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Let R be a commutative ring, (f) an ideal of R, and E = K(f ;R) the Koszul

complex. We investigate the structure of the Tate construction T associated with E.

In particular, we study the relationship between the homology of T , the quasi-complete

intersection property of ideals, and the complete intersection property of (local) rings.
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Chapter 1

Introduction

Let R be a commutative ring and I an ideal of R. For a generating set f of I let E

denote the Koszul complex K(f ;R); its homology H∗(E) is naturally an algebra over

the quotient ring R/I. The ideal I is said to be a quasi-complete intersection if H1(E)

is free over R/I and H∗(E) has the structure of an exterior algebra on H1(E); see

Definition 3.2.

In the case where (R,m) is a local (Noetherian) ring and E is the Koszul complex

on a minimal generating set of m, such an algebra structure on H∗(E) appears in [1]. It

is shown that this algebra structure is equivalent to the complete intersection property

of R, and is further related to the homological properties of the Tate construction; see

Chapter 4. The Tate construction is the second step in a Tate resolution of S over R,

i.e, it is the result of adjoining (to the Koszul complex E) variables of degree two to

annihilate the degree one homology of E; see [25, §2].

As Avramov, Henriques, and Şega [5] note, these ideals were first introduced in

Rodicio’s paper [22] and in his joint work with Blanco and Majadas [9] as ideals having

free exterior Koszul homology. The quasi-complete intersection nomenclature is due

to Avramov et al. [5, 1.1].
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Let z be a set of degree one cycles whose homology classes generate H1(E) and

let T be the Tate construction on f and z (see Construction 2.10). Blanco, Majadas,

and Rodicio characterize quasi-complete intersection ideals as follows:

Theorem 1.1 ([10, Theorem 1]). The following conditions are equivalent:

(1) I is a quasi-complete intersection and z represents a basis for the free S-module

H1(E).

(2) Hi(T ) = 0 for all i > 0.

This dissertation builds on the work in [1], [10], and [17] and makes a contribution

to the study of quasi-complete intersection ideals, with applications to the study of

(local) complete intersection rings. In particular, we establish results in the following

two themes:

(I) The quasi-complete intersection property of I can be detected from a finite band

of vanishing of H∗(T ).

The size and location of the band of vanishing depend on computable numerical

invariants of the ideal I. Moreover, more flexibility in both components is possible

given mild assumptions on I; see Proposition 3.20 and Theorem 4.9.

(II) The quasi-complete intersection property of the maximal ideal m of a local ring

can be detected from the vanishing in a single degree of Hi(T ).

The case i = 2 is a result of Assmus [1, Theorem 2.7]; the case i = 2 or 3 is addressed

in Theorem 4.11. We study the case i ≥ 5 in the context of rings which are Golod

away from a complete intersection; see Section 5.2.

This project connects to two earlier bodies of work in which the (eventual) vanishing

of the homology of a complex is determined by the vanishing of the complex in a
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single degree, namely the theory of Koszul rigidity and the vanishing of the deviations

of a local ring. These topics and their connections to this project will be outlined in

Section 2.5 and Section 2.6, respectively.

Avramov, Henriques, and Şega [5] present one direction of an ideal-theoretic

characterization of quasi-complete intersection ideals, namely that an exact ideal (i.e.,

an ideal generated by a sequence of exact elements) is a quasi-complete intersection;

see Section 3.1. The converse does not hold: In [20, Example 4.1] Kustin, Şega, and

Vraciu give an example of a quasi-complete intersection which cannot be generated by a

sequence of exact elements. In addition, [20, Lemma 1.7] shows that for two-generated

ideals, a finite band of vanishing of the homology of the Tate construction is related

to the quasi-complete intersection property.; see Section 3.2.1.

Notation. Throughout this work, the following assumptions and notations are in force.

All rings are assumed to be commutative and unitary. Our ubiqutous commutative

ring is denoted R, I is an ideal of R, and f denotes a generating set of I.
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Chapter 2

Homological tools

In this chapter, we present background material and the relevant tools from homological

algebra. The results and constructions of Section 2.1 through Section 2.6 are classical;

new results are presented in Section 2.7.

2.1 Differential graded algebras

In this section, recall the definition and properties of differential graded (DG) algebras.

We use [4] as our primary reference.

Definition 2.1 ([4, §1.3]). A differential graded (DG) algebra A is a complex (A, ∂)

with an element 1 ∈ A0 (the unit) and a morphism of complexes (the product)

A⊗R A→ A, a⊗ b→ ab,

that is unitary and associative. In addition, we require that A be (graded) commutative:

ab = (−1)|a||b|ba for a, b ∈ A and a2 = 0 when |a| is odd.
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We further require that Ai = 0 for i < 0. The underlying R-module {An}n≥0 is

denoted A\.

Remark 2.2. For a DG algebra A, the fact that the product is a morphism of complexes

means precisely that the product satisfies the Leibniz rule:

∂(ab) = ∂(a)b+ (−1)|a|a∂(b) for a, b ∈ A.

Example 2.3. The ring R is a DG R-algebra (concentrated in degree 0) with differ-

ential ∂R = 0.

Definition 2.4. A morphism of DG-algebras A and A′ is a morphism of complexes

ψ : A → A′ such that ψ(1) = 1 and ψ(ab) = ψ(a)ψ(b). That is, ψ is compatible

with the algebra structures on A and A′. A morphism ψ : A→ A′ which induces an

isomorphism on homology is said to be a quasi-isomorphism.

Definition 2.5. We say that two DG algebras X and X ′ are equivalent if there exists

a chain of quasi-isomorphisms

X Y (1) X(1) Y (2) · · · X(n−1) Y (n) X ′

2.2 The Koszul complex

In this section, we recall the construction and relevant properties of the Koszul complex.

We use [11, §1.6] as a reference.

Consider a sequence of elements x = x1, . . . , xn in R, and let L denote a free

R-module with basis e1, . . . , en. The Koszul complex on x, denoted K(x;R), is defined

as follows:

Kp(x;R) = ∧Rp L,
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∂p(ei1 ∧ · · · ∧ eip) =

p∑
q=1

(−1)q+1xiqei1 ∧ · · · ∧ êiq ∧ · · · ∧ eip .

(By êiq we indicate that the basis element eiq is omitted from the product.)

Example 2.6. The Koszul complex K(x;R) is a DG R-algebra with multiplication

given by the wedge product.

We recall properties of the homology of the Koszul complex, specifically those that

relate to the algebraic structure of its homology. Let E denote the Koszul complex

K(x;R).

(1) (x) ·H∗(E) = 0, so that H∗(E) is naturally an R/(x)-module.

(2) H∗(E) inherits the structure of an algebra over R/(x) with multiplication given

by

cls(z) · cls(z′) = cls(z ∧ z′).

(3) Set b = max{i : Hi(E) 6= 0}. If R is Noetherian and (x) 6= (x)2, then

b = n− depth((x), R); see [21, Theorem 16.8].

2.3 Tate’s “adjunction of variables”

We now present a procedure (developed by Tate [25]) for constructing resolutions of

DG algebras. This process utilizes the adjunction of familiar exterior variables to

annihilate cycles of even degree; cycles of odd degree are annihilated by divided powers

variables. We now adopt the notation of [4, §6]. Let A be a DG R-algebra.

Construction 2.7 ([4, Construction 6.1.1]). Suppose that z is a cycle in A of positive

odd degree. The DG algebra A〈w | ∂w = z〉 is defined as follows:
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Let R〈w〉 denote the free R-algebra on a divided powers variable w of degree |z|+1;

it is the free R-module with a basis

{
w(i) :

∣∣w(i)
∣∣ = i|w|

}
i≥0

and multiplication

w(i)w(j) =

(
i+ j

j

)
w(i+j) for i, j ≥ 0.

The underlying algebra A〈w〉\ is A\⊗RR〈w〉, and the differential on A〈w〉 is given

by

∂

(∑
i

aiw
(i)

)
=
∑
i

∂(ai)w
(i) +

∑
i

(−1)|ai|aizw
(i−1);

this differential extends the differential of A and satisfies the Leibniz rule.

The divided powers variables represent one of the two types of variables used to

annihilate cycles; the second is exterior variables. An extension A〈X〉 obtained by the

iterated adjunction of exterior and/or divided powers variables is called a semi-free1

Γ-extension.

We now present the exact homology triangle due to Tate, and highlight its precise

form, which depends on the parity of the degree of the adjoined variable.

Let A ↪→ A〈w | ∂w = z〉 be an extension with |z| = d and let ι : A→ A〈w〉 denote

the natural injection.

Remark 2.8. [[4, Remark 6.1.5]] When d is even, we have a short exact sequence of

chain maps

0 A A〈w〉 A 0
ι ϑ

1A semi-free DG-module is not a free object in the category of DG R-modules, yet it does retain
a lifting property which is characteristic of free objects; see [4, Proposition 1.3.1].
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where ϑ(a+ xb) = b is of degree −d− 1.

The resulting long exact sequence in homology has the form

· · · Hn−d(A) Hn(A) Hn(A〈w〉) Hn−d−1(A) · · ·
· cls(z) Hn(ι) Hn(ϑ)

Remark 2.9. [[4, Remark 6.1.6]] When d is odd, we have a short exact sequence of

chain maps of the form

0 A A〈w〉 A〈w〉 0
ι ϑ

where ϑ
(∑

i aiw
(i)
)

=
∑

i aiw
(i−1) is of degree −d−1; the resulting long exact sequence

in homology has the form

· · · Hn−d(A〈w〉) Hn(A) Hn(A〈w〉) Hn−d−1(A〈w〉) · · ·
ðn+1 Hn(ι) Hn(ϑ)

We note that this differs from the preceding case. In particular, the connecting map

ðn+1 in this sequence does not take the form of multiplication by cls(z).

The long exact sequences in homology will be used extensively in Section 2.7.

2.4 The Tate construction and the Cartan

construction

In this section, we recall the construction of two families of complexes, due respectively

to Tate [25] and Cartan. We adopt the notation of [13, 25].

Let I denote a proper non-zero ideal of R, and S = R/I. We fix a generating

set f of I. Let E denote the Koszul complex on f , i.e., E = K(f ;R). We have an

identification of E as an extension of R: Let u = {uf : f ∈ f} denote a set of degree
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one exterior variables. Then

E = R〈u | ∂uf = f〉.

Construction 2.10. The Tate construction. Let z be a set of cycles of degree one such

that the homology classes {cls(z) : z ∈ z} generate H1(E). Let w = {wz : z ∈ z}

denote a set of degree two divided powers variables. The Tate construction on f and

z, denoted T (f ; z) is

T (f ; z) =R〈u,w | ∂uf = f, ∂wz = z〉

=E〈w | ∂wz = z〉.

Let T denote the Tate construction T (f ; z); we have the equality H1(T ) = 0 and

isomorphisms H0(T ) ∼= H0(E) ∼= S.

The Tate construction T has the following explicit presentation. Let W be a

graded R-module on the basis w, and let ΓR
∗W denote the divided powers algebra on

W . For integers j(w) ≥ 0 with p =
∑

w∈w j(w), the distinct expressions

∏
w∈w

w(j(w))

form a basis of ΓR
pW . This yields the following presentation of the complex:

Tn =
⊕

2p+q=n

Eq ⊗R ΓR
pW,
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∂Tn

(
e⊗

∏
w∈w

w(j(w))

)
= ∂E(e)⊗

∏
w∈w

w(j(w))

+(−1)|e|
∑
w′∈w

(
z′e⊗ w′(j(w′)−1)

∏
w 6=w′

w(j(w))

)
.

Note that the differential ∂T is precisely the extension to all of T (using the Leibniz

rule) of the differentials ∂E and wz 7→ z.

Remark 2.11. For a local ring (R,m), we have a uniqueness property of the Tate

construction. Let f denote a minimal generating set of I, and let E denote the Koszul

complex on f . If z is set of degree one cycles whose homology classes form a minimal

generating set of H1(E), then T (f ; z) is unique up to isomorphism (see, for example

[6, 1.2]). As such, we will (in this context) simply refer to the Tate construction on I

without risk of confusion.

Remark 2.12. The explicit presentation of the Tate construction T = T (f ; z) yields a

convergent first-quadrant spectral sequence:

{
dp,qr : Er

p,q → Er
p−r,q+r−1

}
r≥0 ; Er

pq =⇒ Hp+q(T ).

The E0 page is

E0
p,q = Eq−p ⊗R ΓR

pW.

Using the notation of [27, Definition 6.5.1] the E1 and E2 pages are

E1
p,q = Hv

q (T ) = Hq−p(E)⊗S ΓS
p (S ⊗R W ), E2

p,q = Hh
pH

v
q (T ).

Let Hi denote Hi(E) and let Γj denote ΓS
j (S ⊗R W ). For q ≥ 0, the row E1

∗q of the
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E1 page of the spectral sequence is as follows:

0 Hq Hq−1 ⊗S Γ1 · · · H1 ⊗S Γq−1 Γq 0 (2.13)

This spectral sequence will appear in Section 3.2.3; the realization of the Tate con-

struction as an extension of R will be utilized extensively throughout this work.

We now recall the prototype for the Tate construction: the Cartan construction.

Construction 2.14. The Cartan construction. Let B denote a DG R-algebra with

differential ∂B = 0. Let y denote a set of generators of B1, and let w = {wy : y ∈ y}

denote a set of degree two divided powers variables. The Cartan construction C on B

is the extension

C = B〈w | ∂wy = y〉.

Remark 2.15. Let C be the Cartan construction on B. Then C is bigraded:

Cp,q = Bq−p ⊗R ΓR
pW, Cn =

⊕
p+q=n

Cp,q.

We have a decomposition of the homology of C:

Hn(C) =
⊕

p+q=n

Hp(C∗,q), (2.16)

Here C∗,q is the following strand of C:

0 Bq Bq−1 ⊗R ΓR
1W · · · B1 ⊗R ΓR

q−1W ΓR
q W 0. (2.17)

We will exploit the similar structure of the the qth row of the E1 page (2.13) and the

strand C∗,q (2.17) in the proof of Proposition 3.10.
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We will apply the decomposition (2.16) in the proof of Theorem 5.8 in the case

where B is a trivial extension:

Definition 2.18. The trivial extension knU is the vector space k⊕U endowed with

the trivial differential ∂U = 0 and algebra structure U2 = 0.

We will also be interested in the structure of the Cartan construction in the case

where B is an exterior algebra. For such a B, we now describe the structure of the

homology of C.

Remark 2.19. Let G be a free R-module on a basis g. Set B = ∧R∗G, and consider B

as a DG algebra with differential ∂B = 0; note that H∗(B) = B. Let C be the Cartan

construction on B. Then Hp(C∗,q) = 0 for all (p, q) 6= (0, 0). Indeed, g is regular 2 on

B so that [4, Proposition 6.1.7] yields an isomorphism

B

(g)B
∼= H∗(C).

In light of this isomorphism and the equalities (g)B = B≥1 and B0 = R we have

Hn(C) = 0 for n > 0 and H0(C) = R. Now (2.16) yields the desired result.

2.5 Koszul rigidity

One of the motivations of this project is the theory of the rigidity of the Koszul

complex. Let X be a complex of R-modules, and C a set of R-modules.

Definition 2.20. We say that X is rigid with respect to the set C if each module A

in C has the following property:

Hi(X ⊗R A) = 0 =⇒ Hj(X ⊗R A) = 0 for all j ≥ i.
2This is a generalization to DG-algebras of the familiar ring-theoretic property; see [4, §6].
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We say that X is rigid if X is rigid with respect to the set C = {R}. That is, X is

rigid if the following implication holds:

Hi(X) = 0 =⇒ Hj(X) = 0 for all j ≥ i.

Under mild hypotheses, the Koszul complex is rigid with respect to the set of

finitely generated R-modules:

Theorem 2.21 ([26, Theorem 5.10]). Let x = {x1, . . . , xn} be a sequence of elements

contained in the Jacobson radical of R, and let M be a finitely generated R-module. If

Hq(K(x;M)) = 0, then Hi(K(x;M)) = 0 for all i ≥ q.

Question 2.22. Is the Tate construction rigid? More generally, does there exist a

finite set of integers S and an integer j = j(S) such that

Hi(T ) = 0 for all i ∈ S =⇒ Hi(T ) = 0 for all i ≥ j?

The project provides partial answers to this question; see Proposition 3.17, Theo-

rem 4.11, and Theorem 5.8.

2.6 Acyclic closures and deviations

In Chapter 4 we will focus on the case where (R,m, k) is a local ring. To this end, we

recall two important definitions: acyclic closures and deviations.

Construction 2.23 ([4, Construction 6.3.1]). Suppose that A is a DG algebra such

that A0 is the local ring (R,m, k) and each R-module Hn(A) is finitely generated. Let

A→ S be a surjective augmentation and set J = Ker(R→ S). We may construct a

semi-free Γ-extension A ↪→ A〈X〉 as follows.
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(1) Select X1, a set of variables of degree one, so that ∂(X1) minimally generates J

mod ∂1(A1);

(2) For n ≥ 1, {cls(∂x) : x ∈ Xn+1} minimally generates Hn(A〈X≤n〉);

(3) X = X≥1.

An extension obtained in this manner is called an acyclic closure of S over A.

Each package of variables Xi is finite. As such, we may order the variables X so

that |xi| ≤ |xj| whenever i < j.

For the local ring (R,m, k), an acyclic closure R〈X〉 of k over R is a minimal

free resolution of k as an R-module; this result was established independently by

Gulliksen [14] and Schoeller [24].

The deviations εn of R measure the number of variables adjoined (in each degree)

in the construction of an acyclic closure:

Theorem 2.24 ([4, Theorem 7.1.3]). If R〈X〉 is an acyclic closure of k over R, then

cardXn = εn for n ∈ Z.

The deviations εn(R) can also be defined in terms of a decomposition of the

Poincaré series PR
k (t); see [4, Remark 7.1.1].

Remark 2.25. We note that the indexing convention of the εn used above differs from

that of Gulliksen and Levin [13]: εn of [13] stands for εn+1 of [4].

Theorem 2.26. If εn(R) = 0 for some n > 0, then R is a complete intersection.

The cases n = 1 and 2 are trivial: If n = 1 then R is a field; if n = 2 then R is

regular. The case n = 3 is a consequence of a result of Wiebe [28]; see [4, Corollary
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7.2.8]. The case n = 4 is due to Gulliksen [13, Theorem 3.5.1] and the result was

settled in all cases by Halperin [15, Theorem B].

Definition 2.27. Let R〈X〉 be an acyclic closure of k over R. A DG algebra Y is

said to be a degree ` partial acyclic closure of k over R if Y = R〈X≤`〉.

We make the following observation, which allows certain deviations to be computed

from a partial acyclic closure:

Remark 2.28. Let Y be a degree ` partial acyclic closure of k over R. Then

cardYn = εn for n ≤ ` and cardH`(Y ) = ε`+1.

Consequently, we may restate Theorem 2.26 as follows: If Y is a degree ` partial

acyclic closure of k over R and H`(Y ) = 0, then R is a complete intersection.

We will apply this observation in Section 4.2 to our goal of detecting the complete

intersection property of local rings from the vanishing of the homology of the Tate

construction in a single degree.

The result of Theorem 2.26 can also be framed as an answer to the following

question:

Question 2.29. Let R be a local ring and ` an integer. Does there exists a complex

C = C(`) such that the implication

H`(C) = 0 =⇒ R is a complete intersection

holds?
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Indeed, Theorem 2.26 yields that the implication holds when C(`) is the partial

acyclic closure R〈X≤`〉. In some cases the Tate construction T gives an affirmative

answer; see Section 4.2 and Section 5.2.

2.7 Periodicity and vanishing

We now develop conditions, expressed as a band of vanishing of homology, under which

an extension formed by the adjunction of variables of degree two exhibits eventually

periodic or eventually vanishing homology. We adopt the notation of [4, §6]. For

integers i ≤ j, let [i, j] denote {i, i+ 1, . . . , j}.

Let A denote a DG R-algebra. Suppose that {z1, . . . , zm} is a set degree one cycles

of A. Put A0 = A and for 1 ≤ j ≤ m put Aj = Aj−1〈wj | ∂wj = zj〉.

Lemma 2.30. Let q and b be integers.

(1) Suppose Hi(Am) = 0 for all i ∈ [q, q +m]. Then for each j we have Hi(Aj) = 0

for all i ∈ [q +m− j, q +m].

(2) If Hi(A) = 0 for all i > b, then Hi(A1) ∼= Hi+2(A1) for all i ≥ b, i.e., H∗(A1) is

periodic of period 2 beginning in degree b.

Proof. For (1), by induction we may assume m = 1. Then Hi(A1) = 0 for i ∈ {q, q+1}.

The equality Hq+1(A) = 0 now follows from immediately from the following portion of

exact sequence in homology associated with Tate’s exact homology triangle [4, Remark

6.1.6]:

· · · Hq+1(A1)

Hq+2(A) Hq+2(A1) Hq(A1)

Hq+1(A) Hq+1(A1) · · ·
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The result of (2) also follows from [4, Remark 6.1.6]: For each i ≥ b we have

an isomorphism Hi+2(A1) ∼= Hi(A1), so that H∗(A1) is eventually periodic of period

2. The extremal case occurs when i = b, namely Hb+2(A1) ∼= Hb(A1), so that the

periodicity begins in the desired position.

Proposition 2.31. If Hi(A) = 0 for all i > b, q ≥ b + 1 −m, and Hi(Am) = 0 for

all i ∈ [q, q +m], then Hi(Am) = 0 for all i ≥ b+ 1−m.

Proof. We proceed by induction on m. Consider the case m = 1. By Lemma 2.30 (2),

the vanishing of Hi(A) for i > b yields that H∗(A1) is periodic of period 2 beginning

in degree b. By hypothesis, Hi(A1) = 0 for i ∈ {q, q + 1}. As q ≥ b, we have that one

representative from each of the two isomorphism classes of H≥b(A1) vanishes, so that

Hi(A1) = 0 for all i ≥ b.

Suppose now that for each 1 ≤ a < m the statement holds for the adjunction of a

variables of degree two, and that Hi(Am) = 0 for all i ∈ [q, q +m]. By Lemma 2.30

(1), Hi(Am−1) = 0 for all i ∈ [q + 1, q +m]. By induction, we have that Hi(Am−1) = 0

for all i ≥ b+ 1− (m− 1), so that Lemma 2.30 (2) yields that H∗(Am) is periodic of

period 2 starting in degree b+ 1−m. As q ≥ b+ 1−m, we have that (at least) one

representative from each of the two isomorphism classes of H≥b+1−m(Am) vanishes,

which completes the proof.

For a non-negative integer m, let [m] denote the set [0,m] = {0, 1, . . . ,m}. We

now state a more general version of Proposition 2.31.

Fix a sequence d1, . . . , dn of strictly increasing odd integers, and let B be the

extension

B = A〈wij | ∂wij = zij, 1 ≤ i ≤ n, 1 ≤ j ≤ mi〉,
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where |zij| = di. For 1 ≤ q ≤ n, put

Sq =

dq+1⋃
s=1

{
−

(
q∑

j=1

djtj

)
+ s : (t1, . . . , tq) ∈ [m1 − 1]× [m2]× · · · × [mq]

}
,

and set

µ =
n∑

j=1

mjdj.

Proposition 2.32. Suppose Hi(A) = 0 for all i > b, k ≥ b− µ, and Hk+i(B) = 0 for

all i ∈ Sn. Then Hi(B) = 0 for all i ≥ b+ 1− µ.

The following lemma highlights two situations in which the adjunction of a variable

to annihilate a non-zero homology class preserves the vanishing of homology in a

higher degree. Here, (R,m, k) is a local ring.

Lemma 2.33. Let A be a DG R-algebra and assume that H0(A) = k. Let i be an

integer, and suppose that Hi(A) 6= 0. Let z be a cycle representing a non-zero homology

class in Hi(A) and set B = A〈w | ∂w = z〉.

(1) If i ≥ 2 is even and H1(A) = 0 = Hi+2(A), then H1(B) = 0 = Hi+2(B).

(2) If Hi+1(A) = 0, then Hi+1(B) = 0.

Proof. For (1), the equality H1(B) = 0 is clear, and the equality Hi+2(B) = 0 follows

immediately from a portion of the exact sequence from [4, Remark 6.1.5]:

· · · Hi+2(A) Hi+2(B) H1(A) · · ·

0 0

Hi+1(ϑ)

For (2), let ζ denote cls(z). Suppose first that i is even.

We consider the following portion of exact sequence in homology of [4, Remark

6.1.5]:
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· · · Hi+1(A) Hi+1(B) H0(A) Hi(A) · · ·

0 k

Hi(ϑ) ·ζ

Multiplication by ζ is injective on H0(A), so that Hi+1(B) = 0, as desired.

In the case where i is odd, the relevant portion of the exact sequence in homology

from [4, Remark 6.1.6] is the following:

Hi+1(A) Hi+1(B) H0(B) Hi(A) Hi(B) H−1(B)

0 k 0

Hi+1(ϑ) ði+1 Hi(ι)

By construction Hi(ι)(ζ) = 0, and so Hi(ι) is not injective. Thus ði+1 is not the

zero map and so ði+1 is injective. Thus Hi+1(B) = 0.
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Chapter 3

Quasi-complete intersection ideals

Let (R,m) be a commutative, Noetherian, local ring and let I be a proper, non-zero

ideal of R. Fix a generating set f of I, and let E be the Koszul complex on f .

Definition 3.1. We say that I is a complete intersection ideal if I can be generated

by a regular sequence. As R is local, this condition is tantamount to the following

(equivalent) conditions:

(1) H1(E) = 0.

(2) Hi(E) = 0 for all i > 0.

Here, we see a situation in which the structure of H1(E) can determine the structure

of H∗(E), and this structure can be detected from an ideal-theoretic perspective.

Suppose now that R is a commutative (not necessarily local) ring and set S = R/I.

There is a canonical homomorphism of graded S-algebras:

λS∗ : ∧S∗H1(E) → H∗(E),

cls(z1) ∧ · · · ∧ cls(zm) 7→ cls(z1 ∧ · · · ∧ zm).
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Definition 3.2. We say that I is a quasi-complete intersection if H1(E) is free over

S and λS∗ is an isomorphism.

Remark 3.3. As Avramov, Henriques, and Şega [5, §1] note, the existence of some

isomorphism of graded S-algebras

λ : H∗(E)
∼=−→ ∧S∗H1(E)

guarantees the quasi-complete intersection property. Indeed, if λ is such an isomor-

phism, then the composition

∧S
∗H1(E) ∧S∗H1(E) H∗(E)

∧S
∗ (λ1) λ−1

is an isomorphism and is equal to λS∗ , as both the composition and λS∗ restrict to

idH1(E).

3.1 Principal quasi-complete intersection ideals

In this section, we discuss an ideal-theoretic characterization of principal quasi-

complete intersection ideals. For such a principal ideal I = (f), let E denote the

Koszul complex K(f ;R). Then E has the following form:

E : 0 R R 0
·f

As such, H1(E) = {r ∈ R : rf = 0} = (0 :R f) and Hi(E) = 0 for i ≥ 2. With

these observations, we note that in order for a principal ideal (f) to be a quasi-complete

intersection, it must be the case that H1(E) is a free S-module and rankS H1(E) ≤ 1.

In particular, I = (f) is a quasi-complete intersection ideal if and only if one of the

following conditions holds:
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(1) (0 :R f) = 0.

(2) (0 :R f) ∼= R/(f).

An element satisfying the former condition is regular ; an element satisfying the latter

is called an exact zerodivisor. When f is an exact zero divisor, there exists g ∈ R

with (0 :R f) = (g) and (0 :R g) = (f), so that (f, g) is an exact pair in the sense of

Kie lpiński, Simson, and Tyc [19, Definition 1.1]. Collectively, an element which is

either regular or an exact zerodivisor is called an exact element .

As an analog to a regular sequence, we say that a sequence f = f1, . . . , fn is an

exact sequence if

(1) fi is exact on R/(f1, . . . , fi−1) for i = 1, . . . , n, and

(2) R 6= (f).

Recall the ideal-theoretic characterization of complete intersection ideals as ideals

which can be generated by a regular sequence (Definition 3.1). The following result

gives one portion of an ideal-theoretic characterization of quasi-complete intersection

ideals:

Theorem 3.4. [[5, Theorem 3.7]] Suppose f1, . . . , fn is a sequence of exact elements

in R and put I = (f1, . . . , fn). Then I is a quasi-complete intersection ideal, and

gradeR(S) = card{i ∈ [1, n] : fi is regular on R/(f1, . . . , fi−1)}.

The result that an exact ideal is necessarily a quasi-complete intersection also

follows from [19, Theorem 1.8]. Indeed, if f1, . . . , fn is a sequence of exact elements in

R then there exists g1, . . . , gn ∈ R such that the (f , g) = ((f1, g1), . . . , (fn, gn)) is a

sequence of exact pairs (see [19, Definition 1.1]). Let R(fi, gi) denote the complex
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0 R R R · · ·
·fi ·gi ·fi

Then [19, Theorem 1.8] yields that the complex U =
⊗n

i=1R(fi, gi) satisfies Hi(U) = 0

for i > 0. Noting that U is precisely T (f ; g), the result of Blanco, Majadas, and

Rodicio [10, Theorem 1] shows that I = (f) is a quasi-complete intersection.

However, this result does not extend to a complete ideal-theoretic characterization

of quasi-complete intersection ideals. That is, there exists a quasi-complete intersection

ideal which cannot be generated by a sequence of exact elements. Kustin, Şega, and

Vraciu [20] construct such an ideal:

Example 3.5 ([20, Example 4.1]). Let X = {X1, . . . , X5} be a set of indeterminates,

and let J be the ideal of Z[X] generated by the following eight elements:

X2
1 −X2X3, X2

2 −X3X5, X3
3 −X1X4, X2

4 , X2
5 , X3X4, X2X5, X4X5.

Let A denote the ring Z[X]/J ; we denote the image of the variable Xi in A by xi. Let

f1 and f2 be the elements

f1 = x1 + x2 + x4 and f2 = x2 + x3 + x5.

Fix a field L and set B = L⊗Z A. Let I denote the ideal (f1, f2)B.

By [20, Proposition 4.3(3)], I is a quasi-complete intersection ideal. Moreover,

[20, Theorem 4.5] yields that I is neither principal nor properly contains a non-zero

quasi-complete intersection ideal. Consequently Theorem 3.4 yields that I contains no

exact elements; in particular, I cannot be generated by a sequence of exact elements.
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3.2 Homological characterizations

In this section, we present various characterizations of the quasi-complete intersection

property. The following characterization is due to Blanco, Majadas, and Rodicio. Let

z be a set of degree one cycles whose homology classes generate H1(E) and let T be

the Tate construction on f and z.

Theorem 3.6 ([10, Theorem 1]). The following conditions are equivalent:

(1) I is a quasi-complete intersection and z represents a basis for the free S-module

H1(E).

(2) Hi(T ) = 0 for all i > 0.

3.2.1 Two-generated quasi-complete intersection ideals

Section 3.1 describes a homological characterization of principal quasi-complete inter-

section ideals. A result of Kustin, Şega, and Vraciu ([20, Lemma 1.7]) provide (in the

local case) an analogous classification for two-generated quasi-complete intersection

ideals in terms of the vanishing of the homology of the Tate construction and a double

annihilator condition.

In this section (R,m) is a local (Noetherian) ring and f = {f1, . . . , fn} is a minimal

generating set for the ideal I. The size of a minimal generating set of an R-module

M is denoted νR(M).

The following construction provides the framework for the double annihilator

condition.

Construction 3.7 ([20, 1.4]). Fix a basis v1, . . . , vn of E1 with ∂E(vi) = fi. Suppose

that z = {z1, . . . , zn} is a set of degree one cycles of E such that the homology classes

{cls(zi)} minimally generate H1(E). Then there exist {aij : i, j ∈ [1, n]} ⊂ R such
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that

zi =
n∑

j=1

aijvj.

Let A denote the matrix (aij) and set ∆ = detA. Then the map λSn : ∧SnH1(E) →

Hn(E) is given by

cls(z1) ∧ · · · ∧ cls(zn) 7→ ∆v1 · · · vn.

The equality νR(H1(E)) = n holds whenever I is a quasi-complete intersection

with depth(I, R) = 0; see [5, 1.2].

Lemma 3.8 ([20, Lemma 1.7]). Suppose νR(I) = 2 and depth(I, R) = 0. Then the

following statements are equivalent:

(1) I is a quasi-complete intersection.

(2) H2(T ) = 0, (0 :R I) = (∆), and (0 :R ∆) = I, where ∆ is as defined in

Construction 3.7.

3.2.2 Initial band of vanishing of H∗(T )

We now present the new results which characterize quasi-complete intersection ideals

as those for which a finite portion of the homology of the Tate construction vanishes.

We make the following assumptions: I is a non-zero proper ideal of R. Fix a generating

set f of I and let E denote the Koszul complex K(f ;R). Let z denote a set of degree

one cycles such that the homology classes {cls(z) : z ∈ z} generate H1(E).

Our first characterization is in terms of an initial band of vanishing of the homology

of the Tate construction.

Theorem 3.9. Suppose that I = (f) is a proper, non-zero ideal of R, and set

b = max{i : Hi(E) 6= 0}. Suppose z is a set of cycles whose homology classes
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generate H1(E). Let T be the Tate construction on f and z. The following conditions

are equivalent:

(1) I is a quasi-complete intersection ideal and z represents a basis of the S-module

H1(E).

(2) Hi(T ) = 0 for all i > 0.

(3) Hi(T ) = 0 for i = 2, . . . , b+ 2.

With the goal of establishing Theorem 3.9, we first prove a preliminary result

which connects the properties of the map λS∗ to the low-degree vanishing of H∗(T ).

Recall the spectral sequence of Remark 2.12 associated with the Tate construction;

the map d1,11 of the spectral sequence of is given by

d1,11 : S ⊗R W → H1(E), s⊗R wi 7→ s cls(zi).

The construction of T yields that d1,11 is surjective, S⊗RW free over S, and H1(T ) = 0.

In addition, λS1 : ∧S1H1(E)→ H1(E) is the identity map.

Proposition 3.10. Let k ≥ 1 be an integer. The following statements are equivalent:

(1) Hi(T ) = 0 for i = 2, . . . , k + 1.

(2) d1,11 is an isomorphism, λSi is an isomorphism for i = 2, . . . , k, and λSk+1 is

surjective.

Proof. (1) =⇒ (2): We first establish that d1,11 : S ⊗R W → H1(E) is injective (and

is thus an isomorphism of S-modules). Recall that the terms E0
p,q are non-zero only

for (p, q) satisfying q ≥ p ≥ 0. Thus E0
2,1 = 0, and so E2

1,1 = Ker d1,11 . Moreover,
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E2
1,1 = E∞1,1 is (isomorphic to) a subquotient of H2(T ), so that d1,11 is injective, as

desired.

We now focus on the properties of the maps λi described in (2). In addition, we

show that the following condition holds:

(3) E2
0,k+1 = 0 and E2

p,q = 0 for all (p, q) 6= (0, 0) with 0 ≤ p ≤ q ≤ p+ k − 1.

We will establish (2) and (3) by induction on k.

Suppose k = 1. We begin with (3) and show that E2
q,q = 0 for all q ≥ 1. Let C be

the Cartan construction on the free S-module H1(E) and let Dn denote the strand

C∗,n (see Construction 2.14). Let Γi denote ΓS
i (W ⊗R S). For each q ≥ 1, we have

morphisms relating the row E1
∗q of the E1 page of the spectral sequence to the strand

Dq:

E1
∗q : · · · H2(E)⊗S Γq−2 H1(E)⊗S Γq−1 Γq 0

Dq : · · · ∧S2H1(E)⊗S Γq−2 H1(E)⊗S Γq−1 Γq 0

λS
2 ⊗ Γq−2 λS

1 ⊗ Γq−1= = (3.11)

From this diagram we conclude that E2
q,q = Hq(D

q). But Remark 2.19 yields that

Hq(D
q) = 0 for all q ≥ 1, and so E2

q,q = 0 for all q ≥ 1, as desired. It remains to show

that E2
0,2 = 0. We have E2

0,2 = E∞0,2; this is (isomorphic to) a subquotient of H2(T ), so

that E2
0,2 = 0.

For (2) note that λS1 is the identity map on H1(E); we now show that λS2 is

surjective. Note that E1
−1,2 = 0, and so E2

0,2 = Coker d1,21 . But E2
0,2 = 0, and so d1,21 is
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surjective. We have the following commutative diagram with exact rows:

E1
∗,2 : 0 H2(E) H1(E)⊗S Γ1

D2
∗ : 0 ∧S2H1(E) ∧S1H1(E)⊗S Γ1

d1,21

λS
2 λS

1 ⊗ Γ1
∼=

Thus λS2 is surjective, as desired.

Suppose now that k ≥ 2. By construction and by induction E2
1,k = E∞1,k; this is

(isomorphic to) a subquotient of Hk+1(T ), and so E2
1,k = 0. Similarly, E2

0,k = 0. These

equalities yield the following commutative diagram with exact rows:

E1
∗k : 0 Hk(E) Hk−1(E)⊗S Γ1 Hk−2(E)⊗S Γ2

Dk : 0 ∧SkH1(E) ∧Sk−1H1(E)⊗S Γ1 ∧Sk−2H1(E)⊗S Γk−2

λS
k λS

k−1 ⊗ Γ1
∼= λS

k−2 ⊗ Γ2
∼= (3.12)

An application of the four lemma now gives that λSk is an isomorphism.

To establish (3) it remains to show that E2
pq = 0 for all (p, q) = (q − k + 1, q),

where q ≥ k + 1. For each such q, we have the following commutative diagram:

E1
∗q : Hk(E)⊗S Γq−k Hk−1(E)⊗S Γq−k+1 Hk−2(E)⊗ Γq−k+2

Dq : ∧SkH1(E)⊗S Γq−k ∧Sk−1H1(E)⊗S Γq−k+1 ∧Sk−2H1(E)⊗ Γq−k+2

λS
k ⊗ Γq−k

∼= λS
k−1 ⊗ Γq−k+1

∼= λS
k−2 ⊗ Γq−k+2

∼=

(3.13)

Hence we have an isomorphism E2
q−k+1,q

∼= Hq−k+1(D
q). Noting that q− k+ 1 ≥ 2,

Remark 2.19 yields Hq−k+1(D
q) = 0, and so E2

q−k+1,q = 0 for each q ≥ k + 1.

For (2), it remains to show that λSk+1 is surjective. As E1
−1,k+1 = 0, we have

Coker d1,k+1
1 = E2

0,k+1. But E2
0,k+1 = E∞0,k+1; this is (isomorphic to) a subquotient of
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Hk+1(T ), so that E2
0,k+1 = 0. This in turn yields that d1,k+1

1 is surjective. From this,

we have the following commutative diagram with exact rows:

E1
∗,k+1 : 0 Hk+1(E) Hk(E)⊗S Γ1

Dk+1
∗ : 0 ∧Sk+1H1(E) ∧SkH1(E)⊗S Γ1

d1,k+1
1

λS
k+1 λS

k ⊗ Γ1
∼= (3.14)

From this, we conclude that λSk+1 is surjective.

(2) =⇒ (1): As above, let C denote the Cartan construction on the free S-module

H1(E) and consider its strands Dn. First, we have that E2
p,q = 0 for (p, q) = (0, k) and

for all (p, q) 6= (0, 0) with 0 ≤ p ≤ q ≤ p + k − 1. Indeed, by utilizing commutative

diagrams analogous to (3.11), (3.12), and (3.13), we have that E2
p,q is isomorphic

to Hp(D
q) for (p, q) = (0, k) and for all (p, q) 6= (0, 0) with 0 ≤ p ≤ q ≤ p + k − 1.

Consequently, Remark 2.19 yields that E2
p,q = 0 for all such (p, q). Second, noting that

λSk+1 is surjective, we see from a diagram analogous to (3.14) that E2
0,k+1 = 0 as well.

In particular, this vanishing of E2 in this region yields that E∞p,q = E2
p,q = 0 for all

(p, q) satisfying 0 < p+ q ≤ k + 1. For each such (p, q) we have a finite filtration

0 = F−1Hp+q ⊆ F0Hp+q ⊆ · · · ⊆ Fp+qHp+q = Hp+q(T ). (3.15)

Each quotient of consecutive terms has the form

FpHp+q

Fp−1Hp+q

∼= E∞p,q = 0.

We therefore conclude that each containment in (3.15) is an equality, and hence

Hp+q(T ) = 0 for all 0 < p+ q ≤ k + 1, so that Hi(T ) = 0 for all i = 2, . . . , k + 1.
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With Proposition 3.10 in hand, we now provide the proof of our first character-

ization, Theorem 3.9. Note that the result of Blanco, Majadas, and Rodicio ([10,

Theorem 1]) establishes the equivalence (1) ⇐⇒ (2).

Proof of Theorem 3.9. (1) =⇒ (2) was established by Tate [25], and (2) =⇒ (3) is

clear.

(3) =⇒ (1): By Proposition 3.10, H1(E) is free as an S-module via d1,11 :

S⊗RW → H1(E), so that H1(E) has the desired basis. Moreover, λSi is an isomorphism

for i = 1, 2, . . . , b + 1. As Hb+1(E) = 0, we have that ∧Sb+1H1(E) = 0, and so

rankS H1(E) ≤ b. Then for each i > b+ 1 we have the equality ∧Si H1(E) = 0 and λSi

is an isomorphism (of zero modules).

Remark 3.16. When R is Noetherian, the integer b can be computed as follows: For

I = (f1, . . . , fc) and I 6= I2, [21, Theorem 16.8] yields that b = c− depth(I, R), where

depth(I, R) denotes the length of a maximal R-sequence contained in I.

3.2.3 General band of vanishing of H∗(T )

Utilizing the vanishing and periodicity results of Section 2.7, we now make an obser-

vation about the eventual vanishing of the homology of the Tate construction.

Proposition 3.17. Suppose z = {z1, . . . , zm} is a set of cycles of degree one whose

homology classes generate H1(E). Let T be Tate construction on f and z. The

following conditions are equivalent:

(1) Hi(T ) = 0 for all i ≥ b−m+ 1.

(2) Hi(T ) = 0 for all i� 0.

(3) There exists an integer q ≥ b−m+ 1 such that Hi(T ) = 0 for all i ∈ [q, q +m].
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Proof. The implications (1) =⇒ (2) =⇒ (3) are immediate.

(3) =⇒ (1). Note that T = E〈w1, . . . , wm | ∂wi = zi〉, where |zi| = 1; Proposi-

tion 2.31 now yields that Hi(T ) = 0 for all i ≥ b−m+ 1.

Remark 3.18. Proposition 3.17 shows that the Tate construction exhibits Koszul-like

rigidity (see Section 2.5), in that a band of vanishing (of sufficient width) of H∗(T )

starting in degree q guarantees that Hi(T ) = 0 for (at least) i ≥ q. This gives a partial

answer to Question 2.22.

Remark 3.19. If I is a quasi-complete intersection ideal, then rankS H1(E) = b. Indeed,

we have the following equalities:

rankS H1(E) = max{i : ∧Si H1(E) 6= 0}

= max{i : Hi(E) 6= 0}

= b.

The following characterization is Proposition 3.17 in the case b = m:

Proposition 3.20. Suppose z = {z1, . . . , zb} is a set of cycles whose homology classes

generate H1(E). Let T be the Tate construction on f and z. The following conditions

are equivalent:

(1) I is a quasi-complete intersection.

(2) Hi(T ) = 0 for all i� 0.

(3) There exists an integer q ≥ 1 such that Hi(T ) = 0 for all i ∈ [q, q + b].
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Chapter 4

Complete intersections

Let (R,m, k) be a local (Noetherian) ring.

Definition 4.1. We say that R is a complete intersection if the m-adic completion R̂

can be written as a quotient of a (complete) regular local ring by a regular sequence.

Remark 4.2. Heitmann and Jorgensen [16, Corollary 1.6] show that if R is a complete

intersection which is a one-dimensional integral domain, then itself has a presentation

R = Q/J where Q is a regular local ring and J is generated by a Q-regular sequence.

However, this property does not hold in general. Indeed, Heitmann and Jorgensen [16,

Theorem 2.25] construct a three-dimensional complete intersection domain which is

not itself the quotient of a regular local ring by a regular sequence.

Let E denote the Koszul complex on a minimal generating set of m, and let T

denote the Tate construction on m (see Remark 2.11). The following result of Assmus

characterizes (local) complete intersection rings in terms of the homological structure

of E and T :

Theorem 4.3 ([1, Theorem 2.7]). The following conditions are equivalent:

(1) R is a complete intersection.
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(2) H∗(E) is the exterior algebra on H1(E).

(3) H2(E) = H1(E)2.

(4) H2(T ) = 0

In light of Remark 3.3, the equivalence (1)⇐⇒ (2) of Theorem 4.3 can be restated

as follows:

R is a complete intersection ⇐⇒ m is a quasi-complete intersection.

In this chapter, we continue the theme of Chapter 3 and discuss the quasi-complete

intersection property of m. These results will come in two flavors:

(I) We improve upon the result of Proposition 3.20.

The quasi-complete intersection property of m (and hence the complete intersec-

tion property of R) can be detected from a small band of vanishing of H∗(T ); see

Theorem 4.9.

(II) We generalize the implication (4) =⇒ (1) of Theorem 4.3.

In general, the complete intersection property of R can be detected from the vanishing

of H3(T ) or H4(T ); see Theorem 4.11. (The case of the vanishing of H∗(T ) in a single

degree will be further explored in Chapter 5).

4.1 General band of vanishing of H∗(T )

In this section, we present the results of this chapter which fall into the first flavor,

namely those that improve upon Proposition 3.20. The size of a minimal generating

set of an R-module M is denoted νR(M).
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Remark 4.4. If R is complete, then the Cohen Structure Theorem yields that R has a

minimal regular presentation. I.e., there exists a (complete) regular local ring (Q, n)

such that R = Q/J and J ⊂ n2. Then

νQ(J) = ε2(R) = νR(H1(E)),

where the first equality is due to [4, Corollary 7.1.5] and the second is [4, Theorem

7.1.3].

The following construction describes a convenient (minimal) generating set of

H1(E):

Construction 4.5 ([1, pp 196-197]). Suppose that R is complete and fix a minimal

presentation R = Q/J . Let x = x1, . . . , xn denote a minimal generating set of m,

and a1, . . . , am denote a minimal generating set of J . As J ⊂ n2, we have an equality

embdimQ = embdimR, so that we may select a minimal generating set t1, . . . , tn of

n such that the image in R of tj is xj. For each i ∈ {1, . . . ,m} write

ai =
n∑

j=1

cijtj.

For each i ∈ {1, . . . ,m} define the element zi of E = R〈u1, . . . , un | ∂uj = xj〉 by

zi =
n∑

j=1

c′ijuj,

where c′ij is the image in R of cij. Then z = {z1, . . . , zn} is a set of degree one cycles

of E representing a minimal generating set of H1(E).

In the next construction, we introduce an intermediate complete intersection ring

(Q′, n′) and describe a relationship between the Tate constructions on n′ and m. As
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usual, we set b = max{i : Hi(E) 6= 0}.

Construction 4.6. Suppose that R is complete (with minimal regular presentation

R = Q/J) and that rankkH1(E) = b, so that b = νQ(J). Select a maximal Q-

sequence a1, . . . , ah in J so that the images {ai′} in J/nJ are linearly independent

over Q/n; we may extend the sequence to a minimal generating set a1, . . . , ab of J .

Put J ′ = (a1, . . . , ah) and let (Q′, n′) denote (Q/J ′, n/J ′).

Let K ′ denote the Koszul complex on a minimal generating set x′ of n′. As

before, h = νQ′(H1(K
′)). Apply Construction 4.5 to find a set of degree one cycles

z′ = {z′1, . . . , z′h} whose homology classes form a minimal generating set for H1(K
′).

For i = 1, . . . , h, set

zi = z′i ⊗Q′ R
′,

the image of z′i in E = K ′⊗Q′R. The set of cycles {z1, . . . , zh} is the first h cycles given

by Construction 4.5, and so the set may be extended to a set of cycles z = z1, . . . , zb

whose homology classes form a minimal generating set of H1(E).

Let F ′ denote the Tate construction on x′ and z′, so that

F ′ = K ′〈w1, . . . , wh | ∂wi = z′i〉.

Set

F = F ′ ⊗Q′ R = E〈w1, . . . , wh | ∂wi = zi〉.

Then

T = F 〈wh+1, . . . , wb | ∂wi = zi〉,

where T is the Tate construction on x and z.

In the setup of the previous construction, we will be interested in showing that the
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natural surjection π : Q′ → R is an isomorphism. The following result of Auslander

and Buchsbaum will be useful for this effort.

Proposition 4.7 ([2, Proposition 6.2]). Let M be a finitely-generated R-module and

0 Xp Xp−1 · · · X0 M 0

an exact sequence where the Xi are free R-modules. The following conditions are

equivalent:

(1) (0 :R M) 6= 0.

(2)
∑p

i=0(−1)i rankRXi = 0.

(3) (0 :R M) contains a non-zerodivisor on R.

Remark 4.8. The previous result relates Ker(π : Q′ → R) to pdQ′ R. Indeed, Con-

struction 4.6 yields that (0 :Q′ R) (which is precisely Ker π) contains only zerodivisors.

Thus, we have the implication

pdQ′ R <∞ =⇒ (0 :Q′ R) = 0.

We now provide the improvement of Proposition 3.20. As usual, we set b = max{i :

Hi(E) 6= 0} and T is the Tate construction on m.

Theorem 4.9. Suppose there exists an integer q ≥ 2 such that Hi(T ) = 0 for

i = [q, q + b− 1]. Then R is a complete intersection.

Proof. Here we follow the strategy of Gulliksen [12]. Without loss of generality, we may

assume that R is complete. Recall the notation of Construction 4.6. Let π : Q′ → R

be the natural surjection. We will show that Ker π = 0; by Remark 4.8 it will be

enough to show that pdQ′ R <∞.
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As Q′ is a complete intersection, Theorem 4.3 yields F ′ is a Q′-free resolution of k,

so that TorQ
′

i (R, k) = Hi(F ). By hypothesis, there exists an integer q ≥ 2 such that

Hi(T ) = 0 for i = [q, q + b− 1]. Noting that we have obtained T from F by adjoining

at most b − 1 variables of degree two, Lemma 2.30 (1) yields that Hq+b−1(F ) = 0.

This implies that TorQ
′

q+b−1(R, k) = 0 for some q ≥ 2. Hence, pdQ′ R <∞, completing

the proof.

Let R〈X〉 denote an acyclic closure of k over R and order the variables X such

that |xi| ≤ |xj| for i < j; see Construction 2.23. Fix an integer p and let Y denote

the extension R〈xi : i ≤ p〉. (An example of such an extension is a partial acyclic

closure R〈X≤n〉.) We note that the following result appears implicitly in work of

Gulliksen [12]:

Proposition 4.10. Let F be as in Construction 4.6 and suppose that F ⊆ Y . If

Hi(Y ) = 0 for all i� 0, then R is a complete intersection.

Proof. The DG-algebra Y satisfies the conditions of [12, Lemma 1]. Now Hi(Y ) = 0

for all i� 0 and Y is obtained from F by an adjunction of (finitely many) variables,

so a repeated application of [12, Lemma 2] yields Hi(F ) = 0 for all i � 0. But

Hi(F ) = TorQ
′

i (R, k), so that pdQ′ R <∞. Consequently, Remark 4.8 yields that R is

a complete intersection.

In particular, Gulliksen [12] implicitly contains a proof of the local case of the

equivalence (1)⇐⇒ (2) of Proposition 3.20: The eventual vanishing of H∗(T ) is equiv-

alent to the complete intersection property of R (i.e, the quasi-complete intersection

property of m).
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4.2 Vanishing of H∗(T ) in a single low degree

We now show that certain vanishing of H∗(T ) in a single degree detects the complete

intersection property of R.

Theorem 4.11. If Hi(T ) = 0 for i = 3 or 4, then R is a complete intersection.

Proof. We may assume that R is not a complete intersection, so that H2(T ) 6= 0.

If H3(T ) 6= 0, then we apply Lemma 2.33 (2) and adjoin variables of degree three

to obtain a partial acyclic closure B of k with Hi(B) = 0 for i ∈ {1, 2, 3}. This

yields ε4(R) = 0, so that by a result of Gulliksen [13, Theorem 3.5.1], R is a complete

intersection, a contradiction.1

Suppose now that H4(T ) = 0. We adjoin variables of degrees 3 and 4; applying

Lemma 2.33 (1) and (2), we obtain a partial acyclic closure V of k with Hi(V ) = 0

for i = 1, 2, 3, 4, so that ε5(R) = 0. Now Halperin [15, Theorem B] gives that R is a

complete intersection, a contradiction.

The preceding result and the earlier work of Assmus (Theorem 4.3) suggest the

following question:

Question 4.12. Does the implication

Hi(T ) = 0 =⇒ R is a complete intersection

hold for every i ≥ 0?

This question will be further explored in Chapter 5.

1Recall (from Remark 2.25) that the indexing convention of the εn differs from that of Gulliksen
and Levin [13]. In particular, ε3 of [13] stands for ε4 of [4], so that the theorem of Gulliksen applies.
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Chapter 5

Rigidity of the Tate construction

In this chapter, we present a class of rings for which Question 4.12 has an affirmative

answer. We begin by presenting the background necessary to introduce this class.

5.1 Golod rings

In this section, (Q, n, k) and (R,m, k) are local rings. Let ϕ : Q → R denote a

homomorphism of local rings which induces the identity on k. Let M denote a finitely

generated R-module.

Recall the Poincaré series of M over R:

PR
M(t) =

∞∑
n=0

βR
n (t)tn ∈ ZJtK.

The following result relates the Betti numbers of M over R and Q.

Proposition 5.1 ([4, Proposition 3.3.2]). Then there is a coefficientwise inequality

of formal power series

PR
M(t) 4

PQ
M(t)

1− t(PQ
R (t)− 1)

. (5.2)
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Assume further that Q→ R is a minimal regular presentation. Let KR denote the

Koszul complex on a minimal generating set of m, and set KM = KR ⊗R M . Recall

the codepth of R is defined as

codepthR = edimR− depthR.

Then Proposition 5.1 becomes:

Proposition 5.3 ([4, Proposition 4.1.4]). There is a coefficientwise inequality of

formal power series

PR
M(t) 4

edimR−depthM∑
i=0

rankkHi(K
M)ti

1−
codepthR∑

j=1

rankkHj(K
R)tt+1

.

A ring for which PR
k (t) has the fastest growth allowed by Proposition 5.3 is called

a Golod ring ; (5.3) takes the form

PR
k (t) =

(1 + t)edimR

1−
codepthR∑

j=1

rankkHj(K
R)tt+1

. (5.4)

Remark 5.5. As noted in [4, p 47], the Golod property of local rings does not fit in

the heirarchy

regular =⇒ complete intersection =⇒ Gorenstein =⇒ Cohen-Macaulay.

In particular, a Golod ring which is Gorenstein is necessarilly a hypersurface, but

a Golod ring need not be Cohen-Macaulay. A further disparty is that the Golod

property is not stable under localization; see [4, Example 5.2.6].
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5.2 Golod homomorphisms

Definition 5.6 ([4, §3.3]). A surjective homomorphism ϕ : Q→ R is called a Golod

homomorphism if equality holds in (5.2) for M = k.

Remark 5.7. Suppose that ψ : Q→ R is a minimal regular presentation. Then R is

Golod precisely when ψ is a Golod homomorphism.

Theorem 5.8. Suppose that there exists a complete intersection ring Q and a Golod

homomorphism ϕ : Q → R̂. If Hi(T ) = 0 for some i ≥ 5, then R is a complete

intersection.

Proof. Without loss of generality, we may assume that R is complete. By [8, Propo-

sition 5.13] we may further assume that depthQ(R) = 0. We endeavor to show that

Kerϕ = 0. By Remark 4.8 it is enough to show that pdQR <∞.

Let F ′ denote the Tate construction on n, and put F = R ⊗Q F ′. As Q is a

complete intersection, we have that F ′ is a Q-free resolution of k. Let A denote the

trivial extension k nH≥1(F ); see Definition 2.18. Then [3, Theorem 2.3] yields that

F and A are equivalent as DG-algebras.

Let y be a set of cycles of degree one whose homology classes form a minimal

generating set of H1(F ), and let C denote the Cartan construction on A and y.

Then [13, Proposition 1.3.5] yields the equivalence T ' C. Thus, there exists an

integer i ≥ 5 with Hi(C) = 0.

Remark 2.15 yields that C has a direct sum decomposition

C =
⊕
j≥0

Dj,

where Dj is the strand C∗j:
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0 Hj(F ) Hj−1(F )⊗ Γk
1W · · · H1(F )⊗ Γk

j−1W Γk
jW 0

∂
Dj

1 ∂
Dj

2
∂
Dj

j

Consequently we have the following decomposition of the homology of C:

Hk(C) =
⊕
i≥0

Hi(D
k−i) =

k⊕
i=0

Hi(D
k−i). (5.9)

The equivalence F ' A yields that [H≥1(F )]2 = 0, and so the differential ∂
Dj

i is

zero for each i in [1, j − 1]. In light of (5.9), this yields that H0(D
k) = Hk(F ) for

each k ≥ 2, so that Hk(C) contains Hk(F ) as a summand for each k ≥ 2. As such,

Hi(F ) = 0, and so TorQi (R, k) = 0. Therefore, pdQR <∞, and hence R is a complete

intersection.

Remark 5.10. The hypotheses of Theorem 5.8 are satisfied in the following situations:

(1) R is a Golod ring,

(2) R is Gorenstein and embdimR = 4; see [18, Theorem B],

(3) codepthR ≤ 3; see [8, Proposition 6.1],

(4) m has a Conca generator (i.e., there exists x ∈ m such that x2 = 0 and m2 = xm);

see [7, Theorem 1.4].

(5) R is a compressed Gorenstein ring of socle degree s and embedding dimension e

for 2 ≤ s 6= 3 and e > 1; see [23, Theorem 5.1].
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pressed Gorenstein local rings, Adv. Math. 259 (2014), 421–447. MR 3197663

[24] Colette Schoeller, Homologie des anneaux locaux noethériens, C. R. Acad. Sci.

Paris Sér. A-B 265 (1967), A768–A771. MR 0224682

[25] John Tate, Homology of Noetherian rings and local rings, Illinois J. Math. 1

(1957), 14–27. MR 0086072 (19,119b)



46

[26] Wolmer Vasconcelos, Integral closure, Springer Monographs in Mathematics,

Springer-Verlag, Berlin, 2005, Rees algebras, multiplicities, algorithms. MR

2153889

[27] C.A. Weibel, An introduction to homological algebra, Cambridge Studies in

Advanced Mathematics, Cambridge University Press, 1995.
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