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Fat points and their ideals have stimulated a lot of research but this dissertation

concerns itself with aspects of only two of them, broadly categorized here as, the

ideal containments and polynomial interpolation problems.

Ein-Lazarsfeld-Smith and Hochster-Huneke cumulatively showed that for all ideals

I in k[Pn], I(mn) ⊆ Im for all m ∈N. Over the projective plane, we obtain I(4) ⊆ I2.

Huneke asked whether it was the case that I(3) ⊆ I2. Dumnicki, Szemberg and

Tutaj-Gasinska show that if I is the saturated homogeneous radical ideal of the 12

points of the Hesse configuration, then I(3) 6⊆ I2. Since then, additional examples

have been found, but all of them, are the intersection loci of lines. Here we extend

all the examples of I(3) 6⊆ I2 to points that are not directly the intersection loci of

lines but are the intersection loci of curves.

In the case of the interpolation problem, this dissertation makes the following

contribution. Let k be an algebraically closed field of arbitrary characteristic. Let

q1, . . . , qr be a set of not necessarily general points and let p1, . . . , ps be a set of

general points in P2, r + s ≤ 8. Let X be a blow up of the points with e1, . . . , er

and E1, . . . , Es the corresponding exceptional curves. Write e = a1e1 + · · ·+ arer

and E = b1E1 + · · ·+ bsEs. For the two linear systems [dL− e− E] and [dL− e]

with [dL − e − E] ⊆ [dL − e], we give a condition sufficient to guarantee that



h0(X, dL − e − E) > max{0, h0(X, dL − e) − ∑s
i=1 (

bi+1
2 )} and another condition

necessary for h0(X, dL− e− E) > max{0, h0(X, dL− e)−∑s
i=1 (

bi+1
2 )}. When r =

7, s = 1, d = 3, aj = 1, 1 ≤ j ≤ 7 and b = 2, we connect the discussion

to quasi-elliptic fibrations and show that when q1 + · · · + q7 is reduced, then

h0(X, 3L− e1 − · · · − e7 − 2E) > max{0, h0(X, 3L− e1 − · · · − e7)− 3} if and only

if q1 + · · · + q7 is the union of the seven points of the Fano plane. Allowing

infinitely near points, we obtain nonreduced subschemes q1 + · · ·+ q7, consisting of

essentially distinct points, that form part of the base loci of quasi-elliptic fibrations

such that h0(X, 3L− e1 − · · · − e7 − 2E) > max{0, h0(X, 3L− e1 − · · · − e7)− 3}.
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Chapter 1

Introduction

1.1 Fat Points in Pn

Let k be an algebraically closed field of arbitrary characteristic. We work in Pn
k .

One can pick a point p ∈ Pn and using the correspondence of varieties and ideals

in k[Pn], consider the maximal homogeneous ideal, I(p) ⊂ k[Pn], whose zero locus

in Pn is exactly the point p which has multiplicity 1.

Expanding the notion of variety to the notion of scheme, in particular allowing

for non-reduced varieties, we can consider the variety, mp, specified by the homo-

geneous ideal I(p)m, m ∈ N. Note that mp is supported at exactly p in Pn but

we distinguish between mp and p by keeping in mind the different homogeneous

coordinate rings k[Pn]/I(p)m and k[Pn]/I(p) associated to each, respectively.

The point mp is called a fat point supported at p of multiplicity m. Just as we can

consider a set of l distinct points p1 + · · ·+ pl ⊆ k[Pn], l ∈N, each of multiplicity

one, specified by the homogeneous ideal I(p1) ∩ · · · ∩ I(pl) ⊆ k[Pn], where we

have chosen the notation to emphasize the variety aspect of the set, we can also

consider a set of l distinct fat points, m1p1 + · · ·+ ml pl, of varying multiplicities,
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m1, . . . , ml, in Pn, supported at p1 + · · ·+ pl, specified by the homogeneous ideal

I(p1)
m1 ∩ · · · ∩ I(pl)

ml ⊂ k[Pn]. In this dissertation, we consider an aspect each

of two broad problems in the study of fat points: the ideal containments and

polynomial interpolation problems. The two problems are not disparate but are in

fact closely related in the sense that they are both concerned with properties of the

ideal I(p1)
m1 ∩ · · · ∩ I(pl)

ml .

Start with a set of l distinct fat points Z = m1p1 + · · · + ml pl in Pn
k , k alge-

braically closed, of varying multiplicities, specified by the homogeneous ideal

IZ = I(p1)
m1 ∩ · · · ∩ I(pl)

ml ⊂ k[Pn]. Let X be the surface obtained from the

blow up of P2 at the points with L the total transform of a line in P2 to X

and E1, . . . , El, the exceptional curves corresponding to the points p1, . . . , pl, re-

spectively. We can consider the divisor class [dL − m1E1 − · · · − mlEl] on X,

d ∈ N, and its k-vector space of global sections H0(X, dL− m1E1 − · · · − mlEl).

We can, also, consider the homogeneous component of degree d of the k-vector

space of homogeneous polynomials IZ specifying Z, IZ(d). Then it is well

known that as k-vector spaces, H0(X, dL−m1E1 − · · · −mlEl) ∼= IZ(d) and hence

dimk IZ(d) = dimk H0(X, dL−m1E1 − · · · −mlEl).

The polynomial interpolation problem in P2 asks, for a set of points p1, . . . , pl

with specified multiplicities m1, . . . , ml, the number of homogeneous polynomials

of degree d that vanish at each of the pi with multiplicity at least mi. When the

base field is algebraically closed, it accepts as a reasonable answer, the number,

dimk IZ(d) = dimk H0(X, dL − m1E1 − · · · − mlEl). Let I = I(p1) ∩ · · · ∩ I(pl).

The ideal containments problem, at least the aspect we consider here, seeks to

understand when IZ ⊆ In when m = m1 = · · · = ml. In the next two sections,
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we discuss the contexts of the ideal containments and polynomial interpolation

problems in more detail by drawing on the literature. For each problem, we

mention how our work fits in with previous work.

1.2 Ideal Containments

Let R be a commutative Noetherian domain. Let I be an ideal in R. We define the

mth symbolic power of I to be the ideal

I(m) = R ∩
⋂

P∈AssR(I)

ImRP ⊆ R(0).

In this dissertation we shall be interested in symbolic powers of homogeneous

ideals of 0-dimensional subschemes in Pn. In the case that the subscheme is

reduced, the definition of the symbolic power takes a rather simple form by a

theorem of Zariski and Nagata [17] and does not require passing to the localizations

at various associated primes. Let I ⊆ k[Pn] be a homogeneous ideal of reduced

points, p1, ..., pl, in Pn with k a field of any characteristic. Then I = I(p1) ∩ · · · ∩

I(pl) where I(pi) ⊆ k[Pn] is the ideal generated by all forms vanishing at pi, and

the mth symbolic power of I is simply I(m) = I(p1)
m ∩ · · · ∩ I(pl)

m.

In [16], Ein, Lazarsfeld and Smith proved that if I ⊆ k[Pn] is the radical ideal

of a 0-dimensional subscheme of Pn, where k is an algebraically closed field of

characteristic 0, then I(mr) ⊆ (I(r+1−n))m for all m ∈ N and r ≥ n. Letting r = n,

we get that I(mn) ⊆ Im for all m ∈N. Hochster and Huneke in [31] extended this

result to all ideals I ⊆ k[Pn] over any field k of arbitrary characteristic.

In [7] Bocci and Harbourne introduced a quantity ρ(I), called the resurgence,
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associated to a nontrivial homogeneous ideal I in k[Pn], defined to be sup{s/t :

I(s) 6⊆ It}. It is seen immediately that if ρ(I) exists, then for s > ρ(I)t, I(s) ⊆ It.

The results of [16, 31] guarantee that ρ(I) exists since I(mn) ⊆ Im implies that

ρ(I) ≤ n for an ideal I in k[Pn]. For an ideal I of points in P2, I(mn) ⊆ Im gives

I(4) ⊆ I2. According to [7] Huneke asked if I(3) ⊆ I2 for a homogeneous ideal I of

points in P2. More generally Harbourne conjectured in [4] that if I ⊆ k[Pn] is a

homogeneous ideal, then I(rn−(n−1)) ⊆ Ir for all r. This led to the conjectures by

Harbourne and Huneke in [27] for ideals I of points that I(mn−n+1) ⊆ m(m−1)(n−1) Im

and I(mn) ⊆ mm(n−1) Im for m ∈N where m is the homogeneous maximal ideal of

k[Pn].

The second conjecture remains open. Cooper, Embree, Ha and Hoefel give a

counterexample in [12] to the first for n = 2 = m for a homogeneous ideal I ⊆ k[P2].

The ideal I in this case is I = (xy2, yz2, zx2, xyz) = (x2, y) ∩ (y2, z) ∩ (z2, x) whose

zero locus in P2 is the 3 coordinate vertices of P2, [0 : 0 : 1], [0 : 1 : 0] and [1 : 0 : 0]

together with 3 infinitely near points, one at each of the vertices, for a total of 6

points. Clearly the monomial x2y2z2 ∈ (x2, y)3 ∩ (y2, z)3 ∩ (z2, x)3 so x2y2z2 is in

I(3). Note xyz ∈ I so x2y2z2 ∈ I2, but x2y2z2 /∈ mI2.

Shortly thereafter a counterexample to the containment I(3) 6⊆ I2 was given by

Dumnicki, Szemberg and Tutaj-Gasinska in [15]. In this case I is the ideal of the

12 points dual to the 12 lines of the Hesse configuration. The Hesse configuration

consists of the 9 flex points of a smooth cubic and the 12 lines through pairs of

flexes. Thus I defines 12 points lying on 9 lines. Each of the lines goes through

4 of the points, and each point has 3 of the lines going through it. Specifically

I is the saturated radical homogeneous ideal I = (x(y3 − z3), y(x3 − z3), z(x3 −
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y3)) ⊂ C[P2]. Its zero locus is the 3 coordinate vertices of P2 together with the 9

intersection points of any 2 of the forms x3 − y3, x3 − z3 and y3 − z3. The form

F = (x3 − y3)(x3 − z3)(y3 − z3) defining the 9 lines belongs to I(3) since for each

point in the configuration, 3 of the lines in the zero locus of F pass through the

point, but F /∈ I2 and hence I(3) 6⊆ I2. (Of course this also means that I(3) 6⊆ mI2.)

More generally, I = (x(yn − zn), y(xn − zn), z(xn − yn)) defines a configuration of

n2 + 3 points called a Fermat configuration [2]. For n ≥ 3, we again have I(3) 6⊆ I2

[28, 38] over any field of characteristic not 2 or 3 containing n distinct nth roots of

1.

Subsequent counterexamples to I(3) ⊆ I2 were given in [6], [3], [28], [14] and [38]

including related counterexamples to I(nr−n+1) ⊆ Ir for ideals of points in Pn in

positive characteristic given in [28]. All of the counterexamples to I(3) ⊆ I2 are

ideals of points where the points are singular points of multiplicity at least 3 of a

configuration of lines. By considering flat morphisms Pn → Pn, we obtain many

new counterexamples to I(rn−n+1) ⊆ Ir, taking I to be the ideal of the fibers over

the points of previously known counterexamples.

The idea for this comes from [18]. Suppose ∆ is a matroid on [s] = {1, ..., s}

of dimension s− 1− c and and let f1, ..., fs ∈ R = k[y0, ..., yn] be homogeneous

polynomials that form an R-regular sequence, n ≥ c. Suppose now that ϕ : S =

k[y1, ..., ys] → R is a k-algebra map defined by yi → fi. Then [18] shows that if

I∆ ⊆ S is the ideal of the matroid and m and r are positive integers, then I(m)
∆ ⊆ Ir

∆

if and only if ϕ∗(I∆)
(m) ⊆ ϕ∗(I∆)

r where ϕ∗(I∆) denotes the ideal generated by

ϕ(I∆) in R. Of course a natural question is whether I(m) ⊆ Ir if and only if

ϕ∗(I)(m) ⊆ ϕ∗(I)r for any saturated homogeneous ideal. This dissertation answers
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this question in the affirmative for ideals I of points in Pn, relying on the ideas in

[18].

1.3 Interpolation on Linear Systems

We work in the projective plane P2
k over an algebraically closed field k of arbitrary

characteristic. Let L denote the class of a line in P2. Then the Picard group

of P2 is Pic(P2) = {[dL] : d ∈ Z} where [dL] is the linear equivalence class of

curves defined by all homogeneous polynomials of degree d when d > 0. Given

a set of distinct points p1, . . . , pn in P2 with assigned multiplicities m1, . . . , mn,

it is a classical question to ask how many polynomials, P = P(x0, x1, x2) in

R = k[x0, x1, x2] of degree d > 0 are there such that P vanishes at each of the

pi to order at least mi? Let V = V(dL − m1p1 − · · · − mn pn) denote the vector

space of all homogeneous polynomials of degree d vanishing to order at least mi

at the point pi, 1 ≤ i ≤ n, and let Rd be the k-vector space of all homogeneous

polynomials of degree d. Notice that V is a subspace of Rd and moreover that V

corresponds to the complete linear system of curves of degree d passing through pi

with multiplicity at least mi, L = [dL−m1p1 − · · · −mn pn], while Rd corresponds

to [dL]. A possible answer to the above question now is dimk V.

Note that, in char k = 0, if P vanishes at the point pi to order at least mi, then all

the derivatives of P to order mi − 1 must vanish at pi. There are (mi+1
2 ) = mi(mi+1)

2

such derivatives so that the requirement that P vanish at pi to order at least mi

imposes mi(mi+1)
2 conditions on Rd. Since dimk Rd = (d+2

2 ) = (d+2)(d+1)
2 , we have

that dimk V is at least (d+2)(d+1)
2 −∑n

i=1
mi(mi+1)

2 . Also since dimk V ≥ 0, we obtain

the lower bound dimk V ≥ max{0, (d+2)(d+1)
2 − ∑n

i=1
mi(mi+1)

2 }. In the literature,
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(d+2)(d+1)
2 −∑n

i=1
mi(mi+1)

2 is referred to us the virtual dimension of V, denoted V ,

and max{0, (d+2)(d+1)
2 −∑n

i=1
mi(mi+1)

2 } is referred to as the expected dimension of

V, E . So we have that E = max{0,V} and dimk V ≥ E . The numerics of finding

a lower bound for dimk V are the same in char k = p > 0 since a homogeneous

polynomial F vanishes at points p1, . . . , pn to order at least m1, . . . , mn exactly when

F ∈ Im1
p1 ∩ Im2

p2 ∩ · · · ∩ Imn
pn where Ipi is the ideal of all homogeneous polynomials

vanishing at pi. But then dimk(Im1
p1 ∩ Im2

p2 ∩ · · · ∩ Imn
pn )d ≥ dimk Rd −∑n

i=1
mi(mi+1)

2 .

Everything said previously now follows. When dimk V fails to achieve its lower

bound, i.e. dimk V > E , we say that L is a special linear system. For ease, we shall

identify V and L with each other and also identify Rd with [dL].

One might ask for instances when the lower bound is not achieved. Take d = 1

and consider three collinear points p1, p2 and p3 in P2. For L = [L− p1− p2− p3],

we have that V(L) = 3 − 3 = 0 so that E(L) = 0 but dimk L = 1. Hence

dimk L > E(L). In this case however, the points p1, p2 and p3 are not general

points since they are collinear. This leads one to ask whether there are any instances

for which dimk L > E(L) when the points p1, . . . , pn are general? Take d = 2 and

consider two general points p1 and p2 each with assigned multiplicity 2 in P2. Let

L = [2L− 2p1 − 2p2] be the linear system of conics vanishing with multiplicity

at least 2 at each of p1 and p2. Note that V(L) = 6− 3− 3 = 0 so that E(L) = 0.

Note, however, that dimk L > E(L) since L contains the non-reduced conic that

is the double line through the points p1 and p2. For another example, take d = 4

and consider the five general points p1, . . . , p5 each with assigned multiplicity 2.

Let L = [4L− 2p1 − · · · − 2p5] be the linear system of curves of degree 4 in P2

vanishing with multiplicity at least 2 at each of the points. Then just as before

one computes V(L) = 0 and hence E(L) = 0. Since 5 general points determine a
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conic, L contains the non-reduced curve of degree 4 that is double of the unique

irreducible conic through the five points p1, . . . , p5. All the known examples for

general points where dimk L > E(L) are of this type i.e. they involve non-reduced

curves in their fixed part. In fact Segre conjectured in 1961 [39] that given a linear

system L = [dL−m1p1 − · · · −mn pn] in P2 such that dimk L > E(L), the fixed

part of L contains a non-reduced component.

In working with linear systems with assigned base points in P2, one finds

that it is easier to blow up the points p1, . . . , pn to obtain a birational projec-

tive morphism π : X → P2 whose exceptional curves E1, . . . , En (see Defini-

tion 3.1.2) are contracted to p1, . . . , pn respectively by the map π which is iso-

morphic away from the curves E1, . . . , En. By so doing, one passes from cycles

of the form dL − m1p1 − · · · − mn pn to divisors dL − m1E1 − · · · − mnEn where

L is now understood to be the total transform to X of the original line L in

P2. This allows one to take full advantage of the geometry of rational sur-

faces. Let KX = −3L + E1 + · · · + En denote the canonical divisor on X and

−KX = 3L− E1− · · · − En the anticanonical divisor. Given the complete linear sys-

tem L = [dL−m1p1− · · · −mn pn] on P2, its proper transform on X is the complete

linear system [dL−m1E1− · · · −mnEn] of the divisor dL−m1E1− · · · −mnEn. The

virtual dimension of [dL−m1E1− · · ·−mnEn] is defined to be V(dL−m1E1− · · ·−

mnEn) =
(dL−m1E1−···−mnEn)2+(−KX)·(dL−m1E1−···−mnEn)

2 + 1 and the expected dimen-

sion, E(dL− m1E1 − · · · − mnEn), just as before, is max{0,V(dL− m1E1 − · · · −

mnEn)}. One easily checks that (dL−m1E1−···−mnEn)2+(−KX)·(dL−m1E1−···−mnEn)
2 + 1 =

(d+2)(d+1)
2 − ∑n

i=1
mi(mi+1)

2 so that the linear systems L and [dL − m1E1 − · · · −

mnEn] on P2 and on X respectively have the same virtual and expected dimensions.

Moreover dimk L = dimk[dL−m1E1 − · · · −mnEn] [29] so we abuse notation and
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refer to the linear system [dL−m1E1 − · · · −mnEn] as L and even go further to

refer to its corresponding line bundle, OX(L), also as L.

Harbourne [22], Gimigliano [21] and Hirschowitz [30] all independently conjec-

tured that if X is the blow up of n general points, p1, . . . , pn, with assigned mul-

tiplicities m1, . . . , mn, in P2, then the linear system L = |dL−m1E1 − · · · −mnEn|

is special if and only if there is an exceptional curve C such that nC, n ≥ 2,

sits in the fixed part of L. Segre’s conjecture is equivalent to the conjectures

of Harbourne, Gimigliano and Hirschowitz if one considers the blowup of the

points in Segre’s statement or one considers the proper transform of the linear

system to P2 of the Harbourne-Gimigliano-Hirschowitz statement. For two slightly

different arguments showing the equivalence, see Ciliberto and Miranda [10] and

Harbourne [25]. This allows us to refer to both conjectures by the acronym: the

SHGH conjecture (Segre-Harbourne-Gimigliano-Hirschowitz). While there has

been a substantial amount of evidence accumulated in favor of the truth of the

conjecture, it still remains open. According to [25], Nagata’s work in [36] proves

the SHGH conjecture for n ≤ 9 general points. The work of Harbourne in [24]

also essentially proves the SHGH conjecture for n ≤ 9 general points but a more

explicit argument appears in [11].

In order to gain more insight into the SHGH conjecture and the problem of

polynomial interpolation more broadly, Cook, Harbourne, Migliore and Nagel [33]

took a slightly differently viewpoint. Instead of investigating when n general points

p1, . . . , pn with assigned multiplicities m1, . . . , mn failed to impose independent

conditions on the linear system |dL| in P2, they considered when a single general

point p with assigned multiplicity m failed to impose independent conditions
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on the linear system |(m + 1)L − q1 − · · · − qn| where the points q1, . . . , qn are

reduced points of P2 that are not necessarily general. Put Z = q1 + · · ·+ qn, then

Z is a reduced 0-dimensional subscheme. Let IZ denote the ideal of forms in

k[x0, x1, x2] that contain Z in their vanishing locus and let IZ+mp be those that in

addition vanish at p to multiplicity at least m. Finally let IZ+mp(m + 1) be the

forms of degree m + 1 in IZ+mp. Note that IZ+mp(m + 1) is exactly what forms

remain in |(m+ 1)L− q1− · · · − qn| after mp has been imposed, i.e IZ+mp(m+ 1) =

|(m + 1)L− q1 − · · · − qn − mp| and IZ(m + 1) = |(m + 1)L− q1 − · · · − qn|. To

give the criterion in [33] for when mp fails to impose independent conditions

on IZ(m + 1), we recall three quantities from [33]. The multiplicity index is

mZ := min{j ≥ 0 : dimk IZ+jp(j + 1) > 0}, the Hilbert index is tZ := min{j ≥

0 : dimk IZ(j + 1) − (j+1
2 ) > 0} and the speciality index is µZ = min{j ≥ 0 :

dimk IZ+jp(j + 1)− ((j+3
2 )− |Z| − (j+1

2 )) = 0}. Then it turns out by Theorem 2.16

in [33] that for some m, dimk IZ+mp(m + 1) > max{0, dimk IZ(m + 1)− (m+1
2 )} if

and only if mZ < tZ and mZ ≤ m < µZ. No classification in any degree of all such

examples is known. Therefore, here, we make an effort in that direction by finding,

in degree 3, all Z such that Z admits an unexpected curve (see Definition 3.2.3) by

connecting the discussion to quasi-elliptic fibrations.

Moreover in this dissertation, we take points q1, . . . , qr, 0 ≤ r < 8, not necessarily

general, with assigned multiplicities a1, . . . , ar, in P2 and consider the linear system

|dL − a1q1 − · · · − arqr| ⊆ |dL|. We then impose general points p1, . . . , ps, 1 <

s ≤ 8, r + s ≤ 8, with assigned multiplicities b1, . . . , bs and investigate when

dimk |dL − a1q1 − · · · − arqr − b1p1 − · · · − bs ps| > max{dimk |dL − a1q1 − · · · −

arqr| −∑s
i=1 (

bi+1
2 ), 0}. As usual, it is easier to work entirely with divisors, so we

blow up the points q1, . . . , qr, p1, . . . , ps to obtain a surface π : X → P2. There
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are exceptional curves e1, . . . , er, E1, . . . , Es on X such that π(ej) = qj, 1 ≤ j ≤ r,

and π(Ei) = pi, 1 ≤ i ≤ s. Put e = a1e1 + · · · + arer and E = b1E1 + · · · bsEs.

If L also denotes the proper transform of a line in P2 to X, then |dL − e − E|

and |dL− e| are the proper transforms of |dL− a1q1 − · · · − arqr − b1p1 − · · · −

bs ps| and |dL − a1q1 − · · · − arqr| respectively. Our investigation now reduces

to finding a necessary and sufficient condition for when dimk |dL − e − E| >

max{dimk |dL− e| −∑s
i=1 (

bi+1
2 ), 0}. Given the linear system |dL− e|, we can write

dL− e = F + N where F is a nef divisor on X and N is either trivial or a sum of

smooth rational curves of negative self-intersection by Theorem 1.18 in [4]. We

have that dimk |dL − e| = dimk |F| and dimk |dL − e − E| = dimk |F − E|. The

main result is Theorem 3.2.21 which states that if there is a smooth rational curve

C such that either C2 = −1 and (F − E) · C ≤ −2 or the char k = 2, C2 = −2,

r + s = 8, the class of C = 3L− E1 − · · · − E7 − 2E8 and (F − E) · C ≤ −2 then

dimk |F− E| > dimk |F| −∑s
i=1 (

bi+1
2 ).
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Chapter 2

Ideal Containments under Flat Extensions

Throughout this chapter, let R = S = k[y0, ..., yn] and let { f0, ..., fn} ⊆ R be an R-

regular sequence of homogeneous elements of R of the same degree. Let ϕ : S→ R

be the k-algebra map given by yi 7→ fi. For an ideal I ⊆ S, let ϕ∗(I) ⊆ R denote

the ideal generated by ϕ(I).

2.1 Flat Extensions and Ideal Containments

Lemma 2.1.1. Let ϕ : S→ R be as above. Then R is a free graded S-module, hence R is

faithfully flat as an S-module.

Proof. It suffices to show that R is free over S since free modules are faithfully

flat modules. Note that ϕ is injective since { f0, ..., fn} is a regular sequence. It

follows that S ∼= k[ f0, ..., fn] ⊆ R. So we identify S with k[ f0, ..., fn] and show

that R is free over k[ f0, ..., fn]. Since { f0, ..., fn} is a maximal homogeneous R-

regular sequence, it is a homogeneous system of parameters (sop). The reason is

that every regular sequence is part of an sop and because R is Cohen-Macaulay

(CM), every sop is a regular sequence (depthR = dim R) and so if { f0, ..., fn} is

a maximal regular sequence, then it is an sop. Since R = k[Pn] is a positively
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graded affine k-algebra, the fact that { f0, ..., fn} is a homogeneous sop is equivalent

to R being a finite S-module by [9, Theorem 1.5.17]. Since both R and S are

CM, depthR = dim R = n + 1 = dim S = depthS. By the Auslander-Buchsbaum

formula [17, Exercise 19.8] [37, Theorem 15.3], pdSR + depth R = depth S. It

follows that pdSR = 0. So looking at the minimal free resolution of R as an

S-module, we see that R is a free S-module. Therefore R is a faithfully flat

S-module.

Lemma 2.1.2. Let I ⊆ S be a homogeneous saturated ideal defining a 0-dimensional

subscheme of Pn. Then ϕ∗(I) ⊆ R also defines a 0-dimensional subscheme of Pn.

Proof. We start by showing that R/ϕ∗(I) has the same Krull dimension as S/I.

By the graded Auslander-Buchsbaum formula, pdS(R/ϕ∗(I)) + depth(R/ϕ∗(I))

= depth(S) = pdS(S/I) + depth(S/I). By 3.1 in [18], S/I and R/ϕ∗(I) have the

same graded Betti numbers so pdS(S/I) = pdS(R/ϕ∗(I)). Therefore depth(S/I) =

depth(R/ϕ∗(I)). By 3.1 in [18] again, S/I is Cohen-Macaulay (CM) if and only

if R/ϕ∗(I) is CM. Since I defines an ideal of points and is saturated, we have

that S/I is CM. It follows that R/ϕ∗(I) is CM. For CM modules, the depth is

the dimension so that dim S/I = dim R/ϕ∗(I). Now since S/I and R/ϕ∗(I) are

both CM, Ass(R/ϕ∗(I)) and Ass(S/I) are both unmixed with their elements

having height ht(ϕ∗(I)) and ht(I) respectively. But ht(ϕ∗(I)) = ht(I) since

dim S/I = dim R/ϕ∗(I). It follows that the elements of Ass(R/ϕ∗(I)) are all

ideals of points. It follows that ϕ∗(I) defines a 0-dimensional subscheme of

Pn.

Lemma 2.1.3. Let I ⊆ S be a saturated homogeneous ideal such that the zero locus of I in

Pn is 0-dimensional. Let ϕ : S→ R be as above. Then ϕ∗(I(m)) = ϕ∗(I)(m).
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Proof. By Lemma 2, ϕ∗(I) is the defining ideal of a 0-dimensional subscheme so

that (ϕ∗(I))(m) = Sat((ϕ∗(I))m) where Sat((ϕ∗(I))m) denotes the saturation of the

ideal (ϕ∗(I))m. An ideal and its saturation have the same graded homogeneous

components for high enough degree so that for t� 0, ((ϕ∗(I))(m))t = ((ϕ∗(I))m)t.

Using again that the symbolic power of an ideal of a 0-dimensional subscheme

in Pn is the saturation of the ordinary power, I(m) = Sat(Im), we have that

(I(m))t = (Im)t for t � 0. Therefore (ϕ∗(I(m)))t = (I(m) ⊗S R)t = (Im ⊗S R)t =

(ϕ∗(Im))t for t � 0. Since ϕ is a ring map, ϕ∗(Im) = (ϕ∗(I))m. This gives that

(ϕ∗(I(m)))t = ((ϕ∗(I))m)t for t� 0.

The last two paragraphs imply that ((ϕ∗(I))(m))t = ϕ∗(I(m))t for t � 0. Recall

that (ϕ∗(I))(m) is saturated since it is the saturation of (ϕ∗(I))m and ϕ∗(I(m)) is

saturated by Lemma 3.1 in [18]. Two saturated graded homogeneous ideals that

agree in degree t for t� 0, agree in all degrees. Hence (ϕ∗(I))(m) = ϕ∗(I(m)).

Theorem 2.1.4. Let I ⊆ S be a saturated homogeneous ideal such that V(I) ⊆ Pn is a 0-

dimensional subscheme. Let ϕ : S→ R be given by yi → fi, 0 ≤ i ≤ n, where { f0, ..., fn}

is an R-regular sequence of homogeneous elements of R of the same degree. Let ϕ∗(I) denote

the ideal in R generated by ϕ(I). Then I(m) ⊆ Ir if and only if (ϕ∗(I))(m) ⊆ (ϕ∗(I))r.

Proof. ( =⇒ ) Suppose that I(m) ⊆ Ir. Then ϕ(I(m)) ⊆ ϕ(Ir) and so ϕ∗(I(m)) ⊆

ϕ∗(Ir). Since ϕ is a homomorphism, ϕ(Ir) = (ϕ(I))r. Note that ϕ(Ir) generates

ϕ∗(Ir) in R and (ϕ(I))r generates (ϕ∗(I))r in R. It follows that ϕ∗(Ir) = (ϕ∗(I))r

since they have the same generating set. Now applying Lemma 3 we have that

(ϕ∗(I))(m) = ϕ∗(I(m)) ⊆ ϕ∗(Ir) = ϕ∗(I)r concluding the forward direction.

(⇐=) Suppose now that for some homogeneous ideals I and J of S, I 6⊆ J
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but ϕ∗(I) ⊆ ϕ∗(J). Then there is a homogeneous element f ∈ I\J such that

ϕ( f ) ∈ ϕ∗(J). We may assume with no loss in generality that I = ( f ). We have

the sequence

0→ I ∩ J → I ⊕ J → I + J → 0

with the first map given by g 7→ (g,−g) and the second map given by (h, r) 7→ h+ r.

It is clear that the sequence is exact. Since ϕ is faithfully flat, we get an exact

sequence

0→ ϕ∗(I ∩ J)→ ϕ∗(I)⊕ ϕ∗(J)→ ϕ∗(I + J)→ 0.

Since ϕ∗(I) ⊆ ϕ∗(J), ϕ∗(I + J) = ϕ∗(J). Then the map ϕ∗(I) ⊕ ϕ∗(J) → ϕ∗(J)

has kernel ϕ∗(I). It follows that ϕ∗(I ∩ J) = ϕ∗(I). This is impossible since

the generators of ϕ∗(I ∩ J) are the images of the generators of I ∩ J and thus

have degree greater than degree f and hence greater than degree of ϕ( f ) which

generates ϕ∗(I) = I ⊗S R 6= 0.

So it is the case that ϕ( f ) /∈ ϕ∗(J). Hence ϕ∗(I) 6⊆ ϕ∗(J). Therefore if I(m) 6⊆ Ir,

then by Lemma 3, (ϕ∗(I))(m) = ϕ∗(I(m)) 6⊆ (ϕ∗(I))r. Hence (ϕ∗(I))(m) ⊆ (ϕ∗(I))r

if and only if I(m) ⊆ Ir.

2.2 New Counterexamples to the Containment

I(rn−n+1) ⊆ Ir ⊆ k[Pn]

Using the above result, we obtain many new counterexamples to the containment

I(3) ⊆ I2 of ideals in k[P2] and more generally counterexamples to the containment

I(nr−n+1) ⊆ Ir (?)
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in Pn. In particular if I ⊆ k[Pn] gives a counterexample to (?), then ϕ∗(I) is a

counterexample for any choice of homogeneous regular sequence { f0, ..., fn} of

elements of the same degree. We illustrate this below with a few examples.

Example 2.2.1. In this example, we work over C. In [15], the Fermat configuration,

for n = 3, was considered and its ideal I = (x(y3 − z3), y(x3 − z3), z(x3 − y3)) ⊆

C[x, y, z] was found to be a counterexample to the containment I(3) ⊆ I2. Recall the

configuration consists of the 3 coordinate vertices and the 9 intersection points of

y3 − z3 and x3 − z3. The ideal I is radical and all of the points in the configuration

are reduced points. Now let ϕ : C[P2] → C[P2] by x → f = x2 + y2, y → g =

y2 + z2 and z → h = x2 + z2. One easily checks that {x2 + y2, y2 + z2, x2 + z2}

is a C[P2] - regular sequence. Then ϕ induces a map of schemes ϕ# : P2 → P2

which is faithfully flat. Consider the scheme-theoretic fibers of ϕ# over the Fermat

configuration and call it the fibered Fermat configuration. Note that the fibered

Fermat configuration is 0-dimensional. Since ϕ# has degree 4, the fibers consist of

48 points of P2 where we count with multiplicity. The fibered Fermat configuration

gives rise to the radical ideal ϕ∗(I) = ( f (g3 − h3), g( f 3 − h3), h( f 3 − g3)) ⊆ C[P2]

and by analyzing the ideal we see that the configuration consists of 4 multiplicity

1 points over each of the 3 coordinate vertices, given by f = 0 = g, f = 0 = h and

g = 0 = h. The remaining 36 points, each of multiplicity 1, in the configuration

are the zero locus of f 3 − h3 and f 3 − g3. Since I(3) 6⊆ I2, we have by Theorem 3

that ϕ∗(I)(3) 6⊆ ϕ∗(I)2.

Example 2.2.2. We give another example of a fibered Fermat configuration whose

ideal also gives a counterexample to the containment I(3) ⊆ I2. The difference

here is that 36 of the points in the configuration have multiplicity 1 while the

remaining points each have multiplicity 4. So there are still 48 points counting with
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multiplicity. Let ϕ : C[P2] → C[P2] by x → f = x2, y → g = y2 and z → h = z2.

This faithfully flat ring map induces a morphism of schemes ϕ# : P2 → P2 that is

also flat. The fibers of ϕ# over the Fermat configuration gives the fibered Fermat

configuration that consists of the 36 points, each of multiplicity 1, of intersection of

the degree 6 forms f 3 − g3 and g3 − h3. The configuration has 3 more points each

of multiplicity 4 over the 3 coordinate points. They are the zero loci of f = 0 = g,

f = 0 = h and g = 0 = h. So the fibered Fermat configuration here has points that

are not all reduced. By Theorem 3, its nonradical ideal ϕ∗(I) is a counterexample

to the containment ϕ∗(I)(3) ⊆ ϕ∗(I)2.

Example 2.2.3. Similarly for the Fermat configurations considered in [28] for n ≥ 3,

we can construct new configurations of points, that may or may not be reduced

in P2, that are the fibers of a morphism of schemes ϕ# : P2 → P2. The morphism

ϕ# is induced by the ring map ϕ : C[P2] → C[P2] given by x → f , y → g

and z→ h where { f , g, h} is a homogeneous C[P2]-regular sequence of the same

degree. The Fermat configuration gives rise to a radical ideal I = (x(yj− zj), y(xj−

zj), z(xj − yj)) ⊆ C[P2], j ≥ 3, and for a choice of { f , g, h}, the fibered Fermat

configuration gives rise to an ideal ϕ∗(I) = ( f (gj− hj), g( f j− hj), h( f j− gj)), j ≥ 3,

not necessarily radical, that is also a counterexample to ϕ∗(I)(3) ⊆ ϕ∗(I)2. Here

the Fermat configuration consists of the reduced j2 points of intersection of yj − zj

and xj − yj together with the 3 coordinate vertices for a total of j2 + 3 points. If the

degree of the homogeneous elements in { f , g, h} is d, then the fibered configuration

consists of the d2 j2 points of intersection of gj − hj and f j − hj together with the

3d2 fiber points over the three coordinate vertices that are the solutions of the three

equations f = 0 = g, f = 0 = h and g = 0 = h, counted with multiplicity. Again

the points in the fibered configuration may or may not be reduced.
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Example 2.2.4. Now we consider an example given in [6] that is inspired by the

example of the Fermat configuration. Let k = Z/3Z and let K be an algebraically

closed field containing k. Note that P2
K has 13 k-points and 13 k-lines such that

each line contains 4 of the points and each point is incident to 4 of the lines.

The forms xy(x2 − y2), xz(x2 − z2) and yz(y2 − z2) vanish at all 13 points of

P2
k but the form x(x2 − y2)(x2 − z2) does not vanish at the point [1 : 0 : 0].

One checks easily that the ideal I = (xy(x2 − y2), xz(x2 − z2), yz(y2 − z2), x(x2 −

y2)(x2 − z2)) ⊆ k[P2
K] is radical and its zero locus is the 13 k-points of P2

K. Then

F = x(x− z)(x + z)(x2 − y2)((x− z)2 − y2)((x + z)2 − y2) defines 9 lines meeting

at 12 points with each point incident to 3 of the lines. It is not hard to see that

F ∈ I(3) but F /∈ I2. So the reduced configuration that comes from P2
k with the

point [1 : 0 : 0] removed together with all its incident lines gives rise to an ideal

that is a counterexample to the containment I(3) ⊆ I2. Let ϕ : k[P2
K] → k[P2

K]

be the ring map x → f = x2, y → g = y2 and z → h = z2. Applying the

degree 4 morphism of schemes ϕ# : P2
K → P2

K, induced by ϕ, and taking its

fibers over the k-points, we get a configuration of 48 points. For each point

in the original configuration, we get 4 points in the fibered configuration. The

points in this new configuration are not all reduced. For instance over the point

[0 : 0 : 1], the fiber of ϕ# is a point of multiplicity 4 in P2
K given by the vanishing

of y2 and x2. The ideal of the fibered configuration as schemes is the ideal

ϕ∗(I) = ( f g( f 2 − g2), f h( f 2 − h2), gh(g2 − h2), f ( f 2 − g2)( f 2 − h2)). This ideal is

not radical and since { f , g, h} ⊂ P2
K is a regular sequence, we have by Theorem 3

that ϕ∗(I)(3) 6⊆ ϕ∗(I)2. If instead we take f = x2 + y2, g = y2 + z2 and h = x2 + z2

in the above example, then the fibered configuration we obtain is a reduced

configuration and the ideal ϕ∗(I) is a radical ideal satisfying ϕ∗(I)(3) 6⊆ ϕ∗(I)2.
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Example 2.2.5. Variations of the above example are considered in Pn for various n

in [28], giving counterexamples for the more general conjecture I(nr−n+1) ⊆ Ir. We

can apply our result to these to obtain new counterexamples to the more general

containment.
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Chapter 3

Interpolation on Linear Systems in P2

3.1 Interpolation with one or more General Points

We first give a definition for what it means for a set of points, {p1, . . . , pn} specified

on an algebraic surface, X, to be in general position.

Definition 3.1.1. A statement is true for n general points p1, . . . , pn on a surface X if the

statement holds for any tuple (q1, . . . , qn) ∈ U ⊆ Xn such that U is nonempty and open.

Definition 3.1.2. Let X be a rational surface. An exceptional curve on X is a reduced,

irreducible, non-singular curve with genus 0 and self-intersection −1. A nodal curve

on X is a reduced, irreducible, nonsingular curve with genus 0 and self-intersection −2.

In particular, by adjunction, a prime divisor C with C2 = C · KX = −1 or C2 = −2,

C · KX = 0 is an exceptional or nodal curve respectively.

Let q1, . . . , qr be points in P2, not necessarily general, and let p1, . . . , ps be gen-

eral points in P2. Suppose that r + s ≤ 8. Blow up the qj, 1 ≤ j ≤ r and

the pi, 1 ≤ i ≤ s to obtain a surface X birational to P2. We have the ex-

ceptional curves ej corresponding to the points qj, 0 ≤ j ≤ r and the excep-

tional curves Ei corresponding to the points pi, 1 ≤ i ≤ s. Let L be the total
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transform of a line in P2 on X. Then the divisor class group on X is a free

abelian group generated by {L, e1, . . . , er, E1, . . . , Es} with intersection form L2 = 1,

e2
1 = · · · = e2

r = E2
1 = · · · = E2

s = −1, L · ej = L · Ei = ej · Ei = 0, eu · ev = 0, u 6= v,

El · Ek = 0, l 6= k, 1 ≤ j, u, v ≤ r and 1 ≤ i, l, k ≤ s.

For integers aj ≥ 0, 1 ≤ j ≤ r and bi ≥ 0, 1 ≤ i ≤ s, put e = ∑r
j=1 ajej and

E = ∑s
i=1 biEi. For t ≥ 1, consider the sub-linear system |tL − e| of the linear

system |tL| on X. To the divisor classes |tL− e| and |tL− e− E| on X, we have

the corresponding invertible sheaves OX(tL− e) and OX(tL− e− E) respectively

such that the divisors corresponding to their global sections are the divisors in the

classes |tL− e| and |tL− e− E|. Then dimk |tL− e| = dimk Γ(X,OX(tL− e)) and

similarly dimk |tL− e− E| = dimk Γ(X,OX(tL− e− E)) where Γ is the global sec-

tions functor. We have the isomorphisms H0(X,OX(tL− e)) ∼= Γ(X,OX(tL− e))

and H0(X,OX(tL − e − E)) ∼= Γ(X,OX(tL − e − E)) where H0(−) denotes the

zeroth Cech cohomology groups of the invertible sheaves. In general, given an i-th

Cech cohomology group, Hi(−) of an invertible sheaf on X, we shall denote its

dimension by hi(−). So, suppressing the sheaf notation OX, the dimensions of

the linear systems |tL− e| and |tL− e− E| may be denoted as h0(X, tL− e) and

h0(X, tL− e− E) respectively. We recall some definitions.

Definition 3.1.3. Let X be a rational surface. A divisor D is effective if D is a nonnegative

sum of prime divisors. We say that a divisor class D is effective if it contains an effective

divisor. A divisor H is nef if for every effective divisor D on X, H · D ≥ 0. A divisor class

is nef if it contains a nef divisor. Given a divisor on X, a complete linear system is the set

of all effective divisors on X linearly equivalent to the divisor.

Note that every divisor class can be written uniquely in terms of L, e1, . . . , er, E1, . . . ,
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Es which allows us to regard dL− ∑r
j=1 ajej − ∑s

i=1 biEi as either representing a

divisor or a divisor class. Now consider L− E1 first as a divisor. It is not effective

since it is not a nonnegative sum of prime divisors. However, L− E1 is an effective

divisor class since it contains an effective divisor, namely, the proper transform of

a line through the point p1. We shall use complete linear system interchangeably

with divisor class. Let L be a linear system on X containing an effective divisor.

Then M is a fixed component of L if M is a prime divisor such that for every

effective divisor N in L, N −M is an effective divisor. M is the fixed part of L if

M is the sum of all the fixed components of L.

In this dissertation, we shall be concerned with when E is special on |tL− e|.

Definition 3.1.4. We say that E is special on |tL− e| if h0(X,OX(tL− e− E))

> max{0, h0(X,OX(tL− e))−∑s
i=1 (

bi+1
2 )}. If there is a curve C such that C ∈ H0(X,

OX(tL− e− E)) but h0(X,OX(tL− e))− ∑s
i=1 (

bi+1
2 ) ≤ 0, then C is called an unex-

pected curve.

Readers familiar with the problem of polynomial interpolation on general points in

P2 will know that the SHGH conjecture gives a criterion for when h0(X,OX(tL−

e− E)) > max{0, h0(X,OX(tL− e))−∑s
i=1 (

bi+1
2 )} for all s when e = 0. The SHGH

conjecture is known to be true when s ≤ 9 and that is what the next theorem states.

Theorem 3.1.5. Let s ≤ 9 and r = 0 so that we have p1, . . . , ps general points in

P2 with assigned multiplicities b1, . . . , bs. Blow up the points p1, . . . , ps to obtain the

surface X as above. As usual, we say that E is special on |tL| if h0(X,OX(tL− E)) >

max{0, h0(X,OX(tL))−∑s
i=1 (

bi+1
2 )}. Then E is special on |tL| or equivalently |tL− E|

is special if and only if tL - E is effective and there is an exceptional curve C with

(tL− E) · C < −1.
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This dissertation will subsume Theorem 3.1.5 for up to 8 points by considering

not just the complete linear system |tL| but also the linear systems of the form

|tL− e| where e is as above. A significant difference, however, is that while |tL| is

simultaneously nef, effective, has h1(X, tL) = 0 and |tL| is fixed component free,

none of these need be true for tL− e, but in our situation it is helpful to know that

tL− e is effective, has h1(X, tL) = 0 and |tL− e| is fixed component free if |tL− e|

is nef. The next two lemmas are steps in that direction.

Lemma 3.1.6. Let X be a smooth projective rational surface with K2
X > 0, then for a nef

divisor F on X, h1(X, F) = 0.

Proof. Lemma II.5 in [23]

Lemma 3.1.7. Let X be a blow up of at most r + s ≤ 8 points in P2. Suppose that F is a

nef divisor on X. Then F is, up to linear equivalence, effective and fixed component free

with h1(X,OX(F)) = h2(X,OX(F)) = 0.

Proof. This is essentially Theorem III.1 in [23]. The only difference here is the

fact that F is fixed component free but that is also implicit in Theorem III.1

of [24]. We make everything explicit here. Since X is the blowup of points

in P2, X is a smooth rational surface. The canonical divisor has the form

KX = −3L + e1 + · · ·+ er + E1 + · · ·+ Es so that (KX)
2 = 9− (r + s) ≥ 1 since

r + s ≤ 8. Now K2
X > 0 implies −KX is effective (so −KX · F ≥ 0) and, by the

Hodge Index Theorem, that the intersection form on K⊥X is negative definite (so

F · (−KX) > 0).

Now by the previous lemma, h1(X,OX(F)) = 0. Note that h2(X,OX(F)) =

h0(X,OX(KX − F)) by duality and (KX − F) · F = KX · F − F2. From above,
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KX · F < 0 and F2 ≥ 0 since F is nef. Therefore (KX − F) · F < 0. Since

F is nef, KX − F is not effective so that h2(X,OX(F)) = 0. This implies that

h0(X,OX(F)) = F2+(−KX)·F
2 + 1 ≥ 2, by the Riemann-Roch Theorem, and so F is

effective.

If F · (−KX) ≥ 2, then part (1) of Theorem 3.2.12 gives that F is base point

free and hence fixed component free. Suppose now that F · (−KX) = 1. Suppose

further, for the sake of contradiction, that F has a fixed component and write

F = H + N where H is the free part of F and N is its fixed part. Then by part

(2) of Theorem 3.2.12, H ∈ K⊥X . But this implies that H2 < 0 if H is not trivial. If

H is trivial, then H2 = 0. Since H is free, however, H2 ≥ 0. So it must be that

H2 = 0 and H is trivial. Therefore F = N. Hence h0(X, F) = h0(X, N) = 1. This

contradicts the assertion above that h0(X,OX(F)) ≥ 2. Therefore F has no fixed

components.

Lemma 3.1.8. Let X be a rational surface that is the blow up of P2 at up to 8 points of P2.

Suppose that tL− e is effective. We can, up to linear equivalence, write tL− e = F + N,

where F is nef, effective and fixed component free and N is a sum of curves of negative

self-intersection with h0(X,OX(N)) = 1.

Proof. Since tL − e is effective, we can write tL − e = F + N where F is fixed

component free and N is the divisorial base locus of tL− e. Clearly F is effective

and since F is fixed component free, F · D ≥ 0 for every effective divisor D on X

so that F is nef. Since N is fixed, h0(X,OX(N)) = 1. Write N = n1N1 + · · ·+ ntNt

where the Ni, 1 ≤ i ≤ t are the irreducible components of N. If N2
i ≥ 0, then N is

nef while fixed contradicting Lemma 3.1.7. Therefore N2
i < 0.

Lemmas 3.1.6 and 3.1.8 allow us in Theorem 3.2.21 to come up with a character-
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ization for when h0(X,OX(F− E)) > max{0, h0(X,OX(F))−∑s
i=1 (

bi+1
2 )} that is

analogous to the characterization for when

h0(X,OX(tL − E)) > max{0, h0(X,OX(tL)) − ∑s
i=1 (

bi+1
2 )} in the SHGH conjec-

ture.

Lemma 3.1.9. Let X be a blow up of P2 in a finite number of points p1, . . . , pk. Suppose

L is an effective linear system on X and let E be a smooth rational curve on X satisfying

E2 = E · KX = −1. If L · E = −n, then the divisorial base locus of L contains nE.

Moreover h1(X,L) ≥ (n
2). Similarly let D be a smooth rational curve on X satisfying

D2 = −2 and D · KX = 0 with L ·D = −n where n ≥ 2. Then dn
2 eD is in the divisorial

base locus of L. Moreover h1(X,L) ≥ n2−1
4 > 0.

Proof. By Bezout’s theorem, L · E ≥ 0 except possibly when L and E have a

component in common. Since L · E < 0 and E is irreducible, we have that E sits

in the base locus of L. Now note that (L− (n− 1)E) · E = L · E− (n− 1)E · E =

−n + (n− 1) = −1 and (L− nE) · E = L · E + n = −n + n = 0 so that nE sits in

the base locus of L. Now we have that h0(X,L) = h0(X,L − nE) and hence by

Riemann - Roch,

h1(X,L)+ L
2 + (−KX) · L

2
+ 1 = h1(X,L−nE)+

(L− nE)2 + (−KX) · (L− nE)
2

+ 1.

This implies the following:
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h1(X,L) ≥ (L− nE)2 + (−KX) · (L− nE)
2

− L
2 + (−KX) · L

2

=
n2E2 − 2nL · E + nKX · E

2

≥ −n2 + 2n2 − n
2

=
n(n− 1)

2

=

(
n
2

)
.

Just as for E, L · D < 0 implies that D sits in the base locus of L. If n is even,

note that (L − (dn
2 e − 1)D) · D = −n + 2dn

2 e − 2 = −2 while (L − dn
2 eD) · D =

−n + 2dn
2 e = 0 and hence dn

2 eD is in the base locus of L. When n is odd, a

similar argument shows that (dn
2 e)D is in the base locus of L. We show now that

h1(X,L) 6= 0. By the theorem of Riemann-Roch,

h1(X,L) ≥
(L− dn

2 eD)2 + (L− dn
2 eD) · (−KX)

2
− L

2 + (L) · (−KX)

2

=
−2dn

2 e2 + 2ndn
2 e

2

= dn
2
e(n− dn

2
e)

When n is even we get that h1(X,L) ≥ n2

4 and when n is odd, we have that

h1(X,L) ≥ n2−1
4 . Note that in both instances since n ≥ 2, h1(X,L) > 0.
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3.2 Interpolation with one General Point

We now consider a special case of the interpolation problem that was discussed

at length in [33], namely when s = 1, r = 7 and there is an unexpected singular

cubic curve. An example was given in [33] that showed that this situation occurs

when the characteristic of the base field is 2. Let Z be the seven points of the

Fano plane. One can show that the linear system of cubics containing Z in its

base locus has dimension 3 so that there should be no singular cubic containing Z

in its base locus with a general point of multiplicity 2. But again, one can check

that F = α2xy(x + y) + β2xz(x + z) + γ2yz(y + z) is a cuspidal cubic vanishing

at each point of Z with a cusp at [α : β : γ] ∈ P2. We show that this is the only

time that this situation can occur when the points are distinct, i.e., any reduced

0-dimensional subscheme admitting an unexpected cubic is the Fano plane.

Definition 3.2.1. Let k be an algebraically closed field. Consider a collection of r points,

{p1, . . . , pr}, in P2 with r ≥ 1. We say that {p1, . . . , pr} impose independent conditions

on the homogeneous polynomials of degree d in k[P2] if the codimension of the vector space

of the homogeneous polynomials of degree d that vanish at all the points {p1, . . . , pr} is

min {r, (d+2
2 )}.

Remark 3.2.2. Given r points with r ≤ (d+2
2 ) − 1, there is a nonzero homogeneous

polynomial of degree d vanishing at each of the r points.

We now reinterpret Definition 3.1.4 in the current situation. This reinterpretation

is due to [33]. Note that Definition 3.1.4 and Definition 3.2.3 are not at variance.

Both definitions capture the same idea in different situations, namely, if one finds

a curve in excess of what there ought to be, then the curve is unexpected.
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Definition 3.2.3. Suppose that Z = q1 + · · ·+ qr is a reduced 0-dimensional subscheme

in P2. Let IZ be the sheaf of ideals of Z in P2. Let p /∈ Z be a general point in P2. We

write mp for the fat point of multiplicity m supported at p and let IZ+mp be the sheaf of

ideals of the subscheme Z + mp. We say that Z admits an unexpected curve of degree

m + 1 if h0(P2, IZ+mp(m + 1)) > max {0, h0(P2, IZ(m + 1))− (m+1
2 )}.

We now give a characterization, Theorem 2.16 in [33], for when a reduced 0-

dimensional subscheme supported at only finitely many points admits an unex-

pected curve.

Theorem 3.2.4. Let Z be a reduced 0-dimensional finite subscheme in P2. Then Z

admits an unexpected curve if and only if mZ < tZ. In this case, tZ ≤ µZ. Moreover

Z admits an unexpected curve of degree j + 1 if and only if mZ ≤ j < µZ. Further,

h0(P2, IZ+mZ p(mZ + 1)) = 1.

To prove that the 7 points of the Fano plane is the only Z with an unexpected

curve of degree 3, we need some lemmas.

Lemma 3.2.5. Suppose that {p1, . . . , p7} are points in P2 and assume that there is a line

L that contains exactly 4 of the points. Suppose that p8 is a double point of a cubic curve

which vanishes at {p1, . . . , p7}. Then p8 is not a general point.

Proof. Fix the 7 points {p1, . . . , p7} in P2 with exactly 4 of them, say p1, . . . , p4,

contained by a line L. Let C be a cubic curve going through {p1, . . . , p7}. Then

C · L ≥ 4 and so by Bézout’s theorem, L is a component of C. So C = L + Q where

Q is a conic. We check two cases.

Suppose that Q is irreducible going through p5, p6, p7. Then the choice of p8

is one of the points in L ∩Q but L ∩Q ⊆ L. Hence p8 is always in the closed set L
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and hence not general.

Suppose now that Q is reducible and let Q = L1 + L2, a union of lines. One

of the lines, say L1, contains at least two of the points p5, p6, p7. It follows that

L + L1, contains at least 6 of the points p1, . . . , p7. Therefore the double point of

the cubic is contained in L + L1. Hence the choice of p8 is confined to a proper

closed locus, hence p8 is not general.

Lemma 3.2.6. Suppose that Z is a reduced 0-dimensional subscheme in P2 such that Z

admits an unexpected curve of degree 3. Then Z imposes exactly 7 independent conditions

on forms of degree 3 and hence |Z| ≥ 7.

Proof. Note that if Z admits an unexpected curve of degree 3, then the least de-

gree of an unexpected curve that Z admits is 3. This is because if Z admits an

unexpected curve of degree j + 1 = 1, then Z + jp = Z and since (1
2) = 0, we have

h0(P2, IZ+jp(j + 1)) > h0(P2, IZ(j + 1)) − (j+1
2 ) which is impossible. Similarly

if Z admits an unexpected curve of degree j + 1 = 2, then since p is a general

point, we have that h0(P2, IZ+jp(j + 1)) = h0(P2, IZ+p(2)) > h0(P2, IZ(2))− 1 =

h0(P2, IZ(j + 1))− (j+1
2 ) which is again impossible. Hence the least degree of an

unexpected curve that Z admits is 3.

This implies that mZ + 1 = 3 and hence mZ = 2. By Theorem 3.2.4, mZ < tZ

when Z admits an unexpected curve so that tZ > 2. It follows from the definition

of tZ that h0(P2, IZ(3))− (3
2) ≤ 0 so that h0(P2, IZ(3)) ≤ 3. This implies that the

points in Z impose at least 7 independent conditions on H0(P2,OP2(3)). Therefore

|Z| ≥ 7.
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Clearly h0(P2, IZ(3)) > 0 so that Z does not impose 10 or more independent

conditions on the space of cubics. If h0(P2, IZ(3)) = 1, then the singular loci of

the curves in IZ(3) is a proper closed subset and Z does not admit an unexpected

cubic. So Z does not impose 9 independent conditions.

Say that Z imposes 8 independent conditions on the space of cubics. Then

h0(P2, IZ(3)) = 2 and the space of cubics containing Z in its base locus with

singular points forming an open set, U, in P2 is a pencil. Pick a point p ∈ U. Then

there is a unique curve C ∈ IZ(3) passing through p. Now since there is a curve

in IZ(3) with a singularity at p, it must be that C has a singularity at p. Since U

is open, for a point p′ in a neighborhood of p, there is a unique C′ ∈ IZ(3) with

a singularity at p′. Since some of the points in the neighborhood of p lie on C, it

must be that C has a multiple component in a neighborhood of p.

Since C is a cubic curve with a multiple component, C is comprised of two

lines, one of which is multiple with the multiple line containing p. Since p is a

general point however, the multiple line can contain at most one other point of Z.

Therefore the non-multiple line of C contains at least 6 of the points of Z. But the

space of cubics through Z where at least 6 of the points of Z are collinear must

have dimension at least 5, i.e., h0(P2, IZ(3)) ≥ 5. Therefore Z cannot impose 8

independent conditions on the space of cubics and in fact must impose exactly 7

independent conditions.

Lemma 3.2.7. Let Z be a reduced 0-dimensional subscheme in P2 such that Z admits an

irreducible unexpected curve of degree 3. Then there is a subscheme Z′ ⊂ Z with |Z′| = 7

such that Z′ admits an unexpected curve of degree 3.
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Proof. By the previous lemma, if Z admits an unexpected curve, C, of degree 3 then

Z imposes at least 7 independent conditions and |Z| ≥ 7. Let Z′ ⊆ Z be 7 points

that impose independent conditions on the space of all cubics, H0(P2,OP2(3)) on

P2.

Recall that Z admitting an unexpected curve means that h0(P2, IZ+2p(3)) >

h0(P2, IZ(3))− 3 for a general point p. Since Z imposes at least 7 independent

conditions on cubics, h0(P2, IZ(3)) ≤ 3 and since Z′ ⊆ Z imposes exactly 7 inde-

pendent conditions, h0(P2, IZ′(3)) = 3. Since h0(P2, IZ+2p(3)) = 1 by Theorem

3.2.4, there is a unique cubic containing Z with a double point at p and hence it con-

tains Z′ with a double point at p. Hence for a general point p, h0(P2, IZ′+2p(3)) ≥

h0(P2, IZ+2p(3)) = 1. It follows that h0(P2, IZ′+2p(3)) > h0(P2, IZ′(3))− 3 and so

Z′ admits an unexpected curve of degree 3.

We shall need the following lemma for Lemma 3.2.9 below.

Lemma 3.2.8. Suppose that Z is a 0-dimensional subscheme of reduced points in P2 and

let p ∈ P2 be a general point. Let C be a curve containing Z with multiplicity deg C− 1

at the general point p. Then C is reduced. If C is not irreducible, then C is the union of

lines through p and a curve C′ such that C′ is reduced and irreducible and the multiplicity

of C′ at p is deg C′ − 1 with C′ being smooth away from p.

Now put Z′ = Z ∩ C′ and Z′′ = Z − Z′. Then Z′ has multiplicity index, mZ′ , sat-

isfying mZ′ + |Z′′| = mZ. Moreover every component of C − C′ passes through the

general point p and exactly one other point of Z′′ and hence deg C′ = deg C− |Z′′| =

(mZ + 1)− |Z′′| = (mZ′ + |Z′′|+ 1)− |Z′′| = mZ′ + 1.

Proof. Lemma 5.1 in [33].
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Lemma 3.2.9. Suppose that Z′ is a reduced 0-dimensional subscheme admitting an

unexpected cubic, C, with |Z′| = 7. Then we have the following:

1. C is reduced and irreducible and hence no more than 3 points of Z′ lie on a line and

Z′ is not contained in a conic.

2. The general cubic through Z′ is reduced and irreducible.

3. Every cubic through Z′ is singular.

Proof. By Lemma 3.2.8 above, we know that C is reduced. If C is not irreducible,

then Lemma 3.2.8 gives that C has a component C′ that is an unexpected curve

for a subscheme Y of Z′. Clearly C′ cannot be a line since it would have to have

a singularity of multiplicity 0 at a general point. So C′ is a conic that is an unex-

pected curve for a subscheme Y ⊂ Z′ where |Y| = 6 by Lemma 3.2.8. Y however

determines a unique conic so that the general point p is confined to a proper closed

subset which is impossible. So C has to be irreducible. Since we have that C is

irreducible, no more than 3 points of Z′ are lie on a line and Z′ is not contained in

a conic.

We now argue that the general cubic through Z′ is irreducible. Note that if

the general cubic is reducible, then it consists of 3 lines or an irreducible conic

and a line. Let’s consider the space of cubics vanishing at Z′ consisting of three

lines. Note that two of the lines must each contain at least 2 of the points. Let

those two lines be L1 and L2. Then L1 and L2 each contain at least 2 of the points

and at most 3 of the points of Z′ and L3 contains at least one of the points of Z′.

Hence there are finitely many choices for L1 and L2 and one projective dimension

worth of choices for L3. This is finitely many one dimensional families in a three
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dimensional vector space (hence 2 dimensional projectively). Therefore the general

cubic cannot consist of three lines.

For the space of cubics, Q + L, vanishing at Z′ consisting of an irreducible conic,

Q, and a line, L, note that L contains at most 3 of the points and Q contains at least

4 of the points. Since Q is irreducible, no 3 or more of the points are collinear. So

if Q has 4 points, then we have a pencil of conics and L is fixed. If Q has 5 points,

then we have a unique conic and again L is fixed by 2 points. If Q has 6 points,

then it is unique and L moves in pencil. Across all of these scenarios, we have

finitely many one dimensional families of cubics Q + L in a three dimensional

space of cubics vanishing at Z′. So again, the general cubic cannot consist of an

irreducible conic and a line. We conclude that the general cubic must be irreducible.

We now argue that every cubic through Z′ is singular. By Lemma 3.2.6, we

know that Z′ imposes exactly 7 conditions so that h0(P2, IZ′(3)) = 3. Pick a basis

{F, G, H} of H0(P2, IZ′(3)). For a point (A, B, C) ∈ P2, we have the cubic AF +

BG + CH ∈ H0(P2, IZ′(3)). Now consider all the points ((A, B, C), (a, b, c)) ∈

P2 ×P2 such that (a, b, c) is a singular point of the cubic AF + BG + CH. Since Z′

admits an unexpected cubic, there are indeed such points. Let V be the closure of

all such points in P2 ×P2.

Let π2 : P2 × P2 → P2 be projection onto the second component. Let U be

the open set of all the general points in the second component. Then π−1
2 (U) ⊂ V

is an open set and each general point p ∈ U has a single point in its pre-image by

π2. Let W be the closure of π−1
2 (U) in V. Then W is the component of V that is

carried to the general points by π2 and it is 2-dimensional. Let π1 be projection
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onto the first component. If π1(W) is a point, then there is a single cubic containing

Z′ that has a singularity at every general point which is impossible. If π1(W) is

contained in a curve of P2, then that means that every cubic with a singularity at a

general point has a one dimensional singular locus. But this contradicts the fact

that every general point has a unique cubic with a singularity at that general point.

Since π1 is a closed map and π1(W) is not contained in a curve, π1(W) = P2.

Therefore every cubic through Z′, AF + BG + CH, has a singularity.

Lemma 3.2.10. Let Z′ = {p1, . . . , p7} be a reduced 0-dimensional subscheme such that

|Z′| = 7 and Z′ admits an unexpected cubic. Blow up Z′ to obtain a surface X → P2

with exceptional curves e1, . . . , e7 and let L be the total transform of a line in P2 on X.

Then the anticanonical divisor class −KX is numerically effective.

Proof. By Lemma 3.2.9, if Z′ admits an unexpected cubic and C is the general

cubic in IZ′(3), then C is irreducible. To see that −KX is nef, we need only show

that the proper transform of C when we blow up Z′ belongs to the class of −KX,

3L− e1 − · · · − e7. For this, it is enough to show that C has multiplicity 1 at every

point of Z′. Let C̃ and C′ be irreducible cubics in IZ′(3) and suppose that both

have a singularity at a point, say p1, of Z′. Then C̃ · C′ = 4 + 6 = 10 contrary to

Bézout’s theorem. So if there is an irreducible cubic in IZ′(3) with a singularity at

a point of Z′, then it is unique. Therefore there at most 7 such irreducible cubics.

Hence the general cubic C in IZ′(3) cannot have a singularity at one of the points

of Z′. −KX now has positive self-intersection and contains an irreducible section

and so is nef.

Corollary 3.2.11. Let Z be a reduced 0-dimensional subscheme that admits an unexpected

cubic. Then |Z| = 7.
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Proof. Note that |Z| ≥ 7 by Lemma 3.2.6. By Lemma 3.2.7, Z has a subscheme,

Z′ = p1 + · · ·+ p7, such that |Z′| = 7 and Z′ admits an unexpected cubic. Blow

up the points of Z to obtain a surface X with exceptional curves e1, . . . , e|Z| and L

the total transform of a line. Consider the class 3L− e1 − · · · − e7 and note that

by Lemma 3.2.10, it is nef. Furthermore, it is base point free by Theorem 3.2.12.

Hence if |Z| > 7, then h0(X, 3L− e1 − · · · − e|Z|) < h0(X, 3L− e1 − · · · − e7). But

h0(X, 3L− e1− · · · − e7) = 3 by Lemma 3.2.6 so that h0(X, 3L− e1− · · · − e|Z|) < 3.

This means that Z imposes more than 7 conditions on the space of cubics in P2

and hence cannot admit an unexpected curve by Lemma 3.2.6. Now it follows that

Z = Z′.

The following result forms part of the main result, Theorem III.1, in [24].

Theorem 3.2.12. Let X be a smooth, projective, anticanonical rational surface. Let F be a

numerically effective divisor class on X. Write F = H+N where H is the class of the

free part of F and N is the class of the fixed part of F . Let −KX denote the class of the

effective anticanonical class on X and let D be a nonzero section of −KX.

1. Suppose that (−KX) · F ≥ 2, then h1(X,F ) = 0 and F is base point free so fixed

component free (N = 0).

2. Suppose that (−KX) · F = 1, then h1(X,F ) = 0 and if F has no fixed components,

then it has a unique base point on D. The class F has a fixed component if and

only if H = rC where C ∈ K⊥X and N = N1 + · · ·+Nt with Ni a smooth rational

curve for every i, N 2
i = −2 and Ni · Ni+1 = 1 for i < t, N 2

t = −1, Ni · Nj = 0

for j > i + 1, C · N1 = 1, and C · Ni = 0 for i > 1 and finally r = h1(X,H) with

r > 1 only if C2 = 0.
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We will soon need the following theorem due to Bertini, [1], which guarantees the

existence of a section that is reduced and irreducible and has no singular points

outside the base locus of its linear system F in characteristic 0, when F is fixed

component free and is not composed with a pencil.

Theorem 3.2.13 (Bertini). Let V ⊆ Pn
k be an algebraic variety where k is a field of

characteristic 0. Suppose that F is a linear system on V that is fixed component free. If

F is not composed with a pencil, then the sections of F that are reduced and irreducible

comprise a dense open set in the parameter space P(F )∨. Also the sections of F that have

no singular points outside the base locus of F also form a dense open set in the parameter

space P(F )∨.

We now introduce the notions of elliptic and quasi-elliptic fibrations and collect

some facts about the Picard groups on elliptic and quasi-elliptic curves.

Definition 3.2.14. Let X be a smooth projective surface and let B be a smooth curve. Let

φ : X → B be a surjective morphism such that the general fiber of φ is a curve of arithmetic

genus 1. Then φ is a genus 1 fibration. If the general fiber is smooth, then it is an elliptic

curve and the fibration is called an elliptic fibration. If the general fiber is not smooth, then

the fiber is called a quasi-elliptic fibration.

Lemma 3.2.15. If the characteristic of the base field is not 2 or 3, then any genus 1

fibration is an elliptic fibration. In characteristics 2 and 3, the general fiber of a genus 1

fibration may be quasi-elliptic, in which case the general fiber is a cuspidal rational curve.

Proof. Propositions 1.1 & 1.2 of [35].

Lemma 3.2.16. Suppose that C is an elliptic curve in P2 over an algebraically closed field

of characteristic p. Let [m] : Pic(C) → Pic(C), m ∈ Z, m ≥ 2, be the map given by

[m](x) = mx for x ∈ Pic(C).
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1. If p - m, then |ker([m])| = m2 and ker([m]) ∼= Zm ×Zm.

2. If ker([p]) is not trivial, then for all t > 0, ker([pt]) ∼= Zpt .

3. Let m = ptn such that p - n and t > 0.

a) If ker([p]) 6= {O}, then ker([m]) = ker([pt]) × ker([n]) ∼= Zpt × Zn ×

Zn ∼= Zm ×Zn.

b) If ker([p]) = {O}, then ker([m]) = ker([pt]) × ker([n]) ∼= {O} ×Zn ×

Zn ∼= Zn ×Zn

In particular, the number of m-torsion points on elliptic curves are always finite.

Proof. See Lemma III.8 in [5] for parts 1 and 2. For part 3, use the fact that pt and

n are coprime and hence ker([ptn]) = ker([pt])× ker([n]).

Lemma 3.2.17. Suppose that C is a quasi-elliptic curve over an algebraically closed field,

k, of characteristic p, prime. Then Pic(C) ∼= Ga where Ga is the additive group of k.

In particular, every non-trivial point of C is a p-torsion point under the isomorphism of

Pic(C) with the smooth points of C.

Proof. See Proposition 5.2 in chapter 1, section 5 of [32].

We will need the semicontinuity principle to show that unexpected cubics occur

only in characteristic 2. Before we state it, we define what it means for points

p1, . . . , pn in P2 to be essentially distinct.

Definition 3.2.18. We say that points p1, . . . , pn are essentially distinct if there is a

sequence of blowings-up Xn → Xn−1 → · · · → X1 → X0 = P2 such that pi is a point

on Xi−1 and is the center of the blowing-up Xi → Xi−1.
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Lemma 3.2.19. Semicontinuity Principle Suppose that m, m1, . . . , mr are nonnegative

integers and let p1, . . . , pr be general points in P2. Blow up the points to obtain a

surface X and let E1, . . . , Er be the corresponding exceptional curves with L the proper

transform of a line in P2. Now let p′1, . . . , p′r be essentially distinct points of P2 and

blow them up to obtain a surface X′ with corresponding exceptional curves E′1, . . . , E′r

and proper transform of a line L′. If mL−m1E1 − · · · −mrEr is an effective class, then

mL′ −m1E′1 − · · · −mrE′r is an effective class.

Proof. See Theorem I.1.6 in [26].

Theorem 3.2.20. Let k be an algebraically closed field. Suppose that Z is a reduced

finite subscheme of points in P2
k that admits an unexpected curve of degree 3. Then the

characteristic of the base field is 2.

Proof. We know by Corollary 3.2.11 that |Z| = 7. [33] shows that if Z is the Fano

plane of 7 points, then Z admits an unexpected curve of degree 3. It remains to

show that if char k 6= 2, then no reduced 0-dimensional subscheme can admit an

unexpected cubic.

Let Z admit an unexpected cubic. Blow up the points of Z to obtain a sur-

face X → P2. Note that h2(X,−KX) = h0(X, 2KX) by duality and since the

total transform of a line in P2 to X, L, is nef and 2KX · L = −6 < 0, 2KX is

not effective. Hence h2(X,−KX) = h0(X, 2KX) = 0. Now by Riemann-Roch,

h0(X,−KX) = (−KX)
2 + 1 + h1(X,−KX) = 3 + h1(X,−KX). Since h1(X,−KX) ≥

0, −KX is an effective divisor class. Suppose now that the characteristic of the

base field is 0. By Lemma 3.2.10, −KX is numerically effective. Now note that

(−KX)
2 = (3L− E1 − · · · − E7)

2 = 9− 7 = 2 > 0 and hence taking −KX = F in

Theorem 3.2.12, we have that −KX is base point free and hence fixed component
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free.

Note that the linear system of divisors of −KX, H0(X,−KX), has dimension 3

since it is just the linear system of cubics containing Z but Z imposes exactly 7

conditions on the space of cubics in P2 which has dimension 10. Another way to

see this is that by Theorem 3.2.12, h1(X,−KX) = 0 and hence by the Riemann-Roch

theorem, h0(X,−KX) = 3. Hence −KX is not a pencil. Moreover the general

section of −KX is not composed with a pencil. To see this, note that Theorem

3.2.12 gives that −KX has no base points. So we get a map φ|−KX | : X → P2 where

2 = h0(X,−KX)− 1. If −KX is composed with a pencil, then φ|−KX |(X) would be

a curve. But that implies that the fibers of the morphism are disjoint and hence

have self-intersection 0. But the sections of −KX are unions of fibers and so this

would imply that −K2
X = 0. But this is false since −K2

X = 2. So −KX is indeed

not composed with a pencil. In characteristic 0, theorem 3.2.13 now gives that the

general section of −KX is smooth outside of its base points. But since −KX has no

base points, we have that its general section is smooth.

Since h0(X,−KX) = 3, we can parameterize the sections of H0(X,−KX) by P2. We

do this by picking a basis {F, G, H} ⊂ H0(X,−KX) and projectivizing H0(X,−KX)

by AF+ BG+CH → (A, B, C) ∈ P2. Then the non-general sections of H0(X,−KX)

correspond to some curve in P2 so that they just have projective dimension one.

Since Z admits an unexpected cubic, for every general point p in P2, there is a

non-general cubic containing Z with a singular point at p. Since we just have a

one-dimensional (projective) amount of such cubics, each one must have a one-

dimensional singular locus since the general points are two dimensional. Therefore

such a cubic C has a linear component that is non-reduced. Since the non-reduced
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linear component contains a general point, it can contain at most one other point

of Z. This implies that 6 points of Z are collinear. But this is impossible since

the general section of H0(X,−KX) is irreducible. Combining the last two sections

gives that when the characteristic of the base field is 0, then no 0-dimensional

subscheme can admit an unexpected cubic.

Suppose now that the characteristic is positive. By Lemma 3.2.9, we can as-

sume that the general cubic containing Z is irreducible. Moreover for every general

point, we obtain a pencil of cubics such that each cubic in the pencil is singular.

Only one of the cubics has its singular point at p. Blow up the base points of

the pencil to obtain a genus 1 fibration. Then the general fiber of the fibration is

singular, in fact a cuspidal cubic by Lemma 3.2.15, but when char k > 3, then the

general fiber is smooth, again by Lemma 3.2.15, so that char k = 3 or 2.

Say that char k = 3. The general fiber of the fibration has a single singular

point of multiplicity 2. Let C be the image in P2 of one of the general fibers. Let

C′ be its proper transform to the surface X that is the blow up of P2 at the points

of Z. For each point p of C′, the Semicontinuity Principle, Lemma 3.2.19, gives

that there is Cp ∈ | − KX| such that Cp is singular at the point p. Hence Cp · C′ = 2.

Since the various Cp are linearly equivalent, if Cq is the curve for a point q of C′,

then 2p is linearly equivalent to 2q on C′. Therefore p − q is a 2-torsion point.

This means that for general points p and q on C′, p− q has 2-torsion. However,

a cuspidal cubic in characteristic 3 has finitely many 2-torsion points by Lemma

3.2.17. This means that there can be only finitely many points p of C′ such that a

cubic through Z′ has a singularity at p. Therefore Z′ does not have an unexpected

curve of degree 3 if char k = 3.
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Theorem 3.2.21. Let q1, . . . , qr be points in P2 that are not necessarily general. Let

p1, . . . , ps be general points such that r + s ≤ 8. Blow up the points to obtain a surface X.

Let a1, . . . , ar, b1, . . . , bs be nonnegative integers and put e = ∑r
j=1 ajej and E = ∑s

i=1 biEi

where ej is the blow up of the points qj and Ei is the blow up of the points pi. For some t > 0,

consider the divisors tL− e and tL− e− E with h0(X, tL− e) > h0(X, tL− e− E) > 0.

Write tL− e = F + N where F is free and hence nef and N is the divisorial base locus of

tL− e.

1. If there is an exceptional curve C such that (F− E) · C ≤ −2, then E is special on

tL− e, i.e. h0(X, tL− e− E) > max{0, h0(X, tL− e)−∑s
i=1 (

bi+1
2 )}.

2. Similarly, if there is a nodal curve D such that (F− E) · D ≤ −2, then E is special

on tL− e, char k = 2 and D = 3L− e1 − · · · − e7 − 2E8.

Proof. Write tL− e = F + N where F is the free and hence nef part of tL− e and

N is the divisorial base locus of tL− e. Then since N is in the fixed part of tL− e,

h0(X, tL− e) = h0(X, F) and h0(X, F− E) = h0(X, tL− e− E).

Since nef divisors are effective for 8 or fewer points, F is a nontrivial nef divisor,

and E · L = 0, (F− E) · L > 0 and we have by duality that h2(X, F− E) = 0. By the

theorem of Riemann-Roch, h0(X, F− E) = (F−E)2+(−KX)·(F−E)
2 + 1 + h1(X, F− E).

Since F is nef, h1(X, F) = h2(X, F) = 0 and so we can rewrite h0(X, F− E) to get

h0(X, F − E) = h0(X, F)− ∑s
i=1 (

bi+1
2 ) + h1(X, F − E). Suppose now that there is

an exceptional curve C with (C)2 = C · KX = −1 such that (F − E) · C = −n,

n ≥ 2 or a nodal curve D such that D2 = −2, D · KX = 0 with (F− E) · D = −m,

m ≥ 2. Then by Lemma 3.1.9, the divisorial base locus of F− E contains nC or
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contains dm
2 eD. In the first instance h1(X, F− E) > (n

2) and in the second scenario,

h1(X, F − E) > m2−1
2 . In both instances h1(X, F − E) > 0 since n ≥ 2 and also

m ≥ 2. Hence h0(X, F− E) > h0(X, F)−∑s
i=1 (

bi+1
2 ).

From the first paragraph of this argument, h0(X, tL− e− E) = h0(X, F− E) and

h0(X, F)− ∑s
i=1 (

bi+1
2 ) = h0(X, tL− e)− ∑s

i=1 (
bi+1

2 ). From the second paragraph,

we have that h0(X, F− E) > h0(X, F)−∑s
i=1 (

bi+1
2 ). Putting it together gives that

h0(X, tL− e− E) > h0(X, tL− e)−∑s
i=1 (

bi+1
2 ). Hence E is special on tL− e.

Since r + s ≤ 8, if D is a nodal curve on X, then D is the proper transform

of a line through 3 of the points, or the proper transform of a conic through 6 of

the points or the proper transform of a cubic through all 8 points with a singularity

at one of the points. If D is the transform of a line or a conic, then D · E = 0 since

otherwise the points blown up to obtain E will not be general. So D must have

the class 3L− e1 − · · · − e7 − 2E where the e1, . . . , e7 are the blow up of the points

q1, . . . , q7 and E is the blow up of the lone general point p. Let Z = q1 + · · ·+ q7

be a 0-dimensional subscheme. Since p is a general point and there is a cubic

containing Z in its vanishing locus with a singularity at p, Z admits an unexpected

cubic. By Theorem 3.2.20, the characteristic of the base field is 2.

We shall need the following lemma from [19] for the proof of Theorem 3.2.23 and

so we make note of it.

Lemma 3.2.22. Let p1, . . . , pt, t ≤ 8, be points in P2. Blow them up to obtain a surface

X and let E1, . . . , Et be the divisors corresponding to the blown up points and let L be the

total transform of a general line in P2. Define Bt, Lt, Qt, Ct andM8 to be the following

finite families:
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• Bt = {E1, . . . , Et};

• Lt = {L− Ei1 − · · · − Eij |2 ≤ j ≤ t};

• Qt = {2L− Ei1 − · · · − Eij |5 ≤ j ≤ t};

• Ct = {3L− 2Ei1 − Ei2 − · · · − Eij |7 ≤ j ≤ 8, j ≤ t}; and

• M8 = {4L− 2Ei1 − 2Ei2 − 2Ei3 − Ei4 − · · · − Ei8 , 5L− 2Ei1 − · · · − 2Ei6 − Ei7 −

Ei8 ,

6L− 3Ei1 − 2Ei2 − · · · − 2Ei8}.

Let Neg(X) be a set comprised of the classes of curves of negative self-intersection on X.

Then Neg(X) ⊆ Bt ∪ Lt ∪Qt ∪ Ct ∪M8.

Proof. See Proposition 4.1 in [19].

Theorem 3.2.23. Let q1, . . . , qr be points in P2, not necessarily general, and let p1, . . . , ps

be general points such that r + s ≤ 8. Blow up the points to obtain a surface X and for

some integers a1, . . . , ar, b1, . . . , bs, let e = a1e1 + · · ·+ arer and E = b1E1 + · · ·+ bsEs

where the ej are the blow up of the qj and the Ei are the blow up of the pi. For an integer

t > 0, consider the divisors tL− e and tL− e− E. Write tL− e = F + N where F is

free and hence nef and N is the divisorial base locus of tL− e. If h0(X, tL− e− E) >

max{0, h0(X, tL − e)− ∑s
i=1 (

bi+1
2 )}, then either r = 7, s = 1 with a nodal curve D

satisfying D · E > 1 with D in the divisorial base locus of F− E or there is an exceptional

curve C with C · E > 0 such that mC is in the divisorial base locus of F− E with m > 1.

Proof. We can write tL − e = F + N where F is the free and hence nef part

of tL − e and N is the divisorial base locus of tL − e. Then h0(X, tL − e) =

h0(X, F) and h0(X, tL− e− E) = h0(X, F− E). By Riemann-Roch, h0(X, F− E) =
(F−E)2+(−KX)·(F−E)

2 + 1 + h1(X, F− E)− h2(X, F− E). If we assume that F− E is
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effective, then h2(X, F− E) = 0 and we compute (F−E)2+(−KX)·(F−E)
2 + 1 to obtain

(F−E)2+(−KX)·(F−E)
2 + 1 = h0(X, F)− ∑s

i=1 (
bi+1

2 ) (h1(X, F) = 0 since F is nef and

h2(X, F) = 0 since F is effective.) Hence h0(X, F − E) = h0(X, F)− ∑s
i=1 (

bi+1
2 ) +

h1(X, F − E). Then h0(X, F − E) = h0(X, tL − e − E) > max{0, h0(X, tL − e) −

∑s
i=1 (

bi+1
2 )} = max{0, h0(X, F)−∑s

i=1 (
bi+1

2 )} if and only if h0(X, F− E) > 0 and

h1(X, F− E) > 0.

Note that the divisorial base locus of F− E is not empty since F− E is not nef. F− E

is not nef because h1(X, F− E) > 0 on a blow up of 8 or fewer points. Suppose

that there is no nodal curve D in the divisorial base locus of F− E with D · E > 1

and that there is no non-reduced exceptional curve C in the divisorial base locus of

F− E with C · E > 0. Write F− E = H + C1 + · · ·+ Cm + N1 + · · ·+ Nn where H

is the free and hence the nef part of F− E and C1 + · · ·+Cm + N1 + · · ·+ Nn is the

divisorial base locus of F− E with Ci · E > 0 for all i and Nj · E = 0 for all j. Since

we are arguing by contradiction and we show below that the Ci are exceptional,

we assume that the Ci are reduced. Because the Ci are reduced, they are all distinct

but the Nj need not all be distinct. Moreover 0 ≤ F · Nj = (F− E) · Nj.

The claim now is that C2
i = −1 for all i. Fix an i and consider Ci. Note that

all the curves in C1, . . . , Cm, N1, . . . , Nn have negative self-intersection since other-

wise they would be free. By Lemma 3.2.22, Ci ∈ Bt ∪ Lt ∪Qt ∪ Ct ∪M8. We write

E for an exceptional curve in {e1, . . . , er, E1, . . . , Es}. Clearly the class of Ci is not

L− Ei1 − · · · − Eij , 3 ≤ j ≤ r, since Ci · E > 0 would imply that one of the general

points is collinear with two other points which is not possible. Similarly the class

of Ci is not 2L− Ei1 − · · · − Eij , 6 ≤ j ≤ r, because combined with Ci · E > 0, that

would also imply that one of the general points is conconic with 6 or more of the
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other points which is not possible.

Finally the class of Ci is not 3L − 2Ei1 − Ei2 − · · · − Ei8 ; otherwise, if it were,

and Ei1 is the preimage of a general point then D would be Ci which is not

possible by assumption. Say that Ei1 is not the preimage of a general point and

rather say that Ei2 is the preimage of a general point, pi2 . Recalling that Ci is irre-

ducible, 3L− 2Ei1 − Ei3 − · · · − Ei8 is the class of an irreducible section and since

(3L− 2Ei1 −Ei3 − · · · − Ei8)
2 = −1, we have that h0(X, 3L− 2Ei1 −Ei3 − · · · − Ei8) =

1. It follows that pi2 is confined to a closed locus which contradicts the assumption

that it is general. Hence the class of Ci is not 3L− 2Ei1 − Ei2 − · · · − Ei8 .

It follows now that Ci is an exceptional curve. Now for two exceptional curves

Ci and Cj, if Ci · Cj > 0, then Ci + Cj moves and hence cannot be in the base

locus. Hence Ci · Cj = 0 for all i and j. Some of the Ci might meet the Nj or

H. Let C be the sum of all those Ci and let C′ be the sum of the remaining Ci.

Note that C + N1 + · · ·+ Nn + H is nef and to see that we check its intersection

with its various components. For Ci appearing in C, Ci · C = −1 but for some

Nj, Ci · Nj > 0 and Ci · H ≥ 0 so that Ci · (C + N1 + · · ·+ Nn + H) ≥ 0. For the

Nj, we have from above that Nj · (F − E) ≥ 0 and since F − E = C′ + C + N1 +

· · · + Nn + H and Nj · C′ = 0, we have that Nj · (C + N1 + · · · + Nn + H) ≥ 0.

Finally, H · (C + N1 + · · · + Nn + H) ≥ 0 since H is free. By Lemma 3.1.7,

h1(X, C + N1 + · · ·+ Nn + H) = 0.

We now show that we can add the curves in C′ onto C + N1 + · · · + Nn + H

one at a time while maintaining the vanishing of h1. Let Ci be one of the

curves in C. Take C + N1 + · · · + Nn + H + Ci and consider the sequence of
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sheaves 0→ OX(C + N1 + · · ·+ Nn + H)→ OX(C + N1 + · · ·+ Nn + H + Ci)→

OCi(C + N1 + · · ·+ Nn + H + Ci) → 0. Since Ci is exceptional and Ci · (C + N1 +

· · ·+ Nn + H + Ci) = Ci · (C + N1 + · · ·+ Nn + H) + Ci · Ci = 0 +−1 = −1, the

sequence devolves to 0→ OX(C + N1 + · · ·+ Nn + H)→ OX(C + N1 + · · ·+ Nn +

H + Ci) → OCi(−1) → 0. We take cohomology to get 0 → H0(X,OX(C + N1 +

· · ·+ Nn + H) → H0(X,OX(C + N1 + · · ·+ Nn + H + Ci) → H0(Ci,OCi(−1)) →

H1(X,OX(C + N1 + · · ·+ Nn + H) → H1(X,OX(C + N1 + · · ·+ Nn + H + Ci) →

H1(Ci,OCi(−1)) → · · · . Now by duality on Ci, we have that h1(Ci,OCi(−1)) =

h0(Ci,OCi(−2 + 1)) = h0(P1,OP1(−1)) = 0. The sequence 0 → H1(X, C + N1 +

· · ·+ Nn + H + Ci) → 0 now gives that h1(X, C + N1 + · · ·+ Nn + H + Ci) = 0.

Iterating this argument gives that h1(X, C + N1 + · · ·+ Nn + H + C′) = 0.

3.3 Quasi-Elliptic Fibrations

We now make some basic observations about quasi-elliptic fibrations over an

algebraically closed field k. In the next section, we shall make a connection

between unexpected cubics and quasi-elliptic fibrations in order to understand

better the sorts of 0-dimensional subschemes that admit unexpected cubics. We

begin with the definitions of elliptic and quasi-elliptic surfaces.

Definition 3.3.1. Let X be a smooth projective surface. We say X is an elliptic surface if

there is a surjective map π : X → C where C is a smooth projective curve such that the

general fiber of π is a smooth curve of genus one. We say that X is a quasi-elliptic surface

if the general fiber of π is a reduced irreducible curve of genus one that is singular. In the

first case, the map π is called an elliptic fibration and in the latter, a quasi-elliptic fibration.

Note that since π is surjective and C is a curve, π is flat and the arithmetic genus
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of all the fibers is constant. So every fiber has genus one when the general fiber

has genus one.

Proposition 3.3.2. Suppose that X is a quasi-elliptic surface. Then the base field has

characteristic 2 or 3. Moreover the general fiber of X has only one ordinary cusp.

Proof. See Propositions 1.1 and 1.2 in [35]

Definition 3.3.3. A relatively minimal elliptic or quasi-elliptic surface is an elliptic or

quasi-elliptic surface whose fibers do not contain exceptional curves.

Note that an elliptic or quasi-elliptic surface may be relatively minimal without

being minimal as an algebraic surface. It may not have exceptional curves in its

fibers (vertical exceptional curves) but it may very well have exceptional curves

that are not contained in any of its fibers (horizontal exceptional curves).

Definition 3.3.4. Suppose that X is a smooth complete rational surface with an elliptic or

quasi-elliptic fibration π : X → C such that X is relatively minimal, then X is called a

rational elliptic or quasi-elliptic surface.

Definition 3.3.5. Let X be an elliptic or quasi-elliptic surface with fibration π : X → C.

We say that X is Jacobian when the fibration π admits a section. I.e the fibers of X are the

anticanonical curves H0(X,−KX).

Note that when X admits a Jacobian elliptic or quasi-elliptic fibration, then that

fibration is the unique Jacobian fibration on X and moreover its base curve is P1

obtained from the projectivization of H0(X,−KX). The next proposition states that

if X is the blow up of the 9 base points of a pencil of cubics such that the fibration

provided on X by H0(X,−KX) is quasi-elliptic, then X is relatively minimal.
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Proposition 3.3.6. Let X be the blow up of P2 at the 9 base points of a pencil of cubics

such that X possesses a quasi-elliptic fibration whose fibers are the sections of H0(X,−KX).

Then X is a rational Jacobian minimal quasi-elliptic surface. Moreover every component of

a reducible fiber is a rational curve of self-intersection −2.

Proof. The only thing to demonstrate here is that the fibers of the fibration on X

do not contain exceptional curves. Let C be an exceptional curve on X. By the

adjunction formula −2 = C2 +C ·KX so that C · (−KX) = 1. Let f : X → P1 be the

morphism giving the fibration on X. Let s and s0 be two distinct points on P1 such

that C is a component of f ∗(s). Note that f ∗(s) and f ∗(s0) are linearly equivalent

so that f ∗(s)|C and f ∗(s0)|C are also linearly equivalent. Since f ∗(s)|C is trivial,

f ∗(s0)|C is also trivial. Hence C · f ∗(s0) = 0. Since every section of H0(X,−KX) is

linearly equivalent to f ∗(s0), this implies that C · (−KX) = 0 which is impossible.

Hence no fiber of the fibration contains an exceptional curve.

Now let Xs = m1C1 + · · · + mnCn, mi ≥ 0, be a reducible fiber. Then from

the forerunning paragraph, Ci · KX = 0 and so Ci ∈ K⊥X . Since K⊥X is negative semi-

definite and the only elements D ∈ K⊥X of self-intersection D2 = 0 are multiples

of KX (Lemma II.4 in [24]), we have that C2
i < 0. Now by adjunction 2g− 2 = C2

i .

Since g ≥ 0, we have that g = 0 and C2
i = −2.

Proposition 3.3.7. Let X be a quasi-elliptic surface obtained from the blow up of P2

at the 9 base points of a pencil of cubics. Then the fibers of X are all connected. Say

that Xs = m1C1 + · · ·+ mnCn is a fiber. By connected, we mean that we cannot write

{C1, . . . , Cm} as a union of two disjoint sets {Ci1 , . . . , Cik} and {Cj1 , . . . , Cjl} such that

Ci · Cj = 0 for all i’s and j’s.

Proof. The fibers on X are simply the sections of H0(X,−KX) so it suffices to
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show that for C ∈ H0(X,−KX), h0(C,OC) = 1. Consider the sequence 0 →

OX(−C) → OX → OC → 0. For a D ∈ H0(X,−KX), tensor the foregoing

sequence with OX(D) to get 0 → OX(D − C) → OX(D) → OC(D) → 0. Since

C and D are linearly equivalent, OC(D) and OX(D − C) are both trivial. We

obtain the sequence 0 → OX → OX(D) → OC → 0 and take cohomology to

get 0 → H0(X,OX) → H0(X,OX(D)) → H0(C,OC) → H1(X,OX) → · · · . Now

h1(X,OX) = 0, h0(X,OX) = 1 and h0(X,OX(D)) = 2 so that h0(C,OC) = 1 and

C is connected.

Now we know that given a quasi-elliptic fibration, X, obtained from the blow up

of the base points of a pencil of cubics, a reducible fiber Xs = m1C1 + · · ·+ mnCn,

mi ≥ 0, on X has none of the Ci exceptional and in fact all the Ci are rational with

self-intersection −2 (Proposition 3.3.6). Moreover Xs is connected (Proposition

3.3.7). The only question now is about the configuration of the Ci in Xs i.e., what

is the possible structure of a reducible fiber?

To that end, note that from the components of Xs, we get the Z-module, M =

ZC1 + · · ·+ ZCn ⊆ K⊥X which has connected basis since Xs is connected. M also

has a bilinear form inherited from the bilinear form on K⊥X such that Ci · Cj ≥ 0

whenever i 6= j since the Ci are all irreducible curves. By the negative semi-

definiteness of K⊥X and the fact that X2
s = K2

X = 0, the only elements of M

with self-intersection 0 are the multiples of Xs = m1C1 + · · ·+ mnCn and for a

D = t1C1 + · · ·+ tnCn that is not a multiple, D2 < 0. All such modules M have

been classified in [8] and we display the classification in Figure 4.1.

By way of example of how to interpret the figures, consider E7 in Figure 4.1.
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Label its nodes from left to right as C1, . . . , C7 and label the node attached to C4

as C8. From E7, we have the Z-module M = ZC1 + · · ·+ ZC8 with connected

basis {C1, . . . , C8}. According to the diagram for E7, C1 is attached to C2 which is

in turn attached to C3 and so on. The first element Xs in M satisfying X2
s = 0 is

Xs = C1 + 2C2 + 3C3 + 4C4 + 3C5 + 2C6 + C7 + 2C8 and any other element D ∈ M

with D2 = 0 is a multiple of Xs. All other elements have negative self-intersection.

In particular the Ci have self-intersection −2. Hence the nodes represent −2-curves

that are components of the fiber Xs = C1 + 2C2 + 3C3 + 4C4 + 3C5 + 2C6 +C7 + 2C8,

the number attached to the node is the multiplicity of that −2-curve in the fiber and

the connections or lack thereof between the nodes indicate Ci · Cj, i, j ∈ {1, . . . , 8}.

See Figure 4.2 for the analogue to Figure 4.1 that emphasizes the fiber aspect for

the case of characteristic 2.

A quasi-elliptic surface X might have several reducible fibers so to see exactly

how many and what fibers occur, we take advantage of the fact that P2 blown

up at 9 points has Euler characteristic 12 and use that to count fibers. To pro-

ceed, we define the topological Euler characteristic of a variety X and recall a

few propositions. Let X be a variety and pick an embedding of X into projective

space. Let Ω be the cotangent bundle on X. Define the Hodge numbers hi,j by

hi,j := hj(X, Ωi) = dimk H j(X, Ωi) for all i, j ∈ Z≥0. Define the kth Betti number,

bk, of Ω to be ∑i+j=k hi,j.

Definition 3.3.8. The topological Euler characteristic of a variety X ⊆ Pn is defined to

be e(X) := ∑k≥0(−1)kbk.

Note that because of various vanishing theorems, the sum indeed converges.

Moreover by Hodge Theory, e(X) is independent of embedding. On a curve
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C of genus g, only the Hodge numbers h0,0, h0,1, h1,0 and h1,1 do not vanish

automatically and so the only nonzero Betti numbers are b2 = h1,1, b1 = h1,0 + h0,1

and b0 = h0,0. Simple computations give that h0,0 = h1,1 = 1 and h1,0 = h0,1 = g

and hence b2 = b0 = 1 and b1 = 2g. We now note that the topological Euler

characteristic of C is e(C) = b2 − b1 + b0 = 2− 2g. Similarly for a point p in

Pn considered as a variety, the only nonzero Betti number is b0 = h0,0 which

has value h0(p, Ω0) = h0(p,Op) = 1. Hence e(p) = 1. The Euler characteristic

has several nice properties but one that we use below in Proposition 3.3.10 is its

inclusion-exclusion property. Namely, let X be the union of two proper closed

subvarieties X1 and X2. Then e(X) = e(X1) + e(X2)− e(X1 ∩ X2).

Proposition 3.3.9 (Euler characteristic). Let φ : X → B be a proper morphism from a

smooth surface X to a smooth curve B. So φ is a fibration. Then the Euler characteristic

of the surface is defined to be e(X) = e(B)e(F) + ∑b∈B(e(Fb)− e(F)) where Fb is the

fiber over a point b ∈ B and F is the general nondegenerate fiber. In particular, if φ is a

quasi-elliptic fibration, then e(X) = 4 + ∑b∈B(e(Fb)− 2).

Proof. See page 137 in [34] for the general statement. If φ is quasi-elliptic, then

B ∼= P1 and F is a cuspidal cubic and hence e(B) = e(P1) = e(F) = 2.

Note that the sum in the above proposition is actually finite since if Fb is nonde-

generate, then e(Fb)− e(F) is trivial. So in computing the Euler characteristic of a

quasi-elliptic fibration, we need only concern ourselves with degenerate fibers.

Proposition 3.3.10. Let π : X → C be a quasi-elliptic fibration and let F be some

degenerate fiber. Suppose that F has n components. Then e(F) = n + 1.

Proof. Say that F has n components, then F is a union of n rational curves. Hence

each component Fi of F has e(Fi) = 2. From Figure 4.2, F has n − 1 points at
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which the intersection of its components are supported. Then by the inclusion-

exclusion formula of the Euler characteristic, e(F) =
n

∑
i=1

e(Fi)− ∑
Fi∩Fj>0

e(Fi ∩ Fj) =

2n− (n− 1) = n + 1 where we use the fact that e(p) = 1 for a point p.

By way of example and also to explain the notation in the next theorem, we

mention very briefly what it means for a quasi-elliptic fibration to have reducible

fiber type A⊕8
1 or reducible fiber type D6 ⊕ A⊕2

1 . A fibration of reducible fiber

type A⊕8
1 simply means that the fibration has 8 reducible fibers, mutually disjoint,

each of type of A1. A fiber of type A1 consists of two rational curves meeting

with multiplicity 2 at a point. Now a fibration of reducible fiber type D6 ⊕ A⊕2
1

possesses three reducible fibers, two of which are of type A1 and the third is of

type D6. A degenerate fiber of type D6 consists of 7 connected rational curves with

multiplicities and intersections as shown in Figure 4.2.

Theorem 3.3.11. Suppose p = 2. Let φ : X → P1 be a Jacobian rational quasi-elliptic

surface. Then the collection of reducible fibers of the fibration can be represented by one of

the following extended Dynkin diagrams where a node of the diagram represents a rational

curve of self-intersection −2 on X.

A⊕8
1 , A⊕4

1 ⊕ D4, D⊕2
4 , D6 ⊕ A⊕2

1 , A1 ⊕ E7, E8, D8

Proof. See Theorem 5.6.3 in [13]. The key point is that if φ : X → P1 is a quasi-

elliptic fibration, then e(X) = 4 + ∑b∈P1(e(Fb)− 2) = 12. For each of the fibers

enumerated in Figure 4.1, their smooth loci can be given a group structure. The

candidates for a quasi-elliptic fibration are those whose groups are annihilated by

the characteristic p = 2 since the group structure of the irreducible fiber of Kodaira

type I I (the cuspidal cubic), k, is annihilated by p = 2. We go through the list of
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the Kodaira fiber types to determine them.

The reducible fibers with intersection graph A1 are those of Kodaira fiber types I2

(two rational curves meeting in two distinct points) and I I I (two rational curves

meeting with tangency). The group structure on the smooth locus of I2 is Z/2× k∗

and that on the smooth locus of I I I is Z× k. Clearly Z× k is annihilated by p = 2

but Z/2× k∗ is not. Therefore the candidate for a reducible fiber with intersection

graph A1 is I I I, two rational curves meeting with tangency, and not I2, two rational

curves meeting in two distinct points.

The reducible fibers with intersection graph A2 are the Kodaira fibers I3 (a triangle

of three rational curves) and IV (three rational curves meeting in a point). But

I3 has group structure Z/3× k∗ and IV has group structure Z/3× k. Clearly

neither of these are annihilated by the characteristic so that none of the reducible

fibers of a quasi-elliptic fibration can be a triangle of three rational curves (I3) or

three rational curves meeting in a point (IV). If the fiber has intersection graph

An, n ≥ 3, then it is the Kodaira fiber In+1 (an (n + 1)-cycle of rational curves)

which has group structure Z/(n + 1)× k∗ which is not annihilated by p = 2. So a

reducible fiber cannot be an (n + 1)-cycle of rational curves.

If the reducible fiber has intersection graph E7 or E8, then it is the Kodaira fiber

I I I∗ or I I∗ respectively (see E7 and E8 in Figure 4.2). I I I∗ has the group Z/2× k

and I I∗ has the group k both of which groups are annihilated by the characteristic.

Therefore there are possibly reducible fibers with intersection graph E7 or E8. Now

Kodaira fiber IV∗ (see E6 in Figure 4.1 and replace the nodes with lines such

that two lines intersect for every two nodes with an edge) is the only fiber with
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intersection graph E6. It has the group Z/3× k on its smooth locus and hence

cannot be realized in characteristic 2.

Finally if a reducible fiber has intersection graph D4+n, 0 ≤ n ≤ 8, then it is

the Kodaira fiber I∗n , 0 ≤ n ≤ 8, (see D4, D6 and D8, for instance, in Figure 4.2)

and hence has a group structure of (Z/2)2 × k, n even, or Z/4× k, n odd, on

its smooth locus. Therefore when n is odd, there can be no reducible fibers with

intersection graph D4+n. A reducible fiber can have intersection graph D4+n only

when n is even.

From here, one can check that the only combinations of the fibers that satisfy the

numerical condition of the Euler characteristic are those shown in the statement of

the Theorem. Now one can give examples that realize each of the possibilities.

Definition 3.3.12. Let X be a smooth rational Jacobian quasi-elliptic surface and let F

be a reducible fiber on X. The weight of F, w(F), is the number of components of F of

multiplicity 1.

Theorem 3.3.13. Let X be a smooth rational Jacobian quasi-elliptic surface. Suppose that

F1, . . . , Fn are the reducible fibers on X. Let w(F1), . . . , w(Fn) denote the weights of the

fibers. Let C1, . . . , Ck be all the smooth irreducible curves of self-intersection −1 on X.

Then k =
√

w(F1) · · ·w(Fn).

In [13], not only are the configurations of the reducible fibers of quasi-elliptic

fibrations in P2 enumerated, examples of fibrations that achieve the configurations

are also provided. From these examples of fibrations, it is easy to blow up the base

points of the fibration to obtain a surface X → P2 together with the configuration

of −2 and −1-curves on X. From there, for such an X, it is possible to determine
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all blow downs of X in order to obtain configurations of 9 base points that admit a

quasi-elliptic fibration whose configuration of reducible fibers corresponds to the

configuration of −2-curves on X.

3.4 Unexpected Curves and Quasi-Elliptic Fibrations

In this section, we shall situate our discussion of 0-dimensional subschemes Z

that admit unexpected cubics within the context of quasi-elliptic fibrations. This

point of view will allow us to see, almost immediately, that if Z is a reduced 0-

dimensional subscheme that admits an unexpected cubic, then Z, in fact, contains

the Fano plane. We go further to observe that if Z is not reduced, then Z forms

part of the locus of base points of a quasi-elliptic fibration. We present instances of

such occurrences.

Lemma 3.4.1. Let X be a smooth rational surface with anticanonical class −KX =

3L − E1 − · · · − En, n ≤ 8. Then −KX is effective. In particular, h0(X,−KX) =

9− n + 1 + h1(X,−KX).

Proof. By Serre duality, h2(X,−KX) = h0(X, 2KX). Since 2KX · L = −6 < 0, 2KX is

not effective. So h0(X, 2KX) = 0 and hence h2(X,−KX) = 0. By Riemann-Roch,

h0(X,−KX) = (−KX)
2+(−KX)(−KX)

2 + 1 + h1(X,−KX) = 9 − n + 1 + h1(X,−KX).

Since h1(X,−KX) ≥ 0 and n ≤ 8, h0(X,−KX) ≥ 1. In particular −KX is effective.

Lemma 3.4.2. Let X be a smooth rational surface that is the blow up of P2 at the points

p1, . . . , pn, n ≤ 8. Suppose that no more than 4 of the points lie on a line and no more

than 6 of the points lie on a conic. Then −KX = 3L− E1 − · · · − En is nef.
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Proof. If −KX is not nef, then there is an effective and irreducible divisor D

such that (−KX) · D < 0. This implies that for some irreducible component C

of −KX, C · D < 0. By Bézout’s theorem, C = D and D2 < 0. Since −KX =

3L− E1 − · · · − En, D · L = 1 or D · L = 2. Note that D · L 6= 3 since if it were,

then D would be the proper transform of a cubic through all of the points with a

singularity of multiplicity 2 at one of the points. Such a cubic does not meet −KX

negatively however. Therefore D is the proper transform of a line through 2 or 3

of the points or the proper transform of a conic through 5 or 6 of the points. But

this is impossible since (−KX) · (L− Ei − Ej) = 1, (−KX) · (L− Ei − Ej − Ek) = 0,

(−KX) · (2L − Ei1 − · · · − Ei5) = 1 and (−KX) · (2L − Ei1 − · · · − Ei6) = 0. This

contradicts our initial choice of D. So −KX is nef.

Lemma 3.4.3. Let X be a smooth projective rational surface with K2
X > 0. Let F be a nef

divisor on X. Then h2(X, F) = 0 and similarly h1(X, F) = 0.

Proof. See Theorem III.1 in [23].

Corollary 3.4.4. Let X be a smooth rational surface that is the blow up of P2 at exactly

7 points with anticanonical class −KX = 3L− E1 − · · · − E7. Suppose that no more

than 3 of the points lie on a line and no more than 6 of the points lie on a conic. Then

h0(X,−KX) = 3.

Proof. By Lemma 3.4.2, −KX is a nef class. By Lemma 3.4.3, h1(X,−KX) = 0. Since

n = 7, we get from Lemma 3.4.1 that h0(X,−KX) = (9− 7) + 1 = 3.

Lemma 3.4.5. Consider the set S = {p1, . . . , p7} ⊆ P2 over a field of characteristic 2.

If there are 7 lines, L1, . . . , L7, each containing exactly 3 of the points of S such that any

pair of the lines meet at one of the points of S, then the seven lines have the Fano plane

configuration.
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Proof. We may take L1 = {p1, p2, p3}. Now L2 meets L1 at one point and it does

so at one of the points of S so we might as well take that point to be p1. Then

L2 = {p1, p4, p5}. The points p6 and p7 determine a line, call it L3, which must

meet both L1 and L2 at one of the points of S. L3 cannot meet L1 and L2 at

different points since otherwise it would contain more than 3 of the points of S.

So L3 = {p1, p6, p7}.

Note that p2 and p4 determine a line, say L4, and that line must meet L3. Since

L4 already meets L1 and L2, it cannot meet L3 at p1. Nothing we have said so

far distinguishes p6 from p7 so we may assume that L4 meets L3 at p7. Hence

L4 = {p2, p4, p7}. Similarly p2 and p5 determine a line L5 which already meets

L1 at p2, L2 at p5 and L4 at p2. It could, potentially, meet L3 at either 6 or 7 but

meeting L3 at 7 would force it to meet L4 twice so it must meet L3 at 6. It follows

that L5 = {p2, p5, p6}.

The points p3 and p4 give a line L6. From the two forerunning paragraphs,

L6 already meets L1, L2 and L4 at the points p3, p4 and p4 again respectively. It has

to meet L3 and L5 at points of S and the only choice is at the unique intersection of

L3 and L5 if L6 is to contain only 4 points of S. Hence L6 = {p3, p4, p6}. Finally p3

and p5 give a line L7 which already meets the lines L1, L2, L5 and L6 at the points

p3 and p5. The two remaining lines are L3 and L4. Therefore L7 must contain p7 to

give that L7 = {p3, p5, p7}.

One can check that every point is now collinear with every other point via one of

the lines L1, . . . , L7 and so there are no more lines to be had. One can also check

that L1, . . . , L7 have the Fano plane configuration.
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Lemma 3.4.6 (Four Point Lemma). Let k be an algebraically closed field and let

{p1, p2, p3, p4} and {q1, q2, q3, q4} be two sets of general points in P2
k. There exists

a unique projective map Φ taking pi to qi, 1 ≤ i ≤ 4.

Proof. See Lemma 11.2 in [20] and the discussion immediately after it.

Lemma 3.4.7. Let k be an algebraically closed field of characteristic 2. If C is a cuspidal

cubic in P2
k, then C is projectively equivalent to the normal form x3 + y2z = 0.

Proof. Let C be a cuspidal cubic in P2
k. C is a linear combination of the mono-

mials x3, y3, z3, x2y, x2z, y2x, y2z, z2x, z2y, xyz and so for coefficients in k,

C = ax3 + by3 + cz3 + dx2y + ex2z + f y2x + gy2z + hz2x + iz2y + jxyz. Denote the

cusp of C by p. By Lemma 3.4.6, we may suppose that p = [0 : 0 : 1] and that the

(repeated) tangent to C at p is x = 0. By Lemma 3.4.6 again, we may suppose that

C passes through the point q = [1 : 0 : 0] with tangent z = 0.

Since C contains p, the coefficient of z3 must vanish. Since C has a singular-

ity at p, we take derivatives to see that the coefficients of xz2 and z2y also vanish.

Now C = ax3 + by3 + dx2y + ex2z + f y2x + gy2z + jxyz. Since x2 = 0 is a re-

duced conic tangent to C at p such that each of its components touches C to

order 3 at p, we have that the coefficients of y2z and xyz must vanish. Hence

C = ax3 + by3 + dx2y + ex2z + f y2x.

C also contains the point q so that the coefficient of x3 vanishes. Now C has

a tangent at z = 0 which might either have contact order 2 if it is an ordinary

tangent or contact order 3 if it is a flex. In the case that it has contact order 2, the

coefficient of x2y vanishes and we have that C = ex2z + f xy2 + by3. In the case

that the tangent has contact order 3, the coefficient of y2x vanishes and we have
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that C = ex2z + by3.

Consider C = ex2z + f xy2 + by3. If e is 0, then C reduces so e can’t be 0. Similarly,

b cannot be 0. If f is 0, then we are in the case that C = ex2z + by3 so we may

assume f 6= 0. Now by scaling, we may take e, f and b to be 1. If C = ex2z + by3,

then e and b cannot be trivial since otherwise C will reduce. Again, by scaling, we

may take e and b to be 1. Note that x2z + y3 is a cubic with a cusp at [0 : 0 : 1]

and tangent x = 0 together with a flex at [1 : 0 : 0] and tangent z = 0. Similarly

x2z + xy2 + y3 is a cubic with a cusp at [0 : 0 : 1], a tangent x = 0 and a flex point

[1 : 1 : 0] with a flex tangent x + y + z = 0. The projective change of coordinates

x → x, y → x + y and z → y + z carries the cuspidal cubic x2z + xy2 + y3 to the

cuspidal cubic x2z + y3.

Theorem 3.4.8. Let Z ⊆ P2
k , k algebraically closed, be a reduced 0-dimensional subscheme,

that admits an unexpected cubic. Then the char k = 2 and Z is contained in the base

points of some quasi-elliptic fibration. Moreover Z is the finite projective plane of order 2,

i.e. the Fano plane.

Proof. Let Z be as in the statement above. Then by Theorem 3.2.20, char k = 2,

and by Corollary 3.2.11, |Z| = 7. Blow up the points of Z to obtain a surface

X′. Then by Corollary 3.4.4, h0(P2, IZ′(3)) = h0(X′,−KX′) = 3. By lemma 3.2.9,

the general section of H0(X′,−KX′) is irreducible. Let D and D′ be two such

irreducible sections. Then we obtain a pencil P = {mD + nD′|[m : n] ∈ P1}. Pick

a C ∈ H0(X′,−KX′) with a cusp at p ∈ X′. Then there is a D̃ ∈ P such that D̃

contains p and is smooth at p.

Now C and D̃ form a pencil whose only base points are p8 = p and an in-
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finitely near point p9. Blow up the two base points to obtain a surface X fibered

by genus 1 curves, the proper transforms to X of the curves of the pencil with

basis C and D̃. By Lemma 3.2.9, every cubic through Z is singular and the general

cubic is reduced and irreducible. It follows that the general section of H0(X,−KX)

is ultimately the proper transform of a cuspidal cubic. Hence the fibration is

quasi-elliptic. Hence the 9 points that were blown up to obtain X are the base

points of a quasi-elliptic fibration in P2. In particular Z consists of 7 of the 9 base

points of a quasi-elliptic fibration.

If Z is reduced, then all of the points of Z are distinct in P2. We want to show

that Z is the Fano plane by investigating the reducible fibers of X. Note that

p9 is infinitely near p8 and p8 is not infinitely near any other point since it is

general. Theorem 3.3.11 gives us the numbers and arrangements of the possible

reducible fibers on X, namely, A⊕8
1 , A⊕4

1 ⊕ D4, A⊕2
1 ⊕ D6, A1 ⊕ E7, D⊕2

4 , E8 and

D8. Each of the fibers maps to a cubic in P2 after we contract 9 exceptional curves

in such a way that the resulting surface is P2. Since a cubic in P2 can have at

most three components, if a fiber has more than four components, then some of its

components must blow down to points in P2.

The fiber types with more than 4 components are D4, D6, E7, E8 or D8. The

point p8 can never be infinitely near another point since it is general. So if we

want 7 distinct points and the general double point p8 from each of the fiber types

mentioned at the beginning of the paragraph, then only one component of these

fibers can blow down to a point and in fact, it must blow down to p8 with p9

infinitely near. Then there are at least three components left and since the fiber

must map to a cubic, we end up with lines. But these lines came from −2-curves
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and hence p8 would be collinear with two other points (neither of them p9) and

hence p8 would not be general. Thus X cannot have any fiber types with more

than four components.

So if Z is reduced, then the only possible reducible fiber type of X is A⊕8
1 . Since

each of the fiber types here has two components, none of the components of any

of the A1 has to necessarily blow down to points. Since we want a general double

point p8 with p9 infinitely near, blow down an exceptional curve onto one of the

components of one of the A1 and contract the resulting exceptional curve again to

a point, call the point p8. Then that A1 blows down to a cuspidal cubic with a cusp

at p8 and p9 infinitely near. There are seven A1’s left. Blow them down without

creating any more infinitely near points. The only way one gets that is when one

blows down each of the A1’s to a reducible cubic consisting of a line through 3 of

the distinct points and a conic through 4 of the distinct points passing through p8

with a tangent direction p9.

By Lemma 3.4.7, P2 has a unique cuspidal cubic up to choice of coordinates.

So now in P2, we want to blow up 7 points on this cuspidal cubic and get 7 lines

each of which goes through 3 of the 7 points. These lines are members of disjoint

fibers, so they can’t meet except at the 7 points we’re blowing up, and each has to

go through 3 of the 7 points. By Lemma 3.4.5, the only way to achieve this is when

the 7 points have the Fano plane configuration. Therefore up to coordinates, Z is

the Fano plane.
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3.5 Examples of Subschemes Admitting Unexpected

Curves

Now we’ve seen that given a reduced 0-dimensional subscheme Z such that Z

admits an unexpected cubic, |Z| = 7, and Z is contained in the intersection locus

of some quasi-elliptic fibration. We now find other instances of 7 points that admit

unexpected cubics other than the Fano plane. Since we show above that the Fano

plane is the only instance in which all the points are reduced, the instances we

find will all have non-reduced points (i.e., some of the points will be infinitely

near). We work out a few examples in what follows. We do the first in some detail

and for the remainder, we provide enough information for the interested reader to

work out.

Definition 3.5.1. Let Z = {p1, . . . , pr} be essentially distinct (see Definition 3.2.18) and

thus possibly infinitely near points in P2. If pj is infinitely near pi, then j > i in our

labeling. Let p /∈ Z be a general point in P2. Let t > 1 be an integer and tp be a fat

point of multiplicity t supported at p. Blow up the points p1, . . . , pr and p, in order, to

obtain a surface X with L the total transform of a line from P2 to X and E1, . . . , Er, Ep, the

exceptional curves corresponding to the blow up. Then Z admits an unexpected curve of

degree t + 1 if h0(X, (t + 1)L− E1− · · · − Er − tEp) > max{0, h0(X, (t + 1)L− E1−

· · · − Er)− (t+1
2 )}.

So the definitions of unexpected curves carry over to schemes Z = p1 + · · ·+ pr

where the points pi are merely essentially distinct.

Lemma 3.5.2. Let X be a smooth rational surface that is elliptic or quasi-elliptic. Let C be

the generic fiber of X and let N be a component of a reducible fiber. Then the canonical

homomorphism Φ : Pic(X)→ Pic(C) satisfies Φ(N) = 0.
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Proof. Apply the Pic functor to the natural inclusion C ⊆ X to get the map

Φ : Pic(X)→ Pic(C) which is just restriction. We describe the restriction in a little

more detail. Call a divisor on X that is a fiber of the fibration or a component of

a fiber, a vertical fiber. If a divisor is not a fiber or a component of a fiber, refer

to it as a horizontal fiber. Then for every divisor D on X, we write D = Dv + Dh

where Dv is the component of D that is vertical and Dh is the component of D

that is horizontal. Then Dh and C have a nontrivial intersection supported at a

finite number of points on C with degree Dh · C. Since Dv is vertical, Dv · C = 0

and in fact Dv ∩ C is trivial on C. The intersection, Dh ∩ C, is in fact a divisor, D|C,

known as the restriction of D to C. Define Φ(D) = D|C. Now note that D|C is the

trivial divisor on C if and only if D is a vertical divisor. Hence if N is a component

of a fiber, then Φ(N) = 0 in Pic0(C).

Example 3.5.3. E8 Consider the quasi-elliptic surface of type E8 with unique blow

down indicated by the labeling of the Dynkin diagram in Figure 4.6. In P2, the

intersection locus of the fibration consists of a point of P2 and 8 points infinitely

near that one that are the intersection of a cuspidal cubic with its flex tangent

taking with multiplicity 3. Let Z′ consist of the first 7 of these 9 infinitely near

points. For a general point p in P2, we’ll find an unexpected cubic containing

Z′ in its vanishing locus and having a cusp at p. To this end, blow down the

exceptional curve E9 onto the nodal curve it attaches to (see Figure 4.6) and con-

tract the resulting exceptional curve E8 to obtain a surface X′ with −2-curves

S = {E1 − E2, E2 − E3, E3 − E4, L− E1 − E2 − E3, E4 − E5, E5 − E6, E6 − E7}.

Pick a general point p′8 on X′. Blow up the point p′8 on X′ to obtain the sur-

face X with exceptional curves E1, . . . , E7, E′8. Consider the class D = 3L− E1 −
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· · · − E7 − 2E′8. We show that h0(X,OX(D)) > 0, i.e. D is effective. Recall that

since Z′ formed part of the base locus of the quasi-elliptic fibration that we started

with so there is a fiber of that fibration containing Z′ and p′8 in its vanishing

locus. Let C denote the proper transform onto X of such a cuspidal cubic and note

that C is a section of the anticanonical class −KX = 3L− E1 − · · · − E7 − E′8. Let

Φ : Pic(X)→ Pic(C) be the canonical restriction map. Since C is a cuspidal cubic

over an algebraically closed field of characteristic 2, Pic(C) has pure 2-torsion.

Hence Φ(2K⊥) = O in Pic(C) where K⊥ is the subgroup of divisors in Pic(X)

meeting the canonical divisor in O. Since C was a fiber of a fibration and all the

−2-curves in S are components of another fiber of the fibration, we have that

Φ(〈S〉) = O, by Lemma 3.5.2, where 〈S〉 is the subgroup generated by S in Pic(X).

Therefore Φ(〈S〉+ 2K⊥) = O.

Now note that 3L − E1 − · · · − E7 − 2E′8 = 3(L − E1 − E2 − E3) + 2(E1 − E2) +

4(E2 − E3) + 6(E3 − E4) + 5(E4 − E5) + 4(E5 − E6) + 3(E6 − E7) + 2(E7 − E8) so

that 3L− E1− · · · − E7− 2E′8 ∈ 〈S〉+ 2K⊥ so that Φ(3L− E1− · · · − E7− 2E′8) = O.

Consider the sequence of sheaves 0 → OX(D − C) → OX(D) → OC → 0

and take cohomology to obtain 0 → H0(X,OX(D − C)) → H0(X,OX(D)) →

H0(C,OC(D)) → H1(X,OX(D − C)) → H1(X,OX(D)) → H1(C,OC(D)) →

· · · . Since h0(X,OX(D − C)) = h0(X,OX(−E′8)) = 0 and h2(X,OX(D − C)) =

h0(X,OX(−D)) = 0 by duality, we have by Riemann-Roch that h1(X,OX(D −

C)) = 0. Therefore H0(X,OX(D)) surjects onto H0(C,OC(D)). Since OC(D) is

the line bundle of Φ(D) = O which is trivial, OC(D) is the trivial bundle which

implies h0(C,OC(D)) > 0 and hence h0(X,OX(D)) > 0. Therefore D is effective.

By Corollary 3.4.4, h0(X, 3L− E1 − · · · − E7) = 3 and hence D is an unexpected

cubic.
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Example 3.5.4. D6 ⊕A⊕2
1

1. Blow down E9 onto E8 − E9 and then blow down E8 in the first diagram

of D6 ⊕ A⊕2
1 . Then the set of −2-curves on the resulting surface is S =

{E4 − E5, E5 − E6, E6 − E7, E1 − E3, L − E2 − E4 − E5, 2L − E1 − E3 − E4 −

E5 − E6 − E7, L − E1 − E3 − E2}. Now for a general point p′8 with blow

up E′8, take 3L − E1 − · · · − E7 − 2E′8 = (E1 − E3) + (L − E1 − E2 − E3) +

(2L − E1 − E3 − E4 − E5 − E6 − E7) + 2(E3 − E′8). Just as in the previous

example, one checks that 3L − E1 − · · · − E7 − 2E′8 is effective and that

h0(X, 3L− E1 − · · · − E7) = 3.

2. Blow down E7 onto E6 − E7 and then blow down E6 in the first diagram of

D6 ⊕ A⊕2
1 . Then S = {L− E2 − E4 − E5, L− E1 − E2 − E3, E4 − E5, L− E1 −

E4 − E8, E1 − E3, E8 − E9, L − E2 − E8 − E9} and 3L − E1 − E2 − E3 − E4 −

E5 − E8 − E9 − 2E′6 = (L− E1 − E2 − E3) + (L− E2 − E8 − E9) + (L− E2 −

E4 − E5) + 2(E2 − E′6).

3. Blow down E9 onto E8 − E9 and then blow down E8 in the second diagram

of D6⊕ A⊕2
1 . Then S = {L− E3− E4− E7, E3− E4, E2− E5, E5− E6, L− E1−

E2− E7, 2L− E1− E2− E3− E4− E5− E6, E1− E2} and 3L− E1− E2− E3−

E4 − E5 − E6 − E7 − 2E′8 = (L− E1 − E2 − E7) + (2L− E1 − E2 − E3 − E4 −

E5 − E6) + (E1 − E2) + 2(E2 − E′8).

4. In the second diagram of D6 ⊕ A⊕2
1 , blow down E6 onto the nodal curve

E5 − E6 and then blow down E5. Then S = {E1 − E2, L− E1 − E2 − E7, E7 −
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E8, E8− E9, L− E3− E4− E7, E3− E4, L− E7− E8− E9}. Then 3L− E1− E2−

E3 − E4 − E7 − E8 − E9 − 2E′5 = (L − E7 − E8 − E9) + (L − E3 − E4 − E7) +

(L− E1 − E2 − E7) + 2(E7 − E′5).

Example 3.5.5. D4 ⊕A⊕4
1

1. In the first diagram of D4 ⊕ A⊕4
1 , blow down E9 onto E8 − E9 and then blow

down E8. Then S = {E6 − E7, L − E5 − E6 − E7, 2L − E1 − E2 − E3 − E4 −

E6 − E7, E1 − E2, E3 − E4, L− E1 − E2 − E5, L− E3 − E4 − E5} and 3L− E1 −

E2 − E3 − E4 − E5 − E6 − E7 − 2E′8 = (2L− E1 − E2 − E3 − E4 − E6 − E7) +

(L− E5 − E6 − E7) + (E6 − E7) + 2(E7 − E′8).

2. In the first diagram of D4 ⊕ A⊕4
1 , blow down E2 onto E1 − E2 and then blow

down E1. Then S = {E8− E9, E7− E8, E6− E7, L− E5− E6− E7, E3− E4, 2L−

E3− E4− E6− E7− E8− E9, L− E3− E4− E5} and 3L− E3− E4− E5− E6−

E7 − E8 − E9 − 2E′2 = (L− E5 − E6 − E7) + (2L− E3 − E4 − E6 − E7 − E8 −

E9) + (E6 − E7) + 2(E7 − E′2).

3. In the second diagram of D4 ⊕ A⊕4
1 , blow down E3 onto E2 − E3 and then

blow down E2. Now S = {E6 − E7, E8 − E9, L− E4 − E6 − E8, E4 − E5, L−

E1 − E8 − E9, L− E1 − E4 − E5, L− E1 − E6 − E7} and 3L− E1 − E2 − E5 −

E6− E7− E8− E9− 2E′2 = 2(E1− E′2) + (L− E1− E6− E7) + (L− E1− E4−

E5) + (L− E1 − E8 − E9).

4. In the second diagram of D4 ⊕ A⊕4
1 , blow down E9 onto E8 − E9 and then

blow down E8. Then S = {E6 − E7, E4 − E5, L − E1 − E2 − E3, 2L − E2 −
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E3 − E4 − E5 − E6 − E7, L − E1 − E4 − E5, L − E1 − E6 − E7, E2 − E3} and

3L− E1 − E2 − E3 − E4 − E5 − E6 − E7 − 2E′8 = 2(E1 − E′8) + (L− E1 − E2 −

E3) + (L− E1 − E4 − E5) + (L− E1 − E6 − E7).

5. In the third diagram of D4⊕ A⊕4
1 , blow down E9 onto E8− E9 and blow down

E8. Then S = {L − E5 − E6 − E7, L − E3 − E4 − E7, L − E1 − E2 − E7, E1 −

E2, E3 − E4, E5 − E6, 2L− E1 − E2 − E3 − E4 − E5 − E6} and 3L− E1 − E2 −

E3− E4− E5− E6− E7− 2E′8 = 2(E6− E′8)+ (L− E5− E6− E7)+ (E5− E6)+

(2L− E1 − E2 − E3 − E4 − E5 − E6).

6. In the third diagram of D4 ⊕ A⊕4
1 , blow down E2 onto E1 − E2 and then

blow down E1. Then S = {L− E5 − E6 − E7, E8 − E9, E7 − E8, L− E3 − E4 −

E7, E3− E4, E5− E6, L− E7− E8− E9} and 3L− E3− E4− E5− E6− E7− E8−

E9− 2E′1 = 2(E7− E′1) + (L− E5− E6− E7) + (L− E3− E4− E7) + (L− E7−

E8 − E9).

Example 3.5.6. D⊕2
4

1. Blow down E9 onto E8 − E9 and then blow down E8 in the first diagram of

D⊕2
4 . Then S = {E6 − E7, E4 − E5, L− E1 − E2 − E3, L− E1 − E4 − E5, E1 −

E2, L− E1 − E6 − E7, E2 − E3} and 3L− E1 − E2 − E3 − E4 − E5 − E6 − E7 −

2E′8 = 2(E1− E′8) + (L− E1− E2− E3) + (L− E1− E4− E5) + (L− E1− E6−

E7).

2. Blow down E3 onto E2 − E3 in the first diagram of D⊕2
4 and then blow down

E2. Then S = {E6 − E7, E4 − E5, L − E4 − E6 − E8, E8 − E9, L − E1 − E8 −
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E9, L− E1 − E6 − E7, L− E1 − E4 − E5} and 3L− E1 − E4 − E5 − E6 − E7 −

E8− E9− 2E′2 = 2(E1− E′2) + (L− E1− E8− E9) + (L− E1− E6− E7) + (L−

E1 − E4 − E5).

3. In the second diagram of D⊕2
4 , blow down E9 onto E8 − E9 and then blow

down E8. Then S = {E6 − E7, L − E1 − E6 − E7, 2L − E2 − E3 − E4 − E5 −

E6 − E7, E2 − E3, E4 − E5, E3 − E4, L − E1 − E2 − E3}. Now 3L − E1 − E2 −

E3 − E4 − E5 − E6 − E7 − 2E′8 = 2(E7 − E′8) + (L − E1 − E6 − E7) + (E6 −

E7) + (2L− E2 − E3 − E4 − E5 − E6 − E7).

Example 3.5.7. E7 ⊕A1

1. In the first diagram of E7 ⊕ A1, blow down E3 onto E2 − E3 and then blow

down E3. We find that S = {L− E1 − E4 − E5, E5 − E6, E4 − E5, E6 − E7, E7 −

E8, E8 − E9, 2L− E4 − E5 − E6 − E7 − E8 − E9} and that 3L− E3 − E4 − E5 −

E6 − E7 − E8 − E9 − 2E′2 = (2L− E4 − E5 − E6 − E7 − E8 − E9) + (L− E1 −

E4 − E5) + (E4 − E5) + 2(E5 − E′2).

2. Blow down E9 onto E8 − E9 in the first diagram of E8 − E9 and then blow

down E8. We now get that S = {E6 − E7, E5 − E6, E4 − E5, L − E1 − E4 −

E5, E1 − E2, E2 − E3, L − E1 − E2 − E3} and 3L − E1 − E2 − E3 − E4 − E5 −

E6 − E7 − 2E′8 = 2(E7 − E′8) + 3(L − E1 − E4 − E5) + 4(E5 − E6) + 3(E6 −

E7) + 2(E4 − E5) + 2(E1 − E2) + (E2 − E3).

3. Blow down E9 onto E8 − E9 in the second diagram of E7 ⊕ A1 and then blow

down E8. We see that S = {E6 − E7, E5 − E6, L− E3 − E4 − E5, E4 − E5, E3 −
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E4, L− E1− E2− E3, E1− E2} and finally that 3L− E1− E2− E3− E4− E5−

E6 − E7 − 2E′8 = 2(E7 − E′8) + 2(L − E3 − E4 − E5) + (L − E1 − E2 − E3) +

2(E3 − E4) + 3(E4 − E5) + 4(E5 − E6) + 3(E6 − E7)

4. Consider the second diagram of E7 ⊕ A1. Blow down E2 onto E1 − E2 and

then blow down the resulting exceptional curve E1. Then S = {E8 − E9, E7 −

E8, E6 − E7, L − E3 − E4 − E5, E3 − E4, E4 − E5, E5 − E6}. We compute that

2(E9 − E′1) + 3(L− E3 − E4 − E5) + 6(E5 − E6) + 5(E6 − E7) + 4(E7 − E8) +

3(E8 − E9) + 4(E4 − E5) + 2(E3 − E4) = 3L− E3 − E4 − E5 − E6 − E7 − E8 −

E9 − 2E′1.

Example 3.5.8. D8

1. In the first diagram of D8, blow down E9 onto E8− E9 and then blow down E8.

Then S = {E6 − E7, E5 − E6, E4 − E5, E3 − E4, E2 − E3, L− E1 − E2 − E3, 2L−

E2 − E3 − E4 − E5 − E6 − E7} with 3L− E1 − E2 − E3 − E4 − E5 − E6 − E7 −

2E′8 = (L− E1− E2− E3) + (2L− E2− E3− E4− E5− E6− E7) + (E2− E3) +

2(E3 − E′8).

2. In the second diagram of D8, blow down E9 onto E8 − E9 and then blow

down E8. Then S = {E1− E7, L− E1− E2− E7, E2− E3, E3− E4, E4− E5, E5−

E6, L − E2 − E3 − E4}. Finally we compute that 3L − E1 − E2 − E3 − E4 −

E5− E6− E7− 2E′8 = 2(L− E1− E2− E7) + (L− E2− E3− E4) + (E5− E6) +

2(E4 − E5) + 2(E3 − E4) + 2(E2 − E3) + (E1 − E7) + 2(E7 − E′8).

Example 3.5.9. A⊕8
1
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1. Blow down E8 onto E8 − E9 in the first diagram of A⊕8
1 and then blow

down E8. Then S = {E6− E7, E4− E5, E2− E3, 2L− E2− E3− E4− E5− E6−

E7, L− E1− E6− E7, L− E1− E4− E5, L− E1− E2− E3} and we compute that

(L− E1− E6− E7) + (L− E1− E4− E5) + (L− E1− E2− E3) + 2(E1− E′8) =

3L− E1 − E2 − E3 − E4 − E5 − E6 − E7 − 2E′8.

2. In the second diagram of A⊕8
1 , blow E9 onto E8 − E9 and then blow down

E8. Then S = {L− E1− E2− E3, L− E1− E4− E5, L− E1− E6− E7, L− E2−

E5− E6, L− E2− E4− E7, L− E3− E4− E6, L− E3− E5− E7}. Now note that

3L − E1 − E2 − E3 − E4 − E5 − E6 − E7 − 2E′8 = (L − E1 − E2 − E3) + (L −

E1 − E4 − E5) + (L− E1 − E6 − E7) + 2(E1 − E′8).
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Figure 4.1: Z-modules with connected
basis {C1, . . . , Cm} that give the possible
reducible fibers of a rational Jacobian
minimal quasi-elliptic fibration. Dn and
An have n + 1 vertices.
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Figure 4.2: The various configurations
of −2-curves that form a singular fiber
type in a Jacobian quasi-elliptic fibration
over a field of characteristic 2
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Figure 4.3: The blowings down of D6 ⊕ A⊕2
1
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Figure 4.4: The blowings down of D4 ⊕ A⊕4
1
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Figure 4.5: The blowings down of D⊕2
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Figure 4.6: The unique blowing down of E8
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Figure 4.7: The blowings down of E7 ⊕ A1
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Figure 4.8: The blowings down of D8
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3L− E1− E2− E3− E4− E5− 2E6− E8− E9

E6− E7

3L− E1− E2− E3− E4− E5− E6− E7− 2E8

E8− E9

2L− E2− E3− E4− E5− E6− E7

L− E1− E8− E9

2L− E2− E3− E4− E5− E8− E9

L− E1− E6− E7

2L− E2− E3− E6− E7− E8− E9

L− E1− E4− E5

2L− E4− E5− E6− E7− E8− E9

L− E1− E2− E3

2L− E2− E3− E4− E5− E8− E9

L− E1− E6− E7

2L− E2− E3− E6− E7− E8− E9

L− E1− E4− E5

2L− E4− E5− E6− E7− E8− E9

L− E1− E2− E3

3L− E1− E2− E3− E4− E5− E6− E7− 2E8

E8− E9

2L− E1− E2− E4− E6− E8− E9

L− E3− E5− E7

2L− E1− E3− E4− E7− E8− E9

L− E2− E5− E6

2L− E1− E3− E5− E6− E8− E9

L− E2− E4− E7

2L− E1− E2− E5− E7− E8− E9

L− E3− E4− E6

Figure 4.9: The blowings down of A⊕8
1



80

Bibliography

[1] Introduction to the projective geometry of hypersurfaces. Messina, 1923.

[2] Michela Artebani and Igor Dolgachev. The Hesse pencil of plane cubic curves.

Enseign. Math. (2), 55(3-4):235–273, 2009.

[3] Thomas Bauer, Sandra Di Rocco, Brian Harbourne, Jack Huizenga, Anders

Lundman, Piotr Pokora, and Tomasz Szemberg. Bounded negativity and

arrangements of lines. Int. Math. Res. Not. IMRN, (19):9456–9471, 2015.

[4] Thomas Bauer, Sandra Di Rocco, Brian Harbourne, MichałKapustka, Andreas

Knutsen, Wioletta Syzdek, and Tomasz Szemberg. A primer on Seshadri

constants. In Interactions of classical and numerical algebraic geometry, volume

496 of Contemp. Math., pages 33–70. Amer. Math. Soc., Providence, RI, 2009.

[5] I. F. Blake, G. Seroussi, and N. P. Smart. Elliptic curves in cryptography, volume

265 of London Mathematical Society Lecture Note Series. Cambridge University

Press, Cambridge, 2000. Reprint of the 1999 original.

[6] Cristiano Bocci, Susan M. Cooper, and Brian Harbourne. Containment results

for ideals of various configurations of points in PN. J. Pure Appl. Algebra,

218(1):65–75, 2014.



81

[7] Cristiano Bocci and Brian Harbourne. Comparing powers and symbolic

powers of ideals. J. Algebraic Geom., 19(3):399–417, 2010.

[8] Nicolas Bourbaki. Lie groups and Lie algebras. Chapters 1–3. Elements of

Mathematics (Berlin). Springer-Verlag, Berlin, 1989. Translated from the

French, Reprint of the 1975 edition.

[9] Winfried Bruns and Jürgen Herzog. Cohen-Macaulay rings, volume 39 of

Cambridge Studies in Advanced Mathematics. Cambridge University Press,

Cambridge, 1993.

[10] C. Ciliberto and R. Miranda. The Segre and Harbourne-Hirschowitz conjec-

tures. In Applications of algebraic geometry to coding theory, physics and compu-

tation (Eilat, 2001), volume 36 of NATO Sci. Ser. II Math. Phys. Chem., pages

37–51. Kluwer Acad. Publ., Dordrecht, 2001.

[11] Ciro Ciliberto and Rick Miranda. Homogeneous interpolation on ten points.

J. Algebraic Geom., 20(4):685–726, 2011.

[12] Susan M. Cooper, Robert J. D. Embree, Huy Tài Hà, and Andrew H. Hoefel.

Symbolic powers of monomial ideals. Proc. Edinb. Math. Soc. (2), 60(1):39–55,

2016.

[13] François R. Cossec and Igor V. Dolgachev. Enriques surfaces. I, volume 76 of

Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 1989.
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