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REGULARITY FOR SOLUTIONS TO PARABOLIC SYSTEMS AND NONLOCAL
MINIMIZATION PROBLEMS
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Advisor: Mikil Foss

The goal of this dissertation is to contribute to both the nonlocal and local settings
of regularity theory within the calculus of variations. In the nonlocal theory, we first estab-
lish the existence of minimizers for two classes of functionals. However, the main result
of Chapter 2 states an analogue for higher differentiability of minimizers in the setting of
nonlocal functionals, which is established through an application of the difference quo-
tient method. This nonlocal analogue is stated in terms of the fractional order difference
quotient, which corresponds to the order of the Besov space to which the solution belongs.

In the third chapter, we investigate the regularity of solutions to the parabolic system

u; — div(a(z, t,u, Du)) = 0.

In particular, we show that, under subquadratic growth and ellipticity conditions, solutions
of the above system will be Holder continuous with exponent o € (0,1) when the co-
efficients are continuous. In other words, it is shown that there is an open subset of full
measure, when compared to the domain for the problem, on which the solution is Holder

continuous. In order to prove the result, we appeal to the A-caloric Approximation Method.
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Chapter 1

Introduction

1.1 GENERAL THEORY AND METHODS

Within the calculus of variations, there are two overarching topics one often studies.
The first pertains to questions about the quantitative nature of solutions to variational prob-
lems, such as existence and uniqueness, while the second searches for qualitative properties
of solutions. The qualitative study of solutions seeks to answer questions about the asymp-
totic behavior and regularity of solutions. By regularity theory, we mean the investigation
of questions pertaining to increased smoothness or integrability of solutions.

Interest in regularity theory increased after the proposal of Hilbert’s 19" problem which
questioned whether solutions to regular variational problems must be analytic. The ques-
tion was resolved in the positive by both Ennio de Giorgi and John Nash independently in
[20] and [42], respectively. Their results showed solutions to linear elliptic equations with
measurable coefficients were Holder continuous. This was the key component that allowed
one to establish continuity of higher order derivatives through the method of bootstrapping.
Attesting to the significance of these results, continuity results of the same nature as those

contained in [20] and [42] are now commonly referred to as DeGiorgi-Nash-Moser results.



Before considering regularity theory in more detail, we introduce the various methods
from the calculus of variations that are used in this work. The application of variational
principles to partial differential equations or minimization problems involving functionals
begins by confirming the existence of solutions to such problems. The primary method one
employs in order to obtain such a result is the direct method. One begins the method by
selecting an arbitrary minimizing sequence. The coercivity of the functional and the reflex-
ivity of the underlying spaces to which the admissible class belongs can then be used to
deduce the existence of a limit for this minimizing sequence. Lastly, the method concludes
with showing that the limit is contained in the admissible class and deducing that the limit
minimizes the functional by means of the lower semicontinuity of the functional.

Once the existence of solutions has been established, one transitions to studying the
regularity properties of these solutions. As mentioned before, regularity of solutions can
take many forms, but we will only discuss higher differentiability results and continuity re-
sults in this work. The two methods used to achieve these results are the difference quotient
method and the harmonic approximation method, respectively. We note that the last method
is referred to as the harmonic approximation method when studying elliptic equations and
the caloric approximation method when studying solutions to parabolic equations. The

reasons for this will be discussed in the explanation of the method.

1.1.1 THE DIFFERENCE QUOTIENT METHOD

As previously mentioned, the difference quotient method is used to establish higher
order derivatives for solutions to partial differential equations or minimizations problems

involving functionals. For example, consider a minimizer of the functional

/Q F(Du) dz,



where [ satsifies certain coercivity, growth, and uniform convexity conditions. These prop-
erties will be stated more eplicitly later, and we mention them here only to provide an un-
derstanding of the overall method. For simplicity, we take {2 C R™ and v : R* — R. We
also note that Du represents the gradient of the solution u. The method begins by consider-
ing variations ¢ € C'2°(£2), or smooth functions with compact support in 2. By appealing
to classical methods in variational calculus, one is able to establish the following equation

involving the first variation of the functional

/QFg(Du(x)) - Dp(z)dx = 0. (1.1)

As the variation ¢ has compact support, one is then able to translate this variation
by substituting p(x — he;) into the above equation and changing variables. Taking the

difference of these two objects then gives

/ﬂ (Fs(Du(x + he;)) — Fg(Du(q;))) - Do(z) dx.

Then using Leibniz’s rule for integrals, one can rewrite this difference as an integral of the

secord order derivative of the integrand and obtain

/Q/OlF& (f(Du)) (Du(x + he;) — Du(x)) - Do(z) ds dr = 0,

where £ (Du) := Du(z) + s(Du(z + he;j) — Du(x)).
One then makes a particular choice for ¢ which gives rise to multiple terms in the above
functional. Using the uniform convexity of the integrand F' and the compact support of ¢,

these terms can be bounded below by

J

Du(z + h) — Du(z) |? .




Here, V' is an arbitrary compact subset of €2, so that one is able to deduce the local existence
of a second derivative in L?(£2) at the end of the argument. All of the other terms arising
from the particular choice of ¢ are then bounded above by the functional evaluated at the
minimizer or the norm of u € W12(Q2), which are both finite by our assumptions. This is
achieved by using the growth assumptions imposed on the integrand /' and then appealing
to the coercivity of the functional. As these directional derivatives are uniformly bounded,
one can then use an embedding result to deduce the local existence of a second order

derivative, which is the desired result.

1.1.2  THE HARMONIC/CALORIC APPROXIMATION METHOD

Having finished the discussion on the application of the difference quotient method, we
now proceed to discuss the harmonic approximation method which is used to establish the
partial Holder continuity for a solution to a system of elliptic or parabolic partial differential
equations or its gradient. The harmonic approximation lemma facilitates the approximation
of an elliptic or parabolic system of partial differential equations by a linear elliptic or
parabolic system with constant coefficients. Solutions to such linear elliptic systems are
referred to as harmonic functions, and so the name harmonic approximation was given to
the method. As solutions to linear parabolic systems with constant coefficients are referred
to as caloric functions, the method is referred to as the caloric approximation method in
this setting. Often the technical notation and and complexity of the approximation method
detract from the understanding behind the method. In an effort to provide an understanding
of the ideas behind the method, we make a concerted effort to avoid any technical notation
in this discussion.

One begins applying the method by establishing a linearization lemma that captures the



error in approximating a quasilinear system of elliptic equations,
div(a(z,u, Du)) = 0,
with the following system with constant coefficients,
div(a(zo, l(zo), Dw)) = 0.

Here / : Q — RY, where ) C R", is a fixed affine map and z, € ( is fixed. Hence the
latter system is in fact linear and has constant coefficients. Ultimately this approximation
can only be expected to be strong enough in small neighborhoods of Lebesgue points of
Du. This, however, is sufficient to at least establish the desired partial continuity result.
After the linearization of the problem has occurred, the harmonic approximation lemma
is then established and applied to the system. This lemma is the cornerstone of the argu-
ment and states that, as long as the error of the above approximation is small enough,
solutions to the quasilinear system can be compared to solutions of the linear system with
constant coefficients. In order to establish the desired continuity result one needs to show

the solution satisfies a particular decay estimate, namely one needs to show that

][ |Du — (Du),|* dz (1.2)
Bp(l’o)

decays fast enough as p — 0. Here p > 0 and (Du), represents the integral mean of Du
over the ball B,(x,). The utility of the approximation lemma comes from the fact that
it allows one to compare solutions to harmonic functions which satisfy very nice decay
properties. Using these decay properties and the approximation lemma followed by an
iteration lemma, one can then deduce a decay estimate for (1.2). We should note though

that this is a very strong estimate in that it would allow one to deduce the partial Holder



continuity of Du following an embedding result.

However, the method can be modified if one is not able to obtain the rapid decay of the
gradient Du, as is the case in our particular problem in Chapter 3. Instead, we are able to
use an excess functional that allows us to obtain a bound on how quickly Du blows-up in
regions around Lebesgue points and establish a partial decay estimate. For now, we forego
the discussion of the excess functional used to measure the oscillations in v due to the
extensive notation required to define it; however, we will provide a detailed discussion of
the particular excess functional used to obtain our result in the introduction to Chapter 3.
Once this partial decay estimate is established for the first iteration, an iteration lemma is
then used to show the solution itself is in fact decaying quickly enough, at least locally; in

particular

f ot — (), de
Bp(xO)

decreases quickly enough as p — 0. Here (u), is the intergral mean of u on the ball
B,(x¢). From this, we deduce that the solution belongs to a Campanato space which can
be embedded into the set of partially Holder continuous functions using a result by Da
Prato. As mentioned earlier, we will provide a more detailed outline of the caloric method
in Chapter 3; however, a basic understanding of the above outline will suffice for the rest

of this chapter.

1.2 REGULARITY AND NONLOCAL MINIMIZATION PROBLEMS

As the results pertaining to the nonlocal and local problems in this dissertation are
notationally and mathematically very different, we wait to introduce the necessary notation
and more specific mathematical background for each problem within each chapter. In doing

so, we force the more intricate discussions of the methods to occur within each chapter as



well. As such, the discussion within this section of the dissertation will aspire provide an
understanding of where the results of this work fit within the mathematical literature and
provide a more general historical background for each of the problems we consider.

We begin this discussion by considering the results we have obtained for nonlocal func-
tionals. At this point, we should note that the term nonlocal functional has been used to
describe a vast number of different functionals. In many cases, the term has been used to
describe functionals in which the integrand depends on the evaluation of its arguments at
finitely many different points in the domain. These are not the types of nonlocal function-
als we consider; rather, we consider nonlocal functionals that take into account interactions
between points within small enough neighborhoods. While variational methods have been
well-developed in the setting of local functionals, applications of variational methods to the
type of nonlocal functionals we consider are not as prevalent. However, a few results have
been established concerning the existence of solutions and regularity for solutions in this
setting. In fact, one such existence result is due to Hinds and Radu in [36]. Here the authors
use the direct method to establish the existence of minimizers for a nonlocal p-Laplacian
system related to peridynamics. They are then able to deduce the well-posedness of the
problem from their results.

As for nonlocal regularity, Silvestre, Caffarelli, and Kassmann have made the most
contributions thus far. The nonlocal functionals studied by this group mostly involved a

Levy process, or jump process, €.g.

Tu(x) := /n(u(x +y) —u(x) — Du-yxpu)k(z,y)dy. (1.3)

In [45], Silvestre considers solutions to the problem T'u(z) = f(x), where f is a bounded



function and the kernel £ satisfies, among other assumptions, the following bounds:

v M

|y |n+25() < klw,y) < |y[r+2s(@)”

Here 0 < v < M, n is the space dimension, and 0 < s(x) < 1. In this work, Silvestre
shows that solutions to this equation are Holder continuous.

Later Kassmann showed that equations of the form

/Q / (uy) — u(@))(B(x) — dy))k(z,y) dady = 0, for all ¢ € C*(Q),

where k takes the form

v M

7 <k e
|.T—y|n+28 — ($’y) — ’x_y’n+25

have solutions that are Holder continuous. Again, we have here that 0 < v < M, n is the
space dimension, and 0 < s < 1. This work was contained in [37], but was then extended
in [38] where the author showed that the Holder constant and exponent both stay positive
as s goes to 1.

The results by Kassmann were then followed by a series of papers by Caffarelli, Sil-
vestre, et. al. in which they studied integro-differential equations involving a functional
with a form similar to that in (1.3), a fractional order nonlocal Laplacian, and a min-max
problem involving a similar functional to that in (1.3). In this series of papers, namely [11],
[5], and [12], the authors presented more results pertaining to the Holder continuity, or
Lipschitz continuity for the problem involving the fractional order Laplacian, of solutions.

The above results differ from the results we present in Chapter 2 in many different ways.
Perhaps the most noticebale difference is in the types of results obtained in both cases. All

of the above regularity results discuss the continuity of solutions to particular nonlocal



problems, whereas the results of Chapter 2 establish a nonlocal analogue of higher differ-
entiability results. We should also note that the functionals considered in the above results
have a very different nonlocal structure than the functional we consider. For instance, the
above results mostly assume the existence of a full derivative, with the exception of Kass-
mann. The functionals discussed in Chapter 2 assume only the existence of a fractional
order derivative. Moreover, the results we prove are valid in the vectorial setting and not
restricted to the scalar setting. It should be noted though that the kernels considered within
the above results are often times more general than the kernels of our nonlocal functionals.

The nonlocal functionals we consider ultimately stem from questioning whether the
full gradient need be a part of the integrand in order to obtain regularity or if a fractional
order derivative will allow one to obtain regularity for solutions as well. This question,
along with the increased interest in the use of nonlocal models of late, led us to consider

minimizers of the following functionals:

J[u] == /Q/OH F(x,u,9u(z,h)h~?) dh dx

and

Ku] ::// F(x,u, Au(z, h)h~YP) dh dz.
Q J|h<H

Here 2 C R", and u is a vector-valued map into R™. Moreover, Yu(-,-) : Q x (0, H) —

RN™ is defined by %ju(m, h) = w where e; represents the basis vector with 1

in the 7 component and zeros elsewhere and h € R. Also, Au(-,-) : Q x Bg(0) — RN
is defined by A'u(x, h) = w, where h € R". Throughout the rest of this section,
“Gu(x,h) and Au(z, h), will be referred to as fractional order difference quotients in order

to avoid the otherwise technical notation and nonessential differences between the two
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difference quotients until Chapter 2.

As previously mentioned, we begin Chapter 2 by showing the existence of minimizers
for J[-] and K[-] over an admissible class that lies within a particular Besov space. The
need to consider admissible classes contained in Besov spaces is due to the nonlocal nature
of J[-] and K[-]. However the reflexivity of these spaces, allows for the application of the
direct method in order to establish the existence of minimizers. By now, this variational
method has become classical for reflexive Banach spaces, and the inclusion of these results
serves to provide completeness and motivation for the later results of the chapter.

The main results of this chapter are nonlocal analogues of higher differentiability re-
sults. Within the local setting, one considers the higher differentiability of solutions u €

W12(2) to minimization problems involving a functional similar to

/ F(z,u, Du) dz,
Q

1.e. they are able to deduce that u € VV;?(Q) The main results contained in Chapter 2

show that minimizers of

J[u] ::/Q/OH F(x,9u(z, h)h =) dh dz,

and

ul = x, Nulx —1/2 X
Kl /Q/|h<HF( Au(z, B)|B~2) dh d

have a similar property. We note that the form of .J|-] and K[-| only requires minimizers
to belong to the Besov space B%?(12) originally, where 2 pertains to the integrability of the
solution and 0 < s < 1 represents the order of the Besov space. In the latter half of Chapter

2, we are able to show that minimizers of these functionals are contained in the Besov space
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BE2(Q)if 0 < s < 4 and B(Q) forany a € (0,1)if 1 < s < 1. As the order, s,

corresponds to the fractional order of the difference quotient of the solution, these results

are in fact a nonlocal analogue of the local results pertaining to higher differentiability.

1.3 REGULARITY AND PARTIAL DIFFERENTIAL EQUATIONS

We now proceed to discuss the contents of the last chapter in this work. This requires
that we move from the nonlocal setting within the calculus of variations to the local setting.
The study of regularity theory in the local setting is extensive compared to the nonlocal
setting, and so we begin by providing a very brief history of regularity results that led to
the study of partial Holder continuity. We will then introduce our results and comment on
the use of the caloric approximation method.

In this brief historical review of regularity theory, we will try to discuss results in both
the elliptic and parabolic settings; however, we will only present equations in the elliptic
setting in order to maintain clarity. Moreover, we also provide a more in-depth introduction
to regularity results for the parabolic setting in Chapter 3. In [20], E. de Giorgi showed that

solutions, u € W12(0Q), to the linear second order partial differential equation

Za—xa”“" =0, (1.4)

where ¢/ are the terms of a symmetric, real valued, uniformly elliptic matrix, are Holder
continuous. Assuming F is smooth enough, taking u = Dw for some w € W?2?(Q)), and
setting ¢ (z) = Fee(Dw), then (1.4) is the system of Euler-Lagrange equations for the

functional

/Q F(Dw) da.



12

Here I is the second derivative of /" with respect to the argument Dw. Since (1.4) is the
Euler-Lagrange equations for the above functional, one can then use de Giorgi’s result to
show w € CH*(Q2). The continuity of higher order derivatives could then be established
via bootstrapping.

It was later recognized by Ladyzenskaja and Ural’tseva that the above method did not
rely on the linearity of the equation. In [39], the two authors proved that weak solutions to

quasilinear equations of the form

div(a(z,u, Du)) = b(z,u, Du),

where a(-,-,-),b(, ) : 2 x R x R® — R, also belong to C1*((2), as long as a and b

satisfy:

a(x,u, Du) - Du > v|DulP — ¢(z), almost everywhere in €2,

la(z,u, Du)| + |b(z, u, Du)| < L|DulP~™ + c(z).

Here p > 1 and 0 < v < L are given, and ¢(z) € L. (Q2). In general, this is the best
result one could hope for as the coefficients in the above equation need only be measurable
for the theorem to apply. The parabolic analogue of this result has been established in the
series of works [22], [23], and [21] by DiBenedetto and Friedman.

It is important to note that the results in the parabolic setting took longer to establish
due to the subtleties that arise in the parabolic setting. For instance, the scaling in the
time and spatial directions do not match when p # 2. This led to the development of the
now well-known intrinsic geometry by DiBenedetto. Another such subtlety is the lack of

regularity in the time direction. This does not allow one to use the solution itself as a valid

test function when extending the methods of de Giorgi from the elliptic setting. In order
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to overcome this lack of regularity, one must use Steklov averages of the solution when
constructing proper test functions. While these averages are defined more precisely later,
they are integral averages in the time direction which converge back to the solution as the

diameter of the domain goes to zero. While all of these were overcome by DiBenedetto and

2n

Friedman, the results in the parabolic setting are only able to be established for p > -=%.

In order to keep the introduction moderately short, we forego the discussion of this bound
and only note that it exists.

After the full regularity of solutions to quasilinear elliptic equations was established,
mathematicians began to question the extent to which the results in the scalar setting could
be applied to the vectorial setting, i.e. the setting in which the solution u € W1?(Q; RY)
with N > 1. It was eventually shown in the vectorial setting that one cannot expect ev-
erywhere Holder continuity of the solution when considering systems of quasilinear partial
differential equations. Many counterexamples have demonstrated this phenomenon; how-
ever, we cite only two examples, one of which can be found in both [34] and [35]. For a
more refined counterexample, one may also consult [43]. Similar results were also estab-
lished in the parabolic setting by the authors of [47], [48], and [49]. In [49], Struwe was
able to show that a solution to a nonhomogeneous uniformly parabolic diagonal system
developed a blow-up discontinuity in finite time when the right-hand side of this system
was assumed to have quadratic growth. The authors of [47], then extended this result by
showing blow-up of a solution in finite time for the corresponding homogeneous system.
Finally, the authors of [48] were able to improve the results of the previous two papers by
showing a solution to a system involving real analytic coefficients blows-up in finite time.
The paper is also nice in that the calculations are easier to follow than the previous papers.
These examples all show that Holder continuity does not play the significant role in the
regularity of solutions to systems of partial differential equations but rather partial Holder

continuity. Partial Holder continuity establishes the local Holder continuity of solutions to
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systems of partial differential equations on an open set 2y C €2, where 2 is the domain of
the system and the Lebesgue measure of Q\ (2 is zero.

As partial regularity of a solution is unattainable without some continuity assumptions
on the coefficients of the system, the research has focused on weakening the continuity
assumptions on the coefficients of the system and deducing the regularity that can be ob-
tained for the solution. To this end, Sergio Campanato provided efforts to establish the
partial Holder continuity of solutions to quasilinear elliptic and parabolic systems while
only assuming continuity of the coefficients, as opposed to some stronger form of continu-
ity such as Holder continuity, in [15], [14], and [16], respectively. While his results were
valid for some p > 1, they were found to be invalid for certain p > 1.

In [27], Duzaar and Steffen presented the harmonic approximation method for the first
time. The result has become the standard method used to obtain partial 6lder continuity
results, and in Chapter 3, we use the A-caloric approximation method to prove the partial

Holder continuity of solutions for the following quasilinear parabolic system:
w; — div a(x, t, u, Du) = 0. (1.5)

Here Q@ C R™, Qp := Q x (=T,0), Du is the spatial gradient of wu, and af(-,,")

Qp x RN x RM™ — RN" is a vector field satisfying subquadratic growth, ;2% < p < 2, and
ellipticity conditions. Moreover we assume that the vector field satisfies a continuity con-
dition slightly weaker than Holder continuity with respect to its third argument while only
assuming the map a(-, -, &) : Qp x RY — RY" is continuous for all £ € RY™. Many re-
sults concerning the partial Holder continuity of the spatial gradient have been established
previously under stronger continuity assumptions on the coefficients, and these results are
discussed thoroughly in the introduction to Chapter 3. However, we note that this is the

best result one could, in general, hope to obtain due to the previous examples of systems
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with measurable coefficients that have solutions with blow-up in finite time. We also note
that this result extends the work of Campanato to all n2_47:2 < p < 2. The extension of Cam-

panato’s result to all p > 2 was previously established by Bogelein, Foss, and Mingione in

[6].
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Chapter 2

Nonlocal Functionals

2.1 INTRODUCTION

As stated earlier, the aim of this chapter of the dissertation is to contribute to the non-
local theory within the calculus of variations by establishing the higher differentiability, in
the context of Besov spaces, for minimizers for a class of nonlocal functionals. The moti-
vation for the study of these functionals arose from two considerations. The first is from the
recent inclusion of more nonlocal features within models in continuum mechanics, math
biology, and image processing, for example in [36], [32], and [33], and a lack of literature
on nonlocal functionals in regards to variational methods. As mentioned earlier, the second
comes from considering whether the full gradient is needed in order to establish regularity
of the solution to minimization problems or whether a fractional derivative will suffice. We
also note that the results of this chapter were originally published in the manuscript [30] in
order to include these results in the mathematical literature in a timely manner.

Due to the nonlocal nature of the functionals we study here, the natural space over
which to consider minimizers is a Besov space, which is denoted by B*7%(€); R") through-

out this chapter. Here 2 C R™ is open and bounded, 1 < p,q < oo, and s € (0,1). Func-
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tions contained in these spaces are said to have a fractional derivative of order s and are
characterized by the integrability of their fractional order difference quotient. In this chap-
ter, we are able to use this fractional order difference quotient to show that minimizers of
particular nonlocal functionals can be expected to belong to a higher order Besov space. As
the order of the Besov space corresponds to the order of the fractional difference quotient,
this result can be said to extend higher differentiability results to the nonlocal setting.

We begin the present chapter by considering the following two functionals

H
J[u] ::// F(x,u,9u(zx, h)h~Y?) dh dx (2.1)
QJO

and

K] = / / Fla,u, Au(z, h)|h[~7) dh da. 2.2)
o Jin<u

Here p € (1,00), and Yu(x, h) and Au(z, h) represent the difference quotients of frac-
tional order s as mentioned previously in Chapter 1. While the functionals will be fully
described in Section 2.2, the two functionals can be understood in the following sense.
The J-functional can be described as a functional that relies upon changes in coordinate
directions of the domain, whereas the K -functional takes into account changes in u over
all radial directions. We note that a similar functional to K[-] was used in [32], where the
authors utilized the related functional to denoise images. There is also discussion that non-
local functionals will denoise images that possess some internal periodicity more accurately
than previous models.

To the authors’ knowledge, the consideration of variational methods within the theory
of nonlocal functionals has been confined to the scalar setting. So we begin by showing the

existence of minimizers for .J[-| and K [-] by means of the direct method. The direct method
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uses the coercivity and convexity of the integrand F' and weak sequential lower semicon-
tinuity of the functional to prove the existence of minimizers. The method is considered
classical within the calculus of variations, and more thorough introductions to this strat-
egy can be found in [19] and [28]. The existence and uniqueness results mentioned here
comprise Section 2.3 of this work. As these methods are well-known and the existence of
minimizers for the K -functional is proved in a similar manner, we provide detailed proofs
for the J-functional only and outline the arguments for the K -functional.

In the last two sections of this chapter, we investigate the regularity for minimizers of

H
J[u] ::// F(x,9u(z, h)h~?) dhdx (2.3)
aJo

and

Ku] ::// F(x, Au(z, h)|h|~Y?) dh dz. (2.4)
Q J|h<H

Note that here we have taken p = 2 and dropped the explicit dependence of the functional
on the minimizer u. Taking p = 2 in the above integrands corresponds to the assumption of
quadratic growth for the integrand with respect to the fractional order difference quotient.
As mentioned previously, the regularity result we are able to show says that minimizers of
J[-] and K] belong to a higher order Besov space than originally assumed. In particular,
if u is a minimizer of the given functional and is assumed to belong to B*%2(£); RY), then
u € B2 (S, RY), for some t > s.

The regularity thoerems mentioned in the preceding paragraph are obtained through the
difference quotient method, which is discussed for example in [28] and [34]. As mentioned

in Chapter 1, this method uses the convexity and coercivity of the integrand F' to elicit a

bound on an iterated difference quotient. We then employ an embedding theorem in order
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to bound the higher order Besov norm and establish the result. The major obstacle in these
proofs is adapting the difference quotient method to account for the iterated difference
quotients that occur. In the local setting, one does not need to worry about this as the
method gives rise to a single difference quotient involving the gradient of the solution.
However, the problem becomes unavoidable in the nonlocal setting due to the appearance

of the fractional order difference quotient in the third argument of the integrand.

2.2 BACKGROUND

Let €2 C R" be open and bounded and define

| Ba(2), if o > 0,
Qa = e

{x €eQ:Bylx) CcQ}, ifa<.

If @ > 0, we will often refer to the set 2, \(2 as the collar of size « around 2. Consider a

map u : Qg — RY and define Gu(-,-) : @x (0, H) = RN" by G/u(x, h) = w

where e; represents the basis vector with 1 in the j™ component and zeros elsewhere. We

say u is in the Besov Space B*P4(Q2; RY), where 1 < p,q < coand 0 < s < 1, if

|

[e8) ; dh 1/q
BsPa(QRN) *T ||U'||LP(Q;]RN) + Z (/0 ”%U(% h)Hip(th;RN) 7) <oo. (25)

2%
Note that once h reaches one-half of the diameter of €2, 2_, is the empty set and the
integrand in the previous seminorm becomes zero. Thus we are allowed to write the integral
in this form. In fact, we can replace infinity in the above seminorm with any 0 < H < oo
and all of the norms are equivalent. We will however take H corresponding to the upper

limit of integration in the functional for our applications.

We can also define an equivalent norm to that above for B¥74(Q2; R") by measuring
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changes in every radial direction from the point . We do this as follows. Let By (0) be
the ball of radius H > 0 in R", and define Au(-,-) : Q x By(0) — RY by Alu(z,h) =

w Then U lS ln BS P, Q(Q RN) lf and Only lf

lul

dh
Bspa(QRN) " ||u||LP(Q;RN) + (/ [Au(z, h)HLP Q_jnRY) |h|n) : (2.6)
|h|<oo

Note once again that the integrand becomes zero once h is large enough, and again the
norms are all equivalent when we replace infinity in the definition of the seminorm with
0 < H < oo. We denote the set of all u € B*P4(Q;RY) such that v = g on Qz\Q
by Bd;»"(Q;;RY), and B*?(Q; RY) by B*?(Q; RY). We further use B;?(Q2; RY) to
denote the space of all u such that for each V' CC  we have u € B*P4(V; RY).

The two norms above are equivalent when ¢ = p, which can be established through
the the equivalence of their respective seminorms on all of R™. The equivalence of the

following seminorms is established by Proposition 14.40 in [40],
; dh 1/p |p 1/p
S ([ 1l 5) e ([ O )
2y

whereas, the equivalence of the following

(/ |Au(z, )| dh) g (// Ju(z) = (@) d)l/p
u(z, i an y
e T e rx—yrn ”

can then be established using a simple change of variables. Hence all three of the semi-
norms are equivalent, and we can represent them all by |u| g rng¥).

Recall the following definition from the Direct Method in the Calculus of Variations:

Defintion 2.2.1 (Caratheodory Function). Let Q C R™ be an open setand f : QxRX — R,

Then f is said to be a Carathéodory function if
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1. @~ f(x,7) is measurable for every v € RE,
2. v+ f(z,7) continuous for almost every x € §).

With this definition and the previous notation in mind, we consider the following function-

als throughout the paper:
H
Ju] = / / F(x,u,9u(zx 4+ h)h~/?) dh dz,
QJo

and

K[u]:// F(x,u, Au(z + h)|h|™/?) dh dz,
o Jih<H

where the function F' is a bounded, uniformly convex, and coercive Catheodory function.
The first step to obtaining an existence result for the functionals .J|-] and K [-] by means
of the direct method is to show the functionals J[-] and K[-] are weakly lower semiconti-
nous. In order to obtain the weak lower semicontinuity of these functionals, we will first
prove the result for a sequence which converges strongly, and then extend the result to
weakly convergent sequences by means Mazur’s Theorem. We will then proceed to prove
the existence of minimizers of .J[-] and K[-], for which it is necessary to use the following

extension of the Sobolev-Gagliardo-Nirenberg inequality to Besov Spaces:

Theorem 2.2.1. Let u € L}, (R™) be a function vanishing at infinity such that |u

loc

Bs:p.a (Rn)

is finite for some 0 < s < 1,1 < p < 2, and 1 < q < L. Then there exists C* =
S

n—sp

C*(n,p,s,q) > 0 such that

n—sp

(/ |u(x)|n7171;p dx) " < C*lu

In particular, B5P4(R") is continuously embedded in L°(R™) for all p < 0 < e

Bs:pa(Rn)-
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This result is proved in [40] for the semi-norm associated with the .J-functional on all of R™.
However, we know from the above discussion that the two seminorms associated with the
J-functional and K-functional are equivalent on R" when ¢ = p. Hence, the embedding
also holds for the semi-norm associated with the K -functional on all of R” when g = p.
In order to apply the above extension of the Sobolev-Gagliardo-Nirenberg inequality
on bounded domains, we will will need H to be large enough to approximate the seminorm
on all of R" by our seminorm on (2. The following lemmas state specifically when this is

possible.

Lemma 2.2.1. Let u € B¥P(2;RY) be such that u = 0 on R™\Q, where 0 < s < 1 and
N *2p—1 1/sp
C(n7 7p)C ) . Then,
sp

1 <p< "L, and assume H > H* ::(

n—sp’

||u||Lp(Q;RN) < C%u B=P(Qp;RY)

C(n,N,p)C*spH*®
spH®P — ¢(n, N, P)C*2r~1

orem 2.2.1, and c¢(n,N,p) is the constant given for a change from the LP-norm to the p™

1/p
where C** = ( ) > 0. Here C* is the constant from The-

power of the norm.

Proof. Begin by noting that since u = 0 on R™\()

00 dh H dh
J A Py N R A

* 1
—1
+2p Hu”ip(Q,RN)/H Wdh

H dh
B P

_/0 ng(‘rah)”LP(QH_h%RN) h
1

p—1 p
+2 ||u||Lp(Q,RN) spHP
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Then, we must have

dh\ V/P\ P
|U‘BSP R™RNY) T <Z (/0 ||gu||[,p R7;RN) 7) )
n,N

h
e(n, N, p) Z / 2 —
dh

§c(n,N,p)< IR

1
1
+2p ||u||LPQRN) pHsp).

By applying Theorem (2.2.1) to u followed by the above estimate, we have

||u||ip(Q;RN) - ||u||ip(]Rn;]RN < C*|U Bs:P(R"; RN)

c(n ulx, + N
= ) ) 0 LP(QH RN h Lp QRN) SpHSP

, we can subtract the L”-norm on the right-

N C«*prl 1/sp
So as long as H > <c(n, ) >
sp

hand side from both sides of the inequality to obtain

BsP(Qp;RN)-

lull? < C(n,N,p)C*spH*P uf?
Lr@RY) =\ spHsp — ¢(n, N, P)C*2p-1

Similarly, one can show the same inequality holds for the K -functional.

Lemma 2.2.2. Let u € B¥P(2;RY) be such that u = 0 on R™\Q, where 0 < s < 1 and

C* 2p— 1\ 1/sp
( ) . Then,
sp

1<p

||u||Lp(Q;]RN) < C%u B=P(Qp;RY)
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C*spH*P
spHsP — C*2r~1

1/p
where C** = ( ) > (0. Here C* is the constant from Theorem 2.2.1.

Lastly, we mention a few results that will be used to obtain the higher fractional or-
der differentiability in Section 2.4. In order to show such a result via the difference quo-
tient method, it is necessary to apply an embedding result that relates higher order Besov
spaces and iterated difference quotients in Besov spaces. Let V' CC (). We say that

u € Bwa(g=ra(VRY)) if

HUHJSQ P (514 (V;RN))

—HuHLp(VRwZ(/ [ e (giute.0) ot

is finite when considering Besov spaces in the context of the J functional, and if

1/q
1 dh dl
77) 2.7)
LP(V_(h4e);RY)

Hu’ %SQ?P?‘I(%Sl,p,q(V;RN))

- ||uHLp(V;RN>+< |
[|<L J|n|<L

1
a an ar "
LoV nrey ) 1™ 1]

(2.8)

A(Au(w, h)) (z,0)

is finite in the context of the /K functional. The relationship between the iterated norms
above and higher order Besov spaces is the main topic of [2] and [9]. In Lemma 3 of [9],
the authors show a more general version of the following lemma; however, we will only

need the result as stated here.

Lemma 2.2.3. Let V' C R" be open and bounded, 1 < p,q < 0o, and 0 < H < oo. Then,

c(n,,q)

le+52,pyq(v) > yl/q ||u|
n

HU| B52:2:4 (5129 (LP(V))) (2.9)

for s1 + so < 1. Here v, represents the measure of the unit ball in R".
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Following a similar argument to the authors in [9], we will prove that such a result
also holds for the norm in (2.6). In order to do so, it is necessary to employ the following

inequality which is stated and proved in more generality in Section 5.3 of [10]:

Lemma 2.24. Let 1 < p < ocoandV C R"™ be open and bounded. Then for all functions

measurable on V and for all h € R"™ we have

c\n
A, ) oy < / Il
ns

= p|h|"

where v, represents the measure of the unit ball in R™.

Lastly, we provide the following definition which will be referred to in the last two
sections of this chapter. It allows us to state more general assumptions under which the

theorems of these sections are valid.

Defintion 2.2.2. We say that ) C R" is an extension domain, in the setting of Besov spaces,

if there exists a bounded linear operator L : B*P4(Q; RY) — BsP4(R™; RY).

2.3 EXISTENCE AND UNIQUENESS OF MINIMIZERS

In the following section, we present the proofs for the lower semicontinuity and exis-
tence results in terms of the .J-functional. As the analogous proofs for the K -functional
only require notational changes and the direct method is well-known, we will not present
these proofs for the K -functional. However, we state the two theorems separately in order

to keep the notation consistent and precise.

2.3.1 LOWER SEMICONTINUITY

We begin by showing the lower semicontinuity of the functional, which follows from the

coercivity and convexity of the integrand. We will then use the lower semicontinuity to
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show the existence of minimizers for J|-] and K[-]. The lower semicontinuity result for

J[] is stated as follows:

Theorem 2.3.1. Let Q@ C R” and {u;};>, C Bdi""(Q;RY) be such that u;, — u in
ByP(Q;RY), where g € B*P(Qy; RY). Assume F - QxRN xRY"™ — R is a Caratheodory

function which is convex with respect to (u, &) € RY x RN" and satisfies
F(z,u,&) > al|P + blu|? + c(z) (2.10)

for almost every x € ) and for every (u,€) € RY x RN, Here we assume a > 0 and

c € LY(Q;RM).

L Ifb>0andp,q > 1, then

Ju] < liminf J]ug].

k—o0

Il Assume H > H*, 5255 < b <0,and1 < q=p < ni”;p. Then J|] is again weakly

lower semicontinuous.

Proof. First assume that u, — wu strongly in BdS"" (Q;RY), and we will weaken the
notion of convergence on {uy}7°, later. We can also assume that ¢(z) = 0 almost ev-
erywhere in {2 without loss of generality; otherwise consider the functional with integrand
F(&) — c(x) which is still convex for (u,&) € RY x RN™, First note that by convexity we

have

1 1 1 1 1 _y
Jug) — Ju] > 2 Fla =—up — =u, |=Gup — =Gu| b7 ) dhdz.
aJo 2 2 2 2

The coercivity of F', Fubini-Tonelli, and the equivalence of norms on finite dimensional
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spaces, allows us to show

1 H 1
Jlu] = e >—— / / oG — FuP L+ by — ult dhds
2r=t Jo Jo h
_L g guppl 1y 9 de dh
= Qa| uy — Gul E—i— |ug, — ul? dx

a (1 P bH q
=51 \ gl — pesymry - ok — ullzaemy) )

If at this point b > 0, then we certainly have that the right-hand side of the above inequality

is greater than or equal to zero. If however, H > H*and 0 > b > then we can

—a
2HC** ”

apply Lemma 2.2.1 to the right-hand side of the above inequality to find Cy > 0 such that
Jug] — J[u] > Coluy — u|’és,p(Q;RN) > 0.
In both cases, we have
liggf Jug] — J[u] > 0.

Thus J is sequentially lower semicontinuous and we only need to extend the result to
weakly convergent subsequences.

Suppose now that {u;}3°, € Bds"" (Q;RYN) is such that u; — u in Bdi"" (Q;RN).
Define L := liminf_, ., J[ux] which is finite or we are done. So possibly taking a subse-
quence, for each € > 0, there exists K € N such that for all £ > K, J[ux] < L + €. By
Mazur’s Theorem and the boundary condition placed on the 5\ there exists {v,}72, C

co {uy}32  such that
1. v, — w strongly in Bdj”™ (Q; RN),

2. 0= " agu, with oy, > 0and Y0 oy, = 1.
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By the convexity of F', we have

my mye my
Jlv = J [Z aeruT] <Y anJu] <) ag(L+e < L+e
r=K r=K

r=K

The lower semicontinuity of .J[-] and the strong convergence of {v; } to u in Bdi"" (Q; R")
gives
Ju] <liminf J[v;] < L +e.

Jj—o0

As € > ( was arbitrary, we have J[u] < lilgn inf Jug).
—00
In order to establish the result for weakly convergent sequences in Bdf}’p’H (O RY), we

note that with the substitution the following functionals are equivalent:

H
// F(z,w+g,9(w+ g))dhdz (2.11)
QJo

and

H
// F(z,u,%9(u))dhdx. (2.12)
aJo

Since g € B*?(Qy;RY) is fixed, we can establish the lower semicontinuity with respect
tow € Bdy” ’H(Q; RY) for (2.11) if we show the following functional is lower semicontin-

uous with respect to w:

H
// F(z,w+g,9(w+g)) +al9g|” + blg|? dh dx. (2.13)
a Jo

As (2.13) satisfies the coercivity condition and w € Bd” H (£2; RY), we can appeal to the

lower semicontinuity result previously established for zero boundary conditions to obtain
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the lower semicontinuity of (2.13). Hence we have established the lower semicontinuity
of (2.11) with respect to w and, through the above discussion of equivalence, the lower

semicontinuity of (2.12) with respect to . 0

One can also show a similar result for the K -functional. In particular, we establish the

following:

Theorem 2.3.2. Let Q C R" and {uy};2, € Bdi?™(Q;RN) be such that w, — u in
BsP(Q;RY), where g € B¥?(Qp; RY). Assume F : QxRN xRN — R is a Caratheodory

function which is convex with respect to (u, &) € RN x RN and satisfies

F(x,u,8) = alg]’ + blul* + c(z)

for almost every x € Q and for every (u,&) € RN x RN, Here we assume a > 0 and

c € LY(Q;RMY).

L Ifb>0andp,q > 1, then

Ku] < liminf K ug].

k—o0

II. Assume H > H*, 5755 < b<0,and1 <q=p< ni”;p. Then K[| is again weakly

lower semicontinuous.

Proof. We note that once again we can assume without loss of generality that c¢(z) = 0
almost everywhere in (2. Furthermore, we assume u;, — u strongly in Bdg” ’H(Q; RY) as

previously done. Note that by the convexity of the integrand, we have

1 1 1 1
Klugy] — Ku] > 2/ / F(w, §uk — §u, [éAuk — 5Au:| h_l/p) dhdzx.
Q Jih<H
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As in the proof for the J-functional, we are able to apply the Fubini-Tonelli theorem to

obtain

a (1 bH
K[uk] - K[u] 2 2p71 (§|uk —Uu %S,p(Q;RN) + 7 Huk - uHip(Q;RN) ) .

If at this point b > 0, then we can discard the second term on the right-hand side of the
above inequality. If however, H > H* and ﬁ < b < 0, we can use Lemma 2.2.2 to

show that for some C > 0, we have

Kluy) — K[u] > Coluy

P
u’BSvP(Q;RN)'
So in either case, we have

lim Kug] — K[u] > 0.

k—o0

Thus K] is also sequentially lower semicontinuous.

As in the proof for the J-functional, we now need to extend this result to weakly con-
vergent sequences. Given a weakly convergent sequence in Bd}” ’H(Q; RY), we can again
find a strongly convergent sequence {v,} in the convex hull of the tail of {u} such that
vp — u strongly and Kvg] < L + € for all € > 0, where L := liminfy_,, K[ug]. So by
the lower semicontinuity of .J and the strong convergence of {vy}, we have K[u] < L + .
As € > 0 was arbitrary, we have established the lower semicontinuity of K|.

Finally, one can affirm the lower semicontinuity of the /K -functional with respect to
sequences in Bd?p’H (£2; RY) using the same substitution, w := u — g, as in the proof of
the J-functional. Of course, one must also change the fractional order difference quotient
to Ag instead of 4 when modifying the functional to obtain the lower semicontinuity of the

modified functional so that the modification makes sense in this setting.
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2.3.2 EXISTENCE

Having established the lower semicontinuity results for the ./-functional and K -functional,
we are now in a position to apply the direct method in order to deduce the existence of
minimizers for both functionals. We will, again in this section, provide detailed proofs
for the J-functional while outlining the proofs for the K-functional only to establish the

necessary notational changes that must occur.

Theorem 2.3.3. Let Q C R", g € B¥?(Qy;RY), and F - Q x RY x R" — Risa

Caratheodory function which is convex with respect to (u, &) € RY x RN™ and satisfies

F(a,u,§) = alg]” + blul” + ¢(x) (2.14)

for almost every x € Q and for every (u,&) € RY x RN, Here we assume a > 0 and

c € LYQ;RY).

L Ifb>0andp,q> 1, then J[-] has a minimizer in o/, := Bds?»" (Q; RV).

II. Assume H > H*, 5755 <b<0,and1 <q=p< ni”;p. Then J|-] has a minimizer

in o, == Bd;P" (Q; RY).

III. Furthermore, the minimizer is unique in both cases provided F' is strictly convex with

respect to (u,§) € RN x RV™,

In what follows, we will establish the existence of minimizers over the admissible class
in which ¢ = 0 on Qy\(2. We will then establish the existence of minimizers in the
case of nonzero boundary values by modifying the functional as in the result for the lower

semicontinuity argument and appealing to the result for zero boundary values.
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Proof. If me{ J[u] = oo, then any u € 7, will be an acceptable minimizer. So we suppose
ucA
that inf J[u] = ¢ < oo. The coercivity condition then shows that ¢/ > —oo. Let {uz}52; C
uG s

27, be a minimizing sequence of .J. Without loss of generality, we can take ¢(z) = 0 in the
hypotheses for the same reason stated in the proof for lower semicontinuity. Then by the

coercivity condition, we have

H
1
J[uk]Z// a|%uk(as,h)|pﬁ—l—b|uk|qd$dh
aJo

H
1
:/ /a|§4uk(x,h)|p—+b|uk|qdhdx
0o Jo h

a (1 bH
~ op1 (§|u’€ ZJ)BS»P(QH;RN) + " ||uk||%q(Q;RN) ) (2.15)

If at this point b > 0, we can use Holders inequality to obtain

a bH
J[uk] > op—1 ( | kBsp(QHRN)—" ||u/€||Lq QRN))

S » bH »

As Jug] — € < 00, supgey ||ukl

pew(yry) < 00. In the other case, namely when
H > H*and 0 > b > 575, we apply Lemma 2.2.1 to the L?-norm on right-hand side of
(2.15), which is actually an L”-norm in this setting, to obtain

where Cyy > 0. Hence the Besov seminorms of the sequence {uy} are uniformly bounded.
We then use Lemma 2.2.1 to show {u;} are uniformly bounded in LP(Qy;RY). In ei-
ther case, we have shown {u;} is a uniformly bounded sequence in B*?(Q2;; RY). Since
B*P(Qp; RY) is reflexive, there exists u € B*P(Qp; RY) such that, possibly taking a sub-

sequence, which we will not relabel, u, — u in B*P(Qp; RY). We now need to show
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that u € o7, Note that Bdj"" (Q; R") is a closed linear subspace of B*?({2;; RY), and
thus o7, is weakly closed by Mazur’s Theorem. Hence, u € 7. So by the weak lower
semicontinuity of ./, we have

Ju] < liminf J[ug] < Ju).

k—o00

Therefore u € 7 is a minimizer of J[-]. One can then show uniqueness in the usual way
when given that F’ is stricly convex.

Finally, one can show the prove the existence of minimizers when nonzero boundary
conditions are present by modifying the functional in a similar manner to the lower semi-
continuity proof and modifying the minimizing class. We begin by taking w = u — ¢ and

modifying the minimization problem as follows:

H
b
minimize// F(x,w+g,A(w+g))+g|Ag|p—|—§|g|qdhdx, (2.16)
aJo

subject to w € Bds"" (Q; RY).

Since g € Bd*?(Qy; RY) is fixed, the solutions of the above problem also minimize the

functional

H
// F(z,w+ g, AN(w+ g)) dhdx
aJo

over the same admissible class. We only subtracted the last two terms in order to meet
the coercivity condition so that we are able to apply the result for zero boudary conditions.
However, the above functional and its corresponding minimization problem over the ad-
missible class with zero boundary conditions is equivalent to the orginal functional and its

minimization problem over the admissible class with u = g on Qz\2. Therefore, appeal-
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ing to the existence result for zero boundary conditions to solve (2.16) in order to deduce
the existence o minimizers provides the existence of minimizers for .J[-] over the admissible

class with nonzero boundary conditions. 0
Similarly, we have the following result for the /K -functional.

Theorem 2.34. Let Q@ C R, g € B (Qy;RY), and F : Q x RY x RY — Risa

Caratheodory function which is convex with respect to (u, &) € RY x RY and satisfies

F(x,u,&) > aléP + blu|? + ¢(x)

for almost every x € Q) and for every (u,&) € RN x RN, Here we assume a > 0 and

c € LYQ;RY).

L Ifb>0andp,q> 1, then K[] has a minimizer in o, == Bd;"" (Q; RY).

II. Assume H > H*, 58 < b <0,and1 < qg=p < ni”;p. Then K[-] has a minimizer

in o, := BA:PH (Q;RY).

II. Furthermore, the minimizer is unique in both cases provided F' is strictly convex with

respect to (u,§) € RN x RY.

Proof. As in the proof of the J-functional, we can assume without loss of generality that

inf,e Klu| = ¢ < 0o and ¢(x) = 0. So by the coercivity condition, one can obtain

ca (1 bH

é‘uk %s,p(QH;RN) + 7 HukH%q(QﬂRN) ) ’

We can then apply Holders inequality, if b > 0, or Lemma 2.2.2, if —ﬁ < b<0and

H > H*, to the second term on the right-hand side in order to obtain the lower bound

p
BoP(QriRN)-
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Thus, we can deduce the existence of the minimizer in .7, just as we did in the proof
of the J-functional by using the lower semicontinuity of the K -functional instead. Again,
uniqueness is established using the same proof by contradiction that is used in the local
setting.

Finally, one can show the prove the existence of minimizers when nonzero boundary
conditions are present by taking w = u — g on 25 and appealing to the result for prob-
lems with zero boundary conditions to deduce minimizers of the equivalent minimization

problem :

b
minimize / / Flz,w+ g,A(w+g)) + 2|Ag|p + =|g|* dh dz,
o Jn<H 2 2

subjectto w =0 on Q2 \2.

2.4 HIGHER FRACTIONAL DIFFERENTIABILITY

In this section, we consider the functionals

J[u] = /Q/OH F(z,%9u(x, h)h~Y?) dh dz,

and

u| = T, \Nulx —1/2 X
Kul /Q/WF( Au(z, h)|1|~/2) dh d,

where we have taken p = 2. Recall from the introduction of this chapter that taking p = 2
corresponds to the quadratic growth assumptions we assume for the integrand. In what

follows we investigate the regularity of minimizers for these two functionals, which is
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provided in the form of an increase on the order of the Besov space to which the minimizer
belongs. We will first show the results for the ./-functional as the necessary lemmas are
already established in this setting. We will then show that similar results hold for the K-

functional.

24.1 THE J-FUNCTIONAL

We now proceed to prove the higher differentiability result for the ./-functional which can

be stated as follows:

Theorem 2.4.1. Let F : Q) x RN — R be a coercive function that is C*(Q x RN"),

uniformly convex with respect to ¢ € RN", and quadratic in growth with respect to & €

RN je.

F(x,€) > al¢)? + c(x), forsomea > 0,c(x) € L'(QRY),
Fee(2,)0-0 > v|0]?,  forall @ > 0 and almost every x € ,
|Fee(, )| < M, forall ¢ € RN™ and almost every x € (,

|Feo(2,8)| < M1+ |€]),  forall ¢ € RN™ and almost every x € Q.

Further let o/, = Bdy*" (S RY), where g € C™(Qp; RY) for some 0 < s < 1, and

assume u € o, satisfies

= inf .
Ju] feBs}Qn(Q;RN) J[f] < o0

Thenu € BX**(Q;RN) if s < 1/2, and u € BX?(Q;RN) forany 0 < o < 1if1/2 < s <

loc loc

1. Furthermore, we need only assume g € B*%(Qu; RY) if Q is an extension domain in

B2 (S RY) when s < 1/2 and in B (4 RY) for all a € (0,1) when s > 1/2.

loc
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Proof. Let u € o, for some 0 < s < 1, be an infimum of J[]. Since u = g on Qy\2, we

can define w := u — g and note that w must minimize the following functional:

Jy[v] ::/S;/O F(z,9{v+ g}(x,h)h~?) dh dx,

over all v € Bd3"" (Q; RN). Since w is the minimizer of the above functional, w satisfies

the following analogue of the weak Euler-Langrange Equations:

H
/ / h_1/2F5 (x,ff{w + g} a, h)h_l/Q) ) (Sp(aj * hzjs) — S0@)) dhdxr =0, (2.17)
QJo

forall p € Bdg’Q’H. Since ¢ has compact support, we can test (2.17) with p(z — leg, h) for

¢ small enough and apply a change of variables to show

/ /H W2 Fe (x+ Loy, 9{w + g} (x + Leg, h)h™'?)
aJo
. (s@(l’ + he;j) — p()

7 ) dhdz = 0.

From the previous two equations, we can add and subtract a term to obtain
H
/ / {Fg (z + ler, 9{w + g}(x + ley, h)h /%)
QJo
— Fe (v, {9w(x + ley) + Gg(x,h)}h"?) } -G o(x,h)h ™2 dh dx
H
+/ / {Fg (z, {Gw(x + ley) + G g(x, h)}h™'?)
QJo

— Fe (2,9{w + g} (z, h)h™/?) } -G o(x,h)h*dh dx = 0,

which, by way of Leibniz’s Rule, can be rewritten as

/Q/OH /01 %[Fs(% {Z(t,Gw(z,h))
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+Gg(x, h)}h )] - Gz, k)b~ dt dh dx

H 1
d
:—// /E[Fg(x+r€ek,{%w(w+€ek,h)—|—%g(:v,h)
aJo Jo

+7(Gg(x + ley, h) —Gg(x,h)) Y™ - Go(x, h)h™/? dr dh dx.

Here £ (s, f(x,h)) := f(z,h)+s(f(x+Lleg, h)— f(x, h)). Then computing the derivatives

in the previous equation gives

/Q /0 ! /O P, {206 Gl 1)) + Dlo, 1) )
X (Gw(x + leg, h) — Gw(x, h)) - Go(z, )b~ dt dh dz
:—/Q/OH/O1 Feo(7 + rley, {Gw(x + leg, h) + L (r, 9 g(x, b)) }h1?)
lerdp(z, h)h ™ dr dh dz (2.18)
+/Q/OH/01 Fee(z + rley, {Gw(z, h) + L(r,9g(x, h) th™"/?)

x (Gg(x + ley, h) —4Gg(x,h)) - Gp(x, h)h ™ dr dhdz.

Let V CC €, which means there exists U C ) such that V C U C ). Define L :=
min {H,MQ—’QH)}. Hence, Vi C Q. Take p(x,h) = n?(z)Gw(z,()(*~2, where

0 < 8 < sandn(x) € C;°(R™) satisfies

1 on VH,
n(x) =
0 on QH\UH
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Now note that we can rewrite the fractional difference quotient of ¢ to obtain

G o(x,h) = (x + hey) (gw(x + éek,gf;ﬁ) — Gw(z, h))

v (L),

Subsitituting this into (2.18), gives

/Q/OH /Ol(nZ(a:+ he;) Fee (:c {,Sf(t,%w(x, h)) +gg(x,h)}h_l/2)

(%w(m + lew, h) — Gu(z, h))) - <gw(“’ i ge’“’é’; A h)) it gy

h
_ _/Q/OH /01 Fee(z, {L(t,Gw(x, h)) +Gg(x,h) }h~'?)

Gw(z,0)

(%w(:v + ley, h) — Gw(z, h)) -4 (n*)(x, h) (625—3) dt % dx (2.19)

H 1
— / / / F, (x + rley, {gw(x + ley, h) + ZL(r,9g(z, h))}hil/Q)gek
aJo Jo

[772(37 + he;) (gw(x + fek,;g — Gw(x, h))

r07) e (L) i ana

+ /Q /OH /01 Fee(z + rley, {Gw(z, h) + L (r,9g(z, h) th™'/?)

Gw(x + leg, h) — Gw(z, h)
(%8

(Gg(x + leg,h) —Gg(x,h)) - {nQ(a: + hej)<

ra0) e (L) [ ar S e

=1+ 11411l

By the convexity of F', the integral on the left-hand side is bounded below by

Gjulw + leg 1) = Gu(w, ) " dh -
08 h

u;/Q/OHnZ(Hhej)
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By rewriting the the first term on the right-hand side equation 2.19, invoking the bounded-

ness condition on F¢¢, and using young’s inequality, we find

:_2// / (z + he;) Fee (2, { L (t, Gw(z, h)) + Gg(x, h) }h~?)

Gw(x + leg, h) — Gw(z, h) Gw(z,0) dh
( e ~Gn(x, h) 75— dt Td

+/Q/OH /01 Fgg(x, {X(t, Gw(z,h))+Yg(x, h)}hilm)

(%w(w i he;’f)j Fulz, g)) (@, h))? (%) ar 2 gy

h
2
(e, M) // (3 4 he;) gw(x—i—éek,h)—gw(x,h)‘ dh

I h

Gw(z,0) dh
—1 2
// s (@n(z, b)) h d
+ M/ / Guw(z + he; O] (Gn(z, h))? a1

(p=s h

Notice that since 0 < § < sand 0 < ¢ < 1, we can bound the last two integrals in order to

obtain the following, where we have imposed a change of variables on the last integral:

Igc(e,M)/Q/OHHQ(ﬂJJrth)

ol M) [ Dl om) / G, 0)2 de

Guw(x + ley, h) — Gw(z, h)|* dh

2 h

By a similar argument, we can also show

I]<ceM// *(z + hej) gw(m—{—ﬁek,g) Gu(zh)| C%hdx
= // (5 1 he,) %(erk,g) Yg(x, h)‘ %dw

M D3] / Gz, 0)2 da.
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For 111, we use the quadratic growth assumption and then Young’s ineqaulity to obtain the

following bound:

H
I gc(M)// |Gw(x + leg, h) +Gg(x,h) +9g(x + ley, h)|l
aJo

(2 b))

(e, M) // 2(3 + he;) Guw(x + ley, h) — Gw(z, h)|?

78
2
) | / Fu(,b)
QJO

n dh
e M) [ [ nta o hes) 4 @) Pl + e P00 G da
QJOo

dh
h

(e, )2 5 do

_ " g dh
w0 [ [ it hes) 4 nfo)P gt P10 G do

H dh
Fe(e !, M) / / In(z + hey) + n(@)P1Fg(a + e, HPIEAP W g
0

UL+ 1L+ 1113+ 111+ 1115.

As before, we have

Guw(x + ley, h) — Gw(x, h) | dh

2 h

IIIl+IIIQ<ceM// >(z + he;

F el ) D2 / Yuw(e, O do
Using a change of variables on /175 and 1115, we find

1115+ 1115

H
<c(e ™, M)/ / In(z — ley + he;) + n(x — le) | Gw(x, h)|2[0 )2 dh dx
aJo
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H dh
+c(e7t, M) / / In(x — ley, + he;) + n(x — ler)|? |9 g(x, h)|2|€1_5|2 - dx
aJo
So now

a dh
I+ 111+ 1115 Sc(e_l,M)|€1_B|2// ]%w(a:,h)\QTd:U
QJ0

H
+c(e_1,M)|€1_5|2// ]%g(a:,hﬂ?%d:v.
aJo h

Combining all of our estimates gives

+ Lley, h) — Giw(x, h
VZ// (x + he;) (e 6’“85) jw(z, h) dhh

Gw(x + leg, h) — Gw(zx, h) ’2 dh

(8 h

eM// *(z + hey)

el ) 1Dl o [ [Gule ) da

= // %rﬁﬁek,g) Gg(x, )|’

b e(et, M) / / Gz, )22 gy
QJOo h’
—1 2—208 H Zdh

+ (e, M)t |G g(x,h)|* — du.
QJO h

Taking € = 53; and subtracting the first integral on the right-hand side from both sides of

dh
—dx
h

the above equation, we arrive at

Z// ( + he;)

M
<c( )nDnnmm [ 19ute.op iz

Gg(x + ey, h) — Gg(x, h) |’
()L

05

%dw

Tw(x + ey, h) — G w(z, h)
8

dh
h

—dz (2.20)
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( )gz 25// |%wxh|2—dx
0(7) @28 /Q /0 \%g(x,h)FWdz.

Noting that Vg, C Qg, we can now divide by /, integrate from 0 to L over ¢, and bound

the terms involving the smooth function g as we bounded 7 before to arrive at
Giw(x + leg, h) —Gw(x, h) ‘ dh dt

S [ e : it

4,5,k
M L dl
() 1y [ [ 0t o
QJo

M
+c (—, LQ%’) |:HD2gHioo(QH.RNnNn) + HDgHLOO(QH;]RN"):|

( , L* 2'B>// |€4wxh|2d—hda€

We note that we must take L < 1 in order to achieve these bounds from our previous work.

Furthermore, the integrands of all the above integrals are positive, so that we can change
the order of integration by the Fubini-Tonelli Theorem. Since 0 < L < H, the integrals in
the first and third terms are bounded by the functional evaluated at the minimizer which we
assumed was finite. The second term on the right-hand side is finite as g is smooth. Using

Fubini-Tonelli once more on the left-hand side, we see

/// ( + hey)

where the constant in the end depends on s, H, n, N, and M /v. Recalling the definition of

i 2
‘w(x + Le, h) —Gjw(x, h) @dxd—g<oo,

08 h 14

.7,k

n(-), we have

r —28|cyi 2 dt :
Z ; (¢ ’gjw(xvh) B&?(VH;RN))7 < 0.

k
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Since this bounds the norm on %°2(%%*(Vy,;RY)) and V. CC € was arbitrary, it
follows from Lemma 2.2.3 that w € B.2*(Q;RY) if s < 1/2, and w € BX*(Q;RY) for

loc

any 0 < a < 1if 1/2 < s < 1. Now as g is smooth, we further have u € B;>*(Q; RY) if

loc
s <1/2,andu € B?(Q;RY) forany 0 < o < 1if 1/2 < s < 1.

Lastly, we discuss the slight changes needed within the proof in order to establish the
regularity result when the assumptions on g are weakened to g € B?$2(Qp;RY). If Q
is an extension domain, then so is (2. In this case, the term I/ from (2.20) is less than

the iterated norm on the whole of 2. So by Part 2 of Theorem 1 in [9] and the fact that

g € B**?(Qp; RY), we have

I

Similarly, we can obtain a bound for the last term on the right-hand side of (2.20), al-

2
Gg(x + Eek,ff;) —9g(x, h) d_}? dr < oo. (2.21)

though we only need g € B*2(Qp;RY) for this term. Therefore the result holds for

g € B?*2(Q;RY), if 2 is an extension domain. N

24.2 THE K-FUNCTIONAL

We will now provide a similar result for the K-functional. However, we first need to
establish the analogue of Theorem 2.2.3 for the norm associated with the K -functional.
As mentioned before, the following argument follows along the lines of Lemma 2.2.3 in

Setion 5.3 of [9].

Lemma 2.4.1. Let V C R" be open and bounded, 1 < p < q < 0o, and 0 < H < oc.

Then,

&
Hu‘ B51+527p7Q(V) S m HU‘ %SQ,p,q(%Sl,p,q(Lp(v))) (222)
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for sy + sy < 1. Here ¢ = c(n, q).

Proof. We first recall the following inequality from Lemma 4 in [10]

c
| Au(z, h)| 1oy < / | Au(z,n)|| . dn. (2.23)
FO = vlhl Jgg<n b

Now by using Holder’s inequality on (2.23), we obtain

c 1 q
A, )y < <W / PR dn)
n=

c(n,q) (/ g dn >3
< Au(z,n)||7, — ] . (2.24)
17 NS mi<in 1A, Doy |

1
Un

Now we are ready to show the result. By the previous inequality, we see that

1/
([ el o q
Bs1ts2:pa(V) = Ihl<oo |h|q(€1+42) |h|?

lu
H 1/q
ARt ) o
< c(n, q,v, ) / / D0y B0 O
- | <oo Jn|<|h] | hjatrtee) [n|™ [h|™
1/q
HA(AU(:c,h))(x,n)
dn dh
Sc(n7% Vgl/q) / / 7 Y] Pn) T
Ih|<oo J |n|<oo | h|at2|n|t In|™ ||
= c(n, ¢, v, ) Ul g2 vagzn va(Loay )
]

We now present the proof of the following higher differentiability result for the K-

functional.
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Theorem 2.4.2. Let F : Q xRY — R be a coercive function that is C* (2 x RY), uniformly

convex with respect to ¢ € RY, and quadratic in growth with respect to ¢ € RY, i.e.

F(x,€) > alé)? +c(x), for somea > 0,c(x) € L'(QRY),
Fee(2,)0-0 > v|0]?,  forall @ > 0 and for almost every x € ,
|Fee(x,€)| < M, forall ¢ € RY and almost every x € Q,

|Feo(z,8)] < M(1+ |€]), forall ¢ € RN and almost every x € (0.

Further let o/, = Bdy*" (S RY), where g € C™(Qp; RY) for some 0 < s < 1, and

assume u € o, satisfies

Klu] = feégg(g) K[f] < oc. (2.25)

Thenu € BX*?(Q;RN) if s < 1/2, and w € B2 (Q;RY) forany 0 < e < 1if1/2 < s <

loc loc

1. Furthermore, we need only assume g € B*%(Qy; RY) if Q is an extension domain in

B>?*(Q; RN) when s < 1/2 and in B"*(Q; RN) for all o € (0,1) when s > 1/2.

loc loc

Proof. Similarly to the proof of Theorem 2.4.1, we can show that if « satisfies the finiteness

condition in (2.25), then w := u — g must satisfy

/94@ /01 Fee(w, {Aw(w, h) + t(Aw(x + £, h) — Aw(z, b)) + Ag(x, h) }h| ")
(Aw(e + €,h) = Aw(x, ) - Ap(a, h)|h| " dt dhde

__ /Q /th /01 Feo(2 + 1, {Aw(x + €, h) + r(Ag(z + €, h) — Ag(z, h))
+ Ag(x, )} R[T2) - Ap(a, h) b dr dh dx

i /Q /h|§H /0 Fee(v +rt, {Aw(e, h) + r(Ag(x + £, h) — Ag(z, h))
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+ Ag(z, h) HA"?) (Ag(x + £, h) — Ag(x, h)) - Ap(x, h)|h| ™" dr dh dz.

Let V CC . So there exists an open set U such that V' C U C (2, and with L as
defined before, Vi, C Q. Choose o(z, h) = n?Au(z, £)|¢]*~2F, where 0 < 3 < s and

n(x) € C§°(Qy) satisfies

1 onVy,
n(x) =
0 on QH\UH

Then, once again, we can show in a similar fashion to the proof of Theorem 2.4.1 that the

following bound holds:

/Q /|h|SHn2(x T ‘ . aﬁ_ et

M
< () 1Dl gy [ 140t do

<

2 dh

dx
|h|"

dx

78

e [ e e s

v Q J|n|<H h

-I—c(M) |€|2_2'6// |Ag(:v,h)|2@dx.
v o Jin<n h

Now dividing by |¢|", integrating from zero to L with respect to ¢, and bounding terms in a

2 dh
|h|"

+c

similar manner to those in the proof of the J-functional gives
2 dh | de

Aw(z + €, h) — Aw(z, h)

2 ) )

n(x+h ' dx —
/|4<L /h|<H/Q ( ) A& LK

M dl
<c(3) 1Dl ne [ [l 0P G o
aJj<r

M,
+c <7, L? 26) [HDQQHLW(QHRMM) + HDgHLOO(QH,RN”)




48

+c<— L* 26)// |wah|2—d$
|h|<H

We note once again that in order obtain the above inequality, we employed the Fubini-
Tonelli Theorem which was admissible since all of the integrands are positive. While the
second term on the right-hand side of the above inequality is already bounded because g is
smooth, the first and third terms are bounded by our functional evaluated at its minimizer

u. Hence these terms are finite as well. Thus we have
A 0,h) — Aw(z, h)|* dh df
<t Jin<im) Ja ¢

dx < 00,
RGR

or

) ) dh 1/2
( / 0P8 D) W) < 0.

As this bounds the norm on %%2(%%%(V;RY)) and V CC ) was arbitrary, it follows

from Lemma 2.4.1 that w € B> (Q;RY) if s < 1/2, and w € B2*(;RY) for any

loc loc

0 <a<1ifl1/2 <s < 1. Since g is smooth, we have u € B/>*(Q;RN) if s < 1/2,

loc

a,2
loc

and u € B (Q;RY) forany 0 < o < 1if 1/2 < s < 1. We again need only assume
g € B%5(Qy;RY) if Q is an extension domain. This follows from the argument at the
end of the proof for the J-functional and the equivalence of the two semi-norms over all of

R". ]
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Chapter 3

Local PDE

3.1 INTRODUCTION

We now proceed to present the continuity result discussed in the introduction of the
thesis which was originally published and can be found in its final form in the work [29].
We should note here that we are proceeding formally when presenting these results. As
mentioned in Chapter 1, solutions to the systems considered in this chapter are not valid for
the construction of proper test functions due to their lack of regularity in the time direction.
One can overcome this by using the Steklov averages when constructing the proper test
function and then taking limits before applying the growth and ellipticity conditions to the
integrand. These Steklov averages are defined in the following way:

lthf(-,T) dr, te|[-T,—h),

h Jt

fn=
0, (_h70)7
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and

%Lihf(',T)dT, te [_T+h70)7

|
>
I

0, (=T, ~T + h).

Lastly, we note that f;, — f and f, — fash — 0.
In what follows, we show the partial Holder continuity of solutions to the quasilinear

homogeneous parabolic system

u; — div a(x, t,u, Du) = 0, (3.1)

where a(-, -, ) : Qp x RY x R¥® — RN is a vector field satisfying subquadratic growth
and ellipticity conditions. Moreover we assume that the vector field satisfies a continuity
condition slightly weaker than Holder continuity with respect to its third argument while
only assuming the map a(, -, &) : Q7 x RY — R™" is continuous for all £ € RY™. Here
Q CR™ Qp := Q x (=T,0), and Du is the spatial gradient of u. More precisely, we
show a solution u to (3.1) is Holder continuous on an open set of full measure. This result
was conjectured by Campanato several years ago. Unfortunately, his paper was found to
contain a flaw as mentioned in [6]. As mentioned in Chapter 1, we establish the result here
by means of the A-caloric approximation method.

To facilitate the discussion, we state our hypotheses for the system more explicitly. We

assume af(-, -, -) satisfies
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la(z,u,w)| < M (1+ |w|)p_1,

(Ba(z, u, w)w, w) > v (14 w7 o2, (3.2)

|Opalz,u,w)| < M (1+ |w|)p72,

\

for all (z,u) € Q7 x RY and w,w € R™. Here 0 < v < 1 < Mandf—]r’2 <p<2
Moreover, we assume for all (z,u), (20, up) € Q7 x RY and w, wy € RV™ the vector field

a(-,-,-) satisfies the following continuity conditions,

la(z, u,w) = a(z, uo, w)| < Mw(dy, (2, 20) + |u = uol*)(1 + Jw[)P~,

(3.3)
|Owa(z, u, wy) — Opa(z,u,w)| < Mp <%> (1 + |wo| + |w])P~2,
where parabolic distance dy,(-, -) is given by
dpar(za ZO) = max{|x - {L‘0|, V |t - t0|}
with 2 = (z,t) and zy = (=x¢,t9). Here w and p are moduli of continuity, i.e. maps

with w(0) = p(0) = 0 which are bounded, nonnegative, concave, and non-decreasing.
The assumptions on w imply the continuity of the map (z,u) — a(z,u,w)(1 + |w|)}P
is uniform for fixed w. We observe that (3.3), is satisfied if, for example, we assume the

following type of Holder continuity: there exists o € (0, 1) such that for all w, wy € RN",

|awa(-, -,’LUO) - 8wa(-, -,w)‘ < M|fw0 _ wla (1 + ’wo‘ + "w‘)p_Q_&,

As w and p are bounded, we will assume without loss of generality that w, i < 1 throughout

the paper.
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In the scalar setting, i.e. N = 1, the above assumptions are sufficient to establish the
everywhere regularity of the solution u, see for instance [21]. This paper focuses on the
vectorial case, N > 2. In this setting it has been shown by others that everywhere regularity
cannot be expected. For some counterexamples in the parabolic setting, one may consult
[47], [48], and [49]. Assuming w is Holder continuous, more precisely w(7) < 7% for some
a € (0, 1), Duzaar, Mingione, and Steffen established the partial Holder continuity for the
gradient of the solution Dwu assuming p > 2 in hypotheses (3.2) and (3.3) [24]. More re-
cently, Scheven has produced the analogous result for the the subquadratic case [44], and
in [3], Baroni was able to show the continuity of the gradient Du while only assuming
the Dini continuity of w(-). Bogelein, Duzaar, and Mingione were then able to extend the
Holder continuity out to the parabolic boundary in [7] and [8]. These results for parabolic
problems are analogues of results that have been established in the elliptic setting. For an
extensive survey of the regularity theory for both elliptic and parabolic problems, we refer
the interested reader to the manuscript [41].

As indicated above, it is possible to establish the partial continuity of the gradient
Du under the assumption of Holder continuous coefficients. To obtain such a result it
is critical to establish uniform bounds on the mean values of Du in neighborhoods of

Lebesgue points. We denote the mean value of Du over the parabolic cylinder Q,(2o)

by (Du),. In order to roughly describe the argument for estimating |(Du)y;,|, define

U(z0,p) = pr (z0) | Pt — (D) | dz + w(p), where w(-) represents the modulus of conti-
nuity for the coefficients. Using an iteration argument along with a decay estimate for v,

one can show

|(Du)gip| < [(Du)g| + Y [(Du)gmy — (Dutygm-1,|

m=1

< L+ 0 /ot (p) + (M)

m=0
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Here ¥ < 1 and we set L := |(Du),|. Assuming the Holder continuity of w(-), we continue

with

(Duosy] < L+C 3 102ma(p) + e(L)(0mp)2s

m=0

<L+C Z VImaT () + (L) (97p)2
crro VYO Ve . (3.4)

1—190‘ 1—195

Hence, for each j € N, this yields a bound on each |(Du)y;),| that is independent of j. The
weakest assumption on w(-) that ensures convergence of the series in (3.4) is Dini conti-
nuity. For more details on achieving a bound on |(Du),|, one may consult [25], [26], and
[44].

Since we are not even assuming Dini continuity of w(-), we can expect neither bound-
edness nor partial continuity of Du. On the other hand, the partial Holder continuity of
a solution w itself has been established by Foss and Mingione in the elliptic setting [31].
Bogelein, Foss, and Mingione then extended the result to parabolic problems with p > 2
in [6]. Also, the analogue of Foss and Mingione’s result for subquadratic elliptic problems
was provided in [4] by Beck. In what follows, we establish the parabolic version of Beck’s

result. More precisely, we have the following:

Theorem 3.1.1. Let u € C°(—T,0; L*(Q, RY)) N L (=T, 0; WHP(Q, RYN)) be a solution
to (3.1) in Qr under the assumptions (3.2) and (3.3). Then for each o € (0, 1) there exists

an open subset g C Qp such that

10:\Qo| =0 and u € CE*(Qy, RV).

loc
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Moreover, for each o € (0, 1) the singular set 33 := Qr\Qq satisfies ¥ C 3 U Xy, where

p—0F

Y= {zo € Qp: liminf][ |Du — (Du),.,|* dz > O} ,
Qp(20)

p—0+t

Yo = {zo € Qp : limsup |[(Du) ., = oo} :

By a weak solution to (1.1), we mean the following:

Defintion 3.1.1. We say that v € C°(—T,0; L*(2,RN)) (" LP(=T,0; WHP(Q,RY)) is a

weak solution to (3.1) if u satisfies
/ u-pp —a(z,u, Du) - Dpdz =0, forall ¢ € C°(Qp, RY).
Qr

We wish to conclude the Introduction of this chapter by providing more insight into
the strategies utilized to establish the partial continuity result and the challenges presented
in the problem we consider. The cornerstone of the argument is the A-caloric approxima-
tion lemma, found in Section 3.5. Here A is a bilinear form on RV" x R¥™ with constant
coefficients satisfying certain growth and ellipticity assumptions that will be stated later.
If A satisfies such conditions, then solutions, f, to fQT fi = (ADf, Dy)dz = 0 are A-
caloric and have nice decay properties which are stated in Lemma 3.7.1. The A-caloric
approximation lemma allows one to translate these decay estimates on f into the preser-
vation of a smallness property for a certain excess functional (see (3.6)). This eventually
allows one to obtain the desired partial continuity. When applying the A-caloric approx-
imation method, it is necessary to use cylinders contained in €27, which we represent by
Q,(20) := By,(x0) x (to — p* to). If u is a solution of (3.1), let £, : B,(zg) — RY be the

unique time independent affine map minimizing ¢ — pr (x0) |u — £|*dz. We would like
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show g := (u — ¢,) approximately solves

][ (9- 01 — (Bualz0, £y(x0), DE,) Dy, DY) dz = 0
Qp/2(20)

for all ¢ € C§°(Q,-(20); RY) by using a linearization lemma (Lemma 3.4.1). In this
setting, we could then apply the A-caloric approximation lemma to establish the smallness,

as p — 0, for the following first order excess functional:

2 p

u=t dz. (3.5)

p

u—1£,
P

(20,6, 0,) = ][

Qp(20)

This would allow us to measure the oscillation in « with respect to an affine mapping.
There are, however, some scaling issues that prevent one from showing (u — /,) is approx-
imately A-caloric. The major obstacle is the hypothesis that |0,,a(zo, £,(x0), D{,)| grows
like (1 + |D¢,|)P=2. Since p < 2 and we cannot bound | D/, | as p goes to zero, the elliptic-
ity of dy,a(z0, £,(x0), Dl,) degenerates as | D{,| becomes large. (Note that D¢, ~ Du at
Lebesgue points.) Hence, we cannot apply the approximation lemma directly to (u — £,,).
In order to overcome the growth of |D¢,| and avoid the decay in the ellipticity of
Owa(zo0, £p(x0), DL,), we scale our system by an intrinsic factor A ~ (1 + ]DES;A) ), where
EE}/\) is the unique affine minimizer of ¢ — ny)(zo) lu—¢|? dz and Q;(;\) (20) = By(xo) % (to—
A27Pp% 14). Such a scaling provides a bilinear form that satisfies the growth and ellipticity
bounds needed to apply the A-caloric approximation lemma. The structure of this bilin-
ear form is given by (Aw,w) = (9,a(z0, é,(f)(xo), DIM)A2=Pwy, w). With this intrinsic
scaling, we also repair the aforementioned scaling problem that prevented us from showing
(u — £,) was an approximate solution to the unscaled system. These scalings utilize the

ideas of DiBenedetto’s intrinsic geometry, which is discussed in [21]. Using the intrinsic



56
scaling and Lemma 3.4.1, we are able to show

u(z, to+ N7P(t —to)) — Kéﬁ?p(x)
E’Y(l + |D€%\;)p|>

V=

is an approximate solution to pr/Q(ZO) (v- ¢y — (ADv, Dy)) dz = 0, where ~ is an intrin-
sically defined parameter and ¢ > 1 is a constant .

Having identified the map v to which the A-caloric approximation lemma can be ap-
plied, we now describe the compatible functional that will measure the oscillations in the

gradient of our solution u to (3.1). Roughly speaking, the functional

) u— 65{\) u— fé’\) '
Ex (20,0, >=][ Sk S e N PN Y
© 0 JaPen |+ DG | (141D

measures the oscillations in Dv. Modulo the scaling factor 1 + |D£§,A)|, it also provides
information about the oscillations in Du. This makes (3.6) the natural functional out of
which one expects to obtain estimates on the oscillations of Du. By using the A-caloric
approximation lemma, as described before, in Section 3.7 we are able to show that if this
excess functional is small enough for some p > 0, then it remains small as p — 0.

Once such smallness conditions are obtained for the excess functional, one can show

that with » > 0 sufficiently small we have

/ |U o (U)r|2 dz S CTn+2+2a
Qr(2)

for all z € Qgr(2) and all zy € Qr\(X; U Xs), where R is a fixed radius determined
within the proof. Hence, u belongs to a Campanato space, and the result then follows from
a Campanato embedding theorem. While we have sketched the argument with the excess

functional in (3.6), the actual excess functional used must take into account the continuity
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of the coefficients in the system, which leads to a couple of additional terms in the func-

tional.

3.2 BACKGROUND

Throughout this chapter, we use z = (,t) to represent points in R"**. For the spatial
ball of radius p centered at z, we use B,(x); i.e. B,(zg) == {x € Q : |x — x| < p}.
We will use three types of cylinders: general, standard, and scaled. We denote the general

cylinder with spatial radius p and time length 7 centered at zy = (o, to) by
Q.- (20) = B,(z0) % (to — 7, t0),
and we define the standard and scaled cylinders by
Qo(20) = Qpp2(20) = By(x0) X (to — p*, t0)
and
QW (20) := Qpz-rp2(20) = By(wo) X (to — N> 7Pp? o),

respectively. We use |A| for the measure of a set A. If |A| > 0, then the mean value of

f € L' over A is given by

1
(f)A:]{;deZW/Ade'
(N

For convenience, the mean value of f over scaled cylinders ij\) (z0) is denoted by (f)z,/,-

If A =1, we write (f)..,-



As mentioned in the introduction, we denote the unique affine minimizer of

e@p%f‘ u(z, ) — ()2 d
Q5 (20)
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(3.7

by ¢5), B,(zo) — R™ It is well-known, for instance see [6], that ) (z) = 58[) )+

Pz(OAZ)(x — 1), where

ggo)\;),o - (u)gg\)p and Pz(o/\;)p = —2][ u® (x —x)dz.
1% Q(A)(ZO)
We also have

|PY) )% < —n(n+2) lu — & —w(r —x0)* dz,
205P p2 Q()\) (z())
P

forall ¢ € R" and w € RV™,

(3.8)

(3.9

We now introduce a few functionals that will be used to measure the oscillations of u.

Let u be a solution to (3.1) on Q7 and 2y € Q7. Given an affine map and Qg’\)(zo) C Qp,

the first order excess is given by

2 p

—/
4 dz.

(1+[Df)p

+‘ u—F
(L+[De])p

Bx(ao,p.0) = |

QM (z0)

Defining the zero order excess by

@A%mwy:f} u— 1 dz,
Q5 (20)

the full excess functional is defined to be

Ex(20,p, €) = Ex(z0, p, £) + w(Tx(20, p, 0)) + w(XZ2p?).



59

In the subquadratic setting, it is necessary to work with the function V' : R* — R¥

defined by

V(€)= (L+IEP)T¢ (3.10)
in order to accommodate the growth conditions in (3.2). The following lemma lists several
properties of V' that will be used throughout the paper. It was first shown to hold in [17].

Lemma 3.2.1. Let 1 < p < 2andV : R¥ — RF be the function defined in (3.10), then for

any £,n € RF ¢ >0
(i) 22 min{|¢], [€P/2} < [V(€)] < min{[¢], [€[P/2},

’

(i) |V (t€)] < max{t, t*/?}|V(€)

(iii) [V(E+n)] < clp) [V + [V(n)]]

’

. V(E)-V
(iv) %!f—n! < W <c(k,p)l§ —n

(v) V(&) =V(n)| < c(k,p)[V(E—n)

1

(vi) V(& =n)| < clp, M)|V(E) = V()| if [n] < M.

The following standard lemma will be used extensively throughout the paper as well. It

can be found in [1] with proof.

Lemma 3.2.2. Given 0 > —1, there exists constants ¢ = c(c) > 0 such that for each

a,becR¥

1
¢t (L+al + b)) < / (1+Ja+sb])” ds < c(1+|al +[b])”
0
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In section 6, we will use of the following lemma in order to establish a Poincaré-type

inequality. We refer the interested reader to Chapter 6 of [34] for the proof.

Lemma 3.2.3. Givenr < R, let f : [r, R] — [0, 00) be a bounded function. Assume there

are constants A, B, « € [0,00) and ¥ € (0, 1) such that forallr < 0 < p < R,

f(0) < 9F(0) + (p_% B

Then

o < clao) (24 ).

forallr < oy < pg < R.

Finally, we wish to comment on the spaces used at the end of this chapter. A function

u : Qpr — RY is said to be Holder continuous with exponent o € (0, 1) if

[ilcwrsoapnny = Il + sup (5D ZHIDY o
" o 17969;@;([10) dgar((ma t)a (y, 3))
TFEY,LFS

However, we will avoid showing that a solution to the quasilinear systems we consider
satisfies the above inequality by showing that the solution belongs to a Campanato space,
€A Qp; RY), and using a result due to da Prato that states 67 (£2p; RY) is isomorphic to
Co2e(QRN)if A > land a = (A — 1). This result is found in Theorem 3.1 of [18]. A

function u : Q7 — RY is said to belong to € (Qr; RY) if it satisfies

HUHW,A(QT;RN) = HUHLP(QT;RN) + [ulgra@pmyy < o0,
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where

lu

EPA(Qp;RN) 1= SUpP (‘QT N QP('ZO)‘_M/

z2€Qp QrNQ,(z
>0 T p( O)

() — u(zo)|? dz).

3.3 CACCIOPPOLI

We begin the work by presenting two Caccioppoli inequalities, or reverse Poincaré-
type inequalities. The first will be used throughout the paper to prove Lemma 3.4.1 and
the A-caloric approximation lemma, while the second inequality will be used to prove the
first Poincaré inequality in section 3.6.1. Note also that the first Caccioppoli inequality can
be used for general cylinders, while the second inequality can only be applied on standard

cylinders.

Theorem 3.3.1. (Caccioppoli’s Inequality for Parabolic Systems with General Cylinders)
Let u € C°(=T,0; L*(Q,R™)) N LP(—T,0; WH?(Q, R")) be a weak solution to (3.1) in
Qy, where (3.2) and (3.3) hold, and Q) -(z0) C SQp be a general parabolic cylinder with

center zg = (xg,tg). Also assume 0 < p < 1 and 7 > p*. Then for any affine map
¢ :R" = RN we have
u(s,z) — (|
sup ][ —— 1 dz
1 /4<5<0 ( B, »(x0) VT/2 >

—l—][ (14 |Dt| + |Dul)’~* |Du — Dl|* d=
Qp/2,7/4(20)
u—1F

< Co][
pr(zo) | VT

oo (14| DY [w <]{2 o —e<xo>|2dz> +w<¢>] =:¢,

where co > 1 depends only on p,n, M /v, and N.

2 D

u— 4 g

p
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Proof. For notational convenience, we write ), » and B, instead of @), ,(2o) and B,(x).
Let u be a weak solution to (3.1) in Q7. Assume @), € {2 with p < 1,and £ : R" — RN
is an affine map. Define ¢(z,t) : R x R™ — RY by ¢(z,t) = C?(t)x?(z)(u(x,t) — {()),
where x € C§°(B,) and ( € C(R) are cutoff functions. In particular, 0 < y <1,y =1

on Bg, x = 0on 2\B,, and [Dy| < % on B,. Moreover, ¢ : R — [0, 1] is defined by

(=0, on (s+¢€00)

for s € (—7/4,0) and 0 < € < |s|. Substituting ¢ into the weak formulation of (3.1) gives

g C(t)xP(x)a(z,u, Du) - D(u — £) dz

= —p Ct)xP ra(z,u, Du) - (Dx @ (u—£)) dz + / u - ppdz.

Qp,r puT

By the definition of ¢, we have

- C(t)xPa(z,u, D) - D(u — {) dz
Qp,r

=p <2<t)Xp_1a(Zv u, Dé) ) (DX ® (u - E)) dz
Qp,r

— / a(z,u, D) - Dpdz.

pT
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Noting that / (- ¢;dz=0and / a(zo, (o), D) - Dl dz = 0, we obtain

PyT PyT

= C(t)x? (alz,u, Du) — a(z,u, DE)) - D(u — £) dz

Qp,r
=—p Ct)x"" (a(z,u, Du) — a(z,u, D)) - (Dx @ (u —{)) dz
Qﬁ,‘r
— / (a(z,u, D) — a(zq,l(z9), D)) - Do dz + / (u—1"0)-prdz
=11+ 1]+ 1V.

We will first establish a lower estimate for / by means of assumption (3.2), and the triangle

inequality:

C*xP (a(z,u, Du) — a(z,u, DY) - D(u — ) dz
Q[),T
1
— / §2Xp/ (Opa(z,u, DL+ s(Du — DL))D(u — £), D(u — £)) dsdz
pr 0
> V/ C2Xp/1(1—|—|D€+S(Du—D€)|)p_2|D(u—€)|2dsdz
p.T 0

>v [ CXP(1L+|DL| + |Du|)’ 2 |D(u — 0)* dz.
Qp,r

Using assumption (3.2);, Lemma 3.2.2, and Young’s inequality with 6 > 0 to be chosen
later, we also find
|11 Sp/ P Ya(z, u, Du) — a(z,u, DO)||Dx||u — €| dz
Qp,r

<ecM P (14 |Du| + |De)P~* |Du — D¢||Dx||u — €| d=
Qp,‘f‘

r(p—2) p
<6eM | (Ut |Dul + DU |Du — DU d
Qp,r

+51ipcM/ |Dx|P|lu — (P dz
Qp,r
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<6eM C3P (1 + |Du| + | D))" % |Du — DeJ* dz
QP,T

+oTreM
Qp,r

p

-/
Y dz.

p

Set G = {z € Q, : |Du| > 4|D/| and |Du — D/| > 1}. By the continuity hypothesis

(3.3); and the definition of ¢, the following holds:

\111] g/ la(z, 4, DO) — a(z0, U(zo), DO)||Dg)| d

pP,T
SM/ CxPw (Ju = L(zo)|* +7) (1 + |De))P~ |Du — DY) dz
G
+ M CxPw (Ju — €(xo) > +7) (1 + | D) |Du — DI dz
Qo \G

+pM [ CxPw (Ju— o) P+ ) (L+ (DU |u— £||Dx] dz
Qp,-r

=1L+ 111, + 111;.

Using Young’s inequality, the bound w < 1, the concavity of w, and that w(0) = 0, we see

that

p

u—t dz.

p

III3 < cM (1+ |De))? {w (Ju—l(x0)|*) +w(r)} dz+ cM
Qp,‘r Qp,f

Similarly

IIT, <6cM / C2XP|Du — DL dz
G

+ 6T 5eM (1 + |De|)” [/ w (Ju = £(w0)]?) + w(r) dz] .

pT
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Recall that on G, we have |Du| > 4|D¢| and |Du — D{| > 1. Thus,
1
|Du — D{| > Z(1+\Du|—HD€|). (3.11)
It follows that

IT1 <6eM | P (14 |Du| + |DE)Y" ™ |Du — DI dz
QP,T

+ (5ﬁcM(1 + |D?})? [/ w (Ju = €(z0)]?) + w(r)dz

Now on QM\G , one of the following cases must hold:
() |Du| < 4|D¢|,
(ii) |Du| > 4|D¢| and |Du — D{| < 1.

We note that in either case, |Du — Df| < ¢(1 + |D/|). Hence

I, < cM (1+ |De))? [/ w (Ju— €(z0)]?) + w(7) dz] .

P,

Combining the estimates for /11, 11, and I113 gives

111 gacM/ P (1+ | Dul + | DI | Du — DO d=
Qp,r

pT

+ 6T reM(1+ | DL [/

p

dz.

w (|u — f(x0)|2) + w(7) dz]

u—/

P

+cM

Qo7
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Integrating by parts, we have

IV = lu—0*x" (¢?), dz + CxPug - (u—0) dz
Qp,‘r Qp,-r

1
:/Q =t (), et g [ G (= o), d

= / lu — €*XP¢ d

osT

4 =T 1 s+e
——/4/ ]u—ﬁ]QXpdz——/ / lu — £*x? dz
37 —T B, (o) €Js By (z0)
— 1 [t
gc/ = dz——/ / lu — () dz.
€Js B, /2(w0)

VT
Combining all of our estimates, yields

1 s+e€
- / / lu— (> dz
€Js B, /2(z0)

+ (v = 30c(p,M)) | ¢\ (L+ DU+ |Dul)"™ |D(u— £)* dz
Qp,T

< cp, M, 577) /

pT

2 p

—/
Y dz

o | VT
+ ¢(p, M, 61;)/ (14 |De})? [w (|u —E(:L‘o)|2) +w(7')] dz.

pyT

u— ¥
0

Choosing 6 > 0 small enough, and recalling the definition of ¢ and Y, we may take the

limit as e — 0 to get

/ lu(s,x) — £]*dz
Bp/2(x0)

+/ / (14 |Du| + |De))?P 2 |D(u — 0)|? d=
= “ B,/a(x0)

2
SC/

p

u—/f "

\/?

u—/f
p

P
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+e(1+|De)” [/ w (Ju = L(wo)|*) +w (1) dz

p,T

As s € (—7/4,0) is arbitrary, we may conclude that
u(s,x) — ¢

sup 37[
—7/4<s<O0 B, (wo) | /T/2

0
—i-][ ][ (1+\Du|+]D€|)p_2|D(u—€)]2dz
= v Bpa(z0)
u—/

2
<
> 00][ . \/;

Yo (14 DY) [][

where ¢y = 1 + 2""2¢. By Jensen’s inequality and the concavity of w, we have

f

which gives the result. ]

2
dz

p

u— 4/ I

p

w (Ju— €(z)]*) + w (1) dz] :

PT

w (Ju—(x)]?) dz < w (][ lu — é(mo)|2dz> ,

pT psT

The following result will be used to prove the Poincaré-type inequality for solutions to
(3.1) in section 3.6.1. It is stated here only for its obvious relationship with the above result

and the likeness of their proofs.

Theorem 3.3.2. (Caccioppoli’s Inequality for Parabolic Cylinders)
Letu € LP(=T,0; WP(Q,RN))NCO(=T,0; L*(Q, RY)) be a solution to (3.1) in Qr that
satisfies (3.2) and (3.3). Let Q,(20) € Qp, where p € (0,1). For o € [p/2, p] and any

affine function { : R™ — RY, we have

sup ][
s€(—02,0) \J By (20)x{s}
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2 p

+][ (14 |De| + |Dul)’~* |Du — DI|? dz
Qo (20)
u—r I

2
SC1p—2][
(p—o) o(z0) | P

+e (14 |DL)y [w (ﬁ ( )\u—ﬁ(m)lzdz) +w(p2)] 7

where c; > 1 depends on p,n, N, M, and v.

u—f
p

Proof. The result is proved similarly to the last theorem. Here we take

p(x,t) = COX"(x) (u(z,t) — ((2)),

where x € C§° (B,) is a cutoff function with 0 < x < 1,x = 1 on B,, x = 0 on Q\B,,
and |Dx| < -2 on B, while ( € C**(R), and for any s € (—¢?,0) and ¢ € (0,07 +3), ¢

is a Lipschitz cutoff function with

(

C = 07 on (_007 _p2]7
‘C/’ < ﬁ? on (_p2702]7
(=1, on (—o?, s — €,

3.4 LINEARIZATION

We now prove a lemma that allows us to compare our system to a linear system with

constant coefficients. Such systems have A-caloric solutions with nice decay properties that
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can be transferred to our solution enabling us to bound our excess functional as mentioned
in the introduction. In order to achieve this, our system and solution must give rise to the

following inequality.

Lemma 3.4.1. Let u be a weak solution to (3.1) in Qp satisfying (3.2) and (3.3). Further
let Q,-(20) C Qr with p < 1 and p* < 7. Then for any affine function { : R™ — RY, we

have

][ (1= 0) - o1 — (Bualz0, (o), DO(Du — DE), D)) d
Qp/2,7/4(%0)

<ea (1+DU)T 2 (14D F E72) €72 sup Dyl

Qp/2,7/4(20)

+e(1+[De) ¢ sup | Dy,
Qp/2,r/4(20)

forall p € C°(Q,+(20), RY). Here ¢ > 1 depends on p,n, N, M and v.

Proof. In the following proof we write @), , for @, (zy) and B, for B,(x(). Since the
result is trivial if Dy = 0, we assume without loss of generality that SUPQ, » 4 |Do| = 1.
Now let u be a weak solution to (3.1) in p,and @), C p with p < 1. We begin by

noting the following:

][ (u—20) - pr— (Owalzo, £(z0), DO)(Du — DC), Dp) dz
Qp/2,7/4

[(uw—20) -y — {a(z,u, Du), Dy)] dz

S+~

Qp/2,7/4

(a(z,u, Du) — a(zo, £(xg), Du), Do) dz

p/2,7/4

(a(zo, (o), Du) — a(zg, (o), D), D)

_l’_
S

+

S+

Qp/2,r/4
— (Owa(20, (o), DO)(Du — D{), D) dz

= I+ 11+1Il.
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Since u is a weak solution to (3.1) and fQ o (- pydz = 0, we see immediately that
p/2,T
I = 0. From the continuity assumption (3.3);, Young’s inequality, and the fact that w < 1

is sublinear, we obtain the following estimate for //:

11| < c][ w(|u—€(m0)|2+7) (1+|Du|)p_1|D<p|dz
Qp/2,7/4

IN

c][ o (Ju— (xo)]?) +w(r)] (L+ DU | Dol d=
Qp/2,7/4

+ c][ [w (|u — £(x0)|2) + w(T)} |Du — DU[P~Y Dy| dz.
Qp/2,7/4

Taking G := {z € Q,2,7/4 : |Du| > 4|D¢| and |Du — D{| > 1} as before, we can rewrite

the above inequality as

1] < C]{? [w (Ju = €(z0)|?) +w(7)] (1 + DL | D] dz
p/2,m/4

+ c][G [w (]u — €($0)|2) + w(T)} |Du — DEP~ Dyl dz

—i—c][ [w (|u—€(x0)|2) +w<7')} |Du — DL[P~Y Dyl dz
Qp/2,7/a\G

= IIl + ][2 + ]]3
On the set (7, (3.11) holds. Using a similar argument to that in Theorem 3.3.1, we obtain

I, < c(1+|D€|)_1][ |Du — DI|P| Dyl dz.
Qp/2,7/4

Now using the Caccioppoli inequality, Theorem 3.3.1, and Jensen’s Inequality along with

the fact that w is concave, yields

I, <c(1+|Df))7"e.
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In order to estimate I3, recall that on @,/2 -/4\G we have the estimate
|Du — D¢| < ¢(1+ |DY)).
Hence,

I, < c(1+ ypa)p-l]é o (Ju — £(x0)[?) +w(r)] | Dol d=.
p/2,m/4

By the concavity of w, Jensen’s inequality gives

IL+1I; < c(1+|De)P lw <][

Qp,r

lu — £(z)]? dz) + w(7)

Combining the estimates for /1, [ I5, and /15 and using ¢y > 1, we deduce that there is a

¢ > 1 such that
[II| <c(1+4|De)) e
From the continuity assumption (3.3),, we see

1
111 g][ / 100a(20, (x0), DL+ s(Dut — DE)) — dualz0, (xo), DY)
Qp2,7/4 Y0

X |Du — Df|dsdz

<M][ /1 ( s|Du — D¢ )
oo P \THDET s(Du— DO+ D]

x (14 |Dl+ s(Du — DO)| + |De|)*~* |Du — D¢| ds dz

<M][ /lﬂ( s|Du — DY )
a4 Jo0 1 + s|DL| + s|Du|

X (14 |Dl+ s(Du — DC)| + |D¢|)"~* |Du — Dl| ds dz.
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Using s < 1 and lemma 3.2.2, we obtain

1

|Du — DY —2

|11 Sc][ / ,u( (1+ |Du| + |D£|)’" 7 |Du — Dl|ds dz
Qp/orsa J0 14 |Du| + | D¢|

gc][ u((1+\D£|)%" |Du — DY (1+1Du\+\pe\)%)
Qp/2,r/4

% (1+|DU)T (1 + |Du| +|DE)"7 |Du — DY| dz.

Using Holder’s inequality, Jensen’s inequality, the fact that 1 < 1, and s — s'/? is concave,

we have

Qp/2,7/4

1/2
|[IT1] <(1+ |D€|)% c <][ (14 |Du| + |De))*~* |Du — D€|2dz)
1/2
X <][ 12 (<1+|De|)%” |Du — D/ (1+|Du|+|De|)¥) dz)
Qp/2,7/4

1/2
<(1+|DI7 ¢ ][ (14 |Du| + |De))’~* |Du — DE|* dz
Qp/2,7/4
1/2
< i | (14 |Dep ][ \Du— DU (1 + |Dul + |DE)P~ d=
Qp/2,7/4
Now Theorem 3.3.1 implies
LT < (14 D) e’ ((1+ DA 7 ¢12) 2
Combining all of the estimates for ||, ||, and || gives the result. O

3.5 A-CALORIC APPROXIMATION

The cornerstone for proving Theorem 3.1.1 is the A-caloric approximation lemma. We

point out that Scheven has recently produced an A-caloric approximation lemma for sub-
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quadratic problems [44]. Scheven’s version, however, does not appear to be suitable for
problems where only continuity of the coefficients is assumed. In this section, we prove
a version that is compatible with the hypotheses for our problem. Before providing the

argument for the lemma, we state the definition of an A-caloric function.

Defintion 3.5.1. Let A : R™ x R™ — R™ be a bilinear form with constant coefficients

that satisfies
/\|ﬁ)|2 < (Aw,w), (Aw,w) < Aw||w|, wheneverw,o € RN™ (3.12)

where \,A > 0. Amap [ € L*(ty — p? to; W'*(B,(z0), RY)) is called A-caloric in the

cylinder Q) () if it satisfies

]2 ( )f oy — (ADf, Do) dz =0 forall p € C?(Qp(zo),RN).

We now present the A-caloric approximation lemma. In the proof of the lemma we will

exploit the convexity of the function W : R¥ — R* defined by
W(E) = (1+ €)' &,
which satisfies the following estimate
2TV (€)| < W(E)| < [V(€)] forall € € R, (3.13)

Lemma 3.5.1. Givene > 0,0 < A< Aandp € (n2—f2,2). There is a 6o(n,p, A\, Ae) < 1

with the following property: Whenever A is a bilinear form on R™N" satisfying (3.12) and
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v € (0,1], and w is a map in
Cto — p°, to; L*(By(w), RY)) () LF (o — p*, to; W'P(B, (o), RY))

with

—| +|V(Dw)|*dz < 1
P

sup ][
to —p2 <t<to B, (:Co)

and

<0 sup |Deyl,
Q(20)

} w40, D)) d:
Qp(20)

forall p € C5°(Q,(20); RY), where § > 0 does not exceed the positive constant &y, then

there exists a map

f € LP(to — (p/4)*, to; W (Byya(wo), R™)) (VL2 (to — (p/4)*, to; W (Byja(wo), RY))

which is A-caloric on Q,/4(20) such that

][ . 2+’VH ip+\V(Df)!2dZ§4”+8
Qpa(z0) | P14 p/4
and
_ f? _ P
][ il EVSES e
Qp)a p/4 p/4

Proof. Our strategy is along the same lines as the one used in [24].
Step 1: In this step we state the alternative to Lemma 3.5.1. For a detailed proof that

we can make the reductions to the cylinder ); = Q1(0, 0), instead of (),(zo), and consider
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only maps in p € L>(—1,0; W, >°(B;,RY)), instead of ¢ € C3°(Q1,RY), one should see
[24]. We will proceed by contradiction. Suppose the lemma were not true, then we can find
an € > 0, a sequence {w;}?°, C C%(—1,0; L*(B(zo), RY) N LP(—1,0; WHP(B;, RY)),
a sequence of bilinear forms {Ay} satisfying our ellipticity and growth conditions, and

v € (0, 1] such that
sup |wg(z, t)|2 dx + lwi|* + 7£_2|wk|p + |V (Dwp)|?dz < 1 (3.14)

—1<t<0J By Q1

and

‘/ wg, - pr — (ApgDwy, D) dz
1

1
< —sup | Dy (3.15)

koo
for all € L>®°(—1,0; W, (B, RY)) and k € N, but

][ 16|wy, — f|* 4+ 4P 2 |wy, — fIP dz > € (3.16)
Q14
for all Aj-caloric maps f on ()4 that satisfy
F 6P o U+ V(DPP dz < 4
Q14

Step 2: Here we obtain the weak convergence of {wy,}52, in L*(Q1,RY), {w;.}52, in

p—2

LP(Q1, RY) and { Dwy }2, in LP(Qy, R™Y), where wy, = ,* wy. Note that f |y |" dz
Q1

< 1 by (3.14). Now by part (¢) of Lemma 3.2.1, Holder’s inequality, and (3.14), we have

£ ipupa: < 42 [ / VDurs+ |v<Dwk>|2dz]
) Q1] LJoin{ipwii<1} O:1\{|Dwi|<1}
< clp) [|Q1| + |V(Dwk)|2dz] < c(p). (3.17)
|Q1| Q1
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So by (3.14) we can extract a subsequence such that w € L?(—1,0; L?(By; RY)), w,u €

LP(—1,0; WP (By; RN)), and

wp —w  weakly in L?(Q, RY)
w —w  weakly in LP(Q, RY)
Dwy, — v weakly in LP(Q, R™Y) - (3.18)

A, — A as bilinear forms on RV

Te = Y in [0, 1]

Note that if v = 0, then by the definition of wj, and (3.18), we have w; — 0. By this fact
and the fact that f = 0 is Ag-caloric for all £ € N, we arrive at a contradiction trivially. So

we assume that v € (0, 1]. Notice (3.18); and (3.18); imply

p=2 2

~ p—=
W =," wp =7 P w

weakly in L?(—1,0; L?(B;,RY)). As (3.18), gives w; — w in LP(—1,0, LP(B;,RY)),
we see W = fypr%Z w. Hence we must have u = Dw by uniqueness. Using the weak lower
semicontinuity of v > [, [v|* dz and the weak lower semicontinuity of v — [, |v|? dz,

the estimate (3.13), the convexity of IV, and (3.14), we have

][ Aw[2+47P2 [P + |V (Dw)[? d=

1

g][ 4w + 472wl + AW (Dw)P d=

<4 lim Jwi|* + 72wl + |W (Dwy) |* dz
k—o0 Ql

<4 lim {  |wp* + 472w P + |V (Dwy) P dz < 4. (3.19)

k—o00 Q1
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Next, we need to show w is A-caloric on Q1. Let ¢ € C5°(Qq, RY). Then,

]él (w oy — <ZDw,Dgo>> dz

:][ ((w — Wy )P — <Z(Dw — Duwy,), Dgo>> dz

1

+][ <(Ak — E)Dwk, Dg0> dz +][ (Wi - pr — (AgDwy, Dy)) dz.
1 Q1

The first integral converges to zero by (3.18); and (3.18)5 as p € C5°(Q1, RY). The second
integral goes to zero as (3.17) and (3.18), hold. By assumption (3.15), the last integral tends

to zero as k tends to infinity. Thus,

w- @, — { ADw, D)) dz =0, forall p € C°(Q1,RY).  (3.20)
G ))

1

Using the linearity of the above parabolic system, one can use a mollification argument to
show w € C®(B; x (—1,0], RY).

Step 3: In this step, we will obtain the strong convergence in LP(Q;, RY) of {w}2,.
First note that if w, — w strongly in L? and v, — ~ in (0, 1], then we must have that
wy, — w strongly in LP. So we only need to obtain the strong convergence of {wy }72; to w
in LP. We first prove a useful inequality. Letting ¢ € L(—1,0; W, (B, RY)), we see
that (3.15) gives

'/ Wy - prdz
1

Using Holder’s inequality and (3.14),

/ Wy - dz
Q1

0
1
g’/ / (Ax Dy, D) dmdt‘JrE sup. (D9 D)l
—1JB;

—1<t<0

0 _b p
<[4l ( 1D, dt)

1 |Lﬁ(31




1
— D o i
T _qu Do, )l ooy

Let —1 < s1 < s9 < 0. Then choose § > 0 sufficiently small to define

;

0, —1<t<s - B,
t=s1+0), si—f<t<s,

G :

I
—

) Slétés%

—%(t—32—5), s9 <t <59+ f3,

0, So+f<t<1

\

Now let p(z,t) = (3(t)¥(x) with ¥ € C5°(B;,RY). Substituting ¢ into our above

inequality, we have

51 s2+p
/ <%/ w(z, t) dt — %/ : wi(z, t) dt) -U(x)dx
By s1—pB 52

p—1

0 » P
<l ([ ooy a) " 10wl e,

1
4+ = { sup C,@( )1 ”D‘IJHL‘X’(Bl)

k [-1<
p=1
—1 » 1
| Ag|l 52 — 51 + 28 2p—i— 1 + | 1DY o, -
The Sobolev embedding theorem gives || DV||;.. < ¢(n,r) HlllH 1 ) for
yPN(By

r > w. So we obtain

L(%/_B xtdt——/sw (2.1)d )\If()d

p—1\\7 1
< A — 2 o R — .
<c(n,r) <|| kll (52 51+ 23 (2p+ 1)) + k;) | ||W0,,,,1(Bl)

78
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Now letting [ tend to zero, yields

/ (e ) = sl 0)) - W

=11
< cnr) (1140l 52 = 507 4 ) I o

(B1)

for almost every si, S such that —1 < s; < s9 < 0 and for any ¥ € Cgo(Bl,]RN). By

a density argument, the last inequality is valid for each ¥ € Wg '»1(By,RN). Taking the

supremum over all U € W, " " (By, RY) with | 0| , _« < 1, we find
WO

P~ (By)

=11
inC50) = 52l < ol (Il (52 = )5 + )

for almost every —1 < s; < s < 0 when r > W. In particular, for 0 < h < 1,

o =11
/1 [wie(,t) — wi(s t + 1) [y v,y dt < c(n, M,r)(h» +E)p‘

As the left hand side in the above inequality tends to zero as h tends to 0 for each fixed
k € N, the convergence above is uniform with respect to £ € N. Furthermore we see that
{wy}22, is uniformly bounded in LP(—1,0; W'?(By, RY)) by (3.14) as {vx}3>, C (0,1].
With the choice (X, B,Y) = (W'P(By), LP(B;), W~%F(B;)), we have, possibly taking
a subsequence, that wy, — w strongly in L?(Q);) by Theorem 5 in [46]. Hence wy, — w
strongly in LP.

Step 4: Now we need to show w;, — w strongly in L?(Q;). Note that w; — w almost
everywhere in (); as wy, — w strongly in LP. Hence w;, — w almost everywhere on (1 /4.

By Egoroff’s theorem, given n > 0, there exists M C @)1/4 such that |Q,,,\M| < 7 and
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wy — w uniformly on M. Thus,

lim lwp — w|?dz = lim lwy, — w|? dz.
ko0 Q14 ko0 Q1/4\M

Choosing § = ’@ > 2 and using Holder’s inequality, we see

2/B
/ lwp —wrdz < n% / lwp — w|® dz .
Q1/4\M Q1/4\M

By Proposition 3.1 in [21], there exists a constant ¢ depending only on NV, p, and 2 such

that

N

B
/ lwy — w|* dz <77%c / | Dwy, — Dw|? dz
Q1/4\M Q1/4\M

2p/pn
X sup / lwp — w|? dx :
—1/16<t<0 J By /4

By (3.14) and the fact § > 2, we have

lim lwp — w|*dz = lim lwy — w|*dz = 0.
k=00 Q1/4 k=00 Q1/4\M

So wy, — w strongly in L*(Q14).

Step 5: We represent the unique solution to

/ (vg - Opp — (A Duy, D)) dz =0, forall o € C5°(Q1/4, RY)
Q14 (3.21)

VUV = W, on apaerQl/4

by {vx}52, C CO(—(1/4)2,0; L*(By /4, RY)) () LA(—(1/4)2,0; W2(By 14, RY)). We then

set out to prove v, — w and V(Dvy,) — V(Dw) in L*(Q14). This has been shown in
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[44], but is included here for completeness. Since v, and w are smooth and v, — w = 0 on

Opar@1/4, we can test (3.20) and (3.21) with ¢ = v;, — w and via integration by parts obtain

][ Q\vk —wl? dz+][ (Ar(Dvy, — Dw), (Dvy, — Dw)) dz
Q1/a ot Q1/4

:]{2 (A~ A)(Dw), (Dug — Dw)ydz  (3.22)
1/4

Since

0 © 9
/ —|vk—w]2dz:/ —/ v — w|? dx dt
Qi 0 116 9t J,

- |vk(70) - w(70)|2dl’ > 07
B1

we can use (3.12) on the left side of (3.22) and Young’s inequality on the right side of (3.22)

to get

A

A — A
—][ |Dvy, — Dw|*dz < 1A — 4]
Q14

|Dw|? dz.
A Q14

2

Since Dw € L2(Q1 /4), the right hand side tends to zero as k tends to infinity. Hence,
Duy, — Dw strongly in L*(Q, /1). The Sobolev embedding theorem on time slices and the

Dominated Convergence Theorem give v, — w strongly in L?(Q1/4). Thus
klim lvp — w|* + |V(Dvy,) — V(Dw)|*dx =0 (3.23)
—00

by the convergence of Duvy in L2(Q1/4) to Dw and (iv) of Lemma (3.2.1). By Holder’s
inequality and (3.23), we also have v, — w in LP(Q14).

Step 6: In this step, we obtain the contradiction. From the convergence discussed above,
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we have arrived at

][ g — k2 + [V(Duwy) — V(Dog)|? d
Q14
§2][ g — w]? + [V(Duwg) — V(Dw)[2 d= (3.24)
Q14

+ 2][ lw — v|* + |V (Dw) — V(Dw)|* dz — 0.
Q1/4
Similarly,

p=2
][ W — 7, " velPdz — 0
Q14

~ ~ . p=2 p=2
by the strong convergence of w, — w in L” and the convergence of v, " v, — v » w in

LP. Hence we have shown

lim 16wy, — ve|® 4 4P72 2wy — P dz = 0. (3.25)

k—o0 Q1/4

From (3.23), the strong convergence of vy in L, the convergence of -y, to 7y in (0, 1], and

the bound (3.19), we see

lim 16]vy|? + 224 |vy [P + |V (Dy) [* dz
k—o00 Q1/4

< 4][ 16|w|? + P~ 24P |w|P + |V (Dw)|* dz
Q14

< 4”+6][ lw|?* + A2 |w|? + |V (Dw)|* dz < 4™,
So for k large enough,

][ 16|vg|? + A2 24P | |P + |V (Dog) [P dz < 4 - 447,
Q1/4
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Since each vy, is Ay-caloric, there is a large enough k such that (3.25) contradicts (3.16). [

3.6 POINCARE INEQUALITY

Before setting out the prove the main result, we prove two useful Poincaré inequalities.
It is important to note that the following inequalities can only be applied to solutions of
(3.1). These results will be used in Section 3.7 to show the smallness assumptions in the
excess decay estimate can be met for 2, € >; U 2;. We begin this section by proving a
lemma that will enable us to prove the first Poincaré inequality. Both proofs are along the
same lines as Lemma 9.1 and Lemma 9.2 in [44]. The argument for the second inequality

is similar to the proof of (3.4) in Lemma 3.2 in [6].

Lemma 3.6.1. Let u € LP(—T,0; WHP(Q,RN)) N CO(=T, 0; L*(Q, RY)) be a solution to
(3.1) in Qr, where the assumptions (3.2) and (3.3) hold for u. Assume Q,(z) C Qr is a
parabolic cylinder with o € (0,1). Further let { : R® — RY be an affine map. Then for
anyr,s € (—o?,0) and arbitrary test function y € C3°(B,, RY), there exists c3 = c3(p, L)

such that

/ (u(z,r) —u(x,s)) - x(z)dx

o

p—1
P

< eylr — ) [ DXl 1QulF (][ \Du— Di? dz)

o

p—1

Faalr = 02 103 10615 (141087 (f Ju= ttao)a:)

p—1

1 p=1 p_l 2\ L=
+es(r =) [|Dx]l o [Qo 7 (L4 [DE)™ w(o”) 7.

Proof. For notational convenience, we will eliminate the centers zy and 2, from all balls

and cylinders. Let p(x,t) = ((t)x(z), where x € C{°(B,,RY) and ( is a Lipschitz
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continuous cut-off function such that for s, 7 € (—0?,0)

)
F(t—s), fors<t<s+h,

fors+h<t<r-—h,

—_

9

F(t—r), forr—h<t<r,

elsewhere.

=

\

Substituting ¢ into the weak formulation of (3.1) gives
/ u-Gxdz = / a(z,u, Du) - Dx( dz.
Letting h tend to zero, we see
/ (w(z,r) —u(x,s)) xde = /:/ a(z,u, Du) - Dy dzx dt. (3.26)

We now need to establish an upper bound for the right hand side of the above equation.

Note

/ a(z,u, Du) - Dy dx §/ la(z,u, Du) — a(z,u, DC)||Dx| dx
Bs B,

+ / a2, u, DE) — alz0, £(zy), DE)| | Dy| da

=1+1I.
As in the proof of Theorem 3.3.1, we use (3.3), and Lemma 3.2.2 to obtain

I< c/ (14 |Du| + |De))P~* |Du — D¢||Dy| da.
Bs



Using Holder’s Inequality and the fact that p < 2, we have

p—1

P

p(p—2) p
I < CHDX”LP (/B (1 + |Du] + |D€D p—1 |Du _ Dg’ﬁ dl’)

p—1
P

< cllDxll,s ( [ @+ 1Dul+Day*1Du- Da?dx)

p—1

<ol ([ 1Du-pgras) "
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In order to obtain an upper bound for /7, we use the continuity estimate (3.3),, Holder’s

Inequality, p < 2, and the fact that w < 1 is sublinear as follows:

I1 < c/ w (|Ju—(zo)]* 4+ %) (1 + |De)Y' " |Dy| da

< c(L+ DI Dxl, ( [ u tta)) dxwfl(a%) p
’ p=1

< c(1+ DU Dxl (/ w (|u = £wo)[*) da +W("2>>

o

Combining these two estimates with (3.26) and using Holder’s Inequality gives

p—1

P

[ )~ o)) s < et = 9 10x ([ 10w Dipa:)

o Qo
p—1
+e(r = )7 [ Dxll (1+ [ De)™ (/ w (Ju = E(wo)[) dz)
+e(r — 5)7 | Dxl| (1 + | DE)?! (/ [w(o®)] dz)
Noting w < 1 and concave, we can use Jensen’s Inequality to arrive at the result.

Theorem 3.6.1. (Poincaré’s Inequality) Assume u € LP(—T,0; WP(Q, RY))N

]
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L2(=T,0; L*(Q,RY)) is a solution to (3.1) in Qr under the assumptions (3.2) and (3.3),
and 0 < p < 1 is a radius such that the parabolic cylinders Qa,(z0) C Qr. Let A € R™Y.

Then there exists c4 = c4(p,n, N, M, v) such that:

]ép(ZO)

p

U — (U>20,p — A(r — x0) ? d

p

U= (U)z,p — Al — o)
p

_|_

2(p—1)

<y ][ |Du — A|P dz —I—c4][ |Du — AP dz
Q2p(20) Q2p(20)

p 2(p—1) 9 2(p—1) 9
A+ A e o™ u— (s dz |+ (4p7)]
Q2(20)

Proof. For notational convenience, we will assume all cylinders are centered at zo = (0, 0)

and all balls are centered at xy = 0. Let 0 and « be such that p < 0 < a < 2p. We choose

a symmetric smoothing kernel ¢ € C§°(B) with/ Ydr =1and ||« + || DY) 100 <
By

2(n + 2)|B;| 7. We rescale ¢ to get ¢, := p~ "¢ (%) which satisfy

1D, < c(n)p 7 "0F) < e(n)o (55 (3.27)

Vol oo < c(n)p™" (3.28)

A variety of means will be applied throughout this proof. The means and ¢)-means over a

time slice for ¢ € (—p?,0) will be defined by

(w),(t) ::]{3 u(z,t)dr and (ﬁ)ff(t) ::/B u(z, t),(x) de,

respectively. The means and ¢)-means over cylinders, (), will be defined by

(), = ][ u(z)dz = ][0 (@),(t)dt and (u)" := ][0 (@)2(1) dt.

p —p? —p?
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Throughout the following proof, we will use several functions repeatedly. For notational

brevity:

2
—+

p

u(z) — (u), — Az i,

r

u(z) — (u), — Az

U,(r)= ][T

a(p—1) q
Ol(r) = < ]Du—A]pdz) + (][ \Du—A\pdz) :
Qr Qr

Y3(r) = (14 14D [o (]{2 - (W) +)|.

Also, throughout the proof we write ®(r) and Yy(r) for ®'(r) and Y} (r), respectively.

First note that by Holder’s inequality we have

oef' (1

(f u(2) — () — Az
o
<o ()
S

g
+][ u(z) — (u), — Az | D
- g
From Theorem 3.3.2, we know
a0 \2 1-5
¥,(0) < [(a ) @+ 1)
0 . _ 2 g
X ][ <][ uz) = (W, = Az d:z:) dt (3.29)
—o2 - g
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p

u(z) — (u), — Az D

g

of

Next we want to estimate the term involving the power of £. Note that

(L 2 dx)g "

u(z) — (u)y — Az

g

u(z) — (u), — Az

o

(LA

P

2 2
dx) dt (3.30)

+coP|(u), — (u)|P =1 I+ I1.
Now note that

IT < co|(u), — (), P + co™|(w), — (Wl + co™[(u)e — (u); P

o

= ]Il + ]Ig + I[g
We begin by using Minkowski’s inequality:

IL < ca_p][ .71, ‘(ﬂ)ﬁ(t) - (ﬂ)p(t)|p dx dt

<co P fu— (0),(t) — Azxl” + |u— (@)%(t) — Az|” dz
Qp

From Poincaré’s inequality for functions with vanishing mean value and vanishing 1)-mean

value and noting o € (p, 2p), we obtain

I < ca_ppp][ |Du — AP dz < c][ |Du — AP dz.
Qp Q2p
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Similarly, we can show

I3 < c][ |Du — AP dz.
Q2p

Finally note that by the symmetry of v,

Il < ca_p][ (@) — @) dt

(u— (@3 (t) — Ax) 3,

0

<.
—o2 B, g
Employing Holder’s inequality and referring to (3.28), we see
1
0 2

wef ()
—o? B,
0 2 g
< c][ ][ der | dt.
—o? B,

Combining the estimates of /1, I I5, and I I3, and substituting them into (3.29), we obtain

P
d:v) dt.

—(I)Y(t) — 2
vz (@) = A\ o B,z | dt
g

u— (0)¥(t) — Az

g

1—

[N4S)

U,(0) <c [(a - 0)2 U, (@) + T,(a)

(L

(. )Z\Ppm) £, (a)

a—0

wolf,

By applying Poincaré’s inequality for vanishing mean value functions and recalling that

u(z) — (u)y — Az

g

2 £
dx) dt

1—

(NS

[®(2p) + T571(2p)]

+c

u(z) — (u)y — Az

’ dz + ®(2p) + Tg_l(Qp)] .




o € (p,2p)

flf,

[S4S]

u(z) — (u)y — Az

2
d$> dt < c][ |Du — AP dz

< c][ |Du — AP dz.
Q2p

Finally employing Sobolev’s inequality, we see

A

u(z) — (u)y — Ax

o

p
dz < c][ |Du — AP dz

< c][ |Du — AP dz.
Q2p

Hence,

1—

IS

VU, (0) <c

— [@(2p) + 127 (20)]

(; fwww+nm>

+ ¢ [®(2p) + T (2p)] -

Next, Young’s Inequality yields

Since a € (p, 2p),

][ lu — (u),]*dz < c][ lu — (u),|* dz

« Q2p
s#’m—waw+dw%—wmwz
Q2p

90
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< c][ lu — ()] dz.
Q2p

Hence, T,(a) < T,(2p) < Y9,(2p), and

2(2—p)

v < gue+ (20) 7 eloben e, e

a— 0

+c[@(20) + 15, (20) + Tan(29)] -

Applying Lemma 3.2.3 with 0y = p and oy = 2p and then simplifying exponents using the

factthat 1 < p < 2and 0 < w < 1, we obtain the result. OJ

Below we prove a second poincare inequality which will be employed to gain some
control on how quickly the gradient of our affine maps blow-up as we shrink p. This argu-

ment will be carried out at the end of the paper.

Lemma 3.6.2. There exists a constant ¢ = c(n, N, p, M) such that the following holds:
Suppose that u € LP(=T,0; W'P(Q; RV)) N CO(—T,0; L*(Q; RY)) is a weak solution to
(3.1) in Qp under the assumptions (3.2) and (3.3). Let QQ2,(20) € S be a parabolic

cylinder with reference point zg = (xg, to) and radius 0 < p < 1. Then

fQP(ZO)

Proof. For notational convenience, we drop the centers of all balls and cylinders in the

U — (U)ZO;P

g »
dz < cs ][ (1+|Dul)’ dz | , forallq € [1,p].
P Q2p(20)

proof below. All are centered at 2y and zy. Let ¢ and v, be defined as in the above lemma.

We will apply the Poincaré inequality slicewise on B, x {t} for almost every ¢ € (—p?,0).
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First note that for r € (—p?,0), we have the following:

][ “%@p "z <c [][ = _/E“)Qf’ " +][ —(“)2”; (), dz]
SC][QQ,J U_Q—(puhp ' dz
gﬁ%u—gﬁwq@

@50 — @350
*,,

(@), (r) = (u)sy
+ c]é2

2p 2p

=I+11+1II.

By applying Poincare’s inequality for functions with vanishing ¥-mean value slicewise,

I< c(q)][ |Du| dz.
Q

2p

Also,

111 = (2p)7°

@)% (r) — ]é wdz

2p

Lastly, we have

11207 sup |(@), (1) — (@5, (1)
(—402,0)

: (3.31)

q
which leads us to consider bounding the term ‘(ﬂ)g’p(t) - (ﬂ);/’p(r)‘ . Without loss of gen-
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erality, assume ¢ > r. For 0 < 6 < 5, we define ¢y € Wy °((r,t)) as follows:

=L os€enr+0)

=191, ser+06,t—0

2 se(t—0,1

\

Then for i € {1, ..., N}, we take g : R"™ — RY with (pg); = 12,(p and (pg); = 0 for

J # i as a testing function in the weak formulation of (3.1). Hence, we arrive at

/][ Z¢2pd (Co) dxds-/][ ,u, D) - Dy, Cp da ds. (3.32)
Ba, B,

We now note that the choice of (y gives

Letting 8 — 0 in (3.32), we obtain

@)5(0) — (@)%, (r) = (20)" / f 0:(+u, D) - Dy, di ds.
Thus,

@5 (0) = @)4,(0)] < M Dbyl 20" (1 Dl a:

2p
Q2p

< ¢(n, M)2p][ (14 |Du|)" " dz
Q2p
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Using this bound in (3.31) and combining all of the estimates gives the result. [

3.7 THE MAIN RESULT

In this section, we establish the main result. We begin by proving a partial decay esti-
mate for the excess functional. In particular, we show the first order excess decays. This
enables us to show the full excess functional preserves a smallness property as mentioned
in the introduction. We obtain such an estimate using the A-caloric approximation lemma.
The decay argument is then completed by means of an iteration lemma. Once this is estab-
lished, we argue that a Campanato-type estimate holds whenever the excess functional is
sufficiently small. We then assemble the results at the end of this section in order to prove

the main theorem via a Campanato embedding theorem.

3.7.1 PARTIAL DECAY ESTIMATE

We begin by proving the excess decay estimate. As mentioned throughout the paper,
we obtain the result by transferring decay estimates of A-caloric functions to our solution

via the following lemma.

Lemma 3.7.1. Let h € L*(ty — p?, to; WH2(B, (), RY)) be an A-caloric map in Q ,(z0)
as in (3.5.1) with A satisfying (3.12). Then h is smooth in B,(x¢) X (to — p*,to] and for
any s > 1 there exists a constant ¢ = ¢(n, N, M /v, s) > 1 such that for any affine function

¢ :R" — RN there holds

][ dz < c¥® ][
Qup(20) Qp(20)

The above lemma can be found in [13], [24], and [44]. Below is the statement and proof

h—1? °

vUp

h—1?

p dz forevery ¥ € (0,1].

of the Excess decay estimate.
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Lemma 3.7.2. Suppose L > 1 and 6 € (0,2°2"). Then there exists ¢; € (0,1] and
ce = c(p,n, N, M, v) so that the following holds:

Whenever u € LP(=T,0; WHP(Q,RN)) N L*(—=T,0; L*(Q,RY)) is a weak solution to
(3.1) in Qr under the main assumptions (3.2) and (3.3), and Qy)(zo) C Qr is a parabolic
cylinder with radius p such that 0 < p < 1 and scaling factor X > 1 on which the intrinsic

coupling
A<14|DEQ)| < LA (3.33)

holds, and also the smallness condition,

E)\ (Z07 P, gg?)\,)p) S €0,

holds, then there exists \| € {%, 2L/\} such that

1+ D | =\ (3.34)
and
E,, (zo, 0p, Ei;\;le)p> < CGQPE,\ (zo,p, Egﬁ;) . (3.35)

Proof. Recall that £%)), is the unique affine minimizer of fQ()\) ey 18— ¢|? dz, and define
P Zi

. u(x, to + N27P(t —tg)) — égé;)p(x)
(14 [DIS))
D,a(Z, (9 (o), DIY))
AP=2 ’

v = E*(p),

9

P(x,t) i=p(x,tg+ XNP(t —ty)) and A:=

where ¢ is to be selected later and z = (z,ty + A2 7P(t — to)). Let 7 = A?>7Pp? and use the
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change of variables ¢ = t, + AP~ 2(s — t;) to obtain

][ ][ (u— 62?,)) ~psdrds
(to—7,to) Bg (z0) ,

—][ ][ (O z,EZOP( 0), DEZO p( 0))(Du — DEZOP ), D) dzds
Bp(xo

20;P

= AP (14 DD ) ][ v- 3, — (ADv, D@) dxdt.
Qpy2(20)
By the linear approximation lemma and the intrinsic coupling (3.33),

][ vy — (ADv,Dp) dz
Qp/Q(ZO)

Az P(14|DeQ) )AL (Ei/Q(p)) sup | D]

Qp/?
N1+ | DIGL) TN L2 EY () sup | D
Qp/Q
Lc 1/2 ( 1/2 =1/2 ~
sT[u (BX*(0)) + Ex*(p)] sup [D].
c Qp/Z
Assume the following smallness condition:
L*c 1/2/711/2 =1/2
=L [ E o) + B 0)] <o, (3.36)

where 0 > 0 is the one given in the A-caloric approximation lemma. Hence,

<4 sup [Dgl.
Qp/Q(ZO)

][ vy — (ADv, Dp) dz
Qp/2(20)

Now note that since D¢/(1 + D{) < 1,¢> 1, and v < 1, Lemma 3.2.1 (vi) and (iv) give

2

vioor = v (Za<im)

cy(1+4 |De))
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2

1 Du D/
— V V| —
= (P2 <1 + ]D€|> (1 + |D€|)
1 Du |? D¢ 1*\ ? |Du— D¢|?
<— (14 + —
P2 1+ D¢ 1+ D¢ 1+ |D¢|

1
< @7(1 + |DL)P(1 + | Du| + | D|)*~2|Du — DEJ.

Using the Caccioppoli inequality, we have

v(x,t)
p

2
dx+][ V(Dv)|? dz
Q

p/2(20)

sup ][
te(to—p?/4,to}) B, 2 (20)
2
u—14

1
< — 200][ (1+|D¢|)7P
cPry QE)A)(ZO) Az

1 2 2—p
- _ d </\ : 2)
520 [w (ﬁm) u— E(oo) z)+w : ]

L27p60

cP

u—r0|F

+ (14 |De)) dz

Hence, we can choose ¢ > 1 large enough so that

2 2

t p
sup ][ vz, ) dx+ ][ v + P72 | —| +|V(Dv)|*dz
te(to—p?/4,to) Y B, a(xo) p/2 Qp/2(20) p/2 p/2
9. gnH 4 [
< ! (3.37)
c

where ¢ is the constant from the Caccioppoli inequality. Thus there exists f € LP(ty —
(p/8)2, to, Wl’p(Bp/g(CL’o), RN)> N LZ(tO - (p/8>2, to, Wl’Q(Bp/S(ZE()), RN>) which is A-

caloric on Q,/s(%) such that

]ZC;p/s(Zo)

2

f + 71)72

p/8

f

p
|+ |V(Df)Pdz < 48
S| Hvon
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and

2
+7

p
dz < ¢

v—f
p/8

v—f

p/8

p—2

]{2,;/8(20)

by the A-caloric approximation lemma. Hence f satisfies the assumptions in Lemma 3.7.1,

and for s = 2 and s = p we have

S

dz

9 -$ 2-s

s—2qs (P -F
SC’Y v <§> ]{Qp/s(ZO)
<ot |(8) (s [l ) 2 DDl
8 Q,/8(20)

S CQ?S ][ {752 f
Qp/S(zO)

s

F=Fps =7 = (DF)pys(x — 0)| dz

p/8

+ !Dfls} dZ] :

as vy is a constant. Using Holder’s inequality and () in Lemma 3.2.1 on the second term in

the integrand on the right-hand side, the following estimate holds:

7 (é)) ][ ’f = (Noprs =7 = (Df)opss( — x0)| dz
Qﬁp/S(zO)
< ct® ][ 2| L vopRd+1] <ot (338
Q,s(20) p/8
Hence for s = 2 and s = p, we see
s—2 7'910 - 2=s s
(L [0 = (Fopss =77 (D ayyslec = 20)| d=
Qup/s(20)

19 —8
<c <—p) ][ Yo = fI” dz
8 Qopys(20)
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U _ 2—s S
re( L) L= s =T ODate = )] e
Qup/s(20)
<c 19_"_2_5][ 52 v/ dz + c(co, p)V*
Q,ys(20) p/8
<c [0+ 0. (3.39)

Now choose ¢ = 9" "4P, Remember this also determines §. Scaling back to u on Q

/8
from v on @),/ gives
Up\ by
(?) ][(A) [u = Ego v <1 + ‘DéZOPD
Qﬁp/S(ZO)
2—s
X [(f)ﬁp/S +7 = (Df)ops(z — fEO)} |® dz

< ey? (14 DIV ) 0% < cE\(p) LN0°. (3.40)

Using the fact that éffp)/g is the unique minimizer of the integral on the left hand side above,

]£219 /S(ZO)

(\p) . o .
Let £;,5 be the unique minimizer of ¢ — fof,,)/s(ZO) |u — ¢|P dz, we also obtain

2

oY _
dz < cE\(p)L*X*9°. (3.41)

U—= 9p/8
Up/8

s
£ oeis dz < cEy(p) LP \P9P .
]{959”/8( | Up/8

The next step is to replace ¢4 §ﬂp/8 + Pﬁ;\/’;) (x—x0) with 61(9?))/8 51(92)/8 + Pé;}s (x—x0).

19p/8

We use (3.8) and the identities

][ 51(9;/}78 ® (x —x0)dz =0
Qﬁp/S(ZO)



and

+ 2 A
pip) _ n ][ piP (x —20) ® (x — x0) dz
Ip/8 (9p/8)? Quys(20) Ip/8
to get

&)) ) |P
‘ P19p/8 - Pﬁp/%

n -+ 2 P

- T~ a (A’ ) (A7 )
B (ﬁP/S)QJ{QW (20) (u N 19p/p8 B Pﬂp/]; (z — 350)) ® (r — mo) dz
9p/8 %0

p

IN

dz

n+ 2 ][ ‘ )
u—Lly’
(00/8).J® (o) %

-Pp
<c @ ][
- 8 oM (20)

Ip/8

p

(PN g

U= Ip/8

We also have

p

() ap|P
‘gﬁp/S o gﬁp/p8 -

(\p) (Ap)
]éw U — 19p/ps — Pﬁp/% (x —x0) dz

190/8(Z0)
<f
Q%) 5 (20)

Using the two estimates above, we finally obtain
Ip/8

p
i |
]éfjp)/s(za) Q) | UP/8

0y (\p) P
][ (Pﬁp/S - Pﬁp/pB) (IE - iIZ'(])
4_
Qg))/s(m)

p

u— (O gy

Ip/8

g()\) p

9p/8
Up/8

u— u — ()

dz

/8 dz

M) E()wp) P

N ][ S8 ~ Sops
o™ (z0) Ip/8

(Ap)
u—20 ﬁpfS

dz

p

dz

100
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< cEx(p) LPAPOP.

For s = 2 and s = p,

s

w— ~
dz < cE\(p)L°X\*9°.

Ip/8
Up/8

]é? Gors(20)

We now want to find the new scaling factor A\g € [,2LA] such that (3.34) holds. The

following argument is given in [6]. It is included here for completeness with a few minor
changes since -2 < p < 2. Define 6 := 2°2°9). Then 6 € (0,22 ] since ¥ € (0, 1]. Note
for our choice of § and € [5,2LA], Qé’;% C Qé’;)/g. Recalling (3.9), we see

) g
Dfl)s ~ DO |

n(n + 2)][ ()\) ()\) 2
< ——F u—E&g e — DU (x—x0)| dz
(0p/8)? Q8 (20) Je/8 Op/8
™ 12
:c][ —U—Eﬁp/g dz
Qs | OP/8
2
9\ AN w =Ly
e Q) L
0 M Qfg);)/g(z()) 19/)/8
< 2" PN Ey(p) = eN?En(p).
So provided we assume
cEx(p) < 1/4, (3.42)

we can obtain ’DZ;‘;) — Dﬁf;?

< % Hence we see

1+ |Degy

A
<1+ |Deiy| + [ D) - De| < LA+ 5 <21,
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and

>a-2=2
- 2 2

1+ | D)

> 1+ Dl

- |peg) ~ pety)

Define f(5) := 8 — (1 + |D£§i)\) for 3 € [3,2LA]. By the Intermediate Value Theorem,
there exists A; € [4, 2LA] such that A\; — (1+ \Dﬁé?j) ) = 0 as the function f is continuous.
In order to see that f is continuous, rewrite Dﬂé’l\)) using (3.8).

Now we prove the last assertion of the theorem. For s = 2 and s = p, we have from

our work above

(M) |® ) |8
u— Lo, s u— Ly,
— | dz < — 1 dz
Qe | O0/8 QM) | Op/8
n4-s+2 2—p U — E(A)
0 Al QW) (z0) Up/8

9 n+s+2 hY 2—p »
< c(e) <5> (/\—1) PN E(p)
19 n+2s+2 A 2—p+s _
< ¢(ea) (5) ()\—1> 0°ATEx(p)

S 0(027 n7p)98AiE’)\(p>

< clea,n, )" (1+ [DEYAI) Ealp).

Note that ¢y = €o(n, p, L,v, N, M, 0, u(-)) in the statement of the problem must be chosen
small enough to satisfy E;/ *(p) < 1 and (3.42). Thus the last argument gives the final
claim provided ¢ > 1 is chosen large enough so that (L?c)/¢ < 1 in (3.36) and (3.37)

holds. L]
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3.7.2 CHOICE OF THE CONSTANTS

For any given v € (0, 1), define

6—p 2(n+4)
T N 1 e

Now set €; = ¢, where ¢ is the epsilon from the excess decay theorem, so that €; depends

onn, N,p, M,v, L, u(-), and ¥. Now select py € (0, 1] such that

w ((2Lpo)?) < e, (3.44)

wherepg depends on n, N, p, v, L, M, w(-), u(-), 9, and €;.

3.7.3 ITERATION ARGUMENT

Lemma 3.7.3. Suppose for some zy € Qr and some radius 0 < p < py such that

1+|D¢.,,| < L, (3.45)

and

EI(ZOJ P gzo;p) < €1 (346)
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hold on Q,(z0). Then there exists {\;}52, such that that the following hold:

(

1<)\ <(2L),

A< 1+ |DEY, | < L, (3.47)

i A
kE)\j <Zo,19jp’ f( qujp> < €,

20,

and

u— ), o) ds < (PpRELPELE  (Ga8)

20,97 p

9J P
Proof. We first show that (3.48) follows immediately from (3.47) if it holds. Assume (3.47)
holds. In the following, we suppress notation by using fiijg ip = ¢; and Dﬂii‘jgjp = DV;. As
(3.47) holds,

2

u—ﬁj dz

Wp(1 + [ DE])

Uy, (¥ p) <2 p)?(1+ \D&-DQ]QW
19jp

+2(9p)*(1 + | DY)
< AW p)*(1 4 |DE;])2Ey, + 2 p)* (1 + | D))
< 4(¥p)*(1 + | D)

< 400 ) (LN,)” < (#p)*(2L)¥ (2L)°,

We now use induction to prove (3.47). Let Ao = 1. Then (3.47) holds by our assumptions.
Assume (3.47) holds for some j € NU {0}. We need to show (3.47) holds for j + 1 using
Theorem 3.7.2. Note that \; < 1+ |D/;| < LA;. By (3.47), Ej, (97p) < €. By (3.48) and



105

our choice of the constant 9,
Uy, (9 p) < (#p)*(2L)¥ (2L)* < (2L9)¥ (2Lp)* < (2Lp)*.
Thus by our assumption on w,
w(0, (9p)) < w((2Lp)®) < w((2Lpo)?) < €.

Also, w((ﬁj/\j%pp)Z) < w(p?) < w(p?) < €. Hence, E)\j < €p. So by Lemma 3.7.2, there

exists )‘j+1 € [A?], 2L)\]:| such that )‘j+1 =1+ |D€j+1| and

By, (¢ p) < coﬁpﬁ)\j(ﬁjp) < 3cpPeq < €.

J

We also see that 1 + |Df;,4] > 1and \j;; < 2L)\; < (2L)7™'. Thus, (3.47) holds for

j + 1. Thus we have shown the result by induction. 0

3.7.4 CAMPANATO-TYPE ESTIMATE

Let 29 € Qp and 0 < p < pg. Further we assume that the smallness conditions in the
iteration (3.45) and (3.46) hold. Then for any j € NU {0}, we have

G 2-p (0 7 \2G+1) (197 y\n+4
u—(u), %5, dz <|[Bi(zo)[A;F(2L) (¥ p)

20,97 p

(X5)
9T p

Q

< | By (o) |(2L)?(2L) 4PV (99 p) 4,
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by (3.48). Now set § = (2L)%19. Note that Qi ,(20) C QI(;;;) by our choice of § and the

fact \; < (2L)7. Hence,

2 N
/ |u - (U)zo,ey‘p‘ dz < / ‘u _ (u)io,]q;jp d=
Qer Qui,
) 2
: /Q(Aj) v (U)ZOTWP dz

19jp

— By (20)| (2L)%p™ ((2L)* P9+t

< |Bi (o) |(2L)?prigrlmsae) ((or) S gaae)!
< |B1 (l‘o)|(2L)2pn+4@j(n+2+2a) ((2L)4(n+4)192_2a)j

< [Bi(wo)|(2L)2pH g2,

where the last inequality uses the choice of ¥} in (3.43).

Now let 0 < r < p. Then there exists j € N U {0} such that ¢’*!p < r < 67p. So

/ lu— (u),|* dz < / u— (U)ea‘p‘2 dz < / u— (“)910‘2 dz
Qr Qr .

03 p

S |Bl ($0)|(2L)2pn+49j(n+2+2a)

p

< [Bi(wo)| (QL)29_("+2+2a)rn+2+2a

r n+2+2a
S |Bl (x0)|(2L)2pn+49—(n+2+2a) (_)

<c(n,N,p,v, L, M, a)r" 22
So for every 0 < r < p, we have

lu — (u)r|2 dz < c(n, N,p,v, L, M, a)r" 242, (3.49)
Qr
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Let o € (0,1) and L > 1 be given. Also let €;(L) and py(L) correspond to the €; and

po given in the iteration argument. Let zy € Q7 \ (2 U Xs). Then there exists 0 < p; < 1

and Ly > 1 such that

|(DU’)20;2,0| < Lo,

(3.50)

forall 0 < 2p < p; with Q4,(29) C Qp, since 2y ¢ 5. Now choose 0 < ps < p; such that

Qapy(20) € Qs
2(p—1) 9
|Du - (Du)z0;202’p dz <€, and w 7 ((2p2> ) < €
Q205 (20)
where €5 and L satisfy
O<e<l< Ly, 14cLy<lL,

and

2(p=1)
c |:62 P4 e+ (14 Lo)p€2:| < €(L).

In the above inequality ¢ = max{cy, c2}, where ¢; and ¢, are discussed below.

By Lemma 3.6.2, (3.50), and (3.51), we see

n-+2
Dbl =2 1 (1= (W) @ (o — )
P2 | Qpy(20)
e [y,
Qpy (20) P2

(3.51)
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1/p
< ¢(n+2) <][ (14 |Du|)? dz)
Q2p, (20)

(14 (D) +

Q2p2 (ZO)

1/p
<c [Du — (D) 2 20, dz]

<c[(1+4 Lo)? + 62]1/p < ¢ Ly,

where ¢; = ¢1(n, N,p, M). Soforall 0 < p < 1, wehave 1 + |Dl,.,,| <1+ c1Ly < L.
In the end we will obtain an estimate for E (29, p2, £, »,) as well, but in order to achieve
this end, we must first estimate J[Qz,,Q (z0) |t = ():0:2)| dz. Taking A = 0 in Theorem 3.6.1

and recalling that w < 1, we find

2(p—1)
p

b gl <ep? (- (pup:
Q2p(z0) Qap(20)

+ ¢(2p)? [][ |DulPdz + 1

Qap(z0)

<c(2p)? (3.52)

for all 0 < 2p < 1 such that Q4,(20) C Qr, since u € LP(=T,0; W'?(Q,R"Y)). Here
c=c(n,N,p, L, M). Now taking A = (Du),.2,, in Theorem 3.6.1 and using the fact that

C+:p, 18 the unique minimizer discussed above and (3.52), we have

E1(207 1027620702) SEl(ZU’pQ’ (U)ZO;PQ + (Du)zo;m (ZL‘ - 370))

2(p—1)

<c (f Dt — (Dt} pal” dz)
Q2p2 (ZO)

vef Du (Du)pds
Q292 (20)

2(p—1)

+e(L+[(Du)sg )" w7 ((202)7)
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2(p—1)

<cyleg T+ e+ (14 Lo)Pea|,

where ¢o = c3(n, N, p, M). Hence we have shown that we may select L > 1 and 0 < py <

po(L) such that Qa,, (20) C Qr, and
L+ [(D)sgipy| <L and  Eq(20, p2, lagip) < €1(L)

By the continuity of the mappings z — |D/,.,,| and z — Ei(z,p2,{.,,), there exists

0 < R < py/2 such that
1+ |DC,,| <L and Ei(z,p2,Ls,,) < e(L), forall z € Qr(2).

Hence the assumptions for obtaining the Campanato estimate (3.49) hold uniformly for

2 € Qr(20). Alsonote Q,,(2) C Q2,(29) € Qp. Thus we have shown
/ lu — (u),|*dz < ¢(n, N,p,v, L, M,a)r™ 22
Qr(z)

for all r € (0, po], 2 € Qr(z0), where R > 0 was fixed in a way that depended on z € Q.
Hence u € €' iz (Qr(20), RY). By the Campanato-Da Prato integral characterization,

Theorem 3.1 in [18], we have
u € C%2(Qp(z),RY) forall 2y € Qp\ (21 U Dy),

i.e. we have shown u € C%*%%/2 for a small neighborhood around any z, € Q7\(X; UX,).
The union of all these neighborhoods gives an open set (2. Since ¥; and X, are both of

measure zero, we know {2y has full measure.
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