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TWO PROBLEMS IN EXTREMAL SET THEORY

Joshua Brown Kramer, Ph. D.

University of Nebraska, 2007

Advisor: Jamie Radcliffe

The focus of this dissertation is on two problems in extremal set theory, which is

a branch of extremal combinatorics. The general problem in extremal set theory is

to start with all collections of subsets of an underlying ground set, apply restrictions,

and then ask how large or small some property can be under those restrictions. We

give a brief introduction to extremal combinatorics and consider two open questions.

One open question we consider is an extremal problem under “dimension con-

straints”. We give a brief account of the history of this subject and we consider the

open problem of determining the maximum number of Hamming weight w vectors in

a k-dimensional subspace of Fn
2 . We determine this number for particular choices of

n, k, and w, and provide a conjecture for the complete solution when w is odd. This

problem is related to coding theory (the study of efficient transmission of data over

noisy channels).

One tool used to study this problem is a linear map that decreases the weight

of nonzero vectors by a constant. We characterize such maps. Using the tools we

develop, we give a new elementary proof of the MacWilliams Extension Theorem

(which characterizes weight-preserving linear maps).

The other open problem explored in this dissertation is related to a classical object

known as a t-intersecting family, a set system where the size of the intersection of any

two family members is at least t. The basic problem is to maximize the size of such a

family. We give a history of the relevant theorems (with proofs, where appropriate).



A next question is how few pairs with intersection size less than t are possible in a

(large) set system. Bollobás and Leader gave a new proof of a well-known partial

solution to the t = 1 case by extending set systems to what they call fractional set

systems. Although that paper claims the result for t > 1 in fact their generalization

is false. In this dissertation we give give several counterexamples, as well as a fast

algorithm to determine the minimizing fractional set systems when t > 1.
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Chapter 1

Our Notation

1.1 General Notation

[n] = {1, 2, . . . , n}
[m,n] = {m, m + 1, m + 2, . . . , n}
|S| = the size of S; i.e. the number of elements in the set S

AS = the collection of functions from S to A, where A and S are sets

2S = the power set of S; i.e. 2S = {A : A ⊆ S}
SC = the complement of S. Usually S ⊆ [n], and so SC = [n] \ S

(
[n]
r

)
= {A ⊆ [n] : |A| = r}, the collection of subsets of [n] having size r

(
n
r

)
= “n choose r” =

∣∣∣
(
[n]
r

)∣∣∣ = n!
(n−r)!r!

(
[n]
≥r

)
= {A ⊆ [n] : |A| ≥ r} =

(
[n]
r

) ∪ (
[n]
r+1

) ∪ · · · ∪ (
[n]
n

)
(

n
≥r

)
=

∑n
i=r

(
n
i

)
=

∣∣∣
(

[n]
≥r

)∣∣∣
dre = the ceiling of r; i.e. dre is the unique n ∈ Z such that 0 ≤ n− r < 1

Kw
n,t = the t-constant fractional set systems of weight w. Defined on page 27

Cw
n,t = the t-canonical fractional set systems of weight w. Defined on page 30
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1.2 Vector Space Notation

Fq = the field with q elements, where q is a prime power

F×q = Fq \ {0}

Let S ⊆ Fn
q and s ∈ S.

span (S) = the span of S; i.e. span (S) = {
∑
t∈S

ctt : ct ∈ Fq}

S < Fn
q ⇒ S is a subspace of Fn

q . We also say S is a linear code

πi (s) = the ith coordinate of s

πI (s) = the projection of s onto the coordinates I

wt(s) = the Hamming weight of s; i.e. wt(s) = |{i ∈ [n] : πi (s) 6= 0}|

Aw(S) = |{s ∈ S : wt(s) = w}|
~0 = ~0n = the vector in Fn

q consisting entirely of zeroes

~1 = ~1n = the vector in Fn
q consisting entirely of ones

s = ~1 + s

m(n, k, w) = max {Aw(C) : C < Fn
2 , dim C = k}

Sk = the k-dimensional binary simplex code. Defined on page 50

S(k, t, n) = a sequence of simplex codes. Defined on page 51

supp(S) = the support of S;

i.e. supp(S) = {i ∈ [n] : ∃ t ∈ S with πi (t) 6= 0}
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Chapter 2

Extremal Problems in

Combinatorics

2.1 Introduction

The main focus of this thesis is on two problems in extremal combinatorics, specifically

extremal set theory. An extremal problem has the following flavor: we put restrictions

on a collection of combinatorial objects and then ask how large or small some property

(often the size) of the objects can be under those restrictions. In extremal set theory,

the underlying objects are collections of subsets of some finite ground set. A collection

of subsets is variously called a set system, a family of subsets, or a hypergraph. The

rest of this chapter provides some examples of extremal problems.



4

2.2 Examples

2.2.1 Ramsey Theory

We now give an old example of an extremal problem. Say we invite people to a party,

and we wish to choose them in such a way that no three are mutual strangers and

no three are mutual friends. What is the maximum number of people that can be at

such a party? The following fairly easy argument tells us that the answer is 5 and no

more.

We re-envision the problem as a graph edge coloring problem. Let Kn be the

complete graph on n vertices. We will interpret these vertices as the people invited

to the party. We color the edges of Kn either red or blue, red indicating friends, and

blue indicating strangers. We now wish to know how large n can be if we would like

to avoid a monochromatic triangle. With 5 vertices, we may avoid such a triangle by

coloring as indicated in Figure 2.1.

Friends

Strangers

Figure 2.1: A configuration without 3 mutual strangers or 3 mutual friends

We now show that we cannot do this for 6 or more vertices. Color the edges of

K6 red and blue. Pick a vertex v ∈ K6. There are 5 edges emanating from v. Thus
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there are either at least 3 red, or at least 3 blue edges from v. Let us assume without

loss of generality that they are red. Let the set of endpoints of these red edges be

called S. Either there is a red edge between some pair of members u,w ∈ S, or there

is not. In the first case v, u, and w are the vertices of a red triangle. In the second

case, S is the set of vertices for a blue triangle.

The fact above is a specific case of Ramsey’s Theorem [27], one version of which

can be stated as follows.

Theorem 2.2.1 (Ramsey’s Theorem). Given positive integers r and b, there exists

R(r, b) > 0 (called the Ramsey number for r and b) such that if n ≥ R(r, b), all red

and blue edge-colorings of the complete graph on n vertices contain either a copy of

Kr, all of whose edges are red, or a copy of Kb, all of whose edges are blue.

We have shown that R(3, 3) = 6. There is a natural proof of Theorem 2.2.1 that

is very similar to the specific case given above, so it is not provided here.

Finding R(r, b) is an extremal problem. We start with the collection of complete

graphs colored red and blue, and we place the restriction on them that they have no

red Kr or blue Kb. We then ask how large the largest of these colored graphs is. The

answer is R(r, b) − 1. Finding R(r, b) is a very hard problem in general. It is only

known exactly in a small number of cases. See [26] for a survey of the known Ramsey

numbers.

2.2.2 Sperner Families

We will now discuss another classical problem from extremal combinatorics. Here,

the underlying combinatorial objects are collections of subsets of a ground set. For

this reason, the problem falls under the category of extremal set theory.

Let A ⊆ 2[n] be a family of subsets. We say that A is a Sperner family or antichain
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if no two subsets inA are comparable. That is, for all A,B ∈ A, if A ⊆ B then A = B.

The natural extremal problem is to find how large such a family can be. Sperner [28]

found the answer in 1928.

Theorem 2.2.2 (Sperner’s Theorem). If A ⊆ 2[n] is an antichain then |A| ≤ (
n
bn

2
c
)
.

One way to prove this result is to use the so-called LYM inequality proved inde-

pendently by Lubell[22], Yamamoto[31], Meshalkin[25], and Bollobás[6].

Theorem 2.2.3 (The LYM Inequality). Let A ⊆ 2[n] be an antichain. Then

∑
A∈A

(
n

|A|
)−1

≤ 1.

The LYM inequality can be proved by a beautiful double counting argument, which

requires a definition. A maximal chain in 2[n] is a collection of sets {C0, C1, C2, . . . Cn}
with the property that ∅ = C0 ( C1 ( · · · ( Cn−1 ( Cn = [n]. Notice that the ith

set in a maximal chain contains exactly one more element than the (i − 1)st. We

can then associate the ith set with this new element. A maximal chain can thereby

be associated with an ordering of the elements of [n]. Thus the number of maximal

chains is n!. We now proceed to the proof of the LYM inequality.

Proof of the LYM inequality. Let A ⊆ 2[n] be a Sperner family and define the follow-

ing collection of pairs.

P = {(A, C) : A ∈ A and C is a maximal chain with A ∈ C} .

We count P in two ways. First, given A ∈ A, we count the number of maximal chains

containing A. By the discussion above, this is the same as the number of ways to

order [n] so that the first |A| elements of the ordering are a permutation of A and the
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last n − |A| elements are a permutation of [n] \ A. The number of maximal chains

containing A is therefore |A|!(n− |A|)!. Summing over all elements of A, we have

|P | =
∑
A∈A

|A|!(n− |A|)!.

Now we fix a maximal chain C in 2[n]. Notice that any two sets from C are

comparable. But by the definition of a Sperner family, if A,B ∈ A and A 6= B, then

A and B are not comparable. Thus at most one element of A is in C. Since there are

n! maximal chains in 2[n], we have that |P | ≤ n!. Hence

∑
A∈A

|A|!(n− |A|)! ≤ n!

∑
A∈A

|A|!(n− |A|)!
n!

≤ 1

∑
A∈A

[
n!

|A|!(n− |A|)!
]−1

≤ 1

∑
A∈A

(
n

|A|
)−1

≤ 1.

We now use the LYM inequality to prove Sperner’s Theorem.

Proof of Sperner’s Theorem. Let A be a Sperner family. It is easy to show that for

all r ∈ [n],
(

n
r

) ≤ (
n
bn

2
c
)
. Then by the LYM inequality,
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|A|
(

n

bn
2
c
)−1

=
∑
A∈A

(
n

bn
2
c
)−1

≤
∑
A∈A

(
n

|A|
)−1

≤ 1.

Hence |A|( n
bn

2
c
)−1 ≤ 1 and thus |A| ≤ (

n
bn

2
c
)
, as desired.

Sperner’s Theorem and Ramsey’s Theorem are two classical examples of problems

from extremal combinatorics. They come from extremal set theory and extremal

graph theory respectively. There are many more examples of extremal problems (see

[7],[11], and [20] for examples). The remainder of this dissertation will consist of work

on some open problems in extremal set theory.
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Chapter 3

Intersecting Families

3.1 Introduction

We now introduce another classical object from combinatorics. A family of subsets

A ⊆ 2[n] is called intersecting if for all A,B ∈ A, we have A ∩ B 6= ∅. Given an

integer t ≥ 1 we may insist that for all A,B ∈ A we have |A∩B| ≥ t. In this case we

say A is t-intersecting. In particular, an intersecting family is a 1-intersecting family.

We might also insist that the families we consider be subsets of
(
[n]
r

)
, for some r ∈ N.

In all cases the first natural question is how large such a family can be. The answer

to each of these problems is completely known. A survey of the results (with proofs

where appropriate) appears in Section 3.2.

Define M(n, t) ∈ N to be the size of a largest t-intersecting set on [n]. If A ⊆ 2[n]

is a set system with |A| > M(n, t) then A has at least one pair A, B ∈ A such that

|A ∩B| < t. We may ask for the set system which minimizes the number of non–t–

intersecting pairs. Some results are known for this problem. We summarize them in

Section 3.2.4.

In [10], Bollobás and Leader gave a new proof of a partial result of the t = 1
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case. They use what they call fractional set systems, which they introduced in [9].

Although [10] claims the result for t > 1 in fact the generalization is false. In Section

3.3, we give several counterexamples as well as a fast algorithm to determine the

minimizing fractional set systems when t > 1.

3.2 Survey of Known Results

3.2.1 The Easy Unrestricted Case

The following bound on the size of an intersecting family is well known (see [7] for

example).

Theorem 3.2.1. If A ⊆ 2[n] is an intersecting family then |A| ≤ 2n−1.

Proof. Let A ∈ A. We have that A ∩ AC = ∅. Thus AC /∈ A. A is missing the

complement of each of its members, so it contains at most half of the elements of 2[n].

Thus |A| ≤ |2[n]|/2 = 2n/2 = 2n−1.

Furthermore, this bound is tight. There are many examples of intersecting families

on [n] with 2n−1 elements. Indeed, every maximal intersecting family has size 2n−1.

That is, given an intersecting family A ⊆ 2[n], there is an intersecting family A′ ⊆ 2[n]

with A ⊆ A′, and |A′| = 2n−1. This is also well known (again see [7] for example).

Theorem 3.2.2. Every maximal intersecting family on [n] has size 2n−1.

Proof. Suppose to the contrary that there is a maximal intersecting family A ⊆ 2[n]

with |A| < 2n−1. There is A ∈ 2[n] such that A /∈ A and AC /∈ A. By maximality,

there are B,C ∈ A such that A∩B = ∅, and AC ∩C = ∅. Thus B ⊆ AC and C ⊆ A.

Hence B ∩ C = ∅. This contradicts A being an intersecting family.
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The two most important examples of maximal intersecting families appear below.

They are, respectively, the family of all sets containing a fixed element, and the family

of all “large sets”.

A =
{
A ∈ 2[n] : 1 ∈ A

}

and

B =





( [n]

≥n+1
2

)
, n odd;

(
[n]

≥n
2
+1

) ∪ {
B ∈ 2[n] : |B| = n

2
, and 1 ∈ B

}
, n even.

It is clear that A in intersecting. Let A,B ∈ B. If n is odd, then

|A ∩B| = |A|+ |B| − |A ∪B| ≥ n + 1

2
+

n + 1

2
− n = 1.

If n is even and |A| = |B| = n/2 then 1 ∈ A ∩B. Otherwise

|A ∩B| = |A|+ |B| − |A ∪B| ≥ n

2
+ 1 +

n

2
− n = 1.

3.2.2 The Unrestricted t-Intersecting Case

The problem for general t is more difficult. It was solved by Katona [21]. If we

let M(n, t) = max
{|A| : A ⊆ 2[n] and A is t-intesecting

}
then we have the following

theorem.
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Theorem 3.2.3 (Katona’s Intersection Theorem). For t ≥ 1,

M(n, t) =





(
n

≥n+t
2

)
if n + t is even;

2
(

n−1
≥n+t−1

2

)
if n + t is odd.

Four proofs of this fact appear in a recent paper by Ahlswede and Khachatrian

[5]. We will present a very elegant proof from that paper, filling in some of the details

omitted there.

Loosely, the idea of the proof is to take a maximum t–intersecting family A and

repeatedly “shift it to the left” in a way that preserves the size of the family and

leaves the family t-intersecting. Eventually we will arrive at a family that cannot

be shifted further to the left. We call such a family left-compressed. The desired

inequality is easy to establish for left-compressed families. We now make these ideas

precise. 1

Let i, j ∈ [n], where i < j. Define Si←j : 2[n] → 2[n] by

Si←j(A) =





(A \ {j}) ∪ {i} if j ∈ A and i /∈ A;

A otherwise.

We call Si←j a left shift. Unfortunately, Si←j is not injective. Given a family A ⊆ 2[n],

we may modify the left shift in such a way that it is injective when restricted to A.

To this end, we define SA,i←j : A → 2[n] as follows.

SA,i←j(A) =





Si←j(A) if Si←j(A) /∈ A;

A if Si←j(A) ∈ A.

Lemma 3.2.4. SA,i←j is injective.

1It should be noted that shifting techniques have found wide applicability to extremal problems
(See for example [8], [17], or [30]). In particular, the lemmas in this subsection are very well-known.
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Proof. Let A,B ∈ A be distinct sets. Suppose for the sake of contradiction that

SA,i←j(A) = SA,i←j(B). This implies that A \ {i, j} = B \ {i, j}. First we show that

exactly one of the equalities SA,i←j(A) = A and SA,i←j(B) = B holds. They do not

both hold, since A 6= B. Notice that if SA,i←j(A) 6= A, then j ∈ A and i /∈ A. In those

circumstances, SA,i←j(A) = (A \ {j})∪{i}, and so A = (SA,i←j(A) \ {i})∪{j}. Simi-

larly, if SA,i←j(B) 6= B then B = (SA,i←j(A) \ {i})∪{j}. Therefore, if SA,i←j(A) 6= A

and SA,i←j(B) 6= B then A = (SA,i←j(A) \ {i}) ∪ {j} = (SA,i←j(B) \ {i}) ∪ {j} = B,

a contradiction. We may now assume without loss of generality that SA,i←j(A) 6= A

and SA,i←j(B) = B. But this situation cannot happen, since otherwise Si←j(A) =

SA,i←j(A) = SA,i←j(B) = B ∈ A and so by definition, SA,i←j(A) = A.

We now define

Si←j(A) = {SA,i←j(A) : A ∈ A}

Lemma 3.2.5. If A ⊆ [n] is t-intersecting then Si←j(A) is also t-intersecting.

Proof. Let A′, B′ ∈ Si←j(A). We want to show that |A′ ∩B′| ≥ t. We have that

A′ = SA,i←j(A) for some A ∈ A and B′ = SA,i←j(B) for some B ∈ A. Since A is

t-intersecting, we have that |A ∩B| ≥ t. If A = A′ and B = B′ then

|A′ ∩B′| = |A ∩B| ≥ t,

as desired. If A′ 6= A and B′ 6= B, then

|A′ ∩B′| = |A ∩B| − |{j}|+ |{i}| = |A ∩B| ≥ t.

We may now assume, without loss of generality, that A′ 6= A and B′ = B. One of

three possibilities has occurred. Either j /∈ B or i ∈ B or Si←j(B) ∈ A.

Case 1: j /∈ B.
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Notice that i /∈ A. Thus A ∩B = (A ∩B) \ {i, j}. Thus

|A′ ∩B′| = |A′ ∩B| = |((A \ {j}) ∪ {i}) ∩B| ≥ |(A ∩B) \ {i, j}| = |A ∩B| ≥ t.

Case 2: i ∈ B.

Notice that i /∈ A. In particular, A \ {j} = A \ {i, j} and |(A \ {i, j}) ∩B| ≥
|A ∩B| − 1. Thus we have

|A′ ∩B′| = |A′ ∩B|

= |((A \ {j}) ∪ {i}) ∩B|

= |((A \ {j}) ∩B) ∪ ({i} ∩B)|

= |((A \ {i, j}) ∩B) ∪ ({i} ∩B)|

= |((A \ {i, j}) ∩B)|+ |{i} ∩B|

≥ |A ∩B| − 1 + 1

= |A ∩B|

≥ t.

Case 3: Si←j(B) ∈ A.

If Si←j(B) = B then one of the cases above holds. Otherwise, Si←j(B) = (B \
{j})∪ {i}. Thus j /∈ Si←j(B) and i ∈ Si←j(B). On the other hand, j ∈ A and i /∈ A.

In particular, A∩Si←j(B) = (A∩B)\{i, j}. But Si←j(B) ∈ A, so |A ∩ Si←j(B)| ≥ t.

Thus

|A′ ∩B′| = |A′ ∩B| ≥ |(A ∩B) \ {i, j}| = |A ∩ Si←j(B)| ≥ t.

We say that a family A ⊆ 2[n] is left-compressed if for all i, j ∈ [n], where i < j,
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we have Si←j(A) = A. We are now ready to prove Katona’s intersection theorem.

Proof of Theorem 3.2.3. We treat the case where n + t is even (the other case is

similar). First let A =
( [n]

≥n+t
2

)
. Given A and B in A, we have

|A ∩B| = |A|+ |B| − |A ∪B| ≥ n + t

2
+

n + t

2
− n = t.

Thus A is t-intersecting, and so M(n, t) ≥ |A| = (
n

≥n+t
2

)
.

We must show that M(n, t) ≤ (
n

≥n+t
2

)
. We prove this statement by induction on

n. For n = 1, we want to show that the largest t-intersecting family on {1} is {{1}}
if t = 1 and ∅ if t > 1. These facts are clear.

For n > 1, let A′ ⊆ 2[n] be a maximum size t-intersecting family. Notice that

|A′| = M(n, t). By starting with A′ and repeatedly applying left–shifts, we eventually

arrive at A ⊆ 2[n], a left–compressed t-intersecting family of size M(n, t). It only

remains to show that |A| ≤ (
n

≥n+t
2

)
.

We define the following families on the ground set {2, . . . , n}.

A− = {A : A ∈ A and 1 /∈ A} .

A+ = {A \ {1} : A ∈ A and 1 ∈ A} .

Notice that |A−| + |A+| = |A|. We have that A+ is (t − 1)-intersecting. It turns

out that A− is (t + 1)-intersecting. To see this, consider A, B ∈ A−. Notice that

|A ∩B| ≥ t ≥ 1. Thus there is some j ∈ A ∩ B. Since A is left–compressed,

SA,1←j(A) = A and hence A′ = (A \ {j}) ∪ {1} is in A. But then |A′ ∩B| ≥ t. We

have A ∩B = (A′ ∩B) ∪ {j}. Thus |A ∩B| ≥ t + 1.
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By induction,

M(n, t) = |A|

= |A−|+ |A+|

≤
n−1∑

i=
(n−1)+(t+1)

2

(
n− 1

i

)
+

n−1∑

i=
(n−1)+(t−1)

2

(
n− 1

i

)

=
n−1∑

i=n+t
2

(
n− 1

i

)
+

n−1∑

i=n+t
2
−1

(
n− 1

i

)

=
n−1∑

i=n+t
2

(
n− 1

i

)
+

n∑

i=n+t
2

(
n− 1

i− 1

)

=

(
n− 1

n− 1

)
+

n−1∑

i=n+t
2

[(
n− 1

i

)
+

(
n− 1

i− 1

)]

=

(
n

n

)
+

n−1∑

i=n+t
2

(
n

i

)

=
n∑

i=n+t
2

(
n

i

)

=

(
n

≥ n+t
2

)
.

3.2.3 The Restricted Case

Let r ∈ N. We ask for the largest intersecting family A ⊆ (
[n]
r

)
. If r > n/2 this is

easy: given two sets, A,B ∈ (
[n]
r

)
, we have

|A ∩B| = |A|+ |B| − |A ∪B| ≥ r + r − n > n− n = 0.

Thus
(
[n]
r

)
is itself intersecting.
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For the case r ≤ n/2, let x ∈ [n] and define

(
[n]

r

)

x

=

{
A ∈

(
[n]

r

)
: x ∈ A

}
.

Clearly
(
[n]
r

)
x

is intersecting. Its size is
(

n−1
r−1

)
. Moreover, the famous Erdős-Ko-Rado

Theorem [15] tells us that this is the best possible.

Theorem 3.2.6 (Erdős-Ko-Rado). If 1 ≤ r ≤ n/2 and A ⊆ (
[n]
r

)
is an intersecting

family then |A| ≤ (
n−1
r−1

)
. Equality is achieved if and only if A =

(
[n]
r

)
x

for some

x ∈ [n].

In [15], Erdős, Ko, and Rado also determined the limiting behavior for the t-

intersecting case.

Theorem 3.2.7 (Erdős-Ko-Rado). Let r ∈ N. There exists N ∈ N so that for all

n ≥ N , every t-intersecting family A ⊆ (
[n]
r

)
has |A| ≤ (

n−t
r−t

)
. Furthermore, N can be

chosen large enough that if n ≥ N and A is t-intersecting with |A| =
(

n−t
r−t

)
, then A

consists of all sets in
(
[n]
r

)
containing some particular set of size t.

The complete solution to the restricted t-intersecting problem for all n and r was

found by Ahlswede and Khachatrian [4]. To state it requires some definitions. Given

n, r, t ∈ N, we define I(n, r, t) to be the set of all t-intersecting families consisting of

subsets of [n] having size r. That is

I(n, r, t) =

{
A ⊆

(
[n]

r

)
: |A ∩B| ≥ t for all A,B ∈ A

}
.
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We are interested in finding

M(n, r, t) = max
A∈I(n,r,t)

|A| .

Given n, r, t, i ∈ N, with 0 ≤ i ≤ n− t

2
, set

Fi =

{
F ∈

(
[n]

r

)
: |F ∩ [t + 2i]| ≥ t + i

}
.

We claim that Fi is t-intersecting for all 0 ≤ i ≤ n− t

2
. Given A,B ∈ Fi, we have

|A ∩B| ≥ |(A ∩ [t + 2i]) ∩ (B ∩ [t + 2i])|

= |(A ∩ [t + 2i])|+ |(B ∩ [t + 2i])| − |(A ∩ [t + 2i]) ∪ (B ∩ [t + 2i])|

≥ (t + i) + (t + i)− (t + 2i)

= t.

The theorem of Ahlswede and Khachatrian will tell us that given n, r, t ∈ N, there is

some 0 ≤ i ≤ n− t

2
for which M(n, r, t) = |Fi|. More specifically, we have

Theorem 3.2.8 (Ahlswede and Khachatrian). For 1 ≤ t ≤ r ≤ n we have the

following cases

(i) (r − t + 1)(2 + (t− 1)/(i + 1)) < n < (r − t + 1)(2 + (t− 1)/i) for some i ∈ N.

In this case we have

M(n, r, t) = |Fi| ,

and up to permutation, Fi is the unique optimum.
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(ii) (r − t + 1)(2 + (t− 1)/(i + 1)) = n for some i ∈ N. In this case we have

M(n, r, t) = |Fi| = |Fi+1| ,

and up to permutation, Fi and Fi+1 are the only optimal families.

¤

3.2.4 Further Research

The maximum sizes of intersecting families under various restrictions are now well

known. A natural next question is: given (large) s ∈ N, how close to intersecting can

a family of size s be? More precisely: given A ⊆ 2[n], define Dt(A) to be the number

of pairs of sets from A that have intersection size less than t. That is

Dt(A) = |{(A,B) ∈ A×A : |A ∩B| < t}| .

Given s ∈ N, we wish to minimize Dt(A) over all systems with |A| = s. Define Dn,t(s)

to be this minimum. That is, we wish to find

Dn,t(s) = min
{
Dt(A) : A ⊆ 2[n], A is t-intersecting, and |A| = s

}
.

Theorem 3.2.3 (Katona’s Intersection Theorem) established the values of s for which

Dn,t(s) = 0.

Frankl [16] and Ahlswede [1] independently determined the answer for particular

values of s when t = 1. Essentially, the optimal family has as many large sets as

possible. More precisely, we have the following theorem.

Theorem 3.2.9 (Frankl and Ahlswede). Let n ∈ N. Given B ⊆ 2[n], let r be such
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that
(

n
≥r+1

) ≤ |B| ≤ (
n
≥r

)
. Then there is A ⊆ 2[n] with |A| = |B|, (

[n]
≥r+1

) ⊆ A ⊆ (
[n]
≥r

)

and D1(A) ≤ D1(B).

An immediate corollary of this theorem is that if s =
(

n
≥r

)
, then D1(s) = D1

((
[n]
≥r

))
.

Bollobás and Leader [10] provided another proof of this corollary (but not of the the-

orem) by generalizing to what they call “fractional set systems” (we will give the

precise definitions of fractional set system and other relevant terms in Section 3.3.1).

They extend the definition of D1 for fractional set systems, and they extend cardi-

nality to what they call weight. Given a fixed number, w, they then determine the

fractional set system of weight w that minimizes D1. When w =
(

n
≥r

)
, the minimizing

fractional set system is the classical set system
(

[n]
≥r

)
.

Though [10] claims the same result for t > 1, in fact their generalization is false. In

Section 3.3.3 we give several counterexamples. Thus the question of determining the

Dt minimizing fractional set systems of a given weight is still open. We give examples

that indicate that the situation is relatively complicated. In Section 3.3.4 we give a

polynomial time algorithm (in n) for determining a minimizing fractional set system.

More precisely, we give a polynomial time algorithm for “graphing” Dn,t(s).

3.3 Fractional Set Systems

3.3.1 The Theorem of Bollobás and Leader

Given n ∈ N, we define a fractional set system on [n] to be a map

f : 2[n] → [0, 1].
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The {0, 1}-valued fractional systems correspond to classical set systems. In particular,

if f is a {0, 1}-valued fractional system on [n] then f corresponds to the set

{
A ∈ 2[n] : f(A) = 1

}
.

We denote the set of all fractional set systems on 2[n] by Fn. If f ∈ Fn, we define its

weight, W (f), to be

W (f) =
∑

A∈2[n]

f(A).

Given t ∈ N, we define

Dt(f) =
∑

(A,B)∈2[n]×2[n]

|A∩B|<t

f(A)⊕ f(B),

where for all r, s ∈ R,

r ⊕ s = max {0, r + s− 1} .

(It is useful to think of r ⊕ s as the liquid that spills out of a test tube of volume 1

if liquids of volume r and s are added to it.) Notice that the Dt we’ve defined for

fractional set systems corresponds to the Dt defined for actual set systems. Thus,

given a fixed weight w ≥ 0, we are looking for

Dn,t(w) = inf {Dt(f) : f ∈ Fn,W (f) = w} .

To apply induction, it is useful to count the number of disjoint pairs between two

(often different) fractional set systems. Given n, t ∈ N and f, g ∈ Fn, we define

Dt(f, g) =
∑

(A,B)∈2[n]×2[n]

|A∩B|<t

f(A)⊕ g(B).
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Notice, in particular, that Dt(f) = Dt(f, f). Given v, w ∈ R, define

Dn,t(v, w) = inf {Dt(f, g) : f, g ∈ Fn,W (f) = v, W (g) = w} .

Given a fixed weight w with 0 ≤ w ≤ 2n, there is exactly one f ∈ Fn of weight w

for which there exists k ∈ [0, n] and α ∈ [0, 1] such that

f(A) =





1, |A| > k;

α, |A| = k;

0, |A| < k.

We call this the fractional Hamming ball of weight w on 2[n], and denote it by bw
n

or just bw. Notice, in particular, that if w =
(

n
≥r

)
for some n, r ∈ N then bw

n is

{0, 1}-valued and it corresponds to the set
(

[n]
≥r

)
.

In [10], Bollobás and Leader proved the following theorem.

Theorem 3.3.1 (Bollobás and Leader). Given n ∈ N and v, w ∈ R,

Dn,1(v, w) = D1(b
v
n, bw

n ).

¤

The paper ([10]) claims that this theorem is true if 1 is replaced by t. We give a

very small counterexample to establish that this claim is false.

Example 1. Let t > 1 and consider D1,t(1, 1). Let f ∈ F1 be given by f({1}) = .5

and f(∅) = .5. We have that Dt(f, f) = 0. On the other hand, Dt(b
1
1, b

1
1) = 1.

Similarly, for any positive integers n, t with 2 ≤ t ≤ n, we have Dn,t(2
n−1, 2n−1) = 0,

but Dt(b
2n−1

n , b2n−1

n ) > 0.
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It is not the case that there are only counterexamples for relatively low weights.

To see this, we first establish some general facts about Dt minimizing fractional set

systems in Section 3.3.2. In Section 3.3.3 we use these facts to give a large class of

counterexamples. Finally, in section 3.3.4 we use these facts to produce an efficient

algorithm to “graph” Dn,t(w) for given n and t.

3.3.2 Facts About Optimal Fractional Set Systems

This section establishes some new facts about Dt minimizing fractional set systems.

Let f ∈ Fn. Notice that we can interpret f as a point in [0, 1](2
n), a compact space.

Notice further that W is a continuous function on [0, 1](2
n). Thus, given r ∈ R, we

have that W−1(r) is compact. Finally, Dt is a continuous function on this compact

space of fixed weight points. Thus it achieves its minimum. In other words, given

0 ≤ w ≤ 2n, there is f ∈ Fn with W (f) = w and Dn,t(w) = Dt(f). We now prove

some facts about the structure of such an optimal fractional set system.

A fractional set system f ∈ Fn is called constant on layers if for all A,B ∈ 2[n]

with |A| = |B|, we have f(A) = f(B). We may turn any fractional set system into

one which is constant on layers by averaging each layer. More precisely, given f ∈ Fn,

we define the smear operation σ : Fn → Fn by

σ(f)(A) =

(
n

|A|
)−1 ∑

B∈([n]
|A|)

f(B).

According to the following lemma, smearing a set system never increases Dt.

Lemma 3.3.2. Given fractional set systems f, g ∈ Fn, we have

Dt(σ(f), σ(g)) ≤ Dt(f, g).
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To prove Lemma 3.3.2, we establish a more general fact that relies on the convexity

of Dt.

Lemma 3.3.3. The function Dt is convex. That is, given n, t ∈ N, f1, g1, f2, g2 ∈ Fn,

and λ ∈ [0, 1], we have

Dt(λ(f1, g1) + (1− λ)(f2, g2)) ≤ λDt(f1, g1) + (1− λ)Dt(f2, g2).

Proof. Notice that the function h(x) = max {0, x} is convex. This is the source of

the only inequality below.

Dt(λ(f1, g1) + (1− λ)(f2, g2))

=
∑

(A,B)∈2[n]×2[n]

|A∩B|<t

(λf1(A) + (1− λ)f2(A))⊕ (λg1(B) + (1− λ)g2(B))

=
∑

(A,B)∈2[n]×2[n]

|A∩B|<t

h (λ(f1(A) + g1(B)− 1) + (1− λ)(f2(A) + g2(B)− 1))

≤
∑

(A,B)∈2[n]×2[n]

|A∩B|<t

λh (f1(A) + g1(B)− 1)

+
∑

(A,B)∈2[n]×2[n]

|A∩B|<t

(1− λ)h (f2(A) + g2(B)− 1)

= λDt(f1, g1) + (1− λ)Dt(f2, g2).

Define the graph Gn,t to be the bipartite graph each of whose partite sets is a

copy of 2[n], and where AB is an edge if |A ∩B| < t. Let P = {P1, P2, . . . , Pp} be a

partition of the vertices of Gn,t. Given v ∈ Gn,t, let Pv be the part that contains v.

A pair (f, g) ∈ Fn × Fn is naturally a vertex weighting (f, g) : V (Gn,t) → R. Define
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σP(f, g) to be the pair (f ′, g′) ∈ Fn ×Fn given by

(f ′, g′)(v) =
1

|Pv|
∑

v′∈Pv

(f, g)(v′).

In particular, if A is a group of automorphisms of Gn,t and if the orbits of A are the

sets of O = {O1, O2, . . . , Op}, we define σA = σO.

Lemma 3.3.4. Given n, t ∈ N, if A is a group of automorphisms of Gn,t then given

f, g ∈ Fn, we have

Dt(σA(f, g)) ≤ Dt(f, g).

In order to prove Lemma 3.3.4, we will make use of Jensen’s Inequality [19], which

says that convex functions are sublinear for convex combinations. More precisely, we

have

Lemma 3.3.5 (Jensen’s Inequality). Let φ : R → R be convex. If x1, x2, . . . , xn are

reals and λ1, λ2, . . . , λn are positive weights that sum to 1 then

φ

(
n∑

i=1

λixi

)
≤

n∑
i=1

λiφ(xi).

Proof of Lemma 3.3.4. Since A acts on V (Gn,t), there is a natural action of A on

Fn × Fn: Given φ ∈ A and (f, g) ∈ Fn × Fn, we define φ(f, g) to be the function in

Fn ×Fn given by

φ(f, g)(v) = (f, g)(φ−1(v)).

Because φ is a graph automorphism, we have

Dt(φ(f, g)) = Dt(f, g).
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Furthermore,

σA(f, g) =
1

|A|
∑

φ∈A
φ(f, g).

By Lemma 3.3.3, Dt is convex. By 3.3.5 (Jensen’s Inequality), we have

Dt(σA(f, g)) = Dt

(
1

|A|
∑

φ∈A
φ(f, g)

)
≤ 1

|A|
∑

φ∈A
Dt(φ(f, g)) = Dt(f, g).

We may use this fact to establish Lemma 3.3.2.

Proof of Lemma 3.3.2. Let φ ∈ Sn be a permutation of [n]. Notice that φ induces a

graph automorphism on Gn,t: a vertex A ⊆ [n] in a partite set of Gn,t is sent to the

copy of φ(A) in the same partite set. Two vertices v, w ∈ Gn,t are in the same orbit

of Sn if and only if |v| = |w| and v and w are in the same partite set. Thus σ = σA,

and so the claim follows by Lemma 3.3.4.

Notice that in Gn,t, every set A ∈ (
[n]
<t

)
is connected to every other set (in the op-

posite partition). Thus the set of maps that permute these vertices (without changing

partitions) and fix all other vertices is a group of automorphisms of Gn,t. By applying

Lemma 3.3.4 and Lemma 3.3.2, we then have the following fact.

Lemma 3.3.6. Let n ∈ N, t ∈ [0, n], and u,w ∈ R with 0 ≤ u,w ≤ 2[n]. There are

f, g ∈ Fn with

Dn,t(u,w) = Dt(f, g),

where f and g are constant on layers, W (f) = u, W (g) = w, and for all A,B ∈ (
[n]
<t

)

we have f(A) = f(B) and g(A) = g(B).
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We say a fractional set system, f , is constant below t if f(A) = f(B) for all

A,B ∈ (
[n]
<t

)
. By Lemma 3.3.6, we may assume without loss of generality that a Dt-

minimizing fractional set system is constant on layers and constant below t. We call

such a fractional set system t-constant. We denote the set of t-constant fractional set

systems of weight w on [n] by Kw
n,t. Given f ∈ Kw

n,t and i ∈ [0, n], we may define

fi = f(A),

where A is any set in
(
[n]
i

)
. For all j, k < t, we have fj = fk. We will denote this

common weight by f<t.

Given n, t ∈ N and w ∈ R with 0 ≤ w ≤ 2n, we would like there to exist an

f ∈ Kw
n,t such that Dn,t(w, w) = Dt(f, f). This would imply Dn,t(w, w) = Dn,t(w).

The following lemma establishes this.

Lemma 3.3.7. Given n, t ∈ N and f, g ∈ Fn,

Dt

(
f + g

2
,
f + g

2

)
≤ Dt(f, g).

Proof. Notice that the function φ : Gn,t → Gn,t sending a vertex A ∈ Gn,t to the copy

of itself in the opposite partite set is a graph automorphism. Further, A = {1, φ} is

a group. Applying Lemma 3.3.4 gives the desired result.

We now introduce another important property of a Dt-minimizing fractional set

system. We say a function f ∈ Fn is nondecreasing if for all A,B ∈ 2[n] with |A| ≤ |B|,
we have f(A) ≤ f(B). (Notice that if f is nondecreasing then it is constant on layers.)

We have the following lemma.

Lemma 3.3.8. Given n ∈ N and v, w ∈ R, there are nondecreasing fractional set

systems f, g ∈ Fn with W (f) = v and W (g) = w such that Dn,t(v, w) = Dt(f, g).
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To aid in the proof, we introduce the following notation: Given n, t ∈ N, A ⊆ [n],

and j ∈ [0, n], the number of j-sets of [n] that are t-disjoint from A is

Λ(A, j) = Λn,t(A, j) =

∣∣∣∣
{

B ∈
(

[n]

j

)
: |A ∩B| < t

}∣∣∣∣ .

Notice that as a function of A, Λn,t(A, j) only depends on |A|. In particular, if |A| = i,

we define

Λ(i, j) = Λ(A, j) =
t−1∑

d=0

(
i

d

)(
n− i

j − d

)
.

Proof of Lemma 3.3.8. Let n, t ∈ N and v, w ∈ R. Suppose

Dn,t(v, w) = Dt(f, g),

Where f, g ∈ Fn be constant on layers with W (f) = v and W (g) = w. Define

s(f, g) =
n∑

i=0

i(fi + gi).

We may assume (by another compactness argument) that s(f, g) is maximized over

all pairs (f, g) ∈ Fn × Fn that are constant on layers, have the proper weight, and

satisfy Dt(f, g) = Dn,t(v, w). We want to show that f and g are nondecreasing.

Suppose by way of contradiction that there are integers 0 ≤ i < j ≤ n such that

fi > fj (the case gi > gj is the same). We will shift some weight from i to j to

obtain f ′ with s(f ′, g) > s(f, g). By shifting wisely, we will have Dt(f
′, g) ≤ Dt(f, g),

a contradiction. To that end, choose ∆W > 0 small enough that for all k ∈ [0, n] for

which fj + gk < 1, we have fj + gk +
(

n
j

)−1
∆W < 1. The quantity ∆W should also

be small enough that fi −
(

n
i

)−1
∆W ≥ fj +

(
n
j

)−1
∆W . Finally, it should be the case
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that fj +
(

n
j

)−1
∆W ≤ 1. Define f ′ ∈ Fn by

f ′(A) =





f(A), if |A| /∈ {i, j} ;

fj +
(

n
j

)−1
∆W if |A| = j;

fi −
(

n
i

)−1
∆W if |A| = i.

Notice that W (f ′) = W (f), and that s(f ′, g) = s(f, g) + (j − i)∆W . Further notice

that

Dt(f, g)−Dt(f
′, g) =

∑

A∈([n]
j ),B∈2[n]

|A∩B|<t

[f(A)⊕ g(B)− f ′(A)⊕ g(B)]

+
∑

A∈([n]
i ),B∈2[n]

|A∩B|<t

[f(A)⊕ g(B)− f ′(A)⊕ g(B)]

=
n∑

k=0

( ∑

A∈([n]
j ),B∈([n]

k )
|A∩B|<t

[f(A)⊕ g(B)− f ′(A)⊕ g(B)]

+
∑

A∈([n]
i ),B∈([n]

k )
|A∩B|<t

[f(A)⊕ g(B)− f ′(A)⊕ g(B)]
)

(3.3.1)

Fix k ∈ [0, n]. We show that the corresponding term in (3.3.1) is nonnegative.

We have two cases: either fj + gk < 1 or fj + gk ≥ 1. If fj + gk < 1 then, by

our choice of ∆W , we have f ′j + gk < 1. Thus, for all A ∈ (
[n]
j

)
and B ∈ (

[n]
k

)
,

we have f(A) ⊕ g(B) = 0 and f ′(A) ⊕ g(B) = 0. For A ∈ (
[n]
i

)
and B ∈ (

[n]
k

)
,

f(A)⊕ g(B)− f ′(A)⊕ g(B) is always nonnegative, so the case fj + fk < 1 is settled.

If fj + gk ≥ 1 then fi + gk ≥ 1 and f ′j + gk ≥ 1. By our choice of ∆W , we have
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f ′i + fk ≥ 1. Thus

∑

A∈([n]
j ),B∈([n]

k )
|A∩B|<t

[f(A)⊕ g(B)− f ′(A)⊕ g(B)]

=
∑

A∈([n]
j ),B∈([n]

k )
|A∩B|<t

[
(fj + gk − 1)− (fj +

(
n

j

)−1

∆W + gk − 1)

]

= −
(

n

j

)
Λ(j, k)

(
n

j

)−1

∆W

= −Λ(j, k)∆W.

Similarly,

∑

A∈([n]
i ),B∈([n]

k )
|A∩B|<t

[f(A)⊕ g(B)− f ′(A)⊕ g(B)] = Λ(i, k)∆W.

Notice that because j > i, there are more k sets that have small intersection with

a given i set than there are k sets that have small intersection with a given j set.

In other words, Λ(j, k) ≤ Λ(i, k). Hence the term corresponding to k in (3.3.1) is

nonnegative.

We say a set system f ∈ Kw
n,t is t-canonical if f is nondecreasing. We denote the

set of t-canonical fractional set systems of weight w on [n] by Cw
n,t.

3.3.3 Counterexamples

In this section we give some more counterexamples to the t > 1 case of Theorem 3.3.1

of Bollobás and Leader. We also find the Dn,t minimizing fractional set systems when

t >
⌈

n
2

⌉
.
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Example 2. Let n, t ∈ N, where t ≤ n. For w ∈ R with

(
n

≥ t

)
+

1

2

(
n

t− 1

)
< w < 2n − 1

2
,

we have Dt(b
w
n ) > Dn,t(w).

Proof. Let A = {1, 2, . . . , t− 1}. By our choice of w, we have bw
n (A) > 1/2, and

bw
n (∅) < 1/2. Thus we may choose ∆w > 0 to be a real number with

∆w < min {bw
n (A)− 1/2, 1/2− bw

n (∅)} .

Define f ∈ Fn by

f(B) =





bw
n (B) if B /∈ {A, ∅} ;

bw
n (A)−∆w if B = A;

∆w if B = ∅.

Since A and ∅ each have size less than t, the intersection with either of them and any
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other set in 2[n] has size less than t. Thus

Dt(b
w
n )−Dt(f)

= 2
∑

B∈2[n]\{∅,A}
[bw

n (A)⊕ bw
n (B) + bw

n (∅)⊕ bw
n (B)− f(A)⊕ f(B)− f(∅)⊕ f(B)]

+ bw
n (A)⊕ bw

n (A) + bw
n (∅)⊕ bw

n (∅)

− f(A)⊕ f(A)− f(∅)⊕ f(∅)

= 2
∑

B∈2[n]\{∅,A}
[(bw

n (A)⊕ bw
n (B)− f(A)⊕ f(B)) + (bw

n (∅)⊕ bw
n (B)− f(∅)⊕ f(B))]

+ (bw
n (A) + bw

n (A)− 1)− (f(A) + f(A)− 1)

= 2
∑

B∈2[n]\{∅,A}
[(bw

n (A)⊕ bw
n (B)− f(A)⊕ f(B)) + (bw

n (∅)⊕ bw
n (B)− f(∅)⊕ f(B))]

+ 2∆w.

Let B /∈ {A, ∅}. We would like to show that

(bw
n (A)⊕ bw

n (B)− f(A)⊕ f(B)) + (bw
n (∅)⊕ bw

n (B)− f(∅)⊕ f(B)) ≥ 0.

Since f(A) < bw
n (A), we have that bw

n (A) ⊕ bw
n (B) − f(A) ⊕ f(B) ≥ 0. If bw

n (∅) ⊕
bw
n (B)− f(∅)⊕ f(B) ≥ 0, we’re done. Otherwise, f(∅)⊕ f(B) > 0, so f(∅)⊕ f(B) =
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f(∅) + f(B)− 1. Thus

(bw
n (A)⊕ bw

n (B)− f(A)⊕ f(B)) + (bw
n (∅)⊕ bw

n (B)− f(∅)⊕ f(B))

= (f(A) + ∆w + f(B)− 1)− (f(A) + f(B)− 1)

+ (f(∅)−∆w)⊕ f(B)− (f(∅) + f(B)− 1)

= ∆w

+ (f(∅)−∆w)⊕ f(B)− (f(∅) + f(B)− 1)

≥ ∆w

+ (f(∅)−∆w + f(B)− 1)− (f(∅) + f(B)− 1)

= 0.

Thus Dt(b
w
n )−Dt(f) ≥ 2∆w > 0 as desired.

Next we find minimizers in the case where t > dn/2e. Furthermore, we will see

that bw
n is (usually) not a minimizer in this case. Given n, t ∈ N and a fixed weight

w with 2n−1 ≤ w ≤ 2n, there is exactly one f ∈ Cw
n,t of the form

f(A) =





1 if |A| > k;

α if |A| = k;

1/2 if |A| < k.

Here α ∈ R has 1/2 ≤ α < 1, and k ∈ [t − 1, n]. (Recall that for i < t − 1, we have

fi = ft−1.) We call f the t-half-ball of weight w on 2[n]. For w < 2n−1, the system

with constant weight f(A) = w2−n will also be called a t-half-ball. We denote the

t-half-ball of weight w on 2[n] by hw
n,t.
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Theorem 3.3.9. Let n, t ∈ N with t >
⌈n

2

⌉
, and let w ∈ R with 0 ≤ w ≤ 2n. Then

Dn,t(w) = Dt(h
w
n,t).

Proof. If w ≤ 2n−1, then hw
n,t is the constant fractional set system with total weight

w. This constant value is no more than 1/2, so Dt(h
w
n ) = 0 = Dn,t(w) as desired.

Thus we assume that w > 2n−1.

Let f ∈ Cw
n,t with Dn,t(w) = Dt(f). We may assume (by a compactness argument)

that f<t is as large as possible. We claim that f<t ≥ 1/2.

Suppose, on the contrary, that f<t < 1/2. Notice that {j ∈ [0, n] : fj > 1/2} is

nonempty since w > 2n−1. Let

l = min {j ∈ [0, n] : fj > 1/2} .

Notice that l > t − 1. Choose ∆w > 0 small enough so that fl−1 +
(

n
≤l−1

)−1
∆w ≤

fl −
(

n
≥l

)−1
∆w and fl−1 +

(
n

≤l−1

)−1
∆w ≤ 1/2. Define g ∈ Cw

n,t by

gi =





fi −
(

n
≥l

)−1
∆w if i ≥ l;

fi +
(

n
≤l−1

)−1
∆w if i < l.

We show that for any (i, j) ∈ [0, n] × [0, n], we have gi ⊕ gj ≤ fi ⊕ fj. For

(i, j) ∈ [l, n] × [l, n], we have gi < fi and gj < fj. Thus gi ⊕ gj ≤ fi ⊕ fj. For

(i, j) ∈ [l, n] × [0, l − 1], we have gi + gj = fi −
(

n
≥l

)−1
∆w + fj +

(
n

≤l−1

)−1
∆w. But

l ≥ t > dn/2e, so
(

n
≥l

) ≤ (
n

≤l−1

)
and hence gi+gj ≤ fi+fj, so gi⊕gj ≤ fi⊕fj. Similarly,

for (i, j) ∈ [0, l − 1]× [l, n], we have gi ⊕ gj ≤ fi ⊕ fj. If (i, j) ∈ [0, l − 1]× [0, l − 1]

then, by our choice of ∆w, we have that gi and gj are both no more than 1/2, and so

gi + gj ≤ 1, and gi ⊕ gj = 0 ≤ fi ⊕ fj.
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Recall that Λ(i, j) is defined on page 28. We have

Dt(g) =
∑

(i,j)∈[0,n]×[0,n]

(
n

i

)
Λ(i, j) (gi ⊕ gj)

≤
∑

(i,j)∈[0,n]×[0,n]

(
n

i

)
Λ(i, j) (fi ⊕ fj)

= Dt(f).

But by our choice of ∆w, we have g ∈ Cw
n,t and furthermore g<t > f<t. This is a

contradiction. Hence f<t ≥ 1/2.

Since f is nondecreasing, it follows that

Dt(f) =
∑

(A,B)∈2[n]×2[n]

|A∩B|<t

f(A) + f(B)− 1.

This is an affine function. Thus we want to keep weight in the sets that occur least

often in the sum. That is, we want as much weight as possible in large sets while

maintaining the property that the weight on every set is at least 1/2. Of course, hw
n,t

does exactly that, and so Dn,t(w) = Dt(f) ≥ Dt(h
w
n,t), and the theorem is proved.

The following Lemma shows that under the conditions of Theorem 3.3.9, bw
n is

only a minimizer when w is so small that Dt(b
w
n ) = 0 or when w is so large that

anything sensible is a minimizer.

Corollary 3.3.10. Let n, t ∈ N with t >
⌈n

2

⌉
. Then given w ∈ R with Dt(b

w
n ) > 0

and w < 2n − 1/2, we have

Dt(b
w
n ) > Dn,t(w).

Proof. If w >
(

n
≥t

)
+ 1

2

(
n

t−1

)
then by Example 2, we are done. Thus we assume that

w ≤ (
n
≥t

)
+ 1

2

(
n

≤t−1

)
. Smearing bw

n below t yields f , a t-canonical fractional set system
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with the property that f<t < 1/2 and Dt(f) ≤ Dt(b
w
n ). If Dt(f) = 0 < Dt(b

w
n ), then

we are done. Otherwise, since f is t-canonical and f<t < 1/2, we may apply the shift

described in the proof of Theorem 3.3.9. Since Dt(f) > 0, the shift strictly decreases

Dt.

3.3.4 An Algorithmic Solution

Given n, t ∈ N and w with 0 ≤ w ≤ 2n, we say a fractional set system f ∈ Fn is a

t-pseudo-ball if it is t-canonical, and fi ∈ {0, 1/2, 1} for all i ∈ [n]. Notice that the

number of t-pseudo-balls in Cw
n,t is finite. In fact, there are

(
n−t+4

2

)
t-pseudo-balls in

Cw
n,t. We have the following theorem, which we will prove after we have established

some supporting facts.

Theorem 3.3.11. Dn,t(w) is the maximum convex function with the property that

Dn,t(W (f)) ≤ Dn,t(f) where f is any t-pseudo-ball.

In particular, Dn,t(w) is piecewise linear and the points where the slope changes

correspond to pseudo-balls. Thus we may “graph” Dn,t(w) as follows: compute Dt

for each of the pseudo-balls and then use a convex hull-like algorithm to determine

Dn,t(w). There are
(

n−t+4
2

)
= O(n2) pseudo-balls in Cw

n,t, and it takes O(n3) time to

compute Dt of a given pseudo-ball. This yields an O(n5) run time to compute Dt

for every pseudo-ball. We apply the convex hull-like algorithm to the O(n2) pseudo-

balls. This takes O(n4) time. Overall this process completes in O(n5) time. We have

implemented this algorithm in Mathematica. We used this technique to produce

Figure 3.3.4, a graph of D56,14(w) and D14(b
w
56). Notice that D56,14(w) ≤ D14(b

w
56),

with strict inequality for many values of w.
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D56,14(w)

D14(bw
56)

Figure 3.1: D56,14(w) and D14(b
w
56)

To prove Theorem 3.3.11, we make use of the following fact.

Theorem 3.3.12. Given n, t ∈ N and 0 ≤ w ≤ 2n, there is f ∈ Cw
n,t with Dn,t(w) =

Dt(f) and with (fi)
n
i=0 having the form

(fi)
n
i=0 = (0, . . . 0︸ ︷︷ ︸

l0

, 1− δ, . . . , 1− δ︸ ︷︷ ︸
l1−δ

, 1/2, . . . , 1/2︸ ︷︷ ︸
l1/2

, δ, . . . , δ︸ ︷︷ ︸
lδ

, 1, . . . , 1︸ ︷︷ ︸
l1

),

where 1/2 < δ < 1, and l0, l1−δ, l1/2, lδ, l1 ∈ [0, n + 1] are integers that sum to n + 1.

Proof of Theorem 3.3.12. We will see that the space Cw
n,t can be divided into finitely

many parts, P1, . . . , Pp defined by linear inequalities, in such a way that Dt is an affine

function on each part. Thus, on each part, minimizing Dt is a linear programming
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problem (for more on linear programming, see [14], for example). Recall that if a

(minimizing) solution to a linear programming problem exists, then there is a solution

at a vertex of the feasible region of the problem. We will see that for all i, every vertex

in Pi is of the form claimed in the lemma. Since the Dt minimizing f must appear in

one of the parts, the lemma will be established.

First, we may think of a fractional set system f ∈ Cw
n,t as a function in R{t−1,...,n}.

This function is subject to the following linear constraints. (Recall that we use f<t to

denote the common weight on the sets of size less than t. This is identical to ft−1.)

W (f) = w (3.3.2)

0 ≤ f<t (3.3.3)

fi ≤ fi+1 for all i ∈ [t− 1, n− 1] (3.3.4)

fn ≤ 1 (3.3.5)

Let R ⊆ [t− 1, n]× [t− 1, n]. Then we define PR to be the set of functions f ∈ Cw
n,t

subject to additional constraints

fi + fj ≥ 1 if (i, j) ∈ R (3.3.6)

fi + fj ≤ 1 if (i, j) /∈ R (3.3.7)

Notice that, given f ∈ Cw
n,t, every pair (i, j) ∈ [t − 1, n] × [t − 1, n] either has

fi + fj ≤ 1 or fi + fj ≥ 1, and so f is in some PR. More importantly, if we set

ci,j =





(
n
i

)
Λ(i, j) if i ≥ t;

(
n
<t

) ∑t−1
k=0 Λ(i, k) if i = t− 1
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(where Λ(i, j) is as defined on page 28) then for all f ∈ PR,

Dt(f) =
∑

(i,j)∈R

ci,j(fi + fj − 1).

Thus Dt is affine on each PR.

Fix R. We are now ready to find the vertices of PR. We may think of the

coefficients on a constraint as a vector in Rn−t+2. For example, the constraint fi ≤ fi+1

is equivalent to fi − fi+1 ≤ 0 and so it corresponds to a vector of the form

(0, . . . , 0, 1,−1, 0, . . . , 0).

Similarly, the constraint fi + fj ≥ 1 becomes a vector with ones in positions i and j,

and 0’s elsewhere. Since we are thinking of Cw
n,t as an n− t + 2 dimensional space, a

fractional set system is a vertex if it achieves equality for n−t+2 linearly independent

constraints. Notice that equality always holds for the weight constraint (3.3.2), and

so we want equality to hold for n − t + 1 linearly independent constraints of types

(3.3.3)-(3.3.7).

Let f ∈ PR be a vertex of PR. Given δ ∈ [1/2, 1], define

Sδ = {i ∈ [t− 1, n] : fi = δ or fi = 1− δ} .

Define Cδ to be the set of coefficient vectors for the constraints of types (3.3.3)-

(3.3.7) that f exactly meets, and where for some i ∈ Sδ, the coefficient on fi is

nonzero. Let C be the set of vectors corresponding to all constraints for which f

achieves equality. Define

r = rank C.
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By our choice of f , we have r = n− t + 2. On the other hand, if ~w is the vector

corresponding to the weight constraint, then

C = {~w} ∪
⋃

δ∈[1/2,1]

Cδ,

and so

r ≤ 1 +
∑

δ∈[1/2,1]

rank Cδ.

Notice that this sum is actually finite, since f only takes on finitely many values.

Notice further that the only nonzero coefficients in a constraint in Cδ are on fi with

fi = δ or fi = 1 − δ. Thus rank Cδ ≤ |Sδ|. Consider δ not equal to 1/2 or 1. Given

v ∈ [0, 1], denote f−1(v) = {i ∈ [t− 1, n] : fi = v}. Let p ∈ R{t−1,t,...,n} be the vector

that is 1 on f−1(δ), −1 on f−1(1− δ), and 0 everywhere else. Notice that no vector

in Cδ corresponds to constraints (3.3.3) or (3.3.5), and so in particular for all v ∈ Cδ,

we have v · p = 0. Thus when we restrict our vectors to Sδ (the support of Cδ), the

dimension of the space perpendicular to Cδ is at least 1. This implies that

rank Cδ ≤ |Sδ| − 1.
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Thus if d is the number of distinct nonempty Sδ other than S1 and S1/2, we have

n− t + 2 = r

≤ 1 +
∑

δ∈[1/2,1]

rank Cδ

≤ 1− d +
∑

δ∈[1/2,1]

|Sδ|

= 1− d + n− t + 2.

By canceling terms and rearranging, d ≤ 1, and the claim is proved.

Proof of Theorem 3.3.11. First we show that Dn,t is convex. Let w1 and w2 have

0 ≤ w1 ≤ w2 ≤ 2n. For i = 1 or 2, there exists fi ∈ Cwi
n,t such that Dn,t(wi) = Dt(fi).

Let λ ∈ [0, 1]. We have

Dn,t (λw1 + (1− λ)w2)

≤ Dt (λf1 + (1− λ)f2) (since W (λf1 + (1− λ)f2) = λw1 + (1− λ)w2)

≤ λDt(f1) + (1− λ)Dt(f2) (since Dt is convex by Lemma 3.3.3)

= λDn,t(w1) + (1− λ)Dn,t(w2).

Next we see that Dn,t is piecewise linear. Let l0, l1−δ, l1/2, lδ, and l1 be nonnegative

integers that sum to n + 1. Also, let δ ∈ [1/2, 1]. Define

fδ = (0, . . . 0︸ ︷︷ ︸
l0

, 1− δ, . . . , 1− δ︸ ︷︷ ︸
l1−δ

, 1/2, . . . , 1/2︸ ︷︷ ︸
l1/2

, δ, . . . , δ︸ ︷︷ ︸
lδ

, 1, . . . , 1︸ ︷︷ ︸
l1

).
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Notice that the weight of fδ is affine in δ, as is Dn,t(fδ). Thus

{(W (fδ), Dt(fδ)) : δ ∈ [1/2, 1]}

is a line segment. By Theorem 3.3.12, Dn,t(w) is the minimum value among all the

line segments of this type that are defined at w. Thus Dn,t is piecewise linear.

Changes of slope either occur at the ends of the line segments described above

or at the intersection of two of them. As it turns out, slope does not change at an

intersection of two of these line segments if the intersection is not also an endpoint

of one of the line segments. Otherwise, near the point of intersection, Dn,t would be

the minimum of two line segments, which is not a convex function. Thus the slope of

Dn,t changes at endpoints of the line segments described above. But the endpoints

occur where W (fδ) is maximized or minimized. These extrema occur when δ = 1/2

and δ = 1. In either case, fδ is a pseudo-ball.
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Chapter 4

Extremal Problems Under

Dimension Constraints

4.1 Introduction

4.1.1 The History of the Problem

A new type of restriction on set systems was recently introduced by Ahlswede, Ay-

dinian, and Khachatrian [2]. The general problem is to take an existing class of set

systems (intersecting families, for example) in 2[n], think of them as collections of

{0, 1}-valued vectors in Rn, and impose the further restriction that their rank be at

most (or at least) k. We then ask for the largest (or smallest) such set. A first prob-

lem in this program is to determine M(n, k, w), the largest number of {0, 1}-valued

vectors with (Hamming) weight w in a k-dimensional subspace of Rn. This was solved

in a separate paper of Ahlswede, Aydinian, and Khachatrian [3].
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Theorem 4.1.1 (Ahlswede, Aydinian, and Khachatrian).

M(n, k, w) = M(n, k, n− w),

and for w ≤ n/2,

M(n, k, w) =





(
k
w

)
if 2w ≤ k;

(
2(k−w)

k−w

)
22w−k if k < 2w < 2(k − 1);

2k−1 if k − 1 ≤ w.

¤

The same problem can be posed in other vector spaces. This chapter of the dis-

sertation will focus on partial results in the Fn
2 case. To that end, define m(n, k, w)

to be the maximum number of weight w vectors contained in a k-dimensional sub-

space of Fn
2 . Determining m(n, k, w) requires different techniques from those used to

determine M(n, k, w). For example, in the Rn case the solution given by Ahlswede,

Aydinian, and Khachatrian makes explicit use of the fact that the sum of a non-

empty collection of positive numbers in R is nonzero. We do not have this fact in F2.

The methods used and results found in this dissertation are similar to methods and

results from coding theory. A complete description of m(n, k, w) might be important

to coding theory, since it would shed light on the weight distributions of binary linear

codes. What follows is an overview of the results in this section.

Ahlswede, Aydinian, and Khachatrian note that the value of m(n, k, w) depends

crucially on the parity of w. For example, assuming w 6= 0 we have m(n, k, w) ≤ 2k−1.

Furthermore, there are many examples where w is even and m(n, k, w) = 2k − 1.

On the other hand, at least half of the vectors in a subspace C < Fn
2 have even

weight. Thus if w is odd, m(n, k, w) ≤ 2k−1. Given w even, we prove a (well-known)
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characterization of the parameters for which m(n, k, w) = 2k − 1. Given w odd, we

prove a (well-known) characterization of the parameters for which m(n, k, w) = 2k−1.

More generally, define f2(w) to be such that 2f2(w) is the largest power of 2 that divides

w. We show that m(n, k, w) ≤ 2k − 2k−1−f2(w), and we characterize the parameters

for which m(n, k, w) meets this bound.

During the research process, it became important to study linear maps that de-

crease the weight of non-zero vectors by a constant, c. We call these maps c-killers.

The result of our study of c-killers is a structure theorem for such maps, which is

interesting in its own right. This structure theorem is a slight generalization of a

result from coding theory known as the MacWilliams Extension Theorem [23], which

characterizes weight-preserving linear maps (0-killers). We apply our structure theo-

rem to determine when m(n, k, w) = 2k−1−1 in the case where w is odd. The number

of such cases turns out to be very small.

Additionally, we prove miscellaneous results which give insight into the problem,

and lead to conjectures. For instance, these results together with numerical evidence

suggest that for w odd, we have m(n, k, w) = M(n, k, w).

We now proceed to the work. We refer the reader to Chapter 1 for our notation.

4.1.2 Basics of Finite Vector Spaces

Let q ∈ N be a prime power. Define Fq to be the unique field of order q. In particular,

if q = 2 then F2 = {0, 1}, where addition and multiplication are defined mod 2. The

set

Fn
q = {(b1, b2, . . . , bn) : bi ∈ Fq}

is the set of strings of length n over the alphabet Fq. We endow Fn
q with an addition

and a scalar multiplication, both defined componentwise. More precisely, let a,b ∈ Fn
q
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and let λ ∈ Fq. Then a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn), and we have the

following definitions.

a + b = ((a1 + b1), (a2 + b2), . . . , (an + bn))

and

λa = (λa1, λa2, . . . , λan) .

In the binary case (ie when q = 2) we have

ca =





a if c = 1;

~0 if c = 0,

where ~0 is the all zeroes vector.

Since Fq is a field, Fn
q is an Fq vector space under this addition and multiplication.

Let C < Fn
q be a subspace of Fn

q . That is, C is nonempty and closed under addition

and scalar multiplication. Notice that for any F2-vector space, closure under scalar

multiplication follows from being nonempty and closed under addition. Suppose C
is k-dimensional. By standard linear algebra arguments, C is isomorphic to Fk

q . In

particular, |C| = qk.

Let ~1n = (1, 1, 1, . . . , 1) ∈ Fn
q . We call ~1n the all ones vector of length n. Notice

that if a ∈ Fn
2 then a+~1n is the opposite of a in every component. We call this vector

the complement of a, and we denote it by a.

Given a subspace C < Fn
q , it is often convenient to permute its entries. More

specifically, let σ : [n] → [n] be a permutation. Given c = (c1, c2, . . . , cn) ∈ C, define

σ(c) =
(
cσ−1(1), cσ−1(2), . . . , cσ−1(n)

)
.
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Extending this to the entire code, σ(C) = {σ(c) : c ∈ C}. Notice that wt (σ(c)) =

wt (c). We call any map with this property weight preserving. Furthermore, the

action of σ : C → σ(C) can be “undone” by applying the inverse permutation, so σ

is one-to-one. Thus for all w ∈ [n], we have that Aw(σ(C)) (the number of weight

w vectors in σ(C)) is the same as Aw(C). Therefore, we may employ the following

strategy when establishing bounds on m(n, k, w).

1. Start with a k-dimensional subspace C < Fn
2 that has Aw(C) = m(n, k, w).

2. If it is more convenient than proving the bound directly, establish the bound

on Aw(σ(C)) instead.

It is important to notice that σ : C → σ(C) is a linear bijection. As described

above, σ is one-to-one. By definition it is onto. Notice that as part of establishing

linearity, we should show that for any λ ∈ Fq and b ∈ C, we have σ(λb) = λσ(b).

In the case of establishing F2-linearity, this just reduces to showing that σ(~0) = ~0.

Clearly, by permuting the entries of the all zeroes vector you get the all zeroes vector

back. For a general prime power, q ∈ N, we have that

σ(λb) = σ(λ(b1, b2, . . . , bn))

= σ((λb1, λb2, . . . , λbn))

= (λbσ−1(1), λbσ−1(2), . . . , λbσ−1(n))

= λ(bσ−1(1), bσ−1(2), . . . , bσ−1(n))

= λσ(b).

Given b and c ∈ C, we wish to show that σ(b) + σ(c) = σ(b + c). This is easy to
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establish.

σ(b) + σ(c) = σ ((b1, b2, . . . , bn)) + σ ((c1, c2, . . . , cn))

=
(
bσ−1(1), bσ−1(2), . . . , bσ−1(n)

)
+

(
cσ−1(1), cσ−1(2), . . . , cσ−1(n)

)

=
(
bσ−1(1) + cσ−1(1), bσ−1(2) + cσ−1(2), . . . , bσ−1(n) + cσ−1(n)

)

= σ ((b1 + c1, b2 + c2, . . . , bn + cn))

= σ(b + c)

We have proved that σ is a weight-preserving linear bijection. A theorem of

MacWilliams [23] (see also [18] or [24]) tells us that in fact every weight-preserving

linear bijection between binary codes (a binary code is an F2 vector space) is a per-

mutation. Before we state the theorem in general, we need a definition. Let Fq be

a finite field and let n ∈ N. Let V, W < Fn
q be subspaces, and let φ : V → W be

an Fq-linear map. We say that φ is a monomial equivalence if it is a permutation

followed by a nonzero scaling of each entry. Formally, φ is a monomial equivalence if

there are λ1, λ2, . . . , λn ∈ F×q = Fq \ {~0} and a permutation σ : [n] → [n] such that

for all v = (v1, v2, . . . , vn) ∈ V , we have φ(v) =
(
λ1vσ−1(1), λ2vσ−1(2), . . . , λnvσ−1(n)

)
.

Notice that in the case q = 2, a monomial equivalence is a permutation. We are now

ready for the theorem.

Theorem 4.1.2 (The MacWilliams Extension Theorem). Let Fq be a finite field. Let

V, W < Fn
q be subspaces. If φ : V → W is a weight preserving linear map then φ is a

monomial equivalence.

This is called an extension theorem because it tells us that any weight preserving

homomorphism φ : V → W can be extended to a weight preserving automorphism of

Fn
q . We give a new proof of the MacWilliams Extension Theorem in Section 4.5.3.

We may now start to look at our main problem.
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4.2 Constant Weight Codes

Let C < Fn
2 have dimension k. C has 2k vectors, one of which is ~0. Thus, if w is not

zero then Aw(C) ≤ 2k − 1. Hence, for w 6= 0, we have

m(n, k, w) ≤ 2k − 1.

To discuss our main problem, it is important to find the parameters for which

m(n, k, w) = 2k−1. We want to find those parameters n, k, and w for which there ex-

ists a k-dimensional subspace C < Fn
2 with Aw(C) = 2k − 1. We call such a subspace

a constant weight code of weight w. In [3], Ahlswede, Aydinian, and Khachatrian

mention the following characterization of the parameters for which a constant weight

code exists.

Proposition 4.2.1. There exists a k-dimensional constant weight code C < Fn
2 with

nonzero weight w if and only if there is some t ∈ N for which w = t2k−1 and n ≥
t(2k − 1) = 2w − t.

Restated, there exists a k-dimensional constant weight code C < Fn
2 of weight w

in Fn
2 if and only if 2k−1 divides w and n ≥ 2w−w/2k−1. Before we prove this result,

we first introduce some special constant weight codes, which we then use to find all

constant weight codes. Let Mk be a k×(2k−1) matrix whose columns are the vectors

of Fk
2 \{~0}. For the sake of definiteness we order the columns in decreasing order from

left to right according to their values as binary numbers. We give M3 as an example.

M3 =




1 1 1 1 0 0 0

1 1 0 0 1 1 0

1 0 1 0 1 0 1




.
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Define Sk to be the row space of Mk. This space is known as the k-dimensional binary

simplex code (see [18] for example). We now prove the well-known fact (see [18]) that

every non-zero vector of Sk has the same weight.

Proposition 4.2.2. For all s ∈ Sk \ {~0}, we have

wt(s) = 2k−1.

Proof of Proposition 4.2.2. We proceed by induction on k. In the case k = 1 we have

that M1 = [1], and so Sk = {0, 1}, every nonzero vector of which has weight 1 = 21−1.

Notice that for k > 1, we have

Mk =




1 1 1 1 · · · 1 1 1 1 1 0 0 0 0 · · · 0 0 0 0

Mk−1

0

Mk−1

0

...

0

0




.

Let the rows of this matrix be labeled R1, R2, . . . , Rk, from top to bottom. We first

consider s ∈ span {R2, R3, . . . , Rk} \ {~0}. We have s = s′0s′ for some s′ ∈ Sk−1 \ {~0}.
That is, s is the concatenation of s′, 0, and s′. By induction,

wt(s) = 2 wt(s′) = 2× 2k−2 = 2k−1.

Now let s ∈ span {R1, R2, . . . , Rk} \ span {R2, R3, . . . , Rk}. Then s = R1 + s′0s′
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for some s′ ∈ Sk−1. Thus s = s′0s′, and we have

wt(s) = wt(s′0s′)

= wt(s′0) + wt(s′)

= wt(R1)− wt(s′0) + wt(s′)

= wt(R1)− wt(s′) + wt(s′)

= wt(R1)

= 2k−1.

We are almost ready to prove Proposition 4.2.1, which characterizes the param-

eters n, k and w for which m(n, k, w) = 2k − 1. First, we need a definition. Given

n, k, t ∈ N with n ≥ t(2k − 1), we construct the matrix

← t times → ← n− t(2k − 1) times →[
Mk Mk · · · Mk

~0T
k
~0T

k
~0T

k
~0T

k · · ·~0T
k
~0T

k
~0T

k
~0T

k

]
.

Define S(k, t, n) to be the row span of this matrix.

Proof of Proposition 4.2.1. We prove the reverse direction first. Suppose that there

is t ∈ N such that w = t2k−1 and n ≥ t(2k − 1). We need to show that there is a

k-dimensional constant weight code C < Fn
2 with nonzero weight w. Our candidate

is S(k, t, n). Clearly S(k, t, n) has dimension k. By Proposition 4.2.2, every vector in

S(k, t, n) \ {~0} has weight t2k−1 = w. Finally, S(k, t, n) has length t(2k − 1) + (n −
t(2k − 1)) = n.

For the other direction, we are given that there exists a k-dimensional constant
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weight code C < Fn
2 with Aw(C) = 2k − 1, and we need to show that 2k−1 divides w

and n ≥ 2w−w/2k−1. We will proceed by induction on k. For k = 0, we are to show

that there is an integer t for which 1
2
t = w and that n ≥ 0. These are clearly true.

For k = 1, we have that C contains a weight w vector, and we want to show that 21−1

divides w, and n ≥ 2w − w/21−1. That is, we want to show that 1 divides w, and

n ≥ w. Clearly 1 divides w, and n must be at least w, since C < Fn
2 contains a weight

w vector.

Now we consider k > 1. Without loss of generality, we may permute entries as

discussed in Section 4.1.2. Thus we may assume that there exists v1 ∈ V \ {~0} of the

form

v1 = 1 . . . 1︸ ︷︷ ︸
R1

0 . . . 0︸ ︷︷ ︸
R0

.

Here Rb = {i ∈ [n] : πi (v1) = b}, where b ∈ F2. Thus |R1| = w. Let v2 ∈ V \ {~0, v1}.
Since v1 6= v2, we have v1 + v2 6= ~0. Thus wt(v1 + v2) = w. Recall that given I ⊆ [n],

we define πI (v) to be the projection of v onto the coordinates I. We have

w = wt(v1 + v2)

= |R1| − wt(πR1 (v2)) + wt(πR0 (v2))

= w − wt(πR1 (v2)) + wt(πR0 (v2)).

Thus wt(πR1 (v2)) = wt(πR0 (v2)). We also have wt(πR1 (v2))+wt(πR0 (v2)) = wt(v2) =

w. Thus wt(πR1 (v2)) = wt(πR0 (v2)) = w/2. Set

W = πR0 (V ) .
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Given v ∈ V , we have

wt(πR0 (v)) =





0 if v ∈ {~0, v1};
w/2 if v ∈ V \ {~0, v1}.

Thus ker πR0 = {0, v1}, which has dimension 1. Since k = dim ker πR0 + dim W , we

have that dim W = k − 1. Furthermore, W is a constant weight code of weight w/2.

By induction, w/2 = t2k−2 for some t ∈ N. Hence w = t2k−1. Also by induction, the

length of W (which equals |R0|) is at least 2(w/2)−t. Thus n ≥ w+2(w/2)−t = 2w−t,

as desired.

Suppose that m(n, k, w) = 2k − 1. We will see that the extremal subspace is

unique up to permutation of entries. That is, up to permutation of entries, there is

a unique k-dimensional subspace V < Fn
2 with Aw(V ) = 2k − 1. This is a corollary

of the MacWilliams Extension Theorem (Theorem 4.1.2). It is a special case of a

theorem of Bonisoli [12].

Corollary 4.2.3 (Corollary of the MacWilliams Extension Theorem). Suppose

m(n, k, w) = 2k − 1

and V < Fn
2 is a k-dimensional subspace with Aw(V ) = 2k−1. If we set t = w/2k−1

then up to monomial equivalence, we have

V = S(k, t, n).

Proof. Since any two codes of dimension k over F2 have a linear bijection between

them, there is such a map φ : V → S(k, t, n). The weight of any nonzero vector of
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V is w, as is the weight of any nonzero vector of S(k, t, n). Thus φ preserves weight.

By the MacWilliams Extension Theorem, φ is a monomial equivalence.

4.3 The Case Where w is Odd and m(n, k, w) = 2k−1

Let C < Fn
2 . The map p : C → F2 defined by

p(c) =
n∑

i=1

πi(c)

is the function which takes a vector c to the parity of its weight. Notice that p is a

group homomorphism. Thus p−1(1) is either empty or a coset of p−1(0). In particular,

|p−1(0)| is either |C| or |C|/2. Thus if w is odd, we have Aw(C) ≤ |p−1(1)| ≤ |C|/2.

Therefore, if w is odd the natural first thing to determine is the parameters for which

m(n, k, w) = 2k−1. The following proposition from [3] gives those parameters.

Proposition 4.3.1. Let w be odd and let k ≥ 1. There is a k-dimensional subspace

V < Fn
2 with Aw(V ) = 2k−1 if and only if k ≤ w + 1 and n ≥ w + k − 1.

Proof. For the forward direction, suppose that w is odd, k ≥ 1, and that there exists

a k-dimensional subspace V < Fn
2 with Aw(V ) = 2k−1. If k = 1, then certainly

k ≤ w + 1, and n ≥ w = w + 1− 1 = w + k − 1.

Suppose k > 1. Since 2k−1 > 0, there is at least one vector of weight w. Permuting

entries, we may assume without loss of generality that there is a vector v ∈ V of the

form

v = 1 . . . 1︸ ︷︷ ︸
R1

0 . . . 0︸ ︷︷ ︸
R0

,

where |R1| = w. Now consider E < V , the subspace of even weight vectors. Notice

that because there is an odd weight vector, we have dim E = k − 1. Let e ∈ E .

Consider wt(πR1(e)), the number of 1’s in the first w coordinates of e. Note that e+v
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has weight w because e + v has odd weight and all odd weight vectors have weight

w. Thus by an argument similar to the one from Proposition 4.2.1, the function

πR1 : E → Fw
2 has the property that

wt(πR1 (e)) =





0 if e = ~0;

w/2 if e 6= ~0.

Thus ker πR1 = {~0}. Hence, πR1 is injective as a function of E . In particular,

dim πR1(E) = dim E = k − 1. Since |R1| = w, this gives us that k − 1 ≤ w and

hence,

k ≤ w + 1,

as desired.

By a similar argument, πR0(E) has dimension k − 1. Thus

n ≥ |supp(πR1(V ))|+ |supp(πR0(V ))|

≥ w + |supp(πR0(E))|

≥ w + k − 1.

For the reverse direction, suppose w is odd, 1 ≤ k ≤ w+1, and n ≥ w+k−1. We

want to show that there is V < Fn
2 of dimension k with Aw(V ) = 2k−1. We essentially

follow the model established above. First, set

v = 1 . . . 1︸ ︷︷ ︸
w

0 . . . 0︸ ︷︷ ︸
n−w

,

then set

E = {u 00 . . . 00︸ ︷︷ ︸
w+1−k

u 00 . . . 00︸ ︷︷ ︸
n−w−k+1

: u ∈ Fk−1
2 },
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and finally let

V = E + v.

Every odd weight vector in V has the form

x = u00 . . . 00︸ ︷︷ ︸
w

u00 . . . 00,

but

w(x) = w − wt(u) + wt(u) = w.

4.4 A Bound on m(n, k, w)

Let f2(w) denote the largest integer e such that 2e divides w. In this section we

establish that

m(n, k, w) ≤ 2k − 2k−f2(w)−1. (4.4.1)

We also characterize the parameters n, k, and w for which the bound is met. This

will show that among all upper bounds on m(n, k, w) that are functions of only k and

f2(w), (4.4.1) is the best possible. Propositions 4.2.1 and 4.3.1 are special cases of

this characterization. The bound will be established by proving that if you throw out

sufficiently few nonzero vectors from a subspace V < Fn
2 , then you can find a large

subspace inside of what remains. In particular, if there are few non-weight-w vectors

in V , then V contains a large constant weight code. By Proposition 4.2.1, this implies

that w is divisible by a large power of two. We now make this argument precise.

Lemma 4.4.1. Let V be an F2-vector space of dimension k ≥ 1. Let S ⊆ V \ {~0}.
If b > 1 and |S| < |V |/2b−1 − 1 then V \ S contains a subspace, W , of dimension b.
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Proof. We establish the claim by induction on b. If b = 1 the claim says that if ~0 /∈ S,

and |S| ≤ |V | − 2, then V \ S contains a subspace of dimension 1. This is true, since

V \ S contains at least two vectors, one of which is ~0.

Now suppose b > 1. Let S ⊆ V \ {~0} with |S| < |V |/2b−1 − 1. Then |S| <

|V |/2(b−1)−1 − 1. By induction, V \ S contains a subspace, W ′, of dimension b − 1.

Consider all extensions of W ′ to a b-dimensional subspace of V . If one of these

extensions does not contain an element of S, we are done. Suppose for the sake

of contradiction that every extension contains an element of S. There are a total

of
(|V | − 2b−1

)
/2b−1 = |V |/2b−1 − 1 extensions. Notice that if E1 and E2 are two

distinct b-dimensional extensions of W ′, then E1 ∩ E2 = W ′. That is, (E1 \ V ′) is

disjoint from (E2 \ V ′). Thus |S| is at least as large as the number of extensions.

That is |S| ≥ |V |/2b−1 − 1. This is a contradiction.

Proposition 4.4.2. m(n, k, w) ≤ 2k − 2(k−1)−f2(w).

Proof. Suppose not. Then there are three positive integers n,k, and w for which there

is V < Fn
2 of dimension k so that V has more than 2k− 2(k−1)−f2(w) weight-w vectors.

Let S be the set of non-zero, non-weight-w vectors in V . Let b = f2(w) + 2. We have

|S| < (2k − 1)− (2k − 2(k−1)−f2(w))

= 2(k−1)−f2(w) − 1

=
2k

2f2(w)+1
− 1

=
|V |
2b−1

− 1.

By Lemma 4.4.1, there is a subspace C < V \ S with dimension b, all of whose

nonzero vectors have weight w. Proposition 4.2.1 (the characterization of constant
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weight codes) implies that 2b−1 divides w. That is, 2f2(w)+1 divides w. By the defini-

tion of f2(w), this is a contradiction.

One way to meet the bound in Proposition 4.4.2 would be to construct a space

where the non-weight-w vectors form a subspace of dimension k− 1− f2(w). We use

the following lemma to characterize the parameters for which there is such a space.

Lemma 4.4.3. There is a k-dimensional code V < Fn
2 in which the non-weight-w

vectors are contained in a subspace of dimension l < k if and only if there is an

integer t ≥ l such that w = t2k−l−1 and n ≥ 2w − t + l.

Proof. Let V < Fn
2 be a space for which the non-weight-w vectors are contained in

a subspace of dimension l < k. We wish to show that there exists t ≥ l such that

w = t2k−l−1 and n ≥ 2w− t + l. Let B be an l-dimensional subspace of V containing

the non-weight-w vectors of V (the bad vectors of V ). Let {b1, b2, . . . , bl} be a basis

for B. Given s ∈ Fl
2, denote

Rs = {i ∈ [n] : πi (bj) = πj (s) for all j ∈ [l]} .

For example, if we take l = 3, with b1 = 1111110, b2 = 1111000, and b3 = 1111110,

then we have the following.

R111︷ ︸︸ ︷ R101︷︸︸︷ R000︷︸︸︷

b1 = 1 1 1 1 1 1 0

b2 = 1 1 1 1 0 0 0

b3 = 1 1 1 1 1 1 0

Here R111 = {1, 2, 3, 4}, R101 = {5, 6}, and R000 = {7}. Also, R001 = R010 = R011 =

R100 = R110 = ∅. Notice that for any v ∈ span(B) and any s ∈ Fl
2, πRs (v) is either

all 1’s or all 0’s.
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Let v ∈ Fn
2 , and c1, c2, . . . , cn ∈ N. Define v(c1, c2, . . . , cn) to be the vector formed

by repeating the ith bit of v a total of ci times, for i = 1, 2, . . . , n. That is

v(c1, c2, . . . , cn) = π1 (v) · · · π1 (v)︸ ︷︷ ︸
c1 times

π2 (v) · · · π2 (v)︸ ︷︷ ︸
c2 times

· · · πn (v) · · · πn (v)︸ ︷︷ ︸
cn times

For example

1010(4, 2, 3, 0) = 111100111.

We extend this definition to vector spaces: given V < Fn
2 , define

V (c1, c2, . . . , cn) = {v(c1, c2, . . . , cn) : v ∈ V } .

Recall that Sk is the binary simplex of dimension k. Define S0
k = {s0 : s ∈ Sk}.

Then the space spanned by the vectors b1, b2, b3 in the example above is equal to

S0
3 (|R111| , |R110| , |R101| , |R100| , |R011| , |R010| , |R001| , |R110|). Let any B be given and

define Rs as above. Up to permutation we have

B = S0
l (|R11...11| , |R11...10| , . . . , |R00...01| , |R00...00|). (4.4.2)

Let r ∈ Fl
2. We claim that there is a weight wr ∈ N such that for all v ∈ V \ B,

we have wt(πRr (v)) = wr. Fix v ∈ V \ B. For all r ∈ Fl
2, define w′

r = wt (πRr (v)).

We wish to show that w′
r is independent of our choice of v. If b ∈ B then v + b /∈ B.

Thus wt(v + b) = w. Therefore

w =
∑

r∈Fl
2

πRr (b)=~0

w′
r +

∑

r∈Fl
2

πRr (b)=~1

(|Rr| − w′
t) . (4.4.3)

If we consider each w′
t to be a variable then (4.4.3) is a real equation with 2l variables.
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This equation is true for any b ∈ B. Since |B| = 2l, we have a system of 2l equations,

with 2l unknowns. By (4.4.2), the coefficients in this system of equations are related

to the elements of S0
l . In particular, define σ : Fl

2 → Rl by

πi (σ ( r )) =





1 if πi ( r ) = 0;

−1 if πi ( r ) = 1.

If we denote

~w = (w′
11...11, w

′
11...01, . . . , w

′
00...01, w

′
00...00)

then we have the system of equations





σ(s) · ~w = w −
∑

r∈Fl
2

πRr (s)=~1

|Rr| : s ∈ S0
l





. (4.4.4)

For example, if l = 2, we have the following system of equations.




−1 −1 1 1

−1 1 −1 1

1 −1 −1 1

1 1 1 1







w′
11

w′
10

w′
01

w′
00




=




w −R11 −R10

w −R11 −R01

w −R10 −R01

w




.

Let A be the coefficient matrix for system (4.4.4). We now prove that A is invertible.

Given two vectors u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) ∈ Rn, define u ∗ v to

be the componentwise product. That is,

u ∗ v = (u1v1, u2v2, . . . , unvn).
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Then σ is a homomorphism. That is, given a, b ∈ cs0
l , we have

σ(a + b) = σ(a) ∗ σ(b).

Let u and v be distinct rows of A. We have u = σ(a) and v = σ(b) where a and b are

distinct elements of S0
l . But then

u · v =
2l∑

i=1

πi (u ∗ v)

=
2l∑

i=1

πi (σ(a + b))

= 0.

The last equality is true because a + b ∈ S0
l \ {~0}, every element of which has 2l−1

ones and 2l−1 zeroes. Furthermore, u · u = 2l for all rows u of A. Thus AAT = 2lIn,

so A is invertible. In fact, A is a Hadamard matrix (see [13],[24], or [29] for more

about Hadamard matrices). Thus w′
s is independent of our choice of v, as desired.

Let s ∈ Fl
2 be such that |Rs| 6= 0. We aim to show that 2k−l−1 divides ws. We’ll

first consider the case s 6= ~0. Pick b ∈ B with πRs (b) = ~1, and let v ∈ V \B. Then

πRs (v) 6= ~0, (4.4.5)

since otherwise πRs (b + v) = ~1, contradicting wt(πRs (v)) = ws = wt(πRs (b + v)). In

particular, (4.4.5) tells us that dim ker πRs|V (the dimension of the kernel of πRs as

a function of V ) is equal to dim ker πRs|B (the dimension of the kernel of πRs as a

function of B). But πRs (B) = {~0,~1}. Therefore ker πRs|B contains |B| /2 vectors,

and consists of the vectors of B that are zero on Rs. Thus dim ker πRs|B = l− 1, and

therefore πRs (V ) has dimension k−ker πRs|V = k−l+1. The set of vectors in πRs (V )
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whose weight is not ws is {~0,~1}. Therefore πRs (V ) contains a (k − l)-dimensional

space that does not contain ~1. This is a constant weight code of weight ws. By

Proposition 4.2.1 (the characterization of constant weight codes), 2k−l−1 divides ws,

as desired.

Now consider s = ~0. Either ws is 0 or it is not. If it is 0, then 2k−l−1 divides ws,

and we’re done. If ws 6= 0 then there is no v in V \ B such thatS πRs (v) = ~0. Thus,

ker πRs = B, which has dimension l. Therefore, πRs(V ) is a constant weight code of

dimension k − l. By Proposition 4.2.1, 2k−l−1 divides ws.

We have

w =
∑

s∈Fl
2

ws, (4.4.6)

so w = t2k−l−1 for some t ∈ N, as desired.

Now we argue that t ≥ l. If s ∈ Fl
2 \ {~0} and |Rs| 6= 0 then by equation (4.4.5) we

have ws 6= 0. By equation (4.4.6), we have

t ≥
∣∣∣
{

s ∈ Fl
2 \ {~0} : |Rs| 6= 0

}∣∣∣ .

But for any s ∈ F2
l and b ∈ B, we have that πRs (b) is either ~0 or ~1. Since dim B = l,

at least l of the regions Rs must have |Rs| 6= 0.

Finally, we establish the bound on n. Let s ∈ Fl
2\{~0} with |Rs| 6= 0. Let v ∈ V \B
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and b ∈ B such that πRs (b) = ~1. Since v + b ∈ V \B, we have

|Rs| = |Rs| − ws + ws

= |Rs| − wt(πRs (v)) + ws

= wt(πRs (v + b)) + ws

= ws + ws

= 2ws.

Now, w~0 = t~02
k−l−1 for some t~0 ∈ N. By the characterization of constant weight

codes, |R~0| ≥ 2w~0 − t~0. Thus

n =
∑

s∈Fl
2

|Rs|

=
∑

s6=~0

2ws + |R~0|

≥
∑

s 6=~0

2ws + 2w~0 − t~0

= 2w − t~0

≥ 2w − (t− l).

The last inequality holds since, as we showed above, at least l of the t multiples of

2k−l−1 comprising w come from an Rs with s 6= ~0.

Now we show the other direction. That is, suppose there is t ≥ l such that

w = t2k−l−1 and n ≥ 2w − t + l. We want to show that there is a vector space

V < Fn
2 such that the span of the non-weight-w vectors has dimension ≤ l. Consider

the vector space V whose generator matrix is given below.
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11· · · 1



11· · · 1
. . .

11· · · 1
Mk−l 0 Mk−l 0 · · · Mk−l 0 Mk−lMk−l · · · Mk−l

~0T
k−l

~0T
k−l · · ·~0T

k−l
~0T

k−l

← l blocks → ← t− l blocks → ←n− (2w − t + l)→

The length of this matrix is

l2k−l + (t− l)(2k−l − 1) + n− (2w − t + l) = t2k−l − (t− l) + n− (2w − t + l)

= (2w − t + l) + n− (2w − t + l)

= n.

The dimension of V is l + (k − l) = k. Suppose v ∈ V is the sum of a subset of the

rows of the matrix above, at least one of which is is among the bottom k − l rows.

There is s ∈ Sk \ {~0} such that v is of the form

v = s0s0 . . . s0s0s0s0 . . . s0s0ss . . . ss00 . . . 00.

But wt(s) = 2k−l−1, and wt(s0) = 2k−l−1, so the total weight of v is

wt(v) = (l + (t− l))2k−l−1 = w.

Thus all non-weight-w vectors are in the span of the first l rows, and we have found

the desired vector space.
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Given n, k, w ∈ N, and a k-dimensional code V < Fn
2 with Aw(V ) = m(n, k, w),

Lemma 4.4.2 implies that the rank of the non-weight-w vectors of V is at least

(k − 1) − f2(w). If the rank is (k − 1) − f2(w) then by the previous lemma, w =

t2k−[(k−1)−f2(w)]−1 = t2f2(w), where t ≥ (k − 1) − f2(w), and n ≥ 2w − t + (k − 1) −
f2(w). These restrictions turn out to characterize the integers n, k, w ∈ N for which

m(n, k, w) = 2k − 2(k−1)−f2(w).

Proposition 4.4.4. m(n, k, w) = 2k− 2(k−1)−f2(w) if and only if (k− 1)− f2(w) ≥ 0,

w = t2f2(w), where t ≥ (k − 1)− f2(w), and n ≥ 2w − t + (k − 1)− f2(w).

Proof. Suppose (k − 1) − f2(w) ≥ 0, w = t2f2(w), where t ≥ (k − 1) − f2(w), and

n ≥ 2w − t + (k − 1)− f2(w). Set l = (k − 1)− f2(w). Then t ≥ l, w = t2k−l−1, and

n ≥ 2w − t + l. Thus by Lemma 4.4.3, there is a space V < Fn
2 whose non-weight-w

vectors have rank at most l. Thus m(n, k, w) ≥ 2k−2l = 2k−2(k−1)−f2(w). By Lemma

4.4.2, we have m(n, k, w) = 2k − 2(k−1)−f2(w).

Now we prove the other direction. Suppose m(n, k, w) = 2k − 2(k−1)−f2(w). Since

m(n, k, w) is an integer, we have

(k − 1)− f2(w) ≥ 0.

For some t ∈ N, we have

w = t2f2(w).

Let V < Fn
2 be a k-dimensional code with Aw(V ) = 2k − 2(k−1)−f2(w). Let S be the

set of non-zero non-weight-w vectors in V . Notice that

|S| = 2(k−1)−f2(w) − 1 < 2k−f2(w) − 1 =
2k

2(f2(w)+1)−1
− 1.

Thus by Lemma 4.4.1, there is a subspace C ⊆ V \ S of dimension f2(w) + 1. This is
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a constant weight code whose nonzero vectors have weight w.

Choose U < V to have dim U = k − f2(w)− 1 and C + U = V . Let u ∈ U \ {~0}.
Consider

Cu = C + {~0, u}.

By the characterization of constant weight codes, this code cannot be constant weight,

since it has dimension f2(w) + 2. This means that Cu has at least one nonzero non-

weight-w vector. We now show that it cannot have two nonzero non-weight-w vectors.

Let T ⊆ Fn
2 , and define Bw(T ) to be the number of non-weight-w vectors in T . Let

C + u be the coset of C containing u. By our choice of U we have that for all u,v ∈ U

where u 6= v it is the case that (C + v) ∩ (C + u) = ∅. Thus,

Bw(V ) =
∑
u∈U

Bw(C + u).

Thus, if some coset has more than one non-weight-w vector then

Bw(V ) > |U | = 2(k−1)−f2(w),

a contradiction.

Now, we consider dim πR00...0(C) (U), the dimension of the projection of U onto the

zero-valued coordinates of C. We claim that πR00...0(C) is injective on U . If not, then

there is some u ∈ U \{~0} such that πR00...0(C) (u) = ~0. But consider Cu. It contains one

nonzero non-weight-w vector. Call this vector b. Then Cu = Cb. Recall that supp(b)
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is the set of coordinates where b is nonzero. Given any vector c ∈ C, we have

wt(πsupp(b) (c)) + wt(π[n]\supp(b) (c))

= wt(c)

= w

= wt(b + c)

= wt(b)− wt(πsupp(b) (c)) + wt(π[n]\supp(b) (c)).

Thus

wt(πsupp(b) (c)) =
1

2
wt(b).

In particular, πsupp(b) (C) is a constant weight code of dimension dim C = f2(w) + 1.

By Corollary 4.2.3 we have that, up to permutation of entries,

πsupp(b) (C) = S(f2(w) + 1,
1

2f2(w)+1
wt(b), wt(b)).

In particular, the number of zero coordinates of πsupp(b) (C) is

wt(b)− 1

2f2(w)+1
wt(b)(2f2(w)+1 − 1) =

wt(b)

2f2(w)+1
.

This is a contradiction, since by our choice of u, no element of Cu (including b)

has support where C does not. We have established that πR00...0(C) is injective on

U , and hence πR00...0(C) (U) has dimension equal to dim U = k − f2(w) − 1. Thus
∣∣supp(πR00...0(C) (U))

∣∣ ≥ k − f2(w) − 1. By Proposition 4.2.1 (the characterization of
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constant weight codes), supp(C) = (2f2(w)+1 − 1)w2−f2(w) = 2w − t. Thus

n ≥ |supp(V )|

= |supp(C)|+
∣∣supp(πR00...0(C) (U))

∣∣

≥ 2w − t + k − f2(w)− 1.

Now, suppose T < Fn
2 has dimension l. Then T has some codeword of weight at

least l. To see this, just consider that T is permutation equivalent to a code with a

generator matrix of the form [
Il A

]
,

where A is an l × (n− l) matrix. The sum of the first l rows has weight at least l.

In particular, πR00...0(C) (U) has a vector u′ with wt(u′) ≥ k − f2(w)− 1. Consider

the corresponding vector, u ∈ U . Then C + u contains a non-zero, non-weight-w

vector u.

We established above that the number of zero coordinates of πsupp(u) (C) is

wt(u)2−f2(w)−1.

Therefore, by our choice of u, we have

wt(u)2−f2(w)−1 ≥ wt(u′)

≥ k − f2(w)− 1,

and so

wt(u) ≥ (k − f2(w)− 1)2f2(w)+1.
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Let c ∈ C \ {~0} and recall that above we established

wt(πsupp(u) (c)) =
1

2
wt(u),

and so we have

t2f2(w) = w,

≥ wt(πsupp(u) (c))

=
1

2
wt(u)

≥ (k − f2(w)− 1)2f2(w).

Therefore

t ≥ k − f2(w)− 1,

as desired.

4.5 Killers

4.5.1 Introduction

To answer some questions about m(n, k, w), one can study linear maps that decrease

the weight of a nonzero vector by a fixed constant, c. We call such a map a c-killer.

The problem of determining the structure of c-killers is interesting in its own right.

In this section we give and prove a structure theorem for c-killers. We first prove it

for F2 vector spaces. Using this proof as a model, we then prove it for general finite

fields.
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Our characterization is a generalization of Theorem 4.1.2, the MacWilliams Ex-

tension Theorem. That theorem characterizes weight-preserving linear maps (i.e.

0-killers). Though our proof uses the MacWilliams Extension Theorem, we are able

to use the machinery of our proof to give a new elementary proof of the MacWilliams

Extension Theorem.

We will use the c-killer characterization to classify the small set of parameters for

which w is odd and m(n, k, w) = 2k−1 − 1.

4.5.2 Binary c-killers

Let V, W < Fn
2 and let c ∈ N. We say a linear map φ : V → W is a c-killer if for all

v ∈ V \ {~0},
wt(φ(v)) = wt(v)− c.

We have the following theorem.

Theorem 4.5.1. Let V, W < Fn
2 . If φ : V → W is a c-killer, then φ is a coordinate

permutation followed by a coordinate projection.

Before we prove the theorem, we need to establish some supporting facts. We

use a formula for the size of the symmetric difference of a collection of sets. Let

S1, S2, . . . , Sk be subsets of [n]. The symmetric difference of S1, S2, . . . , Sk is the set

of elements of [n] that occur in an odd number of Si. We denote this

⊕

i∈[k]

Si = {i ∈ [n] : |{j ∈ [k] : i ∈ Sj}| ≡ 1(mod 2)} .

Given I ⊆ [k], denote

S(I) =
⋂
i∈I

Si.
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We have the following fact, which is roughly analogous to the principle of inclusion

and exclusion.

Theorem 4.5.2. ∣∣∣∣∣∣
⊕

i∈[k]

Si

∣∣∣∣∣∣
=

∑

I⊆[k]
I 6=∅

(−2)|I|−1|S(I)|.

Proof. We’ll prove the statement by induction. The case k = 1 is trivial.

Assume k > 1. Let A,B ⊆ [n]. Then |A⊕B| (the size of the symmetric difference

of A and B) is |A|+ |B| − 2|A ∩B|. In particular,

∣∣∣∣∣∣
⊕

i∈[k]

Si

∣∣∣∣∣∣
=

∣∣∣∣∣∣


 ⊕

i∈[k−1]

Si


⊕ Sk

∣∣∣∣∣∣

=

∣∣∣∣∣∣
⊕

i∈[k−1]

Si

∣∣∣∣∣∣
− 2

∣∣∣∣∣∣


 ⊕

i∈[k−1]

Si


 ∩ Sk

∣∣∣∣∣∣
+ |Sk|. (4.5.1)

By induction,

∣∣∣∣∣∣
⊕

i∈[k−1]

Si

∣∣∣∣∣∣
=

∑

I⊆[k−1]
I 6=∅

(−2)|I|−1|S(I)| =
∑

I⊆[k]
I 6=∅
k/∈I

(−2)|I|−1|S(I)|.

Now we consider the second term in (4.5.1). Let i ∈ [n]. Define S ′i = Si ∩ Sk.

Similarly, for I ⊆ [n], S ′(I) = S(I) ∩ Sk = S(I ∪ {k}). Then


 ⊕

i∈[k−1]

Si


 ∩ Sk =

⊕

i∈[k−1]

S ′i.
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Thus, by induction

−2

∣∣∣∣∣∣


 ⊕

i∈[k−1]

Si


 ∩ Sk

∣∣∣∣∣∣
= −2

∑

I⊆[k−1]
I 6=∅

(−2)|I|−1|S ′(I)|

=
∑

I⊆[k−1]
I 6=∅

(−2)|I||S ′(I)|

=
∑

I⊆[k]
|I|≥2
k∈I

(−2)|I|−1|S(I)|.

Putting this all together, expression (4.5.1) becomes

∣∣∣∣∣∣
⊕

i∈[k−1]

Si

∣∣∣∣∣∣
− 2

∣∣∣∣∣∣


 ⊕

i∈[k−1]

Si


 ∩ Sk

∣∣∣∣∣∣
+ |Sk| =

∑

I⊆[k]
I 6=∅
k/∈I

(−2)|I|−1|S(I)|

+
∑

I⊆[k]
|I|≥2
k∈I

(−2)|I|−1|S(I)|

+|Sk|

=
∑

I⊆[k]
I 6=∅

(−2)|I|−1|S(I)|.

Let S ⊂ Fn
2 . We define O(S) to be the size of the set of bit positions where all of

the vectors of S overlap. More precisely,

O(S) = |{i ∈ [n] : πi (v) = 1 ∀ v ∈ S}| .

As the next lemma shows, we can determine the effect of a c-killer on the sizes of

overlaps.
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Lemma 4.5.3. Let V, W < Fn
2 be subspaces. Let φ : V → W be a c-killer. If B is a

set of k linearly independent vectors from V then

O(φ(B)) = O(B)− c/2k−1.

Proof. We proceed by induction on k. The case when k = 1 is clear by the definition

of a c-killer.

Say k > 1. Let B be a set of k linearly independent vectors in Fn
2 . By noting that

the sum of vectors in Fn
2 corresponds to the symmetric difference of the associated

sets, and by applying Lemma 4.5.2, we see that

wt

(∑
v∈B

v

)
=

∑
I⊆B
I 6=∅

(−2)|I|−1O(I) (4.5.2)

and similarly

wt

(∑
v∈B

φ(v)

)
=

∑
I⊆B
I 6=∅

(−2)|I|−1O(φ(I)). (4.5.3)
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By induction,

wt

(∑
v∈B

φ(v)

)
=

∑
I⊆B
I 6=∅

(−2)|I|−1O(φ(I))

= (−2)|B|−1O(φ(B)) +
∑
I⊆B

I 6=∅,B

(−2)|I|−1O(φ(I))

= (−2)|B|−1O(φ(B)) +
∑
I⊆B

I 6=∅,B

(−2)|I|−1(O(I)− c/2|I|−1)

= (−2)|B|−1O(φ(B)) +
∑
I⊆B

I 6=∅,B

[(−2)|I|−1O(I) + (−1)|I|c]

= (−2)|B|−1O(φ(B)) + c[(1− 1)|B| − 1− (−1)|B|]

+
∑
I⊆B

I 6=∅,B

(−2)|I|−1O(I)

= (−2)|B|−1O(φ(B)) + c[−1− (−1)|B|]

+ wt(
∑
v∈B

v)− (−2)|B|−1O(B).

On the other hand,

wt

(∑
v∈B

φ(v)

)
= wt(φ(

∑
v∈B

v)) = wt(
∑
v∈B

v)− c.

Thus we have

wt

(∑
v∈B

v

)
− c = (−2)|B|−1O(φ(B)) + c[−1− (−1)|B|]

+ wt(
∑
v∈B

v)− (−2)|B|−1O(B)
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therefore

−c = −(−2)|B|−1O(φ(B)) + c[−1− (−1)|B|] + (−2)|B|−1O(B)

and so

(−2)|B|−1O(B) = (−2)|B|−1O(φ(B))− c(−1)|B|.

Finally,

O(B)− c/2|B|−1 = O(φ(B)).

Lemma 4.5.4. Suppose c > 1 is an integer. If φ : V → W is a c-killer then there

is a constant weight code C < F2c
2 of dimension dim V , where the weight of a nonzero

vector is c.

Proof. Let B be a basis for V . By Lemma 4.5.3,

O(B)− c/2|B|−1 = O(φ(B)).

In particular, c/2|B|−1 is an integer. The lemma then follows from Proposition 4.2.1

(the characterization of constant weight codes).

We are now ready to prove our characterization of c-killers.

Proof of Theorem 4.5.1. Let V ,W be subspaces of Fn
2 , where dim V = k, and suppose

that φ : V → W is a c-killer. If c = 0, then we are done by Theorem 4.1.2, the

MacWilliams Extension Theorem. Thus we assume that c ≥ 1.
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By Lemma 4.5.4, there is a k-dimensional constant weight code, C < F2c
2 , whose

nonzero weight is c. Since V and C are both k-dimensional vector spaces over F2,

there is a linear bijection

ψ : V → C.

Define W × C < Fn+2c
2 by

W × C = {wv : w ∈ W, v ∈ C} ,

where wv is the vector formed by concatenating w and v. Consider φ×ψ : V → W×C,

defined by

(φ× ψ) (v) = φ(v)ψ(v).

Notice that wt((φ× ψ) (~0)) = 0 = wt(~0). Moreover, given v ∈ V \ {~0}, we have

wt((φ× ψ) (v)) = wt(φ(v)) + wt(ψ(v)) = wt(v)− c + c = wt(v).

Thus φ × ψ preserves weight. By the MacWilliams Extension Theorem, φ × ψ is a

coordinate permutation. But

φ = π[n] ◦ (φ× ψ).

Thus φ is a coordinate permutation followed by a coordinate projection.

4.5.3 General c-killers

We now prove the c-killer classification theorem for spaces over general finite fields.

Let q be a prime power and define Fq to be the field with q elements. Let n, c ∈ N
be positive integers and let V, W < Fn

q . We say a linear map φ : V → W is a c-killer
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if for all v ∈ V \ {~0} we have

wt(φ(v)) = wt(v)− c.

We have the following theorem.

Theorem 4.5.5. Let n, c ∈ N, and let V, W < Fn
q be subspaces. If φ : V → W is a

c-killer, then φ is a monomial equivalence followed by a coordinate projection.

Recall that we introduced the concept of monomial equivalence in Section 4.1.2.

The theorem above says that φ is equivalent to matrix multiplication by a square

matrix, every row and column of which has at most 1 nonzero entry. The proof

technique will be a more careful version of the proof for the binary case; by deter-

mining the (integer) size of a particular object, we will see that given a basis B of V ,

the expression c ((q − 1)/q)|B|−1 is an integer. In particular, c is divisible by q|B|−1.

We will see that this implies that there is a |B|-dimensional constant weight code of

weight c. We then “stitch” this code onto W , making φ a 0-killer. We then apply

the MacWilliams Extension Theorem to determine that this new map is a monomial

equivalence. This implies that the original map has the desired structure.

We will define the analogue for the overlap sizes that appear in Lemma 4.5.2 (the

symmetric difference formula). Given I, a multiset consisting of vectors from Fn
q , we

define the common support of I to be

cs(I) = {x ∈ [n] : πx (v) 6= 0 for all v ∈ I} .

Given J , a multiset consisting of vectors from Fn
q , we define the zero sum set of J to

be

zs(J) =

{
x ∈ [n] : πx

(∑
v∈J

v

)
= 0

}
.
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Further, we define

OJ(I) = |cs(I) ∩ zs(J)|

In words, OJ(I) is the number of coordinates in the common support of I where the

sum of the vectors in J is 0. In particular, if S = {s} then O∅ (S) = wt(s) and

OS (S) = 0.

Given S ⊆ Fn
q , we may express the weight of the sum of the elements in S in terms

of these OJ(I). In order to facilitate the proof we introduce some notation. Given a

multiset S ⊆ Fn
q and a coordinate x ∈ [n], we define nz(x) to be the set of vectors in

S which are nonzero at coordinate x. That is,

nz(x) = {s ∈ S : πx (s) 6= 0} .

Lemma 4.5.6. Let S be a multiset of vectors in Fn
q . Then

wt

(∑
s∈S

s

)
=

∑
I⊆S
I 6=∅

∑
J⊆I

(−1)|I|+|J |+1OJ(I).
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Proof. We have

∑
I⊆S
I 6=∅

∑
J⊆I

(−1)|I|+|J |+1OJ(I) =
∑
I⊆S
I 6=∅

∑
J⊆I

(−1)|I|+|J |+1
∑

x∈[n]
I⊆nz(x)
x∈zs(J)

1

=
∑
I⊆S
I 6=∅

∑
J⊆I

∑

x∈[n]
I⊆nz(x)
x∈zs(J)

(−1)|I|+|J |+1

=
∑

x∈[n]

∑

J⊆nz(x)
x∈zs(J)

∑
I⊆S

J⊆I⊆nz(x)
I 6=∅

(−1)|I|+|J |+1.

If J 6= nz(x), then the number of odd size subsets, I, with J ⊆ I ⊆ nz(x) is equal to

the number of such subsets with even size. Thus, if nz(x) 6= ∅ we have

∑
I⊆S

J⊆I⊆nz(x)
I 6=∅

(−1)|I|+|J |+1 =





1 if J = ∅;
−1 if J = nz(x);

0 otherwise.

If nz(x) = ∅, then
∑
I⊆S

J⊆I⊆nz(x)
I 6=∅

(−1)|I|+|J |+1 = 0.

Thus

∑

x∈[n]

∑

J⊆nz(x)
x∈zs(J)

∑
I⊆S

J⊆I⊆nz(x)
I 6=∅

(−1)|I|+|J |+1 =
∑

x∈[n]
nz(x)6=∅

∑

J∈{∅,nz(x)}
x∈zs(J)

∑
I⊆S

J⊆I⊆nz(x)
I 6=∅

(−1)|I|+|J |+1.

Notice, that the term corresponding to J = nz(x) is only added to this sum if
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x ∈ zs(J). That is, only if x /∈ supp(
∑

s∈S s). Now define

χ(x) =





1, if x ∈ supp
(∑

s∈S s
)
;

0, otherwise.

Then we have

∑
I⊆S
I 6=∅

∑
J⊆I

(−1)|I|+|J |+1OJ(I) =
∑

x∈[n]
nz(x)6=∅

(1− (1− χ(x)))

=
∑

x∈[n]
nz(x)6=∅

χ(x)

=
∑

x∈[n]

χ(x)

= wt

(∑
s∈S

s

)
.

We may now prove the following.

Lemma 4.5.7. Let c, n, q ∈ N, where q is a prime power, and let V, W < Fn
q be

subspaces. If S ⊆ V is linearly independent and φ : V → W is a c-killer then

∑
J⊆S

(−1)|J |OJ(S) =
∑
J⊆S

(−1)|J |Oφ(J)(φ(S)) + c (4.5.4)

Proof. We proceed by induction on |S|. We first consider |S| = 1. Suppose S = {s},
where s ∈ V . We want to verify that O∅(S)−O{s}(S) = O∅(φ(S))−O{φ(s)}(φ(S))+c.

Notice that O∅(S) = wt(s), O∅(φ(S)) = wt(φ(s)), and Os(S) = Oφ(s)(φ(S)) = 0.

Thus, we are trying to show that wt(s) = wt(φ(s))+ c, which is true by the definition
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of c-killer.

Now suppose |S| > 1 and assume that the lemma is true for all smaller linearly

independent sets. Since S is linearly independent, we have
∑

s∈S s 6= 0 and so

wt

(∑
s∈S

s

)
= c + wt

(
φ

(∑
s∈S

s

))

= c + wt

(∑
s∈S

φ (s)

)

= c +
∑
I⊆S
I 6=∅

∑
J⊆I

(−1)|I|+|J |+1Oφ(J)(φ(I))

= c +
∑
J⊆S

(−1)|S|+|J |+1Oφ(J)(φ(S))

+
∑
I⊆S
I 6=∅
I 6=S

∑
J⊆I

(−1)|I|+|J |+1Oφ(J)(φ(I))

= c +
∑
J⊆S

(−1)|S|+|J |+1Oφ(J)(φ(S))

+
∑
I⊆S
I 6=∅
I 6=S

(−1)|I|+1
∑
J⊆I

(−1)|J |Oφ(J)(φ(I)).
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By induction, this is

c +
∑
J⊆S

(−1)|S|+|J |+1Oφ(J)(φ(S))

+
∑
I⊆S
I 6=∅
I 6=S

(−1)|I|+1

[
−c +

∑
J⊆I

(−1)|J |OJ(I)

]

= c +
∑
J⊆S

(−1)|S|+|J |+1Oφ(J)(φ(S))

+
∑
I⊆S
I 6=∅
I 6=S

(−1)|I|c +
∑
I⊆S
I 6=∅
I 6=S

∑
J⊆I

(−1)|J |+|I|+1OJ(I)

= c +
∑
J⊆S

(−1)|S|+|J |+1Oφ(J)(φ(S))

+ (−1)|S|+1c− c + wt

(∑
s∈S

s

)
−

∑
J⊆S

(−1)|S|+|J |+1OJ(S).

Therefore, by adding
∑

J⊆S(−1)|S|+|J |+1OJ(S)− wt
(∑

s∈S s
)

to both sides and can-

celing the c’s, we get

∑
J⊆S

(−1)|S|+|J |+1OJ(S) =
∑
J⊆S

(−1)|S|+|J |+1Oφ(J)(φ(S)) + (−1)|S|+1c.

Dividing by (−1)|S|+1 we have

∑
J⊆S

(−1)|J |OJ(S) =
∑
J⊆S

(−1)|J |Oφ(J)(φ(S)) + c,

as desired.

Notice that we may multiply the vectors in S by nonzero scalars to arrive at
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a different independent set in V . We may then apply Lemma 4.5.7 to this new

independent set. In this way, the lemma gives us (q− 1)|S| equations. As we will see,

adding these equations together allows us to express O∅(S) in terms of O∅(φ(S)). In

order to facilitate the discussion we introduce some notation. Let S ⊆ Fn
q , and let

α = (αv)v∈S ∈
(
F×q

)S
(recall that F×q = Fq − {0}, and

(
F×q

)S
is the set of functions

from S to F×q ). Given J ⊆ S, we define

αJ = {αvv : v ∈ J} ,

and

α · J =
∑
v∈J

αvv.

We are now ready to prove the following lemma.

Lemma 4.5.8. With the setup in Lemma 4.5.7, we have

O∅(S) = O∅(φ(S)) + c

(
q − 1

q

)|S|−1

.

Proof. Let j = {v1, . . . , vj} ⊆ S. For a fixed α ∈ (
F×q

)j\{vj}, we have

∑

αvj∈F×q

O(α,αvj )J(S) =
∑

αvj∈F×q

∑

x∈cs(S)

πx((α,αvj )·J)=0

1

=
∑

x∈cs(S)

∑

αvj∈F×q
πx((α,αvj )·J)=0

1.

Notice that for x in the common support of S, πx (vj) 6= 0 and hence if πx (α · (J \ {vj})) 6=
0 then there is exactly one nonzero solution to

πx

(
(α, αvj

) · J)
= 0.
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Otherwise there is no nonzero solution. Thus

∑

αj∈F×q

O(α,αj)J(S) = |{x ∈ cs(S) : πx (α · (J \ {vj})) 6= 0}|

= O∅(S)−Oα(J\{vj})(S).

Hence

∑

β∈(F×q )
J

OβJ(S) =
∑

α∈(F×q )
J\{vj}

∑

αvj∈F×q

O(α,αvj )J(S)

=
∑

α∈(F×q )
J\{vj}

[
O∅(S)−Oα(J\{vj})(S)

]

= (q − 1)j−1O∅(S)−
∑

α∈(F×q )J\{vj}

Oα(J\{vj})(S).

Notice that the rightmost sum is in exactly the same form as the leftmost sum. Thus,

by induction, we have

∑

α∈(F×q )
j

OαJ(S) =

|J |∑
i=2

(−1)|J |+i(q − 1)i−1O∅(S)

=
(q − 1)

q

[
(q − 1)|J |−1 + (−1)|J |

]
O∅(S).
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Summing the left hand side of equation 4.5.4 over all α ∈ (F×q )
S
, we have

∑

α∈(F×q )
S

∑
J⊆S

(−1)|J |OαJ(S)

=
∑
J⊆S

(−1)|J |
∑

α∈(F×q )
S

OαJ(S)

=
∑
J⊆S

(−1)|J |
∑

β∈(F×q )
S\J

∑

γ∈(F×q )
J

OγJ(S)

=
∑
J⊆S

(−1)|J |(q − 1)|S|−|J |
(q − 1)

q

[
(q − 1)|J |−1 + (−1)|J |

]
O∅(S)

=
q − 1

q
O∅(S)

[∑
J⊆S

(−1)|J |(q − 1)|S|−1 +
∑
J⊆S

(q − 1)|S|−|J |
]

=
q − 1

q
O∅(S)

[
0 + q|S|

]

= (q − 1)q|S|−1O∅(S).

Thus, summing equation (4.5.4) over all α ∈ (F×q )|S|, we get

(q − 1)q|S|−1O∅(S) = (q − 1)q|S|−1O∅(φ(S)) + (q − 1)|S|c

and hence

O∅(S) = O∅(φ(S)) + c

(
q − 1

q

)|S|−1

.

The lemma above establishes that if φ : V → W is a c-killer and S is a basis for V

then c is divisible by q|S|−1. The following result of Bonisoli [12] implies the existence

of an |S|-dimensional constant weight code of weight c.

Theorem 4.5.9. There exists a k-dimensional subspace C < Fn
q , all of whose nonzero
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vectors have weight w, if and only if there exists t ∈ N such that

w = tqk−1

and

n ≥ t
qk − 1

q − 1
.

We may now prove the main theorem of this section, which characterizes c-killers.

Proof of Theorem 4.5.5. Let c, n, q ∈ N, where q is a prime power. Let V, W < Fn
q

and suppose that φ : V → W is a c-killer. We want to establish that φ is a monomial

equivalence followed by a coordinate projection. By Lemma 4.5.8 and Theorem 4.5.9,

there is a constant weight code, C < F2c
q , with nonzero weight c and with dim C =

dim V . We may form the code

W × C = {uc : u ∈ W, c ∈ C} .

Since dim C = dim V , there is a linear bijection ψ : V → C. We define

φ× ψ : V → W × C

by v 7→ φ(v)ψ(v).

We show that φ× ψ preserves weight. Any linear map preserves the weight of ~0,

so consider v ∈ V \ {~0}. We have

wt((φ× ψ)(v)) = wt(φ(v)ψ(v)) = wt(φ(v)) + wt(ψ(v)) = wt(v)− c + c = wt(v).

By the MacWilliams Extension Theorem, φ × ψ is a monomial equivalence. Now

define the coordinate projection
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π : W × C → W

by uc 7→ u.

Clearly φ = π ◦ (φ× ψ), so the map has the desired form.

4.5.4 Proof of the MacWilliams Extension Theorem

Notice that we do not use the MacWilliams Extension Theorem until the proof of

Theorem 4.5.5. In particular, we do not use it to prove Lemma 4.5.8. In that Lemma,

the assumption that the elements in S are linearly independent is only used to ensure

that
∑

s∈S s 6= ~0 so that

wt

(
φ

(∑
s∈S

s

))
= wt

(∑
s∈S

s

)
− c.

For c = 0, this fact is true even if
∑

s∈S s = ~0. Therefore we have the following

lemma.

Lemma 4.5.10. Suppose V,W < Fn
q and φ : V → W is a weight preserving linear

map. Given S ⊆ V , we have

O∅(S) = O∅(φ(S)).

As it turns out, this lemma is enough to prove the MacWilliams Extension The-

orem without much trouble. First we need some notation. Let k ∈ N and let q be a

prime power. Given α ∈ Fk
q , define

[α] =
{
γα : γ ∈ F×q

}
.
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We also define

PFk
q =

{
[α] : α ∈ Fk

q

}
.

Let n ∈ N and suppose V < Fn
q is vector space with an ordered spanning set

G = (vi)
k
i=1.

Thinking of vi as a row vector, let

M = MG =




v1

v2

...

vk




,

a k × n matrix. Given i ∈ [n], define ci to be the ith column of M . Given [α] ∈ PFk
q ,

we define

R[α],G = {i ∈ [n] : [ci] = [α]} .

We want to show that
∣∣R[α],G

∣∣ can be determined if you know the size of O∅(S) for all

S ⊆ V . From this the MacWilliams Extension Theorem will easily follow. We make

this idea precise below. Define

N2(F
k
q)

=
{

f : 2(Fk
q) → N

}
.

That is, N2(F
k
q)

is the collection of functions from the powerset of Fk
q to N. Finally,

define fG ∈ N2(F
k
q)

by

fG(S) = O∅(SM) for all S ⊆ Fk
q ,
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where

SM = {αM : α ∈ S} .

Notice that for α ∈ Fk
q we have, by the definition of M ,

αM = α1v1 + α2v2 + · · ·+ αkvk.

We have the following lemma.

Lemma 4.5.11. Given n, k ∈ N, and [α] ∈ PFk
q , there is a function

T[α],n,k : N2(F
k
q) → N

such that, given an ordered spanning set G = (vi)
k
i=1 for some V < Fn

q

(with dim V ≤ k), we have

T[α],n,k(fG) =
∣∣R[α],G

∣∣ .

In other words, if we known O∅(S) for all S ⊆ Fk
q , then we can determine

∣∣R[α],G
∣∣

for all [α] ∈ PFk
q .

Proof. We proceed by induction on n. If n = 1, then M has only one column, and

hence there is exactly one [α] ∈ PFk
q with

∣∣R[α],G
∣∣ = 1. If we can determine [α] from

fG, then given [β] ∈ PFk
q , we can set

T[β],n,k(fG) =





1 if [β] = [α];

0 otherwise.

As it turns out, we can determine [α] from fG. For each i ∈ [k], we have that

vi = ~0 = 0 if and only if O∅({vi}) = 0. That is, vi = 0 if and only if fG({ei}) = 0,

where ei is the vector with a one in the ith entry and zeroes everywhere else. Thus
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we can determine the first coordinate i ∈ [k] where πi (α) 6= 0. We are now ready to

determine all of [α]. If there is no nonzero coordinate, then [α] = 0. Otherwise, for

all j 6= i, there is exactly one γj ∈ Fq such that

πj (α) = γjπi (α) .

In other words, there is one γj ∈ Fq such that fG({ei, ej − γjei}) = 0. Thus, we can

determine γj from fG. If we define γi = 1, then

[α] = [(γ1, γ2, . . . , γk)].

We now handle the case n > 1. First suppose that for all v ∈ V we have wt(v) ∈
{0, n}. This fact is encoded in fG; for all α ∈ F k

q \ {~0}, we have fG(α) ∈ {0, n}.
We claim that dim V ≤ 1. This is true because an l-dimensional vector space is

monomially equivalent to a space with a generator matrix of the form

[
Il A

]
,

where Il is the l × l identity matrix. In particular, if v is the top row of this matrix,

then 1 ≤ wt(v) ≤ n − (l − 1). If l > 1 then wt(v) /∈ {0, n}. Hence dim V ≤ 1.

Therefore, every nonzero vector of V is a constant multiple of any other nonzero

vector of V . Thus, there exists a vector α ∈ Fk
q such that

[ci] = [α] for all i ∈ [n].

We may use essentially the same reasoning given for the case n = 1 to reconstruct
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[α] from fG, so we are able to define

T[β],n,k(fG) =





n if [β] = [α];

0 otherwise.

Thus, we may assume that n > 1 and that there exists a nonzero vector v ∈ V

with

1 ≤ wt(v) < n.

Of course, there exists a nonzero α1 ∈ Fk
q with v = α1M . Extend {α1} to a basis,

B = {α1, α2, . . . , αk} ,

of Fk
q . Now set

G ′ = (v′i = αiMG)
k
i=1 .

Notice that G ′ is an ordered spanning set for V . Moreover, fG′ can be determined

from fG. To see this, let C be the k × k matrix

C =




α1

α2

...

αk




.
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Given S ⊆ Fk
q , we have

fG′(S) = O∅(SMG′)

= O∅(S(CMG))

= O∅((SC)MG)

= fG(SC).

Now set A = supp(v) and define

G ′A = (πA (v′i))
k
i=1 ,

an ordered spanning set for πA (V ). Notice that given α ∈ Fk
q with π1 (α) 6= 0, we

have
∣∣R[α],G′A

∣∣ =
∣∣R[α],G′

∣∣ .

Furthermore, fG′A is determined by fG′ : given S ⊆ Fk
q , we have

fG′A(S) = O∅(SMG′A)

= O∅(v ∪ SMG′)

= O∅((S ∪ {e1})MG′)

= fG′(S ∪ {e1}). (4.5.5)

By our choice of v, we have that |A| < n. By induction we have that, for all α ∈ Fk
q ,

there exists

T[α],|A|,k : N2
Fk

q → N
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such that for any sequence H of k vectors from F|S|q , we have

T[α],|A|,k(fH) =
∣∣R[α],H

∣∣ .

Let α ∈ Fk
q with π1 (α) 6= 0. From (4.5.5), the following is well-defined:

T[α],n,k(fG′) = T[α],|A|,k(fG′A).

Moreover, we have

T[α],n,k(fG′) = T[α],|A|,k(fG′A)

=
∣∣R[α],G′A

∣∣

=
∣∣R[α],G′

∣∣ .

By setting U = [n] \ supp(v) and considering πU (V ), we may use reasoning very

similar to that above to determine that for α ∈ Fk
q with π1 (α) = 0, we have that

∣∣R[α],G′
∣∣ is a function of fG′ . Thus for all α ∈ Fk

q , the following is well-defined:

T[α],n,k(fG′) =
∣∣R[α],G′

∣∣ .

All that is left to show is that we can use this information to determine
∣∣R[α],G

∣∣

for all α ∈ Fk
q . We claim that

R[α],G = R[Cα],G′ .

To see this, first recall that MG′ = CMG. Now let i ∈ R[α],G. We have that ci (the

ith column of MG) satisfies [ci] = [α]. But the ith column of MG′ is Cci. We have
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[Cci] = [C[α]]. Thus, i ∈ RC[α],G′ . Thus,

∣∣R[α],G
∣∣ ≤

∣∣R[Cα],G′
∣∣ .

But since C is invertible, MG = C−1MG′ . By symmetry,

∣∣R[Cα],G′
∣∣ ≤

∣∣R[α],G
∣∣ .

We are now ready to prove the MacWilliams Extension Theorem.

Proof of the MacWilliams Extension Theorem. Let n, q ∈ N, where q is a prime power.

Suppose that V,W < Fn
q are k-dimensional subspaces and that φ : V → W is a

weight-preserving linear map. Suppose V has dimension k. Let

B = (vi)
k
i=1

be an ordered basis for V . Define

C = (φ(vi))
k
i=1 .

Then C is a basis for W . By Lemma 4.5.10, we have that for all S ⊆ V ,

O∅(S) = O∅(φ(S)).
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Thus, given T ⊆ Fk
q , we have that

fB(T ) = O∅(TMB)

= O∅(TMC)

= fC(T ),

and so

fB = fC.

Thus we may apply Lemma 4.5.11 to establish that for all α ∈ Fk
q ,

∣∣R[α],B
∣∣ = T[α],n,k(fB)

= T[α],n,k(fC)

=
∣∣R[α],C

∣∣ .

But then there is a permutation σ : [n] → [n] such that for every j ∈ [n], we have

[cj] = [c′σ(j)],

where cj is the jth column of MB, and c′σ(j) is the σ(j)th column of MC. But this

means there is vector of nonzero coefficients (γ1, γ1, . . . , γn) ∈ Fn
q such that for all

j ∈ [n],

γjcj = c′σ(j).

Now let vi ∈ B. We have that for all j ∈ [n],

πj (φ(vi)) = γjπσ−1(j) (vi) .
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Thus φ is a monomial equivalence.

4.5.5 An Application of c-Killers

We will now apply the characterization of binary c-killers to determine the parameters

for which w is odd and m(n, k, w) = 2k−1 − 1. We’ve already determined when

m(n, k, w) = 2k−1, so this is a next natural question.

Proposition 4.5.12. Let k, n, w ∈ N where w is odd, k ≥ 1, and n ≥ 1. There is

a k-dimensional subspace V < Fn
2 with Aw(V ) = 2k−1 − 1 if and only if one of the

following properties holds.

w = 1 and either a) k = 1 and n ≥ 2 or b) k = 2, 3 and n ≥ 3 (4.5.6)

w ≥ 3 and k = 1 (4.5.7)

w ≥ 3 and 2 ≤ k ≤ blog2 wc+ 2 and n ≥ w + 2k−2 − 1 (4.5.8)

w ≥ 3 and 2 ≤ k ≤ blog2 (w + 1)c+ 2 and n ≥ w + 2k−2. (4.5.9)

Proof. Suppose w is odd and there is a k-dimensional subspace V < Fn
2 with 2k−1− 1

weight w vectors. When k ≥ 2, we define v to be the single odd weight vector of V

that does not have weight w. We further define l = wt(v). Without loss of generality,

v =

R1︷ ︸︸ ︷
1 . . . 1︸ ︷︷ ︸

l

R0︷ ︸︸ ︷
0 . . . 0 ∈ V.

Let E be the subspace of even weight vectors from V.

Case 1: w = 1.

In this case V has 2k−1 − 1 weight one vectors in V . But the dimension of V is

at least as big as the number of weight one vectors in V . Thus 2k−1 − 1 ≤ k. This

equation implies that k ≤ 3.
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• If k = 1 then V has 21−1 − 1 = 0 weight one vectors. Thus the nonzero vector

in V has weight at least 2, and hence n ≥ 2, so (4.5.6) is satisfied.

• If k = 2 then V has 22−1 − 1 = 1 weight one vector. Since k = 2, n ≥ 2. If

n = 2, then V = F2
2, which has 2 weight one vectors. Thus n ≥ 3, so (4.5.6) is

satisfied.

• If k = 3 then certainly n ≥ 3, so (4.5.6) is satisified.

Case 2: w ≥ 3 and k = 1.

In this case (4.5.7) is satisfied.

Case 3: w ≥ 3, k ≥ 2, and w > l.

Let e ∈ E \ {~0} and notice that

w = wt(e + v)

= wt(πR1 (e + v)) + wt(πR0 (e + v))

= l − wt(πR1 (e)) + wt(πR0 (e)),

and thus

wt(πR1 (e)) = wt(πR0 (e))− (w − l). (4.5.10)

Furthermore, πR0 is injective on E ; if e ∈ E \ {~0}, has πR0 (e) = ~0, then wt(πR1 (e)) =

wt(πR0 (e)) − (w − l) = −(w − l) < 0, which is absurd. Thus we may define

φ : πR0 (E) → πR1 (E) by

φ = πR1 ◦ πR0

−1.

(φ simply assigns the right hand side of e ∈ E to its left hand side). By equation

(4.5.10), φ is a (w − l)-killer. By Theorem 4.5.1 (the characterization of c-killers),
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there is a set of coordinates S ⊆ R0 such that πS (E) is a constant weight code with

nonzero weight w− l and dimension equal to dim πR0 (E) = dim E = k − 1. Thus, by

Proposition 4.2.1,

k − 1 ≤ f2(w − l) + 1

≤ blog2(w − l)c+ 1

≤ blog2(w)c+ 1.

Thus

k ≤ blog2(w)c+ 2.

Also by Proposition 4.2.1,

|R0| ≥ 2(w − l)− (w − l)/2k−2. (4.5.11)

Since 2k−2 divides (w − l), we have

2k−2 ≤ w − 1.

Thus

l ≤ w − 2k−2. (4.5.12)
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Combining (4.5.11) and (4.5.12), we have

n = |R1|+ |R0|

= l + |R0|

≥ l + 2(w − l)− (w − l)/2k−2

= 2w − w/2k−2 − l(1− 1/2k−2)

≥ 2w − w/2k−2 − (w − 2k−2)(1− 1/2k−2)

= w + 2k−2 − 1.

Thus (4.5.8) is satisfied.

Case 4: w ≥ 3, k ≥ 2, and w < l.

By applying arguments similar to those above, πR1 is injective on E , and we may

construct φ : πR1 (E) → πR0 (E) which assigns the left hand side of e ∈ E to its right

hand side. Again by using similar arguments to those above, φ is an (l − w)-killer.

Thus there is some set of coordinates S ⊆ R1 such that πS (E) is a (k−1)-dimensional

constant weight code with nonzero weight (l − w). This implies that 2k−2 divides

(l − w). Thus

l − w ≥ 2k−2,

and so

l ≥ w + 2k−2.

Notice that

n = |R1|+ |R0| ≥ |R1| = l ≥ w + 2k−2.
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Furthermore,

l = |R1|

≥ 2(l − w)− (l − w)/2k−2

and therefore

0 ≥ −l + 2l − 2w − l/2k−2 + w/2k−2

= l − l/2k−2 − 2w + w/2k−2

= l(1− 1/2k−2)− 2w + w/2k−2

≥ (w + 2k−2)(1− 1/2k−2)− 2w + w/2k−2

= −w + 2k−2 − 1

thus

w + 1 ≥ 2k−2

and so

blog2(w + 1)c+ 2 ≥ k.

Thus (4.5.9) is satisfied.

Now we handle the other direction. Suppose that one of the clauses (4.5.6) -

(4.5.9) is satisfied. We need to show that there is a k-dimensional subspace V < Fn
2

with 2k−1 − 1 weight w vectors.

Case 1: w = 1 and either a) k = 1 and n ≥ 2 or b) k = 2, 3 and n ≥ 3.
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• In the case k = 1 and n ≥ 2, we let V < Fn
2 be {~0, v}, where v is any vector

with wt(v) = 2. This has 0 = 21−1 − 1 weight one vectors.

• In the case k = 2 and n ≥ 3 we take V to be the space

V = {0000 . . . 0000, 1000 . . . 0000, 1110 . . . 0000, 0110 . . . 0000} .

This has 1 = 22−1 − 1 weight one vector.

• In the case k = 3 and n ≥ 3, we let

V =
{
v000 . . . 000 : v ∈ F3

2

}

This has 3 = 23−1 − 1 weight one vectors.

Case 2: w ≥ 3 and k = 1 and n ≥ 1.

In this case, we are looking for a subspace V < Fn
2 with no vectors of weight w.

We are assuming that w ≥ 3, so we may take any subspace whose single nonzero

vector has weight 1.

Case 3: w ≥ 3 and 2 ≤ k ≤ blog2 wc+ 2 and n ≥ w + 2k−2 − 1.

If k = 2 then set

V =
{

111 . . . 111︸ ︷︷ ︸
w

000 . . . 000︸ ︷︷ ︸
n−w

,

100 . . . 000︸ ︷︷ ︸
w

000 . . . 000︸ ︷︷ ︸
n−w

,

011 . . . 111︸ ︷︷ ︸
w

000 . . . 000︸ ︷︷ ︸
n−w

,

000 . . . 000︸ ︷︷ ︸
w

000 . . . 000︸ ︷︷ ︸
n−w

}
.
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If k ≥ 3 then set

l = w − 2k−2,

and define

v = 111 . . . 111︸ ︷︷ ︸
l

000 . . . 000︸ ︷︷ ︸
n−l

.

This is possible, since l ≤ w − 1 < w ≤ n. Recall that Sk−1 < F2k−1−1
2 is a constant

weight code of dimension k − 1 and nonzero weight 2k−2. Now set

E =



000 . . . 000︸ ︷︷ ︸

l

s 000 . . . 000︸ ︷︷ ︸
n−l−2k−1+1

: s ∈ Sk−1



 .

Notice that this is possible because n− l−2k−1 +1 = n− (w +2k−2−1) ≥ 0. Finally,

let

V = E + {~0, v}.

Notice that the set of odd weight vectors in V is

O =



111 . . . 111︸ ︷︷ ︸

l

s 000 . . . 000︸ ︷︷ ︸
n−l−2k−1+1

: s ∈ Sk−1



 .

When s = ~0, we have that the corresponding vector in O has weight l, which is not

w. If s ∈ Sk−1 \ {~0}, then the weight of the corresponding vector in O is l + 2k−2 =

w − 2k−2 + 2k−2 = w.

Case 4: w ≥ 3 and 2 ≤ k ≤ blog2 (w + 1)c+ 2 and n ≥ w + 2k−2.

First notice that if k = 2 then the conditions for Case 3 are met, and we have

already handled Case 3. Thus we can assume k ≥ 3. Define

l = w + 2k−2.
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Notice that k ≤ blog2 (w + 1)c+ 2 implies

w ≥ 2k−2 − 1

and hence

l = w + 2k−2 ≥ 2k−2 − 1 + 2k−2 = 2k−1 − 1.

In particular, there exists S(k − 1, 1, l) < Fl
2, a constant weight code of dimension

k − 1, and nonzero weight 2k−2. Set

V =



s 0 . . . 0︸ ︷︷ ︸

n−l

: s ∈ S(k − 1, 1, l)



 ∪



s 0 . . . 0︸ ︷︷ ︸

n−l

: s ∈ S(k − 1, 1, l)



 .

Notice that V is a k-dimensional subspace of Fn
2 . Let s ∈ S(k− 1, 1, l). If s = ~0 then

wt(s 0 . . . 0︸ ︷︷ ︸
n−l

) = l 6= w.

On the other hand, if s 6= ~0, we have

wt(s 0 . . . 0︸ ︷︷ ︸
n−l

) = l − wt(s) = w + 2k−2 − 2k−2 = w.

Thus exactly one of the odd weight vectors does not have weight w, and we are

done.

As it turns out, the bounds on n and k in Proposition 4.5.12 are very restrictive.

In particular, it is usually the case that if these bounds are met then we also have

k ≤ w + 1 and n ≥ w + k − 1 and so by Proposition 4.3.1, we have m(n, k, w) =

2k−1. The following proposition establishes the small set of parameters for which

m(n, k, w) = 2k−1 − 1.
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Proposition 4.5.13. Let n, k, w ∈ N where 1 ≤ k, w ≤ n and w is odd. If

m(n, k, w) = 2k−1 − 1, then k ≤ 3. Furthermore, we have

• m(n, 1, w) = 21−1 − 1 = 0 is impossible.

• m(n, 2, w) = 22−1 − 1 = 1 if and only if n = w.

• m(n, 3, w) = 23−1 − 1 = 3 if and only if w = 1 or n = w + 1.

Proof. Suppose that m(n, k, w) = 2k−1 − 1. First we show that k ≤ 3. Suppose to

the contrary that k > 3. Since one of the clauses (4.5.6)-(4.5.9) must be satisfied and

clauses (4.5.6) and (4.5.7) specify k ≤ 3, it must be that (4.5.8) or (4.5.9) is satisfied.

We have m(n, k, w) 6= 2k−1. Thus by Proposition 4.3.1, either k > w + 1 or

n < w + k − 1. First consider k > w + 1. Since one of (4.5.8) or (4.5.9) is true, it

must be the case that

k ≤ max {blog2 wc+ 2, blog2 (w + 1)c+ 2} = blog2 (w + 1)c+ 2,

and hence

w + 1 < k ≤ blog2 (w + 1)c+ 2.

As it turns out, w = 2 is the largest w for which w + 1 < blog2 (w + 1)c+ 2. Thus

k ≤ blog2 (2 + 1)c+ 2 = 3.

On the other hand, suppose n < w + k− 1. Since one of (4.5.8) or (4.5.9) is true,

we have

n ≥ min
{
w + 2k−2 − 1, w + 2k−2

}
= w + 2k−2 − 1.

Thus,

w + 2k−2 − 1 ≤ n < w + k − 1.
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Therefore

2k−2 < k.

As it turns out, the largest k for which this is true is k = 3.

We have established that k ≤ 3. If m(n, 1, w) = 0 then n is not large enough to

accommodate a single weight w vector. Thus n < w. This violates the assumption

that w ≤ n, so it is impossible to have m(n, 1, w) = 0.

If m(n, 2, w) = 1, then n is large enough to accommodate a weight w vector, but

not two of them. Thus n = w. If n = w, then there is exactly one weight w vector in

Fn
2 . Any two dimensional subspace containing that vector establishes m(n, 2, w) = 1.

If m(n, 3, w) = 3 then by Proposition 4.3.1, either k > w + 1 or n < w + k − 1.

In the first case we have 3 > w + 1, and hence w < 2. Since w is odd, this implies

w = 1. If n < w + k − 1, then n < w + 2, so n ≤ w + 1. But m(n, 3, w) > 1 implies

n > w. Thus n = w + 1.

On the other hand, if w = 1, then we may take

V =
{
v000 . . . 000 : v ∈ F3

2

}
.

If n = w + 1, we may take the code, V , generated by the following 3× n matrix.




1 1 1 · · · 1 1 1 0

1 1 1 · · · 1 1 0 1

1 1 1 · · · 1 0 1 1




The odd weight vectors in V are the three rows of this matrix, which have weight w,

and the sum of these rows, which has weight w − 2.
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4.6 Conjectures

4.6.1 The Behavior of m(n, k, w) as k →∞

From empirical evidence, we have the following conjecture.

Conjecture 4.6.1. For n ≥ k and k ≥ 2w, we have

m(n, k, w) =





(
k+1
w

)
if w is even;

(
k
w

)
if w is odd.

We will establish this in the case n = k + 1. We will also establish it for w odd

and n = k + 2. First we need the following lemma.

Lemma 4.6.2. If 0 < w < n and V < Fn
2 is the space generated by the weight w

vectors of Fn
2 then

dim V =





n− 1 w even;

n w odd.

Proof. The collection of even-weight vectors is a subspace of Fn
2 . Call this set E . We

have that dim E = n− 1. We claim that E < V . To prove this, we establish that all

weight 2 vectors are in V . Clearly, the collection of weight 2 vectors spans E .

Let p1 and p2 be two bit positions. We demonstrate that the vector with ones

exactly at p1 and p2 is in V . WLOG, p1 and p2 are the first two bit positions. Then

v = 10 1 . . . 1︸ ︷︷ ︸
w−1

0 . . . 0︸ ︷︷ ︸
n−w−1

and

u = 01 1 . . . 1︸ ︷︷ ︸
w−1

0 . . . 0︸ ︷︷ ︸
n−w−1
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are weight w vectors, and

u + v = 110 . . . 0.

The claim is proved.

Now, if w is even then clearly V < E . By the claim, we have V = E . Therefore

dim V = dim E = n− 1, when w is even.

If w is odd then V contains odd weight vectors, and so V 6= E . By the claim, V 	 E .

Therefore

dim V = dimFn
2 = n, when w is odd.

Recall that, given V < Fn
2 , we defined Aw(V ) to be the number of weight w vectors

in V . If V is k-dimensional and m(n, k, w) = Aw(V ) then the following lemma tells

us that (usually) V has a basis of weight w vectors.

Lemma 4.6.3. Let n, k, w ∈ N, with w, k ≤ n and let V < Fn
2 be a k-dimensional

subspace with Aw(V ) = m(n, k, w). There is a basis B for V consisting of Hamming

weight w vectors if and only if w is odd or k < n.

Proof. We first prove the contrapositive of the forward direction. Suppose w is even

and n = k. Then V = Fn
2 , which has dimension n. By Lemma 4.6.2, the space

spanned by the weight w vectors of Fn
2 has dimension n− 1. Therefore, at least one

vector in a basis for V has weight not equal to w.

Suppose that w is odd or n > k. We want to show that there exists a basis B ⊂ V

consisting of weight w vectors. Suppose not. Let V ′ be the span of the weight w

vectors of V . It has dimension dim V ′ < k ≤ n. If w is odd then by Lemma 4.6.2,

there is v ∈ Fn
2 \V ′ with wt(v) = w. If n > k, then dim V < k ≤ n−1, and again there
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is v ∈ Fn
2 \V ′ with wt(v) = w. But V ′ contains all of the weight w vectors of V , so we

have that V ′ + {~0, v} has more weight w vectors than V . But dim(V ′ + {~0, v}) ≤ k.

Thus we may extend V ′ + {~0, v} to a dimension k subspace of Fn
2 with more weight

w vectors than V . This contradicts our choice of V .

We are now ready to show that Conjecture 4.6.1 is true for n = k + 1.

Lemma 4.6.4. If k, w ∈ N and k ≥ 2w then

m(k + 1, k, w) =





(
k+1
w

)
w even

(
k
w

)
w odd

Proof. Suppose w is even. By Lemma 4.6.2, the span of all of the weight-w vectors

in Fk+1
2 (there are

(
k+1
w

)
of them in total) has dimension k, so we’re done. Thus we

may assume that w is odd.

Let V < Fk+1
2 have Aw(V ) = m(k + 1, k, w). Since V has dimension k, it is

monomially equivalent to a vector space having a generator matrix of the form

G =

[
Ik c

]
.

Here c is a column vector. By permuting rows and columns of G we may assume that

c is of the form

c = (0, 0, 0, . . . , 0, 0, 0︸ ︷︷ ︸
a

, 1, 1, 1, . . . , 1, 1, 1︸ ︷︷ ︸
b

).

Notice that a + b = k.

If we drop c from G, how many weight-w vectors are lost, and how many are

gained? That is, are there more weight-w vectors in V or in V ′ = Fk
2 × {0}, the code

with generator matrix

G′ =
[

Ik
~0

]
?
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Let L be the lost vectors. That is,

L = {v ∈ V : v /∈ V ′} .

Let F be the found vectors. That is,

F = {v′ ∈ V ′ : v′ /∈ V } .

We will construct an injective function f : L → F . This will establish that |L| ≤ |F |
and thus,

Aw(V ′) = Aw(V )− |L|+ |F | ≥ Aw(V ).

Set

B = {a + 1, a + 2, . . . , a + b = k} .

Notice that for v ∈ V , we have

wt(πB∪{k+1} (v)) ≡ 0(mod 2).

In particular, b 6= k, since this would imply that every vector in V has even weight.

This is a contradiction, since w is odd, and Aw(V ) = m(n, k, w) > 0. Note that

L =
{
v ∈ V : wt(π[k] (v)) = w − 1 and wt(πB (v)) ≡ 1(mod 2)

}

and

F =
{
v′ ∈ V ′ : wt(π[k] (v

′)) = w and wt(πB (v)) ≡ 1(mod 2)
}

. (4.6.1)

We will now define f . The definition will depend (slightly) on the parity of a.
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Case 1: a is odd.

Given l ∈ L, define

g(l) = min
{

i : wt
(
π[i] (l)π{i+1,...,k} (l)

)
= w

}
,

and set

f(l) = π[g(l)] (l)π{g(l)+1,...,k} (l) 0.

In words: we scan across l from left to right, inverting bits one at a time. We stop

when the weight on [k] is w, and we change the last bit to 0. We have three things to

show: that g(l) < ∞ (so that f is well-defined), that f(l) ∈ F , and that f is injective.

First we show that g(l) < ∞. In fact, g(l) < k. Notice that

wt
(
π[k] (l)

)
= k − wt(π[k] (l))

= k − (w − 1)

≥ 2w − (w − 1)

= w + 1.

We have that wt
(
π[k] (l)

)
= w− 1, and wt

(
π[k] (l)

)
≥ w + 1. Since inverting a single

bit in a vector changes its weight by one, one of the intermediate inversions considered

in the definition of g must have weight w. Hence g(l) < k.

Now we show that f(l) ∈ F . By Equation (4.6.1), we need only show that f(l) ∈
V ′, that wt(π[k] (f(l))) = w, and wt(πB (f(l))) ≡ 1(mod 2). The only requirement for

f(l) ∈ V ′ is that πk+1 (f(l)) = 0. This is true by definition of f . By definition of g, it is

clearly true that wt(π[k] (f(l))) = w. It is left to show that wt(πB (f(l))) ≡ 1(mod 2).
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Either g(l) ≤ a or g(l) > a. In the first case,

wt(πB (f(l))) = wt(πB (l)) ≡ 1 mod 2.

Consider g(l) > a. Inversion of a single bit changes the parity of the weight of a vector.

Since wt(π[k] (l)) = w − 1 and wt(π[k] (f(l))) = w (they have different parities), g(l)

must be odd. Since a is odd and f inverts all bits on [a], f(l) inverts an even number

of bits on B. Thus

wt(πB (f(l))) ≡ wt(πB (l)) ≡ 1 mod 2.

Finally, we show that f is injective. Let l ∈ L. We show how to construct l from

f(l). Given m ∈ F , define

g′(m) = min
{

i : wt
(
π[i] (m)π{i+1,...,k} (m)

)
= w − 1

}
,

and set

f ′(m) = π[g(m)] (m)π{g(m)+1,...,k} (m) 1.

Now, it is not necessarily the case that g′(m) < ∞. On the other hand, it is certainly

the case that g′(f(l)) ≤ g(l), since

wt
(
π[g(l)] (f(l))π{g(l)+1,...,k} (f(l))

)
= wt

(
π[g(l)] (l)π{g(l)+1,...,k} (l)

)

= wt
(
π[k] (l)

)

= w − 1.
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In fact, g′(f(l)) = g(l). If g′(f(l)) were less than g(l), then

wt
(
π[g′(f(l))] (f(l))

)
+ wt

(
π{g′(f(l))+1,...,k} (f(l))

)

= wt
(
π[k] (f(l))

)

= w

= (w − 1) + 1

= wt (f ′(f(l))) + 1

= wt
(
π[g′(f(l))] (f(l))

)
+ wt

(
π{g′(f(l))+1,...,k} (f(l))

)
+ 1.

Thus

wt
(
π[g′(f(l))] (f(l))

)
= wt

(
π[g′(f(l))] (f(l))

)
+ 1.

But this implies

wt

(
π[g′(f(l))] (l)π{g′(f(l))+1,...,k} (l)

)

= wt
(
π[g′(f(l))] (l)

)
+ wt

(
π{g′(f(l))+1,...,k} (l)

)

= wt
(
π[g′(f(l))] (f(l))

)
+ wt

(
π{g′(f(l))+1,...,k} (l)

)

= wt
(
π[g′(f(l))] (f(l))

)
+ 1 + wt

(
π{g′(f(l))+1,...,k} (l)

)

= wt
(
π[g′(f(l))] (l)

)
+ 1 + wt

(
π{g′(f(l))+1,...,k} (l)

)

= wt(π[k] (l)) + 1

= (w − 1) + 1

= w.

This contradicts the minimality of g(l). We have established that g′(f(l)) = g(l).
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Thus

f ′(f(l)) = f ′
(
π[g(l)] (l)π{g(l)+1,...,k} (l) 0

)

= π[g(l)] (l)π{g(l)+1,...,k} (l) 1

= l.

Case 2: a is even.

This case is very similar to the case where a is odd, but we do not invert the first

bit of [a]. That is, given l ∈ L we define

g(l) = min
{

i : wt
(
π1 (l) π{2,...,i} (l)π{i+1,...,k} (l)

)
= w

}
,

and

f(l) = π1 (l) π{2,...,g(l)} (l)π{g(l+1,...,k} (l) .

Notice that

wt
(
π1 (l) π{2,...,k} (l)

)
≥ wt

(
π{2,...,k} (l)

)

= k − 1− wt
(
π{2,...,k} (l)

)

≥ k − 1− (w − 1)

= w.

Hence g(l) ≤ k. The rest is very similar to the proof for a odd.

We extend this a bit further.
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Lemma 4.6.5. If k, w ∈ N where w is odd, and k ≥ 2w then

m(k + 2, k, w) =

(
k

w

)
.

Proof. Let V < Fk+2
2 have Aw(V ) = m(k + 2, k, w). Up to permutation of entries, V

has a generator matrix of the form

G =




1 0 0




. . .
...

1 0 0

1 0 1

. . .
...

1 0 1

1 1 0

. . .
...

1 1 0

1 1 1

. . .
...

1 1 1

← A → ← B → ← C → ← D →

The spirit of the proof is very similar to that of Lemma 4.6.4. First let us assume

that at least one of |A|,|B|,|C|, or |D| is even. Remove the last two columns of G

to yield G′, the generator matrix for a code V ′. We compare the vectors lost to the

vectors gained via an injective map that depends (slightly) on the parities of |A|, |B|,
|C|, and |D|, and that inverts bits one at a time until the proper weight is achieved.

We now make this precise.
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Let L be the set of lost weight w vectors in V , and let F be the set of found

weight w vectors in V ′. We now construct an injective map f : L → F . Let l ∈ L.

Notice that wt π{k+1,k+2} (l) > 0 or else l ∈ V ′. We define f differently depending on

whether this weight is 1 or 2.

Case 1: wt(π{k+1,k+2} (l)) = 1.

Notice that since w is odd, there are some odd weight vectors in V . Hence

|A ∪D| > 0.

Invert each bit of π[k] (l) 00 in succession, starting with the coordinates of A then the

coordinates of D. If |A ∪D| is even, do not invert the last bit of A ∪D. Proceed to

invert the bits of B, and then those of C. Stop when the resulting vector has weight

w. Do not invert either of the last two bits (as we’ll see, inverting these bits is not

necessary). Define f(l) to be the vector obtained from the process above.

Let h(l) be the vector resulting from the process above if we do not stop when

the weight becomes w. Then

wt (h(l)) = wt(πA (h(l))) + wt(πB (h(l))) + wt(πC (h(l))) + wt(πD (h(l)))

≥ |A|+ |D| − 1− wt(πA∪D\max(A∪D) (l))

+ |B| − wt(πB (l))

+ |C| − wt(πC (l))

= k − 1− wt(πA∪D\max(A∪D) (l))− wt(πB (l))− wt(πC (l))

≥ 2w − 1− wt(π[k] (l))

= 2w − 1− (w − 1)

= w.
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Thus the process will terminate, and wt(f(l)) = w. Let

v = π[k] (f(l)) G.

Notice that v ∈ V is the unique vector in V with π[k] (v) = π[k] (f(l)). Thus to show

that f(l) is a found vector, we need only show that v 6= f(l). To show this, we

need only point out that π{k+1,k+2} (v) 6= π{k+1,k+2} (f(l)) = 00. Since w − 1 and w

have opposite parity, an odd number of bits must have been inverted in the process

described above. But then we have guaranteed that the number of inverted bits in

A∪D is odd, and the number of inverted bits in B∪C is even. Therefore π{k+1,k+2} (v)

is π{k+1,k+2} (l) plus an odd number of even weight vectors (00 or 11) plus an even

number of odd weight vectors (01 or 10). Thus wt(π{k+1,k+2} (v)) has the same parity

as wt(π{k+1,k+2} (l)), which is odd. Hence π{k+1,k+2} (v) 6= 00, as desired.

By reasoning similar to that given in the proof of Lemma 4.6.4, f is injective when

restricted to the set

L1 =
{
l ∈ L : wt(π{k+1,k+2} (l)) = 2

}
.

Case 2: wt(π{k+1,k+2} (l)) = 2

We are assuming that one of |A|,|B|,|C|, or |D| is even. Suppose it is |A|. Define

l′ = π[k] (l) 00,

the vector derived from l by replacing the last two digits with zeroes. We produce

f(l) by inverting the bits of l′ one at time: first in A, then in B, skipping the last bit

of B if |B| is odd. We then invert the bits of C, skipping the last bit of C if |C| is

odd. Finally, we invert the bits of D one at a time, possibly inverting the last bit of
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D. We stop when the weight of the vector is w. We do not invert either of the last

two bits (we will see that inverting the last two bits is not necessary). Define f(l) to

be the vector resulting from this process. To see that the inversion eventually stops,

define h(l) to be vector produced by this process if we do not stop when the weight

reaches w. Then

wt(h(l)) = wt(πA (h(l))) + wt(πB (h(l))) + wt(πC (h(l))) + wt(πD (h(l)))

≥ |A| − wt(πA (l))

+ |B| − 1− wt(πB\max B (l))

+ |C| − 1− wt(πC\max C (l))

+ |D| − wt(πD (l))

≥ |A| − wt(πA (l))

+ |B| − 1− wt(πB (l))

+ |C| − 1− wt(πC (l))

+ |D| − wt(πD (l))

= k − 2− wt(π[k] (l))

= k − 2− (w − 2)

≥ 2w − 2− (w − 2)

= w.

Thus at some point, the weight of our vector is w. To prove that f(l) is in F , we use

an argument similar to the one used in the previous case. We need only show that

f(l) does not equal

v = π[k] (f(l)) G.
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Notice that v the vector in V with the same first k digits as f(l). Further Notice that

π{k+1,k+2} (v) is the sum of π{k+1,k+2} (l) = 11 and an even number of each of 00,10,

and 01. Thus π{k+1,k+2} (v) = 11 6= 00 = π{k+1,k+2} (l), and so f(l) 6= v and f(l) ∈ F .

By arguments similar to one already given, f is injective when restricted to

L2 =
{
l ∈ L : wt π{k+1,k+2} (l) = 2

}
.

We’ve defined f : L → F , and we’ve shown that it is injective when restricted to

L1 or L2. On the other hand, given l1 ∈ L1, we’ve seen that if we set

v1 = π[k] (f(l1)) G,

then

wt(πk+1,k+2 (v1)) = 1.

On the other hand, if we let l2 ∈ L2 then we’ve seen that if we set

v2 = π[k] (f(l2)) G,

then

wt(πk+1,k+2 (v2)) = 2.

Thus f(l1) 6= f(l2), and so f is injective.

We must now handle the case where |A|,|B|,|C|, and |D| are all odd. This time

we will delete only the last column of G to produce G′, a generator matrix for V ′.

Since the support of this vector space is at most k + 1, we may apply Lemma 4.6.4

to establish that Aw(V ′) ≤ (
k
w

)
. Thus if we establish that Aw(V ′) ≥ Aw(V ), we are

done. Let L be the collection of lost vectors and let F be the collection of found
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vectors. We will construct an injective function f : L → F .

Let l ∈ L. Define

l′ = π[k+1] (l) 0,

the vector derived from l by replacing the last bit with a zero. Invert the bits of l′

one at a time starting in A, then C, then the bit in position k + 1, then D skipping

its last bit, then B. Do not invert the bit in position k + 2. Stop when the weight

becomes w. To see that this weight does eventually become w, define h(l) to be the

vector produced by this process if we do not stop when the weight becomes w. Then

wt(h(l)) = wt(πA (h(l))) + wt(πB (h(l))) + wt(πC∪{k+1} (h(l))) + wt(πD (h(l)))

≥ |A| − wt(πA (l))

+ |B| − wt(πB (l))

+ |C ∪ {k + 1}| − wt(πC∪{k+1} (l))

+ |D| − 1− wt(πD\max D (l))

≥ |A| − wt(πA (l))

+ |B| − wt(πB (l))

+ |C ∪ {k + 1}| − wt(πC∪{k+1} (l))

+ |D| − 1− wt(πD (l))

= (k + 1)− 1− wt(π[k+1] (l))

= k − (w − 1)

≥ 2w − (w − 1)

= w + 1.

As with the other proofs, f is injective. We need only show that f(l) ∈ F . There
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are two things we must establish: f(l) ∈ V ′ and f(l) /∈ V . To see that f(l) ∈ V ′,

notice that V ′ is exactly the collection of vectors in Fk+2
2 that are 0 at bit position

k+2 and have even weight on C∪D∪{k + 1}. By construction, πk+2 (f(l)) = 0. The

process described above inverts an even number of bits in C ∪D∪{k + 2}. But since

l ∈ V , we have that wt(πC∪D∪{k+2} (l)) is even, and thus so is wt(πC∪D∪{k+2} (f(l))).

To show that f(l) /∈ V , we need only point out that in V , k + 2 is a parity-check

bit for B ∪ D. Since l ∈ L, we have that πk+2 (l) = 1. But an even number of bits

were inverted in B and in D. Thus the unique vector v = π[k] (f(l)) G ∈ V that has

π[k] (v) = π[k] (f(v)) has πk+2 (v) = 1, and so v 6= f(v), and f(v) /∈ V ′.

4.6.2 A Complete Conjecture for the Case Where w is Odd

From empirical evidence, we have the following conjecture.

Conjecture 4.6.6. If n, k, w ∈ N and w is odd then

m(n, k, w) = M(n, k, w).

Notice that by Theorem 4.1.1 (the formula for M(n, k, w)), whenever we have

been able to establish exact values for m(n, k, w), they agree with M(n, k, w). In

particular, suppose k ≤ w + 1 and n ≥ w + k − 1 (the conditions given in Lemma

4.3.1 that imply m(n, k, w) = 2k−1). Either w ≤ n/2 and (by the first condition

above) k − 1 ≤ w, or w > n/2, in which case n− w ≤ n/2, and since n ≥ w + k − 1,

we have k − 1 ≤ n− w. Thus by Theorem 4.1.1,

m(n, k, w) = 2k−1 = M(n, k, w).
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Furthermore, for k, w ∈ N with k ≥ 2w and w odd, we have

m(k, k, w) = m(k + 1, k, w) = m(k + 2, k, w)

=

(
k

w

)

= M(k, k, w) = M(k + 1, k, w) = M(k + 2, k, w).

If w is odd and n is even then n − w is odd. If Conjecture 4.6.6 is true then we

would have

m(n, k, w) = M(n, k, w) = M(n, k, n− w) = m(n, k, n− w).

In fact, m(n, k, w) does have this symmetry.

Proposition 4.6.7. If n, k, w ∈ N where n is even and w is odd then

m(n, k, w) = m(n, k, n− w).

Proof. Let V < Fn
2 be a k-dimensional subspace with Aw(V ) = m(n, k, w). There

exists B = {b1, b2, . . . , bk}, a basis for V consisting of odd weight vectors (in fact, by

Lemma 4.6.3 there is a basis of weight-w vectors). Consider the set of vectors

B′ = {
b : b ∈ B}

,

and let V ′ be the vector space generated by this collection. Let v ∈ V have wt(v) = w.

There is a unique sequence λ1, λ2, . . . , λk ∈ F2 such that

v = λ1b1 + λ2b2 + · · ·+ λkbk.
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Since v has odd weight and bi has odd weight for each i ∈ [k], the number of coefficients

b1, b2, . . . , bk that are 1 is odd. Hence

λ1b1 + λ2b2 + · · ·+ λkbk = v,

which has weight n− w. Thus An−w(V ′) ≥ Aw(V ) = m(n, k, w). Furthermore, since

V ′ is generated by k vectors, dim V ′ ≤ k. Thus

m(n, k, n− w) ≥ m(n, dim V ′, n− w) ≥ m(n, k, w).

By symmetry, m(n, k, w) = m(n, k, n− w) as desired.

Besides the theoretical similarity of these objects, we have tested the conjecture

for n ≤ 14 by brute force.
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