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TWO PROBLEMS IN EXTREMAL SET THEORY

Joshua Brown Kramer, Ph. D.

University of Nebraska, 2007

Advisor: Jamie Radcliffe

The focus of this dissertation is on two problems in extremal set theory, which is
a branch of extremal combinatorics. The general problem in extremal set theory is
to start with all collections of subsets of an underlying ground set, apply restrictions,
and then ask how large or small some property can be under those restrictions. We
give a brief introduction to extremal combinatorics and consider two open questions.

One open question we consider is an extremal problem under “dimension con-
straints”. We give a brief account of the history of this subject and we consider the
open problem of determining the maximum number of Hamming weight w vectors in
a k-dimensional subspace of F. We determine this number for particular choices of
n, k, and w, and provide a conjecture for the complete solution when w is odd. This
problem is related to coding theory (the study of efficient transmission of data over
noisy channels).

One tool used to study this problem is a linear map that decreases the weight
of nonzero vectors by a constant. We characterize such maps. Using the tools we
develop, we give a new elementary proof of the MacWilliams Extension Theorem
(which characterizes weight-preserving linear maps).

The other open problem explored in this dissertation is related to a classical object
known as a t-intersecting family, a set system where the size of the intersection of any
two family members is at least t. The basic problem is to maximize the size of such a

family. We give a history of the relevant theorems (with proofs, where appropriate).



A next question is how few pairs with intersection size less than t are possible in a
(large) set system. Bollobas and Leader gave a new proof of a well-known partial
solution to the ¢ = 1 case by extending set systems to what they call fractional set
systems. Although that paper claims the result for ¢t > 1 in fact their generalization
is false. In this dissertation we give give several counterexamples, as well as a fast

algorithm to determine the minimizing fractional set systems when ¢ > 1.
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Chapter 1

Our Notation

1.1
]

[m, n]

5]

General Notation

{1,2,...,n}

{m,m+1,m+2,...,n}

the size of S; i.e. the number of elements in the set S

the collection of functions from S to A, where A and S are sets
the power set of S;ie. 29 ={A4: AC S}

the complement of S. Usually S C [n], and so S = [n] \ S

{A C [n] : |A| = r}, the collection of subsets of [n] having size r
)| =

fAc A== (hu(r)u--u )

i ()= |

the ceiling of r; i.e. [r] is the unique n € Z such that 0 <n —r <1

“n choose r” =

the t-constant fractional set systems of weight w. Defined on page 27

the t-canonical fractional set systems of weight w. Defined on page 30



1.2 Vector Space Notation

span (5)

S<IF‘Z

|

m(n, k,w)

S(k,t,n)

supp(S)

= the field with ¢ elements, where ¢ is a prime power

= F,\ {0}

LetSQ]FZandSGS.

= the span of S; i.e.span (S5) = {Z ot 1 €F}

tesS

= S is a subspace of F;. We also say S is a linear code

= the i coordinate of s

= the projection of s onto the coordinates [

= the Hamming weight of s; i.e. wt(s) = [{i € [n] : m (s) # 0}|
= |seS:wt(s) =w}

= 0, = the vector in F} consisting entirely of zeroes

= 1, = the vector in [y consisting entirely of ones

= max{4,(C) : C <Fy,dimC = k}
= the k-dimensional binary simplex code. Defined on page 50
= a sequence of simplex codes. Defined on page 51

= the support of S;

ie. supp(S)={i € [n] : 3t € S with m; (t) # 0}



Chapter 2

Extremal Problems in

Combinatorics

2.1 Introduction

The main focus of this thesis is on two problems in extremal combinatorics, specifically
extremal set theory. An extremal problem has the following flavor: we put restrictions
on a collection of combinatorial objects and then ask how large or small some property
(often the size) of the objects can be under those restrictions. In extremal set theory,
the underlying objects are collections of subsets of some finite ground set. A collection
of subsets is variously called a set system, a family of subsets, or a hypergraph. The

rest of this chapter provides some examples of extremal problems.



2.2 Examples

2.2.1 Ramsey Theory

We now give an old example of an extremal problem. Say we invite people to a party,
and we wish to choose them in such a way that no three are mutual strangers and
no three are mutual friends. What is the maximum number of people that can be at
such a party? The following fairly easy argument tells us that the answer is 5 and no
more.

We re-envision the problem as a graph edge coloring problem. Let K, be the
complete graph on n vertices. We will interpret these vertices as the people invited
to the party. We color the edges of K, either red or blue, red indicating friends, and
blue indicating strangers. We now wish to know how large n can be if we would like
to avoid a monochromatic triangle. With 5 vertices, we may avoid such a triangle by

coloring as indicated in Figure 2.1.

Friends

__________ Strangers

Figure 2.1: A configuration without 3 mutual strangers or 3 mutual friends

We now show that we cannot do this for 6 or more vertices. Color the edges of

K red and blue. Pick a vertex v € Kg. There are 5 edges emanating from v. Thus
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there are either at least 3 red, or at least 3 blue edges from v. Let us assume without
loss of generality that they are red. Let the set of endpoints of these red edges be
called S. Either there is a red edge between some pair of members u,w € S, or there
is not. In the first case v, u, and w are the vertices of a red triangle. In the second
case, S is the set of vertices for a blue triangle.

The fact above is a specific case of Ramsey’s Theorem [27], one version of which

can be stated as follows.

Theorem 2.2.1 (Ramsey’s Theorem). Given positive integers r and b, there exists
R(r,b) > 0 (called the Ramsey number for r and b) such that if n > R(r,b), all red
and blue edge-colorings of the complete graph on n wvertices contain either a copy of

K., all of whose edges are red, or a copy of Ky, all of whose edges are blue.

We have shown that R(3,3) = 6. There is a natural proof of Theorem 2.2.1 that
is very similar to the specific case given above, so it is not provided here.

Finding R(r,b) is an extremal problem. We start with the collection of complete
graphs colored red and blue, and we place the restriction on them that they have no
red K, or blue K,. We then ask how large the largest of these colored graphs is. The
answer is R(r,b) — 1. Finding R(r,b) is a very hard problem in general. It is only
known exactly in a small number of cases. See [26] for a survey of the known Ramsey

numbers.

2.2.2 Sperner Families

We will now discuss another classical problem from extremal combinatorics. Here,
the underlying combinatorial objects are collections of subsets of a ground set. For
this reason, the problem falls under the category of extremal set theory.

Let A C 2" be a family of subsets. We say that A is a Sperner family or antichain
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if no two subsets in A are comparable. That is, forall A, B € A, if A C Bthen A = B.
The natural extremal problem is to find how large such a family can be. Sperner [28]

found the answer in 1928.
Theorem 2.2.2 (Sperner’s Theorem). If A C 2" is an antichain then |A| < (LZJ)‘

One way to prove this result is to use the so-called LYM inequality proved inde-

pendently by Lubell[22], Yamamoto[31], Meshalkin[25], and Bollobas[6].

Theorem 2.2.3 (The LYM Inequality). Let A C 2" be an antichain. Then

2 (\Zr)_l =t

AeA

The LYM inequality can be proved by a beautiful double counting argument, which
requires a definition. A mazimal chain in 2" is a collection of sets {Cy, O, Ca, ... Cp}
with the property that ) = Cy € C, € --- € C,,_1 € C,, = [n]. Notice that the i
set in a maximal chain contains exactly one more element than the (i — 1)%. We
can then associate the i set with this new element. A maximal chain can thereby

be associated with an ordering of the elements of [n]. Thus the number of maximal

chains is n!. We now proceed to the proof of the LYM inequality.
Proof of the LYM inequality. Let A C 2" be a Sperner family and define the follow-
ing collection of pairs.

P={(A,C) : A€ A and C is a maximal chain with A € C}.

We count P in two ways. First, given A € A, we count the number of maximal chains
containing A. By the discussion above, this is the same as the number of ways to

order [n] so that the first |A| elements of the ordering are a permutation of A and the
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last n — | A| elements are a permutation of [n]\ A. The number of maximal chains

containing A is therefore |A|!(n — |A|)!. Summing over all elements of A, we have

[Pl=) |All(n — A

AcA
Now we fix a maximal chain C in 2. Notice that any two sets from C are
comparable. But by the definition of a Sperner family, if A, B € A and A # B, then
A and B are not comparable. Thus at most one element of A is in C. Since there are

n! maximal chains in 2", we have that |P| < n!. Hence

> 1A — A < nl

AeA
| _ |
skl
AcA n
n! -1 1
- <
2 {!All(n— IAI)J B

AeA

2 (Lzr)l =t

We now use the LYM inequality to prove Sperner’s Theorem.

Proof of Sperner’s Theorem. Let A be a Sperner family. It is easy to show that for
allr € [n], (") < (,%,). Then by the LYM inequality,

r/ = \l3]



IN

=
VRN
Ll S
—
I
™M M

Hence |A](LZJ)_1 <1 and thus |A| < <LZJ>’ as desired. O
2 2

Sperner’s Theorem and Ramsey’s Theorem are two classical examples of problems
from extremal combinatorics. They come from extremal set theory and extremal
graph theory respectively. There are many more examples of extremal problems (see
[7],[11], and [20] for examples). The remainder of this dissertation will consist of work

on some open problems in extremal set theory.



Chapter 3

Intersecting Families

3.1 Introduction

We now introduce another classical object from combinatorics. A family of subsets
A C 2" is called intersecting if for all A, B € A, we have AN B # (. Given an
integer ¢ > 1 we may insist that for all A, B € A we have |[AN B| > t. In this case we
say A is t-intersecting. In particular, an intersecting family is a 1-intersecting family.
We might also insist that the families we consider be subsets of ([Z]), for some r € N.
In all cases the first natural question is how large such a family can be. The answer
to each of these problems is completely known. A survey of the results (with proofs
where appropriate) appears in Section 3.2.

Define M (n,t) € N to be the size of a largest t-intersecting set on [n]. If A C 2"
is a set system with |A| > M (n,t) then A has at least one pair A, B € A such that
|AN B| < t. We may ask for the set system which minimizes the number of non-t-
intersecting pairs. Some results are known for this problem. We summarize them in
Section 3.2.4.

In [10], Bollobds and Leader gave a new proof of a partial result of the ¢t = 1
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case. They use what they call fractional set systems, which they introduced in [9].
Although [10] claims the result for ¢ > 1 in fact the generalization is false. In Section
3.3, we give several counterexamples as well as a fast algorithm to determine the

minimizing fractional set systems when ¢ > 1.

3.2 Survey of Known Results

3.2.1 The Easy Unrestricted Case

The following bound on the size of an intersecting family is well known (see [7] for

example).
Theorem 3.2.1. If A C 2" is an intersecting family then |A| < 2771,

Proof. Let A € A. We have that AN A® = (. Thus A° ¢ A. A is missing the
complement of each of its members, so it contains at most half of the elements of 2"

Thus |A| < |2M]/2 = 2n/2 = 271, O

Furthermore, this bound is tight. There are many examples of intersecting families
on [n] with 27! elements. Indeed, every maximal intersecting family has size 2"~
That is, given an intersecting family A C 2", there is an intersecting family A’ C 2"

with A C A, and |A’| = 2", This is also well known (again see [7] for example).
Theorem 3.2.2. Fvery mazimal intersecting family on [n] has size 2" 1,

Proof. Suppose to the contrary that there is a maximal intersecting family A C 2"
with |A| < 271, There is A € 2"l such that A ¢ A and A ¢ A. By maximality,
there are B, C' € A such that ANB = (), and A°NC = (). Thus B C A® and C C A.

Hence BN C = (). This contradicts A being an intersecting family. [
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The two most important examples of maximal intersecting families appear below.
They are, respectively, the family of all sets containing a fixed element, and the family

of all “large sets”.

A={Ae2" 1€ A}

and

=

J]rl)7 n odd;

2

(
<2[%nlr1) u{Be2M: |B|=2 and 1€ B}, n even.

=
I
WY
3

It is clear that A in intersecting. Let A, B € B. If n is odd, then

n+1 n-+1

|ANB|=|A|+|B|—-|AUB| > +— n=1

If n is even and |A| = |B| =n/2 then 1 € AN B. Otherwise

ANB|=|Al+|Bl—|AUB|> 2414+ 2 _p=1.
2 2

3.2.2 The Unrestricted t-Intersecting Case

The problem for general ¢ is more difficult. It was solved by Katona [21]. If we
let M(n,t) = max {|A| : A C 2" and A is t-intesecting} then we have the following

theorem.



12

Theorem 3.2.3 (Katona’s Intersection Theorem). Fort > 1,

et if n+t is even;

==
(smis) if n+t is odd.
=72

Four proofs of this fact appear in a recent paper by Ahlswede and Khachatrian
[5]. We will present a very elegant proof from that paper, filling in some of the details
omitted there.

Loosely, the idea of the proof is to take a maximum t—intersecting family A and
repeatedly “shift it to the left” in a way that preserves the size of the family and
leaves the family ¢-intersecting. Eventually we will arrive at a family that cannot
be shifted further to the left. We call such a family left-compressed. The desired
inequality is easy to establish for left-compressed families. We now make these ideas
1

precise.
Let 4,7 € [n], where i < j. Define S;_; : 2" — 2[" by
A\{jH u{i} ifje€ Aandi ¢ A;
S i(A) = (AN{s}) u{i} ¢
A otherwise.
We call S;_; a left shift. Unfortunately, S;; is not injective. Given a family A C 2],
we may modify the left shift in such a way that it is injective when restricted to A.

To this end, we define S, ; : A — 20 as follows.

Sij(A) if Sij(A) & A;
A if Sij(A) € A.

Sai—i(A) =

Lemma 3.2.4. S, ; is injective.

Tt should be noted that shifting techniques have found wide applicability to extremal problems
(See for example [8], [17], or [30]). In particular, the lemmas in this subsection are very well-known.
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Proof. Let A, B € A be distinct sets. Suppose for the sake of contradiction that
Sai—j(A) = Sai—;(B). This implies that A\ {i,j} = B\ {4, j}. First we show that
exactly one of the equalities S, ;(A) = A and S4,;;(B) = B holds. They do not
both hold, since A # B. Notice that if S, ;(A) # A, then j € Aandi ¢ A. In those
circumstances, Sa;(A) = (A\ {j})U{i}, and so A = (Sa,—;(A) \ {i})U{j}. Simi-
larly, if Sa;—;(B) # B then B = (Sa,—;(A) \ {i})U{j}. Therefore, if S4,_;(A) # A
and Saii(B) # B then A = (Sases(A)\ i) UL} = (Sais(B)\ D UL} = B,
a contradiction. We may now assume without loss of generality that S4,;(A) # A
and Sa4;;(B) = B. But this situation cannot happen, since otherwise S;_;(A) =

Sai—j(A) = Sai—;j(B) = B € A and so by definition, S4,_,;(A) = A. O

We now define

Si<—j(./4> = {S_A,zk—j(A) A€ A}
Lemma 3.2.5. If A C [n] is t-intersecting then S;—;(A) is also t-intersecting.

Proof. Let A", B" € S;;(A). We want to show that |[A’ N B’| > t. We have that
A" = Sy, j(A) for some A € Aand B’ = Sy, ;(B) for some B € A. Since A is

t-intersecting, we have that |[AN B| > t. If A= A" and B = B’ then

|A"NB'| =|ANB| >t,

as desired. If A" # A and B’ # B, then

AN B =[ANB] - [{j} + Hi}| = |[ANB| > .

We may now assume, without loss of generality, that A" # A and B’ = B. One of
three possibilities has occurred. Either j ¢ B or i € B or S;;(B) € A.

Case 1: j ¢ B.
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Notice that i ¢ A. Thus ANB = (ANB)\ {i,j}. Thus

[A'N B = [A'0 Bl = [(A\{7}) U{i}) N B] = |(AN B)\ {i,j}| = [AN B > t.

Case 2: 1 € B.
Notice that i ¢ A. In particular, A\ {j} = A\ {4,j} and [(A\ {i,j}) N B| >
|AN B| — 1. Thus we have

|A'NB'| =|A"n B
= [((A\{7}) U {i}) N B
= [((A\{7hH nB)U{i} N B)|
= [((A\{i,51) 0 B) U ({1} N B)|
= [((AN\{,73) 0 B)| + [{i} N B
>|ANB|—-1+1
=|ANDB|

> t.

Case 3: S,;(B) € A.

If S;—;(B) = B then one of the cases above holds. Otherwise, S;;(B) = (B \
{j})U{i}. Thus j ¢ S;,—;(B) and i € S;—;(B). On the other hand, j € A and i ¢ A.
In particular, ANS;—;(B) = (ANB)\{i,j}. But S;;(B) € A,s0 |ANS;—;(B)| > t.
Thus

(AN B =|A'NBl = (AN B)\{i,j}| = [ANSi—;(B)| 2 t.

]

We say that a family A C 2" is left-compressed if for all 4,5 € [n], where i < j,
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we have S;;(A) = A. We are now ready to prove Katona’s intersection theorem.

Proof of Theorem 3.2.3. We treat the case where n + t is even (the other case is

similar). First let A = (Jﬂt
2

). Given A and B in A, we have

n+t n-+t

\AmB[:|A|+|B|—|AuB|zT+ 5 n=t.

Thus A is t-intersecting, and so M (n,t) > |A| = (2@)

We must show that M(n,t) < (2 @ ) We prove this statement by induction on
n. For n = 1, we want to show that the largest t-intersecting family on {1} is {{1}}
if t =1 and 0 if t > 1. These facts are clear.

For n > 1, let A’ C 2" be a maximum size t-intersecting family. Notice that
|A'| = M(n,t). By starting with A" and repeatedly applying left—shifts, we eventually
arrive at A C 2" a left-compressed t-intersecting family of size M(n,t). It only
remains to show that |A| < (2%)

We define the following families on the ground set {2,...,n}.

A ={A: AcAand1¢ A}.

A.={A\{1} : Ac Aand 1 € A}.

Notice that |A_| + |A.| = |A|. We have that A, is (¢t — 1)-intersecting. It turns
out that A_ is (¢ + 1)-intersecting. To see this, consider A, B € A_. Notice that
|JANB| > ¢t > 1. Thus there is some j € AN B. Since A is left—-compressed,
Sai—j(A) = A and hence A’ = (A\ {j}) U {1} is in A. But then |[A'NB| > t. We
have AN B = (A'NB)U{j}. Thus |[ANB|>t+1.
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By induction,

M(n,t) = |A|
— [ A_|+ A4

- ”i (n;1)+ i(nz_1)

i— (n—=1)4(t+1)

3.2.3 The Restricted Case

Let r € N. We ask for the largest intersecting family A C ([:f]). If r > n/2 this is
easy: given two sets, A, B € ([:f]), we have

|JANB|=|A|+|B|—|AUB|>r+r—n>n—-n=0.

Thus ([:f}) is itself intersecting.
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For the case r < n/2, let x € [n] and define

([”]) - {A c (W) re A} |
). r
Clearly ([:f])x is intersecting. Its size is (:‘:11) Moreover, the famous Erdés-Ko-Rado

Theorem [15] tells us that this is the best possible.

Theorem 3.2.6 (Erdés-Ko-Rado). If 1 <r < n/2 and A C ([’TL]) is an intersecting
family then |A| < (”_1). Equality is achieved if and only if A = ([f])w for some

r—1

x € [n].
[

In [15], Erdés, Ko, and Rado also determined the limiting behavior for the t-

intersecting case.

Theorem 3.2.7 (Erdés-Ko-Rado). Let r € N. There exists N € N so that for all
n > N, every t-intersecting family A C ([:f]) has |A| < ("7}). Furthermore, N can be

chosen large enough that if n > N and A is t-intersecting with |A| = (7::;), then A

consists of all sets in ([Z]) containing some particular set of size t.
O

The complete solution to the restricted t-intersecting problem for all n and r was
found by Ahlswede and Khachatrian [4]. To state it requires some definitions. Given
n,r,t € N, we define I(n,r,t) to be the set of all t-intersecting families consisting of

subsets of [n| having size r. That is

I(n,rt) = {AQ ([7:]) : AN B| >t for all A,BEA}.
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We are interested in finding

M(n,rt) = e |Al.
cl(n,rt

n—t
Given n,r,t,7 € N, with 0 <17 <

, set

Ez{Fe (@) ; \Fm[t+2z‘]|zt+7;}.

—1
We claim that F; is t-intersecting for all 0 < i < nT Given A, B € F;, we have

|[ANB| > [(AN[t+2i]) N (BN [t+ 2i])]
=|(AN[t+2i)| +[(BN[t+2])| — [(AN [t + 2i]) U (BN [t+ 2i])]
> (t+1)+ (t+19) — (t+ 20)

= 1.

The theorem of Ahlswede and Khachatrian will tell us that given n,r,t € N, there is

.o n—t
some () <1 <

for which M (n,r,t) = |F;|. More specifically, we have

Theorem 3.2.8 (Ahlswede and Khachatrian). For 1 < t < r < n we have the

following cases

(i) (r—=t+1)2+(t—-1)/G+1)<n<(r—t+1)(2+(t—1)/i) for somei e N.
In this case we have

M(n,r t) =|Fl,

and up to permutation, F; is the unique optimum.
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(i) (r—t+1)(2+ (t—1)/(i+ 1)) =n for some i € N. In this case we have
M(n,r,t) = |‘Fl| = |Fisal,

and up to permutation, F; and F;i1 are the only optimal families.

3.2.4 Further Research

The maximum sizes of intersecting families under various restrictions are now well
known. A natural next question is: given (large) s € N, how close to intersecting can
a family of size s be? More precisely: given A C 2", define D,(A) to be the number

of pairs of sets from A that have intersection size less than ¢. That is
Di(A)=|{(A,B) e Ax A : |[ANB| < t}.

Given s € N, we wish to minimize D;(.A) over all systems with |A| = s. Define D, (s)

to be this minimum. That is, we wish to find
Dy4(s) = min {Dy(A) : A C 2", Ais t-intersecting, and |A| = s}.

Theorem 3.2.3 (Katona’s Intersection Theorem) established the values of s for which
D,4(s) = 0.

Frankl [16] and Ahlswede [1] independently determined the answer for particular
values of s when t = 1. Essentially, the optimal family has as many large sets as

possible. More precisely, we have the following theorem.

Theorem 3.2.9 (Frankl and Ahlswede). Let n € N. Given B C 2" let  be such
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that (27’n+1) <|B| < (an) Then there is A C 2" with |A| = |B], (z[ﬂl) CAC ([;Li)

and Dy(A) < Dy(B).

An immediate corollary of this theorem is that if s = (Z"T), then Dy(s) = D ((g‘i)) :
Bollobas and Leader [10] provided another proof of this corollary (but not of the the-
orem) by generalizing to what they call “fractional set systems” (we will give the
precise definitions of fractional set system and other relevant terms in Section 3.3.1).
They extend the definition of D, for fractional set systems, and they extend cardi-

nality to what they call weight. Given a fixed number, w, they then determine the

n

>T) , the minimizing

fractional set system of weight w that minimizes D;. When w = (
fractional set system is the classical set system ([an>

Though [10] claims the same result for t > 1, in fact their generalization is false. In
Section 3.3.3 we give several counterexamples. Thus the question of determining the
D, minimizing fractional set systems of a given weight is still open. We give examples
that indicate that the situation is relatively complicated. In Section 3.3.4 we give a

polynomial time algorithm (in n) for determining a minimizing fractional set system.

More precisely, we give a polynomial time algorithm for “graphing” D, :(s).

3.3 Fractional Set Systems

3.3.1 The Theorem of Bollobas and Leader

Given n € N, we define a fractional set system on [n] to be a map

fo2l —0,1].
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The {0, 1}-valued fractional systems correspond to classical set systems. In particular,

if fis a {0, 1}-valued fractional system on [n] then f corresponds to the set
{Ae2l: f(A)=1}.

We denote the set of all fractional set systems on 20" by F,. If f € F,, we define its
weight, W(f), to be
W)= > fA)
]

Ae2ln

Given t € N, we define

D(f)= > fAefB)

(A,B)e2ln x2ln]
|[AnB|<t

where for all r, s € R,

r@s=max{0,r+s—1}.

(It is useful to think of r @ s as the liquid that spills out of a test tube of volume 1
if liquids of volume r and s are added to it.) Notice that the D, we’ve defined for
fractional set systems corresponds to the D; defined for actual set systems. Thus,

given a fixed weight w > 0, we are looking for
Dy (w) =1nf{D(f) : f € F.,W(f) =w}.

To apply induction, it is useful to count the number of disjoint pairs between two

(often different) fractional set systems. Given n,t € N and f, g € F,,, we define

Df.9)= Y, [f(A)egB)

(A,B)e2[" x 2l
|[ANB|<t
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Notice, in particular, that D,(f) = D.(f, f). Given v, w € R, define

Dy (v, w) =inf {Dy(f,g) : f,9 € Fn, W(f) =v,W(g) =w}.

Given a fixed weight w with 0 < w < 2", there is exactly one f € F,, of weight w

for which there exists k& € [0,n] and a € [0, 1] such that

L, |Al > k;
f(A) =19 a, |A =k
0, |Al<k.

We call this the fractional Hamming ball of weight w on 2", and denote it by b
or just b*. Notice, in particular, that if w = (>”T) for some n,r € N then b is
{0, 1}-valued and it corresponds to the set (L"l)

In [10], Bollobas and Leader proved the following theorem.

Theorem 3.3.1 (Bollobas and Leader). Given n € N and v,w € R,

D1 (v, w) = Dy(b,, by)).

n»-n

O

The paper ([10]) claims that this theorem is true if 1 is replaced by t. We give a

very small counterexample to establish that this claim is false.

Example 1. Let t > 1 and consider Dy4(1,1). Let f € Fy be given by f({1}) = .5
and f(0) = .5. We have that Di(f,f) = 0. On the other hand, D;(bi,b}) = 1.
Similarly, for any positive integers n,t with 2 <t < n, we have D, ;(2"',2"71) =0,

but Dy(b2" ", 62"") > 0.
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It is not the case that there are only counterexamples for relatively low weights.
To see this, we first establish some general facts about D; minimizing fractional set
systems in Section 3.3.2. In Section 3.3.3 we use these facts to give a large class of
counterexamples. Finally, in section 3.3.4 we use these facts to produce an efficient

algorithm to “graph” D,,;(w) for given n and t.

3.3.2 Facts About Optimal Fractional Set Systems

This section establishes some new facts about D; minimizing fractional set systems.
Let f € F,. Notice that we can interpret f as a point in [0,1]?"), a compact space.
Notice further that W is a continuous function on [0,1]"). Thus, given r € R, we
have that W ~1(r) is compact. Finally, D; is a continuous function on this compact
space of fixed weight points. Thus it achieves its minimum. In other words, given
0 <w < 2" there is f € F, with W(f) = w and D,,;(w) = D,(f). We now prove
some facts about the structure of such an optimal fractional set system.

A fractional set system f € F, is called constant on layers if for all A, B € 2
with |A| = |B|, we have f(A) = f(B). We may turn any fractional set system into
one which is constant on layers by averaging each layer. More precisely, given f € F,,,

we define the smear operation o : F,, — F,, by

n=(1) X

Be(f)
According to the following lemma, smearing a set system never increases D;.

Lemma 3.3.2. Given fractional set systems f,qg € F,, we have

Di(a(f),o(g9)) < Di(f, 9)-
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To prove Lemma 3.3.2, we establish a more general fact that relies on the convexity

Of Dt-

Lemma 3.3.3. The function D, is convex. That is, given n,t € N, f1, g1, f2, 92 € Fn,

and X € [0, 1], we have

Dy(A(fr,91) + (L= X)(f2,92)) S AD(f1,91) + (1 = XN)Di(f2, 92).

Proof. Notice that the function h(z) = max{0,z} is convex. This is the source of

the only inequality below.

Di(A(f1,91) + (1 = A)(f2, 92))

= ) (MA@ + (1= Nf(A) @ (Ai(B) + (1 - Nga(B))

(A,B)e2l" x 2l
|[ANBI<t

= E h(A(fi(A) +91(B) = 1) + (1 = A\)(fo(A) + g2(B) — 1))
(A,B)e2l" x2ln]
|[ANB|<t

< Z A (f1(A) +g1(B) — 1)
(A,B)e2lnl x2ln]
|[ANB|<t

Y (L= VA (fa(A) +g(B) — 1)
(A,B)e2l" x2ln]
|[ANB|<t

= ADy(f1,01) + (1 = N Dy(f2, 95).

]

Define the graph G,,; to be the bipartite graph each of whose partite sets is a
copy of 2" and where AB is an edge if [ANB| < t. Let P = {P, P,...,P,} be a
partition of the vertices of G, ;. Given v € G4, let P, be the part that contains v.

A pair (f,g) € F,, x F, is naturally a vertex weighting (f,g) : V(G,+) — R. Define
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op(f,g) to be the pair (f',¢') € F, x F, given by

(F.9)0) =

| P]

> (fa) ).

’UIEP'U
In particular, if A is a group of automorphisms of G,,; and if the orbits of A are the

sets of O = {01, 04,...,0,}, we define o4 = 0p.

Lemma 3.3.4. Given n,t € N, if A is a group of automorphisms of G,,; then given

f,g € Fn, we have

Dt(UA(f> g)) S Dt(f7 g)

In order to prove Lemma 3.3.4, we will make use of Jensen’s Inequality [19], which

says that convex functions are sublinear for convex combinations. More precisely, we

have
Lemma 3.3.5 (Jensen’s Inequality). Let ¢ : R — R be convex. If z1,xs,...,x, are
reals and \i, Ao, ..., A\, are positive weights that sum to 1 then

o (Z Aﬂi) < Z Nig(z;).
i=1 i=1
Il

Proof of Lemma 8.3.4. Since A acts on V(G,,), there is a natural action of A on
Fn X Fn: Given ¢ € A and (f,g) € F, X F,, we define ¢(f, g) to be the function in
Fn x F, given by

o(f,9)(v) = (£,9)(¢7'(v)).

Because ¢ is a graph automorphism, we have
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Furthermore,

af,9) = |A|Z¢fg

peA

By Lemma 3.3.3, D, is convex. By 3.3.5 (Jensen’s Inequality), we have

Dy(0a(f.9)) <|A|Z¢fg) |A|2Dt = Di(f, 9).

pEA peA

We may use this fact to establish Lemma 3.3.2.

Proof of Lemma 3.3.2. Let ¢ € S, be a permutation of [n]. Notice that ¢ induces a
graph automorphism on G, ;: a vertex A C [n] in a partite set of G, is sent to the
copy of ¢(A) in the same partite set. Two vertices v, w € G,,; are in the same orbit
of S, if and only if |v| = |w| and v and w are in the same partite set. Thus o = g 4,

and so the claim follows by Lemma 3.3.4. ]

Notice that in G, ;, every set A € ( ) is connected to every other set (in the op-

<t
posite partition). Thus the set of maps that permute these vertices (without changing
partitions) and fix all other vertices is a group of automorphisms of G,,;. By applying

Lemma 3.3.4 and Lemma 3.3.2, we then have the following fact.

Lemma 3.3.6. Letn € N, t € [0,n], and u,w € R with 0 < u,w < 2"\, There are
f.g € F, with
Dn,t(“a U)) = Dt(f7 g)a

where f and g are constant on layers, W(f) = u, W(g) = w, and for all A, B € ([”])
we have f(A) = f(B) and g(A) = g(B).
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We say a fractional set system, f, is constant below t if f(A) = f(B) for all
A B e (@) By Lemma 3.3.6, we may assume without loss of generality that a D;-
minimizing fractional set system is constant on layers and constant below ¢. We call
such a fractional set system t-constant. We denote the set of t-constant fractional set

systems of weight w on [n] by K, Given f € K}, and i € [0,n], we may define

n,t

where A is any set in ([7;}). For all j,k < t, we have f; = fi. We will denote this
common weight by f_;.

Given n,t € N and w € R with 0 < w < 2", we would like there to exist an
f € K, such that D, (w,w) = D(f, f). This would imply D, ;(w,w) = Dy, +(w).

The following lemma establishes this.

Lemma 3.3.7. Given n,t € N and f,qg € F,,

Dy (¥, %) < Dy(f,9)-

Proof. Notice that the function ¢ : G, — G, sending a vertex A € G,,; to the copy
of itself in the opposite partite set is a graph automorphism. Further, A = {1, ¢} is

a group. Applying Lemma 3.3.4 gives the desired result. [

We now introduce another important property of a D;-minimizing fractional set
system. We say a function f € F, is nondecreasing if for all A, B € 2" with |A| < |B|,
we have f(A) < f(B). (Notice that if f is nondecreasing then it is constant on layers.)

We have the following lemma.

Lemma 3.3.8. Given n € N and v,w € R, there are nondecreasing fractional set

systems f,g € F, with W(f) =v and W(g) = w such that D, (v, w) = Di(f,g).
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To aid in the proof, we introduce the following notation: Given n,t € N, A C [n],

and j € [0,n], the number of j-sets of [n] that are t-disjoint from A is

A(A,§) = Apy(A, ) = HBG ([?]) . |AN B <z}'.

Notice that as a function of A, A, ;(A, j) only depends on |A|. In particular, if |A| = 1,

we define

A(i,§) = MA,j) = ti <;> (?—_cll)

d=0

Proof of Lemma 3.3.8. Let n,t € N and v,w € R. Suppose

Dn,t(v7 ’lU) = Dt(fv g)a

Where f,g € F,, be constant on layers with W (f) = v and W(g) = w. Define

n

s(fr9) =Y ilfi+g)-

1=0

We may assume (by another compactness argument) that s(f,g) is maximized over
all pairs (f,g) € F, x F, that are constant on layers, have the proper weight, and
satisfy Dy(f,9) = Dpi(v,w). We want to show that f and g are nondecreasing.
Suppose by way of contradiction that there are integers 0 < ¢ < j < n such that
fi > f; (the case g; > g¢; is the same). We will shift some weight from ¢ to j to
obtain f" with s(f’, g) > s(f,g). By shifting wisely, we will have D;(f’,g) < Dy(f, g),
a contradiction. To that end, choose AW > 0 small enough that for all k € [0, n] for
which f; + g, < 1, we have f; + gi + (’;)AAW < 1. The quantity AW should also
be small enough that f; — (7;)_1AW > fi+ (?)_1AW. Finally, it should be the case
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that f; + (1) AW < 1. Define f' € F, by

f(A), if |A| ¢ {i,j};
f,(A) = fi+ (?)71AW if |A|l =7;
fi— (7AW i A =,

Notice that W (f") = W(f), and that s(f’,g9) = s(f,g) + (j —i)AW. Further notice
that

Di(f,9) = Du(f'.9) = Y. [fA)eyB) - f'(A)egB)
Ae([?]),Beﬂ”]
|[ANB|<t

+ > [f(A)@g(B) - f(A) @ g(B)
Ae(I), Bealn)
|ANB|<t

- > ( X UWeus) -r@egns)
k=0 AE([?]),BE([Z])
|ANB|<t
+ > (A egB) - F(A)egB)) (331)

ae().Be(R)
|ANB|<t

Fix £ € [0,n]. We show that the corresponding term in (3.3.1) is nonnegative.
We have two cases: either f; + g < 1 or f; +gr > 1. If f; + g < 1 then, by

k

we have f(A) @ g(B) = 0 and f'(A) @ g(B) = 0. For A € (“Z]) and B € <[Z])’

our choice of AW, we have f; + gp < 1. Thus, for all A € ([T;]) and B € ([n])a

f(A) @ g(B)— f'(A) @ g(B) is always nonnegative, so the case f; + fi < 1 is settled.

If fj +gx > 1 then fi+ g, > 1 and f; + g, > 1. By our choice of AW, we have
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fl+ fr > 1. Thus

Yo A eyB) - f(A)eyB)

4e('7).Be(R)

|[ANB|<t
-1
- ) (fj+9k—1)—(fj+<r.b) AW+gk—1)]
ac(tl) pe () ’
|[ANB|<t
-1

_ (f‘)A(j, k) (") AW

J J
— A, k)AW.

Similarly,

Y [f(A) @ g(B) - f'(A) @ g(B)] = Ali, k) AW.
Ae(ie()
|ANBI|<t

Notice that because 7 > 1, th