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In this dissertation we develop the theory of the nabla fractional self-adjoint difference

equation,

∇ν
a(p∇y)(t) + q(t)y(ρ(t)) = f(t)

where 0 < ν < 1. We begin with an introduction to the nabla fractional calculus.

In the second chapter, we show existence and uniqueness of the solution to a frac-

tional self-adjoint initial value problem. We find a variation of constants formula

for this fractional initial value problem, and use the variation of constants formula

to derive the Green’s function for a related boundary value problem. We study the

Green’s function and its properties in several settings. For a simplified boundary

value problem with p ≡ 1, we show that the Green’s function is nonnegative and we

find its maximum and the maximum of its integral. For a boundary value problem

with generalized boundary conditions, we find the Green’s function and show that

it is a generalization of the first Green’s function. In the third chapter, we use the

Contraction Mapping Theorem to prove existence and uniqueness of a positive so-

lution to a forced self-adjoint fractional difference equation with a finite limit. We

explore modifications to the forcing term and modifications to the space of functions

in which the solution exists, and we provide examples to demonstrate the use of these

theorems.
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Chapter 1

Introduction

In this chapter we give some basic definitions and notation for the nabla discrete

fractional calculus. A general overview of the nabla discrete calculus, which we sum-

marize here, is given in [42]. We assume a ∈ R, unless otherwise noted, and b ∈ R

such that b− a is a positive integer, and we define the sets

Na := {a, a+ 1, a+ 2, · · · }

and

Nb
a := {a, a+ 1, a+ 2, · · · , b}.

Definition 1.0.1 (Backwards Jump Operator). [22] The backwards jump operator

ρ : Na → Na, is defined by

ρ(t) = max{a, t− 1},
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1.1 Discrete Nabla Differences

Definition 1.1.1 (Nabla Difference Operator). [22] For any function f : Na → R,

the nabla difference operator is defined by

∇f(t) := f(t)− f(t− 1),

for t ∈ Na+1. Higher integer order differences are defined recursively by

∇nf(t) := ∇(∇n−1f(t)),

for n ∈ N2 and t ∈ Na+n. By convention, ∇0 is taken to be the identity operator.

The nabla difference operator satisfies the following list of properties.

Theorem 1.1.2. [42] Assume f, g : Na → R and α, β ∈ R, then for t ∈ Na+1,

1. ∇α = 0;

2. ∇αf(t) = α∇f(t);

3. ∇(f(t) + g(t)) = ∇f(t) +∇g(t);

4. ∇αt+β = α−1
α
αt+β;

5. ∇(f(t)g(t)) = f(ρ(t))∇g(t) + g(t)∇f(t)

6. ∇
(
f(t)
g(t)

)
= g(t)∇f(t)−f(t)∇g(t)

g(t)g(ρ(t))
, where g(t) 6= 0 for t ∈ Na.

To obtain the discrete nabla analogue of the power rule, we must first define the

rising function.
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Definition 1.1.3 (The Rising Function). [23] For any positive integer n and any

t ∈ R, we define the rising function, tn, read t to the n rising, by

tn := t(t+ 1) · · · (t+ n− 1).

Theorem 1.1.4 (Nabla Power Rule). [8] For n ∈ N1, α ∈ R,

∇(t+ α)n = n(t+ α)n−1,

for t ∈ R.

We are interested in generalizing the definition of the rising function to include t

to the r rising, where r ∈ R. To do this, we make use of the gamma function, defined

as follows.

Definition 1.1.5 (Gamma Function). The gamma function is defined by

Γ(z) :=

∫ ∞
0

e−ttz−1dt

for those complex numbers z for which the real part of z is positive. (It can be shown

that the integral converges for all such z.)

Integration by parts is used to establish the important formula

Γ(z + 1) = zΓ(z), (1.1.1)

which is in turn used to extend the domain of the gamma function to complex numbers

z 6= 0,−1,−2, · · · . On this domain the gamma function is analytic, and using (1.1.1),
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it can be shown that

lim
z→n
|Γ(z)| =∞, n = 0,−1,−2, · · · . (1.1.2)

We note that 0 < Γ(t) ≤ 1 for t ∈ [1, 2], and Γ(t) > 1 for t ∈ (2,∞), and we can also

use (1.1.1) to show that

Γ(n+ 1) = n!, n = 0, 1, 2, · · · .

Hence we are able to use the gamma function as a generalization of the factorial

function, and thus we can redefine the rising function by making the following obser-

vation.

Note that for a positive integer n,

tn = t(t+ 1) · · · (t+ n− 1)

=
(t+ n− 1)(t+ n− 2) · · · tΓ(t)

Γ(t)

=
Γ(t+ n)

Γ(t)
.

Motivated by this observation we generalize the rising function.

Definition 1.1.6 (Generalized Rising Function). [8] The generalized rising function

is defined by

tr =
Γ(t+ r)

Γ(t)
,

for values of t and r so that t, t+ r /∈ {0,−1,−2, · · · }. We use the convention that if

t is a nonpositive integer but t+ r is not a nonpositive integer, then tr := 0.

From this definition follows the generalized nabla power rules.
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Theorem 1.1.7 (Generalized Nabla Power Rules). [42] The formulas

∇(t+ α)r = r(t+ α)r−1,

and

∇(α− t)r = −r(α− ρ(t))r−1,

hold for those values of t, r and α for which the expressions make sense.

1.2 Discrete Nabla Integrals

Definition 1.2.1 (Nabla Definite Integral). [42] Assume f : Na → R and c, d ∈ Na,

then ∫ d

c

f(t)∇t :=


∑d

t=c+1 f(t), c < d

0, c ≥ d.

The following theorem gives some properties of this integral, which are derived

from similar properties of sums.

Theorem 1.2.2. [42] Assume f, g : Na → R, b, c, d ∈ Na, b < c < d, and α ∈ R.

Then

(i)
∫ c
b
αf(t)∇t = α

∫ c
b
f(t)∇t;

(ii)
∫ c
b
(f(t) + g(t))∇t =

∫ c
b
f(t)∇t+

∫ c
b
f(t)∇t;

(iii)
∫ b
b
f(t)∇t = 0 ;

(iv)
∫ d
b
f(t)∇t =

∫ c
b
f(t)∇t+

∫ d
c
f(t)∇t;

(v)
∣∣∫ c
b
f(t)∇t

∣∣ ≤ ∫ c
b
|f(t)|∇t;
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(vi) if F (t) :=
∫ t
b
F (s)∇s, for t ∈ Nc

b, then ∇F (t) = f(t), t ∈ Nc
b+1;

(vii) if f(t) ≥ g(t) for t ∈ {b+ 1, b+ 2, · · · , c}, then
∫ c
b
f(t)∇t ≥

∫ c
b
g(t)∇t.

Definition 1.2.3. [42] Assume f : Nb
a → R. We say that F is a nabla antidifference

of f on Na provided

∇F (t) = f(t), t ∈ Nb
a+1.

Definition 1.2.4 (Nabla Indefinite Integral). [42] If f : Na → R, then the nabla

indefinite integral of f is defined by

∫
f(t)∇t = F (t) + C,

where F (t) is a nabla antidifference of f(t) and C is an arbitrary constant.

This definition leads to the following result.

Theorem 1.2.5 (Fundamental Theorem of Nabla Calculus). [42] Let f : Nb
a → R

and let F be a nabla antidifference of f on Nb
a, then

∫ b

a

f(t)∇t = F (b)− F (a).

The following formulas for indefinite integrals are derived from corresponding

difference formulas.

Theorem 1.2.6. [42] The following hold:

(i)
∫
αt+β∇t = α

α−1
αt+β + C, α 6= 1;

(ii)
∫

(t− α)r∇t = 1
r+1

(t− α)r+1 + C, r 6= −1;

(iii)
∫

(α− ρ(t))r∇t = − 1
r+1

(α− t)r+1 + C, r 6= −1.
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The product rule for nabla differences leads to an integration by parts formula for

nabla discrete integrals.

Theorem 1.2.7 (Integration by Parts). [42] Given two functions u, v : Na → R and

b, c ∈ Na, b < c, we have the integration by parts formula:

c∑
s=b+1

u(t)∇v(t) = u(t)v(t)|cb −
c∑

s=b+1

v(ρ(t))∇u(t),

or in integral notation,

∫ c

b

u(t)∇v(t) = u(t)v(t)|cb −
∫ c

b

v(ρ(t))∇u(t).

1.3 Fractional Sums and Differences

We will use the gamma function and observations about discrete nabla sums and

differences to construct fractional sums and differences. The repeated summation

formula

∫ t

a

∫ τ1

a

· · ·
∫ τn−1

a

f(τn)∇τn · · · ∇τ2∇τ1 =

∫ t

a

(t− ρ(s))n−1

(n− 1)!
f(s)∇s

is derived in [42] using an integer order variation of constants formula. Motivated by

this formula, we define the nabla integral order sum as follows.

Definition 1.3.1 (Integer Order Sum). [42] Let f : Na+1 → R be given and n ∈ N1,

then

∇−na f(t) :=

∫ t

a

(t− ρ(s))n−1

(n− 1)!
f(s)∇s, t ∈ Na.

We define ∇−0
a f(t) = f(t).
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Note that this sum depends on the values of f at all the points a+1 ≤ s ≤ t, unlike

the difference ∇nf(t) which depends on the values of f at the points t − n ≤ s ≤ t.

We can use the gamma function to extend this definition to a fractional order nabla

sum.

Definition 1.3.2 (Nabla Fractional Sum). [8] Let f : Na+1 → R and ν > 0, then the

ν-th order fractional sum based at a is given by

∇−νa f(t) =

∫ t

a

(t− ρ(s))ν−1

Γ(ν)
f(s)∇s, t ∈ Na.

The ν-th order nabla fractional difference is defined by the use of the fractional

sum, as follows.

Definition 1.3.3 (Nabla Fractional Difference). [8] Let f : Na+1 → R, ν > 0, and

choose N such that N − 1 < ν ≤ N . Then we define the ν-th order nabla fractional

difference by

∇ν
af(t) = ∇N∇−(N−ν)

a f(t) for t ∈ Na+N .

The following theorem extends power rules to the fractional case.

Theorem 1.3.4. Let ν ∈ R+ and µ ∈ R such that µ and ν + µ are not negative

integers, then we have that

(i) ∇−νa (t− a)µ = Γ(µ+1)
Γ(µ+ν+1)

(t− a)µ+ν;

(ii) ∇ν
a(t− a)µ = Γ(µ+1)

Γ(µ−ν+1)
(t− a)µ−ν;

for t ∈ Na.

In the paper [3], Laplace transforms are used to prove a number of interesting

properties about the nabla fractional sum and difference, among them the follow-
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ing results. The first of these gives an alternative definition of the nabla fractional

difference.

Definition 1.3.5 (Alternative Definition of the Nabla Fractional Difference). [3] Let

f : Na → R, ν > 0, and N ∈ N such that N − 1 < ν ≤ N be given. Then the ν-th

order fractional difference of f is given by

∇ν
af(t) =


∫ t
a

(t−ρ(s))−ν−1

Γ(−ν)
f(s)∇s, ν /∈ N

∇Nf(t), ν = N ∈ N
,

for t ∈ Na+N .

Though |Γ(−ν)| approaches infinity as ν approaches a nonnegative integer, it can

be shown that the νth-order nabla fractional difference is continuous with respect to

ν ≥ 0. This has the interesting implication that, though a fractional nabla difference

of f depends on the values of f at all the points a + 1 ≤ s ≤ t, this dependence

“fades” as the order of the difference approaches a whole number.

The following theorem allows us to compose fractional order sums and differences

with fractional order sums.

Theorem 1.3.6 (Composition Rule for Nabla Fractional Sums and Differences). [3]

Let µ, ν > 0 and k ∈ N0 be given, and choose N ∈ N such that N − 1 < ν ≤ N . Then

we have

∇−νa ∇−µa f(t) = ∇−ν−µa f(t), for t ∈ Na,

and

∇ν
a∇−µa f(t) = ∇ν−µ

a f(t), for t ∈ Na+N .

Compositions of fractional order sums or differences with nabla differences are
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generally less straightforward; for example, the composition ∇ν
a∇ν

af(t) cannot be

computed in such a straightforward fashion as in Theorem 1.3.6, for arbitrary ν > 0.

Below we give a specific example of a composition that can be computed nicely, and

will prove useful to us in Chapter 2.

Theorem 1.3.7 (Composition Rule for a Fractional Difference and a First Order

Nabla Difference). Let 0 < ν < 1 and f : Na → R be given. Then

∇ν
a∇f(t) = ∇1+ν

a f(t).

Proof. Using linearity of sums, we have that

∇ν
a∇f(t) = ∇ν

a(f(t)− f(t− 1))

=

∫ t

a

(t− ρ(s))−ν−1

Γ(−ν)
f(s)∇s−

∫ t−1

a

(t− 1− ρ(s))−ν−1

Γ(−ν)
f(s)∇s

=
t∑

s=a+1

(t− ρ(s))−ν−1

Γ(−ν)
f(s)−

t−1∑
s=a+1

(t− 1− ρ(s))−ν−1

Γ(−ν)
f(s)

=
(t− ρ(t))−ν−1

Γ(−ν)
f(t)

+
t−1∑

s=a+1

1

Γ(−ν)

[
(t− ρ(s))−ν−1 − (t− 1− ρ(s))−ν−1

]
f(s).

We also use Theorem 1.1.7 to find, where ∇t refers to the first nabla difference with

respect to t,

(t− ρ(s))−ν−1 − (t− 1− ρ(s))−ν−1 = ∇t(t− ρ(s))−ν−1

= (−ν − 1)(t− ρ(s))−ν−2.
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So we have that

∇ν
a∇f(t) =

(t− ρ(t))−ν−1

Γ(−ν)
f(t) +

t−1∑
a+1

(−ν − 1)

Γ(−ν)
(t− ρ(s))−ν−2f(s)

=
(t− ρ(t))−ν−1

Γ(−ν)
f(t) +

t−1∑
a+1

(t− ρ(s))−ν−2

Γ(−ν − 1)
f(s)

=
t∑

a+1

(t− ρ(s))−ν−2

Γ(−ν − 1)
f(s) = ∇1+ν

a f(t).

1.4 Fractional Initial Value Problems

We will use the following results about fractional order nabla initial value problems

to construct formulas for the solutions of boundary value problems.

Definition 1.4.1. For f, g : Na+1 → R, we define the nabla convolution product of f

and g by

(f ∗ g)(t) :=

∫ t

a

f(t− ρ(s) + a)g(s)∇s, t ∈ Na+1.

Theorem 1.4.2 (Variation of Constants). [42] Let f, g : Na → R and 0 < ν < 1.

Then, for t ∈ Na+1, the fractional initial-value problem


∇ν
af(t) + cf(t) = g(t), t ∈ Na+1, |c| < 1

f(a+ 1) = A, A ∈ R

has the unique solution

f(t) = (h(·, a) ∗ g(·))(t) + (A(c+ 1)− g(a+ 1))h(t, a),
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where

h(t, a) :=
∞∑
k=0

(−c)k (t− a)k(ν+1)−1

Γ(k(ν + 1))
.

Corollary 1.4.3. [42] Let f, g : Na → R and 0 < ν < 1. Then, for t ∈ Na+1, the

fractional initial value problem


∇ν
af(t) = g(t), t ∈ Na+1

f(a+ 1) = A, A ∈ R

has the unique solution

f(t) = ∇−νa g(t) + (A− g(a+ 1))
(t− a)ν−1

Γ(ν)
.

Example 1.4.4. Use Corollary 1.4.3 to solve the fractional IVP

∇
1
2
0 y(t) = 3, t ∈ N1

y(1) = π.

We have that the solution is given by

y(t) = ∇−
1
2

0 3 + (π − 3)
t−

1
2

Γ
(

1
2

) ,
for t ∈ N1. For the first term, we use Definition 1.3.2, Theorem 1.2.6, and

Γ

(
1

2

)
=
√
π
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to compute

∇−
1
2

0 3 =

∫ t

0

(t− ρ(s))−
1
2

Γ
(

1
2

) 3∇s

=
3

Γ
(

1
2

) ∫ t

0

(t− ρ(s))−
1
2∇s

=
3√
π

[
−2(t− s)

1
2

]t
0

=
6√
π
t
1
2 .

Hence the solution to the fractional IVP is given by

y(t) =
6√
π
t
1
2 +

(√
π − 3√

π

)
t−

1
2 , t ∈ N1.

1.5 The Contraction Mapping Theorem

In Chapter 3 we will use the Contraction Mapping Theorem to establish the existence

of certain solutions to a fractional difference equation.

Theorem 1.5.1 (Contraction Mapping Theorem). [45] Let (X, ‖ · ‖) be a Banach

space. Assume that T : X → X is a contraction mapping, that is, there is an α,

0 ≤ α < 1, such that ‖Tx− Ty‖ ≤ α‖x− y‖ for all x, y ∈ X. Then T has a unique

fixed point z in X.

Remark 1.5.2. For some L ∈ R, the space ζ :=
{
y : Na → R

∣∣∣ lim
t→∞

y(t) = L
}

to-

gether with the supremum norm, ‖ · ‖ : ζ → ζ, defined by

‖y‖ = sup
t∈Na
|y(t)|,

is a complete metric space. To see this, consider a Cauchy sequence {yn} in ζ. For
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any t0 ∈ Na, {yn(t0)} is a Cauchy sequence in R, and therefore it converges. Define

its limit to be y0(t0) := lim
n→∞

yn(t0), and since t0 was arbitrary, we can construct the

function y0 : Na → R in this fashion. Because each of the yn(t) has the limit L as

t→∞, so does y0(t), and hence y0 ∈ ζ.

1.6 Further Reading

Fractional calculus in the continuous setting is developed in [57], [52], [51], [1], [25],

[14], [26], [16], [20], [24], [48], [2], [4], [21], [53], [56], [60], [61], [5], [15], [29], [47], [49],

[50], [55], [58], [59], [62], [27], [35], [54].

Fractional calculus is extended to time scales in [17], [18].

Discrete fractional calculus in the delta setting is developed in [6], [7], [10], [28],

[41], [9], [30], [31], [32], [33], [43], [44], [36], [38], [39], [11], [12], [40]. In particular,

this dissertation extends the theory of the fractional self-adjoint difference equation

in [13] to the nabla calculus setting.

An interesting combination of the delta and nabla operators is defined in [19] and

is used to examine fractional calculus in a mixed setting.



15

Chapter 2

The Fractional Self-Adjoint

Difference Equation

2.1 Introduction

In this section we introduce the self-adjoint linear fractional difference equation

∇ν
a(p∇y)(t) + q(t)y(ρ(t)) = f(t), (2.1.1)

where 0 < ν < 1, t ∈ Nb
a+2 for some real numbers a, b such that b − a ∈ N1,

p : Nb
a+1 → (0,∞), q : Nb

a+2 → R, and f : Nb
a+2 → R.

Note that if ν = 1 we get the standard self-adjoint difference equation

∇(p∇y)(t) + q(t)y(ρ(t)) = f(t), t ∈ Nb
a+2,

and it is for this sole reason that we call equation (2.1.1) a fractional self-adjoint

equation. Though the fractional difference operator in equation (2.1.1) cannot be

said to be self-adjoint, many of the results for the self-adjoint difference equation
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have analogues in the fractional case.

In Section 2.2 we will prove that the solutions of equation (2.1.1) with appropriate

initial conditions exist and are unique. In Section 2.3 we will establish a variation

of constants formula for the nonhomogeneous initial value problem with homoge-

neous boundary conditions. In Section 2.4 we will derive the Green’s function for

a nonhomogeneous fractional boundary value problem with homogeneous boundary

conditions and prove that it is nonnegative, find its maximum, and find appropriate

bounds for its integral. We will generalize this Green’s function to the case with

general boundary conditions in Section 2.6.

2.2 Existence and Uniqueness Theorem

In this section we will prove an existence and uniqueness theorem for the nabla self-

adjoint fractional initial value problem.

Theorem 2.2.1. The fractional initial value problem


∇ν
a(p∇y)(t) + q(t)y(ρ(t)) = f(t), t ∈ Na+2

y(a) = A, y(a+ 1) = B

(2.2.1)

where 0 < ν < 1, p : Na+1 → (0,∞), q : Na+2 → R, and f : Na+2 → R has a unique

solution y : Na → R.

Proof. Consider the fractional self-adjoint equation

∇ν
a(p∇y)(t) + q(t)y(ρ(t)) = f(t).

We begin by rewriting the fractional difference using the summation notation
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given in Definition 1.3.5.

1

Γ(−ν)

t∑
s=a+1

[(t− ρ(s))−ν−1(p(s)∇y(s))] + q(t)y(ρ(t)) = f(t)

Letting t = a+ 2, we get

f(a+ 2) =
1

Γ(−ν)

a+2∑
s=a+1

[(a+ 2− ρ(s))−ν−1(p(s)∇y(s))] + q(a+ 2)y(a+ 1)

=
1

Γ(−ν)
[2−ν−1p(a+ 1)y(a+ 1)− 2−ν−1p(a+ 1)y(a)

+ 1−ν−1p(a+ 2)y(a+ 2)− 1−ν−1p(a+ 2)y(a+ 1)]

+ q(a+ 2)y(a+ 1)

= p(a+ 2)y(a+ 2) + Aνp(a+ 1) +B[q(a+ 2)− νp(a+ 1)− p(a+ 2)].

Solving for y(a+ 2) we have that

y(a+ 2) =
1

p(a+ 2)
[f(a+ 2)− Aνp(a+ 1)−B(q(a+ 2)− νp(a+ 1)− p(a+ 2))].

Thus the value of y(a+ 2) is uniquely determined by the initial conditions y(a) = A

and y(a + 1) = B and the values of the given functions f , p, and q. To show that

y(t) is uniquely determined on Na we will use induction. Suppose that there exists

a unique solution to the fractional initial value problem, y(t), for t ∈ Nt0
a , where

t0 ∈ Na+2. We will show that the value of y(t0 + 1) is uniquely determined by the

values of y(t) on Nt0
a .
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Substituting t = t0 + 1 into the fractional equation, we get the following:

f(t0 + 1) =
1

Γ(−ν)

t0+1∑
s=a+1

[(t0 + 1− ρ(s))−ν−1p(s)∇y(s)] + q(t0 + 1)y(t0)

=
1

Γ(−ν)

t0∑
s=a+1

[(t0 + 1− ρ(s))−ν−1p(s)∇y(s)] + q(t0 + 1)y(t0)

+ p(t0 + 1)y(t0 + 1)− p(t0 + 1)y(t0).

Solving for y(t0 + 1) we have that

y(t0 + 1) =
1

p(t0 + 1)
[f(t0 + 1)− 1

Γ(−ν)

t0∑
s=a+1

[(t0 + 1− ρ(s))−ν−1p(s)∇y(s)]

− q(t0 + 1)y(t0) + p(t0 + 1)y(t0)].

Since, by the induction hypothesis, all the values of y(t) for t in Nt0
a are known, y(t0+1)

is uniquely determined and hence y(t) is the unique solution of the fractional initial

value problem (2.2.1) on Nt0+1
a . This combined with our base case of t = a+ 2 gives

that by mathematical induction, the fractional initial value problem (2.2.1) has a

unique solution that exists on Na.

Remark 2.2.2. When ν = 1 (non fractional case) in Theorem 2.2.1, it can be shown

that for any t0 ∈ Na the initial conditions y(t0) = A and y(t0 + 1) = B determine a

unique solution of the initial value problem (2.2.1). However, in the fractional case

0 < ν < 1, it is necessary that t0 = a, because the fractional difference depends on all

of the values of a function back to the value at its base, a.
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2.3 Variation of Constants Formula

In this section we will establish a variation of constants formula for the fractional

self-adjoint initial value problem


∇ν
a(p∇y)(t) = f(t), t ∈ Na+2

y(a+ 1) = ∇y(a+ 1) = 0

where 0 < ν < 1, p : Na+1 → (0,∞), q : Na+2 → R, and f : Na+2 → R. Our variation

of constants formula will involve the Cauchy function, whose definition is given below.

Definition 2.3.1. We define the Cauchy function x(t, ρ(s)) for the homogeneous

fractional equation

∇ν
a(p∇y)(t) = 0

to be the function x : Na+1 × Na+1 → R such that for each fixed s ∈ Na+1, x(·, ρ(s))

is the unique solution of the fractional initial value problem


∇ν
ρ(s)(p∇x)(t) = 0, t ∈ Ns+1

x(ρ(s)) = 0,∇x(s) = 1
p(s)

(2.3.1)

and is given by the formula

x(t, ρ(s)) =
t∑

τ=s

(τ − ρ(s))ν−1

Γ(ν)p(τ)
, t ∈ Na+1. (2.3.2)

Note that by our convention x(t, ρ(s)) = 0 for t ≤ ρ(s).
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Theorem 2.3.2. Let f : Na+2 → R and p : Na+1 → (0,∞). The solution to the

fractional initial value problem


∇ν
a(p∇y)(t) = f(t), t ∈ Na+2

y(a+ 1) = ∇y(a+ 1) = 0

(2.3.3)

is given by

y(t) =
t∑

s=a+2

x(t, ρ(s))f(s)

where x(t, ρ(s)) is the Cauchy function (2.3.2).

Proof. Let y(t) be the solution of the fractional initial value problem (2.3.3) and let

h(t) = p(t)∇y(t). Then h(t) is a solution of the initial value problem

∇ν
ah(t) = f(t), h(a+ 1) = p(a+ 1)∇y(a+ 1) = 0

and, by Corollary 1.4.3, is given by

h(t) = ∇−νa f(t)− f(a+ 1)
(t− a)ν−1

Γ(ν)

=
t∑

s=a+1

[
(t− ρ(s))ν−1

Γ(ν)
f(s)

]
− (t− a)ν−1

Γ(ν)
f(a+ 1)

=
t∑

s=a+2

(t− ρ(s))ν−1

Γ(ν)
f(s).

Dividing both sides by p(t) we get

∇y(t) =
t∑

s=a+2

(t− ρ(s))ν−1

Γ(ν)p(t)
f(s).

Summing both sides from τ = a + 2 to t and using the Fundamental Theorem of
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Nabla Calculus gives that

y(t)− y(a+ 1) =
t∑

τ=a+2

[
τ∑

s=a+2

(τ − ρ(s))ν−1

Γ(ν)p(τ)
f(s)

]
.

Interchanging the order of the sums on the right hand side and using that y(a+ 1) = 0,

we get

y(t) =
t∑

s=a+2

[
t∑

τ=s

(τ − ρ(s))ν−1

Γ(ν)p(τ)
f(s)

]

=
t∑

s=a+2

f(s)

[
t∑

τ=s

(τ − ρ(s))ν−1

Γ(ν)p(τ)

]

=
t∑

s=a+2

f(s)x(t, ρ(s)).

This completes the proof.

Corollary 2.3.3. Assume p : Na+1 → (0,∞) and u(t), v(t) satisfy

∇ν
a(p∇u)(t) ≥ ∇ν

a(p∇v)(t), t ∈ Na+2

u(a) = v(a)

u(a+ 1) = v(a+ 1).

Then u(t) ≥ v(t) on Na.

Proof. Set w(t) = u(t)− v(t), and let

h(t) = ∇ν
a(p∇w)(t) = ∇ν

a(p∇u)(t)−∇ν
a(p∇v)(t) ≥ 0, t ∈ Na+2.
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Hence w solves the initial value problem

∇ν
a(p∇w)(t) = h(t), t ∈ Na+2

w(a+ 1) = 0

∇w(a+ 1) = 0,

and our variation of constants formula gives that for t ∈ Na,

w(t) =
t∑

s=a+2

h(s)x(t, ρ(s)) =
t∑

s=a+2

h(s)
t∑

τ=s

(τ − ρ(s))ν−1

Γ(ν)p(τ)
≥ 0.

Since w(t) = u(t)− v(t) ≥ 0, we have that

u(t) ≥ v(t) for t ∈ Na.

2.4 Green’s Function for a Fractional Boundary

Value Problem

We will now find the Green’s function for a nonhomogeneous fractional boundary

value problem with homogeneous boundary conditions.

Theorem 2.4.1. The fractional boundary value problem


−∇ν

a(p∇y)(t) = h(t), t ∈ Nb
a+1

y(a) = 0, y(b) = 0

(2.4.1)
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where a, b ∈ R with b−a ∈ N1, h, p : Nb
a+1 → R, and p(t) > 0, has the unique solution

y(t) =
∫ b
a
G(t, s)h(s)∇s, where

G(t, s) =


x(b,ρ(s))
x(b,a)

x(t, a), t ≤ s− 1

x(b,ρ(s))
x(b,a)

x(t, a)− x(t, ρ(s)), t ≥ s

(2.4.2)

and x(t, ρ(s)) is the Cauchy function (2.3.2).

Proof. Let x(t) = p(t)∇y(t), and let A := x(a + 1) = p(a + 1)∇y(a + 1). Then x(t)

solves the fractional initial value problem


−∇ν

ax(t) = h(t)

x(a+ 1) = A

and therefore by Theorem 1.4.3,

x(t) = −∇−νa h(t)− (A− h(a+ 1))
(t− a)ν−1

Γ(ν)
.

Letting c0 := (A− h(a+ 1)) and dividing both sides by p(t) gives that

∇y(t) =
−1

p(t)

(
∇−νa h(t)− c0

(t− a)ν−1

Γ(ν)

)

=
−1

p(t)

[
1

Γ(ν)

t∑
s=a+1

(t− ρ(s))ν−1h(s) + c0
(t− a)ν−1

Γ(ν)

]
.

Summing from a+ 1 to t, we get

y(t) = −
t∑

τ=a+1

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)p(τ)
h(s) + c0

(τ − a)ν−1

Γ(ν)p(τ)

]
.



24

Interchanging the order of sums gives that

y(t) = −
t∑

s=a+1

h(s)
t∑

τ=s

(τ − ρ(s))ν−1

Γ(ν)p(τ)
− c0

t∑
τ=a+1

(τ − a)ν−1

Γ(ν)p(τ)

= −
t∑

s=a+1

h(s)x(t, ρ(s))− c0x(t, a).

Letting t = b and solving for c0 we get that

c0 =
−
∑b

s=a+1 h(s)x(b, ρ(s))

x(b, a)
.

Substituting this value for c0 into the formula for y(t) gives us that

y(t) = −
t∑

s=a+1

h(s)x(t, ρ(s)) +
x(t, a)

x(b, a)

b∑
s=a+1

h(s)x(b, ρ(s))

= −
t∑

s=a+1

h(s)x(t, ρ(s)) +
x(t, a)

x(b, a)

t∑
s=a+1

h(s)x(b, ρ(s)) +
x(t, a)

x(b, a)

b∑
s=t+1

h(s)x(b, ρ(s))

=
t∑

s=a+1

h(s)

[
x(b, ρ(s))

x(b, a)
x(t, a)− x(t, ρ(s))

]
+

b∑
s=t+1

h(s)

[
x(b, ρ(s))

x(b, a)
x(t, a)

]

=
b∑

s=a+1

h(s)G(t, s),

where

G(t, s) =


x(b,ρ(s))
x(b,a)

x(t, a), t ≤ s− 1

x(b,ρ(s))
x(b,a)

x(t, a)− x(t, ρ(s)), t ≥ s.

Hence any solution to the above boundary value problem is necessarily given by the

formula we have derived. Uniqueness of the solution y(t) follows from Theorem 2.2.1.
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2.5 Green’s Function and its Properties for the

Case p ≡ 1

We will now find the Green’s function for (2.4.1) for the case p ≡ 1. We will prove

that this Green’s function is nonnegative and we will find an upper bound for G(t, s)

and its integral.

Remark 2.5.1. The Cauchy function of the fractional homogeneous equation

∇ν
ay(t) = 0

is given by

x(t, ρ(s)) =
(t− ρ(s))ν

Γ(ν + 1))
.

Using Definition 2.3.1 and Theorem 1.1.7 we have

x(t, ρ(s)) =
t∑

τ=s

(τ − ρ(s))ν−1

Γ(ν)

=
1

Γ(ν)

∫ t

ρ(s)

(τ − ρ(s))ν−1∇τ

=
1

Γ(ν)

(
1

ν
(t− ρ(s))ν − 1

ν
0ν
)

=
(t− ρ(s))ν

Γ(ν + 1)
.

When p ≡ 1, the composition rule given in Theorem 1.3.7 allows us to rewrite

∇ν
a(p∇y)(t) as ∇1+ν

a y(t).
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Hence the fractional boundary value problem


−∇1+ν

a y(t) = h(t), t ∈ Nb
a+1

y(a) = 0, y(b) = 0

(2.5.1)

where a, b ∈ R with b − a ∈ N1, and h : Nb
a+1 → R, has the unique solution y(t) =∫ b

a
G(t, s)h(s)∇s, where

G(t, s) =


1

Γ(ν+1)

(
(b−s+1)ν

(b−a)ν
(t− a)ν

)
, t ≤ s− 1

1
Γ(ν+1)

(
(b−s+1)ν

(b−a)ν
(t− a)ν − (t− s+ 1)ν

)
, t ≥ s.

(2.5.2)

Theorem 2.5.2. The Green’s function G(t, s) for (2.5.1) satisfies G(t, s) ≥ 0 for

(t, s) ∈ Nb
a × Nb

a+1.

Proof. We will show that for any fixed s, G(t, s) increases from G(a, s) = 0 to a

positive value at t = s − 1 and then decreases to G(b, s) = 0. Let s ∈ Nb
a+1 be fixed

but arbitrary.

First, we verify that G(a, s) = G(b, s) = 0.

This follows immediately from the equations

G(a, s) =
1

Γ(ν + 1)

(
(b− s+ 1)ν

(b− a)ν
(a− a)ν

)
= 0

and

G(b, s) =
1

Γ(ν + 1)

(
(b− s+ 1)ν

(b− a)ν
(b− a)ν − (b− s+ 1)ν

)
= 0.

Now, we show that for each fixed s, G(t, s) increases in t for values of t between

a+ 1 and s− 1. We consider the nabla difference with respect to t.
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∇G(t, s) = ∇
[

1

Γ(ν + 1)

(
(b− s+ 1)ν

(b− a)ν
(t− a)ν

)]
=

ν

Γ(ν + 1)
· (b− s+ 1)ν

(b− a)ν
(t− a)ν−1 > 0,

as b − s + 1 > 0, b − a > 0, and though ν − 1 < 0, t − a + ν − 1 > 0. Thus G(t, s)

is increasing for all values of t between a + 1 and s − 1. Since the Green’s function

is zero at t = a and increases for t between a + 1 and s − 1, G(t, s) ≥ 0 for t values

between a+ 1 and s− 1.

We now show that G(t, s) is decreasing for values of t between s and b. As above,

we consider the nabla difference,

∇G(t, s) = G(t, s)−G(t− 1, s)

=
1

Γ(ν + 1)

[
(b− s+ 1)ν

(b− a)ν
(t− a)ν − (t− s+ 1)ν

−
(

(b− s+ 1)ν

(b− a)ν
(t− a− 1)ν − (t− s)ν

)]
=

1

Γ(ν + 1)(b− a)ν
[
(b− s+ 1)ν(t− a)ν − (b− a)ν(t− s+ 1)ν

−(b− s+ 1)ν(t− a− 1)ν + (b− a)ν(t− s)ν
]
.

We will show that the bracketed expression above is less than or equal to zero.

Rearranging and factoring, the claim that the bracketed expression is less than or

equal to zero is equivalent to

(b− a)ν
[
(t− s)ν − (t− s− 1)ν

]
+ (b− s+ 1)ν

[
(t− a)ν − (t− a− 1)ν

]
≤ 0, (2.5.3)



28

which is in turn equivalent to

(b− a)ν
[
(t− s)ν − (t− s+ 1)ν

]
≤ (b− s+ 1)ν

[
(t− a− 1)ν − (t− a)ν

]
.

Since s− 1 ≥ a, 0 < (b− a) ≤ (b− (s− 1)), it remains to show that

(t− s)ν − (t− s+ 1)ν ≤ (t− a− 1)ν − (t− a)ν . (2.5.4)

Note that

(t− s+ 1)ν =
(t− s+ ν)

t− s
(t− s)ν

and

(t− a)ν =
(t− a− 1 + ν)

t− a− 1
(t− a− 1)ν .

Rewriting the inequality (2.5.4), simplifying, and multiplying both sides by −1/ν,

we see that the inequality is equivalent to

(t− s)ν − t− s+ ν

t− s
(t− s)ν ≤ (t− a− 1)ν − t− a− 1 + ν

t− a− 1
(t− a− 1)ν

(t− s)ν
(
−ν
t− s

)
≤ (t− a− 1)ν

(
−ν

t− a− 1

)
(t− s)ν

t− s
≥ (t− a− 1)ν

t− a− 1
. (2.5.5)

Since s ≥ a + 1, we can show that the inequality (2.5.5) holds by demonstrating

that the expression
(t− τ)ν

t− τ
is increasing in τ . To show this, we will show that the

nabla difference of the expression is nonnegative. Consider the nabla difference of the
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expression,

∇(t− τ)ν

t− τ
=

(t− τ)ν

t− τ
− (t− τ + 1)ν

t− τ + 1

=
(t− τ)ν

t− τ
− (t− τ + ν)(t− τ)ν

(t− τ + 1)(t− τ)

=
(t− τ)ν

(t− τ + 1)(t− τ)
(1− ν).

This is greater than or equal to zero because both t − τ and 1 − ν are greater than

or equal to zero. Hence the expression
(t− τ)ν

t− τ
is increasing in τ , which implies

that inequality (2.5.5) holds, which is equivalent to the inequality (2.5.4), and hence

the bracketed expression in (2.5.3) is less than or equal to zero, so that the Green’s

function G(t, s) is decreasing for values of t between s and b. Since the Green’s

function is zero at t = b and is decreasing for t values between s and b, this implies

that G(t, s) ≥ 0 between s and b.

We have demonstrated that G(t, s) is greater than or equal to zero for any fixed

value of s, and for all t between a and b. Note that though we have G(t, s) increasing

to t = s − 1 and decreasing from t = s, it is as yet unclear whether the maximum

of G(t, s) for a fixed t occurs at (s − 1, s) or (s, s). We will explore this question in

Theorem 2.5.4.

The positivity of the Green’s function allows us to prove a comparison theorem

for boundary value problems.
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Corollary 2.5.3. Assume that u(t) and v(t) satisfy

∇1+ν
a u(t) ≥ ∇1+ν

a v(t), t ∈ Nb
a+1

u(a) = v(a)

u(b) = v(b).

Then u(t) ≥ v(t) on Nb
a.

Proof. Set w(t) = u(t)− v(t) and let

h(t) := ∇1+ν
a w(t) = ∇1+ν

a u(t)−∇1+ν
a v(t) ≥ 0, t ∈ Nb

a+1.

Hence w(t) solves the fractional boundary value problem

∇1+ν
a w(t) = h(t), t ∈ Nb

a+1

w(a) = 0

w(b) = 0

and the Green’s function gives that the solution of this boundary value problem is

w(t) =

∫ b

a

G(t, s)h(s)∇s, t ∈ Nb
a

where G(t, s) ≥ 0 and h(s) ≥ 0, therefore w(t) ≥ 0, which implies u(t) ≥ v(t) for all

t ∈ Nb
a.

For the case p ≡ 1, we now derive an upper bound for G(t, s).



31

Theorem 2.5.4. The maximum of the Green’s function G(t, s) defined in Remark 2.5.1

is given by

G

(⌊
b+ a+ 3

2

⌋
− 1,

⌊
b+ a+ 3

2

⌋)

=


1

Γ(ν+1)(b−a)ν

(
1 + 2ν

b−a−1

) [(
b−a−1

2

)ν]2

,
⌊
b+a+3

2

⌋
= b+a+3

2

1
Γ(ν+1)(b−a)ν

[(
b−a

2

)ν]2

,
⌊
b+a+3

2

⌋
= b+a

2
+ 1

.

Here, the floor function b·c denotes the largest value in Nb
a+1 that is less than or equal

to its argument.

Proof. We will begin by examining the Green’s function to determine whether the

maximum for a fixed t will occur at (s− 1, s) or (s, s). We have that

G(s− 1, s) =
1

Γ(ν + 1)

(
(b− s+ 1)ν

(b− a)ν
(s− a− 1)ν

)

and, for s > a+ 1,

G(s, s) =
1

Γ(ν + 1)

(
(b− s+ 1)ν

(b− a)ν
(s− a)ν − 1ν

)
=

1

Γ(ν + 1)

(
(b− s+ 1)ν

(b− a)ν

(
1 +

ν

s− a− 1

)
(s− a− 1)ν − Γ(ν + 1)

)
=

1

Γ(ν + 1)

(
(b− s+ 1)ν

(b− a)ν
(s− a− 1)ν

)
+

(b− s+ 1)ν(s− a− 1)ν

Γ(ν)(b− a)ν(s− a− 1)
− 1

= G(s− 1, s) +
(b− s+ 1)ν(s− a− 1)ν

Γ(ν)(b− a)ν(s− a− 1)
− 1.

Note that the restriction s > a+ 1 simply excludes from consideration the initial

value G(a+ 1, a+ 1) = 0. From the proof of Theorem 2.5.2 we see that for certain

values of s and t, G(t, s) is strictly increasing from 0, so we can conclude that 0 is

not the maximum of this function.
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We will show that
(b− s+ 1)ν(s− a− 1)ν

Γ(ν)(b− a)ν(s− a− 1)
− 1 < 0, so that G(s, s) ≤ G(s− 1, s).

We have that
1

Γ(ν)
< 1 because 0 < ν < 1. Also

(b− s+ 1)ν

(b− a)ν
< 1 for s > a + 1,

and

(s− a− 1)ν

s− a− 1
=

Γ(s− a− 1 + ν)

(s− a− 1)Γ(s− a− 1)
=

Γ(s− a− 1 + ν)

Γ(s− a)
< 1.

Hence

(
1

Γ(ν)

)(
(b− s+ 1)ν

(b− a)ν

)(
(s− a− 1)ν

s− a− 1

)
< 1

(b− s+ 1)ν(s− a− 1)ν

Γ(ν)(b− a)ν(s− a− 1)
< 1

(b− s+ 1)ν(s− a− 1)ν

Γ(ν)(b− a)ν(s− a− 1)
− 1 < 0,

which demonstrates that for s > a+ 1, G(s, s) < G(s− 1, s).

Now we wish to maximize G(s− 1, s) for s values between a+ 2 and b. Consider

the nabla difference with respect to s, using Theorem 1.1.7

∇[(b− s+ 1)ν(s− a− 1)ν ] = (b− ρ(s) + 1)νν(s− a− 1)ν−1

+ (−ν)(b− ρ(s) + 1)ν−1(s− a− 1)ν

= ν(b− s+ 2 + ν − 1)(b− s+ 2)ν−1(s− a− 1)ν−1

− ν(b− s+ 2)ν−1(s− a− 1 + ν − 1)ν−1

= ν(b− s+ 2)ν−1(s− a− 1)ν−1[b+ a+ 3− 2s].

In this expression, ν, (b− s+ 2)ν−1, and (s− a− 1)ν−1 are all positive. The equation

b+ a+ 3− 2s = 0 has the solution s =
b+ a+ 3

2
, so we consider s =

⌊
b+ a+ 3

2

⌋
.

If s ≤
⌊
b+ a+ 3

2

⌋
, the difference b+a+3−2s is positive, and thus the expression
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[(b− s+ 1)ν(s−a−1)ν ] is increasing. If s ≥
⌊
b+ a+ 3

2

⌋
, the difference b+a+ 3−2s

is negative, and thus the expression [(b− s+ 1)ν(s− a− 1)ν ] is decreasing. Hence the

maximum of the expression [(b− s+ 1)ν(s− a− 1)ν ] occurs at s =

⌊
b+ a+ 3

2

⌋
.

Here, depending on whether b + a is even or odd, there are two potential cases,⌊
b+ a+ 3

2

⌋
=
b+ a+ 3

2
or

⌊
b+ a+ 3

2

⌋
=
b+ a

2
+ 1.

When

⌊
b+ a+ 3

2

⌋
=
b+ a+ 3

2
, we have

G

(
b+ a+ 3

2
− 1,

b+ a+ 3

2

)
=

1

Γ(ν)

[
(b− b+a+3

2
+ 1)ν

(b− a)ν

(
b+ a+ 3

2
− 1− a

)ν]

=
1

ν + 1

[(
b−a−1

2

)ν
(b− a)ν

(
b− a+ 1

2

)ν]

=
1

Γ(ν + 1)(b− a)ν

(
1 +

2ν

b− a− 1

)[(
b− a− 1

2

)ν]2

.

This is a constant in terms of b− a and ν.

If

⌊
b+ a+ 3

2

⌋
=
b+ a

2
+ 1, then

G

(
b+ a

2
,
b+ a

2
+ 1

)
=

1

Γ(ν + 1)

[(
b−

(
b+a

2
+ 1
)

+ 1
)ν

(b− a)ν

(
b+ a

2
− a
)ν]

=
1

Γ(ν + 1)(b− a)ν

[(
b− a

2

)ν]2

.

This is also a constant in terms of b− a and ν. This concludes our proof.

In certain applications of the Contraction Mapping Theorem to nonlinear bound-

ary value problems, it is useful to have bounds for the integral of the Green’s function.

In Chapter 3, we will show existence of a unique solution to a fractional difference
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equation by showing that its solution is the fixed point of a certain map. We will find

conditions for which the map is a contraction, implying the existence of a fixed point.

For certain boundary value problems, the map in question involves the convolution

of the Green’s function and a forcing term. In this case, a bound on the integral of

the Green’s function allows us to find conditions on the forcing term so that the map

is a contraction. For applications of this type, see [45], [46]. We establish bounds on

the integral of the Green’s function in the following theorem.

Theorem 2.5.5. The following inequality holds for the Green’s function G(t, s) from

Remark 2.5.1.

∫ b

a

|G(t, s)| ∇s ≤
(

b− a− 1

(ν + 1)Γ(ν + 2)

)(
ν(b− a) + 1

1 + ν

)ν

for all (t, s) ∈ Nb
a × Nb

a+1.

Proof. First, note that since G(t, s) is nonnegative for all (t, s) ∈ Nb
a×Nb

a+1, we have

that
∫ b
a
|G(t, s)| ∇s =

∫ b
a
G(t, s)∇s. We can integrate to obtain

b∑
s=a+1

G(t, s) =
t∑

s=a+1

G(t, s) +
b∑

s=t+1

G(t, s)

=
1

Γ(ν)

[
t∑

s=a+1

(b− s+ 1)ν

(b− a)ν
(t− a)ν − (t− s+ 1)ν

+
b∑

s=t+1

(b− s+ 1)ν

(b− a)ν
(t− a)ν

]

=
1

Γ(ν)

[
b∑

s=a+1

(b− s+ 1)ν

(b− a)ν
(t− a)ν −

t∑
s=a+1

(t− s+ 1)ν

]

=
1

Γ(ν)

[
(t− a)ν

(b− a)ν

∫ b

a

(b− ρ(s))ν∇s−
∫ b

a

(t− ρ(s))ν∇s
]
.
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Using Theorem 1.2.6, we have that

b∑
s=a+1

G(t, s) =
1

Γ(ν)

[
(t− a)ν

(b− a)ν

[
−1

ν + 1
(b− s)ν+1

]b
a

−
[
−1

ν + 1
(t− s)ν+1

]t
a

]

=
−(t− a)ν

Γ(ν + 2)(b− a)ν
(0)ν+1 +

(t− a)ν

Γ(ν + 2)(b− a)ν
(b− a)ν+1

+
1

Γ(ν + 2)
(0)ν+1 − 1

Γ(ν + 2)
(t− a)ν+1

=
(t− a)ν

Γ(ν + 2)
(b− a+ ν)− (t− a)ν

Γ(ν + 2)
(t− a+ ν)

=
(t− a)ν

Γ(ν + 2)
(b− t).

We now wish to find the maximum of this expression with respect to t ∈ Nb
a+1.

The maximum does not occur at t = a because here the expression (t−a)ν

Γ(ν+2)
(b − t)

evaluates to zero. We consider the difference of the expression with respect to t.

∇
[

(t− a)ν

Γ(ν + 2)
(b− t)

]
=

(t− a)ν

Γ(ν + 2)
(−1) + ν

(t− a)ν−1

Γ(ν + 2)
(b− t+ 1)

=
−(t− a)ν−1

Γ(ν + 2)
(t− a+ ν + 1) +

(t− a)ν−1

Γ(ν + 2)
(νb− νt+ ν)

=
(t− a)ν−1

Γ(ν + 2)
[νb+ a+ 1− t(ν + 1)].

The fraction (t−a)ν−1

Γ(ν+2)
is positive, and so we consider the bracketed expression

[νb+ a+ 1− t(ν + 1)].

This expression is equal to zero when t = νb+a+1
1+ν

. This value is not necessarily in

Nb
a+1, but it is true that a + 1 ≤ νb+a+1

1+ν
≤ b. (In fact, this inequality is strict when

b− a > 1.)

When t < νb+a+1
1+ν

, the bracketed expression [νb+ a+ 1− t(ν + 1)] is positive,
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so (t−a)ν

Γ(ν+2)
(b − t) is increasing in t. When t > νb+a+1

1+ν
, the bracketed expression

[νb+ a+ 1− t(ν + 1)] is negative, so (t−a)ν

Γ(ν+2)
(b−t) is decreasing in t. While t = νb+a+1

1+ν

is not necessarily a value taken by the function, evaluating (t−a)ν

Γ(ν+2)
(b− t) does produce

a maximum for the integral of G(t, s).

When t = νb+a+1
1+ν

, we have

(t− a)ν

Γ(ν + 2)
(b− t) =

(
νb+a+1

1+ν
− a
)ν

Γ(ν + 2)

(
b− νb+ a+ 1

1 + ν

)
=

(
b− a− 1

(ν + 1)Γ(ν + 2)

)(
ν(b− a) + 1

1 + ν

)ν
.

This is the desired upper bound of
∫ b
a
|G(t, s)| ∇s.

Remark 2.5.6. In the non-fractional case, where ν = 1, the Green’s function becomes

G(t, s) =


(b−s+1)(t−a)−(t−s+1)(b−a)

b−a , s ≤ t

(b−s+1)
b−a (t− a), s ≥ t+ 1.

The maximum of the Green’s function becomes

G

(⌊
b+ a+ 3

2

⌋
− 1,

⌊
b+ a+ 3

2

⌋)
=


b−a

4
− 1

4(b−a)
,
⌊
b+a+3

2

⌋
= b+a+3

2

b−a
4
,

⌊
b+a+3

2

⌋
= b+a

2
+ 1.

The upper bound for the integral of the Green’s function becomes

∫ b

a

|G(t, s)| ∇s ≤ (b− a)2 − 1

8
.
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2.6 Green’s Function for a Nonhomogeneous

Fractional Boundary Value Problem with

General Boundary Conditions

In this section we generalize the Green’s function from Section 2.4 to the following

homogeneous fractional self-adjoint boundary value problem with general boundary

conditions, 
−∇ν

a(p∇y)(t) = 0, t ∈ Nb
a+2

αy(a+ 1)− β∇y(a+ 1) = 0

γy(b) + δ∇y(b) = 0

(2.6.1)

where p : Nb
a+1 → (0,∞), α2 + β2 > 0, and γ2 + δ2 > 0. Notice that here the left

general boundary condition is based at a + 1, in order to avoid the use of y(a − 1),

and so we understand the fractional difference equation to be satisfied for t ∈ Nb
a+2.

Lemma 2.6.1. The homogeneous fractional self-adjoint boundary value problem (2.6.1)

has only the trivial solution if and only if

ξ =
βγ

p(a+ 1)
+ αγ

b∑
τ=a+2

(τ − a)ν−1

Γ(ν)p(τ)
+
αδ(b− a)ν−1

Γ(ν)p(b)
6= 0.

Proof. If −∇ν
a(p∇y)(t) = 0, then it follows from Corollary 1.4.3 that

(p∇y)(t) = c0
(t− a)ν−1

Γ(ν)

∇y(t) = c0
(t− a)ν−1

Γ(ν)p(t)

y(t)− y(a) =
t∑

τ=a+1

c0
(τ − a)ν−1

Γ(ν)p(τ)
.
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Letting y(a) = c1, we have

y(t) = c0

t∑
τ=a+1

(τ − a)ν−1

Γ(ν)p(τ)
+ c1. (2.6.2)

We will use the boundary conditions to determine c0 and c1. Evaluating equa-

tion (2.6.2) at t = a+ 1 gives

y(a+ 1) =
c0

p(a+ 1)
+ c1

∇y(a+ 1) = y(a+ 1)− y(a) =
c0

p(a+ 1)
.

Using these values in the first boundary condition, αy(a + 1) − β∇y(a + 1) = 0, we

obtain

α

(
c0

p(a+ 1)
+ c1

)
− β

(
c0

p(a+ 1)

)
= 0

c0

(
α− β
p(a+ 1)

)
+ c1α = 0. (2.6.3)

Evaluating equation (2.6.2) at t = b gives

y(b) =
b∑

τ=a+1

c0
(τ − a)ν−1

Γ(ν)p(τ)
+ c1

∇y(b) = y(b)− y(b− 1) = c0
(b− a)ν−1

Γ(ν)p(b)
.

Substituting these values into the second boundary condition, γy(b) + δ∇y(b) = 0,
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we obtain

γ

(
b∑

τ=a+1

c0
(τ − a)ν−1

Γ(ν)p(τ)
+ c1

)
+ δ

(
c0

(b− a)ν−1

Γ(ν)p(b)

)
= 0

c0

(
γ

b∑
τ=a+1

(τ − a)ν−1

Γ(ν)p(τ)
+ δ

(b− a)ν−1

Γ(ν)p(b)

)
+ c1γ = 0. (2.6.4)

The system of equations (2.6.3), (2.6.4) in the variables c0, c1 has only the trivial

solution if and only if the determinant of the system is not equal to 0. The determinant

of the system, which we will call −ξ, is

−ξ =

∣∣∣∣∣∣∣
α−β
p(a+1)

α

γ
∑b

τ=a+1
(τ−a)ν−1

Γ(ν)p(τ)
+ δ (b−a)ν−1

Γ(ν)p(b)
γ

∣∣∣∣∣∣∣ .
It follows that

−ξ =
αγ

p(a+ 1)
− βγ

p(a+ 1)
− αγ

b∑
τ=a+1

(τ − a)ν−1

Γ(ν)p(τ)
− αγ (b− a)ν−1

Γ(ν)p(b)

= − βγ

p(a+ 1)
− αγ

b∑
τ=a+2

(τ − a)ν−1

Γ(ν)p(τ)
− αδ(b− a)ν−1

Γ(ν)p(b)
.

Hence the solution y(t) is nontrivial (i.e. c0 and c1 are not both equal to zero) if and

only if ξ 6= 0.

Remark 2.6.2. In the case that ν = 1, we have that


−∇(p∇y)(t) = 0, t ∈ Nb

a+2

αy(a+ 1)− β∇y(a+ 1) = 0

γy(b) + δ∇y(b) = 0
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has only the trivial solution if and only if

ξ =
βγ

p(a+ 1)
+ αγ

b∑
τ=a+2

1

p(τ)
+

αδ

p(b)
6= 0.

Theorem 2.6.3. If the homogeneous boundary value problem (2.6.1) has only the

trivial solution, then the nonhomogeneous boundary value problem


−∇ν

a(p∇y)(t) = h(t), t ∈ Nb
a+2

αy(a+ 1)− β∇y(a+ 1) = 0

γy(b) + δ∇y(b) = 0

(2.6.5)

has a unique solution.

Proof. Let y1(t), y2(t) be two linearly independent solutions of the difference equation

−∇ν
a(p∇y)(t) = 0. Note that we can find two linearly independent solutions by taking

y1(a) = 1, y1(a+1) = 0, y2(a) = 0, y2(a+1) = 1. These initial values determine

the solutions y1(t), y2(t) for t ∈ Nb
a+2 as a result of Theorem 2.2.1. The choice of initial

values implies that y1(t) and y2(t) are linearly independent.

Then for arbitrary real constants c1 and c2, y(t) = c1y1(t) + c2y2(t) is a general

solution of −∇ν
a(p∇y)(t) = 0. Given any solution y0(t), we choose c1 = y0(a) and

c2 = y0(a+ 1), and again because of Theorem 2.2.1 we know y0(t) = c1y1(t) + c2y2(t)

for all t ∈ Nb
a.

Note that for any y(t) = c1y1(t) + c2y2(t), the set of boundary conditions

αy(a+ 1)− β∇y(a+ 1) = 0

γy(b) + δ∇y(b) = 0
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are satisfied if and only if c1 and c2 satisfy

c1 [αy1(a+ 1)− β∇y1(a+ 1)] + c2 [αy2(a+ 1)− β∇y2(a+ 1)] = 0

c2 [γy1(b) + δ∇y1(b)] + c2 [γy2(b) + δ∇y2(b)] = 0.

But by assumption, y must be the trivial solution, so c1 = c2 = 0.

Since the above system of equations in c1 and c2 is solved only by c1 = c2 = 0, it

follows that its determinant is nonzero,

∣∣∣∣∣∣∣
αy1(a+ 1)− β∇y1(a+ 1) αy2(a+ 1)− β∇y2(a+ 1)

γy1(b) + δ∇y1(b) γy2(b) + δ∇y2(b)

∣∣∣∣∣∣∣ 6= 0. (2.6.6)

Let y0(t) be the unique solution of the initial value problem


−∇ν

a(p∇y)(t) = h(t), t ∈ Nb
a+2

y(a) = A, y(a+ 1) = B.

Then a general solution of ∇ν
a(p∇y)(t) = h(t) is given by

y(t) = c3y1(t) + c4y2(t) + y0(t).

This y(t) will satisfy the boundary conditions

αy(a+ 1)− β∇y(a+ 1) = 0

γy(b) + δ∇y(b) = 0
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if and only if c3, c4 are constants that solve the system of equations

c3[αy1(a+ 1)− β∇y1(a+ 1)] + c4[αy2(a+ 1)− β∇y2(a+ 1)] = −αB + β(B − A)

c3[γy1(b) + δ∇y1(b)] + c4[γy2(b) + δ∇y2(b)] = −γy0(b)− δ∇y0(b).

This system of equations has a unique solution for the constants c3 and c4 because

the determinant in equation (2.6.6) is not zero. Hence the fractional boundary value

problem (2.6.5) has a unique solution.

Theorem 2.6.4. Assume that ξ, as defined in Lemma 2.6.1, is not zero. Then the

Green’s function for the boundary value problem (2.6.1) is given by

G(t, s) =


u(t, s), t ≤ s− 1

v(t, s), t ≥ s

(2.6.7)

where

u(t, s) =
1

ξ

(
αγx(t, a)x(b, ρ(s)) + αδx(t, a)

(b− s+ 1)ν−1

Γ(ν)p(b)

+
γ(β − α)

p(a+ 1)
x(b, ρ(s)) +

δ(β − α)

p(a+ 1)

(b− s+ 1)ν−1

Γ(ν)p(b)

)
(2.6.8)

and

v(t, s) = u(t, s)− x(t, ρ(s)). (2.6.9)

Here, x(t, ρ(s)) refers to the Cauchy function (2.3.2).
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Proof. Suppose that y(t) is a solution of the boundary value problem


−∇ν

a(p∇y)(t) = h(t), t ∈ Nb
a+2

αy(a+ 1)− β∇y(a+ 1) = 0

γy(b) + δ∇y(b) = 0.

(2.6.10)

Then x(t) = (p∇y)(t) solves the initial value problem


−∇ν

ax(t) = h(t), t ∈ Na+2

x(a+ 1) = p(a+ 1)[y(a+ 1)− y(a)].

Corollary 1.4.3 gives that the solution of this initial value problem has the form

x(t) = −∇−νa h(t)− c0
(t− a)ν−1

Γ(ν)
.

Hence we have that

∇y(t) = −
t∑

s=a+1

(t− ρ(s))ν−1

Γ(ν)p(t)
h(s)− c0

(t− a)ν−1

Γ(ν)p(t)
.

We sum both sides from a+ 1 to t to get

y(t)− y(a) = −
t∑

τ=a+1

(
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)p(τ)
h(s)− c0

(τ − a)ν−1

Γ(ν)p(τ)

)
.
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Letting y(a) = c1 and interchanging sums, we obtain

y(t) = −
t∑

s=a+1

t∑
τ=s

(
(τ − ρ(s))ν−1

Γ(ν)p(τ)
h(s)

)
− c0

t∑
τ=a+1

(τ − a)ν−1

Γ(ν)p(τ)
+ c1

= −
t∑

s=a+1

h(s)x(t, ρ(s))− c0x(t, a) + c1.

Now we will use the boundary conditions to obtain formulas for the constants c0

and c1. Since

y(a+ 1) =
−c0

p(a+ 1)
− h(a+ 1)

p(a+ 1)
+ c1

and

∇y(a+ 1) =
−c0

p(a+ 1)
− h(a+ 1)

p(a+ 1)
,

we have that

α

(
−c0

p(a+ 1)
− h(a+ 1)

p(a+ 1)
+ c1

)
− β

(
−c0

p(a+ 1)
− h(a+ 1)

p(a+ 1)

)
= 0.

Since h : Nb
a+2 → R, we extend the domain of h by letting h(a + 1) = 0. Rewriting

this equation to collect the terms involving c0 and c1, we obtain

c0

(
β − α
p(a+ 1)

)
+ c1α = 0. (2.6.11)

Since

y(b) = −
b∑

s=a+1

h(s)x(b, ρ(s))− c0x(b, a) + c1
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and

∇y(b) = −
b∑

s=a+1

h(s)x(b, ρ(s))− c0x(b, a) + c1

−

(
−

b−1∑
s=a+1

h(s)x(b− 1, ρ(s))− c0x(b− 1, a) + c1

)

= −h(b)x(b, b− 1)

−
b−1∑

s=a+1

h(s)[x(b, ρ(s))− x(b− 1, ρ(s))]− c0[x(b, a)− x(b− 1, a)]

= −h(b)

p(b)
−

b−1∑
s=a+1

h(s)

(
(b− s+ 1)ν−1

Γ(ν)p(b)

)
− c0

(b− a)ν−1

Γ(ν)p(b)

= −
b∑

s=a+1

h(s)

(
(b− s+ 1)ν−1

Γ(ν)p(b)

)
− c0

(b− a)ν−1

Γ(ν)p(b)

we have that

0 = γ

(
−

b∑
s=a+1

h(s)x(b, ρ(s))− c0x(b, a) + c1

)

+ δ

(
−

b∑
s=a+1

h(s)

(
(b− s+ 1)ν−1

Γ(ν)p(b)

)
− c0

(b− a)ν−1

Γ(ν)p(b)

)

or, rewriting to collect c0 and c1,

c0

(
−γx(b, a)− δ (b− a)ν−1

Γ(ν)p(b)

)
+ c1γ

= γ
b∑

s=a+1

h(s)x(b, ρ(s)) + δ

b∑
s=a+1

h(s)
(b− s+ 1)ν−1

Γ(ν)p(b)

c0

(
−γx(b, a)− δ (b− a)ν−1

Γ(ν)p(b)

)
+ c1γ =

b∑
s=a+2

h(s)

[
γx(b, ρ(s)) + δ

(b− s+ 1)ν−1

Γ(ν)p(b)

]
.

(2.6.12)
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We will solve the system of equations (2.6.11), (2.6.12) by solving equation (2.6.11)

for c1 and substituting this value into equation (2.6.12). We find that

c1 =
(α− β)c0

αp(a+ 1)

and, substituting into equation (2.6.12), we obtain

c0

(
−γx(b, a)− δ (b− a)ν−1

Γ(ν)p(b)
+
γ(α− β)c0

αp(a+ 1)

)

=
b∑

s=a+2

h(s)

[
γx(b, ρ(s)) + δ

(b− s+ 1)ν−1

Γ(ν)p(b)

]
.

We simplify this equation by expanding x(b, a) and multiplying both sides by α,

b∑
s=a+2

h(s)

[
αγx(b, ρ(s)) + αδ

(b− s+ 1)ν−1

Γ(ν)p(b)

]

= c0

(
−αγ 1

p(a+ 1)
− αγ

b∑
τ=a+2

(τ − a)ν−1

Γ(ν)p(τ)

−αγ (b− a)ν−1

Γ(ν)p(b)
+

αγ

p(a+ 1)
− βγ

p(a+ 1)

)
.

It follows that

b∑
s=a+2

h(s)

[
αγx(b, ρ(s)) + αδ

(b− s+ 1)ν−1

Γ(ν)p(b)

]

= c0

(
−

(
βγ

p(a+ 1)
+ αγ

b∑
τ=a+2

(τ − a)ν−1

Γ(ν)p(τ)
+
αδ(b− a)ν−1

Γ(ν)p(b)

))
= −ξc0.

Hence we have that

c0 = −1

ξ

b∑
s=a+2

h(s)

[
αγx(b, ρ(s)) + αδ

(b− s+ 1)ν−1

Γ(ν)p(b)

]
,
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and also that

c1 =
(α− β)

αp(a+ 1)

(
−1

ξ

b∑
s=a+2

h(s)

[
αγx(b, ρ(s)) + αδ

(b− s+ 1)ν−1

Γ(ν)p(b)

])

=
(β − α)

ξp(a+ 1)

(
b∑

s=a+2

h(s)

[
γx(b, ρ(s)) + δ

(b− s+ 1)ν−1

Γ(ν)p(b)

])
.

Because ξ 6= 0 and p(t) > 0, both of these constants are well defined. Substituting

both of these values into our formula for y(t), we have

y(t) = −
t∑

s=a+1

h(s)x(t, ρ(s))− c0x(t, a) + c1

= −
t∑

s=a+1

h(s)x(t, ρ(s))

+ x(t, a)

(
1

ξ

b∑
s=a+2

h(s)

[
αγx(b, ρ(s)) + αδ

(b− s+ 1)ν−1

Γ(ν)p(b)

])

+
(β − α)

ξp(a+ 1)

(
b∑

s=a+2

h(s)

[
γx(b, ρ(s)) + δ

(b− s+ 1)ν−1

Γ(ν)p(b)

])
.

Combining the terms in the second and third sums, we obtain

y(t) = −
t∑

s=a+1

h(s)x(t, ρ(s))

+
b∑

s=a+1

h(s)

[
1

ξ

(
αγx(t, a)x(b, ρ(s)) + αδx(t, a)

(b− s+ 1)ν−1

Γ(ν)p(b)

+
γ(β − α)

p(a+ 1)
x(b, ρ(s)) +

δ(β − α)

p(a+ 1)

(b− s+ 1)ν−1

Γ(ν)p(b)

)]
.

By rearranging the second sum by its terms, from a + 1 to t and from t + 1 to b, it



48

follows that

y(t) =
t∑

s=a+1

h(s)

[
1

ξ

(
αγx(t, a)x(b, ρ(s)) + αδx(t, a)

(b− s+ 1)ν−1

Γ(ν)p(b)

+
γ(β − α)

p(a+ 1)
x(b, ρ(s)) +

δ(β − α)

p(a+ 1)

(b− s+ 1)ν−1

Γ(ν)p(b)

)
− x(t, ρ(s))

]

+
b∑

s=t+1

h(s)

[
1

ξ

(
αγx(t, a)x(b, ρ(s)) + αδx(t, a)

(b− s+ 1)ν−1

Γ(ν)p(b)

+
γ(β − α)

p(a+ 1)
x(b, ρ(s)) +

δ(β − α)

p(a+ 1)

(b− s+ 1)ν−1

Γ(ν)p(b)

)]
.

Hence

y(t) =
t∑

s=a+1

h(s)u(t, s) +
b∑

s=t+1

h(s)v(t, s)

=
b∑

s=a+1

h(s)G(t, s).

Hence G(t, s) as defined in the theorem is the Green’s function for the boundary value

problem (2.6.1).
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Remark 2.6.5. Recall that in Theorem 2.4.1 we had found the Green’s function for

the fractional boundary value problem


−∇ν

a(p∇y)(t) = 0, t ∈ Nb
a+1

y(a) = 0, y(b) = 0.

This Green’s function is a special case of the Green’s function for general boundary

conditions, as given in equation (2.6.7). To see this, we let α = β = γ = 1 and δ = 0.

Note that for these values we have α2 + β2 > 0 and γ2 + δ2 > 0. We then obtain

ξ =
1

p(a+ 1)
+

b∑
τ=a+2

(τ − a)ν−1

Γ(ν)p(τ)
= x(b, a)

and so

u(t, s) =
x(b, ρ(s))

x(b, a)
x(t, a)

and

v(t, s) = u(t, s)− x(t, ρ(s)) =
x(b, ρ(s))

x(b, a)
x(t, a)− x(t, ρ(s))

which is exactly the Green’s function from Theorem 2.4.1.
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Chapter 3

Applications of the Contraction

Mapping Theorem to Self-Adjoint

Difference Equations

3.1 Introduction

In this chapter, we use the Contraction Mapping Theorem to establish the existence

of solutions to the self-adjoint fractional difference equation

∇ν
a(p∇y)(t) + q(t)y(ρ(t)) = f(t), (3.1.1)

where 0 < ν < 1, t ∈ Na+1 for some a ∈ R, p : Na+1 → (0,∞), q : Na+1 → R, and

f : Na+1 → R, and the forced fractional difference equation

∇ν
a(p∇x)(t) + F (t, x(t)) = 0, (3.1.2)
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where F : Na+1 × R→ [0,∞), that satisfy

lim
t→∞

y(t) = L

for some L ≥ 0.

In Chapter 2, we established existence and uniqueness of solutions to a related

initial value problem, but in subsequent sections, we let q ≡ 0 in order to be able to

compute y(t). This is because, as we saw in the proof of Theorem 2.2.1, a formula

for y(t0) depends on all of the values y(a), y(a+ 1), . . . , y(t0− 1). This motivates the

use of fixed point theorems to study the self-adjoint equation with q 6≡ 0. In each of

the theorems in this chapter we will define an appropriate operator, a fixed point of

which will be a solution of the self-adjoint equation satisfying certain properties.

3.2 Solutions with Positive Limits

To use the contraction mapping theorem, we must determine the appropriate opera-

tor, a fixed point of which will be a solution to the fractional self-adjoint difference

equation. To that aim, we prove the following lemma.

Lemma 3.2.1. Let p : Na+1 → (0,∞), q : Na+1 → R, and f : Na+1 → R. For some

L ≥ 0, define ζ :=
{
y : Na → R

∣∣∣ lim
t→∞

y(t) = L
}

. Suppose that for all the functions

y ∈ ζ, the series

∞∑
s=a+1

1

p(s)

[
s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
(q(τ)y(ρ(τ))− f(τ))

]
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converges. Then the forced fractional self-adjoint difference equation

∇ν
a(p∇y)(t) + q(t)y(ρ(t)) = f(t), t ∈ Na+1 (3.2.1)

has a solution y ∈ ζ if and only if the summation equation

y(t) = L+
∞∑

s=t+1

1

p(s)

[
s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
(q(τ)y(ρ(τ))− f(τ))

]
(3.2.2)

has a solution y(t) on Na.

Proof. Suppose that the difference equation (3.2.1) has a solution y ∈ ζ.

Let x(t) = (p∇y)(t). Then x(t) solves the fractional initial value problem


∇ν
ax(t) = f(t)− q(t)y(ρ(t)), t ∈ Na+2

x(a+ 1) = p(a+ 1)∇y(a+ 1).

From Corollary 1.4.3, x(t) has the form

x(t) = ∇ν
a(f(t)− q(t)y(ρ(t)))

+ [p(a+ 1)∇y(a+ 1)− (f(a+ 1)− q(a+ 1)y(a))]
(t− a)ν−1

Γ(ν)
,

and since

∇ν
a(p∇y)(a+ 1) =

1

Γ(−ν)

a+1∑
s=a+1

(a+ 1− ρ(s))−ν−1(p∇y)(s) = (p∇y)(a+ 1),
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we have

x(t) = ∇ν
a(f(t)− q(t)y(ρ(t)))

+ [∇ν
a(p∇y)(a+ 1)− (f(a+ 1)− q(a+ 1)y(a))]

(t− a)ν−1

Γ(ν)

= ∇ν
a(f(t)− q(t)y(ρ(t))).

Hence

∇y(t) =
1

p(t)

t∑
τ=a+1

(t− ρ(τ))ν−1

Γ(ν)
(f(τ)− q(τ)y(ρ(τ))).

Summing from s = t+ 1 to ∞ gives that

∞∑
s=t+1

∇y(t) =
∞∑

s=t+1

1

p(s)

[
s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
(f(τ)− q(τ)y(ρ(τ)))

]

lim
s→∞

y(s)− y(t) =
∞∑

s=t+1

1

p(s)

[
s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
(f(τ)− q(τ)y(ρ(τ)))

]

y(t) = L+
∞∑

s=t+1

1

p(s)

[
s∑

τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
(q(τ)y(ρ(τ))− f(τ))

]
.

So y(t) is also a solution of the summation equation (3.2.2).

Conversely, we must show that if y(t) is a solution of the summation equa-

tion (3.2.2), then it is also a solution of the fractional difference equation (3.2.1)

with lim
t→∞

y(t) = L. We have that

y(t) = L+
∞∑

s=t+1

1

p(s)

s∑
τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
(q(τ)y(ρ(τ))− f(τ)) .

Taking the difference with respect to t of both sides, multiplying by p, and then
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rewriting sums, we simplify to find

∇y(t) =
1

p(t)

s∑
τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
(f(τ)− q(τ)y(ρ(τ)))

(p∇y)(t) =
1

Γ(ν)

s∑
τ=a+1

(s− ρ(τ))ν−1(f(τ)− q(τ)y(ρ(τ)))

(p∇y)(t) = ∇−νa (f(t)− q(t)y(ρ(t))).

Taking the ν-th difference of both sides and composing using the the Composition

Rule 1.3.6, we find that

∇ν
a(p∇y)(t) = f(t)− q(t)y(ρ(t))

∇ν
a(p∇y)(t) + q(t)y(ρ(t)) = f(t)

for t ∈ Na+2, and since the series

∞∑
s=a+1

1

p(s)

s∑
τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
(q(τ)y(ρ(τ))− f(τ))

converges, we can take the limit as t increases to infinity of both sides of the summa-

tion equation to find that lim
t→∞

y(t) = L.

We now prove the main result of this section.

Theorem 3.2.2. Let p : Na+1 → R, f : Na+1 → R, and q : Na+1 → R, and let

L ∈ [0,∞) be a real number. Assume

(1) p(t) > 0 for t ∈ Na+1 and q(t) ≥ 0 for t ∈ Na+1 ,

(2)
∞∑

s=a+1

1

p(s)

s∑
τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
q(τ) <∞,
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(3)
∞∑

s=a+1

1

p(s)

s∑
τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
f(τ) <∞.

Then there exists some t0 ∈ Na so that the fractional self-adjoint difference equa-

tion

∇ν
t0

(p∇y)(t) + q(t)y(ρ(t)) = f(t) (3.2.3)

has a solution y : Nt0 → R which satisfies lim
t→∞

y(t) = L.

Proof. Because the series

∞∑
s=a+1

1

p(s)

s∑
τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
q(τ)

converges, we can choose b ∈ Na such that

β :=
∞∑

s=b+1

1

p(s)

s∑
τ=b+1

(s− ρ(τ))ν−1

Γ(ν)
q(τ) < 1. (3.2.4)

Let ζb =
{
y : Nb → R

∣∣∣ lim
t→∞

y(t) = L
}

and define the supremum norm, ‖ · ‖, on ζb by

‖y‖ = sup
t∈Nb
|y(t)|.

The pair (ζb, ‖ · ‖) defines a complete metric space. Define the operator T on ζb by

Ty(t) = L+
∞∑

s=t+1

1

p(s)

s∑
τ=b+1

(s− ρ(τ))ν−1

Γ(ν)
(q(τ)y(ρ(τ))− f(τ)) . (3.2.5)

First, we show that T : ζb → ζb. Let y ∈ ζb be fixed but arbitrary, so that

lim
t→∞

y(t) = L. This implies that for some M > 0, |y(t)| < M for all t ∈ Nb. Thus we
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have that

|Ty(t)| =

∣∣∣∣∣L+
∞∑

s=t+1

1

p(s)

s∑
τ=b+1

(s− ρ(τ))ν−1

Γ(ν)
(q(τ)y(ρ(τ))− f(τ))

∣∣∣∣∣
≤ L+

∣∣∣∣∣
∞∑

s=t+1

1

p(s)

s∑
τ=b+1

(s− ρ(τ))ν−1

Γ(ν)
(q(τ)y(ρ(τ))− f(τ))

∣∣∣∣∣ .
Using our bounds on y(t), we have that

|Ty(t)| ≤ L+

∣∣∣∣∣
∞∑

s=t+1

1

p(s)

s∑
τ=b+1

(s− ρ(τ))ν−1

Γ(ν)
(Mq(τ)− f(τ))

∣∣∣∣∣
≤ L+M

∞∑
s=t+1

(
1

p(s)

s∑
τ=b+1

(s− ρ(τ))ν−1

Γ(ν)
q(τ)

)

+

∣∣∣∣∣
∞∑

s=t+1

(
1

p(s)

s∑
τ=b+1

(s− ρ(τ))ν−1

Γ(ν)
f(τ)

)∣∣∣∣∣ .
For the first series,

M
∞∑

s=t+1

(
1

p(s)

s∑
τ=b+1

(s− ρ(τ))ν−1

Γ(ν)
q(τ)

)

≤M
∞∑

a=t+1

(
1

p(s)

s∑
τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
q(τ)

)
<∞

by assumption (2) in the statement of this theorem. For the second series,

∣∣∣∣∣
∞∑

s=t+1

(
1

p(s)

s∑
τ=b+1

(s− ρ(τ))ν−1

Γ(ν)
f(τ)

)∣∣∣∣∣
≤

∣∣∣∣∣
∞∑

s=a+1

(
1

p(s)

s∑
τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
f(τ)

)∣∣∣∣∣ <∞
by assumption (3) in this theorem.

Hence T is well defined. Notice that, since the series in the definition of T con-
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verges, we can take the limit as t→∞ to find that lim
t→∞

Ty(t) = L, and thus Ty ∈ ζb.

Now, we show that T is a contraction mapping on ζb. Let x, y ∈ ζb and t ∈ Nb be

fixed but arbitrary. Then

|Tx(t)− Ty(t)|

=

∣∣∣∣∣
∞∑

s=t+1

1

p(s)

s∑
τ=b+1

(s− ρ(τ))ν−1

Γ(ν)
(q(τ)(x(ρ(τ))− y(ρ(τ)))− f(τ) + f(τ))

∣∣∣∣∣
≤

∞∑
s=t+1

1

p(s)

s∑
τ=b+1

(s− ρ(τ))ν−1

Γ(ν)
(q(τ)|x(ρ(τ))− y(ρ(τ))|)

≤

(
∞∑

s=t+1

1

p(s)

s∑
τ=b+1

(s− ρ(τ))ν−1

Γ(ν)
q(τ)

)
‖x− y‖ = β‖x− y‖.

Since t, x, and y are arbitrary, ‖Tx − Ty‖ ≤ β‖x − y‖, with β < 1 for all x and y

in ζb, and therefore T is a contraction mapping. Hence T has a unique fixed point in

ζb, call it y0. This fixed point satisfies the summation equation (3.2.2), and therefore

by Lemma 3.2.1, it is also a solution of the fractional difference equation (3.2.3) that

satisfies lim
t→∞

y0(t) = L.

The following example demonstrates the use of our results.

Example 3.2.3. For some a > 1, let p(t) = (t− a)νt(ln t)2, q(t) = 1 and f(t) = 1.

Then p(t) > 0 for t ∈ Na+1 and q(t) ≥ 0 for t ∈ Na+1.

We also have that

∞∑
s=a+1

(s− a)ν

p(s)
=

∞∑
s=a+1

1

s(ln s)2
<∞,
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and therefore

∞∑
s=a+1

1

p(s)

s∑
τ=a+1

(s− ρ(τ))ν

Γ(ν)
q(τ) =

∞∑
s=a+1

1

p(s)

s∑
τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
f(τ)

=
∞∑

s=a+1

(s− a)ν

p(s)Γ(ν + 1)
<∞.

Hence for any real number L ≥ 0, there exists some t0 ∈ Na such that

∇ν
t0

((t− a)νt(ln t)2∇y(t)) + y(ρ(t)) = 1, t ∈ Nt0+1 (3.2.6)

has a solution y : Nt0 → R that satisfies lim
t→∞

y(t) = L.

In the above example, we required p(t) to be fairly large in order for the series in

the assumptions of Theorem 3.2.2 to converge. In the following theorem, we extend

our results by using summation by parts.

Theorem 3.2.4. Let p : Na+1 → R, f : Na+1 → R, and q : Na+1 → R, and let

L ∈ [0,∞) be a real number. Let P (s, t) :=
s∑

u=t+1

1

p(u)
. Assume

(1) p(t) > 0 for t ∈ Na+1, q(t) ≥ 0, and f(t) ≥ 0 for t ∈ Na+1 ,

(2)
∞∑

s=a+1

P (s− 1, a)

[
s∑

τ=a+1

(s− ρ(τ))ν−2

Γ(ν − 1)
q(τ)

]
<∞,

(3)
∞∑

s=a+1

P (s− 1, a)

[
s∑

τ=a+1

(s− ρ(τ))ν−2

Γ(ν − 1)
f(τ)

]
<∞.

(4) lim
t→∞
∇−νa q(t) <∞ and lim

t→∞
∇−νa f(t) <∞.
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Then there exists some t0 ∈ Na so that the fractional self-adjoint difference equa-

tion

∇ν
t0

(p∇y)(t) + q(t)y(ρ(t)) = f(t) + λ(t, y(t)), t ∈ Nt0+1, (3.2.7)

where

λ(t, y(t)) =
1

Γ(1− ν)

(
lim
s→∞
∇−νb (q(s)y(ρ(s))− f(s))

)
(t− b)−ν (3.2.8)

has a solution y : Nt0 → R which satisfies lim
t→∞

y(t) = L.

Proof. Because the series
∞∑

s=a+1

P (s − 1, a)

[
s∑

τ=a+1

(s− ρ(τ))ν−2

Γ(ν − 1)
q(τ)

]
converges, we

can choose b ∈ Na such that

β :=
∞∑

s=b+1

P (s− 1, a)

[
s∑

τ=a+1

(s− ρ(τ))ν−2

Γ(ν − 1)
q(τ)

]
< 1. (3.2.9)

We will now show that the mapping defined by

Ty(t) = L−
∞∑

s=t+1

P (s− 1, t)
s∑

τ=b+1

(s− ρ(τ))ν−2

Γ(ν − 1)
(q(τ)y(ρ(τ))− f(τ)) (3.2.10)

is a contraction mapping on the set ζb :=
{
y : Nb → R

∣∣∣ lim
t→∞

y(t) = L
}

and that its

fixed point in ζb is a solution of the fractional difference equation (3.2.7).

To show that T : ζb → ζb, consider a fixed but arbitrary y ∈ ζb. Since lim
t→∞

y(t) = L,
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there exists some M > 0 so that |y(t)| ≤M for all t ∈ Nb. Hence

|Ty(t)| =

∣∣∣∣∣L−
∞∑

s=t+1

P (s− 1, t)
s∑

τ=b+1

(s− ρ(τ))ν−2

Γ(ν − 1)
(q(τ)y(ρ(τ))− f(τ))

∣∣∣∣∣
≤ L+

∣∣∣∣∣
∞∑

s=t+1

P (s− 1, t)
s∑

τ=b+1

(s− ρ(τ))ν−2

Γ(ν − 1)
q(τ)y(ρ(τ))

∣∣∣∣∣
+

∣∣∣∣∣
∞∑

s=t+1

P (s− 1, t)
s∑

τ=b+1

(s− ρ(τ))ν−2

Γ(ν − 1)
f(τ)

∣∣∣∣∣
≤ L+M

∣∣∣∣∣
∞∑

s=t+1

P (s− 1, t)
s∑

τ=b+1

(s− ρ(τ))ν−2

Γ(ν − 1)
q(τ)

∣∣∣∣∣
+

∣∣∣∣∣
∞∑

s=t+1

P (s− 1, t)
s∑

τ=b+1

(s− ρ(τ))ν−2

Γ(ν − 1)
f(τ)

∣∣∣∣∣ .
Thus we have that

|Ty(t)| ≤ L+M

∣∣∣∣∣
∞∑

s=a+1

P (s− 1, t)
s∑

τ=a+1

(s− ρ(τ))ν−2

Γ(ν − 1)
q(τ)

∣∣∣∣∣
+

∣∣∣∣∣
∞∑

s=a+1

P (s− 1, t)
s∑

τ=a+1

(s− ρ(τ))ν−2

Γ(ν − 1)
f(τ)

∣∣∣∣∣
<∞.

So T is well defined, and thus we can take the limit of T as t → ∞ to find that

lim
t→∞

Ty(t) = L, so that Ty ∈ ζb.

Now, we show that T is a contraction mapping on ζb. Let x, y ∈ ζb and t ∈ Nb be
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fixed but arbitrary. Then

|Tx(t)− Ty(t)| =

∣∣∣∣∣
∞∑

s=t+1

P (s− 1, t)
s∑

τ=b+1

(s− ρ(τ))ν−2

Γ(ν − 1)
q(τ)(y(ρ(τ))− x(ρ(τ)))

∣∣∣∣∣
≤

∞∑
s=t+1

P (s− 1, t)
s∑

τ=b+1

(s− ρ(τ))ν−2

Γ(ν − 1)
q(τ)|x(ρ(τ))− y(ρ(τ))|

≤
∞∑

s=t+1

P (s− 1, t)
s∑

τ=b+1

(s− ρ(τ))ν−2

Γ(ν − 1)
q(τ)‖x− y‖ = β‖x− y‖.

Since t, x, and y are arbitrary, ‖Tx− Ty‖ ≤ β‖x− y‖ with β < 1 for all x and y in

ζb, and therefore T is a contraction mapping. Hence T has a unique fixed point in ζb,

call it y0. This fixed point satisfies the equation y0(t) = Ty0(t), which we will now

show implies that y0 is a solution of the fractional difference equation(3.2.7).

Beginning with the fixed point equation y0(t) = Ty0(t), we first take the nabla

difference with respect to t,

y0(t) = L−
∞∑

s=t+1

P (s− 1, t)
s∑

τ=b+1

(s− ρ(τ))ν−2

Γ(ν − 1)
(q(τ)y0(ρ(τ))− f(τ))

∇y0(t) = −
∞∑

s=t+1

P (s− 1, t)
s∑

τ=b+1

(s− ρ(τ))ν−2

Γ(ν − 1)
(q(τ)y0(ρ(τ))− f(τ))

+
∞∑
s=t

P (s− 1, t− 1)
s∑

τ=b+1

(s− ρ(τ))ν−2

Γ(ν − 1)
(q(τ)y0(ρ(τ))− f(τ))

= P (t− 1, t− 1)
t∑

τ=b+1

(s− ρ(τ))ν−2

Γ(ν − 1)
(q(τ)y0(ρ(τ))− f(τ))

+
∞∑

s=t+1

(P (s− 1, t− 1)− P (s− 1, t))

s∑
τ=b+1

(s− ρ(τ))ν−2

Γ(ν − 1)
(q(τ)y0(ρ(τ))− f(τ)).
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It follows that

y0(t) =
∞∑

s=t+1

1

p(t)

s∑
τ=b+1

(s− ρ(τ))ν−2

Γ(ν − 1)
(q(τ)y0(ρ(τ))− f(τ)).

Multiplying both sides by p(t), we find that

(p∇y0)(t) =
∞∑

s=t+1

s∑
τ=b+1

(s− ρ(τ))ν−2

Γ(ν − 1)
(q(τ)y0(ρ(τ))− f(τ))

=
∞∑

s=t+1

∇1−ν
b (q(s)y0(ρ(s))− f(s))

=
∑

+s = t+ 1∞∇1(∇−νb (q(s)y0(ρ(s))− f(s)))

= ∇−νb (q(s)y0(ρ(s))− f(s))
∣∣∞
s=t

= lim
s→∞

[
∇−νb q(s)y0(ρ(s))− f(s)

]
−∇−νb (q(t)y0(ρ(t))− f(t)).

We must verify that lim
s→∞

[
∇−νb q(s)y0(ρ(s))− f(s)

]
converges. Because y0 is in ζb,

lim
s→∞

y0(s) = L. We therefore have

lim
s→∞
∇−νb q(s)y0(ρ(s))−f(s) =

(
lim
s→∞
∇−νb q(s)

)(
lim
s→∞

y0(ρ(s))
)
−
(

lim
s→∞
∇−νb f(s)

)
<∞.

because of assumption (4) in the theorem statement. Hence we have that

lim
s→∞

[
∇−νb q(s)y0(ρ(s))− f(s)

]
is a constant, and so the ν-th nabla difference based at b of this constant is given by
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∇ν
b

(
lim
s→∞
∇−νb q(s)y0(ρ(s))− f(s)

)
=

t∑
τ=b+1

(t− ρ(τ))ν−1

Γ(ν)

(
lim
t→∞
∇−νb q(s)y0(ρ(s))− f(s)

)
=
(

lim
s→∞
∇−νb q(s)y0(ρ(s))− f(s)

) t∑
τ=b+1

(t− ρ(τ))ν−1

Γ(ν)

=
1

Γ(1− ν)

(
lim
s→∞
∇−νb (q(s)y0(ρ(s))− f(s))

)
(t− b)−ν

= λ(t, y0(t)).

Finally, we take the ν-th nabla difference based at b of the equation above and

use λ(t, y0(t)) to obtain

∇ν
b (p∇y0)(t) = ∇ν

b

(
lim
s→∞
∇−νb q(s)y0(ρ(s))− f(s)

)
−∇ν

b∇−νb (q(t)y0(ρ(t))− f(t))

∇ν
b (p∇y0)(t) = λ(t, y0(t)) + f(t)− q(t)y0(ρ(t))

∇ν
b (p∇y0)(t) + q(t)y0(ρ(t)) = f(t) + λ(t, y0(t)).

Therefore y0(t) satisfies the self-adjoint difference equation (3.2.7) with t0 = b, and

lim
t→∞

y0(t) = L.

Example 3.2.5. For some a > 0, and some L ≥ 0, let p(t) = 1, q(t) = ∇ν−1
a

1

t3
, and

f(t) = ∇ν−1
a

L

t3
.
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Then p(t) > 0 for t ∈ Na+1. To show that q(t) ≥ 0, we consider for some t ∈ Na+1,

q(t) =
1

Γ(1− ν)

t∑
u=a+1

(t− ρ(u))−ν
1

u3

=
1

Γ(1− ν)

t∑
u=a+1

Γ(t− u+ 1− ν)

Γ(t− u+ 1)

1

u3
.

Since 1− ν > 0, t− u + 1− ν > 0, and t− u + 1 > 0 for t ∈ Na + 2, u ≤ t, we can

conclude that q(t) ≥ 0 for t ∈ Na + 2, so assumption (1) from Theorem 3.2.4 holds.

To demonstrate that assumptions (2) and (3) hold, consider

P (s− 1, a) =
s−1∑

u=a+1

1

p(u)
= s− a− 2

and hence

∞∑
s=a+1

P (s− 1, a)

[
s∑

τ=a+1

(s− ρ(τ))ν−2

Γ(ν − 1)
q(τ)

]
=

∞∑
s=a+1

(s− a− 2)∇1−ν
a q(s)

=
∞∑

s=a+1

(s− a− 2)∇1−ν
a

(
∇ν−1
a

1

s3

)

=
∞∑

s=a+1

s− a− 2

s3

because of the Composition Rule 1.3.6. This series converges, and so assumption (2)

holds. Assumption (3) will also hold as f(t) is a scalar multiple of q(t).

Finally, to demonstrate that assumption (4) holds, consider the limit as t → ∞

of the ν-th nabla difference based at a of q(t).
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lim
t→∞
∇−νa q(t) = lim

t→∞
∇−νa ∇ν−1

a

1

t3

= lim
t→∞
∇−1 1

t3

= lim
t→∞

t∑
s=a+1

1

s3

=
∞∑

s=a+1

1

s3
<∞.

Likewise, lim
t→∞
∇−νa f(t) < ∞ as f(t) is a scalar multiple of q(t). Notice that for this

q(t), f(t) pair and some y ∈ ζb,

lim
s→∞
∇−νb (q(s)y(ρ(s))− f(s)) = lim

s→∞
∇−νb

(
∇ν−1
a

1

t3

)
(y(ρ(s))− L) = 0

as

lim
s→∞

(
∇ν−1
a

1

t3

)
<∞

and

lim
s→∞

(y(ρ(s))− L) = 0.

Because of this, in this example λ(t, y(t)) = 0, and since all of the assumptions are

met, we conclude that for some b ∈ Na, the self-adjoint fractional difference equation

∇ν
b (∇y(t)) +

(
∇ν−1
a

1

t3

)
y(ρ(t)) = ∇ν−1

a

L

t3

has a solution y that tends to L as t increases to ∞.
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Remark 3.2.6. We remark that Example 3.2.5 demonstrates that Theorem 3.2.4

truly does extend the results of Theorem 3.2.2, as

∞∑
s=a+1

1

p(s)

s∑
τ=a+1

(s− ρ(τ))ν−1

Γ(ν)
q(τ) =

∞∑
s=a+1

∇−νa ∇ν−1
a q(s) =

∞∑
s=a+1

s∑
τ=a+1

1

s3

does not converge.

3.3 Equations with Generalized Forcing Terms

In this section we will generalize the forcing term to permit F (t, x), not necessarily

linear in x, that satisfy a uniform Lipschitz condition with respect to x.

In the following lemma, we establish the appropriate fixed point equation, a solu-

tion of which will also be a solution of the forced fractional difference equation.

Lemma 3.3.1. Let p : Na+1 → (0,∞) and F : Na+1 × R → [0,∞). Define ζ to be

the space of all positive functions, ζ = {x : Na → [0,∞)}. Suppose that for all the

functions x ∈ ζ, the series

∞∑
τ=a+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(τ))ν−1

Γ(ν)
F (s, x(s))

]

converges. Then the forced fractional self-adjoint difference equation

∇ν
a(p∇x)(t) + F (t, x(t)) = 0, t ∈ Na+1 (3.3.1)

has a solution x ∈ ζ with lim
t→∞

x(t) = L for some L ≥ 0, if and only if the summation

equation

x(t) = L+
∞∑

τ=t+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)
F (s, x(s))

]
(3.3.2)
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has a solution x(t) on Na.

Proof. Suppose the fractional difference equation (3.3.1) has a solution x ∈ ζ that

satisfies lim
t→∞

x(t) = L. Let y(t) = (p∇x)(t). Then y(t) solves the fractional initial

value problem 
∇ν
ay(t) = −F (t, x(t)), t ∈ Na+2

y(a+ 1) = p(a+ 1)∇x(a+ 1).

From Corollary 1.4.3, y(t) has the form

y(t) = −∇ν
aF (t, x(t)) + [p(a+ 1)∇x(a+ 1) + F (a+ 1, x(a+ 1))]

(t− a)ν−1

Γ(ν)
,

and since

∇ν
a(p∇x)(a+ 1) =

1

Γ(−ν)

a+1∑
s=a+1

(a+ 1− ρ(s))−ν−1(p∇x)(s) = (p∇x)(a+ 1),

we have

y(t) = −∇ν
aF (t, x(t)) + [∇ν

a(p∇x)(a+ 1) + F (a+ 1, x(a+ 1))]
(t− a)ν−1

Γ(ν)

= −∇ν
aF (t, x(t)).

Multiplying by p(t) and summing from τ = t+ 1 to ∞ gives that

∇x(t) =
−1

p(t)

t∑
s=a+1

(t− ρ(s))ν−1

Γ(ν)
F (s, x(s))

∞∑
τ=t+1

∇x(t) = −
∞∑

τ=t+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)
F (s, x(s))

]

lim
τ→∞

x(τ)− x(t) = −
∞∑

τ=t+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)
F (s, x(s))

]
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It follows that

x(t) = L+
∞∑

τ=t+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)
F (s, x(s))

]
.

So x(t) is also a solution of the summation equation.

Conversely, if x(t) is a solution of the summation equation on Na, then

x(t) = L+
∞∑

τ=t+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)
F (s, x(s))

]
.

Take the nabla difference with respect to t of both sides, multiply by p(t), and then

take the ν-th difference based at a of both sides to obtain

∇x(t) =
−1

p(t)

t∑
s=a+1

(t− ρ(s))ν−1

Γ(ν)
F (s, x(s))

(p∇x)(t) = −∇−νa F (t, x(t))

∇ν
a(p∇x)(t) = −∇ν

a∇−νa F (t, x(t)).

By the composition rule given in Theorem 1.3.6, we have that

∇ν
a(p∇x)(t) = −F (t, x(t))∇ν

a(p∇x)(t) + F (t, x(t)) = 0.

Hence x(t) is also a solution of the difference equation (3.3.1). Since p(t) > 0 and

F (t, x(t)) ≥ 0, x(t) ≥ L ≥ 0 for all t, so x ∈ ζ.

Furthermore, since

∞∑
τ=t+1

1

p(τ)

τ∑
s=a+1

(τ − ρ(s))ν−1

Γ(ν)
F (s, x(s))
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converges, it follows that lim
t→∞

x(t) = L.

Theorem 3.3.2. Assume F : Na+1 × [0,∞) → [0,∞) satisfies a uniform Lipschitz

condition with respect to its second variable in Na+1 × [0,∞), i.e. there is a constant

K > 0 such that if u, v ∈ R and t ∈ Na,

|F (t, u)− F (t, v)| ≤ K|u− v|,

and assume p : Na+1 → (0,∞). Let (ζ, ‖ · ‖) be the complete metric space of positive

valued functions ζ = {x : Na → [0,∞)} together with the supremum norm. If

(H1) the series
∞∑

τ=a+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)
F (s, x(s))

]
converges for every x ∈ ζ,

and

(H2) β :=
K

Γ(ν + 1)

∞∑
τ=a+1

(τ − a)ν

p(τ)
< 1

Then there exists a unique positive solution of the fractional difference equa-

tion (3.3.1) with lim
t→∞

x(t) = L for any L ≥ 0.

Proof. Let (ζ, d) be the complete metric space of positive valued functions together

with the supremum norm, and let L ≥ 0 be fixed but arbitrary. Consider the mapping

T defined by

Tx(t) = L+
∞∑

τ=t+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)
F (s, x(s))

]
. (3.3.3)

We will use the Contraction Mapping Theorem to show that T has a unique fixed

point. First, we show that T : ζ → ζ. Since p(t) > 0 and F (s, x(s)) ≥ 0, we know

that Tx(t) ≥ L ≥ 0 for all t, so Tx ∈ ζ.
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Next, we show that T is a contraction mapping. Let x, y ∈ ζ and t ∈ Na be fixed

but arbitrary. Then

|Tx(t)− Ty(t)| =
∞∑

τ=t+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)
|F (s, x(s))− F (s, y(s))|

]

≤ K
∞∑

τ=t+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)
|x(s)− y(s)|

]

≤ K‖x− y‖
∞∑

τ=t+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)

]

= K‖x− y‖
∞∑

τ=t+1

(τ − a)ν

Γ(ν + 1)p(τ)

=
K

Γ(ν + 1)

(
∞∑

τ=t+1

(τ − a)ν

p(τ)

)
‖x− y‖ = β‖x− y‖.

So

‖Tx− Ty‖ ≤ β‖x− y‖

with β < 1, and hence T is a contraction mapping. Thus T has a unique fixed point

x ∈ ζ. Because the series

∞∑
τ=t+1

1

p(τ)

[
∞∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)
F (s, x(s))

]

converges, we have that lim
t→∞

x(t) = L. A fixed point of T is a solution of the fractional

summation equation (3.3.2), and hence by Lemma 3.3.1, there is a unique solution of

the fractional difference equation (3.3.1) that tends to L as t tends to infinity.

Example 3.3.3. For some a > 0, let p(t) = (t− a)νt(ln t)2.

As we saw in Example 3.2.3, p(t) > 0 for t ∈ Na+1 and
∞∑

τ=a+1

(τ − a)ν

p(τ)
<∞.
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Choose K so that

0 < K <
Γ(ν + 1)∑∞
τ=a+1

(τ−a)ν

p(τ)

,

and let F (t, x) = K
1+x

.

We must first show that F (t, x) satisfies a uniform Lipschitz condition with respect

to its second variable. Note that x ≥ 0 so that F (t, x) ≥ 0, and for x, y ≥ 0,

|F (t, x)− F (t, y)| =
∣∣∣∣ K

x+ 1
− K

y + 1

∣∣∣∣
= K

∣∣∣∣y + 1− (x+ 1)

(x+ 1)(y + 1)

∣∣∣∣
= K

|x− y|
(x+ 1)(y + 1)

≤ K|x− y|.

We must also show that (H1) and (H2) hold. These conditions will follow from

our choice of K, because

∞∑
τ=a+1

1

p(τ)

τ∑
s=a+1

(τ − ρ(s))ν−1

Γ(ν)
F (s, x(s)) ≤

∞∑
τ=a+1

1

p(τ)

τ∑
s=a+1

(τ − ρ(s))ν−1

Γ(ν)
K

≤ K

Γ(ν + 1)

∞∑
τ=a+1

(τ − a)ν−1

p(τ)

< 1 <∞.

Hence for any L ≥ 0, there exists a unique positive solution of

∇ν
t0

((t− a)νt(ln t)2∇y(t)) +
K

1 + y(t)
= 0, t ∈ Nt0+1, (3.3.4)

with lim
t→∞

y(t) = L.
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Remark 3.3.4. In Example 3.3.4 we chose a small p(t), so that

∞∑
τ=a+1

(τ − a)ν−1

p(τ)

barely converges. This meant we also needed a small enough F (t, x) so that the condi-

tion (H1) would hold. We could choose a larger function, such as F (t, x) = K (with

the same choice of K as in Example 3.3.4) but choosing the largest possible F (t, x) is

limited by our ability to compute ∇−νa F (s, x).

We can conversely choose a large (yet still uniformly Lipschitz continuous in its

second argument in Na+1× [0,∞)) F (t, x), but we will need to pair it with a similarly

large p(t) so that conditions (H1) and (H2) hold.

3.4 Equations with Generalized Forcing Terms in

a Modified Complete Metric Space

In Theorem 3.3.2, the condition (H1), that the series

∞∑
τ=a+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)
F (s, x(s))

]

converges for every x ∈ ζ, is quite strong. We can make this condition less strong by

making modifications to the complete metric space (ζ, ‖ · ‖). We can choose a smaller

set of functions ζ, such as ζL :=
{
y : Na → R

∣∣∣ lim
t→∞

y(t) = L
}

, so that the burden of

convergence can be partially borne by the choice of x(t). However, this will make

the uniqueness conclusion of the theorem less impactful. We also can replace the

supremum norm with a weighted norm to suit the choice of the pair p, F (t, x).
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Lemma 3.4.1. Assume M > 0 and

ζM := {x : Na → [M,∞) : ∇x(t) ≤ 0} .

Assume p : Na → (0,∞) satisfies
∞∑
τ=a

1

p(t)
<∞ and define d : ζM × ζM → [0,∞) by

d(x, y) := sup
t∈Na

|x(t)− y(t)|
w(t)

,

where

w(t) := e−[
∑t
τ=a

1
p(τ) ].

Note that 0 < L := lim
t→∞

w(t) ≤ 1. Then the pair (ζM , d) is a complete metric space.

Proof. To prove this lemma, we first show that d is a metric. It is clearly non-negative,

and since 0 < w(t) < 1 for all t ∈ Na, d(x, y) = 0 is only satisfied when x(t) = y(t)

for all t ∈ Na. It is symmetric, and satisfies the triangle inequality, as follows, for

x, y, z ∈ ζM :

d(x, z) = sup
t∈Na

|x(t)− y(t) + y(t)− z(t)|
w(t)

≤ sup
t∈Na

(
|x(t)− y(t)|

w(t)
+
|y(t)− z(t)|

w(t)

)
≤ sup

t∈Na

|x(t)− y(t)|
w(t)

+ sup
t∈Na

|y(t)− z(t)|
w(t)

= d(x, y) + d(y, z).

Hence d is a metric.

To see that (ζM , d) is complete, consider a Cauchy sequence {xn} in ζM . For

each t0 ∈ Na, {xn(t0)} is a Cauchy sequence in R, and therefore converges. Define

its limit to be x0(t0) = lim
n→∞

xn(t0), and since t0 was arbitrary, we can construct the

function x0 : Na → R in this fashion. Because each of the xn satisfies xn(t) ≥M and
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∇xn(t) ≤ 0, so does x0(t), and hence x0 ∈ ζM .

Theorem 3.4.2. Assume F : Na+1 × [0,∞) → [0,∞) satisfies a uniform Lipschitz

condition with respect to its second variable in Na+1 × [0,∞), i.e. there is a constant

K > 0 such that if u, v ∈ R and t ∈ Na,

|F (t, u)− F (t, v)| ≤ K|u− v|,

and assume p : Na+1 → (0,∞). Let (ζM , d) be the complete metric space as defined

in Lemma 3.4.1. If

(H1) the series
∞∑

τ=a+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)
F (s, x(s))

]

converges for every x in ζM , and

(H2) α :=
K

L · Γ(ν + 1)

∞∑
τ=a+1

(τ − a)ν

p(τ)
< 1

Then there exists a unique positive solution of the fractional difference equation

∇ν
a(p∇x)(t) + F (t, x(t)) = 0

with lim
t→∞

x(t) = M .

Proof. Consider the mapping T on ζM defined by

Tx(t) = M +
∞∑

τ=t+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)
F (s, x(s))

]
. (3.4.1)

We will use the Contraction Mapping Theorem to show that T has a unique fixed

point. First, we show that T : ζM → ζM . Since p(t) > 0 and F (s, x(s)) ≥ 0, we know
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that Tx(t) ≥M ≥ 0 for all t. Also note that

∇Tx(t) = − 1

p(t)

[
t∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)
F (s, x(s))

]
≤ 0.

Hence Tx ∈ ζM .

Next, we show that T is a contraction mapping. Let x, y ∈ ζM and t ∈ Na be

fixed but arbitrary. Then

|Tx(t)− Ty(t)|
w(t)

=
1

w(t)

∞∑
τ=t+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)
|F (s, x(s))− F (s, y(s))|

]

≤ K

w(t)

∞∑
τ=t+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)
|x(s)− y(s)|

]

≤ K

w(t)

∞∑
τ=t+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)
w(s)

]
d(x, y)

≤ K

L

∞∑
τ=t+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)

]
d(x, y)

=
K

L

[
∞∑

τ=t+1

(τ − a)ν

Γ(ν + 1)p(τ)

]
d(x, y) = αd(x, y).

So d(Tx, Ty) ≤ αd(x, y) with α < 1, and hence T is a contraction mapping. Thus T

has a unique fixed point x ∈ ζM . Because the series

∞∑
τ=t+1

1

p(τ)

[
∞∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)
F (s, x(s))

]

converges, we have that lim
t→∞

x(t) = M . A fixed point of T is a solution of the

summation equation

x(t) = M +
∞∑

τ=t+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)
F (s, x(s))

]
,
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and hence by Lemma 3.3.1, there is a unique solution of the fractional difference

equation

∇ν
a(p∇x)(t) + F (t, x(t)) = 0

that tends to M as t tends to infinity.

Next we give an example of the above theorem.

Example 3.4.3. Let

M :=
∞∑

τ=a+2

Γ(ν + 1)

3 · 2(τ−a+3)(τ − a)ν
.

This series converges because
Γ(ν + 1)

(τ − a)ν
< 1 for τ ≥ a + 2. Let L be the solution of

the equation

e−( 1
2

+ML) = L.

It follows from the form of the equation that 0 < L < 1. Now let

p(t) =


4 t = a, a+ 1

3·2(t−a+3)(t−a)ν

Γ(ν+1)·L t ∈ Na+2

and F (t, x) = 3x
t+2

, where x ≥ 0 and t ∈ Na+1. First notice that F (t, x) is uniformly

Lipschitz continuous in its second variable in Na+1 × [0,∞) with Lipschitz constant

K = 3. Also notice that

∞∑
τ=a

1

p(τ)
=

1

2
+

∞∑
τ=a+2

1

p(τ)

=
1

2
+ L ·

∞∑
τ=a+2

Γ(ν + 1)

3 · 2(τ−a+3)(τ − a)ν

=
1

2
+ L ·M <∞
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and so

lim
t→∞

w(t) = e−[
∑∞
τ=a

1
p(τ) ]

= e−( 1
2

+ML) = L,

as desired.

We claim that the hypotheses (H1) and (H2) of Theorem 3.4.2 hold. Let x ∈ ζM

be arbitrary but fixed. Then, using the fact that x is decreasing and therefore for

t ≥ a+ 1, we have that x(a+ 1) ≥ x(t) for t ≥ a+ 1,

∞∑
τ=a+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)
F (s, x(s))

]

=
∞∑

τ=a+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)

3|x(s)|
s+ 2

]

≤ 3x(a+ 1)
∞∑

τ=a+1

1

p(τ)

[
τ∑

s=a+1

(τ − ρ(s))ν−1

Γ(ν)

]

= 3x(a+ 1)
∞∑

τ=a+1

(τ − a)ν

Γ(ν + 1)p(τ)

= 3x(a+ 1)
∞∑

τ=a+1

(τ − a)νΓ(ν + 1)L

Γ(ν + 1)3 · 2(τ−a+3)(τ − a)ν

= x(a+ 1) · L
∞∑

τ=a+1

1

2(τ−a+3)

=
L

4
x(a+ 1) <∞.

Hence (H1) holds.
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To see that (H2) holds, consider

α =
K

L · Γ(ν + 1)

∞∑
τ=a+1

(τ − a)ν

p(τ)

=
K

L · Γ(ν + 1)

∞∑
τ=a+1

(τ − a)νΓ(ν + 1)L

3 · 2(τ−a+3)(τ − a)ν

=
K

3

∞∑
τ=a+1

1

2(τ−a+3)

=
K

12
=

1

4
< 1.

Thus the second hypothesis (H2) is also satisfied. Hence, Theorem 3.4.2 implies that

with F, p as defined above, the self-adjoint fractional difference equation

∇ν
a(p∇x)(t) + F (t, x(t)) = 0

has a unique positive solution with lim
t→∞

x(t) = M .
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[16] Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear

fractional differential equation, J. Math. Anal. Appl. 311 (2005), 495–505.

[17] N. R. O. Bastos, R. A. C. Ferreira, D. F. M. Torres, Fractional derivatives and

integrals on time scales via the inverse generalized Laplace transform, Int. J.

Math. Comput. 11 (2011), 1-9.



81

[18] N. R. O. Bastos, R. A. C. Ferreira, D. F. M. Torres, Necessary optimality con-

ditions for fractional difference problems of the calculus of variations, Discrete

Cont. Dyn. Syst. 29 (2011), 417-437.

[19] N. Bastos and D. Torres, Combined delta-nabla sum operator in discrete frac-

tional caclulus, Commun. Frac. Calc.(2010) 41–47.

[20] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahab, Existence results for

fractional order functional differential equations with infinite delay, J. Math.

Anal. Appl. 338 (2008), 1340-1350.

[21] M. Benchohra, S. Hamani, and S. K. Ntouyas, Boundary value problems for

differential equations with fractional order and nonlocal conditions, Nonlinear

Anal. 71 (2009), 2391-2396.

[22] M. Bohner and A. C. Peterson, Dynamic Equations on Time Scales, Birkhäuser,
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