a thorough investigation of the spaces Ca,b[0, T ].

Here we begin with the “classical” formulation used extensively by Chang, Chung, Choi,

Ryu, Skoug, Yeh, in [10, 11, 12, 65], and by others.

Briefly, these spaces are quite natural extensions of Wiener’s original construction, with

a structure determined by the R-valued functions a and b defined on [0, T ], for which the

transition probabilities are of the form

1√
2π[b(tj+1)− b(tj)]

exp

(
− [uj+1 − a(tj+1)− uj + a(tj)]

2

2[b(tj+1)− b(tj)]

)
. (1.5)

Generally, the function b has been taken to be continuous and increasing and the function a

taken continuous. The choice of a and b has important consequences for the properties of the

measure thus obtained. Most formulations (e.g. [11, 13, 64] ) have further stipulated that

b be continuously differentiable with b′ bounded away from 0 and a absolutely continuous

with L2 derivative.

Chapter 1 is focused on understanding these single-parameter spaces, with the aim of
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understanding the effect of the choice of a and b on the measure. One result, which appeared

in [48], is an extension of (1.2) to the generalized Wiener space setting with less restrictive

conditions on the choice of functions {h1, . . . , hn}.

One of the original motivations for the general direction of this research was to formulate

a suitable generalization of the spaces Ca,b[0, T ], both in terms of the number of parameters

and in terms of the available choices of a and b. Moreover, our intent is to formulate this in

a manner that preserves the form of basic tools and techniques wherever possible and clearly

demonstrates any limitations that the more general setting might necessitate.

If we take Q =
∏d

j=1[0, Tj] as our parameter space and functions a and b defined on Q

with a certain amount of regularity, we can obtain suitable Gaussian measures on C(Q) that

directly extend the single-parameter construction. In this setting, one can obtain appropriate

formulations of (1.2) and (1.3), and then it is fairly easy to extend a considerable amount of

work from the single-parameter setting to the multiple parameter setting.

In considering the previous ideas, questions arose about the abstract structure underlying

the AWS construction. While there has been considerable work done with extremely general

spaces elsewhere (e.g. locally convex spaces, Banach spaces), here we trade generality in

exchange for a more tractable collection of problems whose solutions can be expressed in a

concrete fashion, and have focused on Banach spaces of real-valued functions.

Classical Wiener space theory usually begins by choosing a particular Banach space and

a desired covariance structure for the measure, and then finding some suitable Hilbert space

contained in the Banach space that will serve as the Cameron-Martin space. Meanwhile,

abstract Wiener space theory typically starts with a pre-chosen Hilbert space and then finds

a suitable Banach space in which the Hilbert space can be embedded and function as the

Cameron-Martin space for a non-trivial Gaussian measure. In some sense, one is left with a

“chicken and egg” problem, for in the first situation the necessary Hilbert space may not be

desirable, while in the latter the resulting Banach space may not be desirable. One aim of
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this work is to strike a reasonable balance between these approaches.

By way of example, taking S to be a compact metric space, ν a Borel measure on S, and

C(S) as our function space, a basic structure of interest is shown in the following diagram.

C(S)∗

T ∗

%%KKKKKKKKK

TT ∗

��

L2(S; ν)

Tyysssssssss

C(S)

In this example, the measure γ on C(S) is centered with Fourier transform (or characteristic

function)

γ̂(µ) = exp

(
−1

2
〈TT ∗µ, µ〉

)
= exp

(
−1

2
(T ∗µ, T ∗µ)L2(S;ν)

)
.

The structure and properties of the maps T and T ∗ will ultimately determine the properties

of the measure obtained on C(S) having TT ∗ for its covariance operator. In Chapter 3,

we demonstrate a method for constructing these maps in such a manner that the resulting

measure γ on C(S) satisfies given desired properties.

Given these families of Gaussian measures, a question of interest is to determine which

general properties are common to all and which are dependent upon the particular choices of

a, b, and parameter space. One such question involves the idea of reflection; it is well-known

that an ordinary Brownian motion process exhibits this property.

In the Ca,b[0, T ] spaces, if the point evaluation process x(t) is not centered ( i.e. is not

mean 0, which is equivalent to the condition that a is not the zero function) then it is

not hard to see that it should not satisfy the reflection principle. It will however satisfy a

reflection principle about its mean; that is, the process X(t, x) = x(t) − a(t) will have the

appropriate distribution.
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In the multiple-parameter case, the question becomes less clear. To begin, what is meant

by “reflection” in this setting? In Chapter 5, we will investigate several possible notions that

could serve as the analogue to the reflection principle. The answers to these questions about

reflection can then be applied to barrier-crossing problems for the appropriate associated

stochastic processes.

1.3 Questions for Future Work

Much of our original motivation described above still remains to be accomplished. This is

to continue the program of generalizing and extending the body of work already completed

for Ca,b[0, T ] to the more general function spaces we have obtained. Which constructions

generalize easily and which are more difficult? Which properties are essentially independent

of parameter dimension, drift, and covariance structure, and which must be investigated on

a case by case basis? As noted above, the reflection principle is a good example of a such a

property.

Note also that the choice of Q =
∏d

j=1[0, Tj] is a fairly limiting assumption, though it has

the advantage of imposing a very clear structure. It may be interesting to investigate the

effect of replacing Q with a finite-dimensional manifold M. How does the choice of smooth

structure on M affect the measure γ on C(M)?

Along the same lines, what is the changed when constructing γ on the space C(M,N),

where both M and N are manifolds? The case where M = [0, 1] with a suitably adjusted

Wiener measure has been the subject of a considerable amount of work; for instance, see

[17, 18, 19, 27, 29].

As an extension of these ideas, it is possible to obtain or construct a suitable notion

of the space of cádlag functions (also commonly called Skorohod Space) over d-parameters,

and if possible determine necessary and sufficient conditions to assure that supp(γ) = D for
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Gaussian measures γ of the sort considered above? It seems that this should be a natural

space of which such measures should live, as the reproducing kernel K(s, t) is well-defined

in a pointwise fashion (and hence all elements of the Cameron-Martin space for γ). Thus it

seems reasonable that elements in supp(γ) should behave somewhat reasonably. These spaces

would occupy a sort of middle ground between Lebesgue spaces and spaces of continuous

functions.
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Chapter 2

Single Parameter Spaces

2.1 An Introduction to the Function Space Ca,b[0, T ]

Let C0[0, T ] denote a one-parameter Wiener space; that is the space of real-valued continuous

functions x(t) on [0, T ] with x(0) = 0. Let M denote the class of all Wiener-measurable

subsets of C0[0, T ] and let w denote Wiener measure. Then (C0[0, T ],M,w) is a complete

measure space and we denote the Wiener integral of a Wiener integrable functional F by

∫
C0[0,T ]

F (x)w(dx).

The Wiener process found in [8, 30, 31, 44, 45, 63] is stationary in time and is free of

drift. We shall concern ourselves with a more general class of stochastic processes which may

be non-stationary in time and subject to drift.

A generalized Brownian motion process is a real-valued stochastic process X(t) on a

probability space (Ω,A, P ) with parameter space [0, T ] if X(0, x) = 0 almost surely on

Ω and for 0 = t0 < t1 < . . . < tn ≤ T , the density function for the random vector

(X(t1, x), . . . , X(tn, x)) is given by
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(
n∏
j=1

2π(b(tj)− b(tj−1))

)−1
2

exp

(
−1

2

n∑
j=1

((uj − a(tj))− (uj−1 − a(tj−1)))2

b(tj)− b(tj−1)

)
, (2.1)

where a(t) is a continuous function on [0, T ] satisfying a(0) = 0 and b(t) is a continuous,

strictly increasing function on [0, T ] satisfying b(0) = 0. In Chapter 3 of [66], Yeh shows that

the generalized Brownian motion process determined by a and b is a Gaussian process with

mean function a(t) and covariance function r(s, t) = min{b(s), b(t)}.

For the present we will adopt the formulation of [11], though we will later see that the

associated requrements can be relaxed considerably while retaining a workable theory. Let

a and b be functions defined on [0, T ] with a′ ∈ L2[0, T ] and b′ continuous, positive, and

bounded away from 0 on [0, T ]. Observe that a and b are absolutely continuous and b is

strictly increasing on [0, T ], and so one can define a generalized Brownian motion as above.

We desire to take Ω = C0[0, T ] and find a measure m on C0[0, T ] with respect to which the

coordinate evaluation map δt : C0[0, T ]→ R by x 7→ x(t) is the generalized Brownian motion

process determined by a and b.

For n = 1, 2, . . ., let 0 = t0 < t1 < · · · < tn ≤ T . Take the collection of finite-dimensional

distributions on Rn given by the density function in (2.1), which we will express as

Wn(t; u) =

(
n∏
i=1

2π∆ib(t)

)−1
2

exp

(
−

n∑
i=1

(∆i(u− a(t)))2

2∆ib(t)

)
, (2.2)

where ∆ib(t) = b(ti) − b(ti−1) and ∆i(u − a(t)) = ui − a(ti) − ui−1 + a(ti−1). We will refer

to Wn(t; u) as the generalized Wiener kernel.

Let C0[0, T ] be the space of continuous functions on [0, T ] for which x(0) = 0, equipped

with the supremum norm ||x|| = sup0≤t≤T |x(t)|. We want a measure m on C0[0, T ] that

has finite-dimensional distributions {W(t) : t ∈ Rn; n = 1, 2, . . .}, each having density



12

Wn(t; u); that is for 0 = t0 < t1 < · · · < tn ≤ T and Lebesgue measurable E ⊂ Rn , if

Ẽ = {x ∈ C0[0, T ] : (x(t1), . . . x(tn)) ∈ E}, then

m
(
Ẽ
)

=

∫
Ẽ

dW(t) =

∫
E

Wn(t; u)du. (2.3)

For 0 = t0 < t1 < · · · < tn ≤ T and d and e in Rn, define I(t; d, e)) = {x ∈ C0[0, T ] :

di < x(ti) ≤ ei for i = 1, 2, . . . , n}. We will refer to these sets as cylinder sets or intervals.

Put

W(t)(I(t; d, e)) =

∫
I(t;d,e)

dW(t) =

∫
Qn
j=1[dj ,ej ]

Wn(t; u)du. (2.4)

From this beginning, each distribution W(t0) can be extended to a probability measure

on the sigma algebra generated by the collection {I(t0; d, e)} by the usual Carathéodory

extension process.

We will need the following proposition. It is stated with its proof in Chapter 3 of [33].

Proposition 1 (Chapman-Kolmogorov Equation). Let r, s, and t be real numbers with

r < s < t and let λ > 0. Then

∫
R

(
λ

2π(t− s)

)1
2

exp

(
−λ(w − v)2

2(t− s)

)(
λ

2π(s− r)

)1
2

exp

(
−λ(v − u)2

2(s− r)

)
dv

=

(
λ

2π(t− r)

)1
2

exp

(
−λ(w − u)2

2(t− r)

)
. (2.5)

Coupled with careful bookkeeping, the Chapman-Kolmogorov Equation can be used to

demonstrate that the family of distributions {W(t) : t ∈ Rn; n = 1, 2, . . .} is consistent;

that is if t = (t1, . . . , tn) and t′ = (t1, . . . , tj−1, t
′, tj, . . . , tn) and A ⊆ Rn is measurable with

respect to the distribution W(t), then

W(t)(A) =

∫
A

dW(t) =

∫
A×R

dW(t′) = W(t′)(A× R). (2.6)
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By the celebrated theorem of Kolmogorov (see [35, 46]), the consistency of this family of

distributions implies that there is a Radon probability measure on R[0,T ] that has the desired

finite-dimensional distributions {W(t)}. It only remains to show that the space C0[0, T ]

supports this measure.

There are several approaches to this. One approach is to use an adaptation of the

Kolmogorov-Čentsov Theorem (see [35]) to demonstrate that the sample paths for the

stochastic process induced by the measure just obtained are almost surely continuous. This

is in some sense unsatisfying, because the space R[0,T ] on which the measure is defined is not

C0[0, T ] as desired.

In fact, it is well-known that C0[0, T ] is not even an element of the Borel class for R[0,T ].

By a theorem of Doob [16], one could show that the outer measure of C0[0, T ] is 1, and then

the desired measure can be obtained by simply using the outer measure and intersecting

C0[0, T ] with the Borel class of R[0,T ]. This is the approach that Yeh takes in constructing

the ordinary Wiener measure in [66].

Another approach is an adaptation of that taken by Nelson in [38] and [39] and discussed

in [24]. Nelson’s solution is to adapt Kolmogorov’s theorem to obtain a measure on (R∗)[0,T ],

where R∗ is the one-point compactification of R. Then C0[0, T ] is a Borel set for this space,

as

C0[0, T ] ∪ {x∞} =
∞⋂
n=1

∞⋂
j=1

∞⋃
k=1

⋂
0≤s,t≤n
|s−t|<1/k

{
x : |x(s)− x(t)| ≤ 1

j

}
,

where x∞ is the function that always takes the value∞ in R∗. It then suffices to demonstrate

that the measure of the complement of this set is 0, which is facilitated by the fact that the

measure is Radon (and hence inner regular), which allows the estimation of the measure of
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the sets ⋃
s,t∈[0,T ]
|s−t|<1/k

{
x : |x(s)− x(t)| > 1

j

}

from within by compact sets. This in turn depends on the estimate

sup
t−s≤δ

(
2

π(b(t)− b(s))

)1
2
∫ ∞
ε

exp

(
− [u− (a(t)− a(s)]2

2(b(t)− b(s))

)
du

≤
2
√

2(b(t)− b(s))
[ε− (a(t)− a(s))]

√
π

exp

(
− [ε− (a(t)− a(s))]2

2(b(t)− b(s))

)
(2.7)

for 0 ≤ s < t and for δ sufficiently small that a(t) − a(s) < ε. With these adjustments,

the existence of the desired measure is obtained in generally the same fashion as found in

Section 10.5 of [24].

Of course, one could also do as Wiener did in [58] and build the desired measure from

scratch by building a set function with the desired finite-dimensional distributions and then

proving countable additivity. Whichever method is used, a probability measure m is obtained

on the Borel class of C0[0, T ] having finite-dimensional distributions given by {W(t)}. This

measure can then be completed in the usual manner. The resulting function space, which

we denote by Ca,b[0, T ], is considered by Yeh in [65] and by Yeh and Hudson in [67] and was

investigated extensively by Chang and Chung in [12] and Chang and Skoug in [13].

Observe that the functions a and b induce a Lebesgue-Stieltjes measure νa,b on [0, T ] by

νa,b(E) =

∫
E

d(b(t) + |a| (t)) =

∫
E

db(t) +

∫
E

d |a| (t) = νb(E) + ν|a|(E),

for Lebesgue measurable E ⊆ [0, T ], where |a| denotes the total variation of a. This leads to

the following definition.

Definition 1. Define the space L2
a,b[0, T ] to be the space of functions on [0, T ] that are
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square integrable with respect to the measure induced by a and b. That is,

L2
a,b[0, T ] = {f : [0, T ]→ R :

∫ T

0

f 2(t)d(b(t) + |a| (t)) <∞}.

The space L2
a,b[0, T ] is in fact a Hilbert space (as our notation suggests), and has the

obvious inner product,

(f, g)a,b =

∫ T

0

f(t)g(t)d(b(t) + |a| (t)).

As b′ > 0, the measure νb is mutually absolutely continuous with Lebesgue measure.

Note that the measure ν|a| is absolutely continuous with respect to Lebesgue measure, but

that the converse need not hold. Thus νa,b is absolutely continuous with respect to Lebesgue

measure and L2
a,b[0, T ] ⊆ L2[0, T ] in general, with L2

0,b[0, T ] = L2[0, T ] in the case where a is

the zero function.

We briefly discuss some important facts and theorems that will prove useful. The first is

the analog to the ‘Wiener Integration Formula’ for ordinary Wiener space C0[0, T ]. This is a

well-known and often used theorem. It follows quite naturally from equation (2.2) and from

the definition of the function space integral; see [33] for the proof in the case of C0[0, T ] and

make the obvious adaptations.

Theorem 1 (Tame Functionals). Let 0 = t0 < t1 < · · · < tn ≤ T and let F (x) =

f(x(t1), . . . , x(tn)), where f : Rn → C. Then F is m-measurable if and only if f is Lebesgue

measurable and ∫
Ca,b[0,T ]

F (x)m(dx)
∗
=

∫
Rn
f(u)Wn(t; u)du, (2.8)

where
∗
= is strong in the sense that if one side exists, then the other side exists with equality.

The following useful facts can be proven using Theorem 1. For t ∈ [0, T ], put X(t, x) =
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x(t), and then by (2.8), the first and second moments of X(t, x) are

E[X(t, x)] = E[x(t)] =

∫
Ca,b[0,T ]

x(t)m(dx) = a(t), (2.9)

and

E[X(t, x)2] = E[x(t)2] =

∫
Ca,b[0,T ]

x2(t)m(dx) = b(t) + a2(t). (2.10)

It is also straightforward to compute the covariance of X(t1, x) and X(t2, x); for then

E[X(t1, x)X(t2, x)] =

∫
Ca,b[0,T ]

x(t1)x(t2)m(dx) = min{b(t1), b(t2)}+ a(t1)a(t2). (2.11)

The next theorem is analogous to the celebrated translation theorem of Cameron and

Martin found in [7] and has been used extensively. The statement we give here is from [13]

and a proof can be found in [12].

Theorem 2 (Translation Theorem). Let a and b be defined as above. Let z ∈ L2
a,b[0, T ] and

let x0(t) =
∫ t

0
z(s)db(s). If F is an integrable function on Ca,b[0, T ], then

E[F (x+ x0)] = exp

(
−1

2

∫ T

0

z2(s)db(s)−
∫ T

0

z(s)da(s)

)
E[F (x) exp (〈z, x〉)]. (2.12)

The translation theorem shows that it is possible to compute the Radon-Nikodym deriva-

tive of the measure m◦Tx0 induced by a translation x 7→ x+x0 provided that the translating

function x0 ‘behaves nicely’. In the classical Wiener space C0[0, T ], absolutely continuous

functions with derivatives in L2[0, T ] are the class of functions for which the translation the-

orem holds. This collection of functions is commonly known as the Cameron-Martin space

and is known to be dense and of zero measure in C0[0, T ]. In our setting, we observe that the

existence of the integral
∫ T

0
x′0(t)da(t) is necessary in order to use the translation theorem.

In view of the possibly strict containment of L2
a,b[0, T ] in L2[0, T ], this may decrease the
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available pool of functions by which one can translate, depending on the behavior of the

function a. This leads us to make some further observations.

In the original statement of the translation theorem in [7] and in certain other statements

since, the hypothesis on the translating function has been given as “let x0 be a given function

in C0[0, T ] with a first derivative x′0 of bounded variation on 0 ≤ t ≤ T .” We note that this

hypothesis can be understood in several ways.

First, one could take this statement to mean that x′0 is derived from x0 in the purely clas-

sical sense and exists on all of [0, T ]. As Darboux’s Theorem prohibits derivatives obtained

in this manner from having jump discontinuities, this would essentially force x0 to have a

continuous derivative on [0, T ]. While we can certainly translate by such functions, this is

a very strong condition that needlessly reduces the available pool of translators. It seems

clear that this is not the understanding that was originally intended.

A second view that one could take is that x0 is only required to have a classical deriva-

tive almost everywhere on [0, T ] and that on the exceptional set the derivative is assigned

appropriate values to assure that it is of bounded variation. While this initially seems to be

a viable option, it is not tenable. To see why, let x0 be the classic Cantor function on [0, 1].

Note that x0 is continuous with x0(0) = 0 and that x′0(t) exists and is equal to zero almost

everywhere on [0, 1]. Define x′0(t) in any appropriate manner on the exceptional set and then

we attempt to apply the translation theorem. By inspection, the translation theorem shows

that m(B1(x0)) = m(B1(0)). Take xk(t) = 2kx0(t) for k = 1, 2, . . ., and we obtain a sequence

of functions satisfying ||xk − xm||∞ ≥ 2 whenever k 6= m. Moreover, m(B1(xk)) = m(B1(0))

for each k. As the collection {B1(xk)} is disjoint, we obtain the obvious contradiction

1 = m(C0[0, 1]) ≥
∞∑
k=1

m(B1(xk))
∞∑
k=1

m(B1(0)) =∞.

Lastly, one can understand the hypothesis in the translation theorem to mean that x0 is
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absolutely continuous in some appropriate sense (for instance, in the classical case, having

the form x0(t) =
∫ t

0
x′0(s) ds for some function x′0 of bounded variation on [0, T ]). This view

is prevalent in most of the more recent statements of the translation theorem. Moreover,

by the appropriate limiting processes, one can show that this requirement can be relaxed

further, and that it is sufficient for x′0 to be square-integrable in an appropriate sense for the

space Ca,b[0, T ] under consideration. This is the understanding that captures the essential

property of allowable translations.

Finally, we note that the hypothesis that z ∈ L2
a,b[0, T ] is actually stronger than necessary

for (2.12) to hold. It is sufficient that the function z be merely integrable with respect to the

measure ν|a| instead of square-integrable. We will defer a demonstration of this fact until a

later discussion of the translation theorem in a more general setting.

In the remainder of this chapter we have two main goals. The first is to develop machinery

and techniques that we will use in subsequent chapters. The second is to establish useful

tools for integrating certain functionals on Ca,b[0, T ].

It is often desirable to consider functionals of the form F (x) = f(〈θ, x〉), where 〈θ, x〉 is

the Paley-Wiener-Zygmund stochastic integral of the function θ ∈ L2[0, T ]. Functionals of

this type naturally appear in the Cameron-Martin translation theorem and in virtually all of

the integral transform theory for functionals on Wiener space. The first integration formula

of this type for functionals on C0[0, T ] was established by Paley, Wiener, and Zygmund in [42]

and can be found in [41]. A shorter, modern proof of this theorem was given by Yeh in [66].

Applications of this theorem abound in the literature; for example see [30, 31, 44, 45, 63].

In [23], Robert Ewan obtained a generalization of this result. In Section 2.2 we define the

PWZ integral and demonstrate some of its important properties. In Section 2.3 we obtain a

generalization of the Paley-Wiener type integration formula for the function space Ca,b[0, T ].
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2.2 Stochastic Integrals on Ca,b[0, T ]

For our purposes, we broadly classify stochastic integrals into three types. These are time

integrals, Paley-Wiener-Zygmund integrals (often called simply Paley-Wiener or Wiener in-

tegrals), and Itô-type integrals. Our results in this section are concerned with the first two

types. We will use fairly classical methods in our work in this section. In later chapters

similar notions will be explored using somewhat different techniques.

We begin with a brief discussion of our first object of interest, the time integral (or

parameter integral). Simply put, this is the Reimann integral of a function of the continuous

random variable X(t, x) = x(t) with respect to the parameter t; thus the time integral of

X(t, x) is a random variable Y (x) that satisfies

Y (x) =

∫ T

0

F (t,X(t, x))dt =

∫ T

0

F (t, x(t))dt, (2.13)

where F (t, x(t)) is a functional on [0, T ]× Ca,b[0, T ] that is Riemann integrable on [0, T ].

The study of the Feynman integral provides ready examples of the utility of the time

integral. The Feynman-Kac formula represents an important step in the process of providing

a rigorous definition of the Feynman integral. A detailed explanation of this formula can be

found in [33]. The Feynman-Kac functional is given by

F (x) = exp

(
−
∫ t

0

V (s,X(s, x))ds

)
, (2.14)

where X(t, x) is a standard Brownian motion process and V : [0, T ] × C0[0, T ] → C. Some

simple examples of time integrals include

Fα,β(x) =

∫ T

0

θ(t, αx(t) + β)dt, (2.15)
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where α, β ∈ R and θ : [0, T ]× R→ R is bounded and continuous, and also

G(x) =

(∫ T

0

x(t)dt

)2

, (2.16)

H(x) =

∫ T

0

x2(t)dt. (2.17)

Calculations involving the expectation of the first two examples are important in the

study of the Feynman integral. For more examples of functionals involving time integrals

see [9, 32, 33].

The Paley-Wiener-Zygmund (PWZ) integral is a simple type of stochastic integral that

proves extremely useful in the study of the space Ca,b[0, T ]. Given any complete orthonormal

set of functions {φj}∞j=1 of bounded variation on [0, T ] and any function f ∈ L2
a,b[0, T ], we can

write f = limn→∞ fn, where fn(t) =
∑n

j=1(f, φj)a,bφj(t). As each φj is of bounded variation,

the Reimann-Stieltjes integral
∫ T

0
φj(t)dx(t) exists for every x ∈ Ca,b[0, T ], and thus for

f ∈ L2
a,b[0, T ], the integral

∫ T

0

fn(t)dx(t) =

∫ T

0

n∑
j=1

(f, φj)a,bφj(t)dx(t) =
n∑
j=1

(f, φj)a,b

∫ T

0

φj(t)dx(t)

is well-defined for each n and for every x ∈ Ca,b[0, T ].

Definition 2. Let {φj}∞j=1 be a complete orthonormal set of functions of bounded variation

in L2
a,b[0, T ] and let fn(t) =

∑n
j=1(f, φj)a,bφj(t). For f ∈ L2

a,b[0, T ], we define the Paley-

Wiener-Zygmund stochastic integral by the formula

〈f, x〉 = lim
n→∞

∫ T

0

fn(t)dx(t)

for all x ∈ Ca,b[0, T ] for which this limit exists.

We will presently demonstrate the following important properties of the PWZ integral.
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1. 〈f, x〉 exists for almost every x ∈ Ca,b[0, T ].

2. The PWZ integral is essentially independent of the choice of the orthonormal set used

to define it. Any complete orthonormal set of functions of bounded variation can be

used to define 〈f, x〉.

3. 〈f, x〉 has the usual linearity properties.

4. If a function f is of bounded variation on [0, T ], then 〈f, x〉 is equal to the Riemann-

Stieltjes integral
∫ T

0
f(t)dx(t) for almost every x ∈ Ca,b[0, T ].

Before proving these four facts, we will first establish some basic properties of the PWZ

integral as a random variable. Yeh establishes similar properties for a standard Brownian

Motion process in Chapter 5 of [66]; our development is quite similar. Some adjustments

are required due to the fact that our generalized Brownian Motion process is dependent on

the functions a and b. The following lemma is essentially due to Yeh, with a few necessary

changes.

Lemma 1. Let S[0, T ] be the collection of simple functions of the form ϕ(t) =
∑n

k=1 ckχIk(t),

where Ik = [tk, tk+1] ⊆ [0, T ]. Then

1. E[
∫ T

0
ϕ(t)dx(t)] =

∫ T
0
ϕ(t)da(t).

2. E[
(∫ T

0
ϕ(t)dx(t)

)2

] =
∫ T

0
ϕ2(t)db(t) +

(∫ T
0
ϕ(t)da(t)

)2

3.
∫ T

0
ϕ(t)dx(t) is a normally distributed random variable with mean

∫ T
0
ϕ(t)da(t) and

variance
∫ T

0
ϕ2(t)db(t).
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Proof. As S[0, T ] ⊆ BV[0, T ], the Riemann-Stieltjes integrals appearing in the lemma all

exist. Using (2.9) we see that

∫
Ca,b[0,T ]

∫ T

0

ϕ(t)dx(t)m(dx) =

∫
Ca,b[0,T ]

∫ T

0

n∑
k=1

ckχIk(t)dx(t)m(dx)

=
n∑
k=1

ck

∫
Ca,b[0,T ]

[x(tk+1)− x(tk)]m(dx) =
n∑
j=1

ck[a(tk+1)− a(tk)] =

∫ T

0

ϕ(t)da(t).

This gives the first conclusion.

For the second conclusion, we use equation (2.11) to compute

∫
Ca,b[0,T ]

(
n∑
k=1

ck[x(tk+1)− x(tk)]

)2

m(dx)

=
n∑
j=1

n∑
k=1

cjck

∫
Ca,b[0,T ]

[x(tj+1)− x(tj))(x(tk+1)− x(tk)]m(dx)

=
n∑
j=1

n∑
k=1

cjck

∫
Ca,b[0,T ]

[x(tj+1)x(tk+1)− x(tj+1)x(tk)− x(tj)x(tk+1) + x(tj)x(tk)] m(dx)

=
n∑
j=1

n∑
k=1

cjck
[

min{b(tj+1), b(tk+1)}+ a(tj+1)a(tk+1)−min{b(tj), b(tk+1)}

− a(tj)a(tk+1)−min{b(tj+1), b(tk)} − a(tj+1)a(tk) + min{b(tj), b(tk)}+ a(tj)a(tk)
]

=
n∑
j=1
j 6=k

n∑
k=1

cjck
[

min{b(tj+1), b(tk+1)} −min{b(tj), b(tk+1)}

−min{b(tj+1), b(tk)}+ min{b(tj), b(tk)}
]

+
n∑
j=1

c2
j

[
b(tj+1)− b(tj)

]
+

n∑
j=1

n∑
k=1

cjck
[
a(tj+1)− a(tj)

][
a(tk+1)− a(tk)

]
=

∫ T

0

ϕ2(t)db(t) +

(∫ T

0

ϕ(t)da(t)

)2

.

Finally, observe that the collection of random variables {x(t), t ∈ [0, T ]} is a Gaussian system
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by Theorem 17.1 of [66], and therefore the linear combination

∫ T

0

ϕ(t)dx(t) =
n∑
k=1

ck[x(tk+1)− x(tk)]

is normally distributed by Theorem 16.4 of [66]. From the first two conclusions we can

compute the mean and variance for
∫ T

0
ϕ(t)dx(t); this completes the proof.

We remark that the Riemann-Stieltjes integral is linear; whence we have the useful fact

that ∫ T

0

[rϕ(t) + sψ(t)] dx(t) = r

∫ T

0

ϕ(t)dx(t) + s

∫ T

0

ψ(t)dx(t)

for ϕ and ψ in S[0, T ] and r, s ∈ R. We now ‘extend’ this use of the Riemann-Stieltjes

integral as a functional on Ca,b[0, T ] to include a much wider pool of functions.

Definition 3. For f ∈ L2
a,b[0, T ], let {ϕn}∞n=1 be a sequence of simple functions in L2

a,b[0, T ]

satisfying f = limn→∞ ϕn. Define the pointwise limit

If(x) = lim
n→∞

∫ T

0

ϕn(t)dx(t) (2.18)

for all x ∈ Ca,b[0, T ] for which this limit exists.

If f ∈ L2
a,b[0, T ] then there is a sequence of simple functions ϕn(t) =

∑n
k=1 ckχIk(t) for

which |ϕn| ≤ |f | on [0, T ] and limn→∞ ||f − ϕn||a,b = 0. In addition,
∫ T

0
ϕn(t)dx(t) is an

element of L2(Ca,b[0, T ],m) for each n by part (b) of Lemma 1. Moreover, ϕn − ϕm is an
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element of S[0, T ]. Applying Lemma 1 and using Jensen’s Inequality (cf. [24]) shows that

∣∣∣∣∣∣∣∣∫ T

0

ϕn(t)dx(t)−
∫ T

0

ϕm(t)dx(t)

∣∣∣∣∣∣∣∣2
L2(m)

=

∫
Ca,b[0,T ]

(∫ T

0

[ϕn − ϕm](t)dx(t)

)2

m(dx)

=

∫ T

0

[ϕn − ϕm]2(t)db(t)

+

(∫ T

0

[ϕn − ϕm](t)da(t)

)2

≤
∫ T

0

[ϕn − ϕm]2(t)db(t)

+ ν|a| ([0, T ])

∫ T

0

[ϕn − ϕm]2(t)d |a| (t)

≤ max
{

1, ν|a| ([0, T ])
}
||ϕn − ϕm||2a,b .

From this, we conclude that the sequence {
∫ T

0
ϕn(t)dx(t)}∞n=1 is Cauchy in L2(Ca,b[0, T ],m).

Notice that If exists for a.e. x ∈ Ca,b[0, T ]. Moreover, if limn→∞ ϕn = f = limn→∞ ψn

for sequences {ϕn}∞n=1 and {ψn}∞n=1 in S[0, T ] and If = limn→∞
∫ T

0
ϕn(t)dx(t), then again

by Lemma 1 and Jensen’s Inequality we have

∣∣∣∣∣∣∣∣∫ T

0

ϕn(t)dx(t)−
∫ T

0

ψn(t)dx(t)

∣∣∣∣∣∣∣∣2
L2(m)

≤ max
{

1, ν|a|,0 ([0, T ])
}
||sn − sm||2a,b ,

and therefore

If(x) = lim
n→∞

∫ T

0

ϕn(t)dx(t) = lim
n→∞

∫ T

0

ψn(t)dx(t)

in L2(Ca,b[0, T ],m). We conclude that the definition of If is essentially independent of the

choice of sequence from S[0, T ] that is used to define it.

In some ways it is easier to work with If than with 〈f, x〉. Fortunately, they are actually

the same entity for almost every x ∈ Ca,b[0, T ], as we will show. We first establish the desired

properties for If and then show that Definition 3 is equivalent to Definition 2, and hence

If(x) = 〈f, x〉. To this end, we state the following lemma.
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Lemma 2. If f ∈ L2
a,b[0, T ], then

1. I(f) is a normally distributed random variable.

2. E[I(f)] =
∫ T

0
f(t)da(t).

3. E[I(f)2] =
∫ T

0
f 2(t)db(t) +

(∫ T
0
f(t)da(t)

)2

4. If r and s are in R and f and g are in L2
a,b[0, T ], then I(rf + sg) = rI(f) + sI(g) for

a.e. x ∈ Ca,b[0, T ].

Proof. The integrals on the right hand sides of items 2 and 3 are well-defined Lebesgue-

Stieltjes integrals, because f ∈ L2
a,b[0, T ]. Take {ϕn}∞n=1 to be a sequence of simple functions

with |ϕn| ≤ |f | on [0, T ] and limn→∞ ϕn = f in L2
a,b[0, T ]. Then

∣∣∣∣∫ T

0

ϕn(t)da(t)−
∫ T

0

f(t)da(t)

∣∣∣∣ ≤ ∫ T

0

|ϕn(t)− f(t)| d |a| (t) ≤ ||ϕn − f ||a,b ,

and therefore limn→∞
∫ T

0
ϕn(t)da(t) =

∫ T
0
f(t)da(t). Moreover, ϕ2 ≤ f 2 and ϕ2 → f 2

pointwise for almost every t ∈ [0, T ], and so by dominated convergence

lim
n→∞

∫ T

0

ϕ2
n(t)db(t) =

∫ T

0

f 2(t)db(t).

Finally,
∫ T

0
ϕn(t)dx(t) is real-valued and thus

∣∣∣exp
(
iu
∫ T

0
ϕn(t)dx(t)

)∣∣∣ = 1 for u ∈ R.
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Using these facts, we can compute the characteristic function for If and find that

E[exp(iuIf)] =

∫
Ca,b[0,T ]

exp

(
iu lim

n→∞

∫ T

0

ϕndx

)
m(dx)

= lim
n→∞

∫
Ca,b[0,T ]

exp

(
iu

∫ T

0

ϕndx

)
m(dx)

= lim
n→∞

E[exp (iuIϕn)]

= lim
n→∞

exp

(
−u

2

2

∫ T

0

ϕ2
n(t)db(t) + iu

∫ T

0

ϕn(t)da(t)

)
= exp

(
−u

2

2

∫ T

0

f 2(t)db(t) + iu

∫ T

0

f(t)da(t)

)
.

This is the (unique) characteristic function of a normally distributed random variable

with expected value
∫ T

0
f(t)da(t) and variance

∫ T
0
f 2(t)db(t). This proves items 1, 2, and 3.

Finally, we take sequences {ϕn}∞n=1 and {ψn}∞n=1 of simple functions with limn→∞ ϕn = f

and limn→∞ ψn = g in L2
a,b[0, T ]. Then for real r and s each function rϕn + sψn is also a

simple function with limn→∞ rϕn + sψn = rf + sg in L2
a,b[0, T ], and therefore

rIf + sIg = r lim
n→∞

∫ T

0

ϕn(t)dx(t) + s lim
n→∞

∫ T

0

ψn(t)dx(t) = I(rf + sg)

for almost every x ∈ Ca,b[0, T ].

Lemma 3. If f ∈ BV[0, T ], then If(x) =
∫ T

0
f(t)dx(t) for a.e. x ∈ Ca,b[0, T ].

Proof. The proof of this lemma is precisely the same proof that Yeh uses for Theorem 22.5

of page 322 in [66], except that we reference our Definition 3 for If and our Lemma 2 from

above at the appropriate points.

Lemma 4. If f ∈ L2
a,b[0, T ], then If(x) = 〈f, x〉 for a.e x ∈ Ca,b[0, T ].

Proof. Note that f = limn→∞ ϕn = limn→∞ fn for sequences {fn} and {ϕn} as before, and

that each ϕn and each fn is an element of BV[0, T ]. Therefore ϕn− fn ∈ BV[0, T ]. Then by
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Lemma 2, Lemma 3, and Jensen’s Inequality,

∣∣∣∣∣∣∣∣∫ T

0

ϕn(t)dx(t)−
∫ T

0

fn(t)dx(t)

∣∣∣∣∣∣∣∣2
L2(m)

=

∫ T

0

[ϕn − fn]2(t)db(t)

+

(∫ T

0

[ϕn − fn](t)da(t)

)2

≤ ||ϕn − fn||2a,b +

(∫ T

0

|ϕn − fn| (t)d |a| (t)
)2

≤
∫ T

0

(ϕn − fn)2(t)db(t)

+ ν|a| ([0, T ])

∫ T

0

[ϕn − fn]2(t)d |a| (t)

≤ max
{

1, ν|a| ([0, T ])
}
||ϕn − fn||2a,b .

Then note that

||If − 〈f, x〉||L2(m) ≤
∣∣∣∣∣∣∣∣∫ T

0

ϕn(t)dx(t)− If

∣∣∣∣∣∣∣∣
L2(m)

+

∣∣∣∣∣∣∣∣〈f, x〉 − ∫ T

0

fn(t)dx(t)

∣∣∣∣∣∣∣∣
L2(m)

+

∣∣∣∣∣∣∣∣∫ T

0

ϕn(t)dx(t)−
∫ T

0

fn(t)dx(t)

∣∣∣∣∣∣∣∣
L2(m)

,

and thus we conclude that If(·) = 〈f, ·〉 in  L2(Ca,b[0, T ]), whence If(x) = 〈f, x〉 for almost

every x ∈ Ca,b[0, T ].

We are now free to dispense with If , after ascribing its desired properties to 〈f, x〉. The

following theorem follows immediately from Lemma 2 and Lemma 4.

Theorem 3. If f ∈ L2
a,b[0, T ], then

1. 〈f, x〉 is a normally distributed random variable.

2. E[〈f, x〉] =
∫ T

0
f(t)da(t).

3. E[〈f, x〉2] =
∫ T

0
f 2(t)db(t) +

(∫ T
0
f(t)da(t)

)2
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4. For r and s in R and f and g in L2
a,b[0, T ], 〈rf + sg, x〉 = r〈f, x〉+ s〈g, x〉 for a.e. x ∈

Ca,b[0, T ].

The following corollary gives one way of characterizing the relationship between the space

of functions L2
a,b[0, T ] and the collection of PWZ integrals obtained from it.

Corollary 1. The map Φ : L2
a,b[0, T ] → L2(Ca,b[0, T ]) by Φ(f) = 〈f, x〉 is an injective and

bounded linear transformation. Its image Φ(L2
a,b[0, T ]) is a closed subspace of L2(Ca,b[0, T ]).

Thus Φ is a linear homeomorphism of Hilbert spaces.

Proof. Φ is linear by (d). Now, 0 = ||〈f, x〉||2 = E[〈f, x〉2] ≥
∫ T

0
f 2(t)db(t) ≥ 0 if and only if

f = 0 in L2
a,b[0, T ] by (c); thus Φ is injective. Also by (c),

||〈f, x〉||2L2(m) =

∫ T

0

f 2(t)db(t) +

(∫ T

0

f(t)da(t)

)2

≤
∫ T

0

f 2(t)db(t) + ν|a|,0 ([0, T ])

∫ T

0

f 2(t)d |a| (t) ≤ max{1, ν|a|,0 ([0, T ])} ||f ||2a,b , (2.19)

and so Φ is bounded with ||Φ|| ≤ max{1, ν|a|,0 ([0, T ])}. As Φ is bounded and L2
a,b[0, T ] is

closed in itself, Φ(L2
a,b[0, T ]) is closed in L2(Ca,b[0, T ]). Since Φ : L2

a,b[0, T ]→ Φ(L2
a,b[0, T ]) is

a bounded bijective linear transformation, the Open Mapping Theorem guarantees that Φ−1

is also bounded.

In [66], Yeh demonstrates that the analogous mapping from L2[0, T ] into L2(C0[0, T ]) is

an isometry (often referred to as the Itô Isometry) and is then able to exploit this fact to

obtain further results. As one should expect, the situation is more complicated for more

general function spaces. We consider a simple example that illustrates the difficulty. Let

Ca,b[0, T ] be a generalized Wiener space with parameter space [0, T ] and having drift function
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a(t) = 2t and consider the functions f1 and f2 given by

f1(t) =


1 if 0 ≤ t ≤ 1

2
,

−1 if 1
2
< t ≤ 1,

and f2(t) = 1. From (c) of Theorem 3 it is easy to see that ||f1||a,b = ||f2||a,b = b(1) + 2.

However, a simple calculation also shows that

∫ 1

0

f 2
2 (t)db(t) +

(∫ 1

0

f2(t)da(t)

)2

= b(1) + (2)2,

and that ∫ 1

0

f 2
1 (t)db(t) +

(∫ 1

0

f1(t)da(t)

)2

= b(1).

Thus ||Φ(f2)||22 > ||f2||a,b = ||f1||a,b > ||Φ(f1)||22 and it is difficult to say very much about the

exact value of ||Φ|| except that Φ is certainly not an isometry.

With suitable adjustments, one might still carry out a program of orthogonal expansions

for a general Brownian Motion process similar to that detailed in Section 23 of [66], albeit

with some difficulty. As one might expect, the very possibility of carrying out such a program

may be largely dependent upon the nature of the functions a and b. In Section 2.3 we will

show that for f and g in L2
a,b[0, T ],

(Φ(f),Φ(g))L2(m) =

∫ T

0

f(t)g(t)db(t) +

∫ T

0

f(t)da(t)

∫ T

0

g(t)da(t), (2.20)

and then taking the generalized Wiener space of our last example, we note that f3(t) =

χ
[0,

1
2

]
(t) and f4(t) = χ

[
1
2
,1]

(t) are orthogonal in L2
a,b[0, T ], but that Φ(f3) and Φ(f4) are not

orthogonal in L2(Ca,b[0, T ]) by equation (2.20). Thus one cannot necessarily build orthogonal

sets in L2(Ca,b[0, T ]) from orthogonal sets in L2
a,b[0, T ], which raises doubts about whether
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one could obtain many of the results of Section 23 of [66]. Of course, if the function a is

identically zero it is not hard to see that then the map Φ is in fact an isomorphism of Hilbert

spaces and one need only make minimal adjustments for the behavior of b in order to carry

out Yeh’s program. The problem here is that L2
a,b[0, T ] is in some sense the “wrong” space

to be working with. In Chapter 3, we will have something to say about what the “correct”

space is.

We briefly return our attention to time integrals to observe an interesting relationship

between PWZ integrals and certain time integrals. If F (t,X(t, x)) = rX(t, x) + s with

r, s ∈ R, we can use integration by parts, and taking our sample paths x ∈ Ca,b[0, T ] we

obtain

Y (x) =

∫ T

0

F (t,X(t, x))dt =

∫ T

0

(rx(t) + s)dt

= r

(
Tx(T )−

∫ T

0

tdx(t)

)
+ sT

= sT + r〈T − t, x〉. (2.21)

We conclude that time integrals of this type can be written in terms of PWZ integrals.

In the examples of time integrals found in equations (2.15) and (2.16), G(x) is clearly of

this type and Fα,β(x) can also be handled in this manner in the case where θ(·, ·) is a linear

function of its second argument. In section 2.3 we will obtain integration formulas for a

wide class of functionals involving PWZ integrals, which will consequently yield formulas for

functionals of time integrals.
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2.3 Paley-Wiener-Zygmund Theorem

In this section, we continue to assume that the function a is absolutely continuous with

derivative a′ ∈ L2[0, T ] and that b is continuously differentiable with b′ positive and bounded

away from 0.

Functionals that involve Paley-Wiener-Zygmund (PWZ) stochastic integrals are quite

common. A very important method for evaluating function space integrals of these func-

tionals is the following formula which is stated without proof on page 2929 of [11] by Chang,

Choi and Skoug.

Let {α1, . . . , αn} be an orthonormal set in L2
a,b[0, T ] and let f : Rn → R be

Lebesgue measurable and let Aj =
∫ T

0
αj(s)da(s) and Bj =

∫ T
0
α2
j (s)db(s) for

j = 1, . . . , n. If F (x) = f(〈α1, x〉, . . . , 〈αn, x〉), then

∫
Ca,b[0,T ]

F (x)dµ(x) ≡
∫
Ca,b[0,T ]

f(〈α1, x〉, . . . , 〈αn, x〉) dµ(x)

=

(
n∏
j=1

2πBj

)−1/2 ∫
Rn
f(u1, . . . , un) exp

(
−1

2

n∑
j=1

(uj − Aj)2

Bj

)
du1 · · · dun,

(2.22)

in the sense that if one side exists then the other exists with equality.

Observe that this formula is a generalization to the space Ca,b[0, T ] of a theorem of Paley

and Wiener for ordinary Wiener space, which can be found in chapter 7 of [66]. We will

establish a more general theorem that subsumes the formula above as a special case. Our

theorem has considerably relaxed conditions on the choice of functions {α1, . . . , αn}. This

proof is in part motivated by the proof of a similar theorem for ordinary Wiener space found

in Robert Ewan’s thesis [23], completed at UNL under the direction of Skoug in 1973.

The first theorem of this section is the most general of our Paley-Wiener type theorems.
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Theorem 4. Let {θ1, . . . , θn} be a collection of functions in L2
a,b[0, T ]. Also, let M =

(Cov[〈θi, x〉, 〈θj, x〉])ni,j=1 be the covariance matrix for the collection {〈θi, x〉}. Further sup-

pose that M is nonsingular and let M−1 = (m̂i,j)
n
i,j=1. Put Ai = E[〈θi, x〉] and let f : Rn → C

be Lebesgue measurable and put F (x) = f(〈α1, x〉, . . . , 〈αn, x〉). Then

∫
Ca,b[0,T ]

F (x)m(dx) =

∫
Ca,b[0,T ]

f(〈θ1, x〉, . . . , 〈θn, x〉)m(dx)

∗
= (2π)−

n
2 |M |−

1
2

∫
Rn
f(u) exp

(
−1

2

n∑
j=1

n∑
i=1

m̂i,j(ui − Ai)(uj − Aj)

)
du. (2.23)

Proof. Let {θ1, . . . θn} be as given in the theorem. By Theorem 3 we see that (〈θj, x〉 − Aj)
d∼

N(0,
√
Bj) for j = 1, . . . , n. If M = (Cov[〈θi, x〉, 〈θj, x〉])ni,j=1 is nonsingular, then |M | > 0,

and so |M−1| = |M |−1 ∈ R. Let {Yi}ni=1 be a collection of random variables with Yi
d∼

N(yi, σi). Then from page 164 of [59] we see that the density function of the n-variate

normal distribution for (Y1, . . . , Yn) is given by

φ(y) =

√
|M−1|

(2π)n/2
exp

(
−1

2
〈y −w,M−1(y −w)〉

)
, (2.24)

where y = (y1, . . . , yn), w = (y1, . . . , yn), and 〈·, ·〉 is the Euclidean inner product. Note that

we can write

〈y −w,M−1(y −w)〉 =
n∑
j=1

n∑
i=1

m̂i,j(yi − yi)(yj − yj),

where M−1 = (m̂i,j)
n
i,j=1.

Now, from page 41 of [54] we observe that for a collection of random variables {y1, . . . , yn}

in a probability space (Ω,A, P ) with joint probability density function φ we have

E[f(y1, . . . , yn)] =

∫
Ω

f(y1, . . . , yn) dP (y) =

∫
Rn
f(u)φ(u)du. (2.25)
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Theorem 4 follows from equations (2.24) and (2.25).

The next Lemma gives a useful means for computing the covariance matrix M appearing

in Theorem 4.

Lemma 5. If θ1 and θ2 are in L2
a,b[0, T ], then Cov[〈θ1, x〉, 〈θ2, x〉] =

∫ T
0
θ1(s)θ2(s)db(s).

Proof. Note that if θ1 = 0 in L2
a,b[0, T ], then θ1(t) = 0 for a.e. t ∈ [0, T ]. Therefore 〈θ1, x〉 = 0

and hence

Cov[〈θ1, x〉, 〈θ2, x〉] = E[〈θ1, x〉〈θ2, x〉]− E[〈θ1, x〉]E[〈θ2, x〉] = E[0]− E[0]E[〈θ2, x〉] = 0

(2.26)

in the case where either θ1 or θ2 is 0 in L2
a,b[0, T ]. Take θi nonzero in L2

a,b[0, T ] and put

Ai =
∫ T

0
θi(s)da(s) and Bi =

∫ T
0
θ2
i (s)db(s) for i = 1, 2. Observe that b induces a positive

measure on [0, T ] and hence Bi > 0. Apply Theorem 4 to the singleton set {θi} to obtain

E[〈θi, x〉2] =

∫
Ca,b[0,T ]

〈θi, x〉2m(dx) =
1√

2πBi

∫
R
u2 exp

(
−(u− Ai)2

2Bi

)
du,

and then a routine calculation yields the equality

E[〈θi, x〉2] = Bi + A2
i . (2.27)

Similar computations performed with the function θ1 + θ2 show that

E[〈θ1 + θ2, x〉2] =

∫ T

0

(θ1(s) + θ2(s))2db(s) +

(∫ T

0

θ1(s) + θ2(s)da(s)

)2

=

(∫ T

0

θ1(s)da(s)

)2

+ 2

∫ T

0

θ1(s)da(s)

∫ T

0

θ2(s)da(s) +

(∫ T

0

θ2(s)da(s)

)2

+

∫ T

0

θ2
1(s)db(s) + 2

∫ T

0

θ1(s)θ2(s)db(s) +

∫ T

0

θ2
2(s)db(s),
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which establishes that

E[〈θ1 + θ2, x〉2] = A2
1 + 2A1A2 + A2

2 +B1 +B2 + 2

∫ T

0

θ1(s)θ2(s)db(s). (2.28)

Using equation (2.27), we also obtain the equality

E[〈θ1 + θ2, x〉2] =

∫
Ca,b[0,T ]

〈θ1 + θ2, x〉〈θ1 + θ2, x〉m(dx)

=

∫
Ca,b[0,T ]

〈θ1, x〉2m(dx) + 2

∫
Ca,b[0,T ]

〈θ1, x〉〈θ2, x〉m(dx) +

∫
Ca,b[0,T ]

〈θ2, x〉2m(dx)

= B1 + A2
1 +B2 + A2

2 + 2E[〈θ1, x〉〈θ2, x〉]. (2.29)

Finally, combining equations (2.28) and (2.29) yields that

E[〈θ1, x〉〈θ2, x〉] =

∫ T

0

θ1(s)θ2(s)db(s) + A1A2, (2.30)

from which we deduce that

Cov[〈θ1, x〉, 〈θ2, x〉] = E[〈θ1, x〉〈θ2, x〉]− E[〈θ1, x〉]E[〈θ2, x〉] =

∫ T

0

θ1(s)θ2(s)db(s), (2.31)

which also agrees with (2.26) in the case where either function is zero.

Lemma 6. If {θ1, . . . , θn} is a collection of linearly independent functions in L2
a,b[0, T ], then

the random variables {〈θi, x〉} are linearly independent.

Proof. Suppose that 0 =
∑n

j=1 cj〈θj, x〉 for almost every x ∈ Ca,b[0, T ] with cj 6= 0 for some

j. Then

0 =

∫
Ca,b[0,T ]

∣∣∣∣∣
n∑
j=1

cj〈θj, x〉

∣∣∣∣∣
2

m(dx) =

∫
Ca,b[0,T ]

∣∣∣∣∣〈
n∑
j=1

cjθj(t), x〉

∣∣∣∣∣
2

m(dx). (2.32)
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Take ϕ(t) =
∑n

j=1 cjθj(t) and then put A = E[〈
∑n

j=1 θj, x〉] = E[〈ϕ, x〉] and B =

Var[〈
∑n

j=1 θj, x〉] = Var[〈ϕ, x〉], observing that B ≥ 0 by Lemma 3.

If B > 0, then we apply Theorem 4 to the singleton set {ϕ} to obtain that

∫
Ca,b[0,T ]

|〈ϕ, x〉|2 dµ(x) =
1√

2πB

∫
R
u2 exp

(
−(u− A)2

2B

)
du. (2.33)

From equations (2.32) and (2.33) a routine computation shows that

0 =

∫
Ca,b[0,T ]

∣∣∣∣∣
n∑
j=1

cj〈θj, x〉

∣∣∣∣∣
2

m(dx) =

∫
Ca,b[0,T ]

|〈ϕ, x〉|2 m(dx) = B + A2, (2.34)

from which we quickly deduce that we must have B = 0, which is a contradiction.

If B = 0 then we have 0 = Var[〈ϕ, x〉] =
∫ T

0
ϕ2(s)db(s) by Lemma 3. Therefore∑n

j=1 cjθj(s) = ϕ(s) = 0 for a.e. s ∈ [0, T ] because b induces a positive measure on [0, T ].

Then the functions {θ1, . . . , θn} cannot be linearly independent.

Lemma 6 allows us to obtain our next Paley-Wiener type theorem by taking the collection

of functions {θ1, . . . , θn} to be linearly independent.

Theorem 5. Let {θ1, . . . , θn} be a linearly independent set in L2
a,b[0, T ]. Then the covariance

matrix M = (Cov[〈θi, x〉, 〈θj, x〉])ni,j=1 is nonsingular and the result of Theorem 4 holds.

Proof. By Lemma 6 we see that {〈θ1, x〉, . . . , 〈θn, x〉} are linearly independent. Then by

Theorem 3.5.1 of [59], the covariance matrix M is positive-definite (hence nonsingular).

Now apply Theorem 4.

In the special case where the functions {θ1, . . . , θn} are orthonormal, we obtain as a

corollary the very useful formula on page 2929 of [11] which was discussed at the beginning

of this section.
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Corollary 2. Let {θ1, . . . , θn} be an orthonormal set in L2
a,b[0, T ], let f : Rn → R be

Lebesgue measurable, and let Aj =
∫ T

0
θj(s)da(s) and Bj =

∫ T
0
θ2
j (s)db(s). If F (x) =

f(〈θ1, x〉, . . . , 〈θn, x〉), then

∫
Ca,b[0,T ]

F (x)µ(dx) =

∫
Ca,b[0,T ]

f(〈θ1, x〉, . . . , 〈θn, x〉)µ(dx)

∗
=

(
n∏
j=1

2πBj

)−1/2 ∫
Rn
f(u1, . . . , un) exp

(
−1

2

n∑
j=1

(uj − Aj)2

Bj

)
du1 · · · dun. (2.35)

Proof. In the case that a collection of functions {θ1, . . . , θn} is orthonormal in L2
a,b[0, T ], we

can compute the covariance matrix M = (Cov[〈θi, x〉, 〈θj, x〉])ni,j=1 quite easily.

Recall that θi and θj are members of an orthonormal set in L2
a,b[0, T ]. Using Lemma 5

we determine that

mi,j = Cov[〈θi, x〉, 〈θj, x〉] =

∫ T

0

θi(s)θj(s)db(s) =


Bj if i = j,

0 if i 6= j.

Thus we can compute |M | =
∏n

j=1Bj, while |M−1| =
∏n

j=1B
−1
j and M−1 = (m̂i,j)

n
i,j=1.

Applying Theorem 5 with the set {θ1, . . . , θn} immediately yields the result.

We now consider some applications and examples of the use of these theorems. Begin by

making the observation that for functionals of the form

F (x) = f(x(t1), . . . , x(tn)) (2.36)

where 0 = t0 < t1 < · · · < tn ≤ T , one can evaluate the integral
∫
Ca,b[0,T ]

F (x)m(dx) by at

least three different methods. The first of these methods is to use formula (2.8). A second
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option is to use formula (2.23) with θj(t) = χ[0,tj ](t) for j = 1, . . . , n and noting that

x(tj) =

∫ tj

0

dx(t) =

∫ T

0

χ[0,tj ](t)dx(t) = 〈θj, x〉. (2.37)

It is easy to see that the collection {θ1, . . . , θn} is linearly independent in L2
a,b[0, T ],

and thus the collection of random variables {〈θ1, x〉, . . . , 〈θn, x〉} has nonsingular covariance

matrix M = (mi,j)
n
i,j=1 = (min{b(ti), b(tj)})ni,j=1.

Finally, a third method for evaluating function the space integral for the functional in

(2.36) is to again take θj(t) = χ[0,tj ](t) for j = 1, . . . , n and use the Gram-Schmidt process

on the set {θ1, . . . , θn} to obtain an orthonormal set in L2
a,b[0, T ] and then apply (2.35) after

an appropriate change of variables.

A combination of integration by parts and equation (2.37) can be used to find integration

formulas for certain other functionals in terms of Lebesgue integrals. In Section 2.2 we

introduced the time integral and noted that certain time integrals could be written in terms

of PWZ integrals. Under favorable conditions, this notion can be extended. For example,

observe that if φ(t) is of bounded variation on [0, T ] we can write

∫ T

0

x(t)dφ(t) =

∫ T

0

(φ(T )− φ(t)) dx(t) = 〈φ(T )− φ(t), x〉. (2.38)

Therefore, if f(u1, . . . , un) is Lebesgue measurable, and if the collection {φ1, . . . , φn} is

linearly independent in L2
a,b[0, T ] with no φj constant on [0, T ], and if we define a functional

F on Ca,b[0, T ] by

F (x) = f

(∫ T

0

x(t)dφ1(t), . . . ,

∫ T

0

x(t)dφn(t)

)
, (2.39)

then we can express the function space integral of F in terms of a Lebesgue integral by using

(2.38) and Theorem 5.
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We close this section by working two examples. The first highlights the method for

using the general Paley-Wiener type theorem. For most choices of functions in L2
a,b[0, T ],

the computations involved in using the theorem can become quite complicated. In order to

simplify the computations and concentrate on the techniques used, we assume in this first

example that a is the zero function. Let {θ1, θ2} be a linearly independent set in L2
a,b[0, T ]

and define the functional

F (x) = f(〈θ1, x〉, 〈θ2, x〉) = exp

(
−1

2

(
〈θ1, x〉2 + 〈θ2, x〉2

))
. (2.40)

As a(t) ≡ 0, we see that Ai =
∫ T

0
θi(t)da(t) = 0 for i = 1, 2. The covariance matrix for

the random variables {〈θ1, x〉, 〈θ2, x〉} is

M =

B1 K

K B2

 =

 ∫ T
0
θ2

1(t)db(t)
∫ T

0
θ1(t)θ2(t)db(t)∫ T

0
θ1(t)θ2(t)db(t)

∫ T
0
θ2

2(t)db(t)

 . (2.41)

Put D = detM = B1B2 −K2, and one can compute

M−1 = (detM)−1adj(M) =
1

D

 B2 −K

−K B1

 , (2.42)

so that we have m̂1,1 = B2

D
, m̂2,2 = B1

D
, and m̂2,1 = m̂1,2 = −K

D
. Now using Theorem 5 we can
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write

∫
Ca,b[0,T ]

F (x)m(dx)

=
1

2π
√
D

∫
R2

exp

(
−1

2

(
u2

1 + u2
2

))
exp

(
− 1

2D

(
B2u

2
1 +B1u

2
2 − 2Ku1u2

))
du2du1

=
1

2π
√
D

∫
R2

exp

(
− 1

2D

(
(B2 +D)u2

1 + (B1 +D)u2
2 − 2Ku1u2

))
du2du1

=
1

2π
√
D

∫
R

exp

((
K2 − (B1 +D)(B2 +D)

2D(B1 +D)
u2

1

))
∫

R
exp

(
−B1 +D

2D

(
u2 −

Ku1

B1 +D

)2
)

du2du1

=
1√

B1 +D

1√
2π

∫
R

exp

(
− 1

2D

(
−K2 + (B1 +D)(B2 +D)

B1 +D
u2

1

))
du1

=
1√

B1 +D

(
−K2 + (B2 +D)(B1 +D)

D(B1 +D)

)−1
2

=

(
D

D2 −K2 +DB1 +DB2 +B1B2

) 1
2

=

(
D

D2 +DB1 +DB2 +D

) 1
2

=

(
1

1 +B1 +B2 +B1B2 −K2

)1
2

,

where the third equality follows from completing the square.

In our second example we no longer require that a(·) = 0, and we impose the stronger

hypothesis that {θ1, . . . , θn} be an orthogonal set in L2
a,b[0, T ]. Define the functional

F (x) = f(〈θ1, x〉, . . . , 〈θn, x〉) = exp

(
−

n∑
j=1

〈θj, x〉2
)
. (2.43)

Then by applying Theorem 5 with the method of the previous example and exploiting
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the fact that the functions θj are orthogonal (and thus M is diagonal), we find that

∫
Ca,b[0,T ]

F (x)m(dx) =

∫
Ca,b[0,T ]

exp

(
−

n∑
j=1

〈θj, x〉2
)

m(dx)

=

(
n∏
j=1

1√
1 + 2Bj

)
exp

(
−

n∑
j=1

A2
j

1 + 2Bj

)
,

where Aj =
∫ T

0
θj(t)da(t) and Bj =

∫ T
0
θ2
j (t)db(t).



41

Chapter 3

General Spaces

3.1 Cylinder sets and cylindrical Gaussian measures

In this chapter, all functions are understood to be R-valued unless otherwise specified. The

symbol 〈·, ·〉 will generally denote a duality pairing, while (·, ·) will be reserved for inner

products. Let B(X) denote the Borel σ-algebra of a topological space X. We begin by stating

some important definitions and theorems. See [5, 36, 56] for a more thorough treatment.

For consistency, most of our terminology and statements of definitions and theorems are

substantially borrowed from [5].

A cylinder set in a locally convex space X is a set of the form

C(x∗1, . . . , x
∗
n) = {x ∈ X : (〈x∗1, x〉, . . . , 〈x∗n, x〉) ∈ C ′} (3.1)

for some Borel set C ′ ⊆ Rn. Let E(X) denote the σ-algebra generated by the collection of

cylindrical subsets of X. Note that every x∗ ∈ X∗ is measurable on E(X) by definition.

We remark that E(X) is always contained in the Borel σ-algebra B(X) but the two do

not generally coincide. However, if B is a separable Banach space (hence Fréchet), it follows
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that the Borel σ-algebra B(B) = E(B). For a proof of this fact, see [55].

Definition 4. A measure γ on a locally convex space X is called Gaussian if γ ◦ (x∗)−1 is a

Gaussian measure on R; that is, γ ◦ (x∗)−1 is either a point mass or has density

d(γ ◦ (x∗)−1)

dm
(u) =

1√
2πb

exp

(
−(u− a)2

2b

)

for some real a and some b > 0. Equivalently, one can show that γ is Gaussian if γ ◦ P−1 is

a Gaussian measure on B(Rn) for every continuous linear map P : B → Rn.

The following theorem characterizes Gaussian measures on locally convex spaces. It is

essentially taken from Chapter 2 of [5].

Theorem 6. A measure γ on a locally convex space X is Gaussian if and only if its Fourier

transform has the form

γ̂(x∗) = exp

(
iL(x∗)− 1

2
Q(x∗, x∗)

)
, (3.2)

where L is a linear function on X∗ and Q(·, ·) is symmetric and bilinear on X∗ such that

the form Q(x∗, x∗) ≥ 0 for all x∗.

The maps L and Q capture the structure of the measure γ by determining where and

how it is distributed on X. The next definition gives us two useful tools for analyzing the

measure γ.

Definition 5. For a locally convex space X, the covariance operator Rγ for a measure γ on

E(X) with X∗ ⊆ L2(γ) is defined by the formula

Rγx
∗(y∗) =

∫
X

(〈x∗, x〉 −m(x∗)) (〈y∗, x〉 −m(y∗)) γ(dx), (3.3)
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where

m(x∗) =

∫
X

〈x∗, x〉γ(dx) (3.4)

is the mean of the functional x∗ with respect to γ.

We say that a Gaussian measure γ on X is centered if m(x∗) = 0 for all x∗ ∈ X∗ and

observe that a measure γ with Fourier transform given by (3.2) is centered if and only if

L = 0. From (3.2) and the fact that the measure γ is Gaussian it is not hard to see that

m(x∗) = L(x∗) and that Rγx
∗(y∗) = Q(x∗, y∗) for x∗, y∗ ∈ X∗. We will consider the bilinear

map Q(·, ·) to be defined by Q(x∗, y∗) = 〈Qx∗, y∗〉 whenever there is an appropriate operator

Q : X∗ → X. This is always possible if X is a separable Banach space.

To see why this is so, note that our notation Rγx
∗(y∗) is suggestive of the fact that for

each x∗, the entity Rγx
∗ is itself a map on X∗. This is in fact the case, and for a locally convex

space X, each Rγx
∗ will be an element of (X∗)′, the algebraic (not necessarily topological)

dual of X∗. Thus we can define Q : B∗ → B by 〈Qx∗, y∗〉 = Rγx
∗(y∗) = Q(x∗, y∗). In light

of this discussion, we will often take L = 〈a, ·〉 for some a ∈ B and Q(·, ·) = 〈Q·, ·〉 and write

(3.2) as

γ̂(x∗) = exp

(
i〈a, x∗〉 − 1

2
〈Qx∗, x∗〉

)
.

We now introduce a more general related notion.

Definition 6. A cylindrical Gaussian measure on a Banach space B is a non-negative finitely

additive function γ on the algebra (note: not necessarily a σ-algebra) of cylinder sets of B

such that γ ◦ P−1 is countably additive and Gaussian on B(Rn) for any continuous linear

projection P : B → Rn. We note that the Fourier transform of a cylindrical Gaussian

measure γ is the function γ̂ : B∗ → C defined by

γ̂(x∗) =

∫
R

exp(it)γ ◦ (x∗)−1(dt). (3.5)
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For a Hilbert space H, the canonical cylindrical Gaussian measure is understood to be

the set function γ0 on E(H) whose Fourier transform is

γ̂0(h) = exp

(
−1

2
||h||2

)
= exp

(
−1

2
(h, h)

)
. (3.6)

It is well-known that the canonical cylindrical Gaussian measure is not countably additive

on H unless the identity operator on H is trace class (i.e. if H is finite dimensional).

Example 1. Suppose that γ0 is actually a measure on a separable, infinite dimensional

Hilbert space H, let {h : ||h|| ≤ r} be a ball of any radius r in H and let Pn be an increasing

sequence of orthogonal projections converging to the identity operator in the strong operator

sense. From (3.6) we determine that

γ̂0(en) = exp

(
−1

2
||en||2

)
= exp

(
−1

2

)

for each basis element en ∈ H. Then {(en, ·) : n = 1, 2, . . .} is a collection of mean 0

Gaussian random variables for which the covariance of (ei, ·) and (ej, ·) is the Kronecker

delta δi,j, whence they are independent. For every n, we have

γ0 {h : ||h|| ≤ r} ≤ γ0 {h : ||Pnh|| ≤ r}

= γ0

{
h :

∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

(h, ej)ej

∣∣∣∣∣
∣∣∣∣∣ ≤ r

}

=

∫
· · ·
∫

{Pn
j=1 u

2
j≤r}

(2π)−
n
2 exp

(
−1

2

n∑
j=1

u2
j

)
du1 · · · dun

≤ 1

(2π)
n
2

e−
r
2 m(Ball(0; r))

=
1

2
n
2 Γ
(
n
2

+ 1
)e− r2
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Observe that as n→∞, the last expression converges to 0, whence it must be the case that

γ0 {h : ||h|| ≤ r} = 0 for every r ≥ 0. This forces γ0(H) = 0, which yields a contradiction

because then

0 = γ0(H) ≥ γ0 {h : (h, e1) > 0} =
1√
2π

∫ ∞
0

e
−u2

2 du =
1

2
.

Alternatively, one can use the Cameron-Martin translation theorem (which we will discuss

later), to show that γ0(B) must be 0 or ∞ for every open ball B in H. In either case, γ0

cannot be a measure on H. However, the canonical cylindrical Gaussian measure will extend

to a countably additive measure on a suitable larger space, as we will see.

Definition 7. Let H be a separable Hilbert space with canonical cylindrical Gaussian mea-

sure γ0. A seminorm q on H is said to be measurable (in the sense of Gross) if for all ε > 0

there is a finite-dimensional orthogonal projection Pε such that

γ0 {h ∈ H : q(Ph) > ε} < ε (3.7)

for every finite dimensional orthogonal projection P satisfying P ⊥ Pε.

We remark that sometimes the definition of a measurable seminorm is also stated in terms

of a sequence of projections Pn converging to the identity operator in the strong operator

topology; this amounts to the same condition as shown above and is often more useful in

practice. In Example 1, it is just such a sequence that led to the undoing of γ0 as a measure.

Very loosely speaking, one should think of (3.7) as indicating that according to a weighting

provided by the seminorm q, the “mass” of H (with respect to the cylindrical measure) is in

some manner concentrated on certain of its finite-dimensional subspaces.

Observe that for a continuous linear embedding of Banach spaces E ↪→ F , the norm ||·||F

can be taken as a seminorm on E. This fact is important in the next definition and theorem,
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which are essential to all that follows. See Chapter 3 of [5] or [28] for a proof of the theorem.

Definition 8. Let H be a separable Hilbert space and let B be a separable Banach space

such that i : H ↪→ B is a continuous linear embedding with dense range. The triple (i,H,B)

is called an abstract Wiener space if the composition of the norm of B with i is a measurable

seminorm on H.

Theorem 7. If (i,H,B) is an abstract Wiener space, then the canonical cylindrical Gaussian

measure γ0 on H extends to a countably additive measure γ on B. In addition, i(H) coincides

with the Cameron-Martin space of this measure.

The embedding H ↪→ B in the previous theorem is said to radonify the cylindrical

measure γ0 on H. The best intuition for this situation is that the Hilbert space H was “too

small” to support the cylindrical Gaussian measure γ0 as a measure, but that by expanding to

the larger space B with its somewhat weaker norm, we can achieve the countable additivity

lacking in the cylindrical measure γ0. Two other good pictures to have in mind are of H

forming a skeleton and B the flesh surrounding it, or H acting as a chicken wire form and

B acting as a paper-mâché covering of the wire.

3.2 Centered Gaussian measures on Lebesgue spaces

This section contains neither new nor (in and of themselves) deep results. Its intent is to

motivate and frame the subsequent discussion. We are generally interested in constructing

Gaussian measures on spaces of functions, and we start by considering such measures on

certain Lebesgue spaces.

A necessary and sufficient condition for the existence of a centered Gaussian measure

on Lp(S; ν) is offered by Vakhaniya, Tarieladze, and Chobanyan in [55], in the following

theorem (statement adapted from Theorem 3.11.15 from [5]).
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Theorem 8. Let ν be a positive measure on S and for 1 ≤ p < ∞ and q = p(1 − p)−1 let

Lp(S; ν) be separable. If γ is a centered Gaussian measure on Lp(S; ν), then the covariance

operator Rγ : Lq(S; ν)→ Lp(S; ν) is given by

Rγf(s) =

∫
S

K(s, t)f(t)ν(dt), (3.8)

where K is a symmetric nonnegative definite measurable function on S2 satisfying

∫
S

K(t, t)
p
2ν(dt) <∞. (3.9)

Conversely, for any symmetric nonnegative definite measurable function K satisfying

(3.9), the operator defined by (3.8) coincides with the covariance operator of some centered

Gaussian measure on Lp(S; ν).

We will consider a slightly more restrictive situation in which we can formulate a slightly

more specific result. Let (S, ν) be a σ-finite measure space. For measurable f : S2 → C and

1 ≤ p <∞, we will write

fp(s) =

(∫
S

|f(s, t)|p ν(dt)

)1
p

,

fp(t) =

(∫
S

|f(s, t)|p ν(ds)

)1
p

.

Note that 0 ≤ fp(s), fp(t) ≤ ∞.

Lemma 7. If f : S2 → C is measurable then the following are equivalent.

1. f ∈ Lp(S2; ν × ν),

2. fp(s) ∈ Lp(S; ν),



48

3. fp(t) ∈ Lp(S; ν).

Proof. That the first assertion implies the other two (up to a ν null set) is a conclusion of

Fubini’s theorem. If fp(t) ∈ Lp(S; ν) we simply compute

||f ||pLp(ν×ν) =

∫
S

∫
S

|f(s, t)|p ν(ds)ν(dt) = ||fp(t)||pLp(S;ν) <∞;

in the other case,the computation is identical.

In particular, we note that f ∈ L2(S2; ν × ν) if and only if f2(s) ∈ L2(S; ν) and f2(t) ∈

L2(S; ν). We are now ready to prove our first theorem, which is in some sense merely a

corollary of Theorem 8. It does, however, serve as a sort of motivation for what will follow

in the subsequent sections of this chapter by demonstrating a construction of which we will

make frequent use.

Theorem 9. Let ν be a positive σ-finite measure on S and let 1 ≤ p < ∞. Given

k : S2 → R with k2(t) ∈ Lp(S; ν) and kp(u) ∈ L2(S; ν), let T : L2(S; ν) → Lp(S; ν) by

Tf(t) =
∫
S
k(u, t)f(u)ν(du). Then the operator TT ∗ is the covariance operator for a cen-

tered Gaussian measure on Lp(S; ν).

Proof. Take T as defined in the theorem and f ∈ L2(S; ν); then

∫
S

|Tf(t)|p ν(dt) ≤
∫
S

(∫
S

|k(u, t)| |f(u)| ν(du)

)p
ν(dt)

≤
∫
S

(∫
S

|k(u, t)|2 ν(du)

)p
2
(∫

S

|f(u)|2 ν(du)

)p
2

ν(dt)

= ||f ||pL2(S;ν)

∫
S

|k2(t)|p ν(du)

<∞,
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so that T is a well-defined integral operator. Now, let T ′ : Lq(S; ν)→ L2(S; ν) by T ′g(u) =∫
S
k(u, t)g(t)ν(dt) and then for g ∈ Lq we see that

∫
S

(∫
S

k(u, t)g(t)ν(dt)

)2

ν(du) ≤
∫
S

(∫
S

|k(u, t)|p ν(dt)

) 2
p

||g||2Lq(S;ν) ν(du)

= ||g||2Lq(S;ν)

∫
S

|kp(u)|2 ν(du)

<∞

whence T ′ is also well-defined.

Now we show that in fact T ′ = T ∗. To this end, let f ∈ L2(S; ν) and g ∈ Lq(S; ν) and

observe that

〈Tf, g〉 =

∫
S

Tf(t)g(t)ν(dt)

=

∫
S

∫
S

k(u, t)f(u)ν(du)g(t)ν(dt)

=

∫
S

f(u)

∫
S

k(u, t)g(t)ν(dt)ν(du)

= (f, T ′g),

where the exchange of integrals is justified by the fact that k2(t) ∈ Lp(S; ν), and hence

∫
S

|g(t)|
∫
S

|k(u, t)f(u)| ν(du)ν(dt) ≤ ||f ||L2(S;ν)

∫
S

|g(t)| |k2(t)| ν(dt) <∞.

Now by Theorem 8, it suffices to show that

∫
S

K(t, t)
p
2ν(dt) =

∫
S

(∫
S

|k(u, t)|2 ν(du)

)p
2

ν(dt) =

∫
S

|k2(t)|p ν(dt) <∞,

completing the proof.
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Thus for 1 ≤ p < ∞ we can construct centered Gaussian measures on Lp(S; ν). The

situation for p = ∞ is more delicate, both because L∞(S; ν) is not separable and because

the dual of L∞(S; ν) is not very friendly. (We will later see how to construct some satisfactory

Gaussian measures on L∞(S; ν) should we be so inclined.) Of course, the case p = 2 is of

particular interest to us.

Corollary 3. Let ν be a positive σ-finite measure on S. Given k : S2 → R with k ∈

L2(S2; ν × ν), put Tf(t) =
∫
S
k(u, t)f(u)ν(du). Then the operator TT ∗ is the covariance

operator for a centered Gaussian measure on L2(S; ν).

Proof. By Lemma 7, we have k2(t) ∈ L2(S; ν). Note that p = q = 2, and then K(s, t) =∫
S
k(u, s)k(u, t)ν(du) satisfies equation (3.9), as

∫
S

K(t, t)ν(dt) =

∫
S

∫
S

|k(u, t)|2 ν(du)ν(dt) =

∫
S

|k2(t)|2 ν(dt) <∞.

In addition, TT ∗f(t) =
∫
S
K(s, t)f(s)ν(ds), and the conclusion follows by Theorem 8.

We also note that one could adapt such a construction for Lp(S; ν) to include measures

that are not centered. For example, take some a ∈ L2(S) and T as above and then (·, a) is

a linear map on L2(S; ν) and there is a measure γ on L2(S; ν) with Fourier transform

γ̂(f) = exp

(
i (f, a)− 1

2
(TT ∗f, f)

)
.

The result is a Gaussian measure on L2(S; ν) that is centered around the element a and has

covariance operator TT ∗.

To conclude this section, we briefly consider a situation arising if we choose a purely

singular finite measure ν with finite support on S.
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Corollary 4. Let k : S2 → R and let ν be a positive finite measure on S. If D = supp(ν)

is a finite subset of S, then the measure γ as constructed in Theorem 9 is the probability

measure for a centered |D|-variate normal distribution having covariance matrix with entries

ci,j = akk(tk, ti)k(tk, tj) for some collection {ak} of positive numbers.

Proof. If D = {t1, t2, . . . , T|D|} is finite, then ν =
∑|D|

k=1 akδtk and L2(S; ν) ∼= R|D|.

3.3 General construction and properties

We draw attention to the fact that in the previous section, the covariance operator is being

factored through the Hilbert space L2(S; ν), as shown below.

L2(S; ν)∗
TT ∗ //

T ∗ &&MMMMMMMMMM
L2(S; ν)

L2(S; ν)

T

99rrrrrrrrrr

This notion of factoring the covariance operator through a suitably chosen Hilbert space

will inform our further discussion. Recall also that k ∈ L2(S2; ν × ν) is a necessary and

sufficient condition for an integral operator with kernel k to be Hilbert-Schmidt on L2(S; ν),

so it is immediately clear that TT ∗ will be trace-class, i.e. it has a sequence of orthonormal

eigenvectors with eigenvalues (αj) satisfying
∑∞

j=1 |αj| < ∞. This is exactly the condition

that is required for the covariance operator of a Gaussian measure on a Hilbert space (recall

the requirement for the canonical cylindrical Gaussian measure on H to be a measure), as

the following theorem from [5] shows.

Theorem 10. Let γ be a Gaussian measure on a separable Hilbert space H. Then there exist

a ∈ H and a symmetric non-negative trace-class operator K such that the Fourier transform
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of the measure γ is

γ̂(h) = exp

(
i(a, h)− 1

2
(Kh, h)

)
.

Conversely, for every pair (a,K) as above, the function γ̂ above is the Fourier transform of

a Gaussian measure on H with mean a and covariance operator K.

In this section we discuss our general method of constructing measures. We begin by

introducing the Cameron-Martin space Hγ for a Gaussian measure γ on a separable Banach

space B.

Definition 9. For a Gaussian measure γ on a separable Banach space B, we denote by

B∗γ the closure of the set {x∗ −m(x∗) : x∗ ∈ B∗} of affine maps in L2(B; γ). Thus B∗γ is a

Hilbert space with inner product

(f, g)L2(γ) =

∫
B

f(x)g(x)γ(dx).

Let τ : B∗ → B∗γ by τx∗ = x∗ −m(x∗), so that B∗γ = clL2(γ)(τ(B∗)).

From Definition 5, we have m(x∗) =
∫
B
〈x∗, x〉γ(dx) and

Rγx
∗(y∗) =

∫
B

(〈x∗, x〉 −m(x∗)) (〈y∗, x〉 −m(y∗)) γ(dx), (3.10)

and from the discussion following Definition 4 we know that m(x∗) and Rγx
∗ are elements

of B. We wish to extend the operator Rγ to B∗γ. From (3.10) we see that

Rγx
∗(y∗) = (τx∗, τy∗)L2(γ) . (3.11)
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We also observe that

∫
B

τx∗(x)γ(dx) =

∫
B

[〈x∗, x〉 −m(x∗)] γ(dx) =

∫
B

〈x∗, x〉γ(dx)−m(x∗)

∫
B

γ(dx) = 0,

and hence if we extend τ to B∗γ in the obvious fashion we will have m(τx∗) = 0, so that

τ(τx∗) = τx∗ − m(τx∗) = τx∗ for each x ∈ B∗. Now, from (3.11) it is clear that we can

extend Rγ to B∗γ, with

Rγg(x∗) = (g, τx∗)L2(γ)

for g ∈ B∗γ.

For any separable Banach space B, Rγx
∗ will necessarily be an element of B∗∗, and in

fact can be taken as an element of B ⊆ B∗∗ under the natural embedding; in other words,

both m(·) ∈ B and Rγg ∈ B for each g ∈ B∗γ. This results from the facts that γ is Radon

and B is complete and locally convex so that m(·) and Rγg(·) are continuous in the Mackey

topology on X∗ (see Section 3.2 of [5] for a proof).

Note that m(g) =
∫
B
g(x)γ(dx) = 0 for every g ∈ B∗γ. To see this, observe that

||gn − g||L2(γ) → 0 with gn = x∗n − m(x∗n) for some sequence (x∗n) in B∗. It is clear that

m(gn) = 0 for every n. Then

∣∣∣∣∫
B

g(x)γ(dx)

∣∣∣∣ =

∣∣∣∣∫
B

gn(x)− g(x)γ(dx)

∣∣∣∣ ≤ ∫
B

|gn(x)− g(x)| γ(dx) ≤ ||gn − g||L2(γ) γ(B),

whence m(g) = 0.

From here forward, we take R to be the operator Rγ with domain restricted to B∗, while

by Rγ we will mean the operator having domain B∗γ. That is, R factors as R = Rγτ , as
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shown below.

B∗
R //

τ   B
BB

BB
BB

B B

B∗γ

Rγ

>>~~~~~~~

(3.12)

From this we see that

〈Rx∗, y∗〉 = Rγτx
∗(y∗) = Rγx

∗(y∗) = (τx∗, τy∗)L2(γ) (3.13)

for all x∗, y∗ ∈ B∗.

Lemma 8. Let γ be a Gaussian measure on a separable Banach space B and put τ : B∗ → B∗γ

by τx∗ = x∗ −m(x∗). Then:

1. τ is linear and (weak*, weak) continuous.

2. Rγ is (weak*, weak) continuous.

3. R∗γ = τ .

Proof. The linearity of τ follows from the fact that B∗ is a linear space and the linearity of

the integral
∫
B
〈x∗, x〉γ(dx) = m(x∗). Now let x∗n → 0 in B∗ and let h be any element of B∗γ.

Then (τx∗n, h)L2(γ) = Rγh(x∗n), and then the fact that Rγh ∈ B and the magic of linearity

establish that τ is (weak*, weak) continuous. The (weak*, weak) continuity of Rγ follows

by the same argument and (3.11). Finally, let x∗ ∈ B∗ and let g ∈ B∗γ = clL2(γ)(τ(B∗)) and

then for h = Rγg we have 〈h, x∗〉 = Rγg(x∗) = (g, τx∗)L2(γ).

It is known from a theorem of Kallianpur from [34] that every Gaussian measure γ on a

Banach space B has an associated Cameron-Martin space Hγ; moreover, if (i,Hγ, B) is an
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abstract Wiener space, we always have

B∗
ii∗ //

i∗ !!B
BB

BB
BB

B B

Hγ

i

>>}}}}}}}

(3.14)

where i is the embedding Hγ ↪→ B. Thus one can always factor the covariance operator of a

Gaussian measure through some Hilbert space. It is also a fact that the covariance operator

of any cylindrical Gaussian measure on B will also have a Cameron-Martin space and will

factor as in (3.14). However, there is no guarantee that the cylindrical measure γ will be

radonified by the inclusion Hγ ↪→ B. This radonification question has been the subject of a

considerable amount of inquiry; for a very good history and survey see [57].

The following lemma from Chapter 3 of [5] characterizes the Cameron-Martin space in

terms of B∗γ and Rγ.

Lemma 9. An element h of B belongs to the Cameron-Martin space Hγ of γ if and only if

there is some g ∈ B∗γ with h = Rγg. In this case ||h||Hγ = ||g||L2(γ).

We can also consider the Cameron-Martin space as a Hilbert space associated with a

particular inner product. Let R be a positive, symmetric operator from B∗ to B. For x∗

and y∗ in B∗, define the form (Rx∗, Ry∗) = 〈Rx∗, y∗〉. It is easy to check that this form

is symmetric and bilinear and that 0 ≤ (Rx∗, Rx∗) = 〈Rx∗, x∗〉. Now, to see that this

semi-inner product is positive definite, observe that |(Rx∗, Ry∗)|2 ≤ (Rx∗, Rx∗)(Ry∗, Ry∗)

by Cauchy-Schwarz, and hence

0 ≤ |〈Rx∗, y∗〉|2 = |(Rx∗, Ry∗)| ≤ (Rx∗, Rx∗)(Ry∗, Ry∗) = 0

for every y∗ ∈ B∗ whenever (Rx∗, Rx∗) = 0. The Cameron-Martin space H can be thought

of as the completion of R(B∗) in the Hilbert norm induced by an inner product of this type.
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Understanding the Cameron-Martin space and how it “sits” in the larger Banach space

reveals a great deal about a Gaussian measure γ. The next theorems are from Chapter 3 of

[5]; the statements have been specified to our setting.

Theorem 11. Let γ be a Radon Gaussian measure on a locally convex space X which is

continuously and linearly embedded into a locally convex space Y . Then the Cameron-Martin

space is independent of whether the measure γ is considered on X or Y .

Theorem 12. Let γ be a Radon Gaussian measure on a locally convex space X with mean

aγ ∈ X. Then the topological support of γ coincides with the affine subspace aγ + clX(Hγ).

In particular, the support of γ is separable.

Recall that we are interested in constructing covariance operators of the form R = TT ∗

for some Hilbert-Schmidt operator T : H → B (such as the integral operator we were using).

In fact, it is necessary for the operator T to be Hilbert-Schmidt for this construction to work,

as we will presently show. Recall that for a normed space X, a collection F ⊆ X∗ is said to

separate the points of X if for every pair of distinct elements x and y there is some x∗ ∈ F

such that 〈x∗, x〉 6= 〈x∗, y〉.

Lemma 10. Let X be a normed space and let D be a collection of elements of X∗. Then D

separates the points of X if and only if
⋂
x∗∈D ker(x∗) = (0).

Proof. Suppose that (0) 6=
⋂
x∗∈D ker(x∗) = {x : 〈x∗, x〉 for all x∗ ∈ D}. Say that y is a

nonzero element. Then 〈x∗, y〉 = 〈x∗, 0〉 = 0 for each x∗ ∈ D and D does not separate points

of X.

Now suppose that D does not separate points of B. Then there is some pair of distinct

elements x0 and y0 such that 〈x∗, x0〉 = 〈x∗, y0〉, and hence 0 = 〈x∗, x0−y0〉 for every x∗ ∈ D.

But then there is a nonzero element x0 − y0 in
⋂
x∗∈D ker(x∗).
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Lemma 11. Let X be a normed space. Then for any sequence (x∗j) that separates points of

X, there is a subsequence (x∗k) which also separates points of X and satisfies

∞⋂
j=1
j 6=n

ker(x∗k) 6= (0)

for each n = 1, 2, . . ..

Proof. Let (x∗j) separate points of X. If for some n we have

∞⋂
j=1
j 6=n

ker(x∗k) = (0), (3.15)

then the subsequence x∗1, . . . , x
∗
n−1, x

∗
n+1, . . . will also separate points of X by Lemma 10.

Consider each x∗n in turn and discard those for which (3.15) is true to obtain the desired

sequence.

Lemma 12. If B is a separable Banach space and H is a separable Hilbert space, then there

is a continuous linear embedding ι : B ↪→ H. Moreover, ι can be constructed so that it has

dense range in H.

Proof. Let D = {x∗j : j = 1, 2, . . .} ⊆ Ball(B∗) separate points of B. Take an orthonormal

basis (ej) of H and an `2 sequence (αj) of nonzero terms. Define i : B → H by ι(x) =∑∞
j=1 αj〈x∗j , x〉ej.

Note that
∣∣〈x∗j , x〉∣∣ ≤ ||x||B for any x ∈ B, and then

||ι(x)||H =
∞∑
j=1

α2
j

∣∣〈x∗j , x〉∣∣2 ≤ ||x||2B ∞∑
j=1

α2
j <∞, (3.16)

so that i is well-defined. It is easy to see that i is linear. The map is injective due to the

fact that D separates points of B, and each αj is nonzero, so that at least one αj〈x∗j , x〉 6= 0
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for each x 6= 0. By (3.16) we also see that ||ι(x)||H ≤ C ||x||B for some C > 0, whence ι is

continuous.

To ensure that ι has dense range, use Lemma 11 choose the collection D ⊆ B∗ so that

Mk =
∞⋂
j=1
j 6=k

ker(x∗j) 6= (0)

for each k = 1, 2, . . .. Note that this ensures that each Mk * ker(x∗k), for otherwise D could

not separate points of B by Lemma 10. Now, let any h =
∑∞

j=1(h, ej)ej in H and any ε > 0

be given. Take N sufficiently large that
∑∞

j=N+1 |(h, ej)|
2 < ε. We will obtain an x ∈ B for

which ||ι(x)− h|| < ε.

To do this, put aj = 1
αj

(h, ej). Now, take x1 ∈M1 so that 〈x∗1, x1〉 = a1, which is possible

by the linearity of x∗1 and the fact that M1 * ker(x∗1). Do the same for j = 2, . . . , N . Now

put x =
∑N

j=1 xj and observe that 〈x∗k, x〉 =
∑N

j=1〈x∗k, xj〉 = 〈x∗k, xk〉 = ak for k = 1, 2, . . . , N

and 〈x∗k, x〉 = 0 for k ≥ N + 1 because each xj ∈Mj ⊆ ker(x∗k). Then

||ι(x)− h||H =
∞∑
j=1

∣∣αj〈x∗j , x〉 − (h, ej)
∣∣2 =

∞∑
j=N+1

|(h, ej)|2 < ε,

whence ι has dense range in H.

Lemma 13. Let H be a separable Hilbert space, B be a separable Banach space, let ι : B ↪→ H

be a continuous linear embedding with dense range, and let T : H → B be continuous.

1. If ker(T ) = (0), then ran(T ∗ι∗) is dense.

2. If ker(T ∗) = (0), then ker(ι∗) = ker(T ∗ι∗) = ran(iT )⊥.

3. ι is (weak, weak) continuous and ι∗ is (weak, weak*) continuous.

4. If ι∗ is injective, then ι∗ι : B ↪→ B∗ is a (weak, weak*) continuous linear embedding.
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Proof. By the duality relationships, we have the following diagrams.

B∗

T ∗

!!B
BB

BB
BB

B

TT ∗

��

H

ι∗
==||||||||

H

T}}||
||

||
||

B

ι

aaBBBBBBBB

B∗

T ∗

!!B
BB

BB
BB

B

H

ι∗
==|||||||| T ∗i∗

++
H

T}}||
||

||
||iT

kk

B

ι

aaBBBBBBBB

The first and second statements result by “chasing the arrows” of the diagrams and noting

the fact that for a bounded linear operator A on a Hilbert space H, ker(A) = ran(A∗)⊥.

To see that the third statement holds, let xn → x weakly in B and hn → h weakly in

H. Then (ιxn, g) = 〈xnι∗g〉 → 〈x, ι∗g〉 = (ιx, g) for all g ∈ H and 〈ι∗hn, y〉 = (hn, ιy) →

(h, ιy) = 〈ι∗h, y〉 for all y ∈ B. The fourth statement follows directly from the third.

Theorem 13. Let H be a separable Hilbert space and B be a separable Banach space with

T : H → B an operator such that R = TT ∗ is the covariance operator of a Gaussian measure

γ on B. Then T must be a Hilbert-Schmidt operator.

Proof. For convenience, let γ be a centered measure and suppose that T is as given. By

Lemma 12, we can embed B ↪→ H densely. From Theorem 11 we note that we can take γ

as a Gaussian measure on H with the same Cameron-Martin space. In addition, we have
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ι∗ : H → B∗. We now have the situation shown in the following diagram.

B∗

T ∗

!!B
BB

BB
BB

B

H

ι∗
==||||||||

H

T}}||
||

||
||

B

ι

aaBBBBBBBB

(3.17)

The measure γ on B has Fourier transform

γ̂(x∗) = exp

(
−1

2
(T ∗x∗, T ∗x∗)H

)
.

Taken on H = ι(B), we see that ι∗h ∈ B∗ when h ∈ H, and

γ̂(h) = exp

(
−1

2
(T ∗ι∗h, T ∗ι∗h)H

)
= exp

(
−1

2
(ιTT ∗ι∗h, h)H

)
,

because (ιT )∗ = T ∗ι∗, and thus γ is a Gaussian measure on H with covariance operator

ιTT ∗ι∗ = ιRι∗, which must be trace-class by Theorem 10.

Now we show that T must be Hilbert-Schmidt. Because ι is a dense injective embedding,

it will suffice to show that ιT is Hilbert-Schmidt, as then an orthonormal basis of eigenvectors

for T can be recovered. To do this, we note that ιTT ∗ι is trace-class, positive, and symmetric.

Thus we have the polar decomposition

ιTT ∗ι∗ = U |ιTT ∗ι∗| =
(
U
√
|ιTT ∗ι∗|

)√
|ιTT ∗ι∗|,

where U is a partial isometry on the range of |ιTT ∗ι∗| =
√

(ιTT ∗ι∗)(ιTT ∗ι∗)∗ and
√
|ιTT ∗ι∗|

is Hilbert-Schmidt. Because ιTT ∗ι∗ is positive, |ιTT ∗ι∗| = ιTT ∗ι∗, and thus we see that
√
ιTT ∗ι∗ is a Hilbert-Schmidt operator. But

√
ιTT ∗ι =

√
(ιT )(ιT )∗ = |ιT |, whence |ιT | and
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ιT are also Hilbert-Schmidt operators.

The following theorems yield additional interesting information about these measures.

We will say that a Gaussian measure γ on a Banach space B has mean aγ ∈ B if each

x∗ ∈ B∗ has mean 〈x∗, aγ〉.

Theorem 14. Let γ be a Radon Gaussian measure on a Banach space B, having mean aγ.

Then supp(γ) is a subspace of B if and only if aγ ∈ clB(Hγ).

Proof. Note that supp(γ) = aγ + clB(Hγ) by Theorem 12. Hγ is a linear subspace (not

necessarily closed) of B, whence clB(Hγ) is a closed linear subspace. Now, if supp(γ) is a

subspace, then aγ = −h for some h ∈ clB(Hγ). Conversely, if aγ ∈ clB(Hγ), then so is −aγ,

whence 0 ∈ supp(γ). For any x ∈ supp(γ), note that x = aγ + x0 with x0 ∈ clB(Hγ). For

any t ∈ R we will have tx = taγ + tx0 = aγ + (tx0 − (1 − t)aγ) ∈ supp(γ). Similarly, for x

and y in supp(γ), x+ y = aγ + x0 + aγ + y0 = aγ + (x0 + y0 + aγ) ∈ supp(γ).

Theorem 15. Let H be a separable Hilbert space and B be a separable Banach space with

T : H → B a Hilbert-Schmidt operator such that R = TT ∗ is the covariance operator for a

centered Gaussian measure γ on B. Then:

1. T (H) = Hγ, the Cameron-Martin space for γ, and T : clH(T ∗(B∗)) ↪→ Hγ is an

isometry.

2. supp(γ) ⊆
⋂

kerT ∗ ker(x∗).

Proof. As γ is a centered measure, m(x∗) = 0 for all x∗ ∈ B∗ and τ is merely the identity

operator on B∗. Thus B∗γ is just the closure of B∗ in L2(γ) and the operator Rγ = R = TT ∗.

B∗
R=Rγ=TT ∗ //

T ∗ !!B
BB

BB
BB

B B

H
T

>>~~~~~~~~

(3.18)
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Thus by Lemma 9 the Cameron-Martin space Hγ is the completion of R(B∗) under the norm

satisfying

||Rx∗||2Hγ = (Rx∗, Rx∗)Hγ = 〈Rx∗, x∗〉 = (T ∗x∗, T ∗x∗)H = ||T ∗x∗||2H (3.19)

for every x∗. Every Cauchy sequence (Rx∗n) in B has a corresponding sequence (T ∗x∗n) in H

for which

y = lim
n→∞

Rx∗n = lim
n→∞

TT ∗x∗n = T
(

lim
n→∞

T ∗x∗n

)
= Th,

for some h ∈ H, and hence we must have Hγ = T (H). From (3.19) we see that the restriction

of T is the desired isometry from clH(T ∗(B∗)) to Hγ.

Next, note that ker(T ∗) always contains the zero functional, whose kernel is obviously

all of B, and thus the intersection over kerT ∗ is never empty. Observe that 0 = 〈Th, x∗〉 =

(h, T ∗x∗)H for all h ∈ H if and only if T ∗x∗ = 0 in H. Thus T (H) ⊆ ker(x∗) if and only if

x∗ ∈ ker(T ∗), and hence Hγ = T (H) ⊆
⋂

kerT ∗ ker(x∗). From this, we conclude that

supp(γ) = clB(T (H)) ⊆
⋂

kerT ∗

ker(x∗) (3.20)

as desired.

We are interested in the question of how to identify the Cameron-Martin space of a

measure that is not centered, and to do so without relying on the definition of Hγ in terms

of Rγ and B∗γ because we would need to first identify B∗γ, which may be difficult. We would

like to do it using the raw information about the operators T and T ∗ and the Hilbert space

H. We have two parallel factorizations for the covariance, so we can hope to play them off
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against each other. The following diagram shows the situation.

B∗

τ

  B
BB

BB
BB

B

R

��

T ∗

~~~~
~~

~~
~~

H

T   A
AA

AA
AA

A
B∗γ

Rγ~~||
||

||
||

B

In Theorem 15 we were able to avoid having to deal with reconciling TT ∗ and Rγτ because

in the centered case τ is the identity and Rγ agrees with R, whence the right-hand side of

the diagram collapses, leaving us free to work with R = Rγ and only one factorization to

obtain the desired result. In general, we need to work a little harder.

Theorem 16. Let H be a separable Hilbert space and B be a separable Banach space. Let

T : H → B a Hilbert-Schmidt operator for which R = TT ∗ is the covariance of a Gaussian

measure γ on B. Then there is a subspace H0 ⊆ H and an isometric embedding B∗γ ↪→ H0 ⊆

clH(T ∗(B∗)).

Proof. Let (en) be a basis of B∗γ with each en = τx∗n for some sequence (x∗n) in B∗ and

define φ : τ(B∗) → H by φ(τx∗) = T ∗x∗. Then note that φ(en) = T ∗x∗n for each x∗n. In

addition, (T ∗x∗n, T
∗x∗m)H = 〈TT ∗x∗n, x∗m〉 = Rγx

∗
n(x∗m) = (τx∗n, τx

∗
m)L2(γ) = δm,n, and thus

(T ∗x∗n) is an orthonormal set in H. Put H0 = clHspan ({T ∗x∗n}). Extend φ by linearity and

continuity.
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The following diagram illustrates the conclusion of the previous theorem.

B∗

τ

  B
BB

BB
BB

B
T ∗

vvlllllllllllllllll

H

T
((RRRRRRRRRRRRRRRRRR ⊇H0 B∗γ

Rγ~~||
||

||
||

φ

∼=oo

B

(3.21)

Corollary 5. If H0, B, T , and γ are as in the previous theorem, then the restriction T :

H0 → Hγ is an isometry.

Proof. Recall that Hγ = Rγ(B
∗
γ) with Rγ an isometry by Lemma 9 and then from (3.21) we

see that T = Rγφ
−1 is an isometry.

3.4 Measures on C(S)

We will now restrict our setting as we examine Gaussian measures on spaces of continuous

functions. We take (S, %) to be a compact metric space and let C(S) denote the space of

continuous real-valued functions on S and identify C(S)∗ with the space of regular Borel

(Radon) measures on S by the Riesz representation. Note that C(S)∗ is a Banach space

under the total variation norm ||·||V ar. Recall that the weak* topology on C(S)∗ is the weak

topology generated by C(S) under the natural embedding C(S) ↪→ C(S)∗∗.

While the space C(S) has the usual supremum norm ||·||S (we reserve ||·||∞ for the essen-

tial supremum), we will ultimately desire more regularity on the part of certain functions.

For α > 0, let Cα(S) denote the usual space of Hölder continuous functions on S. As S is

compact, we can define a norm on Cα by

||f ||α = ||f ||S + |f |α = ||f ||S + sup
s 6=t

|f(s)− f(t))|
%(s, t)α

. (3.22)
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In addition, we will need to quantify the complexity of the parameter space S in a partic-

ular fashion. By H(S, ε), we will denote the ε-entropy of S; that is H(S, ε) = log (N(S, ε)),

where N(S, ε) counts the minimum number of balls of diameter at most ε needed to cover

S, which is guaranteed to exist by the compactness of S. This notion of metric entropy

is originally borrowed from Kolmogorov; it figures prominently in the work of Dudley (see

[20, 21]).

Recall that a reproducing kernel Hilbert space is a Hilbert space of functions for which

pointwise evaluation is a continuous linear functional. That is, if X is a set and H is a

Hilbert space of functions on X, then H is a reproducing kernel Hilbert space if there is

some function K on X2 such that Kx ∈ H and f(x) = (f,Kx)H for every x ∈ X, where

Kx(y) = K(x, y). In this event the function K is the reproducing kernel for H and one

often uses the notation H(K) for the space. See [1] for a wealth of details about reproducing

kernel Hilbert spaces.

We are now in a position to state the following theorem from [2].

Theorem 17. Let (S, %) be a compact metric space, and K a reproducing kernel on S with

reproducing kernel Hilbert space H(K). Suppose also that there are fixed C, α > 0 such that:

1. K(s, s) +K(t, t)− 2K(s, t) ≤ C %(s, t)2α for all s, t ∈ S,

2.
∑∞

n=1 2−nαH(S, 2−n)1/2 <∞.

Then H(K) ⊂ C(S) and the inclusion is radonifying.

Using this theorem as a base, we can proceed as in Section 3.2 to construct a wide variety

of Gaussian measures on C(S). In Section 3.2 we saw the function

K(s, t) =

∫
S

∫
S

k(u, v)δs(dv)k(u, t)ν(du) =

∫
S

k(u, s)k(u, t)ν(du), (3.23)
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which we will refer to as the covariance function for our measure. Notice that K(s, t) =

〈Rδs, δt〉 = (T ∗δs, T
∗δt)L2(S;ν), where T ∗ and R are as described following Definition 9.

Theorem 18. Let (S, %) be a compact metric space and k : S2 → R be a bounded Borel func-

tion. Let ν be a positive regular Borel measure on S for which
∫
S
|k(u, s)− k(u, t)|2 ν(du) ≤

C%(s, t)2α for some C > 0 and α > 0 and suppose that (S, %) satisfies the metric entropy

condition of the previous theorem for this α. If an operator T is defined on L2(S; ν) by

Tf(t) =
∫
S
k(u, t)f(u)ν(du), then TT ∗ is the covariance operator of a centered Gaussian

measure γ on C(S).

Proof. To prove Theorem 18, we will use Theorem 17 by showing that H(K) = T (L2(S; ν))

is a suitable reproducing kernel Hilbert space and showing that the canonical cylindrical

Gaussian measure on this space is radonified by the inclusion T (L2(S; ν) ↪→ C(S).

Put T1µ(u) =
∫
S
k(u, t)µ(dt) for each µ ∈ C(S)∗. For every f ∈ L2(S; ν) and every

µ ∈ C(S)∗ we see that

∫
S

∫
S

|k(u, t)f(u)| ν(du) |µ| (dt) ≤ ||f ||L2(S;ν) ||k||∞ |µ| (S)

by Hölder’s inequality, and the hypotheses on k ensure that |k(u, t)f(u)| ∈ L1(S2; ν × |µ|).

Thus T1 = T ∗, because

〈Tf, µ〉 =

∫
S

Tf(t)µ(dt)

=

∫
S

∫
S

k(u, t)f(u)ν(du)µ(dt)

=

∫
S

f(u)

∫
S

k(u, t)µ(dt)ν(du)

= (f, T1µ)L2(S;ν)

for every µ ∈ C(S)∗.
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Now note that Kt(s) = K(s, t) = 〈TT ∗δs, δt〉 is a reproducing kernel on S for the space

H = T (L2(S; ν)) with inner product (Tf, Tg)H = (f, g)L2(S;ν), for certainly

||Kt||2H =

∫
S

|k(s, t)|2 ν(ds) <∞

for each t ∈ S, and also

Tf(t) =

∫
S

k(u, t)f(u)ν(du) = (kt, f)L2(ν) = (Kt, T f)H

for each element Tf ∈ H and each t ∈ S.

It suffices to show that our reproducing kernel Kt satisfies the remaining condition of the

previous theorem. This is equivalent to the condition that H is continuously embedded into

Cα(S), for then |h(s)− h(t)| ≤ C ||h||H %(s, t)α for each h ∈ H, and then taking f = Kt−Ks

we have

K(t, t) +K(s, s)− 2K(s, t) = ||Kt −Ks||2H

= |(Kt −Ks, Kt)H − (Kt −Ks, Ks)H |

= |f(s)− f(t)|

≤ C2%(s, t)2α,

as the previous theorem requires.

To demonstrate the necessary embedding, note that

||Tf ||S = sup
t∈S

∣∣∣∣∫
S

k(u, t)f(u)ν(du)

∣∣∣∣
≤ ||k||∞ sup

t∈S

∫
S

|f(u)| ν(du)

≤ ||f ||L2(ν) ||k||∞ ν(S)1/2,
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and also that

|Tf(t)− Tf(s)| =
∣∣∣∣∫
S

(k(u, t)− k(u, s))f(u)ν(du)

∣∣∣∣
≤
∫
S

|k(u, t)− k(u, s)| |f(u)| ν(du)

≤ ||f ||L2(S;ν)

(∫
S

|k(u, t)− k(u, s)|2 ν(du)

) 1
2

≤ ||f ||L2(S;ν) C%(s, t)α,

by the hypotheses on the function k. This, in combination with (3.22) and the linearity of

T assures the continuity of the embedding H ↪→ Cα(S), completing the proof.

We remark on something of interest; in the theorem above, a cylindrical Gaussian measure

was radonified, but as there were multiple Hilbert spaces in view, a pertinent question arises.

Which cylindrical measure? Was it the canonical Gaussian cylindrical measure on L2(S; ν)

or the one on its image H under T? The answer will be manifest in the following corollary.

Corollary 6. The Fourier transform of the measure γ obtained in the previous theorem is

given by

γ̂(x∗) = exp

(
−1

2
〈TT ∗x∗, x∗〉

)
= exp

(
−1

2
(T ∗x∗, T ∗x∗)L2(S;ν)

)
. (3.24)

Proof. The canonical cylindrical Gaussian measure γ0 on T (L2(S, ν)) has the Fourier trans-

form

γ̂0(Tf) = exp

(
−1

2
(Tf, Tf)H

)
= exp

(
−1

2
(f, f)L2(S;ν)

)
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Notice that T ∗ : C(S)∗ → L2(S, ν) and TT ∗ : C(S)∗ → H. As γ extends γ0,

γ̂(x∗) = γ̂0(TT ∗x∗)

= exp

(
−1

2
(TT ∗x∗, TT ∗x∗)H

)
= exp

(
−1

2
(T ∗x∗, T ∗x∗)L2(S;ν)

)
,

for x∗ ∈ C(S)∗, and thus (3.24) holds.

Speaking in the terms of Theorem 17 it was the canonical cylindrical Gaussian measure

on the reproducing kernel space H = T (L2(S; ν)), with reproducing kernel

Kt(s) = 〈TT ∗δs, δt〉 = (T ∗δt, T
∗δs)L2(S;ν)

and norm

||Tf ||H = (Tf, Tf)H = (f, f)L2(S;ν) ,

that was radonified by the embedding. However, another view that we might have is one

where the compact operator T on L2(S; ν) carrying the canonical cylindrical Gaussian mea-

sure on that space to a particularly nice subspace H which in turn embeds nicely into C(S).

This is the perspective of [56, 57]; under this view, the operator T : H → B is said to be a

radonifying operator.

The following corollary now follows quite easily. It is a somewhat obvious consequence

of Theorem 18 and the definition of the n-variate Gaussian distribution, but we state it for

future reference.

Corollary 7. Let P : C(S) → Rn be continuous and linear and let E be a Borel set in

Rn. Write 〈x∗j , ·〉 for the jth component of Px and let C be the matrix with entries ci,j =
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〈TT ∗x∗i , x∗j〉 = (T ∗x∗i , T
∗x∗j)L2(S;ν). If C is nondegenerate, then

γ{x : Px ∈ E} =
(
|det(C)| (2π)k

)−1
2
∫
E

exp

(
−1

2
C−1u·u

)
du, (3.25)

Proof. If P is linear and continuous, then its component functions must be as given. Now,

γ̂(x∗) = exp
(
−1

2
||T ∗x∗||L2(S;ν)

)
by Corollary 6, whence each x∗j is a normal random variable

with mean 0 and variance
∣∣∣∣T ∗x∗j ∣∣∣∣L2(S;ν)

. From this it is easy to compute the covariance

matrix C for the collection {x∗j}, and then the corollary follows by the definition of the

density function for the n-variate normal distribution (cf. chapter 2 of [59]).

Observe that 〈a, ·〉 is a continuous linear map on C(S)∗ for any a ∈ C(S). The following

corollary then follows immediately from Theorem 18 and from Theorem 6, taking L(x) =

〈a, x〉. It gives us a non-centered Gaussian measure on C(S).

Corollary 8. Let (S, %), k, and ν be as in Theorem 18 and let a ∈ C(S). Then there is a

Radon Gaussian measure on C(S) with Fourier transform

γ̂(x∗) = exp

(
i〈a, x∗〉 − 1

2
〈TT ∗x∗, x∗〉

)
= exp

(
i〈x∗, a〉 − 1

2
(T ∗x∗, T ∗x∗)L2(S;ν)

)
. (3.26)

Observe that under the method of construction in Theorem 18 and Corollary 8, the

structure of the Cameron-Martin space and the support of the measure γ are determined

by the choice of measure ν and kernel function k : S2 → R, because these determine the

operators T and T ∗ on L2(S; ν) and C(S)∗.

A particularly important subset of C(S)∗ is the collection of point evaluation functionals

{δt : t ∈ S}. We pause to state and prove a useful theorem, which is surely already very

well-known. Its proof is quite enjoyable, so we include it here.



71

Theorem 19. If S is compact and µ ∈ C(S)∗, then µ is the weak* limit of finite linear

combinations of point evaluation functionals. Moreover, if D is a dense subset of the compact

metric space (S, %), it is sufficient to consider the collection of point evaluation functionals

for points in D.

Proof. Note that the unit ball of C(S)∗ is convex and nonempty, and is weak* compact by

Alaoglu’s theorem. Then by the Krein-Milman theorem, the unit ball of C(S)∗ coincides

with the weak*-closed convex hull of its extreme points. It is not hard to show that the

set {±δt : t ∈ S} comprises the extreme points of the unit ball of C(S)∗; see section V.8 of

[15]. Thus, every element of the unit ball of C(S)∗ is the weak* limit of a sequence whose

elements are of the form
∑n

j=1 cjδtj , where
∑
cj = 1. If µ is not in the unit ball of C(S)∗,

then we can normalize µ to obtain µ′ = µ
||µ||V ar

, which is. Then µ is the weak* limit of a

sequence having coefficients ||µ||V ar cj.

Let D be a dense subset of S. Note that for each point t ∈ S, there is a sequence (tn) ⊆ D

with tn → t. Observe that

〈δtn , x〉 = x(tn)→ x(t) = 〈δt, x〉 (3.27)

for each x ∈ C(S), and thus each δt ∈ C(S)∗ is the weak* limit of (δtn).

Now, let µ be the weak* limit of
∑n

j=1 ajδtj , and let each δtj be the weak* limit of δsk,j

for a sequence (sk,j) in D. Then for each x ∈ C(S), we have

∣∣∣∣∣〈µ−
n∑
j=1

ajδsk,j , x〉

∣∣∣∣∣ ≤
∣∣∣∣∣〈µ−

n∑
j=1

ajδtj , x〉

∣∣∣∣∣+
n∑
j=1

aj
∣∣〈δtj − δsk,j , x〉∣∣ . (3.28)

Then for ε > 0, we can obtain n and k sufficiently large that (3.28) is less than ε, and thus

µ is the weak* limit of finite linear combinations of {δt : t ∈ D}.

Another useful observation obtains from the proof of the preceding theorem. It is an
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obvious consequence of (3.27) and the compactness of S.

Corollary 9. Let (S, %) be a compact metric space. Then the map S → C(S)∗ by t 7→ δt is

(%, weak*) continuous and the set {δt : t ∈ S} is weak* compact in C(S)∗.

The next lemma investigates the properties of certain maps from C(S)∗ to Hilbert space.

Lemma 14. Let H be a real separable Hilbert space and Φ : C(S)∗ → H be linear and

(weak*, weak) continuous.

1. For each f ∈ H, if we define F : S → R by F (t) = (Φ(δt), f)H , then F is continuous.

2. The set {Φ(δt) : t ∈ S} is weakly compact (and hence bounded) in H.

3. If D is a countable dense subset of S then the collection {Φ(δt) : t ∈ D} is a complete

set in H0 = clHΦ(C(S)∗).

Proof. The first and second statements follow from the compactness of S, Corollary 9, and

the (weak*, weak) continuity of Φ. That weak compactness implies boundedness follows by

Banach-Steinhaus.

For the third statement, take any f ∈ H0 and suppose that (f,Φ(δt)) = 0 for every t ∈ D.

Recall that every µ ∈ C(S)∗ is the weak* limit of a sequence of finite linear combinations of

point evaluation functionals at points in D by Theorem 19. By the (weak*, weak) continuity

of Φ, we see that every Φ(µ) is a weak limit of Φ (
∑
ckδtk). For the functional (f, ·), we have

(f,Φ(µ)) = lim
j→∞

(
f,

j∑
k=1

ckΦ(δtk)

)
= lim

j→∞

j∑
k=1

ck (f,Φ(δtk)) = 0.

From this, we determine that (f, ·) = 0 on the dense set Φ(C(S)∗), whence (f, ·) is the

zero functional on H0. Then we see that f = 0 in H0.
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The following theorem is an appropriate formulation of the classic Cameron-Martin trans-

lation theorem from [5], which guarantees quasi-invariance of γ under a specific type of

transformation, namely by translations by elements of the Cameron-Martin space.

Theorem 20 (Cameron-Martin Theorem). Let γ be a Gaussian measure on a locally convex

space X with Cameron-Martin space Hγ, let h ∈ Hγ with h = Rγg for some g ∈ X∗γ , and

let T : X → X by x 7→ x + h. Then γ and γh = γ ◦ T are equivalent with Radon-Nicodym

derivative

dγh
dγ

= exp

(
g(x)− 1

2
||h||2Hγ

)
= exp

(
g(x)− 1

2
||g||2L2(γ)

)
. (3.29)

We can make use of the translation theorem to prove the following very useful result.

Theorem 21. Let γ be a Gaussian measure on a locally convex space X. If ξ ∈ C and

g ∈ X∗γ then ∫
X

exp (ξg(x)) γ(dx) = exp

(
ξ2

2
||g||2L2(γ)

)
. (3.30)

Proof. We first show that (3.30) holds for real values of ξ. This is easy, for given such ξ put

h = Rγ(−ξg) for the proffered g ∈ X∗γ and then use Theorem 20 to obtain that

1 =

∫
X

γ(dx) =

∫
X+h

γ(dx) = exp

(
−1

2
||ξg||2L2(γ)

)∫
X

exp (ξg(x)) γ(dx). (3.31)

Now, let Z be any closed contour in C with a piecewise smooth parameterization z :

[0, 1] → C for which |z′(t)| is bounded (certainly this includes all triangular contours). Let
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M = sup[0,1] |z(t)| and N = sup[0,1] |z′(t)| and observe that

∫ 1

0

∫
X

|exp (z(t)g(x)) z′(t)| γ(dx)dt =

∫
X

∫ 1

0

|exp (z(t)g(x)) z′(t)| dtγ(dx)

≤ N

∫
X

∫ 1

0

2 exp (g(x)Re(z(t))) dtγ(dx)

≤ N

∫
X

∫ 1

0

2 exp ([sign(g(x))M ]g(x)) dtγ(dx)

= 2N

∫
X

exp ([sign(g(x))M ]g(x)) γ(dx)

= 2N exp

(
M2

2
||g||2L2(γ)

)
<∞.

Note that f(z) = exp (zg(x)) is an entire function and put F (z) =
∫
X

exp (zg(x)) γ(dx).

Using the previous computation as justification to exchange the integrals, we see that

∫
Z

F (z)dz =

∫ 1

0

∫
X

exp (z(t)g(x)) γ(dx)z′(t)dt =

∫
X

∫
Z

exp (zg(x)) dzγ(dx) = 0,

so that F is entire by Morera’s theorem. By (3.31), F (z) agrees with the entire function

exp
(
z2

2
||g||2L2(γ)

)
for all real z, whence it must agree on all of C, completing the proof.

Corollary 10. Let {g1, . . . , gn} be a linearly independent set in C(S)∗γ and let F (x) =

f(g1(x), . . . , gn(x)) for some function f : Rn → C. If f is Lebesgue measurable then F is

measurable, and

∫
C(S)

F (x)γ(dx)
∗
=

det(M−1)

(2π)
n
2

∫
Rn
f(u) exp

(
−1

2
Mu · u

)
du, (3.32)

where M is an n× n matrix with entries mi,j = (gi, gj)L2(γ) and
∗
= indicates that if one side

of the equality exists then so does the other.
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Proof. Take ξ = i in (3.30) to see that the characteristic function of the random variable g is

exp
(
−1

2
||g||2L (γ)

)
, and thus each g has a mean zero Gaussian distribution and the covariance

of g and h is (g, h)L2(γ). Then the linear independence of the set {g1, . . . gn} in C(S)∗γ ensures

that the covariance matrix M will be non-degenerate by Theorem 3.5.1 of [59]. Then (3.32)

follows by the definition of the n-variate normal distribution (cf. [59]).

It is also well-known (again, see [5]) that for a Gaussian measure γ on a locally convex

space X, the Cameron-Martin space Hγ coincides with the set {h ∈ X : γh ∼ γ}. Intuitively

speaking, it is the collection of elements along which translation does not move a set off of

the support of γ. Translation by an element of X not in Hγ results in a measure that is

mutually singular with γ.

The question remains: can we identify the Cameron-Martin space? While we made some

progress in Section 3.3 we still do not have an explicit answer to this question. By Theorem

16 we can think of C(S)∗γ as a centered copy of H0 of L2(S; ν). Then H0
∼= C(S)∗γ

∼= Hγ. To

work with H0 directly, we will need some sort of “canonical” representation for the action

of an element f ∈ L2(S; ν) on C(S), which in turn requires more information about the

structure of the operator T . In the next section we will generate a wide class of examples

demonstrating how this works out.

We conclude this section with an aside that makes good on our promise in Section 3.2

to demonstrate a method for obtaining Gaussian measures on L∞(S; ν). There are some

interesting difficulties and questions that arise from this which we do not wish to address in

detail here, but we will offer some brief remarks.

Proposition 2. Let a centered Gaussian measure γ be constructed as in Theorem 18. Then

γ can be taken as a measure on L∞(S; ν).

Proof. We can use Theorem 18 to build a centered measure γ on C(S). Note that the

embedding C(S) ↪→ L∞(S; ν) is continuous for any choice of ν ∈ C(S)∗ because uniform
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convergence implies convergence in L∞(S; ν). Now by Theorem 11 we can consider γ as a

measure on L∞(S; ν) with the same Cameron-Martin space as on C(S).

In considering the previous proposition, there are a few caveats that bear mention. First,

note that the relationship between γ and L∞(S; ν) is quite artificial. Recall that supp(γ) =

clC(S)(Hγ) by Theorem 12, whence Hγ cannot be dense in L∞(S; ν), because the former

space is separable and the latter is not. This leads us to conclude that the support of γ must

be some closed proper subspace of L∞(S; ν), and thus in some sense we have “tacked on” a

“large” set of measure 0.

In addition, we must ask the uncomfortable question about how elements x∗ ∈ L∞(S; ν)∗

behave with respect to this measure, as this space of functionals does not generally agree with

C(S)∗, which is what we built our covariance operator on in the first place. As our present

focus lies elsewhere, we only pause briefly to offer an example illustrating the problem.

Example 2. Let S = [0, 1] and let ν = m be Lebesgue measure. Then it is well-known

that no δt /∈ L∞[0, 1]∗, and that there are certainly elements f ∗ ∈ L∞[0, 1]∗ that are not in

C(S)∗. It is not the absence of the evaluation functionals δt that concerns us; rather, it is

the question of what happens for f ∗ /∈ C(S)∗. Recall that k is a bounded Borel function on

S2, and then taking k(u, t) = ku(t) we see that 〈ku, f ∗〉 is a perfectly good bounded function

in L2[0, 1]. Then

TT ∗f ∗(t) =

∫
S

〈ku, f ∗〉k(u, t)du. (3.33)

The issue is that we must have 〈TT ∗f ∗, g∗〉 = (T ∗f ∗, T ∗g∗)L2[0, 1], and showing this directly

involves exchanging the order of integration in (3.33). However, it is not at all clear that

this can be done, as spaces of finitely additive measures are strange and frightening places

where Fubini type-theorems are very hard to come by. Exactly what happens in this case is

an interesting question that we will leave unanswered here.
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3.5 Measurability

In all of these constructions, there is necessarily the question of measurability. Recall that

the Gaussian measures we have been considering arise as the radonification of a cylindrical

measure on the σ-algebra E(B). Thus the finite-dimensional distributions of γ are specifi-

cally constructed so that whenever E ⊆ Rn is Borel and P is a finite dimensional projection

onto Rn it must follow that P−1(E) is measurable by definition. By the standard measure-

theoretic arguments this then carries through to tame functionals defined on B in terms of

finite-dimensional projections and measurable functions on Rn of the form F (x) = f(P (x)).

The question of converse measurability is less clear. Must it be the case that the measura-

bility of F will guarantee the measurability of f ◦ P?

The first known successful attempt at addressing this question was due to Fulton Koehler

at the University of Minnesota, who had heard of the problem in the case of the classical

Wiener measure w, as posed by Robert Cameron. This result provided for the converse

measurability of tame functionals with respect to the ordinary Wiener measure. In the end,

Koehler’s result remained unpublished, but known to Cameron and his associates.

In [51], David Skoug extended Koehler’s result to address the question of measurability

not only with respect to the one parameter Wiener measure, but also for the two parameter

Yeh-Wiener measure. One of his motivations for this was a desire to streamline the statement

of the theorems in [8].

Here the question remained for some time, until Skoug’s colleague Gerald Johnson was

visiting the university of Erlängen and mentioned the problem in a seminar there. A far

more general converse measurability result was subsequently proven by Siegfried Graf. One

can also find a general converse measurability result by Chang and Ryu in [10].

By M(B) we will denote the usual completion of B(B). We will also abuse notation

by taking γ to be the completion of the corresponding Gaussian measure on B(B). The
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statement of the following theorem is adapted from [33]; the proof is the same as presented

there. This result is very much a consequence of the fact that γ is a finite measure on a

separable Banach space, and is hence a regular measure. The proof is originally by Graf.

Theorem 22. Let C =
{
x : (〈x∗1, x〉, . . . , 〈x∗n, x〉) ∈ C̃

}
be a cylinder set in a separable

Banach space B and let γ be a Radon Gaussian measure on M(B). Then C is measurable

if and only if C̃ is Lebesgue measurable in Rn.

Of course, one could consider the question of scale invariance of sets in M(B). As

important as this idea is, we will not engage it here.

3.6 Bounded Variation and Absolute Continuity

In the next section, we will consider in greater detail a class of function spaces and measures

sharing a particular basic structure. First, we will need several results from [3] and will have

to reframe these results to our setting. Take Q =
∏d

j=1[0, Tj] and let ≤ be the usual partial

order on Q such that s ≤ t if and only if each sj ≤ tj. By a rectangle (or interval) in Q we

refer to the set [s, t] = {u ∈ Q : s ≤ u ≤ t}. We say that a rectangle R = [s, t] is degenerate

if si = ti for some i. In general, for sets A and B in Rd let A4B denote the symmetric

difference of A and B.

Let α = (α1, . . . , αd) be a multi-index with αj ∈ {0, 1} and let |α| =
∑d

j=1 αj as usual.

The collection of multi-indices {α} forms a bounded, graded lattice having (1, . . . , 1) as its

top, (0, . . . , 0) as its bottom, and rank function |α|. The order is α ≤ β if and only if αi ≤ βi,

and the meet (∧) and join (∨) of this lattice are determined by:

α ∧ β = (min(α1, β1), . . . ,min(αd, βd)),

α ∨ β = (max(α1, β1), . . . ,max(αd, βd)).
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For a rectangle R = [s, t], let ext(R) = {r ∈ [s, t] : ri = si or ri = ti for each i} be the

extreme points (corners) of R. For r ∈ ext(R), let #r be the number of indices for which

ri = si. Note that the multi-index α can be used to order these extreme points with the

order in the lattice of multi-indices directly corresponding to the application of the partial

order on Rd to ext(R). In terms of the multi-index, if ext(R) = {rα} we then have #rα = |α|.

For a rectangle R ⊆ Rd, put

∆Rf =
∑

r∈ext(R)

(−1)#rf(r), (3.34)

and note that this expression yields an alternating sum of point evaluations of f at the

corners of R. For each α, we let αt = (α1t1, . . . , αdtd) and αt = (α1t1 +(1−α1)T1, . . . , αdtd+

(1− αd)Td), and then Qα = {αt : t ∈ Q} is the lower α-face of Q and Qα = {αt : t ∈ Q} is

the upper α-face of Q.

Definition 10. Let P be a finite partition of Q into non-degenerate intervals Rj and let

P be the collection of all such partitions. A function f : Q → C is said to be of bounded

variation on Q in the sense of Vitali if the quantity

V (f ;Q) = sup
P∈P

∑
Rj∈P

∣∣∆Rjf
∣∣ ≤ K (3.35)

for some K ≥ 0.

We define the variation of f on Q in the sense of Hardy-Krause to be the quantity

Var(f ;Q) =
d∑
|α|=0

V (f ;Qα), (3.36)

where V (f ;Qα) = |f(0)| when |α| = 0 and is defined as in (3.35) otherwise. We will

denote the collection of functions of bounded variation on Q in the sense of Hardy-Krause
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by BV (Q) = {f : Q→ C : Var(f ;Q) <∞}.

In short, for f to be of bounded variation in the sense of Hardy-Krause simply requires

that each restriction of f to a lower α-face (or to each upper α-face) has bounded variation

in the sense of Vitali. Note that if d = 1, these reduce to the usual definition of bounded

variation. For a more detailed development in the cases d = 1, 2, see [3, 14, 37, 52], which our

definitions follow and extend. Adjusting for the more cumbersome computations resulting

from the fact that d > 2 and using the same methods as in [3] one can obtain the following

theorem.

Theorem 23. For f ∈ BV (Q), put ||f ||BV = Var(f ;Q). Then ||·||BV is a norm, and under

pointwise products the space BV (Q) is a unital Banach algebra.

Definition 11. Let f and g be defined on a rectangle I ⊆ Rd, let P = {Rj} be a finite

partition of I into non-degenerate rectangles, and let cj ∈ Rj for each j. Put

S(f ; g, P ) =
n∑
j=1

f(cj)∆Rjg. (3.37)

We say that f is Riemann-Stieltjes integrable with respect to g on I if there is some number

J such that given any ε > 0 there is a δ > 0 so that |S(f ; g, P )− J | < ε whenever |P | < δ.

In this case, J is the Riemann-Stieltjes integral of f with respect to g on I.

From [62], we take the following two results after adjusting to our notation. The first

gives the existence of the Riemann-Stieltjes integral.

Theorem 24. If g is continuous and f is of bounded variation (in the sense of Hardy-Krause)

on a closed rectangle I ⊆ Rd, then the Riemann-Stieltjes integral
∫
I
gdf exists.

The next theorem shows that the Riemann-Stieltjes integral satisfies an integration by

parts formula. We will need a little notation to state the theorem. For a rectangle I =
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∏d
j=1[aj, bj] and 0 ≤ k ≤ d, let Ik denote the collection of (possibly degenerate) subrectangles

for which n− k coordinates are fixed at either aj or bj and the remaining k coordinates are

free in their corresponding intervals. Note that there are ( dk ) 2d−k such subrectangles in each

Ik. For a given subrectangle Im ∈ I we will take #Im to be the number of coordinates of

that subrectangle that are fixed at the corresponding bj

Theorem 25. Suppose that g is continuous and f is of bounded variation (in the sense of

Hardy-Krause) on a closed rectangle I ⊆ Rd. Then
∫
I
fdg exists, and

∫
I

f(u)dg(u) =
d∑

k=0

∑
Im∈Ik

(−1)d−(#Im)

∫
Im

g(u)df(u). (3.38)

We will say that two sets A and B in Rd are essentially disjoint if m(A ∩ B) = 0. In

addition, we will take the measure mα on Qα to be the image measure of Lebesgue measure

on R|α| under the natural bijection R|α| → Qα. We next introduce a notion of absolute

continuity on Q that is intimately connected with that of bounded variation in the sense of

Hardy-Krause. See [3, 52] for further information.

Definition 12. For each α, let Pα = {Rα,j} be a finite collection of essentially disjoint

intervals in Qα. A function f : Q→ C is said to be absolutely continuous on Q if for every

ε > 0 there is a δ > 0 such that

∑
Rα,j∈Pα

∣∣∆Rα,jf
∣∣ < ε (3.39)

whenever each Pα satisfies ∑
Rα,j∈Pα

mα (Rα,j) < δ.

Unpacking this definition, we see that f is absolutely continuous in this sense whenever

f is absolutely continuous on Q with respect to Lebesgue measure, and f restricted to each
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lower α-face is also absolutely continuous as a function of the remaining free parameters.

Let AC(Q) denote the collection of absolutely continuous functions on Q. Again, we can

obtain the following result by the same methods as used in [3]; it characterizes AC(Q) in

several very convenient ways.

Theorem 26. Let f : Q→ C. Then the following are equivalent:

1. f ∈ AC(Q),

2. for |α| = 1, . . . d, there exist Fα ∈ L1(Qα) such that

f(t) =
d∑
|α|=1

∫
Qα

χ[0,αt](u)Fα(u)mα(du) (3.40)

3. f belongs to the closure in BV (Q) of the polynomials in d-variables.

We will use the following lemma in the next section.

Lemma 15. For each x ∈ C(Q), the map BV (Q)→ R given by f 7→
∫
Q
f(u)dx(u) is linear

and continuous.

Proof. By the linearity of the Riemann-Stieltjes integral, it is clear that each such map is
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linear. Let f ∈ BV (Q). Then, by integration by parts,

∣∣∣∣∫
Q

fn(u)dx(u)

∣∣∣∣ =

∣∣∣∣∣∣
d∑

k=0

∑
Qm∈Qk

(−1)d−(#Qm)

∫
Im

g(u)df(u)

∣∣∣∣∣∣
≤

d∑
k=0

( dk ) 2d−k
∫
Qm

|g(u)| d |f | (u)

≤

(
d∑

k=0

( dk ) 2d−k

)
||g||S

∫
Qm

d |f | (u)

≤ C ||g||S Var(f ;Q)

= C ||g||S ||f ||BV ,

where C > 0 can be appropriately chosen, and thus the map is continuous.

3.7 Measures on the space C0(Q)

The next theorem is our first aim of this section; it shows how to build a wide class of

“generalized Wiener measures” on the space C(Q). Throughout our discussion, we will fix

an element a ∈ C(Q) satisfying a(t) = 0 whenever tj = 0 for some j = 1, . . . , d; this function

will serve as the mean for our family of measures. We begin by dispensing with the technical

condition on ε-entropy of Theorem 17 for these spaces.

Proposition 3. For every α > 0, Q =
∏d

j=1[0, Tj] satisfies the metric entropy condition∑∞
n=1 2−nαH(Q, 2−n) <∞.

Proof. We use the `∞ norm ||u− v||∞ = max1≤j≤d |uj − vj| on Rd. Put T = max1≤j≤d{Tj}.

Now, there is an n0 ∈ N sufficiently large that for each n ≥ n0 there is some Mn ∈ N so that

T ≤ 2−nMn ≤ 2T ; from this we see that Mn ≤ 2n+1T . Now note that it takes at most Md
n

balls of size 2−n (in the `∞ sense) to cover Q.
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Thus N(Q, 2−n) ≤Md
n ≤ (2n+1T )d, and hence

H(Q, 2−n) =
(
logN(Q, 2−n)

) 1
2 ≤

(
log(2n+1T )d

) 1
2 ≤ C

√
n+ 3,

where C = (dmax(log 2, log T ))
1
2 . Now observe that

∞∑
n=n0

2−nαH(Q, 2−n) ≤ C
∞∑

n=n0

2−nα
√
n+ 3,

which converges by the ratio test for any α > 0.

Theorem 27. Let ν be absolutely continuous on Q with non-negative Radon-Nicodym deriva-

tive dν
dm
∈ Lp(Q) for some 1 < p ≤ ∞ and let k(u, t) = χ[0,t](u) be a Volterra kernel. For

f ∈ L2(Q; ν), put Tf(t) =
∫
Q
k(u, t)f(u)ν(du). Then there is a Radon Gaussian measure γ

on C(Q) with Fourier transform

γ̂(x∗) = exp

(
i〈a, x∗〉 − 1

2
〈TT ∗x∗, x∗〉

)
. (3.41)

Proof. Note that 〈a, ·〉 is a perfectly good continuous linear map on C(Q), and the result

is that m(x∗) = 〈a, x∗〉 for each x∗ ∈ C(Q)∗. We need to demonstrate that our intended

covariance operator TT ∗ does what it should. By Theorem 18, it suffices to show that

∫
Q

|k(u, s)− k(u, t)|2 ν(du) ≤ C |s− t|2α (3.42)

for some α > 0 and C > 0, because Proposition 3 assures that the metric entropy hypothesis

of Theorem 18 is automatically met.



85

If 1 < p <∞, take 0 < α < p−1
2p

and then

1

|s− t|2α
∫
Q

|k(u, s)− k(u, t)|2 ν(du) =
1

|s− t|2α
∫
Q

∣∣χ[0,s](u)− χ[0,t](u)
∣∣2 ν(du)

=
1

|s− t|2α
∫
Q

χ[0,s]4[0,t](u)
dν

dm
m(du)

≤ 1

|s− t|2α

∣∣∣∣∣∣∣∣ dνdm

∣∣∣∣∣∣∣∣
p

m ([0, s]4[0, t])
p−1
p

≤ C

∣∣∣∣∣∣∣∣ dνdm

∣∣∣∣∣∣∣∣
p

|s− t|
p−1
p
−2α

≤ C

∣∣∣∣∣∣∣∣ dνdm

∣∣∣∣∣∣∣∣
p

.

In the case that p =∞, take 0 < α < 1
2
, and then by a similar computation

1

|s− t|2α
∫
Q

|k(u, s)− k(u, t)|2 ν(du) ≤ 1

|s− t|2α

∣∣∣∣∣∣∣∣ dνdm

∣∣∣∣∣∣∣∣
∞

m ([0, s]4[0, t])

≤ C

∣∣∣∣∣∣∣∣ dνdm

∣∣∣∣∣∣∣∣
∞
|s− t|1−2α

≤ C

∣∣∣∣∣∣∣∣ dνdm

∣∣∣∣∣∣∣∣
∞
.

In either case, (3.42) is satisfied.

Corollary 11. Let γ be as in Theorem 27. Then

1. supp(γ) ⊆ C0(Q) = {x : x(t) = 0 whenever tj = 0 for some j = 1, . . . , d},

2. Hγ ⊆ AC(Q).

Proof. Let t ∈ Q with tj = 0 for some j and observe that T ∗δt(u) = χ[0,t](u), so that

||T ∗δt||L2(Q;ν) =

∫
Q

χ[0,t](u)ν(du) =

∫
Q

χ[0,t](u)
dν

dm
(u)m(du) = 0,
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because m[0, t] = 0 for such t. Thus δt ∈ ker(T ∗) whenever some tj = 0 and then by Theorem

15, supp(γ) ⊆ ker(δt), whence x(t) = 〈δt, x〉 = 0. If γ has mean a ∈ C(Q) as in Theorem 12,

then x = a+ x0 for some x0 ∈ clC(Q)(Hγ), whence x(t) = a(t) + x0(t) = 0.

As Hγ ⊆ T (L2(Q; ν)), each h ∈ Hγ is h = Tf for some f ∈ L2(Q; ν), and thus

h(t) =

∫
Q

χ[0,t](u)f(u)ν(du) =

∫
Q

χ[0,t](u)

(
f(u)

dν

dm

)
m(du).

Note that f dν
dm
∈ L1(Q) and that we can take each Fα = 0 on the lower α-faces of Q, which

shows that h ∈ AC(Q) by Theorem 26.

We will now take some time to develop a useful means of representing linear functionals

on C0(Q). To accomplish this, we will continue to view of T ∗ as acting on C(Q)∗, but will

consider it to have a different codomain.

Lemma 16. Let T ∗ be as in Theorem 27. Then T ∗ can be also considered as a bounded

linear map from C(Q)∗ to BV (Q).

Proof. Note that T ∗ is linear by definition. For x∗ ∈ C(Q)∗ let x∗ be represented by the

measure µ and put T ∗x∗ = T ∗µ and then T ∗x∗(u) =
∫
Q
χ[0,t](u)µ(dt) = µ{t : u ≤ t}. For

each α and any partition Pα = {Rα,j} of Qα by rectangles we have a uniform bound

∑
Rα,j∈Pα

∣∣∆Rα,jT
∗x∗
∣∣ =

∑
Rα,j∈Pα

∣∣∆Rα,jµ{t : u ≤ t}
∣∣ =

∑
Rα,j∈Pα

|µ(Rα,j)| ≤ |µ| (Q),

whence we can easily obtain the coarse (but sufficient) estimate

||T ∗x∗||BV =
d∑
|α|=0

V (T ∗x∗;Qα) ≤ 2d ||µ||V ar = 2d ||x∗||V ar ,

and thus T ∗ is bounded.
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Theorem 28. Let T ∗ be as in Lemma 16 and let x ∈ C0(Q). Then

〈x, x∗〉 =

∫
Q

T ∗x∗(u)dx(u) (3.43)

for each x∗ ∈ C(Q)∗.

Proof. Begin with the case that x∗ = δt. Observe that T ∗δt(u) =
∫
Q
χ[0,s](u)δt(ds) = χ[0,t](u),

and then we can compute that

∫
Q

T ∗δt(u)dx(u) =

∫
Q

χ[0,t](u)dx(u) = x(t) = 〈x, δt〉,

because of the fact that x(t) = 0 whenever tj = 0 for some j = 1, 2, . . . , d. The linearity of

the Riemann-Stieltjes integral then assures that

〈x,
n∑
j=1

cjδtj〉 =

∫
Q

n∑
j=1

cjδtj(u)dx(u)

for any finite linear combination of point evaluation functionals.

Now, let x∗ be any element of C(Q)∗ and recall by Theorem 19 that x∗ is the weak* limit

of finite linear combinations of point evaluations, say x∗ = limn→∞ x
∗
n. Note the composition

map x∗ 7→ T ∗x∗ 7→
∫
Q
T ∗x∗(u)dx(u) is continuous by Lemmas 15 and 16, whence

〈x, x∗〉 = lim
n→∞
〈x, x∗n〉 = lim

n→∞

∫
Q

T ∗x∗n(u)dx(u) =

∫
Q

T ∗x∗(u)dx(u),

as desired.

Corollary 12. If f ∈ BV (Q), then there is some f ∗ ∈ C(Q)∗ so that
∫
Q
f(u)dx(u) = 〈f ∗, x〉

for every x ∈ C0(Q), and in this case we have T ∗f ∗ = f .

Proof. Let f ∈ BV (Q). Then the map C(Q) → R given by x 7→
∫
Q
f(u)dx(u) is certainly
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linear; moreover, the proof of Lemma 15 shows that

∣∣∣∣∫
Q

f(u)dx(u)

∣∣∣∣ ≤ C ||f ||BV ||x||S ,

whence there is a bounded linear functional f ∗ ∈ C(Q)∗ so that 〈f ∗, x〉 =
∫
Q
f(u)dx(u), as

desired. Then by Theorem 28 we see that T ∗f ∗ = f .

Lemma 17. For each f ∈ BV (Q),

1. the Riemann-Stieltjes integral
∫
Q
fdx exists for every x ∈ C(Q) and for every x ∈

C0(Q) satisfies
∫
Q
fdx = 〈f ∗, x〉 for some f ∗ ∈ C(Q)∗ for which T ∗f ∗ = f ,

2.
∫
C0(Q)

(∫
Q
fdx

)
γ(dx) =

∫
Q
fda,

3.
∫
C0(Q)

(∫
Q
fdx

)2

γ(dx) = ||f ||2L2(Q;ν) +
(∫

Q
fda

)2

.

Proof. The first statement follows directly from Theorem 28 and Corollary 12. The second

two statements follow immediately from the first and the fact that

γ̂(f ∗) = exp

(
i〈f ∗, a〉 − 1

2
||T ∗f ∗||2L2(Q;ν)

)
= exp

(
i

∫
Q

fda− 1

2
||f ||2L2(Q;ν)

)
,

so that f ∗ is a normal random variable with mean
∫
Q
fda and variance ||f ||2L2(Q;ν).

Lemma 18. Let ν be a positive Borel measure on Q and fix some x0 ∈ C(Q). For f, g ∈

BV (Q), let

[f, g]x0 = (f, g)L2(Q;ν) +

∫
Q

fdx0

∫
Q

gdx0.

Then [·, ·]x0 is a semi-inner product, and the semi-norm associated with [·, ·] dominates the

L2(Q; ν)-norm.

Proof. By the linearity of the map f 7→
∫
Q
fdx0, it is easy to see that [·, ·]x0 is symmetric

and bilinear. In addition, [f, f ]x0 = ||f ||2L2(Q;ν) + (
∫
Q
fdx0)2 ≥ 0, and if f = 0 in BV (Q), we
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must have ||f ||L2(Q;ν) = 0 and
∫
Q
fdx0 = 0. Thus [·, ·]x0 is a semi-inner product on BV (Q).

The domination of ||·||L2(Q;ν) by the associated seminorm is clear.

In light of this, [f, g]a is a semi-inner product on BV (Q). Define the quotient space

BV (Q)a = BV (Q)/{f : [f, f ]a = 0}, and then we can take [·, ·]a as an inner product on

BV (Q)a. Observe that f = g in BV (Q)a if and only if f = g in L2(Q; ν) and
∫
Q
fda =

∫
Q
gda

for every choice of representative for the corresponding equivalence classes of f and g. Now,

define H to be the completion of BV (Q)a in the norm associated with [·, ·]a, which we will

denote by ||·||H . We will use (·, ·)a to denote this inner product.

Lemma 19. If H is as above, then:

1. H ⊆ clL2(Q;ν)T
∗(C(Q)∗),

2. for each x∗ ∈ C(Q)∗,

||x∗||2L2(γ) = ||T ∗x∗||2H = ||T ∗x∗||2L2(Q;ν) + 〈x∗, a〉2 = ||τx∗||2L2(γ) + 〈x∗, a〉2. (3.44)

Proof. Let (fn) ⊆ BV (Q) with limn→∞ fn = f in H. Note that by Corollary 12 each fn

satisfies fn = T ∗f ∗n for some f ∗n ∈ C(Q)∗. Then the fact that ||·||H dominates ||·||L2(Q;ν)

forces the desired containment.

Now let x∗ ∈ C(Q)∗. Then x∗ is Gaussian with mean 〈x∗, a〉 and variance ||T ∗x∗||2L2(Q;ν),

whence ||x∗||2L2(γ) = ||T ∗x∗||2L2(Q;ν) + 〈x∗, a〉2. The second conclusion is then immediate from

the fact that ||T ∗x∗||2H = ||T ∗x∗||2L2(Q;ν) +
(∫

Q
T ∗x∗da

)2

by Theorem 28 and the definition

of ||·||H , and the fact that ||τx∗||L2(γ) = ||T ∗x∗||L2(Q;ν) from Theorem 16.
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We pause to note that we are really thinking about the map T ∗ in several different ways:

C(Q)∗

T ∗

&&

Lem.16
// BV (Q) //

quotient

��

L2(Q; ν)

BV (Q)a // H

Lem.19

OO

Thus we are frequently abusing notation and taking T ∗ to be the map C(Q)∗ → BV (Q) as

in Lemma 16, as a map C(Q)∗ → H in Lemma 19, or (by including the composition with

an appropriate quotient or inclusion) as a map C(Q)∗ → L2(Q; ν), as in Theorem 27.

Definition 13. Let {φj} be a complete orthonormal set of functions of bounded variation

in H. For f ∈ H, put

Inf(x) =
n∑
j=1

(f, φj)a

∫
Q

φj(u)dx(u),

Define the Paley-Wiener-Zygmund (PWZ) integral to be If(x) = limn→∞ Inf(x) for all

x ∈ C(Q) for which this limit exists.

Theorem 29.

1. For each f ∈ BV (Q), the PWZ integral If(x) exists and agrees with the Riemann-

Stieltjes integral
∫
Q
f(u)dx(u) for a.e. x ∈ C0(Q),

2. the PWZ integral is essentially independent (up to L2(γ) equivalence) of the choice of

orthonormal basis in Definition 13,

3.
∫
C0(Q)

If(x)γ(dx) =
∫
Q
f(u)da(u),

4.
∫
C0(Q)

(If(x))2 γ(dx) = ||f ||2L2(Q;ν) +
(∫

Q
f(u)da(u)

)2

.

5. If f and g are in BV (Q), then the covariance of If and Ig is (f, g)L2(Q;ν).
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Proof. To prove the first two statements, let {ej} be an orthonormal basis of functions in

BV (Q) for H and let f ∈ BV (Q). Take the PWZ integrals Inf(x) as in Definition 13, note

that
∑n

j=1(f, ej)aej ∈ BV (Q)a, and recall that the Riemann-Stieltjes integral
∫
Q
f(u)dx(u)

exists for every x ∈ C(Q). Now we observe that

∫
C0(Q)

∣∣∣∣Inf(x)−
∫
Q

fdx

∣∣∣∣2 γ(dx) =

∫
C0(Q)

∣∣∣∣∣
n∑
j=1

(f, ej)a

∫
Q

ejdx−
∫
Q

fdx

∣∣∣∣∣
2

γ(dx)

=

∫
C0(Q)

∣∣∣∣∣
n∑
j=1

(f, ej)a〈e∗j , x〉 − 〈f ∗, x〉

∣∣∣∣∣
2

γ(dx), (3.45)

with Corollary 12 yielding the appropriate functionals e∗j and f ∗ in C(Q)∗. Now the integrand

of (3.45) can be written as

〈
n∑
j=1

(f, ej)ae
∗
j , x〉2 − 2

n∑
j=1

(f, ej)a〈e∗j , x〉〈f ∗, x〉+ 〈f ∗, x〉2,

and then integrating over C0(Q) with respect to γ, Lemma 19 shows that (3.45) is equal to

∣∣∣∣∣
∣∣∣∣∣T ∗

(
n∑
j=1

(f, ej)ae
∗
j

)∣∣∣∣∣
∣∣∣∣∣
2

H

− 2
n∑
j=1

(f, ej)a

[(
T ∗e∗j , T

∗f ∗
)
L2(Q;ν)

+ 〈e∗j , a〉〈f ∗, a〉
]

+ ||T ∗f ∗||H ,

By the linearity of T ∗, Corollary 12, and the fact that (f, g)a = (f, g)L2(Q;ν) +
∫
Q
fda

∫
Q
gda,

this is equal to ∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

(f, ej)aej

∣∣∣∣∣
∣∣∣∣∣
2

H

− 2
n∑
j=1

(f, ej)
2
a + ||f ||2H

 ,

whence limn→∞ Inf(x) =
∫
Q
f(u)dx(u) in L2(γ), and hence for a.e. x ∈ C0(Q).
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Let (fn) and (gn) be sequences in BV (Q) converging to f in L2(Q; ν). Then we have

lim
n→∞

∫
C0(Q)

∣∣∣∣∫
Q

fndx−
∫
Q

gndx

∣∣∣∣2 γ(dx) = lim
n→∞

∫
C0(Q)

(〈f ∗, x〉 − 〈g∗, x〉)2 γ(dx)

= lim
n→∞

||fn||2H − 2 (fn, gn)a + ||gn||2H

= lim
n→∞

||fn − gn||2H ,

and thus limn→∞ Ifn(x) = limn→∞ Ign(x) in L2(γ), and hence for a.e. x ∈ C0(Q) and thus

If(x) is essentially independent of the choice of approximating sequence in BV (Q).

Now, taking f ∗ in C(Q)∗ corresponding to f ∈ BV (Q) by Corollary 12, we note that

τf ∗ = 〈f ∗, ·〉 − 〈f ∗, a〉 ∈ C(Q)∗γ, and then we can apply Theorem 21 with ξ = i to see that

the characteristic function of the random variable τf ∗ is given by

exp

(
−1

2
||T ∗f ∗||2L2(Q;ν)

)
= exp

(
−1

2
||f ||2L2(Q;ν)

)
,

and then from the fact that If(x) =
∫
Q
f(u)dx(u) = 〈f ∗, x〉 for a.e. x ∈ C0(Q) we quickly

see that If(·) is a Gaussian random variable with mean
∫
Q
f(u)da(u) = 〈f ∗, a〉 and variance

||f ||2L2(Q;ν), whence the next two conclusions follow.

Finally, let f = T ∗f ∗ and g = T ∗g∗ for some f ∗ and g∗ by Corollary 12. Then If(x) −∫
Q
fda = 〈f ∗, x〉 − 〈f ∗, a〉 and Ig(x) −

∫
Q
gda = 〈g∗, x〉 − 〈g∗, a〉, whence the covariance of

If and Ig is

(
If(·)−

∫
Q

fda, Ig(·)−
∫
Q

gda

)
L2(γ)

= (〈f ∗, ·〉 − 〈f ∗, a〉, 〈g∗, ·〉 − 〈g∗, a〉)L2(γ)

= (τf ∗, τg∗)L2(γ)

= (T ∗f ∗, T ∗g∗)L2(Q;ν)

= (f, g)L2(Q;ν) ,
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and the final conclusion holds.

As a consequence of Theorem 29, we also have the following corollary.

Corollary 13. If f ∈ BV (Q), then
∫
Q
fdx ∈ L2(γ) with

∣∣∣∣∣∣∣∣∫
Q

fdx

∣∣∣∣∣∣∣∣
L2(γ)

= ||If(·)||L2(γ) = ||f ||H . (3.46)

Lemma 20. Let f and g be elements of H. Then:

1. There is a number L ∈ R such that limn→∞
∫
Q
fnda = L whenever (fn) is a sequence

in BV (Q) with fn → f in H. In fact, L = If(a).

2. (f, g)a = (f, g)L2(Q;ν) + If(a)Ig(a) and ||f ||2H = ||f ||2L2(Q;ν) + (If(a))2.

Proof. If (fn) in BV (Q) is convergent in H, then
(
||fn||L2(Q;ν)

)
and

(∫
Q
fnda

)
must each

be convergent. Put L = limn→∞
∫
Q
fnda. Note that if (gn) is another sequence in BV (Q)

converging to f in H, then ||fn − gn||L2(Q;ν) +
(∫

Q
(fn − gn) da

)2

= ||fn − gn||H → 0 as

n → ∞, whence
∫
Q
gnda → L. Let (ej) be an orthonormal basis in BV (Q) for H and then

fn =
∑n

j=1 (f, ej)a ej is in BV (Q); moreover, we see that

If(a) = lim
n→∞

n∑
j=1

(f, ej)a

∫
Q

ejda = lim
n→∞

∫
Q

n∑
j=1

(f, ej)aejda = lim
n→∞

∫
Q

fnda = L.

The second conclusion follows from the first and the fact that

(f, g)a = lim
n→∞

(fn, gn)a = lim
n→∞

[
(fn, gn)L2(Q;ν) +

∫
Q

fnda

∫
Q

gnda

]
,

where (fn) and (gn) are any sequences in BV (Q) converging to f and g, respectively.
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Theorem 30.

1. If f ∈ H, then the PWZ integral If(x) exists for a.e. x ∈ C0(Q) and is essentially

independent of the choice of orthonormal basis in Definition 13.

2. If f ∈ H, then If is a Gaussian random variable with mean If(a) and variance

||f ||2L2(Q;ν)

3. If f and g are in H, then the covariance of the random variables If and Ig is

(f, g)L2(Q;ν).

Proof. Let (ej) be an orthonormal basis in BV (Q) for H and then fn =
∑n

j=1 (f, ej)a ej

defines a sequence (fn) in BV (Q); note that ||fn − fm||H → 0 as m,n → ∞; i.e. (fn) is

Cauchy, because it is convergent. Then

||Ifn − Ifm||L2(γ) = ||I(fn − fm)||L2(γ) = ||fn − fm||H

by Corollary 13, and hence (Ifn) is Cauchy in L2(γ). Let F (x) be its limit, and then

F (x) = lim
n→∞

Ifn(x) = lim
n→∞

∫
Q

n∑
j=1

(f, ej)aejdx = lim
n→∞

n∑
j=1

(f, ej)a

∫
Q

ejdx = lim
n→∞

Inf(x)

in L2(γ). Thus F = limn→∞ Inf = If in L2(γ), and so If exists for a.e. x. If (hj) is another
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orthonormal basis in BV (Q), then by Corollary 12 and Lemma 19 we see that

∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

(f, ej)a

∫
Q

ejda−
n∑
j=1

(f, hj)a

∫
Q

hjda

∣∣∣∣∣
∣∣∣∣∣
L2(γ)

=

∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

[
(f, ej)a〈e∗j , x〉 − (f, hj)a〈h∗j , x〉

]∣∣∣∣∣
∣∣∣∣∣
L2(γ)

=

∣∣∣∣∣
∣∣∣∣∣〈

n∑
j=1

[
(f, ej)ae

∗
j − (f, hj)ah

∗
j

]
, x〉

∣∣∣∣∣
∣∣∣∣∣
L2(γ)

=

∣∣∣∣∣
∣∣∣∣∣T ∗

(
n∑
j=1

[
(f, ej)ae

∗
j − (f, hj)ah

∗
j

])∣∣∣∣∣
∣∣∣∣∣
H

=

∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

(f, ej)aej −
n∑
j=1

(f, hj)ahj

∣∣∣∣∣
∣∣∣∣∣
H

,

and then we must have limn→∞ Inf(x) = limn→∞ Ing(x).

Again using the sequence (fn) as above, note that Ifn(x) = Inf(x) for a.e. x by the

linearity of the Reimann-Stieltjes integral. Now, by Theorem 29 we see that each Ifn is

Gaussian with mean
∫
Q
fnda and variance ||fn||2L2(Q;ν), and limn→∞ Ifn(x) = If(x) for a.e.

x. Thus Ifn has characteristic function

∫
C0(Q)

exp (iIfn(x)) γ(dx) = exp

(
−1

2
||fn||2L2(Q;ν) + iIfn(a)

)
,

and then the fact that |exp (iIfn(x))| ≤ 1 allows the use of dominated convergence to show

that If is Gaussian with the desired mean and variance.

Now we can compute the covariance. Note that

∫
C0(Q)

(If(x)− If(a)) (Ig(x)− Ig(a)) γ(dx) =

∫
C0(Q)

If(x)Ig(x)γ(dx)− If(a)Ig(a),

so that it suffices to show that (If, Ig)2
L2(γ) = (f, g)L2(Q;ν) + If(a)Ig(a). Once more we

enlist our orthonormal basis (ej) and construct (fn) and (gn) as before, noting that If =

limn→∞ Inf = Ifn and Ig = limn→∞ Ing = Ign in L2(γ) and also that fn → f and gn → g
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in H. As each fn and gn are in BV (Q), we see that

|(fn, gn)a − (f, g)a| ≤ ||gn||H ||fn − f ||H + ||f ||H ||gn − g||H ,

so that (fn, gn)a → (f, g) as n→∞. In the same way, (Inf, Ing)L2(γ) → (If, Ig)L2(γ). With

this and Corollary 13, we see that

(If, Ig)L2(γ) = lim
n→∞

(Inf, Ing)L2(γ) = lim
n→∞

(fn, gn)H = (f, g)H ,

and then the desired result follows from the fact that (f, g)H = (f, g)L2(Q;ν) +If(a)Ig(a).

We can now state another version of the classic Cameron-Martin translation theorem.

Theorem 31 (Translation Theorem). Let f ∈ H and take any x0 ∈ C0(Q) satisfying

x0(t) = Tf(t) =
∫
Q
χ[0,t](u)f(u)ν(du). If q : C0(Q)→ C0(Q) by q(x) = x+ x0, then γ ◦ q is

absolutely continuous with respect to γ, and

dγ ◦ q
dγ

(x) = exp

(
−1

2
||f ||2L2(Q;ν) + If(x)− If(a)

)
. (3.47)

Proof. Taking an orthonormal basis (ej) in BV (Q) for H, we have the L2(γ) limit

If(x)− If(a) = lim
n→∞

[
n∑
j=1

(f, ej)a

∫
Q

ejdx−
n∑
j=1

(f, ej)a

∫
Q

ejda

]

= lim
n→∞

[
〈
n∑
j=1

(f, ej)ae
∗
j , x〉 − 〈

n∑
j=1

(f, ej)ae
∗
j , a〉

]
,

where e∗j is taken as in Corollary 12. Noting that

∫
C0(Q)

〈
n∑
j=1

(f, ej)ae
∗
j , x〉γ(dx) = 〈

n∑
j=1

(f, ej)ae
∗
j , a〉
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we see that If(·)− If(a) must be an element of C(Q)∗γ. Now observe that

Rγ(If(·)− If(a))(δt) =

∫
C0(Q)

(If(x)− If(a))(〈δt, x〉 − a(t))γ(dx)

=

∫
C0(Q)

If(x)〈δt, x〉γ(dx)− a(t)If(a)

= (f, T ∗δt)L2(Q;ν) + a(t)If(a)− a(t)If(a)

=

∫
Q

χ[0,t](u)f(u)ν(du)

= x0(t),

where Rγ is as in Lemma 9.

Then the hypotheses of Theorem 20 are satisfied, and

dγ ◦ q
dγ

(x) = exp

(
If(x)− If(a)− 1

2
||If(·)− If(a)||2L2(γ)

)
= exp

(
If(x)− If(a)− 1

2
||f ||2L2(Q;ν)

)
,

as desired.

The following theorem is the multiple-parameter version of Theorem 4. It is the basic

integration formula for cylindrical functions.

Theorem 32 (PWZ Theorem). Let {φ1, . . . , φn} be a linearly independent set in H0 and let

f : Rn → C. Then F (x) = f(Iφ1(x), . . . , Iφn(x)) is measurable if and only if f is Lebesgue

measurable, and in this case

∫
C(Q)

F (x)γ(dx)
∗
=

det(M−1)

(2π)
n
2

∫
Rn
f(u) exp

(
−1

2
M(u− v) · (u− v)

)
du,

where M is the n × n matrix with entries mi,j = (φi, φj)L2(Q;ν), v = (Iφ1(a), . . . , Iφn(a)),
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and
∗
= indicates that if one side of the equality exists then so does the other.

Proof. The proof follows directly from Theorem 30, the definition of the multivariate normal

distribution, and the same observations as in the proof of Corollary 10.

Corollary 14. Let {φ1, . . . , φn} be an orthonormal set in H0 and let f : Rn → C. Then

F (x) = f(Iφ1(x), . . . , Iφn(x)) is measurable if and only if f is Lebesgue measurable, and in

this case

∫
C(Q)

F (x)γ(dx)
∗
= (2π)−

n
2

∫
Rn
f(u) exp

(
−

n∑
j=1

(uj − Iφj(a))2

2

)
du, (3.48)

where
∗
= indicates that if one side exists, the other also exists with equality.

Proof. The fact that {φ1, . . . , φn} is orthonormal ensures that the covariance matrix C is

the identity matrix. Then apply Theorem 32.

3.8 Examples

In this section, we collect and comment on several examples, most of which are well-known

in other contexts. In these examples we take m to denote Lebesgue measure. If k(u, t) is the

characteristic function of the set {(u, t) : u ≤ t}, then k is a Volterra kernel and for suitable

choices of ν absolutely continuous with respect to m, some well-known examples result.

Example 3. If we take Q = [0, 1] and ν = m and a = 0 on [0, 1], it is not hard to see that

K(s, t) = 〈Rδs, δt〉 =

∫
[0,1]

χ[0,s](u)χ[0,t](u)m(du) = m([0, s] ∩ [0, t]) = min(s, t),
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and we have obtained the classical Wiener space with Cameron-Martin space

Hγ =

{
x : x(t) =

∫ t

0

x′(u)du for some x′ ∈ L2[0, 1]

}
.

Note that this is the space of absolutely continuous functions on [0, 1] with derivative in

L2[0, 1] that vanish at 0 (i.e. the Sobolev space H1
0 [0, 1]), as expected.

Example 4. Taking k(u, t) = χ[t,T ](u) in the previous example, we obtain a similar function

space, with its elements a.e. “tied down” at T , as in [50].

Example 5. In a similar fashion to the previous example, if we take Q = [0, 1]2 with

Lebesgue measure and a = 0 on Q, the result is the classical two-parameter Wiener (Yeh-

Wiener) space with

K(s, t) =

∫
[0,1]2

χ[0,s](u)χ[0,t](u)m(du) = m([0, s] ∩ [0, t]) = min(s1, t1) min(s2, t2).

In this case, the Cameron-Martin space is

Hγ =

{
x : x(t1, t2) =

∫ t1

0

∫ t2

0

x′(u1, u2)du1du2 for some x′ ∈ L2[0, 1]2
}
,

which is the collection of absolutely continuous functions on [0, 1]2 for which ∂2x
∂t1∂t2

∈ L2[0, 1]2

and for which x(t1, t2) = 0 whenever either t1 = 0 or t2 = 0.

Example 6. Again take Lebesgue measure on [0, 1] and put k(u, t) = χ[0,t](u)−m([0, t]) =
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χ[0,t](u)− t. Now we have

K(s, t) =

∫ 1

0

(
χ[0,s](u)− s)

) (
χ[0,t](u)− t

)
m(du)

=

∫ 1

0

[
χ[0,s]∩[0,t](u)− tχ[0,s](u)− sχ[0,t](u) + st

]
m(du)

= m([0, s] ∩ [0, t])− st

= min(s, t)− st,

and we have obtained a Gaussian measure on C[0, 1] for which the stochastic process Xt =

〈δt, x〉 corresponds to the well-known Brownian bridge. Note that

Hγ =

{
x : x(t) =

∫ 1

0

(
χ[0,t](u)−m([0, t])

)
x′(u)m(du) for some x′ ∈ L2[0, 1]

}
.

Note that

∫ 1

0

(
χ[0,t](u)−m([0, t])

)
x′(u)m(du) =

∫ t

0

x′(u)m(du)− t
∫ 1

0

x′(u)m(du)

so that the Cameron-Martin space for this measure is the space of absolutely continuous

functions on [0, 1] with derivative in L2[0, 1] and for which x(0) = x(1) = 0.

Example 7. Let b(t) =
∫ t

0
b′(u)du for some nonnegative b′ ∈ Lp[0, 1] for p > 1. Take ν to

be the Lebesgue-Stieltjes measure with respect to b; that is ν(E) =
∫
E

db(u) =
∫
E
b′(u)du

for measurable sets E. Then

K(s, t) =

∫ 1

0

χ[0,s](u)χ[0,t](u)db(u) = b(min(s, t)),

is the covariance function for a Gaussian measure on C[0, 1] and the corresponding Cameron-
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Martin space is

Hγ =

{
x : x(t) =

∫ t

0

x′(u)db(u) for some x′ ∈ L2
b [0, 1]

}
.

We denote the resulting measure space by (C0,b[0, 1], γ).

Example 8. Taking the previous two examples in combination, we consider the interval [0, L]

and let b(t) =
∫ t

0
b′(u)du for some continuous nonnegative b′. Put k(u, t) =

√
b(L)χ[0,t](u)−

b(t)√
b(L)

, and the resulting covariance function is

K(s, t) =

∫ L

0

(√
b(L)χ[0,s](u)− b(s)√

b(L)
)

)(√
b(L)χ[0,t](u)− b(t)√

b(L)

)
db(u)

=

∫ L

0

[
b(L)χ[0,s]∩[0,t](u)− b(s)χ[0,t](u)− b(t)χ[0,s](u) +

b(s)b(t)

b(L)

]
b′(u)du

= b(L)b(min(s, t))− b(s)b(t)

=


b(s)(b(L)− b(t)) if s ≤ t,

b(t)(b(L)− b(s)) if t ≤ s.

In this way we obtain a measure with respect to which the stochastic process Xt =

〈δt, x〉 is a Brownian bridge whose covariance structure is governed by the Lebesgue-Stieltjes

measure db. Note that Example 7 corresponds to the choices L = 1 and b(t) = t.

We remark that the Cameron-Martin space for the measure we obtain in this case is

Hγ =

{
x : x(t) =

∫ L

0

(√
b(L)χ[0,t](u)− b(t)√

b(L)

)
x′(u)db(u) for some x′ ∈ L2

b [0, L]

}
.

Noting that

x(t) =
√
b(L)

∫ t

0

x′(u)b′(u)du− b(t)√
b(L)

∫ L

0

x′(u)b′(u)du
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for each x ∈ Hγ and that b(0) = 0, we again see that x(0) = x(L) = 0, as expected.

Example 9. With d = 1 and functions a and b chosen such that a′ ∈ L2[0, T ] and b ∈ C1[0, T ]

with b′ positive and bounded away from 0 we obtain the measure spaces (Ca,b[0, T ], γ) of

Chapter 2. In this case, also recall that we have L2
b [0, 1] = L2[0, 1] by these stricter conditions

on b′, as then we have both ||b′||∞ < ∞ and
∣∣∣∣ 1
b′

∣∣∣∣
∞ < ∞. We remark that the translation

theorem from [12, 13] requires translations by elements of the form x0(t) =
∫ t

0
f(u)db(u) for

f satisfying
∫ 1

0
|f |2 db <∞ and

∫ 1

0
|f |2 da <∞; however, by our Theorem 31, one can relax

the second of these requirements to
∫ 1

0
|f | d |a| <∞.

Example 10. This nonexample exhibits a measure that is not of the type discussed in

Section 8. Let c : [0, 1] → [0, 1] be the Cantor function. Note that c is monotone and that

c′ = 0 a.e. on [0, 1]. As c is of bounded variation, we can define a measure ν on [0, 1]

by ν(E) =
∫
E

dc(u); moreover, we will certainly have ν ∈ C[0, 1]∗. Take k(u, t) to be the

Volterra kernel.

As before, we can build a covariance function K(s, t) = c(min(s, t)). However, under

our method of construction we have no guarantee that the support of the resulting measure

γ must be contained in the space of continuous functions C[0, 1], because the necessary

Hölder-type condition ν([0, s]4[0, t]) =
∫ 1

0
|k(u, t)− k(u, s)|2 ν(du) < C |s− t|α might not

hold. There is certainly an R-valued stochastic process with this covariance, but we don’t

know whether its sample paths are continuous.

Example 11. Our final example is the family of spaces Ca,b(Q), in the case were d = 2. Let

Q = [0, S] × [0, T ]. Now, take b ∈ AC(Q) with b(s, t) = 0 whenever some s = 0 or t = 0;

then we have

b(s, t) =

∫ s

0

∫ t

0

∂2b

∂s∂t
dvdu =

∫
Q

χ[0,(s,t)](u, v)ν(du, dv) = (T ∗δ(s,t), T
∗δ(s,t))



103

for some suitable choice of ν, i.e. if ν is absolutely continuous with respect to Lebesgue

measure with nonnegative Radon-Nicodym derivative ∂2b
∂s∂t
∈ L2(Q). In the same way, take

a(s, t) =

∫ s

0

∫ t

0

∂2a

∂s∂t
(u, v)dvdu,

with ∂2a
∂s∂t
∈ L2(Q). With these and the Volterra kernel k((u, v), (s, t)) = χ[0,s]×[0,t](u, v), we

can obtain a measure in the same manner as Section 3.7. In this case we have the convenient

representations

If(a) =

∫ S

0

∫ T

0

f(u, v)
∂2a

∂s∂t
(u, v)dvdu

and

||f ||L2(Q;ν) =

∫ S

0

∫ T

0

|f(u, v)|2 ∂2b

∂s∂t
(u, v)dvdu,

provided the former exists. In this case we will refer to the measure γ as being subordinate

to the functions a and b. Variations on this example will be the setting for the next chapter.
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Chapter 4

Integration Over Paths

In this chapter, we will take m to be the generalized Yeh-Wiener measure on C0(Q) subor-

dinate to the functions a and b, as in Example 11 of the previous chapter. We will denote

the resulting measure space by Ca,b(Q).

For 0 < s1 < · · · < sm ≤ S and 0 < t1 < · · · < tn ≤ T , the distribution of a finite-

dimensional projection onto Rmn with component projections given by {δsi,tj) : 1 ≤ i ≤

m, 1 ≤ j ≤ n} (the generalized Yeh-Wiener kernel) is given by

Wm,n(u, s, t) =

(
m∏
i=1

n∏
j=1

2π∆i∆jb(s, t)

)−1
2

exp

(
−1

2

m∑
i=1

n∑
j=1

(∆i∆j(u− a(s, t)))2

∆i∆jb(s, t)

)
, (4.1)

where ∆i∆ju = ui,j − ui−1,j − ui,j−1 + ui−1,j−1 and ui,0 = u0,j = 0 for all i, j ≥ 0.

Theorem 33 (Tame Functionals). Let 0 < s1 < · · · < sm ≤ S and 0 < t1 < · · · < tn ≤ T

and let f : Rmn → C and F : Ca,b(Q) → C be defined by F (x) = f(x(s1, t1), . . . , x(sm, tn)).

Then F is measurable if and only if f is Lebesgue measurable, and in this case,

∫
Ca,b[Q]

F (x)m(dx)
∗
=

∫
Rmn

f(u1,1, . . . um,n))Wm,n(u, s, t)du, (4.2)
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where the equality (*) is in the sense that if one of the integrals exists then the other exists

with equality.

Proof. Let φi,j = χ[si−1,si]×[tj−1,tj ](u, v). An easy calculation shows that

x(sk, tl) =
∑

0≤i≤k
0≤j≤l

∆i∆jx(s, t).

for any (sk, tl). It is also not hard to see that

∆i∆jx(s, t) = Iφi,j(x) =

∫
Q

χ[si−1,si]×[tj−1,tj ](u, v)dx(u, v).

Thus we have

F (x) = f(x(s1, t1), . . . , x(sm, tn)) = f

Iφ1,1(x), . . . ,
∑

0≤i≤k
0≤j≤l

Iφi,j(x), . . . ,
∑

0≤i≤m
0≤j≤n

Iφi,j(x)

 .

As φi,j ∈ BV (Q), we use Lemma 17 to compute

∫
Ca,b(Q)

Iφi,j(x)µ(dx) = Iφi,j(a) = ∆i∆ja(s, t),

and also observe that

∫
Ca,b(Q)

(Iφi,j(x)− Iφi,j(a)) (Iφl,m(x)− Iφl,m(a)) m(dx)

=

∫
Q

φi,j(u, v)φl,m(u, v)db(u, v)

=


∆i∆jb(s, t) if i = l, j = m

0 otherwise.
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From this, we see that the covariance matrix M for the collection {φi,j} is a diagonal matrix

whose nonzero entries are ∆i∆jb(s, t). Now we can apply Theorem 32 to complete the

proof.

We will be concerned with integrating functionals defined in terms of certain paths in

Q. We will confine our discussion to paths φ : [0, S] → Q for which φ(τ) = (φ1(τ), φ2(τ))

satisfies the condition that its component functions φ1 and φ2 are each piecewise continuously

differentiable. We will say that φ is an increasing path in Q if φ′ · φ′ > 0 on [0, S] and

φ(τ1) ≤ φ(τ2) whenever τ1 ≤ τ2.

4.1 Preliminaries

Our first theorem in this section establishes a special case of the tame functionals theorem in

the case that one defines the functional in terms of a sequence of points lying on an increasing

path.

Theorem 34. Let 0 = s0 < s1 ≤ · · · ≤ sn ≤ S and 0 = t0 < t1 ≤ · · · ≤ tn ≤ T

and let f : Rn → C be Lebesgue measurable. If F : Ca,b(Q) → C is defined by F (x) =

f(x(s1, ti)), x(s2, t2), . . . , x(xn, tn)), then F is µ-measurable and

∫
Ca,b(Q)

F (x)m(dx)
∗
=

(
n∏
j=1

2π(b(sj, tj)− b(sj−1, tj−1)

)−1
2 ∫

Rn
f(u1, . . . , un) (4.3)

exp

(
−1

2

n∑
j=1

(uj − a(sj, tj)− uj−1 + a(sj−1, tj−1))2

b(sj, tj)− b(sj−1, tj−1)

)
du1 · · · dun,

where the equality (
∗
=) is in the sense that if one of the integrals exists then the other exists

with equality.
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Proof. The proof is by induction on n. The theorem is clearly true for n = 1, for by (4.2),

∫
Ca,b(Q)

f(x(s1, t1))m(dx) =
1√

2πb(s1, t1)

∫
R
f(u1) exp

(
−1

2

1∑
j=1

(uj − a(sj, tj))
2

b(sj, tj)− b(sj−1, tj−1)

)
du1,

and thus (4.3) holds.

Assume that the theorem holds for n = k ≥ 1. Then for n = k + 1, we have

∫
Ca,b(Q)

f(x(s1, t1), . . . , x(sn, tn))µ(dx)

=

(
k+1∏
i=1

k+1∏
j=1

2π∆i∆jb(s, t)

)−1
2 ∫

R(k+1)2
f(u1,1, . . . , uk+1,k+1) (4.4)

exp

(
−1

2

k+1∑
i=1

k+1∑
j=1

(∆i∆j(u− a(s, t)))2

∆i∆jb(s, t)

)
du1 · · · dun.

Notice that for j = 1, . . . , k the variables uk+1,j and uj,k+1 appear in (4.4) only in the

kernel as the functional F (x) does not depend on the values of x at these points. Also

observe that b(sk+1, t1) − b(sk, t1) = ∆k+1∆1b(s, t), b(sk+1, t2) − b(sk, t2) = ∆k+1∆2b(s, t) +

∆k+1∆1b(s, t), and eventually b(sk+1, tk) − b(sk, tk) = ∆k+1∆kb(s, t) + · · · + ∆k+1∆1b(s, t),

and also that

uk+1,1 − a(sk+1, t1)− uk,1 + a(sk, t1) = ∆k+1∆1(u− a(s, t)),

uk+1,2 − a(sk+1, t2)− uk,2 + a(sk, t2) = ∆k+1∆2(u− a(s, t)) + ∆k+1∆1(u− a(s, t)),

...

uk+1,k − a(sk+1, tk)− uk,k + a(sk, tk) = ∆k+1∆k(u− a(s, t)) + cldots+ ∆k+1∆1(u− a(s, t)).

Applying Proposition 1 (the Chapman-Kolmogorov equation) 2k − 2 times to the right
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side of (4.4) will yield

(
k∏
i=1

k∏
j=1

2π∆i∆jb(s, t)

)−1
2 ∫

Rk2+1

f(u1,1, . . . , uk,k) exp

(
−1

2

k∑
i=1

k∑
j=1

(∆i∆j(u− a(s, t)))2

∆i∆jb(s, t)

)
1√

2π∆k+1∆k+1b(s, t)

1√
2π(b(sk, tk+1)− b(sk, tk)))

1√
2π(b(sk, tk+1)− b(sk, tk))

(4.5)∫
R2

exp

(
−(∆k+1∆k+1(u− a(a, t)))2

2∆k+1∆k+1b(s, t)

)
exp

(
−(uk+1,k − a(sk+1, tk)− uk,k + a(sk, tk))

2

b(sk+1, tk)− b(sk, tk)

)

exp

(
−(uk,k+1 − a(sk, tk+1)− uk,k + a(sk, tk))

2

b(sk, tk+1)− b(sk, tk)

)
duk+1,kduk,k+1duk+1,k+1duk,k . . . du1,1

Now notice that

∆k+1∆k+1(u− a(s, t))

= uk+1,k+1 − a(sk+1, tk+1)− uk+1,k + a(sk+1, tk)− uk,k+1 + a(sk, tk+1) + uk,k − a(sk, tk)

= [(uk+1,k+1 − a(sk+1, tk+1))− (uk,k − a(sk, tk))]

− [(uk,k+1 − a(sk, tk+1))− (uk,k − a(sk, tk))]− [(uk+1,k − a(sk+1, tk))− (uk,k − a(sk, tk))] ,

and also that

∆k+1∆k+1b(s, t) = b(sk+1, tk+1)− b(sk, tk+1)− b(sk+1, tk) + b(sk, tk)

= [b(sk+1, tk+1)− b(sk, tk)]− [b(sk, tk+1)− b(sk, tk)]− [b(sk+1, tk)− b(sk, tk)] ,
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and apply the Chapman-Kolmogorov equation twice to the inner double integral in (4.5),

1√
2π∆k+1∆k+1b(s, t)

1√
2π(b(sk, tk+1)− b(sk, tk))

1√
2π(b(sk, tk+1)− b(sk, tk))∫

R2

exp

(
−(∆k+1∆k+1(u− a(a, t)))2

2∆k+1∆k+1b(s, t)

)
exp

(
−(uk+1,k − a(sk+1, tk)− uk,k + a(sk, tk))

2

b(sk+1, tk)− b(sk, tk)

)
exp

(
−(uk,k+1 − a(sk, tk+1)− uk,k + a(sk, tk))

2

b(sk, tk+1)− b(sk, tk)

)
duk+1,kduk,k+1,

which yields

(
1

2π(b(sk+1, tk+1)− b(sk, tk))

)1
2

exp

(
−(uk+1,k+1 − a(sk+1, tk+1)− uk,k + a(sk, tk))

2

2(b(sk+1, tk+1)− b(sk, tk))

)

Thus (4.4) becomes

∫
Ca,b(Q)

f(x(s1, t1), . . . , x(sn, tn))m(dx)

=

(
k∏
i=1

k∏
j=1

2π∆i∆jb(s, t)

)−1
2 (

1

2π(b(sk+1, tk+1)− b(sk, tk))

)1
2
∫

Rk2{∫
R
f(u1,1, . . . , uk+1,k+1) exp

(
−(uk+1,k+1 − a(sk+1, tk+1)− uk,k + a(sk, tk))

2

2(b(sk+1, tk+1)− b(sk, tk))

)
duk+1,k+1

}
exp

(
−1

2

k∑
i=1

k∑
j=1

(∆i∆j(u− a(s, t)))2

∆i∆jb(s, t)

)
k∏
i=1
j=1

dui,j. (4.6)

Define a function g : Rk2 → C so that g(u1,1, . . . , uk,k) is equal to

∫
R
f(u1,1, . . . , uk+1,k+1) exp

(
−(uk+1,k+1 − a(sk+1, tk+1)− uk,k + a(sk, tk))

2

2(b(sk+1, tk+1)− b(sk, tk))

)
duk+1,k+1

(4.7)
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and define a tame functional G(x) : Ca,b(Q)→ R by

G(x) = g(x(s1, t1), . . . , x(sk, tk)). (4.8)

Combine (4.6) and (4.8) to obtain

∫
Ca,b(Q)

f(x(s1, t1), . . . , x(sn, tn))m(dx)

=

(
k∏
i=1

k∏
j=1

2π∆i∆jb(s, t)

)−1
2 ∫

Rk2
g(u1,1, . . . , uk,k)

exp

(
−1

2

k∑
i=1

k∑
j=1

(∆i∆j(u− a(s, t)))2

∆i∆jb(s, t)

)
k∏
i=1
j=1

dui,j (4.9)

=

∫
Ca,b(Q)

G(x)m(dx).

We now apply the induction hypothesis to the functional G. Put uk+1,k+1 = uk+1 and

uk,k = uk in equation (4.7) and then using (4.9) we can obtain

∫
Ca,b(Q)

f(x(s1, t1), . . . , x(sn, tn))m(dx)

=

(
k∏
j=1

2π(b(sj, tj)− b(sj−1, tj−1))

)−1
2 ∫

Rk
g(u1, . . . , uk)

exp

(
−1

2

k∑
j=1

(uj − a(sj, tj)− uj−1 + a(sj−1, tj−1))2

b(sj, tj)− b(sj−1, tj−1)

)
duk · · · du1 (4.10)

=

(
k+1∏
j=1

2π(b(sj, tj)− b(sj−1, tj−1))

)−1
2 ∫

Rk+1

f(u1, . . . , uk+1)

exp

(
−1

2

k+1∑
j=1

(uj − a(sj, tj)− uj−1 + a(sj−1, tj−1))2

b(sj, tj)− b(sj−1, tj−1)

)
duk+1 · · · du1,

and so for n = k + 1, equation (4.3) holds by induction.
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As usual, the order of assumptions in the previous theorem, where the Lebesgue measura-

bility of f is assumed and the µ-measurability of F is a conclusion, is not actually necessary.

Per Section 3.5, the hypothesis of measurability can be either that F is µ-measurable on

Ca,b(Q) or that f is Lebesgue measurable, and the measurability of one of these will imply

the measurability of the other.

4.2 One-line Theorems

Now we are prepared to investigate formulas for the integration of functionals depending

only on the values of x on certain well-behaved paths in Q. The following theorem allows

reduction of certain integrals over Ca,b(Q) to integrals over an appropriately chosen space

Cã,b̃[0, S].

Theorem 35. Let φ : [0, S]→ Q be an increasing path. Let aφ(τ) = a(φ(τ))− a(φ(0)) and

bφ(τ) = b(φ(τ))− b(φ(0)), and let mφ be the Gaussian measure on C0[0, S] subordinate to aφ

and bφ. If F (x) = f(x(φ(·))) is a measurable functional on Ca,b(Q), then

∫
Ca,b(Q)

F (x)m(dx)
∗
=

∫
Caφ,bφ [0,S]

f(w)mφ(dw), (4.11)

where the equality (
∗
=) is in the sense that if one of the integrals exists then the other exists

with equality.

Proof. Let 0 = τ0 < τ1 < · · · < τj < · · · < τn ≤ S and let I = {x ∈ Ca,b(Q) : αj < x(φ(τj)) <

βj}and J = {w ∈ Caφ,bφ [0, S] : αj < w(τj) < βj}. Note that by the conditions on γ we have



112

φ1(0) ≤ φ1(τ1) ≤ · · · ≤ φ1(τn) and φ2(0) ≤ φ2(τ1) ≤ · · · ≤ φ2(τn). Then by Theorem 34,

m(I) =

∫
Ca,b(Q)

χI(x)(dx)

=

(
n∏
j=1

2π(b(φ(τj))− b(φ(τj−1)))

)−1
2

∫
Rn

exp

(
−1

2

n∑
j=1

(uj − a(φ(τj))− uj−1 + a(φ(τj−1)))2

b(φ(τj))− b(φ(τj−1))

)
dun · · · du1

=

(
n∏
j=1

2π(bφ(τj)− bφ(τj−1))

)−1
2

∫
Rn

exp

(
−1

2

n∑
j=1

(uj − aφ(τj)− uj−1 + aφ(τj−1))2

bφ(τj)− bφ(τj−1)

)
dun · · · du1

=

∫
Caφ,bφ [0,S]

χJ(y)mφ(dy)

= mφ(J).

Thus the theorem is true for characteristic functions of sets of the form {x ∈ Ca,b(Q) :

αj < x(φ(τj)) < βj}. The general theorem follows by taking the function f to successively

be the characteristic function of a Borel set, and then a simple function. Then by monotone

convergence the theorem holds for positive functions, and hence for general functions by

taking positive and negative and real and imaginary parts.

As a corollary to Theorem 35 we have the following one-line theorem of Cameron and

Storvick from [8].

Corollary 15. Let 0 < β ≤ T and let f(·) be a real or complex valued functional defined on

C0[0, S] such that f(
√
βw) is a Wiener measurable functional on C0[0, S]. Then f(x(·, β))
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is a Yeh-Wiener measurable functional of x on C0(Q) and

∫
C0(Q)

f(x(·, β))(dx)
∗
=

∫
C0[0,S]

f(
√
β w)w(dw), (4.12)

where the equality (
∗
=) is in the sense that if one of the integrals exists then the other exists

with equality.

Proof. We take φ : [0, S]→ Q to be γ(τ) = (τ, β) and note that a(s, t) = 0 and b(s, t) = st.

Apply Theorem 35 to any tame functional F (x) = f(x(s1, β), . . . , x(sn, β)) to obtain

∫
C0(Q)

F (x)m(dx)

=

(
n∏
j=1

2π(βsj − βsj−1)

)−1
2 ∫

Rn
f(u1, . . . , un) exp

(
−1

2

n∑
j=1

(uj − uj−1)2

βsj − βsj−1

)
du

=

(
n∏
j=1

2π(sj − sj−1)

)−1
2 ∫

Rn
f(
√
β w1, . . . ,

√
β wn) exp

(
−1

2

n∑
j=1

(wj − wj−1)2

sj − sj−1

)
dw

=

∫
C0[0,S]

f(
√
β y(s1), . . . ,

√
β y(sn))w(dw).

The theorem holds in the general case by the same argument used to finish the proof of

Theorem 35.

4.3 n-line Theorem

Using Theorem 35, we can extend the n-line theorem of Cameron and Storvick from [8].

Theorem 36. Let 0 < β1 < · · · < βn ≤ T and let F (x) = f(x(·, β1), . . . , x(·, βn)) be µ-

measurable. Put a1(s) = a(s, β1) and ak(s) = a(s, βk) − a(s, βk−1) and put b1(s) = b(s, β1)

and bk(s) = b(s, βk) − b(s, βk−1) for k = 2, . . . , n. Let m1, . . . ,mn be Gaussian measures on
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C0[0, S], each subordinate to the corresponding ak and bk. Then

∫
Ca,b(Q)

F (x)m(dx) (4.13)

∗
=

∫
Can,bn [0,S]

. . .

∫
Ca1,b1 [0,S]

f(y1, y1 + y2, · · · , y1 + y2 + · · ·+ yn)m1(dy1) · · ·mn(dyn),

where the equality (
∗
=) is in the sense that if one of the integrals exists then the other exists

with equality.

Proof. Let 0 = s0 < s1 < . . . < sm ≤ S and tk = βk for k = 1, . . . , n and let pj,k < qj,k for all

j = 1, . . .m and k = 1, . . . , n. Define

Ij = {x ∈ Ca,b(Q) : pj,k < x(sj, βk) ≤ qj,k for k = 1, . . . , n}, (4.14)

Ej = {(uj,1, . . . , uj,n) ∈ Rn : pj,k < uj,k ≤ qj,k for k = 1, . . . , n}, (4.15)

Jj = {(y1, . . . , yn) ∈ ×nk=1Cak,bk [0, S] : pj,k <
k∑
l=1

yl(sj) ≤ qj,k for k = 1, . . . , n}. (4.16)

Observe that the measurability of Ej in Rn assures the measurability of Ij and Jj in their

respective spaces. Moreover, we note that for a cylinder set I(p1,1, . . . , pm,n, q1,1, . . . , qm,n) ⊆

Ca,b(Q) determined solely by the values of x(·, ·) at the points (sj, βk) for j = 1, . . . ,m and

k = 1, . . . , n, we have

I(p1,1, . . . , pm,n, q1,1, . . . , qm,n)

= {x ∈ Ca,b(Q) : pj,k < x(sj, βk) ≤ qj,k for j = 1, . . . ,m; k = 1, . . . , n}

=
m⋂
j=1

Ij.
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We first consider the case where

F (x) = χI(x) =
m∏
j=1

χIj(x) =
m∏
j=1

χEj(x(·, β1), . . . , x(·, βn)).

By Theorem 33,

∫
Ca,b(Q)

F (x)m(dx) =

∫
Ca,b(Q)

m∏
j=1

χEj(x(sj, β1), . . . , x(sj, βn))m(dx)

=

(
n∏
k=1

m∏
j=1

2π∆k∆jb(s, β)

)−1
2 ∫

Rmn

m∏
j=1

χEj(uj,1, . . . , uj,n) (4.17)

n∏
k=1

exp

(
−1

2

m∑
j=1

(∆k∆j(u− a(s, t)))2

∆k∆jb(s, t)

)
du1,1 · · · dum,n.

Note that

∆k∆j(u− a(s, t))

= uj,k − uj,k−1 − a(sj, βk) + a(sj, βk−1)− uj−1,k + uj−1,k−1 + a(sj−1, βk)− a(sj−1, βk−1)

= [uj,k − uj,k−1]− [a(sj, βk)− a(sj, βk−1)]− [uj−1,k − uj−1,k−1] (4.18)

+ [a(sj−1, βk)− a(sj−1, βk−1)],

and also that

∆k∆jb(s, t) = b(sj, βk)− b(sj−1, βk)− b(sj, βk−1) + b(sj−1, βk−1)

= [b(sj, βk)− b(sj, βk−1)]− [b(sj, βk)− b(sj−1, βk−1)]. (4.19)

Take b1(·) = b(·, β1), bk(·) = b(·, βk) − b(·, βk−1), a1(·) = a(·, β1), and a(·) = b(·, βk) −
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b(·, βk−1) for k = 2, . . . , n as in the statement of the theorem. Put

vj,k = uj,k − uj,k−1, (4.20)

and note that dvj,k = duj,k under this change of variables, and that

uj,k = vj,k + uj,k−1 = vj,k + vj,k−1 + · · ·+ vj,1 (4.21)

for 1 ≤ k ≤ n. Substitute (4.18), (4.19), (4.20), and (4.21) in (4.17) to obtain

n∏
k=1

(
m∏
j=1

2π∆jbk(s)

)−1
2 ∫

Rmn

m∏
j=1

χEj(vj,1, vj,1 + vj,2, . . . , vj,1 + · · ·+ vj,n)

n∏
k=1

exp

(
−1

2

m∑
j=1

(∆j(vj − aj(s))− vj−1 + aj−1(s))2

∆jbk(s)

)
dv1,1 · · · dvm,n

=

∫
Ca1,b1 [0,S]

· · ·
∫

Can,bn [0,S]

m∏
j=1

χEj(y1(sj), . . . , y1(sj) + · · ·+ yn(sj))mn(dyn) · · ·m1(dy1)

=

∫
Ca1,b1 [0,S]

· · ·
∫

Can,bn [0,S]

m∏
j=1

χEj(y1(·), . . . , y1(·) + · · ·+ yn(·))mn(dyn) · · ·m1(dy1).

Thus the theorem is true for characteristic functions of cylinder sets dependent only on

the value of x(·, ·) at the points {(sj, βk) for j = 1, . . . ,m; k = 1, . . . , n}. In the usual

manner we can prove the theorem for characteristic functions of measurable sets depending

only on the values of x(·, βk) for k = 1, . . . n. The proof is then completed in the same fashion

as the proof of Theorem 35.
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4.4 Applications and Examples

For our first example, we demonstrate the use of Theorem 35. Let Q = [0, S]2, a(s, t) = st,

b(s, t) = s2t2, and F (x) = exp
(∫ S

0
x(s, s)ds

)
. Note that φ : [0, S] → Q defined by φ(s) =

(s, s) is increasing. Then

∫
Ca,b(Q)

F (x)m(dx) =

∫
Ca1,b1 [0,S]

exp

(∫ S

0

y(s)ds

)
mφ(dy), (4.22)

where a1(s) = a(φ(s))− a(φ(0)) = a(s, s)− a(0, 0) = s2 and b1(s) = b(φ(s))− b(φ(0)) = s4.

Integrating by parts we obtain that

∫ S

0

y(s)ds = Sy(S)−
∫ S

0

sdy(s) = 〈S, y〉 − 〈s, y〉 = 〈S − s, y〉,

for m a.e. y ∈ Caφ,bφ [0, S], where in this case we will let 〈f, y〉 denote the Paley-Wiener-

Zygmund integral of the function f ∈ L2
aφ,bφ

[0, S]. It is easy to compute the values A =∫ S
0

(S − s)daφ(s) = 1
3
S3 and B =

∫ S
0

(S − s)2dbφ(s) = 1
15
S6. We now make use of Theorem

32 to compute the right-hand side of (4.22); thus

∫
Ca1,b1 [0,S]

exp

(∫ S

0

y(s)ds

)
mφ(dy)

=
1√

2πB

∫ ∞
−∞

exp(u) exp

(
−(u− A)2

2B

)
du

=
1√

2πB

∫ ∞
−∞

exp

(
− 1

2B
[u2 − 2Au− 2Bu+ A2]

)
du

= exp

(
−A

2

2B

)
exp

(
(A+B)2

2B

)∫ ∞
−∞

exp

(
− [u− (A+B)]2

2B

)
du

= exp

(
2AB +B2

2B

)
= exp

(
1

3
S3 +

1

30
S6

)
.
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Next follows an example of the use of Theorem 36. Let a(s, t) = b(s, t) = st on [0, S] ×

[0, 2T ] and put F (x) =
∫ S

0
x(s, T )x(s, 2T )ds. We compute the value of

∫
Ca,b(Q)

F (x)µ(dx)

using the theorem. We have a1(s) = b1(s) = sT and a2(s) = b2(s) = 2sT − sT = sT , and

thus

∫
Ca,b(Q)

F (x)m(dx) =

∫
Ca2,b2 [0,S]

∫
Ca1,b1 [0,S]

∫ S

0

y1(s)(y1(s) + y2(s))dsm1(dy1)m2(dy2)

=

∫ S

0

∫
Ca2,b2 [0,S]

∫
Ca1,b1 [0,S]

(
y2

1(s) + y1(s)y2(s)
)
m1(dy1)m2(dy2)ds

=

∫ S

0

∫
Ca2,b2 [0,S]

(
sT + s2T 2 + sTy2(s)

)
m2(dy2)ds

=

∫ S

0

(
sT + s2T 2 + s2T 2

)
ds

=
1

2
S2T +

2

3
S3T 2,

where Fubini’s theorem can be used to justify the change in order of integration. In this

example, we can easily complete a similar computation without using Theorem 36 and verify

our result, for

∫
Ca,b(Q)

F (x)m(dx) =

∫
Ca,b(Q)

∫ S

0

x(s, T )x(s, 2T )dsm(dx)

=

∫ S

0

∫
Ca,b(Q)

x(s, T )x(s, 2T )m(dx)ds

=

∫ S

0

(
sT + 2s2T 2

)
ds

=
1

2
S2T +

2

3
S3T 2.
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Chapter 5

Reflection Principles

5.1 Introduction

Let C0[0, T ] denote the single parameter Wiener space; this is the space of R-valued con-

tinuous functions on [0, T ] with x(0) = 0. Let M denote the class of Wiener measurable

subsets of C0[0, T ] and let w denote Wiener measure. Then (C0[0, T ],M,w) is a complete

measure space and we denote the Wiener integral of a Wiener-integrable functional F by∫
C0[0,T ]

F (x)w(dx). Note that the point evaluation functional 〈δt, x〉 = x(t) defines a stochas-

tic process with parameter t having mean

E[x(t)] =

∫
C0[0,T ]

x(t)w(dx) = 0

and covariance

E[x(s)x(t)] =

∫
C0[0,T ]

x(s)x(t)w(dx) = min(s, t);

observe that this is the standard Brownian motion process.

It is well-known that the Wiener space C0[0, T ] exhibits a reflection principle about its
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mean; that is, for all c ≥ 0,

w

{
x ∈ C0[0, T ] : sup

[0,T ]

x(t) ≥ c

}
= 2w {x ∈ C0[0, T ] : x(T ) ≥ c} . (5.1)

Proofs and discussions of this result can be found in [25, 35, 66] and elsewhere; a particularly

good explanation is given in [4].

In Section 2, we show that the generalized function space Ca,b[0, T ] also exhibits a reflec-

tion principle about its mean function a(t); that is, for c ≥ 0,

m

{
x ∈ Ca,b[0, T ] : sup

[0,T ]

[x(t)− a(t)] ≥ c

}
= 2m {x ∈ Ca,b[0, T ] : [x(T )− a(T )] ≥ c} . (5.2)

For Q = [0, S]× [0, T ], let C2(Q) denote the two parameter Wiener space (see [61]); this

is the space of all R-valued continuous functions on Q satisfying x(s, 0) = x(0, t) = 0 for all

(s, t) ∈ Q. In Sections 3 and 4, we consider several ways in which one might formulate the

notion of a reflection principle and then discuss whether any of these formulations actually

holds on this space.

5.2 A reflection principle for the general function

space Ca,b[0, T ]

We turn our attention to the generalized Wiener space. We follow the same formulation as

[11]. Let a and b be functions defined on [0, T ] with a′ ∈ L2[0, T ] and b′ continuous, positive,

and bounded away from 0 on [0, T ]. Observe that a and b are absolutely continuous and b

is strictly increasing on [0, T ], and so one can define a generalized Brownian motion as in

Chapter 3 of [66]. We take m to be the Gaussian measure on C0[0, T ] with finite-dimensional
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distributions having density

(
n∏
j=1

2π[b(tj)− b(tj−1)]

)−1
2

exp

(
−1

2

n∑
j=1

([uj − a(tj)]− [uj−1 − a(tj−1)])2

b(tj)− b(tj−1)

)
.

Observe that with respect to m the coordinate evaluation map 〈δt, x〉 = x(t) is the

generalized Brownian motion process determined by a and b, having mean

E[x(t)] =

∫
Ca,b[0,T ]

x(t)m(dx) = a(t)

and covariance function

r(s, t) =

∫
Ca,b[0,T ]

[x(s)− a(s)][x(t)− a(t)]m(dx) = min{b(s), b(t)}.

For more information about these function spaces, consult [11, 12, 13].

We will also make use of the following lemma from Chapter 3 of [66].

Lemma 21. Let {Xj : j = 1, . . . , n} be an independent set of of symmetrically distributed

random variables on a probability space (Ω,B,P), let S0 = 0, and let Sj = X1 + · · ·+Xj for

j = 1, . . . , n. Then for every ε > 0,

2P[Sn ≥ c] ≥ P
[

max
1≤j≤n

Sj ≥ c

]
≥ 2P [Sn ≥ c+ 2ε]− 2

n∑
j=1

P[Xj ≥ ε]. (5.3)

We are now ready to establish equation (5.2) above, demonstrating that the generalized

Wiener space Ca,b[0, T ] satisfies a reflection principle about its mean function a(t). Our proof

uses ideas from Chapter 3 of [66] as well as from unpublished lecture notes of R.H. Cameron.
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Theorem 37. For all c ≥ 0,

m

{
x : sup

[0,T ]

[x(t)− a(t)] ≥ c

}
= 2m {x : [x(T )− a(T )] ≥ c} . (5.4)

Proof. Let D ⊆ [0, T ] be countable and dense, containing 0 and T , and let Pn = {0 = t0 <

t1 < · · · < tn = T} denote a nested sequence of partitions of [0, T ] with each tj ∈ D and

||Pn|| → 0 as n → ∞. Note that the process Xt = x(t) is continuous and separable, and

thus for all c > 0 and ε > 0,

m

{
x : sup

[0,T ]

[x(t)− a(t)] ≥ c

}
= m

{
x : sup

D
[x(t)− a(t)] ≥ c

}

≤ m

(
∞⋃
n=1

{
x : max

1≤k≤n+1
[x(tk)− a(tk)] ≥ c− ε

})

= lim
n→∞

m

{
x : max

1≤k≤n+1
[x(tk)− a(tk)] ≥ c− ε

}
≤ 2m {x : [x(T )− a(T )] ≥ c− ε} ,

where the last inequality is due to Lemma 21. Taking the limit as ε→ 0 yields

m

{
x : sup

[0,T ]

[x(t)− a(t)] ≥ c

}
≤ 2m {x : x(T )− a(T ) ≥ c} .

For the other inequality, we specify partitions Pn = {0 = t0 < t1 < · · · < tn = T} with

tk = kT
n

. Then for any c > 0 and ε > 0 we again use Lemma 21 to obtain

m

{
x : sup

[0,T ]

[x(t)− a(t)] ≥ c

}
≥ m

{
x : max

1≤k≤n
[x(tk)− a(tk)] ≥ c

}
≥ 2m {x : [x(T )− a(T )] ≥ c+ 2ε} (5.5)

− 2
n∑
k=1

m {x : [x(tk)− a(tk)− x(tk−1) + a(tk−1)] ≥ ε} .
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We estimate

1√
2πs

∫ ∞
ε

exp

(
−u

2

2s

)
du ≤ 1√

2πs

∫ ∞
ε

exp
(
−εu

2s

)
du (5.6)

=

√
2s

ε
√
π

exp

(
− ε

2

2s

)
,

and (noting that b′ is positive and bounded) that

max
1≤k≤n

[b(tk)− b(tk−1)] = max
1≤k≤n

∫ tk

tk−1

b′(s)ds

≤ max
1≤k≤n

(
[tk − tk−1]

∫ tk

tk−1

(b′(s))
2

ds

)1
2

(5.7)

≤ ||b
′||2
√
T√

n
.

Recall that x(tk) − a(tk) − x(tk−1) + a(tk−1) is distributed normally with mean 0 and

variance b(tk)− b(tk−1), and then using our estimates in (5.6) and (5.7), we find that

lim
n→∞

n∑
k=1

m {x : [x(tk)− a(tk)− x(tk−1) + a(tk−1)] ≥ ε}

= lim
n→∞

n∑
k=1

1√
2π[b(tk)− b(tk−1)]

∫ ∞
ε

exp

(
− u2

b(tk)− b(tk−1)

)
du

≤ lim
n→∞

n∑
k=1

√
2[b(tk)− b(tk−1)]

ε
√
π

exp

(
− ε2

2[b(tk)− b(tk−1)]

)

≤ lim
n→∞

n


√

2 ||b′||2
√
T

ε
√
πn

exp

(
− ε2

2 ||b′||2
√
T

)
≤ lim

n→∞

n∑
k=1

√
2n ||b′||2

√
T

ε
√
π

exp

(
−

√
nε2

2 ||b′||2
√
T

)
.

Now use this estimate and let n→∞ and then ε→ 0 in (5.5).
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The previous theorem has several useful corollaries.

Corollary 16. Let E be a Lebesgue measurable subset of R. Then

m

{
x : sup

[0,T ]

[x(t)− a(t)] ∈ E

}
= 2m {x : [x(T )− a(T )] ∈ E ∩ [0,∞)} (5.8)

and

∫
Ca,b[0,T ]

χE

(
sup
[0,T ]

[x(t)− a(t)]

)
m(dx) =

2√
2πb(T )

∫ ∞
0

χE(u) exp

(
− u2

2b(T )

)
du. (5.9)

Proof. The proof is a standard exercise in measure theory. Begin with E an open interval

and the result follows easily. The case for an open set E follows by decomposing E into a

countable union of disjoint intervals. From this, demonstrate that (5.8) holds for Gδ and

then null sets. Finally use this to demonstrate the conclusion for Lebesgue measurable sets.

Then (5.9) follows immediately from (5.8).

Corollary 17. Let f : R → C be Lebesgue measurable with f = 0 on (−∞, 0) and put

F (x) = f
(
sup[0,T ][x(t)− a(t)]

)
. Then F is m-measurable and

∫
Ca,b[0,T ]

F (x)m(dx) =

∫
Ca,b[0,T ]

f

(
sup
[0,T ]

[x(t)− a(t)]

)
m(dx)

= 2

∫
Ca,b[0,T ]

f (x(T )− a(T )) m(dx) (5.10)

=
2√

2πb(T )

∫ ∞
0

f(u) exp

(
− u2

2b(T )

)
du.

Proof. Begin with the case where f(u) = χE(u) for a measurable set E and apply the previous

corollary to show the desired conclusion. Then successively consider the cases where f is a

measurable simple function, then a nonnegative function; finally take positive and negative

and real and imaginary parts of f .
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Choosing the mean function a(t) to be the zero function, we immediately recover a direct

extension of the reflection principle for ordinary Wiener space, as expected.

Corollary 18. Let m be a generalized Wiener measure on Ca,b[0, T ] with a(t) = 0 on [0, T ].

Then for all c ≥ 0 and t0 ∈ (0, T ],

m

{
x : sup

[0,t0]

x(t) ≥ c

}
= 2m {x : x(t0) ≥ c} . (5.11)

We have some additional useful corollaries, which can be used to yield error estimates

when approximating function space integrals using interpolation by tame functionals. For

examples of the use of these types of results, see [6, 60]. As before, let ||·||S denote the usual

supremum norm.

Corollary 19. If f is Lebesgue measurable and nonnegative on [0,∞), then f (||x− a||S) is

m-measurable and

∫
Ca,b[0,T ]

f (||x− a||S) m(dx) ≤ 4√
2πb(T )

∫ ∞
0

f(u) exp

(
− u2

2b(T )

)
du. (5.12)

Proof. Partition Ca,b[0, T ] into

A =

{
x : sup

[0,T ]

[x(t)− a(t)] ≥ sup
[0,T ]

[a(t)− x(t)]

}
,

and

B =

{
x : sup

[0,T ]

[a(t)− x(t)] > sup
[0,T ]

[x(t)− a(t)]

}
.
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Then we find that

∫
Ca,b[0,T ]

f (||x− a||S) m(dx) =

∫
A

f (||x− a||S) m(dx) +

∫
B

f (||x− a||S) m(dx)

=

∫
A

f

(
sup
[0,T ]

[x(t)− a(t)]

)
m(dx)

+

∫
B

f

(
sup
[0,T ]

[a(t)− x(t)]

)
m(dx)

≤
∫
Ca,b[0,T ]

f

(
sup
[0,T ]

[x(t)− a(t)]

)
m(dx)

+

∫
Ca,b[0,T ]

f

(
sup
[0,T ]

[a(t)− x(t)]

)
m(dx)

=
4√

2πb(T )

∫ ∞
0

f(u) exp

(
− u2

2b(T )

)
du,

where the last equality follows from Corollary 17, the positivity of f , and the symmetry of

the centered normal distribution.

Corollary 20. Let f be Lebesgue measurable and monotonically increasing on [0,∞). Then

2√
2πb(T )

∫ ∞
0

f(u) exp

(
− u2

2b(T )

)
du ≤

∫
Ca,b[0,T ]

f(||x− a||S)m(dx) (5.13)

whenever both sides are defined. Moreover, if f is Lebesgue measurable and monotonically

decreasing the reverse inequality holds whenever both sides are defined.

Proof. Note that

||x− a||S = max

{
sup
[0,T ]

[x(t)− a(t)], sup
[0,T ]

[a(t)− x(t)]

}
,
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Using this fact, the monotonicity of f , and Corollary 17, we have

2√
2πb(T )

∫ ∞
0

f(u) exp

(
− u2

2b(T )

)
du =

∫
Ca,b[0,T ]

f

(
sup
[0,T ]

[x(t)− a(t)]

)
m(dx)

≤
∫
Ca,b[0,T ]

f (||x− a||S) m(dx),

as desired. For decreasing f the inequality clearly reverses.

The final corollary follows immediately from the previous two.

Corollary 21. If f is Lebesgue measurable, nonnegative, and monotonically increasing on

[0,∞), then there exists some M satisfying 2 ≤M ≤ 4 such that

∫
Ca,b[0,T ]

f(||x− a||S)m(dx) =
M√

2πb(T )

∫ ∞
0

f(u) exp

(
− u2

2b(T )

)
du. (5.14)

5.3 Reflection principles for two parameter Wiener

space

Let Q = [0, S]×[0, T ] and ∂Q = {(s, t) ∈ Q : s = 0, S or t = 0, T} be the boundary of Q, and

let C2(Q) denote the space of continuous R-valued functions defined on Q for which x(0, t) =

x(s, 0) = 0. In [61, 62], Yeh constructed a Gaussian measure my on C2(Q) with respect

to which the point evaluation functional δ(s,t) defines a stochastic process with parameter

(s, t) ∈ Q having mean

E[x(s, t)] =

∫
C2(Q)

x(s, t)my(dx) = 0

and covariance

E[x(s, t)x(u, v)] =

∫
C2(Q)

x(s, t)x(u, v)my(dx) = min(s, u) min(t, v).
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Recall that for functions of one variable, the classical notion of a function of bounded

variation is unambiguously defined and very well understood. However, when considering

functions of two (or more) variables, there are many possible definitions for the concept of

bounded variation. See [3, 14, 52] for several such definitions and a considerable amount of

discussion.

In the same way, for multiple parameter Wiener spaces, one can formulate the idea of

a reflection principle in a variety of manners. In this section, we will consider several such

formulations and determine whether the space C2(Q) satisfies each of them.

For ordinary single parameter Wiener space, we note that x(0) = 0 for x ∈ C0[0, T ];

therefore considering again the single parameter reflection principle, we see that

m

{
x : sup

[0,T ]

x(t) ≥ c

}
= 2m {x : x(T ) ≥ c}

= 2m {x : x(T ) ≥ c;x(0) ≥ c}+ 2m {x : x(T ) ≥ c;x(0) < c}

= 2m

{
x : max
{0,T}

x(t) ≥ c

}

for c ≥ 0. From this, we might consider the reflection principle to be a means of expressing

either of the following:

1. a relationship between the behavior of the supremum of the process x(t) on the interval

to the behavior of the process at the endpoint T of the interval, or

2. a relationship between the behavior of the supremum of the process x(t) on the interval

to the behavior of the process on the boundary {0, T} of the interval.

Thus we immediately have two candidate formulations for a reflection principle in the

two parameter setting; we can ask the following corresponding questions:
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1. Is there a constant k1 ≥ 0 so that for every c ≥ 0,

my

{
x : sup

Q
x(s, t) ≥ c

}
= k1 my {x : x(S, T ) ≥ c}? (5.15)

2. Is there a constant k2 ≥ 0 so that for every c ≥ 0,

my

{
x : sup

Q
x(s, t) ≥ c

}
= k2 my

{
x : sup

∂Q
x(s, t) ≥ c

}
? (5.16)

In fact, the answer to both questions is negative, as we will demonstrate below.

Now, we wish to compare my

{
x : supQ x(s, t) ≥ c

}
with either my {x : x(S, T ) ≥ c} or

my

{
x : sup∂Q x(s, t) ≥ c

}
; therefore we define

γ1(c) =
my

{
x : supQ x(s, t) ≥ c

}
my {x : x(S, T ) ≥ c}

(5.17)

and

γ2(c) =
my

{
x : supQ x(s, t) ≥ c

}
my

{
x : sup∂Q x(s, t) ≥ c

} . (5.18)

Observe that both γ1 and γ2 are continuous on [0,∞); moreover it is easy to see that

γ1(0) = 2 and γ2(0) = 1. Also, in [68], Zimmerman shows that γ1(c) ≤ 4 for all c ≥ 0.

First, we show that the first question has a negative answer. For each c ≥ 0, we consider

the following sets:

Ac =

{
x : sup

[0,S]

x(s, T ) ≥ c

}
, (5.19)

Bc =

{
x : sup

Q
x(s, t) ≥ c; sup

[0,S]

x(s, T ) < c

}
, (5.20)
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and

Dc =

{
x : sup

Q
x(s, t) < c

}
. (5.21)

It is clear that Ac, Bc, and Dc are disjoint and that

C2(Q) = Ac ∪Bc ∪Dc, (5.22)

and putting f(c) = my(Ac), g(c) = my(Bc), and h(c) = my(Dc), we observe that

1 = f(c) + g(c) + h(c). (5.23)

We will make use of the following theorem of Cameron and Storvick from [8].

Theorem 38. Let F be a functional defined on C0[0, S] such that F (
√
Tw) is a Wiener mea-

surable functional of w on C0[0, S]. Then F (x(·, T )) is a Yeh-Wiener measurable functional

of x on C2(Q) and

∫
C2(Q)

F (x(·, T ))my(dx) =

∫
C0[0,S]

F (
√
Tw)w(dw), (5.24)

where the existence of either integral implies the existence of the other with equality.

As shown by Skoug in [51], the hypothesis of measurability in the previous theorem can

be assumed either for F (x) on C2(Q) or for F (
√
Tw) on C0[0, S], and the measurability of

one will imply the measurability of the other.

Using this theorem, we demonstrate that, as one would reasonably expect, the space

C2(Q) exhibits a reflection principle when restricted to any horizontal or vertical line in Q.
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Proposition 4. For c ≥ 0,

f(c) = my

{
x : sup

[0,S]

x(s, T ) ≥ c

}

= 2 my {x : x(S, T ) ≥ c} (5.25)

=
2√

2πST

∫ ∞
c

exp

(
− u2

2ST

)
du.

Proof. Using (5.1) and (5.24) above, a computation and an easy change of variable show

that

f(c) =

∫
C2(Q)

χ[c,∞)

(
sup
[0,S]

x(s, T )

)
my(dx)

=

∫
C0[0,S]

χ[c,∞)

(
sup
[0,S]

√
Tw(s)

)
w(dw)

=
2√
2πS

∫ ∞
0

χ[c,∞)

(√
Tu
)

exp

(
− u

2

2S

)
du

=
2√

2πST

∫ ∞
0

χ[c,∞)(u) exp

(
− u2

2ST

)
du

=
2√

2πST

∫ ∞
c

exp

(
− u2

2ST

)
du

= 2my {x : x(S, T ) ≥ c} ,

for each c ≥ 0.

The next lemma follows readily from (5.21), (5.22), (5.23), and (5.25).

Lemma 22.

1. The function f(c) is smooth, strictly decreasing, and concave upward on [0,∞). Fur-

thermore, f(0) = 1, limc→∞ f(c) = 0, and f has a fixed point in (0, 1).
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2. The function h(c) = my(Dc) is continuous and strictly increasing on [0,∞), with h(0) =

0, limc→∞ h(c) = 1, and h(c) = 1− c for some c in (0, 1).

3. The function g(c) = my(Bc) is continuous on [0,∞), with g(0) = 0, limc→∞ g(c) = 0

and f(c) + g(c) = c for some c in (0, 1).

Now, using (5.17), (5.21), (5.23), and (5.25), it follows that

γ1(c) =
2my

{
x : supQ x(s, t) ≥ c

}
my(Ac)

=
2(1− h(c))

f(c)

=
2(f(c) + g(c))

f(c)
(5.26)

= 2 +
2g(c)

f(c)

≥ 2

for each c ≥ 0. Moreover, 2 = γ1(0) ≤ γ1(c) ≤ 4 by of Zimmerman’s result; this and (5.26)

imply that

0 = g(0) ≤ g(c) ≤ f(c) ≤ f(0) = 1 (5.27)

on [0,∞). Now, 2 = γ1(0) = 2 + 2g(c)
f(c)

, so that if γ1 is to be equal to a constant k1 it must be

the case that g is identically zero on [0,∞).

We now show that this cannot be true. For c > 0, put

φ(s, t) =



8c
ST

if 0 ≤ s ≤ S
2
, 0 ≤ t ≤ T

2

− 8c
ST

if S
2
< s ≤ S, 0 ≤ t ≤ T

2

− 8c
ST

if T
2
< t ≤ T, 0 ≤ s ≤ S

2

8c
ST

if S
2
< s ≤ S, T

2
< t ≤ T
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and let

x0(s, t) =

∫ s

0

∫ t

0

φ(u, v)dvdu. (5.28)

Note that x0

(
S
2
, T

2

)
= 2c and x0 = 0 on ∂Q. Denote by B(x0; c

2
) the ball of radius c

2
around

x0 and observe that this ball is contained in the set Bc, whence

my

(
B(x0; c

2
)
)
≤ my(Bc) = g(c). (5.29)

As φ is of bounded variation in the sense of Hardy-Krause (see [3] for explanation), we

apply the Cameron-Martin theorem for C2(Q) as found in [62] to see that

my

(
B(x0; c

2
)
)

=

∫
B(x0,

c
2

)

my(dx)

=

∫
B(0,

c
2

)

exp

(
−1

2
||φ||22 +

∫
Q

φ(s, t)dx(s, t)

)
my(dx)

≥ exp

(
−32c2

ST

)∫
B(0,

c
2

)

exp

(
−36c2

ST

)
my(dx) (5.30)

≥ exp

(
−68c2

ST

)
my

(
B(0, c

2
)
)

> 0,

where we have used the fact that the stochastic integral
∫
Q
φ(s, t)dx(s, t) is equal my-a.e. to

the ordinary Riemann-Stieltjes integral, whence we can integrate to obtain

∫
Q

φ(s, t)dx(s, t) =
8c

ST

[
x(S, T ) + 4x(S

2
, T

2
)− 2x(S, T

2
)− 2x(S

2
, T )
]
,

which we can easily bound from below on B(0, c
2
). Thus by (5.29) we see that g(c) > 0

whenever c > 0, and thus (5.15) cannot hold for any constant k1.

Now we show that the second question must also have a negative answer. In a similar
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fashion as above, put

A′c =

{
x : sup

∂Q
x(s, t) ≥ c

}
, (5.31)

B′c =

{
x : sup

Q
x(s, t) ≥ c; sup

∂Q
x(s, t) < c

}
(5.32)

and

D′c =

{
x : sup

Q
x(s, t) < c

}
. (5.33)

As above, C2(Q) is the disjoint union of these sets. We let F (c) = my(A
′
c), G(c) = my(B

′
c),

and H(c) = my(D
′
c), so that

1 = F (c) +G(c) +H(c). (5.34)

From this, we can write

γ2(c) =
my

{
x : supQ x(s, t) ≥ c

}
my

{
x : sup∂Q x(s, t) ≥ c

}
=

my

{
x : sup∂Q x(s, t) ≥ c

}
+ my

{
x : supQ x(s, t) ≥ c; sup∂Q x(s, t) < c

}
my

{
x : sup∂Q x(s, t) ≥ c

} (5.35)

= 1 +
G(c)

F (c)
.

As above, the fact that γ2(0) = 1 implies that (5.16) holds for a constant k2 = 1 only if

G(c) = 0 for all c. Taking the same x0 as defined in (5.28), we observe that the ball B(x0; c
2
)

is contained in B′c and then using (5.30) we can demonstrate that

0 < my(B
(
x0; c

2
)
)
≤ my(B

′
c) = G(c)

for c > 0, and so (5.16) cannot hold for any constant k2.
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Easily extending results from [43], in [47] we obtain the explicit formula

F (c) = my

{
x : sup

∂Q
x(s, t) ≥ c

}
(5.36)

=
3√

2πST

∫ ∞
c

exp

(
− u2

2ST

)
du−

exp
(

4c2

ST

)
√

2πST

∫ ∞
3c

exp

(
− u2

2ST

)
du.

In the same way as Lemma 22 above, from (5.33), (5.34), and (5.36) we now easily have

the following properties of F , G, and H.

Lemma 23.

1. The function F (c) = my(A
′
c) is smooth and strictly decreasing, with F (0) = 1 and

limc→∞ F (c) = 0, and F has a fixed point in (0, 1).

2. The function H(c) = my(D
′
c) is continuous and strictly increasing on [0,∞), with

H(0) = 0, limc→∞H(c) = 1, and H(c) = 1− c for some c in (0, 1).

3. The function G(c) = my(B
′
c) is continuous on [0,∞) with g(0) = 0, limc→∞G(c) = 0,

and F (c) +G(c) = c for some c in (0, 1).

While we are unable to obtain γ1 and γ2 explicitly for all c, we can say a few things about

their behavior. We collect these additional observations below.

Lemma 24. limc→∞ γ1(c) = 4 and γ1 has a fixed point in the interval (2, 4).

Proof. In [26], for the special case S = T = 1, Goodman showed (see [47] for our setting)

that

lim
c→∞

my

{
x : supQ x(s, t) ≥ c

}
4√

2πST

∫∞
c

exp
(
− u2

2ST

)
du

= 1. (5.37)



136

Also, by (5.23) and (5.26) we see that

my

{
x : supQ x(s, t) ≥ c

}
4√

2πST

∫∞
c

exp
(
− u2

2ST

)
du

=
1− h(c)

2f(c)

=
f(c) + g(c)

2f(c)
(5.38)

=
1

2
+

g(c)

2f(c)
.

From (5.37) and (5.38) we determine that limc→∞
g(c)
f(c)

= 1, and then using (5.26) it is easy

to see that

lim
c→∞

γ1(c) = lim
c→∞

(
2 +

2g(c)

f(c)

)
= 4. (5.39)

The existence of the fixed point now follows immediately from the continuity of γ1 and the

fact that 2 < γ1(2) < γ1(4) < 4.

Along the same line, the next lemma follows directly from [47].

Lemma 25. limc→∞ γ2(c) = 3
2

and γ2 has a fixed point in the interval (1, 3
2
).

We collect our various gleanings about γ1 and γ2 in the following theorem.

Theorem 39. The functions γ1 and γ2 satisfy

my

{
x : sup

Q
x(s, t) ≥ c

}
= γ1(c)my {x : x(S, T ) ≥ c} (5.40)

= γ2(c)my

{
x : sup

∂Q
x(s, t) ≥ c

}

and have the following properties:

1. γ1 and γ2 are smooth functions,

2. limc→∞ γ1(c) = 4 and limc→∞ γ2(c) = 3
2
,
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3. for −∞ < c ≤ 0, γ2(c) = 1 and

γ1(c) =

√
2πST∫∞

c
exp

(
− u2

2ST

)
du
.

Proof. The smoothness of γ1 and γ2 follows from (5.23), (5.26), (5.34), (5.35), the smooth-

ness of f and F , and the remarkable result from [40] by Nualart showing that the cumu-

lative distribution of the random variable supQ x(s, t) is smooth, i.e. the function M(c) =

my

{
x : supQ x(s, t) ≥ c

}
is smooth.

The second property follows directly from Lemmas 24 and 25. We obtain the third

property by recalling that γ1(0) = 2 and γ2(0) = 1, that

my {x : x(S, T ) ≥ c} =
1√

2πST

∫ ∞
c

exp

(
− u2

2ST

)
du,

and that my

{
x : supQ x(s, t) ≥ c

}
= my

{
x : sup∂Q x(s, t) ≥ c

}
= 1 for c < 0.

5.4 A positive reflection result for C2(Q)

In light of (5.25), we see a way in which to formulate a reflection principle which will hold

for C2(Q). We have a partial result in Proposition 4, but we can quickly extend this in a

very natural manner.

Let ≤ be a partial order on Q such that (s1, t1) ≤ (s2, t2) if and only if s1 ≤ s2 and

t1 ≤ t2. We will say that a differentiable function φ : [0, S]→ Q is a smooth increasing path

in Q if it satisfies φ(s1) ≤ φ(s2) whenever s1 ≤ s2, and 0 < ||φ′(s)|| < M for some positive

M (here φ′ is the derivative vector for φ and ||·|| is the Euclidean norm on Q).

We begin with a very basic lemma.

Lemma 26. Let 0 ≤ s1 ≤ s2 ≤ s3 ≤ s4 ≤ S and 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 ≤ T with each
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(si, ti) distinct for i = 1, 2, 3, 4. Then the random variables X = x(s4, t4) − x(s3, t3) and

X ′ = x(s2, t2)− x(s1, t1) are independent and symmetrically distributed.

Proof. The proof of independence is essentially a calculation, as

E[XX ′] =

∫
C2(Q)

[x(s4, t4)− x(s3, t3)][x(s2, t2)− x(s1, t1)]my(dx)

= min(s4, s2) min(t4, t2)− · · ·+ min(s3, s1) min(t3, t1)

= s2t2 − s1t1 − s2t2 + s1t1

= 0.

Now, the fact that X and X ′ are Gaussian (being the sum of Gaussian random variables),

independence and symmetry follow immediately.

Using this and Lemma 21 we can prove the following theorem in essentially the same

manner as Theorem 37. It establishes a reflection principle on C2(Q) when our attention is

restricted to the behavior of the space only over an increasing path φ in Q.

Theorem 40. Let φ : [0, S] → Q be a smooth increasing path in Q with φ(0) = (0, t0) or

φ(0) = (s0, 0) and let c ≥ 0. Then

my

{
x : sup

[0,S]

x(φ(s)) ≥ c

}
= 2my {x : x(φ(S)) ≥ c} . (5.41)

Proof. Note that the condition on φ(0) guarantees that x(φ(0)) = 0 and the fact that

0 < ||φ′|| both prevents the potential pathologies of a constant path, and combined with

the increasing property of φ ensures that for any s1 < s2 < s3 < s4, the points {φ(si)} will

satisfy the hypotheses of Lemma 26.

Now we can use the independence and symmetry guaranteed by Lemma 26 to assure

that for X0 = 0 and Xk = x(sk) − x(sk−1) satisfy the hypotheses of Lemma 21. Then
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we essentially mimic the proof of Theorem 37, taking a to be the zero function and taking

b(s) = φ1(s)φ2(s), where φ1 and φ2 are the coordinate functions of φ.

The only point of concern might be the estimate in (5.7). However, note that b′(s) =

φ1(s)φ′2(s) + φ2(s)φ′1(s) and the condition that ||φ′|| ≤ M is certainly sufficient to bound

||b′||2, so this poses no difficulties.

Note that the theorem certainly holds for any vertical or horizontal path in Q, as Propo-

sition 4 would indicate. The restrictions on the path φ above are fairly strong and can

certainly be relaxed, as the following corollary shows.

Corollary 22. Let φ : [0, S] → Q be any continuous function with φ(0) = (0, t0) or φ(0) =

(s0, 0) and let c ≥ 0. Then

my

{
x : sup

[0,S]

x(φ(s)) ≥ c

}
= 2my {x : x(φ(S)) ≥ c} . (5.42)

Proof. Observe that there is a sequence of increasing paths {φn} ⊆ C1([0, S], Q) converging

uniformly to φ. Now, note that

lim
n→∞

χ{x:sup[0,S] x(φn(s))≥c}(x) = χ{x:sup[0,S] x(φ(s))≥c}(x)

and also that

lim
n→∞

χ{x:x(φn(S))≥c}(x) = χ{x:x(φ(S))≥c}(x)

pointwise in x. From this we conclude that

my

{
x : sup

[0,S]

x(φ(s)) ≥ c

}
= lim

n→∞
my

{
x : sup

[0,S]

x(φn(s)) ≥ c

}

= lim
n→∞

2my {x : x(φn(S)) ≥ c} = 2my {x : x(φ(S)) ≥ c} ,



140

by dominated covergence.

We conclude by remarking that the condition φ(0) = (s0, 0) or φ(0) = (0, t0) can also be

relaxed by taking b(s) = φ1(s)φ2(s)− φ1(0)φ2(0) in the proof of Theorem 40; this results in

no difference to the proof or results of the theorem or its corollary.
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