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We study the geometry of matrix factorizations in this dissertation. It contains two

parts. The first one is a Chern-Weil style construction for the Chern character of

matrix factorizations; this allows us to reproduce the Chern character in an explicit,

understandable way. Some basic properties of the Chern character are also proved (via

this construction) such as functoriality and that it determines a ring homomorphism

from the Grothendieck group of matrix factorizations to its Hochschild homology.

The second part is a reconstruction theorem of hypersurface singularities. This is

given by applying a slightly modified version of Balmer’s tensor triangular geometry

to the homotopy category of matrix factorizations.
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Chapter 1

Introduction

Matrix factorizations were introduced by Eisenbud in his 1980 paper [10]. He showed

that the free resolution of every finitely generated module over R = S/f (where S

is a regular local ring) is given by a matrix factorization. In particular every such

resolution is eventually 2-periodic. This in turn allowed him to show that matrix

factorizations describe all maximal Cohen-Macaulay modules without free summands.

Since this groundbreaking work matrix factorizations have been a common tool in

commutative algebra. Buchweitz introduced the notion of the stable derived category

of a ring in 1986. In his famous unpublished manuscript [4], he showed that the

homotopy category of matrix factorizations gives one of four equivalent descriptions

of the stable derived category of a hypersurface ring. This was rediscovered by Orlov

for schemes in his series of papers [19], [20], [21].

Matrix factorizations play an important role in many areas of pure mathematics

and mathematical physics. As in Eisenbud’s original work, it is a classical tool in

the study of hypersurface singularity algebras. In the geometric setting, the category

of matrix factorizations measures the failure of coherent sheaves on the hypersurface

f = 0 to have a finite locally free resolution [19]. It also appears prominently in
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the work of Khovanov and Rozansky [16] on link homology. Recently, Carqueville

and Murfet study matrix factorizations in the context of topological field theory [5].

Following the suggestion of Kontsevich, matrix factorizations were used by physicists

to describe D-branes of type B in Landau-Ginzburg models [13], [14]. They found

applications in various approaches to mirror symmetry and the study of the sigma

model/Landau-Ginzburg correspondence [3],[9],[11],[15],[25].

We study matrix factorizations in the following two ways. First, we give a Chern-

Weil style construction of the Chern character of matrix factorizations; this allows us

to produce the Chern character in an explicit, understandable way. We also prove

some basic properties of the Chern character via this construction such as functo-

riality and that the Chern character induces a map on the Grothendieck group of

the homotopy category of matrix factorizations to its Hochschild homology. Second,

we apply Balmer’s theory of tensor triangular geometry to the homotopy category of

matrix factorizations.

We discuss these two questions in more detail in the following subsections.

1.1 Chern character

Classically, Chern classes are topological invariants of vector bundles on a smooth

manifold. It is in general quite hard to know whether two vector bundles are the

same. The Chern classes provide one way of addressing the question: if the Chern

classes of a pair of vector bundles are not the same, then the vector bundles are

different. However, the converse is not true.

Chern classes can be used to construct a homomorphism of rings, called the Chern

character, from the K-theory of a smooth manifold to (the completion of) its rational

cohomology. The Chern character is of great importance for many reasons. For
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example, it appears in the Grothendieck-Riemann-Roch Theorem [2].

The dg-category of matrix factorizations can be thought of as the derived category

of sheaves on a noncommutative space [6]. Therefore it is reasonable to expect a

theory of Chern characters for matrix factorizations.

In [26], Shklyarov gives a nice interpretation of the Chern character and the

Riemann-Roch theorem in the context of dg-categories. In practice, it’s hard to cal-

culate what exactly the Hochschild homology and the Chern character map are. Pol-

ishchuk and Vaintrob [23] solved this problem for the case when Q = k[[x1,⋯, xn]] (k is

a field of characteristic 0) and w is an isolated singularity by studying the dg-structure

of matrix factorizations. Dyckerhoff-Murfet [7] produces the same Chern character by

an explicit description of a local duality isomorphism. Recently, Carqueville-Murfet

[5] studies the bicategory of Landau-Ginzburg models. Their main result is the exis-

tence of adjoints in this bicategory and a description of evaluation and coevaluation

maps in terms of Atiyah classes and homological perturbation. They are able to

recover the Chern character as an application of their theory. In fact, their Chern

character now works for any noetherian Q-algebra k. Most recently, Platt [22] gives

an explicit formula for the boundary bulk map, and in the case when the matrix

factorization admits a connection, an explicit formula for the Chern character.

Following the idea of Dyckerhoff-Murfet [8], I use the Atiyah class At of a matrix

factorization to give an algebraic Chern-Weil type construction. This construction

allows me to extend the Chern character to work in the more general situation where

Q is any finitely generated smooth k-algebra (k a commutative ring containing Q)

and f is any element of Q. The Chern character map I construct (Definition 3.3.3)

turns out to agree with the recent one of Platt [22], who defines a Chern character

map using the sophisticated machinery of homotopy theory of dg categories. One

advantage of my construction of the Chern character map is that it does not rely on
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such a complicated theory, and I am able to establish its basic properties using only

elementary methods. For example, I prove the Chern character map is independent

of all of the choices made in its definition by using only the relatively elementary no-

tions of homotopy of matrix factorizations. In addition, I am able to establish basic

properties of the Chern character map, such as functoriality and the fact that it de-

termines a ring homomorphism from the Grothendieck group of matrix factorizations

to its Hochschild homology (Corollary 3.3.15).

1.2 Reconstruction of hypersurface singularities

The homotopy category of matrix factorizations for a given ring Q and an element

f ∈ Q, denoted by [MF (Q,f)], has a natural structure of triangulated category. It

is well known that this category is equivalent (as a triangulated category) to the

singularity category defined by Buchweitz [4] (for modules) and later rediscovered by

Orlov [19] (for schemes), i.e., [MF (Q,f)] ≅ Db
Sing(Q/f).

Balmer’s tensor triangular geometry associates a locally ringed space to a given

tensor triangular category. We would like to apply Balmer’s theory to the category

of matrix factorizations and see if the space given by Balmer’s theory gives a recon-

struction of the hypersurface singularity.

Balmer’s theory requires a tensor product. Luckily there is a natural tensor prod-

uct of matrix factorizations (denoted by ⊗mf ), but it does not behave exactly the

way we want. In fact, it has two problems. First, given any two matrix factorizations

M ∈ [MF (Q,f)] and N ∈ [MF (Q,g)], we haveM⊗mfN ∈ [MF (Q,f +g)]. Second,

the tensor identity is a matrix factorization of 0 ∈ Q. Therefore, we need to modify

Balmer’s theory a little bit. We can solve the first problem in two ways. The first is

to look at the graded tensor triangulated category (∐i⩾1[MF (Q, if)],⊗mf) and the
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second one is to look at the triangulated category ([MF (Q,f)],⊗ 1
2 ) with a modified

tensor product ⊗ 1
2 = 1

2
○⊗mf (See Section 4.1.3 for details of the functor

1

2
). Note that

this will also solve the second problem. The solution to the tensor identity problem is

to look at a pseudo tensor triangulated category introduced in Section 4.1.1. We can

show that no matter which pseudo tensor triangulated category you want to use, i.e.,

either (∐i>0[MF (Q, if)],⊗mf) or ([MF (Q,f)],⊗ 1
2 ), you will get a reconstruction

theorem.

There is already a good support theory for matrix factorizations due to many

people. We prove the reconstruction theorems by applying this slightly modified

pseudo version theory of Balmer to the support of matrix factorizations. To be more

specific, we prove Sing(Q/f) ≅ Spc′(K) (Chapter 4) by showing that the support is

in fact a classifying support data in the pseudo sense.
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Chapter 2

Matrix factorizations

We recall the theory of matrix factorizations in this chapter. Everything is Noetherian

in this thesis. In this chapter, Q denotes a commutative ring, f is an element of Q,

all modules over Q to which we refer will be assumed to be finitely generated.

Definition 2.0.1. A matrix factorization of f ∈ Q is a Z/2-graded Q-module M =
M0⊕M1, where M is a finitely generated projective Q-module, together with a degree

1 endomorphism

d =
⎡⎢⎢⎢⎢⎢⎢⎣

0 d1

d0 0

⎤⎥⎥⎥⎥⎥⎥⎦
such that d ○ d = f ⋅ 1M .

Equivalently, a matrix factorization for (Q,f) consists of a pair of finitely gen-

erated projective Q-modules M0 and M1 and Q-linear maps d0 ∶ M0 → M1 and

d1 ∶ M1 →M0 such that each composition is multiplication by f :

d0 ○ d1 = f ⋅ 1M1 and d1 ○ d0 = f ⋅ 1M0 .
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We visualize a matrix factorization as

M = (M1
d1Ð�Ô�Ð
d0

M0) or (M1
d1Ð→M0

d0Ð→M1)

depending on the context that we are working with. Note, we write the degree 0 part

on the right and the degree 1 part on the left for the first version. For the second

version, we have the degree 0 piece in the middle and degree 1 pieces elsewhere.

Example 2.0.2. Let Q = C[[x]] and f = xn, then we have factorizations (Q xiÐ�ÔÔ�Ð
xn−i

Q), for all i.

A more interesting example is the following:

Example 2.0.3. Given Q = C[[x, y, z]], f = xy + yz + zx, then (Q2
d1Ð�Ô�Ð
d0

Q2), with

d1 =
⎡⎢⎢⎢⎢⎢⎢⎣

z y

x −x − y

⎤⎥⎥⎥⎥⎥⎥⎦
and d0 =

⎡⎢⎢⎢⎢⎢⎢⎣

x + y y

x −z

⎤⎥⎥⎥⎥⎥⎥⎦
is a matrix factorization of f .

Definition 2.0.4. A strict morphism of matrix factorizations from M to N is a

Z/2-graded Q-linear map of degree zero α ∶M→ N such that dN ○ α = α ○ dM.

Equivalently, a strict morphism is a pair of Q-linear maps α0 ∶ M0 → N0 and

α1 ∶ M1 → N1 such that the two evident squares commute.

We write MF (Q,f) for the category of all matrix factorizations of (Q,f) with

morphisms given by the set of strict morphisms. It is an exact category in the sense of

Quillen: a sequence of strict morphisms is exact if and only if it is so in both degrees.

Definition 2.0.5. Two strict morphisms α,β ∶M → N are homotopic if there exist

morphisms h1 ∈ Hom(M1,N0) and h0 ∈ Hom(M0,N1) such that

dN ○ h0 + h1 ○ dM = α − β.
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We visualize a homotopy as a diagram,

M1

α−β
²²

dM
// M0

h0zz
α−β

²²

dM
// M1

h1zz
α−β

²²
N1

dN
// N0

dN
// N1

Being homotopic is an equivalence relation and is preserved by composition of

strict morphisms. The category [MF (Q,f)] is obtained from MF (Q,f) by leaving

the objects unchanged but modding out the hom sets by this equivalence relation.

A strict morphism α ∶M → N that becomes an isomorphism in [MF (Q,f)] is

called a homotopy equivalence, i.e., α is a homotopy equivalence if and only if there

exists a strict morphism β ∶ N →M such that α ○ β and β ○α are each homotopic to

the appropriate identity map.

Definition 2.0.6. For M ∈ MF (Q,f), define the shift of M, written M[1] ∈
MF (Q,f), to be:

(M1
d1Ð�Ô�Ð
d0

M0) [1] = (M0
−d0Ð�ÔÔ�Ð−d1

M1) .

We defineM[n] to be the iteration of n applications of [1], if n is positive.

Notice that M[2] = (M[1])[1] = M. Thus we define M[−1] = M[1] and more

generallyM[−n] =M[n] for n > 0.

Definition 2.0.7. We define the cone of a strict morphism α ∶ M → N to be the

following matrix factorization:

cone(α) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

N1 ⊕M0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dN
1 α0

0 −dM
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Ð�ÔÔÔÔÔÔ�Ð⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dN
0 α1

0 −dM
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N0 ⊕M1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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There are canonical maps

N → cone(α) and cone(α)→M[1],

just as for the category of chain complexes. These will give the “distinguished trian-

gles” in the triangulated structure discussed in the next proposition.

Proposition 2.0.8. (Proposition 3.3 of [19]) For any Q and f ∈ Q, the category

[MF (Q,f)] is a triangulated category. The shift functor is M ↦ M[1] and the

distinguished triangles are those isomorphic (in [MF (Q,f)]) to triangles of the form

M αÐ→ N canonicalÐÐÐÐ→ cone(α) canonicalÐÐÐÐ→M[1]

for any strict morphism α.

Definition 2.0.9. Given two matrix factorizationsM ∈ MF (Q,f) andN ∈ MF (Q′, f ′),
where Q,Q′ are commutative rings and elements f ∈ Q, f ′ ∈ Q′. We define the tensor

product ofM and N to be

M⊗mf N ∶= ((M1 ⊗N0)⊕ (M0 ⊗N1)
dM⊗NÐ�ÔÔÔ�Ð
dM⊗N

(M0 ⊗N0)⊕ (M1 ⊗N1)),

where dM⊗mfN = dM⊗1+(−1)∣⋅∣⊗dN making it into a matrix factorization of f⊗1+1⊗f ′.

To be more precise, we have

dM⊗mfN (m⊗ n) = dM(m)⊗ n + (−1)∣m∣m⊗ dN(n)

for simple, homogeneous tensors m⊗ n. For further details, see [8] [32].

As in the Definition 2.4 of [8], the tensor product −⊗mf− of matrix factorizations is
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well-defined on the homotopy category of matrix factorizations, i.e., −⊗mf − preserves

matrix factorization homotopy.

Proposition 2.0.10. (Lemma 2.2 of [32])

Given any three matrix factorizations M,N and L, we have

(M⊕N )⊗mf L ≅ (M⊗mf L)⊕ (N ⊗mf L).

For a complex of Q-modules, we have the following definition.

Definition 2.0.11. Given any complex C● of Q-modules we denote by C●
Z/2 the Z/2-

folding, which has ⊕
i∈2Z

Ci in degree zero and ⊕
i∈2Z+1

Ci in degree one, together with the

obvious differential. Note C●
Z/2 is a matrix factorization of 0.

Remark 2.0.12. Therefore, we can talk about tensor products (in the sense of Def-

inition 2.0.9) between complexes of projective Q-modules and matrix factorizations.

If one of the factors in the tensor product is simply a projective Q-module, or more

generally a bounded complex of projective Q-modules, we first view it as a factoriza-

tion of zero using the Z/2-folding (for the case of a single module, we follow the usual

convention by placing it in the degree 0 piece of a complex), then tensor it with the

other matrix factorization; i.e., P ●⊗M ∶= P ●
Z/2⊗mfM for a complex P ● of projective

modules. We have the following proposition addressing the problem of compatibility.

Proposition 2.0.13. Given two complexes X● and Y ● of Q-modules, we have (X●⊗cx

Y ●)Z/2 = X●
Z/2 ⊗mf Y ●

Z/2, where ⊗cx stands for the usual tensor product of complexes.

Proof. First note that the underlying modules for (X● ⊗cx Y ●)Z/2 and X●
Z/2 ⊗mf Y ●

Z/2

are identical.
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Indeed, We have

((X● ⊗cx Y ●)Z/2)1 = ⊕
k is odd

( ⊕
i+j=k

(X i ⊗ Y j))

and

(X●
Z/2⊗mfY

●
Z/2)1 = [( ⊕

i is odd

X i)⊗( ⊕
j is even

Y j)]⊕[( ⊕
i is even

X i)⊗( ⊕
j is odd

Y j)] = ⊕
k is odd

( ⊕
i+j=k

(X i⊗Y j)).

Similarly ((X● ⊗cx Y ●)Z/2)0 = (X●
Z/2 ⊗mf Y ●

Z/2)0.

The fact that the differentials are the same can be seen by carefully keeping track

of where elements go.

Proposition 2.0.14. For any matrix factorization X ∈ [MF (Q,f)],

X ⊗mf −, − ⊗mf X ∶ [MF (Q,g)]→ [MF (Q,f + g)]

are triangulated functors.

Proof. We prove this for the functor −⊗mf X , the other one follows since X ⊗mf − is

naturally isomorphic to − ⊗mf X .

Given any distinguished triangle M αÐ→ N → cone(α) →M[1] of [MF (Q,g)], we

need to check:

1. (M⊗mf X )[1] ≃M[1]⊗mf X , and

2. M⊗mf X α⊗1ÐÐ→ N ⊗mf X → cone(α)⊗mf X → (M[1])⊗mf X (≃ (M⊗mf X )[1])
is also a distinguished triangle.

SayM = (M1

dM
1Ð�Ô�Ð

dM
0

M0),N = (N1

dN
1Ð�Ô�Ð

dN
0

N0) and X = (X1

dX
1Ð�Ô�Ð

dX
0

X0),
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For 1, by definition, (M⊗mf X )[1] is the matrix factorization

(M0 ⊗X0)⊕ (M1 ⊗X1)

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dM
0 ⊗ 1 −1⊗ dX

1

1⊗ dX
0 dM

1 ⊗ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Ð�ÔÔÔÔÔÔÔÔÔÔÔ�Ð

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dM
1 ⊗ 1 1⊗ dX

1

−1⊗ dX
0 dM

0 ⊗ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(M1 ⊗X0)⊕ (M0 ⊗X1)

andM[1]⊗mf X is the following

(M0 ⊗X0)⊕ (M1 ⊗X1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−dM
0 ⊗ 1 1⊗ dX

1

−1⊗ dX
0 −dM

1 ⊗ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Ð�ÔÔÔÔÔÔÔÔÔÔÔ�Ð⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−dM
1 ⊗ 1 −1⊗ dX

1

1⊗ dX
0 −dM

0 ⊗ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(M1 ⊗X0)⊕ (M0 ⊗X1)

so they are in fact equal to each other.

For 2, first notice that the morphismM⊗mf X α⊗1ÐÐ→ N ⊗mf X is

(M1 ⊗X0)⊕ (M0 ⊗X1) //

(α1⊗1,α0⊗1)
²²

(M0 ⊗X0)⊕ (M1 ⊗X1)
(α0⊗1,α1⊗1)

²²

// (M1 ⊗X0)⊕ (M0 ⊗X1)
(α1⊗1,α0⊗1)

²²
(N1 ⊗X0)⊕ (N0 ⊗X1) // (N0 ⊗X0)⊕ (N1 ⊗X1) // (N1 ⊗X0)⊕ (N0 ⊗X1)
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Therefore by definition cone(α⊗ 1) is the matrix factorization

cone(α⊗ 1)1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dN
1 ⊗ 1 1⊗ dX

1 α0 ⊗ 1

−1⊗ dX
0 dN

0 ⊗ 1 α1 ⊗ 1

−dM
0 ⊗ 1 1⊗ dX

1

−1⊗ dX
0 −dM

1 ⊗ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Ð�ÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔ�Ð
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dN
0 ⊗ 1 −1⊗ dX

1 α1 ⊗ 1

1⊗ dX
0 dN

1 ⊗ 1 α0 ⊗ 1

−dM
1 ⊗ 1 −1⊗ dX

1

1⊗ dX
0 −dM

0 ⊗ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

cone(α⊗ 1)0

where cone(α⊗1)1 = (N1⊗X0)⊕(N0⊗X1)⊕(M0⊗X0)⊕(M1⊗X1) and cone(α⊗1)0 =
(N0 ⊗X0)⊕ (N1 ⊗X1)⊕ (M1 ⊗X0)⊕ (M0 ⊗X1).

Also, by definition cone(α)⊗mf X is equal to

(cone(α)⊗mf X )1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dN
1 ⊗ 1 α0 ⊗ 1 1⊗ dX

1

−dM
0 ⊗ 1 1⊗ dX

1

−1⊗ dX
0 dN

0 ⊗ 1 α1 ⊗ 1

−1⊗ dX
0 −dM

1 ⊗ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Ð�ÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔ�Ð
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dN
0 ⊗ 1 α1 ⊗ 1 −1⊗ dX

1

−dM
1 ⊗ 1 −1⊗ dX

1

1⊗ dX
0 dN

1 ⊗ 1 α0 ⊗ 1

1⊗ dX
0 −dM

0 ⊗ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(cone(α)⊗mf X )0

where (cone(α) ⊗mf X )1 = (N1 ⊗ X0) ⊕ (M0 ⊗ X0) ⊕ (N0 ⊗ X1) ⊕ (M1 ⊗ X1) and

(cone(α)⊗mf X )0 = (N0 ⊗X0)⊕ (M1 ⊗X0)⊕ (N1 ⊗X1)⊕ (M0 ⊗X1).
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Now it’s not hard to see that there is an isomorphism η = (η0, η1) between cone(α⊗
1) and cone(α)⊗mf X , where η1 ∶ cone(α⊗ 1)1 → (cone(α)⊗mf X )1 sends

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n1 ⊗ x0

n0 ⊗ x1

m0 ⊗ x′0

m1 ⊗ x′1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

to

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n1 ⊗ x0

m0 ⊗ x′0

n0 ⊗ x1

m1 ⊗ x′1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Similarly for η0 ∶ cone(α⊗ 1)0 → (cone(α)⊗mf X )0, where it sends

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n0 ⊗ x0

n1 ⊗ x1

m1 ⊗ x′0

m0 ⊗ x′1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

to

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n0 ⊗ x0

m1 ⊗ x′0

n1 ⊗ x1

m0 ⊗ x′1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Chapter 3

Chern character

3.1 Algebraic Chern-Weil Theory

Here we review the basic Chern-Weil theory from the algebraic point of view, which

will be used later in our construction. From now on, Q is a finitely generated commu-

tative k-algebra, where k is a commutative ring. All modules are finitely generated.

Also, let Ω1
Q/k be the Q-module of differential 1-forms and Ωn

Q/k ∶= ⋀n
Q Ω1

Q/k the Q-

module of differential n-forms. For details, see [18].

Definition 3.1.1. Let Q be a commutative k-algebra and E a Q-module. A connec-

tion on the Q-module E is a k-linear map ∇ ∶ E → Ω1 ⊗Q E such that for any e ∈ E

and q ∈ Q the following Leibniz rule holds:

∇(qe) = (dq)⊗ e + q∇(e).

Just like the exterior differential operator d, a connection ∇ can be extended
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canonically to a map, which we still denote by ∇,

∇ ∶ Ω● ⊗Q E → Ω●+1 ⊗Q E

such that for any homogeneous element u ∈ Ω● and e ∈ E

∇(u⊗ e) = (du)⊗ e + (−1)∣u∣u ∧∇(e).

Example 3.1.2. For E = Q, the exterior differential operator d is a connection. More

generally, if E = Qr,

Ω● ⊗Q E ≅ (Ω●)r and d ⋅ Ir ∶ (Ω●)r → (Ω●+1)r

is a connection for Qr.

Every finitely generated projective Q-module E possesses a connection. Given

such an E, choose an idempotent e in Mr(Q) for some r such that E = Im(e). Then,

from the connection on Qr that we defined in the previous example, we can extract

a connection on E through the following composition:

Ω● ⊗Q E Â Ä // Ω● ⊗Q Qr d⋅Ir // Ω●+1 ⊗Q Qr 1⊗e // Ω●+1 ⊗Q E

Definition 3.1.3. This connection on E = Im(e) is called the Levi-Civita connection

by analogy with the classical situation in differential geometry.

Definition 3.1.4. The curvature R of a connection ∇ on a finitely generated Q-

module E is defined to be

R = ∇ ○∇ ∶ E → Ω2 ⊗Q E
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It can be shown that R is Q-linear.

Proposition 3.1.5. (Example 4.2.6 of [12])

1. Let E1 and E2 be projective Q-modules with connections ∇1 and ∇2, respectively.

Then for e1 ∈ E1 and e2 ∈ E2, we set

∇(e1 ⊕ e2) = ∇1(e1)⊕∇2(e2).

This defines a natural connection on the direct sum E1 ⊕E2.

2. In order to define a connection on the tensor product E1 ⊗Q E2 one defines

∇(e1 ⊗ e2) = ∇1(e1)⊗ e2 + e1 ⊗∇2(e2).

Note that the second component naturally lands in E1⊗Q (Ω1⊗Q E2), so we need

to apply an isomorphism σ ∶ E1 ⊗Q Ω1 → Ω1 ⊗Q E1 (e1 ⊗w z→ w ⊗ e1) to make

it into an element of the target module Ω1 ⊗Q E1 ⊗Q E2.

Before getting into the next proposition, we want to inform the reader that by

exp(R) we mean the series 1+R+ R2

2! + R3

3! +⋯+ Rn

n! +⋯ ∈∏n EndQ(E)⊗Q Ω2n. In order

to do this, we need to make the extra assumption that k ⊃ Q. The exterior operator

d can be extended to maps Ωn
Q/k → Ωn+1

Q/k (for any n ∈ N) by

d(a0da1⋯dan) = da0da1⋯dan.

Since d(1) = 0 it is immediate that d2 = 0, and the following sequence

Q = Ω0
Q/k

dÐ→ Ω1
Q/k

dÐ→ ⋯ dÐ→ Ωn
Q/k

dÐ→ ⋯
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is a complex called the de Rham complex of Q over k. The homology groups of the de

Rham complex are denoted Hn
DR(Q) and are called the de Rham cohomology groups

of Q over k.

Proposition 3.1.6. (Proposition 8.1.6 of [18]) The homogeneous component of degree

2n of ch(E,∇) ∶= tr(exp(R)) is a cycle in Ω2n
Q∣k (of the de Rham complex), where tr

stands for the trace map for projective modules (details at Section 3.3.1).

This proposition implies that ch(E,∇) defines a cohomology class in the de Rham

cohomology of Q.

Theorem 3.1.7. (Theorem-Definition 8.1.7 of [18]) The cohomology class of ch(E,∇) ∶=
tr(exp(R)) is independent of the connection ∇ and defines an element

ch(E) ∈∏
n⩾0

H2n
DR(Q)

which is called the ”Chern character” of the finitely generated projective Q-module E.

Theorem 3.1.8. (Theorem 8.2.4 of [18])

The Chern character induces a ring homomorphism ch ∶ K0(Q)→Heven
DR (Q).

3.2 Main constructions

Given a k-algebra Q, k a Noetherian commutative ring, for a matrix factorization

E = (E1
AÐ→ E0

BÐ→ E1) of f ∈ Q (so the odd endomorphism of this matrix factorization

is d =
⎡⎢⎢⎢⎢⎢⎢⎣

0 A

B 0

⎤⎥⎥⎥⎥⎥⎥⎦
), choose connections ∇i ∶ Ei → Ω1

Q/k ⊗Q Ei for i = 0,1. By Proposition

3.1.5, ∇0 and ∇1 induce a natural connection for the underlying module E = E0 ⊕E1

of the form
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∇ =
⎡⎢⎢⎢⎢⎢⎢⎣

∇0 0

0 ∇1

⎤⎥⎥⎥⎥⎥⎥⎦
.

Definition 3.2.1 (Dyckerhoff-Murfet [8]). The Atiyah class of E , written AtE,∇ or

simply just At if there is no confusion, is the map

∇ ○ d − (1⊗ d) ○ ∇ =def AtE,∇ ∶ E → Ω1[1]⊗mf E .

See Remark 2.0.12 for details of the tensor product of a module and a matrix factor-

ization.

It’s easy to check that the Atiyah class is a Q-module homomorphism from the

Z/2-graded Q-module E to the Z/2-graded Q-module Ω1 ⊗E.

Compositions of Atiyah classes are defined in the following way. For example, by

definition, we have (1 ⊗ AtE,∇) ○ AtE,∇ ∶ E → Ω1[1] ⊗mf E → Ω1[1] ⊗mf Ω1[1] ⊗mf E ,
which is defined as

((1⊗∇) ○ (1⊗ d) − (1⊗ 1⊗ d) ○ (1⊗∇)) ○ (∇ ○ d − (1⊗ d) ○ ∇).

For simplicity, we denote this composition by Ãt2E,∇. Similarly, we can define ÃtiE (for

natural numbers i ⩾ 2) recursively by

Ãti ∶= (1Ω1⊗⋯⊗Ω1

´ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i−1

⊗At) ○ Ãti−1.

Hence the map

Ãti ∶ E →
i³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

Ω1[1]⊗mf ⋯⊗mf Ω1[1]⊗mfE
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has i copies of Ω1 in the target.

Definition 3.2.2. Define Ati to be the composition:

E ÃtiÐ→
i³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

Ω1[1]⊗mf ⋯⊗mf Ω1[1]⊗mfE ∧Ð→ Ωi[i]⊗mf E .

Note that we have At = At1 = Ãt1.

3.2.1 Basic construction: the strict morphism ϕ

Definition 3.2.3. Define E(1) = ( Q
df∧ // Ω1 )⊗mf E , with Q in degree 0 and Ω1 in

degree 1.

Explicitly, E(1) is by definition the following :

E(1) = ( E1⊕
Ω1⊗E0

A //
E0⊕

Ω1⊗E1

B //
E1⊕

Ω1⊗E0

)

with A =
⎡⎢⎢⎢⎢⎢⎢⎣

A 0

df∧ −B

⎤⎥⎥⎥⎥⎥⎥⎦
and B =

⎡⎢⎢⎢⎢⎢⎢⎣

B 0

df∧ −A

⎤⎥⎥⎥⎥⎥⎥⎦
. For details, see Proposition 2.0.13.

Note that we have the following diagram (commutativity will be checked below in

Proposition 3.2.4)

E1

ϕ1
²²

A // E0

ϕ0
²²

B // E1

ϕ1
²²

E1⊕
Ω1⊗E0

A //
E0⊕

Ω1⊗E1

B //
E1⊕

Ω1⊗E0

(1)
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where ϕ1 =
⎡⎢⎢⎢⎢⎢⎢⎣

1

∇0A − (1⊗A)∇1

⎤⎥⎥⎥⎥⎥⎥⎦
, ϕ0 =

⎡⎢⎢⎢⎢⎢⎢⎣

1

∇1B − (1⊗B)∇0

⎤⎥⎥⎥⎥⎥⎥⎦
.

Therefore we make the following definition:

Definition 3.2.4. Define ϕE,∇ ∶ E → E(1) to be the morphism

⎡⎢⎢⎢⎢⎢⎢⎣

1

AtE

⎤⎥⎥⎥⎥⎥⎥⎦
.

Proposition 3.2.5. ϕE,∇ is a strict morphism of matrix factorizations.

Proof. Here we check the commutativity for the square on the left of (1); that is

A ○ ϕ1(x) = ϕ0 ○A(x) for any x ∈ E1. It’s enough to check the commutativity for the

second component. Letting π2 be the projection to the second component, we have

π2 ○A ○ ϕ1(x) = df ∧ x −B(∇0A −A∇1)(x)

= df ∧ x −B∇0A(x) + f∇1(x)

= df ∧ x + f∇1(x) −B∇0A(x)

= ∇1(f ⋅ x) −B∇0A(x)

= (∇1B −B∇0)(A(x))

= π2 ○ ϕ0 ○A(x).

The commutativity of the right square can be proved in a similar way. Therefore

ϕE,∇ is a strict morphism of matrix factorizations.

Proposition 3.2.6. ϕE,∇ is independent of the choice of connections up to homotopy.

Proof. Suppose we choose other connections for the E′
is, say ∇′

i ∶ Ei → Ω1 ⊗Q Ei. We

show that ϕ = ϕE,∇ is homotopic to ϕ′ = ϕE,∇′ .
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First, ∇−∇′
is a morphisms of Q-modules: for any q ∈ Q, x ∈ Ei,

(∇−∇′)(q ⋅x) = ∇(q ⋅x)−∇′(q ⋅x) = (dq∧x+q ⋅∇(x))−(dq∧x+q ⋅∇′(x)) = q ⋅(∇−∇′)(x).

Therefore, we can define α0 =
⎡⎢⎢⎢⎢⎢⎢⎣

0

(∇0 −∇′
0)

⎤⎥⎥⎥⎥⎥⎥⎦
, α1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0

(∇1 −∇′
1)

⎤⎥⎥⎥⎥⎥⎥⎦
, which live in the

following diagram

E1

²²

A // E0

α0

ss

ϕ−ϕ
′

²²

B // E1

α1

ss
²²

E1⊕
Ω1⊗E0 A

//
E0⊕

Ω1⊗E1 B

//
E1⊕

Ω1⊗E0

It’s easy to check that A ○ α0 + α1 ○B = ϕ − ϕ
′
and similarly for the other square.

Therefore, we usually drop the ∇ from the notation ϕE,∇ to simply write it as ϕE .

When Q is local or if we take Ei to be free Q-modules, the Atiyah clase is typically

like that of the following example.

Example 3.2.7. For E = (Qn AÐ→ Qn BÐ→ Qn), df = AdB + (dA)B, where dA =
(dQ/k(aij)) for a matrix A = (aij). Since ϕ is independent of choice of connection, we

can choose the exterior differential d for the Atiyah class, i.e, ∇i = d for i = 0,1. First

note that we have d ○A−A ○ d = dA⋅, because (d ○A−A ○ d)(x) = d(A ⋅ x)−A ⋅ (dx) =
dA ⋅ x +A ⋅ dx −A ⋅ dx = dA ⋅ x. Therefore

AtE =
⎡⎢⎢⎢⎢⎢⎢⎣

0 A

B 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

d 0

0 d

⎤⎥⎥⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎢⎢⎣

d 0

0 d

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

0 A

B 0

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

0 d ○A −A ○ d

d ○B −B ○ d 0

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

0 dA

dB 0

⎤⎥⎥⎥⎥⎥⎥⎦
,

hence AtiE =
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
dAdB⋯dAdB 0

0 dBdA⋯dBdA´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(i even)

or ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

i³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
dAdB⋯dA

dBdA⋯dB´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(i odd).

Definition 3.2.8. Define E(i) ∶= ( Q
df∧ // Ω1 )⊗i ⊗mf E . Also define morphisms

ϕ
(i)
E ∶= 1⊗i−1 ⊗ ϕE ∶ E(i−1) → E(i).

By our definition, ϕE = ϕ
(1)
E . Note that ϕ

(i)
E can be written in the form:

⎡⎢⎢⎢⎢⎢⎢⎣

I2i

AtE ⋅ I2i

⎤⎥⎥⎥⎥⎥⎥⎦
,

where I2i means the 2i × 2i identity matrix.

The following illustrates what we mean by E(i) and ϕ
(i)
E .

E = E1

²²

A // E0

ϕ
²²

B // E1

²²

E(1) =
E1⊕

Ω1⊗E0

A //

²²

E0⊕
Ω1⊗E1

B //

²²

E1⊕
Ω1⊗E0

²²

E(2) =

E1⊕
Ω1⊗E0⊕
Ω1⊗E0⊕

Ω1⊗Ω1⊗E1

A //

²²

E0⊕
Ω1⊗E1⊕
Ω1⊗E1⊕

Ω1⊗Ω1⊗E0

B //

²²

E1⊕
Ω1⊗E0⊕
Ω1⊗E0⊕

Ω1⊗Ω1⊗E1

²²
⋮ ⋮ ⋮ ⋮
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and for e ∈ E ,

ϕE(e) =
⎡⎢⎢⎢⎢⎢⎢⎣

1

At

⎤⎥⎥⎥⎥⎥⎥⎦
(e) =

⎡⎢⎢⎢⎢⎢⎢⎣

e

At(e)

⎤⎥⎥⎥⎥⎥⎥⎦
,

ϕ
(1)
E (

⎡⎢⎢⎢⎢⎢⎢⎣

e

At(e)

⎤⎥⎥⎥⎥⎥⎥⎦
) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

At

At

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅
⎡⎢⎢⎢⎢⎢⎢⎣

e

At(e)

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e

At(e)
At(e)
Ãt2(e)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e

2At(e)
Ãt2(e)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

ϕ
(2)
E (

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e

2At(e)
Ãt2(e)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

1

At

At

At

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e

2At(e)
Ãt2(e)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e

2At(e)
Ãt2(e)
At(e)

2Ãt2(e)
Ãt3(e)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e

3At(e)
3Ãt2(e)
Ãt3(e)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,⋯

Corollary 3.2.9. ϕ
(i)
E is a strict morphism of matrix factorizations and it is inde-

pendent of the choice of connections (up to homotopy) for any i.

3.2.2 The map ϕn
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For any natural number n, denote the complex

Q
ndf∧ // Ω1

(n−1)df∧ // Ω2
(n−2)df∧ // ⋯ df∧ // Ωn (∗)

by Ω
(n)
Q,df , where idf∧ denotes left multiplication by idf (i.e., w1∧⋯∧wn z→ idf ∧w1∧

⋯ ∧wn), for any 0 ⩽ i ⩽ n.

There is a natural map of chain complexes (Q → Ω1)⊗n → Ω
(n)
Q,df , induced from

natural Q-module homomorphisms of the following diagram

(Q⊕Ω1)⊗n

**TTTTTTTTT
Â Ä // (⊕i⩾0 Ωi)⊗n

∧
²²

⊕i⩾0 Ωi

We denote this map again by ∧.

Proposition 3.2.10. The map ∧ ∶ (Q→ Ω1)⊗n → Ω
(n)
Q,df is a map of complexes.

Proof. The map ∧ is obviously a Q-module homomorphism, so we just need to show

∧ commutes with the differentials of complexes.

Let us denote the differential in (Q→ Ω1)⊗n by ∂ and the differential in Ω
(n)
Q,df by

∂′. Note that for an element u ∈ Ωm, ∂′u = (n −m)df ∧ u and for v ∈ Q⊕Ω1,

∂(v) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

df ∧ v, if ∣v∣ = 0

0, else.

Therefore, for a1 ⊗⋯⊗ am ∈ Ωm, where ai ∈ Ω1,

∧∂(a1 ⊗⋯⊗ am)
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= ∧(
m

∑
i=1

(−1)∣a1∣+⋯+∣ai−1∣a1 ⊗⋯⊗ ∂(ai)⊗⋯⊗ am)

=
m

∑
i=1

(−1)∣a1∣+⋯+∣ai−1∣a1 ∧⋯ ∧ ∂(ai) ∧⋯ ∧ am

=
m

∑
i=1

(−1)∣a1∣+⋯+∣ai−1∣a1 ∧⋯ ∧ (df ∧ ai) ∧⋯ ∧ am

=
m

∑
i=1 and ∣ai∣=0

(−1)2(∣a1∣+⋯+∣ai−1∣)df ∧ a1 ∧⋯ ∧ am

= (n −m)df ∧ a1 ∧⋯ ∧ am

Also,

∂′ ∧ (a1 ⊗⋯⊗ am)

= ∂′(a1 ∧⋯ ∧ am)

= (n −m)df ∧ a1 ∧⋯ ∧ am

This completes the proof.

We obviously have :

Corollary 3.2.11. ∧ ⊗ 1E ∶ (Q → Ω1)⊗n ⊗mf E → Ω
(n)
Q,df ⊗mf E is a strict morphism of

matrix factorizations, for any matrix factorization E .

Definition 3.2.12. Define ϕn ∶ E → Ω
(n)
Q,df ⊗mf E to be the composition (∧⊗1E)○ϕ(n)○

ϕ(n−1) ○⋯○ϕ(1); i.e., ϕn is the composition of the following chain of strict morphisms

E ϕ(1)
ÐÐ→ E(1) ϕ(2)

ÐÐ→ E(2) ϕ(3)
ÐÐ→ ⋯ ϕ(n)

ÐÐ→ E(n) = (Q→ Ω1)⊗n ⊗mf E ∧⊗1EÐÐ→ Ω
(n)
Q,df ⊗mf E

Corollary 3.2.13. ϕn is a strict morphism of matrix factorizations and is indepen-

dent of choice of connections up to homotopy.
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Proof. We know that each of the ϕ(i)’s is independent of choice of connections, and

thus ϕn is too.

Proposition 3.2.14. We have (∧⊗ 1E) ○ (1Ω1[1]⊗(i−1) ⊗At) = (∧⊗ 1E) ○ (1Ωi−1 ⊗At) ○
(∧ ⊗ 1E), for all i; that is, the following diagram commutes:

i−1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Ω1[1]⊗mf ⋯⊗mf Ω1[1]⊗mfE

1
Ω1[1]⊗(i−1)⊗At

²²

∧⊗1E // Ωi−1[i − 1]⊗mf E

1Ωi−1⊗At

²²Ω1[1]⊗mf Ω1[1]⊗mf ⋯⊗mf Ω1[1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

i

⊗mfE

∧⊗1E
,,XXXXXXXXXXXXXXXXXXXXXXXXX

Ωi−1[i − 1]⊗mf Ω1[1]⊗mf E
∧⊗1E

²²
Ωi[i]⊗mf E

Proof. We can check this directly. For example, it is obvious for i = 1.

For the sake of simplicity, we will drop all the 1 ⊗⋯ ⊗ 1 if there is no confusion

from now on. For example, for the above proposition, we will in fact write it as

(∧ ⊗ 1E) ○At = (∧ ⊗ 1E) ○At ○ (∧ ⊗ 1E).
Similarly, we have the following corollary.

Corollary 3.2.15. (∧ ⊗ 1E) ○ ϕ(i) = (∧ ⊗ 1E) ○ ϕ(i) ○ (∧ ⊗ 1E), for any i. That is, we

have the following commutative diagram:

E(i−1)

∧⊗1E
²²

ϕ(i)
// E(i) ∧⊗1E // Ω

(i)
Q,df ⊗mf E

Ω
(i−1)
Q,df ⊗mf E

ϕ(i)
// Ω

(i−1)
Q,df ⊗mf (Q→ Ω1)⊗mf E

∧⊗1E

44hhhhhhhhhhhhhhhhhhh
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Proof. Note that (∧ ⊗ 1E) ○ ϕ(i) = (∧ ⊗ 1E) ○
⎡⎢⎢⎢⎢⎢⎢⎣

I2i

At ⋅ I2i

⎤⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎢⎣

I2i

(∧ ⊗ 1E) ○At ⋅ I2i

⎤⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎢⎣

I2i

(∧ ⊗ 1E) ○At ○ (∧ ⊗ 1E) ⋅ I2i

⎤⎥⎥⎥⎥⎥⎥⎦

= (∧ ⊗ 1E) ○
⎡⎢⎢⎢⎢⎢⎢⎣

I2i

At ⋅ I2i

⎤⎥⎥⎥⎥⎥⎥⎦
○ (∧ ⊗ 1E)

= (∧ ⊗ 1E) ○ ϕ(i) ○ (∧ ⊗ 1E).

Corollary 3.2.16. We have ϕn =
n

∑
i=0

(n
i
)Ati ∈ Ω

(n)
Q,df ⊗mf E .

Proof. The base case is clear (look at the statement right before Corollary 3.2.8).

By induction, say ϕn−1 =
n−1

∑
i=0

(n − 1

i
)Ati, then

ϕn = (∧ ⊗ 1E) ○ ϕ(n) ○ ϕ(n−1) ○ ⋯ ○ ϕ

= (∧ ⊗ 1E) ○ ϕ(n) ○ (∧ ⊗ 1E) ○ ϕ(n−1) ○ ⋯ ○ ϕ

= (∧ ⊗ 1E) ○ ϕ(n) ○ ϕn−1

= (∧ ⊗ 1E) ○ ϕ(n) ○
n−1

∑
i=0

(n − 1

i
)Ati

=
⎡⎢⎢⎢⎢⎢⎢⎣

I2n

(∧ ⊗ 1E) ○At ⋅ I2n

⎤⎥⎥⎥⎥⎥⎥⎦
○

n−1

∑
i=0

(n − 1

i
)Ati
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=
n−1

∑
i=0

(n − 1

i
)Ati +At(

n−1

∑
i=0

(n − 1

i
)Ati)

=
n

∑
i=0

(n
i
)Ati.

3.2.3 The map ϕ̃n

For any integer n, define (Ω●, df, n) to be the complex :

Q
df∧ // Ω1

df∧ // Ω2
df∧ // ⋯ df∧ // Ωn .

From now on, we assume in addition that k ⊃ Q. Under this assumption, there is

an isomorphism of complexes Ω
(n)
Q,df → (Ω●, df, n) defined by

Q
ndf∧ //

=
²²

Ω1
(n−1)df∧ //

1
n

²²

Ω2
(n−2)df∧ //

1
n(n−1)

²²

⋯ df∧ // Ωn

1
n!

²²
Q

df∧ // Ω1
df∧ // Ω2

df∧ // ⋯ df∧ // Ωn

.

We compose ϕn with the above isomorphism to get a morphism which is now called

ϕ̃n; i.e.,

ϕ̃n ∶ E // (Ω●, df, n)⊗mf E .

By Proposition 3.2.15, we have an expression for ϕ̃n:

ϕ̃n =
n

∑
i=0

1

i!
Ati.
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3.3 The Chern character for matrix factorizations

and its basic properties

For a k-algebra Q, with k a commutative unital ring that contains Q, we constructed

(for a given n ∈ N) a strict morphism of matrix factorizations ϕ̃n ∶ E → (Ω●, df, n)⊗mf E
in last section. Now, we can define a Chern character for matrix factorizations.

3.3.1 Supertrace

Let Q be any commutative ring and M a finitely generated projective Q-module.

Let M∗ = HomQ(M,Q) be the dual of M . Consider the two maps

EndQ(M) M∗ ⊗Q M
ξoo ε // Q

given by ξ(α⊗n)(m) = α(m)n, with m,n ∈ M,α ∈ M∗ and by ε(α⊗n) = α(n) respec-

tively. If M is a finitely generated projective Q-module, then ξ is an isomorphism

and the composite ε ○ ξ−1 is the standard trace map: ε ○ ξ−1 = tr. Suppose that M is

free of finite rank over Q, with Q a k-algebra. Then a Q-linear map M →M ⊗Q Ω∗
Q/k,

upon choice of basis, is a matrix with coefficients in Ω∗
Q/k, that is, an element of

EndQ(M)⊗Q Ω∗
Q/k. Since a projective module is a direct summand of a free module,

the same is true when M is projective, i.e.,

HomQ(M,M ⊗Q Ω●) ≅ EndQ(M)⊗Q Ω●.

Therefore, whenM a matrix factorization, the underlying module M is projective so
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Ati can be viewed as an element of Ωi
Q/k ⊗Q EndQ(M).

Definition 3.3.1. Given a Z/2-graded finitely generated projective Q-module M and

an endomorphism T of M of degree 0, using that EndQ(M)0 = EndQ(M0 ⊕M1)0 =
EndQ(M0)⊕EndQ(M1), define

str(T ) ∶= tr(T0) − tr(T1) ∈ Q

where T = T0 ⊕ T1 with Ti ∈ EndQ(Mi), i = 0,1.

Proposition 3.3.2.

1. If α,β ∶ E → E are strict morphisms of matrix factorizations and α is homotopic

to β, then str(α) = str(β).

2. Supertrace str is an invariant under cyclic permutations, i.e.,

str(α1 ○ ⋯ ○ αn) = str(ασ(1) ○ ⋯ ○ ασ(n))

for σ a cyclic permutation of n elements.

Proof. Say E = (E1
AÐ�Ô�Ð
B

E0)

1. There are Q-module homomorphisms x ∶ E0 → E1 and y ∶ E1 → E0 such that

Ax + yB = α0 − β0 and By + xA = α1 − β1. So

(Ax + yB) − (By + xA) = (α0 − β0) − (α1 − β1),

(Ax − xA) − (yB −By) = (α0 − α1) − (β0 − β1),

tr(Ax − xA) − tr(yB −By) = tr(α0 − α1) − tr(β0 − β1),
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(tr(Ax) − tr(xA)) − (tr(yB) − tr(By)) = 0 = str(α) − str(β),

str(α) = str(β).

2. This is obvious since tr is an invariant under cyclic permutations.

3.3.2 Chern character

Before making the definition of the Chern character of a matrix factorization, let’s

first recall the definition of a smooth algebra and prove a few propositions necessary

for the definition.

Definition 3.3.3. 1. If k is an algebraically closed field, then Q is smooth of

relative dimension d if it is of finite type, its dimension is d, and the module

Ω1
Q/k of differentials is a finitely generated locally free Q-module of rank d.

2. Let k be an arbitrary field, k its algebraic closure. Then Q is smooth of relative

dimension d if Q⊗k k is smooth of relative dimension d over k.

3. Let θ ∶ Q → Q′ be a ring map, then θ is smooth of relative dimension d if it is

flat, finitely presented, and for all primes p of Q, the fibre ring k(p) ⊗Q Q′ is

smooth of relative dimension d over k(p), where k(p) is the residue field at p.

Proposition 3.3.4. Suppose Q is a smooth k-algebra of relative dimension d with k

a commutative unital ring that contains Q. Then str(ϕ̃d) = str(ϕ̃d+1) = ⋯.

Proof. We have str(Atd+1) ∈ Ωd+1 ⊗mf E = 0. Therefore
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str(ϕ̃d+1) =
d+1

∑
i=0

1

i!
str(Ati) = 1 + str(At) +⋯ + 1

d!
str(Atd) + 1

(d + 1)!str(Atd+1)

= 1 + str(At) +⋯ + 1

d!
str(Atd) + 0

= str(ϕ̃d)
i.e., str(ϕ̃d) = str(ϕ̃d+1) and hence str(ϕ̃d) = str(ϕ̃d+i) for any i ⩾ 2.

Proposition 3.3.5. Given any matrix factorization E = (E1
AÐ→ E0

BÐ→ E1) ∈ [MF (Q,f)],
df ∧ str(AtiE) = 0 in Ωi+1 for any i. If i is an odd integer, str(Ati) = 0.

Proof. For the underlying finitely generated projective Q-module E = E0 ⊕E1 of E ,
the trace homomorphism tr is End(E) ⊗ Ω● → Ω●, so str(AtiE) ∈ Ωi since it’s the

difference of two elements in Ωi.

It’s enough to check this locally, so we adopt the notations used in Example

3.2.6. In particular, since the map Ωi+1
Q/k ↪ Ωi+1

Q[ 1
f
]/k is injective, it suffices to check

df ∧ str(AtiE) = 0 after inverting f . Therefore we may assume A and B are invertible

matrices with entries in Q[ 1
f ]. Notice that str(Ati) = 0 when i is odd so we just need

to show this when i is an even integer.

Since A is invertible, B = f ⋅A−1, therefore

dB = df ⋅A−1 + f ⋅ dA−1,

since A−1 ⋅A = I Ô⇒ dA−1 = −A−1dA ⋅A−1, we get

dB = df ⋅A−1 − fA−1dA ⋅A−1
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Also, since df = dA ⋅B +A ⋅ dB and say i = 2l,

df ∧ str(AtiE) = 2tr(df
l³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

dAdBdAdB⋯dAdB)

= 2tr(dfdA(df ⋅A−1 − fA−1dA ⋅A−1)⋯dA(df ⋅A−1 − fA−1dA ⋅A−1))

= 2tr(dfdA(−fA−1dA ⋅A−1)⋯dA(−fA−1dA ⋅A−1))

= (−1)l2tr(dA ⋅A−1⋯dA ⋅A−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
even numbers

) = 0.

We have the last equality because switching matrices of odd forms is only going to

introduces a sign. Also, nothing is the product (dA ⋅A−1)even = (dA ⋅A−1)odd⋯(dA ⋅
A−1)odd stays the same no matter how you switch. Therefore it has to be 0.

By the above proposition, we know that str(Ati) vanishes when i is odd and is

a cycle (of the complex (Ω●, df, n)) when i is even, so it defines an element of the

homology.

Now we are ready to give our definition of the Chern character. Assume that Q

is now a smooth k-algebra of relative dimension n with k a commutative unital ring

that contains Q.

Definition 3.3.6. We define the Chern character of E to be

ch(E) ∶= str(ϕ̃n) =
n

∑
i=0

1

i!
str(Ati) ∈ H0((Ω⋅, df, n)Z/2) =

n

⊕
i=0

ker(Ω2i
dfÐ→ Ω2i+1)

im(Ω2i−1
dfÐ→ Ω2i)

.

Recall (Ω⋅, df, n) is the complex

Q
df∧ // Ω1

df∧ // Ω2
df∧ // ⋯ df∧ // Ωn
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and (Ω⋅, df, n)Z/2 the Z/2-folding of this complex. Also, notice that by Proposition

3.3.5, we have str(Ati) = 0 when i is an odd integer. Therefore the Chern character

is in fact ch(E) =∑
i⩾0

1

(2i)!str(At2i).
Our definition of the Chern character is the same as the one in Platt [22]. For

the special case when Q = k[[x1,⋯, xn]] and f ∈ Q an isolated singularity, see the

following example.

Example 3.3.7. Let f ∈ Q = k[x1,⋯, xn] be an isolated singularity at the origin

(that is, the localizations at every prime except the maximal ideal m = (x1,⋯, xn)

is regular), E = (Qr
AÐ�Ô�Ð
B

Qr) a matrix factorization with d =
⎡⎢⎢⎢⎢⎢⎢⎣

0 A

B 0

⎤⎥⎥⎥⎥⎥⎥⎦
. E is a free

Q-module, so as before, we can choose d, the exterior differential operator to be

the connection and we get that At =
⎡⎢⎢⎢⎢⎢⎢⎣

0 dA

dB 0

⎤⎥⎥⎥⎥⎥⎥⎦
. Also, notice that in this situation

(Ω●, df, n) is exact except in position n (the dimension of Q) [31]. Therefore we

have that ch(E) =
n

∑
i=0

1

i!
str(Ati) = 1

n!
str(dAdB⋯dAdB), which agrees with the Chern

character obtained by [14], [22] and [24]. It differs by a sign with the ones in [5], [7]

and [23].

Proposition 3.3.8. Given matrix factorizations E = (E1
AÐ→ E0

BÐ→ E1) and E ′ =
(E′

1

CÐ→ E′
0

DÐ→ E′
1) in [MF (Q,f)], a strict morphism β ∶ E ′ → E , the following diagram

commutes up to homotopy

E ′
β

²²

ϕ̃E // (Q df∧Ð→ Ω1)⊗mf E ′
1⊗β

²²

E ϕ̃E′ // (Q df∧Ð→ Ω1)⊗mf E

.
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Proof. Recall that ϕ̃E =
⎡⎢⎢⎢⎢⎢⎢⎣

1

AtE

⎤⎥⎥⎥⎥⎥⎥⎦
= 1 +AtE .

Choose connections ∇i and ∇′
i, then we can construct module homomorphisms

ψ0 =
⎡⎢⎢⎢⎢⎢⎢⎣

0

(∇0β − (1⊗ β)∇′
0)

⎤⎥⎥⎥⎥⎥⎥⎦
, ψ1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0

(∇1β − (1⊗ β)∇′
1)

⎤⎥⎥⎥⎥⎥⎥⎦
, which lives in the diagram

E
′
1

²²

C // E
′
0

ψ0

ss

ϕ̃E○β−(1⊗β)○ϕ̃E′
²²

D // E
′
1

ψ1

ss
²²

E1⊕
Ω1⊗E0 A

//
E0⊕

Ω1⊗E1 B

//
E1⊕

Ω1⊗E0

where ϕ̃E ○ β − (1⊗ β) ○ ϕ̃E ′ is the matrix

⎡⎢⎢⎢⎢⎢⎢⎣

0

AtE ○ β − (1⊗ β) ○AtE ′

⎤⎥⎥⎥⎥⎥⎥⎦
.

First, ψ0 and ψ1 are indeed module homomorphisms:

ψ0(q ⋅ x) = ∇0β(q ⋅ x) − (1⊗ β)∇′
0(q ⋅ x)

= ∇0(q ⋅ β(x)) − (1⊗ β)(dq ∧ x + q ⋅ ∇′
0(x))

= dq ∧ β(x) + q ⋅ ∇0β(x) − dq ∧ β(x) − (1⊗ β)(q ⋅ ∇′
0(x))

= q ⋅ ∇0β(x) − q ⋅ (1⊗ β)(∇′
0(x))

= q(∇0β − (1⊗ β)∇′
0)(x)

= q ⋅ ψ0(x)

The same argument shows that ψ1 is also a module homomorphism.

We want to show that ψ0 and ψ1 give us a homotopy. For the degree 0 part, we

need to show (ϕ̃E ○ β − (1⊗ β) ○ ϕ̃E ′)0 = A ○ ψ0 + ψ1 ○D.
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Recall that A =
⎡⎢⎢⎢⎢⎢⎢⎣

A 0

df∧ −B

⎤⎥⎥⎥⎥⎥⎥⎦
. Elements are 2 × 1 column vectors, the equality in

the first row is easy to see so we just check the equality for the second row. Hence,

(AtE ○ β − (1⊗ β) ○AtE ′)0

= (∇1B −B∇0)β − (1⊗ β)(∇′
1D −D∇′

0)

= ∇1Bβ −B∇0β − (1⊗ β)∇′
1D + (1⊗ β)D∇′

0

= ∇1βD −B∇0β − (1⊗ β)∇′
1D +B(1⊗ β)∇′

0

= (∇1β − (1⊗ β)∇′
1)D −B(∇0β − (1⊗ β)∇′

0)

= ψ1 ○D +A ○ ψ0

In the above calculation, we use Bβ = βD and (1 ⊗ β)D = B(1 ⊗ β) by the fact

that β is a strict morphism of matrix factorizations, i.e., the following commutative

diagram:

E
′
1

β

²²

C // E
′
0

β

²²

D // E
′
1

β

²²
E1

A // E0
B // E1

Corollary 3.3.9. Under the same hypothesis as in Proposition 3.3.8, we have ϕ̃n
E ○β ∼

(1⊗ 1⊗⋯⊗ 1⊗ β) ○ ϕ̃n
E ′

Proof. Indeed,

ϕ̃n
E ○ β = ϕ̃n−1

E ○ ϕ̃E ○ β ∼ ϕ̃n−1
E ○ (1⊗ β) ○ ϕ̃E ′

then by induction

ϕ̃n
E ○ β ∼ (1⊗ 1⊗⋯⊗ 1⊗ β) ○ ϕ̃n

E ′ .
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Corollary 3.3.10. We have ch(E) = ch(E ′) for homotopy equivalent matrix factor-

izations E and E ′.

Proof. Say we have E αÐ�Ô�Ð
β
E ′, such that α ○ β ∼ 1E ′ and β ○α ∼ 1E , by Corollary 3.3.6

ϕ̃n
E ○ β ○ α ∼ (1⊗ 1⊗⋯⊗ 1⊗ β) ○ ϕ̃n

E ′ ○ α

Therefore, by Proposition 3.3.2

str(ϕ̃n
E)

=str(ϕ̃n
E ○ β ○ α)

=str((1⊗n ⊗ β) ○ ϕ̃n
E ′ ○ α)

=str(α ○ (1⊗n ⊗ β) ○ ϕ̃n
E ′)

=str(ϕ̃n
E ′)

This gives

ch(E) = ch(E ′).

Theorem 3.3.11. Given any distinguished triangle

P θ // Q // cone(θ) // P[1]

in [MF (Q,f)], we have

ch(Q) = ch(P) + ch(cone(θ)). (∗)



39

Proof. We will prove this theorem by explicit calculation of the Chern character.

First, it’s enough to check equality for the even components, as discussed in

the proof of Proposition 3.3.5. By definition ch(E) = str(ϕ̃n
E) = str(

n

∑
i=0

1

i!
AtiE) =

n

∑
i=0

1

i!
str(AtiE) for any matrix factorization E , so it’s enough to prove str(At2i

Q) =
str(At2i

P ) + str(At2i
cone(θ)), for all even integers 2i between 2 and n.

Say P = (P1
AÐ→ P0

BÐ→ P1) and Q = (Q1
CÐ→ Q0

DÐ→ Q1), the mapping cone is

cone(θ) = (Q1 ⊕ P0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C f0

0 −B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Ð�ÔÔÔÔÔ�Ð⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D f1

0 −A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Q0 ⊕ P1).

Choose any connections ∇P
0 and ∇P

1 for P, similarly ∇Q
0 and ∇Q

1 for Q. We have

induced connections for cone(θ):

∇cone(θ)
1 =

⎡⎢⎢⎢⎢⎢⎢⎣

∇Q0
∇P1

⎤⎥⎥⎥⎥⎥⎥⎦
∇cone(θ)

0 =
⎡⎢⎢⎢⎢⎢⎢⎣

∇Q1
∇P0

⎤⎥⎥⎥⎥⎥⎥⎦

Since the Chern character is independent of choice of connections, we use these

to compute the Atiyah class Atcone(θ) for cone(θ), which is just

Atcone(θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇Q1
∇P0

∇Q0
∇P1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C f0

−B

D f1

−A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C f0

−B

D f1

−A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇Q1
∇P0

∇Q0
∇P1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X ∗
Z

Y ∗
W

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where

X = (∇Q1 C −C∇Q0 ),

Y = (∇Q0 D −D∇Q1 ),

Z = (B∇P1 −∇P0 B), and

W = (A∇P0 −∇P1 A).

Hence

At2cone(θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

XY ∗
ZW

Y X ∗
WZ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Therefore,

At2i
cone(θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(XY )i ∗
(ZW )i

(Y X)i ∗
(WZ)i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for any even integer 2i between 1 and n.

This gives that
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str(At2i
cone(θ))

= tr

⎡⎢⎢⎢⎢⎢⎢⎣

(XY )i ∗
(ZW )i

⎤⎥⎥⎥⎥⎥⎥⎦
− tr

⎡⎢⎢⎢⎢⎢⎢⎣

(Y X)i ∗
(WZ)i

⎤⎥⎥⎥⎥⎥⎥⎦
= 2tr((XY )i) − 2tr((WZ)i).

hence

str(At2i
P ) + str(At2i

cone(θ)) = 2tr((WZ)i) + 2tr((XY )i) − 2tr((WZ)i)

= 2tr((XY )i) = str(At2i
Q).

3.3.3 Grothendieck group

Recall that the Grothendieck group K0(T ) of a triangulated category T is the free

abelian group generated by isomorphism classes of objects of T , modulo the relations

[X] + [Z] = [Y ] for distinguished triangles X → Y → Z →X[1].

Corollary 3.3.12. The Chern character induces a map from K0[MF (Q,f)] to

H0((Ω⋅, df)Z/2).

Proof. Any distinguished triangle is isomorphic (in the homotopy category) to a trian-

gle of the form of Theorem 3.3.8. Now apply Corollary 3.3.7 and Theorem 3.3.8.

Now we will prove that the Chern character is a ring homomorphism.

Lemma 3.3.13. ⊕
f∈Q

K0([MF (Q,f)]) is a ring via [E]f ⋅ [F]g ∶= [E ⊗mf F]f+g.
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Proof. First we have to show that the above multiplication is well-defined.

Since we know from the definition that − ⊗mf − preserves homotopy equivalences

of matrix factorizations. For any given E ≃ E ′ and F ≃ F ′, we have E ⊗mf F ≃
E ⊗mf F ′ ≃ E ′ ⊗mf F ′, so the tensor product is well-defined on the free abelian group

generated by isomorphism classes of matrix factorizations; we denote this group by

⊕
f∈Q
Z([MF (Q,f)]).
Now, let’s show that ⊕

f∈Q
Z([MF (Q,f)]) is a commutative ring under the above

multiplication.

1. (E)f ⋅ (F)g ∈ ⊕
f∈Q
Z([MF (Q,f)]).

2. E ⊗mf F ≅ F ⊗mf E so (E)f ⋅ (F)g = (F)g ⋅ (E)f .

3. ((E)f ⋅ (F)g) ⋅ (G)h = (E ⊗mf F)f+g ⋅ (G)h = ((E ⊗mf F)⊗mf G)f+g+h

Also, (E)f ⋅ ((F)g ⋅ (G)h) = (E)f ⋅ ((F ⊗mf G)g+h) = (E ⊗mf (F ⊗mf G))f+g+h,

where (E) means the isomorphism class of E . Hence the above shows that the

multiplication is associative.

4. There is an identity 1 = (0 0Ð�Ô�Ð
0

Q) ∈ MF (Q,0) such that (1)0 ⋅ (E)f = (E)f .

Indeed, 1⊗mf E equals to

0⊕E1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1⊗ e1

−1⊗ e0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Ð�ÔÔÔÔÔÔÔÔÔ�Ð⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1⊗ e1

1⊗ e0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0⊕E0.

Therefore we have an isomorphism of 1⊗mf E and E , i.e., (1)0 ⋅ (E)f = (E)f .

Similarly, we also have (E)f ⋅ (1)0 = (E)f .
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The above shows that the isomorphism classes of all matrix factorizations is a

monoid under − ⊗mf −, so ⊕
f∈Q
Z([MF (Q,f)]) is in fact a commutative ring.

Finally, to show that this multiplication is well-defined on the quotient group,

it’s enough to prove that the subgroup

{[Q] − [P] − [W] ∶ P → Q→W → P[1] a distinguished triangle}

is an ideal inside ⊕
f∈Q
Z([MF (Q,f)]). This amounts to the following fact: tensor

product is a triangulated functor (which is Proposition 2.0.14).

Proposition 3.3.14. Define Kf(Q) ∶= ⊕
i∈Z⩾0

K0([MF (Q, if)]); this is in fact a sub-

ring of ⊕
f∈Q

K0([MF (Q,f)]).

Proof. Given any [a], [b] ∈ Kf(Q), [a] + [b] ∈ Kf(Q); [a] ⋅ [b] ∈ Kf(Q); [1] ∈ Kf(Q);
[−a] ∈ Kf(Q) (since [−a] = [a[1]] ∈ Kf(Q)).

Lemma 3.3.15. ⊕
f∈Q

H0((Ω⋅, df, n)Z/2) is a commutative ring via ∧.

Proof. First, assume n is an odd integer. A similar proof works when n is even. Recall

that (Ω●, df, n) is the following complex:

Q
df∧ // Ω1

df∧ // Ω2
df∧ // ⋯ df∧ // Ωn .

Therefore the Z/2-folding (Ω●, df, n)Z/2 is the matrix factorization E = (E1
D1Ð→ E0

D0Ð→
E1) where

E1 = Ω1 ⊕Ω3 ⊕⋯⊕Ωn, E0 = Q⊕Ω2 ⊕Ω4 ⊕⋯⊕Ωn−1
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and D1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 ⋯ 0

df∧ 0 ⋯
0 df∧ 0 0

⋯ ⋯
0 0 ⋯ df∧

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦n+1
2
×n+1

2

, D0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

df∧ 0 ⋯
0 df∧ 0 0

⋯ ⋯
0 0 ⋯ df∧

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦n+1
2
×n+1

2

.

Hence H0((Ω⋅, df, n)Z/2) = kerD0

imD1

is a ring by properties of the wedge product.

For example, for any a, b, c ∈⊕i even Ωi, we have

(a ∧ b) ∧ c = a ∧ (b ∧ c).

It is not hard to see that elements on the two sides of the above equation determine

the same element in homology. The same holds for other conditions to make a set

into a ring. It is commutative since we are dealing only with even forms (in general

u∧ v = (−1)ijv ∧u for a ∈ Ωi and b ∈ Ωj; therefore, i, j even means u∧ v = v ∧u). From

this we see that ⊕
i∈Z⩾0

H0((Ω⋅, df, n)Z/2) is a commutative ring.

It is clear that ⊕
i∈Z⩾0

H0((Ω⋅, idf, n)Z/2) is a subring of ⊕
f∈Q

H0((Ω⋅, df, n)Z/2).

Theorem 3.3.16. Given two matrix factorizations E ∈ [MF (Q,f)] and F ∈ [MF (Q,g)],
we have the following commutative diagram

E ⊗mf F

̃ϕn
E⊗mfF ,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
ϕ̃n
E⊗ϕ̃n

F // ((Ω●, df, n)⊗mf E)⊗mf ((Ω●, dg, n)⊗mf F)
∧○(1⊗τ⊗1)

²²
(Ω●, df + dg, n)⊗mf (E ⊗mf F)

where τ ∶ E ⊗mf (Ω●, df, n) → (Ω●, df, n) ⊗mf E is the isomorphism τ(a ⊗ b) =
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(−1)∣a∣∣b∣b⊗ a.

Remark 3.3.17. The above diagram makes sense, since the relative dimension of Q

over k is n. After changing the position, wedging things together, terms with degree

higher than n vanish.

Proof. (of Theorem 3.3.16) First, by Proposition 3.1.5, for underlying modules E and

F, if we choose a connection ∇E for E and ∇F for F, then there is a natural connection

for the tensor product: ∇E⊗1+1⊗∇F . Also, the differential for the tensor product of

the two matrix factorizations is given by dE⊗mfF(e⊗ f) = dE(e)⊗ f + (−1)∣e∣e⊗dF(f),
where e ∈ E and f ∈ F . After a careful calculation, we have that

AtE⊗mfF(e⊗ f) = AtE(e)⊗ f + (−1)∣e∣e⊗AtF(f), (∗)

i.e., AtE⊗mfF = AtE ⊗ 1 + τ(1 ⊗ AtF), where τ is the map in the statement of the

theorem.

Another observation we want to make before looking into ϕ̃n
E⊗F is that

∧ ○ (AtE ⊗ 1) ○ τ(1⊗AtF) = ∧ ○ τ(1⊗AtF) ○ (AtE ⊗ 1).

In fact, we have

∧ ○ (AtE ⊗ 1) ○ (τ(1⊗AtF))(e⊗ f) = ∧ ○ (AtE ⊗ 1)((−1)∣e∣σ(e⊗AtF(f))),

where σ is the same as τ but doesn’t introduce a sign. Say for simplicity that AtF(f) =
u⊗f ′ and AtE(e) = w⊗e′ (these should really be sums of simple tensors, nonetheless,
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the idea is the same and the case for simple tensors is more clear), then the above is

∧ ○ (AtE ⊗ 1) ○ ((−1)∣e∣u⊗ e⊗ f ′)

= (−1)∣e∣ ∧ (u⊗AtE(e)⊗ f ′)

= (−1)∣e∣ ∧ (u⊗w ⊗ e′ ⊗ f ′)

= (−1)∣e∣ ⋅ (u ∧w ⊗ e′ ⊗ f ′)

= −(−1)∣e∣ ⋅ (w ∧ u⊗ e′ ⊗ f ′)

= −(−1)∣e∣ ∧ σ(AtE(e)⊗AtF(f)).

For ∧ ○ τ(1⊗AtF) ○ (AtE ⊗ 1)(e⊗ f), we have

∧ ○ τ(1⊗AtF) ○ (AtE ⊗ 1)(e⊗ f)

= ∧ ○ τ(1⊗AtF)(AtE(e)⊗ f)

= ∧ ○ τ(1⊗AtF)(w ⊗ e′ ⊗ f)

= ∧ ○ τ(w ⊗ e′ ⊗AtF(f))

= ∧ ○ τ(w ⊗ e′ ⊗ u⊗ f ′)

= (−1)∣e′∣ ⋅ ∧(w ⊗ u⊗ e′ ⊗ f ′)

= (−1)∣e∣+1 ⋅ (w ∧ u⊗ e′ ⊗ f ′)

= −(−1)∣e∣ ∧ σ(AtE(e)⊗AtF(f)).

Therefore, the two compositions of the operators AtE ⊗ 1 and τ(1⊗AtF) are the
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same after ∧ and more importantly we get −(−1)∣e∣ ∧σ(AtE(e)⊗AtF(f)) applying to

the element e⊗ f . Then it is not hard to see that

∧(AtE⊗1)k○(τ(1⊗AtF))s =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∧σ(AtkE(e)⊗AtsF(f)), if one of k, s is an even integer

−(−1)∣e∣ ∧ σ(AtkE(e)⊗AtsF(f)), if both k and s are odd integers.

We can compute ϕ̃n
E⊗F by formula (∗), the degree ith piece is (remember the

notation ∼ indicates we have already applied ∧ to the Atiyah class)

1

i!
AtiE⊗mfF = 1

i!
(AtE ⊗ 1 + τ(1⊗AtF))i

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

i!
∑

k+s=i

( i

k
) ∧ σ(AtkE ⊗AtsF), if one of k, s is even

−(−1)∣e∣ 1
i!
∑

k+s=i

( i

k
) ∧ σ(AtkE ⊗AtsF), if both k and s are odd

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
k+s=i

1

k!s!
∧ σ(AtkE ⊗AtsF), if one of k, s is even

−(−1)∣e∣ ∑
k+s=i

1

k!s!
∧ σ(AtkE ⊗AtsF), if both k and s are odd

since
1

i!
⋅ ( i

k
) = 1

i!
⋅ i!

k!(i − k)! =
1

i!
⋅ i!

k!s!
= 1

k!s!
.

Meanwhile, the ith component for ϕ̃n
E ⊗ ϕ̃n

F is ∑
k+s=i

1

k!s!
AtkE ⊗AtsF . Therefore, say

AtkE(e) = w′ ⊗ e and AtsF(f) = u′ ⊗ f with w′ ∈ Ωk and u′ ∈ Ωs (hence ∣e∣ = ∣e∣+ 1 if k is

odd and ∣e∣ = ∣e∣ if k is even), we have

(∧ ○ (1⊗ τ ⊗ 1))( ∑
k+s=i

1

k!s!
AtkE(e)⊗AtsF(f))

= (−1)∣e∣⋅s ⋅ ∑
k+s=i

1

k!s!
⋅ ∧σ(AtkE(e)⊗AtsF(f))
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=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−(−1)∣e∣ ⋅ ∑
k+s=i

1

k!s!
⋅ ∧σ(AtkE(e)⊗AtsF(f)), if both k and s are odd

∑
k+s=i

1

k!s!
⋅ ∧σ(AtkE(e)⊗AtsF(f)), otherwise.

This completes the proof of the theorem.

Corollary 3.3.18. The Chern character ch ∶ Kf(Q) → ⊕
i∈Z⩾0

H0((Ω⋅, idf, n)Z/2) is a

ring homomorphism, i.e.,

ch([E] ⋅ [F]) = ch([E])ch([F]).

Proof. Theorem 3.3.13 tells us that ϕ̃n
E⊗mfF = (∧ ○ (1 ⊗ τ ⊗ 1)) ○ (ϕ̃n

E ⊗ ϕ̃n
F). The

Corollary follows by applying str to this equation.

3.3.4 Functoriality

Consider a k-algebra homomorphism ϕ ∶ R → S that sends f ∈ R to g ∈ S. For any

matrix factorization E = (E1
AÐ�Ô�Ð
B

E0) ∈ MF (R,f), there is then a naturally induced

matrix factorization

E ⊗mf S = (E1 ⊗R S
A⊗1Ð�ÔÔ�Ð
B⊗1

E0 ⊗R S) ∈ MF (S, g).

It is obvious that E1 ⊗R S and E0 ⊗R S are finitely generated projective S-modules.

Also, we do have (1 ⊗ B) ○ (1 ⊗ A) = (1 ⊗ A) ○ (1 ⊗ B) = g ⋅ id: in fact, (1 ⊗ B) ○
(1 ⊗ A)(s ⊗ e1) = s ⊗ f ⋅ e1, but since we are talking about S-modules, s ⊗ f ⋅ e1 =
ϕ(f) ⋅ s⊗ e1 = g ⋅ s⊗ e1 = g ⋅ (s⊗ e1).

Definition 3.3.19. For a k-algebra homomorphism ϕ as above, define a functor ϕ∗ ∶
[MF (R,f)] → [MF (S, g)] that sends E to ϕ∗(E) ∶= E ⊗mf S and a strict morphism

α = (α0, α1) ∶ E → F to a strict morphism ϕ∗(α) ∶= (α0 ⊗ 1, α1 ⊗ 1) ∶ ϕ∗(E)→ ϕ∗(F).



49

It is obvious that the functor ϕ∗ is well-defined on the homotopy category of

matrix factorizations. Also we can talk about ϕ∗(E) = E⊗R S for a finitely generated

projective R-module E by regarding E as a matrix factorization of 0 and applying the

above definition. In particular, there is a natural map µ ∶ Ω1
R/k⊗RS = ϕ∗(Ω1

R/k)→ Ω1
S/k

which sends dR/k(r)⊗ s to s ⋅ dS/k(ϕ(r)).
Let us prove a lemma before getting into the statement about funtoriality.

Lemma 3.3.20. For ϕ as above and any finitely generated projective R-module E,

there is a naturally induced connection ∇E⊗RS ∶= µ(∇E ⊗ 1) + σ(1 ⊗ dS/k) for the

S-module ϕ∗(E), i.e.,

∇E⊗RS ∶ ϕ∗(E) = E ⊗R S → Ω1
S/k ⊗S (E ⊗R S) ≅ Ω1

S/k ⊗R E.

Proof. First, notice that we have the following two compositions:

E ⊗k S
∇E⊗1ÐÐÐ→ (Ω1

R/k ⊗R E)⊗k S ≅ Ω1
R/k ⊗R (E ⊗k S) ≅ (Ω1

R/k ⊗R S)⊗k E
µÐ→ Ω1

S/k ⊗k E

and

E ⊗k S
1⊗dS/kÐÐÐ→ E ⊗R Ω1

S/k
σÐ→ Ω1

S/k ⊗k E

Let’s denote the sum of the above two compositions by ∇E⊗kS. It is obvious that

they are both k-linear, one can also show that ∇E⊗kS is in fact R-linear by checking

directly. Hence we get an induced map:

E ⊗k S

²²²²

∇E⊗kS // Ω1
S/k ⊗k E // // Ω1

S/k ⊗R E

E ⊗R S

55kkkkkkk

which we denote by ∇E⊗RS.
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Now the only thing left to check is that ∇E⊗RS satisfies the Leibniz rule, i.e.,

∇E⊗kS(s ⋅ (e⊗ s′)) = dS/k(s)⊗ (e⊗ s′) + s ⋅ ∇E⊗kS(e⊗ s′),

for any e ∈ E, s, s′ ∈ S.

Let’s prove it using the same technique as in the proof of Theorem 3.3.16. Say

∇E(e) = dR/k(r)⊗ e′ ∈ Ω1
R/k ⊗R E,

∇E⊗RS(s ⋅ (e⊗ s′)) = ∇E⊗RS(e⊗ ss′)

= µ(∇E(e)⊗ ss′) + σ(e⊗ dS/k(ss′))

= µ(dR/k(r)⊗ e′ ⊗ ss′) + dS/k(s) ⋅ s′ + s ⋅ dS/k(s′)⊗ e

= ss′ ⋅ dS/k(ϕ(r))⊗ e′ + dS/k(s) ⋅ s′ + s ⋅ dS/k(s′)⊗ e.

Meanwhile,

dS/k(s)⊗(e⊗s′)+s⋅∇E⊗RS(e⊗s′) = s′⋅dS/k(s)⊗e+s⋅(µ(∇E⊗1)(e⊗s′)+σ(1⊗dS/k)(e⊗s′))

= s′ ⋅ dS/k(s)⊗ e + s ⋅ (µ(∇E(e)⊗ s′) + dS/k(s′)⊗ e)

= s′ ⋅ dS/k(s)⊗ e + s ⋅ dS/k(s′)⊗ e + s ⋅ µ(dR/k(r)⊗ e′ ⊗ s′)

= s′ ⋅ dS/k(s)⊗ e + s ⋅ dS/k(s′)⊗ e + s ⋅ (s′dS/k(ϕ(r))⊗ e′).

For simplicity (and to make future calculations easier), we follow the usual con-

vention of denoting ∇E⊗RS by ∇E ⊗ 1 + 1⊗ dS/k. Now we can state and prove
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Proposition 3.3.21. (Functoriality)

Under the above hypotheses and the extra condition that both R and S are smooth

k-algebras with the same relative dimension n, we have ϕ∗ ○ ch = ch ○ ϕ∗.

Proof. By our formula for the Chern character, it’s enough to show ϕ∗(At(E)) =
At(ϕ∗(E)) for a matrix factorization E .

By Lemma 3.3.20, choose the natural connection ∇E ⊗ 1 + 1⊗ dS/k for E ⊗R S, so

the Atiyah class of ϕ∗(E) = E ⊗mf S is

⎡⎢⎢⎢⎢⎢⎢⎣

∇E ⊗ 1 + 1⊗ dS/k

∇E ⊗ 1 + 1⊗ dS/k

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

A⊗ 1

B ⊗ 1

⎤⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎣

A⊗ 1

B ⊗ 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

∇E ⊗ 1 + 1⊗ dS/k

∇E ⊗ 1 + 1⊗ dS/k

⎤⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎢⎢⎣

(∇EA −A∇E)⊗ 1

(∇EB −B∇E)⊗ 1

⎤⎥⎥⎥⎥⎥⎥⎦
The Atiyah class of E is

⎡⎢⎢⎢⎢⎢⎢⎣

∇EA −A∇E

∇EB −B∇E

⎤⎥⎥⎥⎥⎥⎥⎦

Now is obvious from the definition of ϕ∗ on strict morphisms that ϕ∗(At(E)) =
At(ϕ∗(E)).
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Chapter 4

Reconstruction of hypersurface

singularities

In this chapter, we will give details about the reconstruction theorem mentioned in

the introduction. First, let us introduce the notion of a pseudo tensor triangulated

category.

4.1 Pseudo tensor triangulated category

4.1.1 Pseudo tensor triangulated category

Here we give the definition of a pseudo tensor triangulated category, which is in

fact just a tensor triangulated category (in the sense of Balmer [1]) with no tensor

identity.

Definition 4.1.1. A pseudo tensor triangulated category is a triangulated category

K equipped with a tensor product ⊗ ∶ K ×K →K such that, for any a, b, c ∈ K, there
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is a natural isomorphism, called the associator

αa,b,c ∶ (a⊗ b)⊗ c ≃ a⊗ (b⊗ c)

and a natural isomorphism, called the braiding

Ba,b ∶ a⊗ b ≃ b⊗ a.

We require that the associator satisfies the pentagon identity, which says this diagram

commutes:

(a⊗ b)⊗ (c⊗ d)

a⊗ (b⊗ (c⊗ d))

a⊗ ((b⊗ c)⊗ d)(a⊗ (b⊗ c))⊗ d

((a⊗ b)⊗ c)⊗ d

αa,b,c⊗d

''OOOOOOOOOOOOOOOOOOOOO

1a⊗αb,c,d

CC̈
¨̈

¨̈
¨̈

¨̈
¨̈

¨αa,b⊗c,d //

αa,b,c⊗1d

¾¾7
77

77
77

77
77

7

αa⊗b,c,d

77ooooooooooooooooooooo

We also require the associator and the braiding to satisfy the hexagon identity :

(a⊗ b)⊗ c

Ba,b⊗1c

²²

αa,b,c // a⊗ (b⊗ c) Ba,b⊗c // (b⊗ c)⊗ a

αb,c,a

²²
(b⊗ a)⊗ c αb,a,c

// b⊗ (a⊗ c)
1y⊗Ba,c

// b⊗ (c⊗ a)

Last, we require that − ⊗ a and a⊗ − are triangulated functors.

Note that the tensor product commutes with finite coproducts:

Proposition 4.1.2. Let K be a pseudo tensor triangulated category. Then for a, b, c ∈
K, we have

(a⊕ b)⊗ c ≃ (a⊗ c)⊕ (b⊗ c).
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Proof. This is Proposition 2.14 of [27].

Removing the tensor identity is the only modification we made compared to

Balmer’s original idea. Other notions like thick ⊗-ideal, radical and so on are ex-

actly the ones defined by Balmer [1]. These will be recalled at the beginning of the

following subsection.

4.1.2 Pseudo spectrum

Everything in this section is due to Balmer [1]. Balmer does not concern the

pseudo case but most of his theory still works without the tensor identity. Here in

this section I just list the ones I need later (i.e., the results that still work without the

existence of the tensor identity). All of Balmer’s original proofs in [1] are still valid.

Let us recall Balmer’s theory of tensor triangular geometry (with slight modifica-

tion to the pseudo case).

Definition 4.1.3. Consider a pseudo tensor triangulated category K. A thick tensor-

ideal A of K is a full subcategory containing 0 and such that the following conditions

are satisfied:

1. A is triangulated: for any distinguished triangle a → b → c → a[1] in K if two

out of a, b and c belong to A, then so does the third;

2. A is thick: if an object a ∈ A splits in K as a ≃ b⊕ c then both summands b and

c belong to A;
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3. A is a tensor-ideal: if a ∈ A and b ∈ K then a⊗ b also belongs to A.

A prime of K is a proper thick tensor ideal P ⊊ K such that

a⊗ b ∈ P Ô⇒ a ∈ P or b ∈ P.

Let the set Spc′(K) be the collection of all primes of K. (We use ′ to indicate the

pseudo category but Spc′(K) = Spc(K) if K contains a tensor identity. Similarly Z ′,

U ′, supp′ denote the analogues of Z,U, supp). For any family of objects S ⊂ K we

denote by Z ′(S) the following subset of Spc′(K):

Z ′(S) = {P ∈ Spc′(K) ∶ S ∩ P = ∅}.

It is clear that ∩Z ′(Si) = Z ′(∪Si) and Z ′(S1)∪Z ′(S2) = Z ′(S1⊕S2) where S1⊕S2 ∶=
{a1 ⊕ a2 ∶ ai ∈ Si for i = 1,2} by checking directly. We also have Z ′(K) = ∅ and

Z ′(∅) = Spc′(K), hence the collection {Z ′(S) ⊂ Spc′(K) ∶ S ⊂ K} defines the closed

subsets of a topology on Spc′(K). We call this the Zariski topology on Spc′(K). The

open complement of Z ′(S) is written

U ′(S) ∶= Spc′(K)/Z ′(S) = {P ∈ Spc′(K) ∶ S ∩ P ≠ ∅}.

For any object a ∈ K, denote by supp′(a) the following closed subset of Spc′(K):

supp′(a) ∶= Z ′({a}) = {P ∈ Spc′(K) ∶ a ∉ P}

which we call the support of the object a ∈ K.

A collection of objects S ⊂ K is called (tensor) multiplicative if a1, a2 ∈ S ⇒
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a1 ⊗ a2 ∈ S. Note that in the original definition (Definition 2.1 of [1]) of a tensor

multiplicative collection of objects, it contains the tensor identity, hence is always

not empty, but for us it can be an empty collection.

Now we start to list the modified statements of Balmer and check that his original

proofs still work. Basically what we do here is simply to remove all conditions related

to the tensor identity from the original statements and add necessary extra conditions

to make the modified version work. The category K in the following statements is a

non-zero pseudo tensor triangulated category.

Lemma 4.1.4. [Lemma 2.2 of [1]]

Let K be a non-zero pseudo tensor triangulated category. Let J ⊂ K be a thick ⊗-

ideal and S ⊂ K a non-empty ⊗-multiplicative family of objects such that S ∩J = ∅.

Then there exists a prime ideal P ∈ Spc′(K) such that J ⊂ P and P ∩ S = ∅.

Lemma 4.1.5. [Lemma 2.6 (b) of [1]]

For any two objects a, b ∈ K, we have U ′(a⊕ b) = U ′(a) ∩U ′(b).

Remark 4.1.6. [Remark 2.7 of [1]]

Since for any S ⊂ K, we have U ′(S) = ⋃
a∈S

U ′(a), it follows from Lemma 4.1.5 that

{U ′(a)∣a ∈ K} is a basis of the topology on Spc′(K). Equivalently, their complements

{supp′(a)∣a ∈ K} form a basis of closed subsets.

Proposition 4.1.7. [Proposition 2.8 of [1]]

Let W ⊂ Spc′(K) be a subset of the pseudo spectrum. Its closure is

W = ⋂
a∈Ksuch that W⊂supp′(a)

supp′(a).

Definition 4.1.8. [Definition 3.1 of [1]]
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A support data on a pseudo tensor triangulated category (K,⊗) is a pair (X,σ)
where σ is an assignment which associates to any object a ∈ K a closed subset σ(a) ⊂
X such that

0. X = ⋃
a∈K

σ(a) (This replaces Balmer’s original condition: σ(1) = X)

1. σ(0) = ∅

2. σ(a⊕ b) = σ(a) ∪ σ(b)

3. σ(a[1]) = σ(a)

4. σ(a) ⊂ σ(b) ∪ σ(c) for any distinguished triangle a→ b→ c→ a[1].

5. σ(a⊗ b) = σ(a) ∩ σ(b).

A morphism ϕ ∶ (X,σ) → (Y, τ) of support data on the same category K is a

continuous map ϕ ∶ X → Y such that σ(a) = ϕ−1(τ(a)) for all objects a ∈ K. Such a

morphism is an isomorphism if and only if ϕ is a homeomorphism.

Proposition 4.1.9. [Proposition 2.9 of [1]]

For any point P ∈ Spc′(K) its closure in Spc′(K) is

{P} = {Q ∈ Spc′(K)∣Q ⊂ P}.

In particular, if {P1} = {P2}, then P1 = P2. (i.e., Spc′(K) is T0.)

Lemma 4.1.10. [Lemma 3.3 of [1]]

Let X be a set and ϕ1, ϕ2 ∶ X → Spc′(K) be two maps such that ϕ−1
1 (supp′(a)) =

ϕ−1
2 (supp′(a)) for all a ∈ K, then ϕ1 = ϕ2.
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Lemma 4.1.11. [Lemma 3.4 of [1]]

Let (X,σ) be a support data on K and Y ⊂ X any subset. Then the full subcategory

of K with objects {a ∈ K ∣σ(a) ⊂ Y } =∶ KY is a thick ⊗-ideal.

Theorem 4.1.12. [Theorem 3.2 of [1]]

Let (K,⊗) be a pseudo tensor triangulated category. The pseudo spectrum (Spc′(K), supp′)
defined above is the final support data on K in the sense of Definition 4.1.8. In other

words, (Spc′(K), supp′) is a support data and for any support data (X,σ) on K there

exists a unique continuous map ϕ ∶ X → Spc′(K) such that σ(a) = ϕ−1(supp′(a)) for

any object a ∈ K. Explicitly, the map ϕ is defined, for all x ∈ X, by

ϕ(x) = {a ∈ K ∣x ∉ σ(a)}.

Proof. We only need to check the modified condition :X = ⋃
a∈K

σ(a), i.e., Spc′(K) =
⋃

a∈K
supp′(a). This is obvious. In fact, the direction ⊇ is trivial and if P is a prime (so

proper), we can find a ∈ K/P and then by definition P ∈ supp′(a). Also, supp′(a) is

defined to be closed.

The rest is exactly Balmer’s original proof in [1].

Definition 4.1.13. [Definition 4.1 of [1]]

The radical
√

J of a thick ⊗-ideal J ⊂ K is defined to be

√
J ∶= {a ∈ K ∣∃n ⩾ 1 such that a⊗n ∈ J}.

A thick subcategory J is called radical if
√

J = J .

Lemma 4.1.14. [Lemma 4.2 of [1]]
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√
J is a thick ⊗-ideal equal to the intersection ⋂

P⊃J
P of all the primes P ∈ Spc′(K)

containing J .

Definition 4.1.15. [Definition 5.1 of [1]]

A support data (X,σ) on a pseudo tensor triangulated category K is a classifying

support data if the following two conditions hold:

1. The topological space X is Noetherian and any non-empty irreducible closed

subset Z ⊂ X has a unique generic point: ∃!x ∈ Z with {x} = Z.

2. We have a bijection θ ∶ {Y ⊂ X ∣Y specialization closed}←→ {J ⊂ K ∣J radical thick ⊗-ideal}
defined by Y z→ {a ∈ K ∣σ(a) ⊂ Y }, with inverse J z→ σ(J) ∶= ⋃

a∈J
σ(a).

Theorem 4.1.16. [Theorem 5.2 of [1]]

Suppose that (X,σ) is a classifying support data on K. Then the canonical map

ϕ ∶ X → Spc′(K) of theorem 4.1.12 is a homeomorphism.

4.1.3 The functor λ

As mentioned in the introduction, tensor products of two matrix factorizations do

not behave the way we want so we need to modify them a little bit. To do this, we

first introduce the following functors.

Definition 4.1.17. For any λ ∈ Q×, define a functor λ ∶ MF (Q,f) → MF (Q,λf).
λ sends an object M = (M1

d1Ð�Ô�Ð
d0

M0) ∈ MF (Q,f) to the object (M1
d1Ð�ÔÔ�Ð
λd0

M0) ∈
MF (Q,λf); it sends a strict morphism α = (α0, α1) ∶ M → N to the morphism

λ(α) = (α0, α1) ∶ λ(M)→ λ(N ), i.e.,
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M1

α1

²²

dM
// M0

α0

²²

dM
// M1

α1

²²
N1

dN
// N0

dN
// N1

gets sent to

M1

α1

²²

dM
// M0

α0

²²

λdM
// M1

α1

²²
N1

dN
// N0

λdN
// N1

where (α1, α0) remains the same.

Thus λ induces a functor, which we still call λ, from the category [MF (Q,f)] to

[MF (Q,λf)], via the following lemma

Lemma 4.1.18. The functor λ maps a homotopy (h0, h1) to the homotopy (h0, λ−1h1).

Proof. Indeed, we have dN1 h0 + h1dM0 = ϕ0 − ψ0 and dN0 h1 + h0dM1 = ϕ1 − ψ1. These

equations can be rewritten as dN1 h0 + (λ−1h1)(λdM0 ) = ϕ0 − ψ0 and (λdN0 )(λ−1h1) +
h0dM1 = ϕ1 − ψ1 which means (h0, λ−1h1) is a homotopy hence λ(ϕ) ∼ λ(ψ).

Now, for any λ ∈ Q×, we have functors

λ ∶ [MF (Q,f)]Ð��Ð [MF (Q,λf)] ∶ λ−1;

they are obviously inverses to each other. Hence the two categories [MF (Q,f)]
and [MF (Q,λf)] are equivalent categories. We next show they are equivalent as

triangulated categories.



61

Proposition 4.1.19. For any λ ∈ Q×, λ ∶ [MF (Q,f)] → [MF (Q,λf)] is a triangu-

lated functor.

Proof. First, λ is clearly additive and there is a natural isomorphism φM = (1M, λ) ∶
λ(M[1])→ (λ(M))[1] for anyM = (M1

d1Ð�Ô�Ð
d0

M0) ∈ [MF (Q,f)].
In fact, we have

λ(M[1]) = λ((M0
−d0Ð�ÔÔ�Ð−d1

M1)) = (M0
−d0Ð�ÔÔ�Ð−λd1

M1),

and

(λ(M))[1] = (M1
d1Ð�ÔÔ�Ð
λd0

M0)[1] = (M0
−λd0Ð�ÔÔ�Ð−d1

M1).

φM = (1M, λ) is well-defined since we have the following commutative diagram:

M0

1
²²

−d0 // M1

λ
²²

−λd1 // M0

1
²²

M0 −λd0

// M1 −d1

// M0

where φM = (1M, λ) is an isomorphism since there is an obvious inverse φ−1
M =

(1M, λ−1) so λ(M[1]) and (λ(M))[1] are isomorphic in [MF (Q,λf)].
Now, let’s show that the functor λ maps distinguished triangles to distinguished

triangles. Note that distinguished triangles in [MF (Q,λf)] have the form:

M pÐ→ N Ð→ cone(p)Ð→M[1]
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where

cone(p) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

N1 ⊕M0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dN1 p0

0 −dM0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Ð�ÔÔÔÔÔÔ�Ð⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dN0 p1

0 −dM1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N0 ⊕M1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

So

λ(cone(p)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

N1 ⊕M0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dN1 p0

0 −dM0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Ð�ÔÔÔÔÔÔÔ�Ð

λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dN0 p1

0 −dM1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N0 ⊕M1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and

cone(λ(p)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

N1 ⊕M0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dN1 p0

0 −λdM0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Ð�ÔÔÔÔÔÔÔ�Ð⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λdN0 p1

0 −dM1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N0 ⊕M1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

We have an isomorphism (1,
⎡⎢⎢⎢⎢⎢⎢⎣

1 0

0 λ−1

⎤⎥⎥⎥⎥⎥⎥⎦
) ∶ cone(λ(p)) → λ(cone(p)). Therefore the

resulting triangle

λ(M) λ(p)ÐÐ→ λ(N )Ð→ λ(cone(p))Ð→ λ(M[1])

is isomorphic (in [MF (Q,λf)]) to the triangle

λ(M) λ(p)ÐÐ→ λ(N )Ð→ cone(λ(p))Ð→ (λ(M))[1]
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hence also a distinguished triangle. This completes the proof.

Corollary 4.1.20. [MF (Q,f)] and [MF (Q,λf)] are equivalent triangulated cate-

gories, for any λ ∈ Q×.

Now we will define a modified tensor product for matrix factorizations which gives

the triangulated category [MF (Q,f)] a pseudo structure.

Definition 4.1.21. Assume 2 ∈ Q×, for any M,N ∈ [MF (Q,f)], define their new

tensor product as
1

2
(M ⊗mf N ), the resulting matrix factorization then belongs to

[MF (Q,f)].

Hence we have a tensor operation for the triangulated category [MF (Q,f)]:

[MF (Q,f)] × [MF (Q,f)] ⊗mfÐÐ→ [MF (Q,2f)]
1

2Ð→ [MF (Q,f)]

From now on, we will simply denote this modified tensor product by ⊗ 1
2 .

Proposition 4.1.22. ([MF (Q,f)],⊗ 1
2 ) is a pseudo tensor triangulated category.

Proof. Given any three matrix factorizations M = (M1
AÐ�Ô�Ð
B

M0),N = (N1
CÐ�Ô�Ð
D

N0),L = (L1
EÐ�Ô�Ð
F

L0) ∈ [MF (Q,f)], we need to check all conditions in Definition

4.1.1 :

1. M⊗ 1
2 N ≃ N ⊗ 1

2 M

2. (M⊗ 1
2 N )⊗ 1

2 L ≃M⊗ 1
2 (N ⊗ 1

2 L)

3. M⊗ 1
2 − and − ⊗ 1

2 M are triangulated functors

4. The pentagon identity
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5. The hexagon identity

The first two are straightforward since we already know that − ⊗mf − is commu-

tative and associative [32]. To prove these for ⊗ 1
2 = 1

2
○ ⊗mf , we just need to insert

1

2

in appropriate places, so essentially the same proofs work.

The third condition is obvious since we already proved in Proposition 2.0.14 and

Proposition 4.1.19 that M ⊗mf − and
1

2
are triangulated functors, hence so is their

composition ⊗ 1
2 .

The remaining two conditions can be shown by explicitly writing down everything

and checking directly. Doing so is tedious but straightforward, so we omit the proofs

here.
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4.2 Support theory for matrix factorizations

There is a well developed support theory for matrix factorizations due to many people

in different contexts. Our main reference is Walker’s forthcoming paper [30], which

develops support theory in the language of matrix factorizations. I am grateful to

Professor Walker for sharing his work with me.

Let us recall everything that we need about the support theory in this section.

Definition 4.2.1. [Walker [30]]

A matrix factorization M of MF (Q,f) is contractible if the identity map on M
is homotopic to the zero map, i.e., there is a degree 1 map from the Z/2-graded

module M to itself (⇐⇒ Q-linear maps h0 ∶ M0 → M1 and h1 ∶ M1 → M0) such that

h1 ○ d0 + d1 ○ h0 = idM0 and h0 ○ d1 + d0 ○ h1 = idM1 .

When the ring Q is regular of finite Krull dimension, the support ofM is defined

to be:

suppmf(M) = {p ∈ Spec(Q)∣Mp is not contractible}.

Equivalently, the above definition is the same as

suppmf(M) = {p ∈ Spec(Q)∣Mp =M⊗mf Qp ≠ 0 in [MF (Qp, f)]}.

From now on, we will assume that the ring Q is regular of finite Krull dimension

and f is a non zero divisor.

Proposition 4.2.2. [Walker [30]]

ForM,N ∈ MF (Q,f), if α ∶M→ N is a homotopy equivalence, then suppmf(M) =
suppmf(N ).

This is obvious from the definition of support.
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Proposition 4.2.3. [Walker [30]]

For anyM ∈ MF (Q,f), suppmf(M) is contained in Spec(Q/f) and is specializa-

tion closed. In particular, when f ∈ Q is a non-zero divisor, suppmf(M) is contained

in

Sing(Q/f) ∶= {p ∈ Spec(Q/f) ⊆ Spec(Q) ∣ (Q/f)p is not regular local ring}.

Since we are looking at matrix factorizations associated to a non zero divisor f ,

we can really think of the definition of support as

suppmf(M) = {p ∈ Sing(Q/f)∣Mp ≠ 0 in [MF (Qp, f)]}.

We will use this as the definition of support from now on.

Proposition 4.2.4. [Walker [30]]

For every closed subset Z of Spec(Q) that is contained in Sing(Q/f), there is an

object M ∈ MF (Q,f) such that suppmf(M) = Z.

Before getting into the next few propositions, we need to introduce the notion

of Hommf(M,N ) for any two given matrix factorizations M ∈ MF (Q,f) and N ∈
MF (Q,g). This is the hom object for the dg category of matrix factorizations. The

reason why we metion it is that it makes the proof of Lemma 4.3.1 (5) nicer. Since

it takes a while to write down the definition of Hommf(M,N ) and we don’t need it

anywhere else, we will omit it here and refer the reader to [23] or [30]. Note that one

can still prove Lemma 4.3.1 (5) without using Hommf(M,N ).

Proposition 4.2.5. [Walker [30]]
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For any M,N ∈ MF (Q,f), we have

suppmf(Hommf(M,N )) = suppmf(M) ∩ suppmf(N )

and

suppmf(M∗) = suppmf(M)

where M∗ ∶= Hommf(M, (0Ð��Ð Q)) ∈ MF (Q,−f).

Corollary 4.2.6. [Walker [30]]

For any M ∈ MF (Q,f), suppmf(M) is a closed subset of Spec(Q/f). In partic-

ular, when f is a non zero divisor, it’s a closed subset of Sing(Q/f).

Proposition 4.2.7. [Walker [30]]

For any M ∈ MF (Q,f), N ∈ MF (Q,g), T ∈ MF (Q,h) we have an isomorphism

Hommf(M⊗mf N ,T ) ≅ Hommf(M,Hommf(N ,T ))

in MF (Q,h − f − g) that is natural in M,N , and T .

Theorem 4.2.8. [Walker [30]]

There exists a bijective correspondence

{specialization closed subsets of Sing(Q/f)}←→ {thick subcategories of [MF (Q,f)]}

given by

Z z→ {M ∈ [MF (Q,f)]∣suppmf(M) ⊂ Z}

and

⋃
M∈T

suppmf(M)↤ T.
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Remark 4.2.9. This theorem is also proved by Stevenson [28] and Takahashi [29] in

a different context.

4.3 Proofs

We will show that the support suppmf mentioned in the last section is a classifying

support data for the pseudo tensor triangulated category ([MF (Q,f)],⊗ 1
2 ). There-

fore we get a reconstruction of Sing(Q/f) by Theorem 4.1.16.

Lemma 4.3.1. For any M,N ∈ MF (Q,f), their supports have the following prop-

erties:

1. suppmf(0) = ∅

2. suppmf(M⊕N ) = suppmf(M) ∪ suppmf(N )

3. suppmf(M[1]) = suppmf(M)

4. suppmf(M) ⊂ suppmf(N )∪suppmf(L) for any distinguished triangleM→ N →
L→M[1]

5. suppmf(M⊗ 1
2 N ) = suppmf(M) ∩ suppmf(N )

Note that in (5), the tensor product ⊗ 1
2 is the modified one defined before, that is

⊗ 1
2 = 1

2
○ ⊗mf .

Proof. 1. suppmf(0) = {p ∈ Spec(Q/f)∣0p = 0 is not contractible} = ∅
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2. suppmf(M⊕N ) = suppmf(M) ∪ suppmf(N )

(⊆) Say p ∈ suppmf(M⊕N ), so (M⊕N )p ≅Mp⊕Np ≠ 0, then p ∈ suppmf(M)∪
suppmf(N ). OtherwiseMp = 0 and Np = 0 will forceMp ⊕Np = 0, contraction.

(⊇) Let p ∈ suppmf(M)∪suppmf(N), without loss of generality, we may assume

that p ∈ suppmf(M), i.e., Mp ≠ 0, so (M ⊕ N )p ≅ Mp ⊕ Np ≠ 0. Therefore

p ∈ suppmf(M⊕N ).

3. suppmf(M[1]) = suppmf(M)

ForM = (M1
d1Ð�Ô�Ð
d0

M0), we knowM[1] = (M0
−d0Ð�ÔÔ�Ð−d1

M1), so it is obvious.

4. suppmf(M) ⊂ suppmf(N )∪suppmf(L) for any distinguished triangleM→ N →
L→M[1]

Proposition 2.0.14 showed that E ⊗mf − maps distinguished triangles to distin-

guished triangles, therefore by taking E = Qp = (0 Ð��Ð Qp), we have a distin-

guished triangle in MF (Qp, f)

Mp → Np → Lp →Mp[1].

Let p ∈ suppmf(M)(⇐⇒Mp ≠ 0), then p ∈ suppmf(N )∪suppmf(L). Otherwise

Np and Lp are both 0, this forcesMp = 0, contradiction.

5. suppmf(M⊗ 1
2 N ) = suppmf(M) ∩ suppmf(N )

For Proposition 4.2.7, take T = (0Ð��Ð Q), we have the following

Hommf(M⊗mf N , (0Ð��Ð Q)) ≅ Hommf(M,Hommf(N , (0Ð��Ð Q))),
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i.e.,

(M⊗mf N )∗ ≅ Hommf(M,N ∗)

Therefore, suppmf(M⊗mfN ) = suppmf((M⊗mfN )∗) (Proposition 4.2.5)

= suppmf(Hommf(M,N ∗)) (the above isomorphism)

= suppmf(M) ∩ suppmf(N ∗) (Proposition 4.2.5)

= suppmf(M) ∩ suppmf(N ) (Proposition 4.2.5)

Also, notice that we have suppmf(M) = suppmf(λ(M)) for any λ ∈ Q×. In-

deed, by Remark 4.1.18, the functor λ preserves homotopy and the defini-

tion of support is the collection of primes where the localized matrix factor-

ization is not contractible. Hence suppmf(M⊗ 1
2 N ) = suppmf(1

2
(M⊗mf N )) =

suppmf(M⊗mf N ) = suppmf(M) ∩ suppmf(N ).

Corollary 4.3.2. (Sing(Q/f), suppmf) is a support data on ([MF (Q,f)],⊗ 1
2 ).

Proof. First, suppmf is well-defined, i.e.,

1. Sing(Q/f) is a topological space.

2. Given α ∶M→ N a homotopy equivalence, suppmf(M) = suppmf(N ).

3. For anyM ∈ [MF (Q,f)], suppmf(M) is a closed subset of Sing(Q/f).

(1) is trivial. (2) is true by Proposition 4.2.2 . (3) is Corollary 4.2.6.

Also, Sing(Q/f) = ⋃
M∈[MF (Q,f)]

suppmf(M). The containment ⊇ is obvious ((3)
above). The other containment is Proposition 4.2.4. Indeed, for any point x ∈
Sing(Q/f), its closure {x} ⊆ Sing(Q/f). Then by Proposition 4.2.4, there is an

objectM ∈ [MF (Q,f)] such that suppmf(M) = {x}, so x ∈ {x} = suppmf(M).
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The remaining conditions are proved by the previous lemma. Therefore, (Sing(Q/f), suppmf)
is a support data.

Proposition 4.3.3. We have that (Sing(Q/f), suppmf) is a classifying support data

on [MF (Q,f)].

Proof. We will denote the tensor product ⊗ 1
2 simply by ⊗ in the proof to avoid unclear

notations like x⊗
1
2 n, x ∈ [MF (Q,f)].

1. The fact that Sing(Q/f) is noetherian and any non-empty irreducible closed

subset Z ⊂ Sing(Q/f) has a unique generic point comes from algebraic geome-

try.

2. We need to show that there is a bijection

θ ∶ {Y ⊂ X ∣ Y specialization closed}←→ {J ⊂ [MF (Q,f)]∣ J radical thick ⊗-ideal}

given by

Y z→ {E ∈ [MF (Q,f)]∣suppmf(E) ⊂ Y }

and

⋃
E∈J

suppmf(E)↤ J.

From the Theorem 4.2.8 above, there exists a bijective correspondence

θw ∶ {specialization closed subsets of Sing(Q/f)}←→ {thick subcategories of [MF (Q,f)]}

given by

Z z→ {E ∈ [MF (Q,f)]∣suppmf(E) ⊂ Z}
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and

⋃
E∈T

suppmf(E)↤ T.

Take θ to be θw. From Theorem 4.2.8, we know that θw(Y ) is thick. θw(Y )
is also a radical ⊗-ideal. Indeed, we always have θw(Y ) ⊂

√
θw(Y ); for the

other direction, notice that if x ∈
√

θw(Y ), i.e., x⊗n ∈ θw(Y ), then suppw(x⊗n) =
suppmf(x) ⊂ θw(Y ) (Lemma 4.3.1 part (5)), then x ∈ θw(Y ), done. The fact

that θw(Y ) is a ⊗-ideal is proven as follows: say x ∈ θw(Y ), i.e., suppmf(x) ⊂ Y ,

for any a ∈ [MF (Q,f)], we have suppmf(a⊗ x) = suppmf(a) ∩ suppmf(x) ⊂ Y ,

done.

The above tells us that θw is well-defined so the only thing left is to show that

it’s a bijection. This is Theorem 4.2.8.

Corollary 4.3.4. We have an isomorphism Sing(Q/f) ≅ Spc′([MF (Q,f)]).

Proof. The previous proposition tells us that (Sing(Q/f), suppmf) is a classifying

support data on [MF (Q,f)]. Now apply Theorem 4.1.16.
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4.4 Reconstruction via graded tensor

triangulated category

We mentioned in the introduction that we can also get a reconstruction theorem

using the usual tensor product −⊗mf − of matrix factorizations by looking at a larger

category: K = ⊔
i>0

[MF (Q, if)].
The definition of a graded tensor triangulated category that I use here is the one

developed by Yu-Han Liu [17]. Liu’s original definition concerns about categories

graded by a monoid but we don’t have that. We only consider categories graded by

Z>0 but this is not a big problem. Exactly the same construction still works.

We won’t recall the definition of a graded tensor triangulated category but rather

refer the reader to Liu’s paper. However, we do want to remind the reader that by

definition an object in K is a tuple (Ei)i>0 (all but finitely many Ei’s are nonzero),

where Ei ∈ [MF (Q, if)] for any i > 0.

The reconstruction theorem is essentially the same as the one we gave before.

However, we do need to make a change to the definition of support for objects in the

graded category K.

Definition 4.4.1. We use the support theory in Section 4.2 to define a support on

the category K, which we denote by suppgr, as the following,

suppgr((Ei)) =⋃
i>0

suppmf(Ei) ∈ X ∶= Sing(Q/f).

Here we need to assume char(k) = 0 to make the support an element of Sing(Q/f)
(if char(k) = 0, we have Sing(Q/f) = Sing(Q/nf),∀n).

We have the following easy consequence of Lemma 4.3.1.
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Corollary 4.4.2. (Sing(Q/f), suppgr) is a support data on K.

Now we are ready to prove

Proposition 4.4.3. (Sing(Q/f), suppgr) is a classifying support data on K.

Remark 4.4.4. The following proof is essentially the same as the one for Proposition

4.3.3. However, we do need to use the universal property of a support data to modify

the proof a little bit. Instead of just saying what the modification is, it’s better to write

down a complete proof here.

Proof. Again, we adopt the notation ⊗ for ⊗ 1
2 for the same reason as in the proof of

Proposition 4.3.3.

1. The fact that Sing(Q/f) is noetherian and any non-empty irreducible closed

subset Z ⊂ Sing(Q/f) has a unique generic point again comes from algebraic

geometry.

2. We need to show that there is a bijection

θ ∶ {Y ⊂ Sing(Q/f)∣ Y specialization closed}←→ {J ⊂ K+∣ J radical thick ⊗-ideal}

given by

Y z→ {E ∈ K+∣suppgr(E) ⊂ Y }

and

⋃
E∈J

suppgr(E)↤ J.

From the Theorem 4.2.8 above, we know there exists a bijective correspondence

θw ∶ {specialization closed subsets of Sing(Q/f)}←→ {thick subcategories of [MF (Q,f)]}



75

given by

Z z→ {E ∈ [MF (Q,f)]∣suppmf(E) ⊂ Z}

and

⋃
E∈T

suppmf(E)↤ T.

From Theorem 4.2.8, we know that θw(Y ) is thick, therefore θ(Y ) is thick.

θ(Y ) is also a radical ⊗-ideal. Indeed, we always have θ(Y ) ⊂
√

θ(Y ); for the

other direction, notice that if x ∈
√

θ(Y ), i.e., x⊗n ∈ θ(Y ), then suppgr(x⊗n) =
suppgr(x) ⊂ θ(Y ) (Corollary 4.4.2), then x ∈ θ(Y ), done. The fact that θ(Y ) is

a ⊗-ideal is the following: say x ∈ θ(Y ), i.e., suppgr(x) ⊂ Y , for any a ∈ K+, we

have suppgr(a⊗ x) = suppgr(a) ∩ suppgr(x) ⊂ Y (Corollary 4.4.2), done.

The fact that θ−1(J) is specialization closed can be checked directly: we get

J → ⋃
E∈J

suppgr(E) = ⋃
E∈J

⋃
i>0

suppmf(Ei) where all the suppmf(Ei)s are closed,

i.e., a union of closed subsets, therefore specialization closed.

The above two paragraphs tell us that θ is well-defined so the only thing left is

to show that it’s a bijection. The idea of the proof is essentially Theorem 4.2.8

(but as mentioned at the beginning of the proof, we do need to change Walker’s

original argument a little bit).

It is clear that for any Y in the left-hand side we have

⋃
E∈K,suppgr(E)⊂Y

suppgr(E) ⊂ Y.

The opposite containment holds since we may write Y as a union of closed

subsets of Sing(Q/f), and for any such closed subset W specialization closed.

There is an Ei ∈ [MF (Q, if)](⊂ K+) with suppmf(Ei) = W by Proposition 4.2.4.
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Likewise, it is clear that for any J in the right-hand side, we have a containment

J ⊂ {E ∈ K+∣suppgr(E) ⊂ ⋃
F ∈J

suppgr(F )}

of radical ⊗-ideals. (That the right hand side is a radical ⊗-ideal is easy to

check, as we did above.) For the opposite containment, given E in the right-

hand side, since suppgr(E) is closed and X is a Noetherian space, suppgr(E)
is contained in a finite union of supports of objects of J and hence, by taking

direct sums, suppgr(E) ⊂ suppgr(F ) for some F ∈ J . Since suppgr is a support

data, there is a unique continuous map ϕ such that ϕ(suppgr(M)) = supp+(M),
therefore supp+(E) ⊂ supp+(F ), i.e., E ∉ P Ô⇒ F ∉ P , for any prime P .

To show that E ∈ J . We have J = √
J = ⋂

P⊃J
P by Lemma 4.4.14 for any radical

⊗-ideal J . F ∈ J = √
J = ⋂

P⊃J
P , so F ∈ P for any P ⊃ J . So E ∈ P for any P ⊃ J ,

if not, E ∉ P Ô⇒ F ∉ P , contradiction. Therefore E ∈ J .

Corollary 4.4.5. We have an isomorphism Sing(Q/f) ≅ Spc′(K).

Remark 4.4.6.

1. As in many reconstruction type theorems, we really should show that the re-

construction theorem we proved is not only a reconstruction of the underlying

topological spaces but rather a reconstruction of schemes. In Balmer’s theory of

tensor triangulated geometry, one way to construct a structure sheaf is to look

at the endomorphism ring of the tensor identity. We don’t have the tensor iden-

tity in our categories (neither [MF (Q,f)] nor ⊔
i>0

[MF (Q, if)]), however, we

do know that there is a tensor identity for −⊗mf −: Q ≅ (0Ð��Ð Q) ∈ [MF (Q,0)].
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We might still be able to use it to give a sheaf for our topological space but it’s

not clear what exactly the construction should be at this stage.

There is another way to construct a sheaf for our space, also due to Balmer;

unfortunately, again, more work needs to be done.

2. In fact, it is very likely that we should really consider a ’Proj-construction’ for

the graded category K = ⊔
i⩾0

[MF (Q, if)] to see what we can get. Also, this larger

category contains the tensor identity so it might automatically solve the problem

in the above statement. However, the author is not able to settle this now. It

will be considered in the future.
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