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Adviser: Mark E. Walker

We investigate two algebraic properties of Ext-modules over a complete intersection R =

Q/(f1, . . . , fc) of codimension c. Given an R-module M , Ext∗R(M,k) can be viewed as a

graded module over a polynomial ring in c variables with an action given by the Eisenbud

operators. We provide an upper bound on the degrees of the generators of this graded module

in terms of the regularities of two associated coherent sheaves. In the codimension two case,

our bound recovers a bound of Avramov and Buchweitz in terms of the Betti numbers of M .

We also provide a description of the differential graded (DG) R-module R Homdg
R (M,N) in

terms of well-known DG Q-modules. When M = N , this has the structure of a differential

graded algebra (DGA) over Q. In the case where M = Q/I with I generated by a Q-regular

sequence, we provide explicit generators and relations for the DGA R EnddgR (M) using the

theory of Clifford algebras. This description generalizes a result of Dyckerhoff, who obtains

a similar result in a special case. In the case where M = k, our result implies a classical

result of Sjödin on the algebraic structure of Ext∗R(k, k) over complete intersections.
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Chapter 1

Introduction

This dissertation concerns algebraic properties of the cohomology modules Ext∗R(M,N) over

a complete intersection R. There are two primary foci. Viewing Ext∗R(M,k) as a cohomolog-

ically graded k[T1, . . . , Tc]-module via the Eisenbud operators, we produce an upper bound

on the degrees of the generators which generalizes a result of Avramov and Buchweitz [2]

in the codimension two case. We also give explicit descriptions of the differential graded R-

module R Homdg
R (M,N) and the differential graded R-algebra R EnddgR (M), with the latter

recovering a result of Sjödin [18] in the case where M = k.

Over any commutative ring the modules Ext∗R(M,N) provide a measure of how far the left

exact functor HomR(−, N) is from being exact. They are a fundamental tool in homological

algebra – one needs only to page through any text on the subject to see the myriad appli-

cations in which they are used. For example, they provide a characterization of projective

and injective modules as well as a classification of extensions of modules.

There are various ways to define Ext∗R(M,N). One approach is to consider a projective

resolution P of M , apply the functor HomR(−, N) to P , and take cohomology; namely,

Ext∗R(M,N) := H∗(HomR(P,N)). If Q is a projective resolution of N , then one can also

define Ext∗R(M,N) = H∗(HomR(P,Q)). This latter approach is the one we will usually take.
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We work almost exclusively over complete intersection rings. Due to their importance

throughout this thesis, we describe them here. A commutative Noetherian ring Q is a local

ring if it has a unique maximal ideal. We usually denote this by (Q,m, k), where m is the

maximal ideal of Q and k = Q/m is the residue field of Q. A Noetherian commutative ring

Q is a regular local ring if the minimal number of generators of m equals the Krull dimension

of Q. A Q-regular sequence is a sequence f1, . . . , fc ∈ Q such that (f1, . . . , fc) 6= Q and fj is

a non-zero divisor on Q/(f1, . . . , fj−1) for 1 ≤ j ≤ c. A ring R is a complete intersection of

codimension c if it has the form R = Q/(f1, . . . , fc) for some regular local ring (Q,m, k) and

some Q-regular sequence f1, . . . , fc. A simple example of a complete intersection is the ring

R = k[[x1, . . . , xn]]/(xa11 , . . . , x
an
n ), where k[[x1, . . . , xn]] is the regular local ring consisting of

formal power series in n variables over a field k and a1, . . . , an are positive integers.

In chapter 2 we view Ext∗R(M,k) as a graded module over the polynomial ring k[T1, . . . , Tc]

with |Tj| = 2 and with the action induced by the Eisenbud operators. It is natural to ask if

there is an upper bound on the degrees of the generators of this graded module. For complete

intersections of codimension c = 2, Avramov and Buchweitz [2] answered this question in

the affirmative and gave a bound in terms of the Betti numbers of M . We produce an upper

bound which works for any codimension in terms of the Mumford-Castelnuovo regularities of

two coherent sheaves on Pc−1
k associated to the module M . Section 2.1 presents the necessary

background information for stating the bound. Section 2.2 states and proves the bound, the

main result being Theorem 2.11. Section 2.3 shows that in the codimension c = 2 case, the

regularity bound recovers the bound of Avramov and Buchweitz.

In chapter 3, we consider a result of Sjödin (Theorem 3.1) in [18] which provides gener-

ators and relations for the algebra Ext∗R(k, k) over a complete intersection. We extend this

result to the level of differential graded algebras; namely, we find descriptions of the dif-

ferential graded R-module R Homdg
R (M,N) and differential graded R-algebra R EnddgR (M).

Section 3.1 provides the relevant background information of differential graded modules and
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algebras and sets notation which will be used throughout the chapter. Section 3.2 clarifies our

definitions of R Homdg
R (M,N) and R EnddgR (M) and shows that they are well-defined up to

appropriate equivalences. Section 3.3 gives our most general descriptions of R Homdg
R (M,N)

and R EnddgR (M) for any finitely generated R-modules M and N . The main results are The-

orem 3.19 and Corollary 3.20. In order to give a more explicit description of R EnddgR (M) for

M = Q/I with I generated by a Q-regular sequence, we utilize the theory of Clifford alge-

bras. The background on this topic is presented in section 3.4, and this is used in section 3.5

to describe R EnddgR (M) as a Q-algebra in terms of generators and relations and to describe

a differential that makes it a DG module over the Koszul algebra of R. The main results are

Theorems 3.29 and 3.32. Section 3.6 provides examples and applications of these descrip-

tions in a few special cases. In particular, we recover a (Z/2Z)-graded differential graded

algebra used by Dyckerhoff [11] over hypersurfaces, verify that R EnddgR (M) is formal in the

quadratic hypersurface case, and describe the Hochschild cohomology of the localization of

a polynomial ring with respect to the maximal ideal generated by the variables.

1.1 Conventions

We make a few remarks about notation and conventions that we will follow.

When used to describe rings or modules, the word “graded” will always mean Z-graded.

On occasion we will consider (Z/2Z)-graded objects as well, and this will be stated explicitly.

Unless otherwise stated, all graded modules and complexes will be graded cohomologically

using superscripts. For example, L =
⊕
i∈Z

Li. When the use of homological indexing with

subscripts is warranted, we will follow the standard convention Li = L−i for i ∈ Z. If x ∈ Li,

then we denote the degree of the homogeneous element x by |x| = i. If L is a complex, then

L[j] is the complex with L[j]i = Li+j and differential ∂iL[j] = (−1)|j|∂i+jL .
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Chapter 2

Bounding the Degrees of Generators

of Ext∗R(M,k) over Complete

Intersections

We consider the following theorem of Avramov and Buchweitz from [2]:

Theorem 2.1. Let (Q,m, k) be a regular local ring, f1, f2 a Q-regular sequence, and R =

Q/(f1, f2) a complete intersection of codimension 2. Let M be a finitely generated R-module

and set g := depth(R) − depthR(M). Let k[T1, T2] with |Ti| = 2 act on Ext∗R(M,k) via the

Eisenbud operators. Then the graded k[T1, T2]-module Ext∗R(M,k) is generated in degrees less

than or equal to

max{2βg, 2βg+1 + 1}+ g + 1,

where βi denotes the ith Betti number of M over R.

This proof does not generalize to higher codimensions as it utilizes a decomposition

result for graded modules over exterior algebras in two variables. Our goal in this chapter

is to find an upper bound for the degrees of the generators of Ext∗R(M,k) over a complete
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intersection R = Q/(f1, . . . , fc) of codimension c in terms of the regularities of two coherent

sheaves on Pc−1
k associated to M . In the codimension c = 2 case, our bound recovers the

Avramov-Buchweitz bound in Theorem 2.1.

2.1 Twisted Periodic Complexes and Regularity

Throughout this chapter, let R be a complete intersection of codimension c; namely, R =

Q/(f1, . . . , fc) with (Q,m, k) a regular local ring and f1, . . . , fc a Q-regular sequence. Let M

and N be finitely generated R-modules. We will consider Ext∗R(M,N) :=
⊕
i∈Z

ExtiR(M,N)

as a graded module over R[T1, . . . , Tc] with an action induced by the Eisenbud operators.

These operators are described in [12], but we briefly recall them here.

Let (F, ∂) be a complex of free R-modules. Choose a sequence, not necessarily a complex,

of free Q-modules (F̃ , ∂̃) such that F ∼= F̃ ⊗QR and ∂ = ∂̃⊗QR. Note that such a sequence

always exists: viewing ∂j as a matrix with entries in R, choose ∂̃j by lifting each entry of this

matrix to an element of Q. Since F ∼= F̃ ⊗Q R, there exists maps t̃nj : F̃ n → F̃ n+2 such that

∂̃2
n =

c∑
j=1

t̃nj fj. Define tnj := t̃nj ⊗Q R : F n → F n+2, the Eisenbud operators on F . Eisenbud

proves these maps have the following properties:

(1) The collection of maps tj := {tnj } is a morphism of complexes tj : F → F [2].

(2) The tj’s are independent of choice of F̃ and t̃nj , up to homotopy.

(3) The tj’s are natural up to homotopy, i.e., if ρ : F → F ′ is a morphism of complexes of

free R-modules and {tj} and {t′j} are Eisenbud operators for F and F ′, respectively,

then ρtj ∼ t′jρ.

(4) The tj’s commute up to homotopy.
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By considering a free resolution F of M over R, we get induced maps

Tj := H(HomR(tj, N)) : ExtiR(M,N)→ Exti+2
R (M,N)

that make Ext∗R(M,N) a graded module over the graded ring R[T1, . . . , Tc] with |Tj| = 2.

We call this the action induced by the Eisenbud operators. Whenever we discuss Ext∗R(M,k)

as a graded module, it will be via this action.

Gulliksen [13] described a graded R[T1, . . . , Tc]-module structure on Ext∗R(M,N), which

is shown to agree with the Eisenbud operators up to sign in [3]. With this action Gulliksen

was able to prove the following key property of Ext∗R(M,N).

Theorem 2.2 (Gulliksen). Let R be a complete intersection of codimension c and M,N be

finitely generated R-modules. Then Ext∗R(M,N) is a finitely generated graded R[T1, . . . , Tc]-

module with |Tj| = 2 and action induced by the Eisenbud operators.

In order to find an upper bound for the degrees of generators of Ext∗R(M,k), we will

consider a related object, the stable Ext-modules, which we describe now. The following

definitions appear in [10].

Definition 2.3. Given a complete intersectionR and anyR-moduleM , a complete resolution

of M is a morphism of complexes Y → P with Yn projective over R for all n and P an R-

projective resolution of M , satisfying

(1) H i(Y ) = 0 for all i ∈ Z, i.e., Y is acyclic,

(2) H i(HomR(Y,W )) = 0 for all projective R-modules W and all i ∈ Z,

(3) Yn = Pn for n� 0.
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If Y is a complete resolution of M , then define the stable Ext-modules by

Êxt
i

R(M,N) := H i(HomR(Y,N)).

For the remainder of the chapter we restrict to the case where N = k, so that Ext∗R(M,k)

is a finitely generated graded k[T1, . . . , Tc]-module with the action induced by the Eisenbud

operators.

From condition (3) in the definition of a complete resolution, we see that there is a natural

map Ext∗R(M,k) → Êxt
∗
R(M,k) that is an isomorphism in sufficiently large cohomological

degrees. If M is a maximal Cohen-Macaulay (MCM) R-module, then we can say a bit more

about this natural map. (Recall that an R-module M is MCM if depth M = dim R. See [16]

and [5] for more information.)

To do so, we will need a few well known facts about MCM modules over complete

intersections; see [15, Theorem 11.5] for proofs. (In fact, these properties hold for any

Gorenstein ring, though we will not need this generality.) If M is an MCM R-module, then

so is its dual M∗ = HomR(M,R). Also, M∗∗ ∼= M and ExtiR(M,R) = 0 for all i > 0.

Let P be a free resolution of an MCM R-module M and let F be a free resolution of M∗.

Taking the dual of F → M∗ and setting Pi := F−i−1 for i ≤ −1, the above facts applied to

the MCM module M∗ give an exact sequence M∗∗ ∼= M → P≤−1. We splice together the

sequences P → M and M → P≤−1 using the composition P0 → M → P−1 to get an acyclic

complex

Y = · · · → P2 → P1 → P0 → P−1 → P−2 → · · ·

This Y is a complete resolution of M with Yn = Pn for all n ≥ 1. Thus, when M is MCM,

the natural map Ext∗R(M,k)→ Êxt
∗
R(M,k) is an isomorphism in all positive degrees and is

surjective in degree 0 with kernel consisting of maps that factor through free R-modules.

The upshot of this natural map is that in order to find an upper bound on the degrees of
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generators of Ext∗R(M,k), it will suffice to find an upper bound of the degrees of generators

of Êxt
∗
R(M,k). To do this, we use theory developed by Burke and Walker in [8].

Let Pc−1
k = Proj k[T1, . . . , Tc]. If F is a coherent sheaf on Pc−1

k , set F(1) := F ⊗OPc−1
k

(1).

Definition 2.4. A twisted periodic complex of locally free coherent sheaves E over Pc−1
k

consists of a pair of locally free coherent sheaves E−1, E0 on Pc−1
k along with morphisms

e−1 : E−1 → E0 and e0 : E0 → E−1(1) such that the compositions e0 ◦ e−1 and e−1(1) ◦ e0 are

both 0. Equivalently, E = (E , γ) is a pair consisting of a chain complex

E = (· · · → E−2 → E−1 → E0 → E1 → · · · )

of locally free coherent sheaves on Pc−1
k along with a specified isomorphism γ : E(1) ∼= E [2],

using the convention that E [2]i = E i+2.

Let E be a twisted periodic complex and let {U1, . . . , Uc} denote the standard affine

cover of Pc−1
k . Let C•• denote the bicomplex formed by applying the Čech construction to E

degreewise:

Γ(U1 ∩ · · · ∩ Uc,E)

...

⊕
1≤i<j≤c

Γ(Ui ∩ Uj,E)

c⊕
i=1

Γ(Ui,E)
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We define the hypercohomology of E by

Hi(Pc−1
k ,E) := H i(Tot(C••)).

Lemma 2.5. If E is a twisted periodic complex, then H∗(Pc−1
k ,E) :=

⊕
i∈Z

Hi(Pc−1
k ,E) is a

graded k[T1, . . . , Tc]-module with |Tj| = 2.

Proof. In general, given a Noetherian scheme X and a coherent sheaf F on X, one has

H0(X,F) = HomOX
(OX ,F). In our context, any ϕ ∈ H0(Pc−1

k ,O(1)) = kT1 ⊕ · · · ⊕ kTc

gives a map ϕ : OPc−1
k
→ OPc−1

k
(1), and hence a map of complexes E → E(1) ∼= E[2]. In

particular, each pair of variables Tj and Tl give maps Tj, Tl : E→ E[2] causing the following

square to commute:

E

E[2]

E[2]

E[4]

Tj

Tl

Tl

Tj

These induce maps (Tj)∗, (Tl)∗ : Hi(Pc−1
k ,E)→ Hi(Pc−1

k ,E[2]) ∼= Hi+2(Pc−1
k ,E) in hypercoho-

mology causing the following square to commute:

Hi(Pc−1
k ,E)

Hi+2(Pc−1
k ,E)

Hi+2(Pc−1
k ,E)

Hi+4(Pc−1
k ,E)

(Tj)∗

(Tl)∗

(Tl)∗

(Tj)∗

Thus, H∗(Pc−1
k ,E) is a graded k[T1, . . . , Tc]-module.
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We need one last bit of notation. We define even Ext and odd Ext to be ExtevR (M,k) :=⊕
i∈Z

Ext2i
R(M,k) and ExtoddR (M,k) :=

⊕
i∈Z

Ext2i+1
R (M,k), respectively. These are graded

k[T1, . . . , Tc]-modules with |Tj| = 1 via the action induced by the Eisenbud operators. Note

that we are considering these as graded modules with degree i components Ext2i
R(M,k) and

Ext2i+1
R (M,k), respectively. Gulliksen [13] showed that ExtevR (M,k) and ExtoddR (M,k) are

both finitely generated.

The following theorem of Burke and Walker shows that to study Êxt
∗
R(M,k) it is enough

to consider the hypercohomology of a particular twisted periodic complex associated to the

R-module M , which they construct in [8].

Theorem 2.6 (Burke-Walker). Let R be a complete intersection of codimension c and let M

be an R-module. There exists a twisted periodic complex E = E(M,k) of locally free coherent

sheaves on Pc−1
k with the following properties:

(1) For all i, there is an isomorphism Êxt
i

R(M,k) ∼= Hi(Pc−1
k ,E).

(2) The isomorphisms in (1) give an isomorphism of graded k[T1, . . . , Tc]-modules, with

|Tj| = 2,

Êxt
∗
R(M,k) ∼= H∗(Pc−1

k ,E),

where the action on H∗(Pc−1
k ,E) given by Tj in Lemma 2.5 coincides with the action of

the Eisenbud operators on Êxt
∗
R(M,k).

(3) We have H0(E) ∼= ˜ExtevR (M,k) and H1(E) ∼= ˜ExtoddR (M,k), where Hi(E) denotes the ith

cohomology of the underlying complex of E and (̃−) denotes the coherent sheaf on Pc−1
k

associated to the graded module over the standard graded polynomial ring.

For the remainder of this chapter, E will always denote the twisted periodic complex

which arises from the R-module M and residue field k via Theorem 2.6.
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We may now define the necessary invariant which we use to produce our desired upper

bound.

Definition 2.7. Let F be a coherent sheaf on Pc−1
k . Then F is r-regular if

H i(Pc−1
k ,F(r − i)) = 0

for all i > 0. The (Castelnuovo-Mumford) regularity of F is defined to be

Reg(F) := inf{r | H i(Pc−1
k ,F(r − i)) = 0 for all i > 0}.

Notice that Reg(F) = −∞ is possible. For example, if k is infinite and F is supported

on a finite set of points, then F ∼= F(1). Hence H i(Pc−1
k ,F(r− i)) ∼= H i(Pc−1

k ,F) = 0 for all

r ∈ Z and all i > 0, so Reg(F) = −∞.

We will need the following basic facts about r-regularity. Proofs can be found in [17].

Lemma 2.8. Let F be an r-regular coherent sheaf on Pc−1
k .

1. For i > 0, H i(Pc−1
k ,F(j)) = 0 for all j ≥ r − i.

2. If j ≥ r, then F(j) is generated by its global sections.

2.2 An Upper Bound in Codimension c

We want to find an upper bound for the degrees of generators of the graded k[T1, . . . , Tc]-

module Êxt
∗
R(M,k). For notational simplicity, we adopt the following notation. For any

(possibly non-finitely generated) graded k[T1, . . . , Tc]-module N , we define

α(N) := inf{q | N is generated by N≤q}.



12

Notice that α(N) = −∞ when N can be generated in arbitrarily negative degrees. For exam-

ple, suppose char(k) = 0 and consider the graded k[T1, . . . , Tc]-module N := k[X1, . . . , Xc]

with |Xi| = −2 and action given by partial differentiation: Ti · g(X1, . . . , Xc) :=
∂g

∂Xi

. Then

N is generated by N≤q for all q ∈ Z. Thus, α(N) = −∞.

This α invariant is well behaved with short exact sequences in the sense of the following

lemma.

Lemma 2.9. Let 0→ N ′ → N → N ′′ → 0 be a short exact sequence of graded k[T1, . . . , Tc]-

modules. Then α(N) ≤ max{α(N ′), α(N ′′)}.

Proof. Observe that N can be generated by the image of a generating set of N ′ and a lift

of a generating set of N ′′. If max{α(N ′), α(N ′′)} = −∞, then taking generating sets for N ′

and N ′′ of arbitrarily negative degree produces a generating set for N of arbitrarily negative

degree, so that α(N) = −∞ = max{α(N ′), α(N ′′)}. Otherwise, if max{α(N ′), α(N ′′)} ∈ Z,

then elements in the generating set for N will have degree at most max{α(N ′), α(N ′′)}.

Recall that H0(E) ∼= ˜ExtevR (M,k) and H1(E) ∼= ˜ExtoddR (M,k) by Theorem 2.6. For the

remainder of the chapter, set r0 := Reg(H0(E)) and r1 := Reg(H1(E)). These are the

invariants of M which will be used to form our desired bound. We need the following

technical lemma. Set H0 = H0(E) and H1 = H1(E).

Lemma 2.10. Set rev := max{2r0−2, 2r1} and rodd := max{2r0−1, 2r1−1}. Then we have⊕
i≥ rev

2

Êxt
2i

R(M,k) ∼=
⊕
i≥ rev

2

H0(Pc−1
k ,H0(i)) and

⊕
i≥ rodd−1

2

Êxt
2i+1

R (M,k) ∼=
⊕

i≥ rodd−1
2

H0(Pc−1
k ,H1(i))

as graded k[T1, . . . , Tc]-modules.

Proof. Let E be the twisted periodic complex associated to M via Theorem 2.6. Let

{U1, . . . , Uc} be the standard affine cover of Pc−1
k and consider the bicomplex
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Γ(U1 ∩ · · · ∩ Uc,E)

...

⊕
1≤i<j≤c

Γ(Ui ∩ Uj,E)

c⊕
i=1

Γ(Ui,E)

given by the Čech construction, where the lowest nonzero row is in cohomological degree 0.

Consider the spectral sequence in which horizontal cohomology is computed first. Consider

the edge map H2i(Pc−1
k ,E) → H0(Pc−1

k ,H0(i)) from this spectral sequence. When i ≥ rev

2
,

Lemma 2.8(1) shows that everything lying above H0(Pc−1
k ,H0(i)) in the spectral sequence

will be 0, so that the edge map is an isomorphism. Similarly, when i ≥ rodd−1
2

, the edge map

H2i+1(Pc−1
k ,E)→ H0(Pc−1

k ,H1(i)) is an isomorphism.

The isomorphism Êxt
∗
R(M,k) ∼= H∗(Pc−1

k ,E) from Theorem 2.6 completes the proof.

We now present our main result of the chapter.

Theorem 2.11. Let R = Q/(f1, . . . , fc) be a complete intersection of codimension c and let

M be a finitely generated R-module. Consider the graded k[T1, . . . , Tc]-module Êxt
∗
R(M,k)

with action given by the Eisenbud operators. Let E denote the twisted periodic complex

associated to M and k in Theorem 2.6 and set r0 = Reg(H0(E)) and r1 = Reg(H1(E)). Then

α
(

Êxt
∗
R(M,k)

)
≤ max{2r0, 2r1 + 1}.

Proof. Set H0 = H0(E) and H1 = H1(E).



14

First suppose that at least one of r0 or r1 is an integer. For any even q ≥ max{2r0−2, 2r1},

there is a short exact sequence of k[T1, . . . , Tc]-modules

0→
⊕
j≥ q

2

H0(Pc−1
k ,H0(j))→ Êxt

ev

R (M,k)→
⊕
i≤ q

2
−1

Êxt
2i

R(M,k)→ 0

by Lemma 2.10. Clearly α

⊕
i≤ q

2
−1

Êxt
2i

R(M,k)

 ≤ q

2
−1. Since r0 = Reg(H0), Lemma 2.8(2)

gives us that α

⊕
j≥ q

2

H0(Pc−1
k ,H0(j))

 =
q

2
as long as

q

2
≥ r0. So for q = max{2r0, 2r1},

Lemma 2.9 gives that

α
(

Êxt
ev

R (M,k)
)
≤ max

α
⊕

j≥ q
2

H0(Pc−1
k ,H0(j))

 , α

⊕
i≤ q

2
−1

Êxt
2i

R(M,k)


≤ max

{q
2
,
q

2
− 1
}

=
1

2
max{2r0, 2r1}.

Note that if r0 = r1 = −∞, the above argument shows that α
(

Êxt
ev

R (M,k)
)
≤ q

2
for all

even q, hence α
(

Êxt
ev

R (M,k)
)

= −∞.

Again, we first suppose that at least one of the regularities r0 or r1 is an integer. For any

odd q ≥ max{2r0 − 1, 2r1 − 1}, there is a short exact sequence of k[T1, . . . , Tc]-modules

0→
⊕
j≥ q−1

2

H0(Pc−1
k ,H1(j))→ Êxt

odd

R (M,k)→
⊕

i≤ q−1
2
−1

Êxt
2i+1

R (M,k)→ 0

by Lemma 2.10. Clearly α

 ⊕
i≤ q−1

2
−1

Êxt
2i+1

R (M,k)

 ≤ q − 1

2
− 1. Since r1 = Reg(H1),
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Lemma 2.8(2) gives us that α

⊕
j≥ q−1

2

H0(Pc−1
k ,H1(j))

 =
q − 1

2
as long as

q − 1

2
≥ r1. So

for q = max{2r0 − 1, 2r1 + 1}+ 1, Lemma 2.9 gives that

α
(

Êxt
odd

R (M,k)
)
≤ max

α
⊕
j≥ q−1

2

H0(Pc−1
k ,H1(j))

 , α

 ⊕
i≤ q−1

2
−1

Êxt
2i+1

R (M,k)


≤ max

{
q − 1

2
,
q − 1

2
− 1

}
=

1

2
max{2r0 − 1, 2r1 + 1}.

Since max{2r0 − 1, 2r1 + 1} is an odd integer, we see that

α
(

Êxt
odd

R (M,k)
)
≤ 1

2
max{2r0 − 2, 2r1}.

Note that if r0 = r1 = −∞, the above argument shows that α
(

Êxt
odd

R (M,k)
)
≤ q − 1

2

for all odd q, hence α
(

Êxt
odd

R (M,k)
)

= −∞.

Since Êxt
∗
R(M,k) = Êxt

ev

R (M,k) ⊕ Êxt
odd

R (M,k) such that Êxt
2i

R(M,k) lies in degree 2i

and Êxt
2i+1

R (M,k) lies in degree 2i+ 1, combining the above inequalities yields

α
(

Êxt
∗
R(M,k)

)
≤ max

{
2α
(

Êxt
ev

R (M,k)
)
, 2α

(
Êxt

odd

R (M,k)
)

+ 1
}

≤ max{2r0, 2r1, 2r0 − 1, 2r1 + 1}

= max{2r0, 2r1 + 1}

If M is an MCM R-module, then the natural map Ext∗R(M,k) → Êxt
∗
R(M,k) is an

isomorphism in all positive degrees and a surjection in degree 0. This map and Theorem

2.11 allow us to obtain an upper bound for the degrees of generators of Ext∗R(M,k) when M
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is an MCM R-module.

Corollary 2.12. Let R = Q/(f1, . . . , fc) be a complete intersection of codimension c and let

M be an MCM R-module. Then

α (Ext∗R(M,k)) ≤ max{2r0, 2r1 + 1, 1}.

The additional 1 in the bound in Corollary 2.12 ensures that the bound is positive, which

is necessary since ExtiR(M,k) = 0 for all i < 0.

2.3 Recovering the Avramov-Buchweitz Bound

In this section we specialize to the codimension c = 2 case; that is, R = Q/(f1, f2). We use

Theorem 2.11 to recover the bound obtained by Avramov and Buchweitz in Theorem 2.1.

We use the fact that every coherent sheaf F over P1
k decomposes as

F =
n⊕
i=1

O(ei)⊕ T ,

where ei ∈ Z and T is a torsion sheaf, i.e., a coherent sheaf whose support consists of a finite

number of points. If T is a torsion sheaf, then there is a polynomial P ∈ k[T1, T2] of degree

d such that multiplication by P induces an isomorphism T ∼= T (d). If k is an infinite field,

then one can find such a P with degree d = 1. The above decomposition is useful as we can

readily compute the regularities of the various summands.

Lemma 2.13. Let e ∈ Z and let T be a torsion sheaf on P1
k. Then Reg(O(e)) = −e and

Reg(T ) = −∞.
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Proof. For any coherent sheaf F on P1
k, we have H i(P1

k,F) = 0 for i > 1. Thus,

Reg(F) = min{r | H1(P1
k,F(r − 1)) = 0}.

For F = O(e), Serre duality gives

H1(P1
k,O(e+ r − 1)) ∼= H0(P1

k,O(−e− r − 1))∗,

and this is 0 whenever −e− r − 1 ≤ −1, i.e., whenever r ≥ −e. So

Reg(O(e)) = min{r | r ≥ −e} = −e.

For F = T , taking r � 0 of the form r = ld+ 1 yields

H1(P1
k, T (r − 1)) = H1(P1

k, T (ld)) = H1(P1
k, T ) = 0,

thus Reg(T ) = −∞.

We now apply Theorem 2.11 to the codimension c = 2 and recover the Avramov-

Buchweitz bound.

Corollary 2.14. Let R = Q/(f1, f2) be a complete intersection of codimension c = 2 and

let M be a finitely generated R-module. Set g := depth(R) − depthR(M). Then the graded

k[T1, T2]-module Ext∗R(M,k) satisfies

α(Ext∗R(M,k)) ≤ max{2βg, 2βg+1 + 1}+ g + 1,

where βi denotes the ith Betti number of M over R.
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Proof. As in the original proof in [2], by considering the gth syzygy of M we may assume

that g = 0. This means that M is an MCM R-module and that we need to show that

α(Ext∗R(M,k)) ≤ max{2β0 + 1, 2β1 + 2}. By Theorem 2.11, it suffices to show that

max{2r0, 2r1 + 1} ≤ max{2β0 + 1, 2β1 + 2},

where r0 = Reg(H0) and r1 = Reg(H1). Note that if r0 = −∞ = r1, the result is trivial. If

r0 = −∞ 6= r1, then our bound is exactly 2r1 + 1 and applying the first argument below will

yield the result. Similarly, if r0 6= −∞ = r1, then apply only the second argument below.

So we may assume that r0, r1 6= −∞.

Write H0 =
⊕
O(ei) ⊕ T0 and H1 =

⊕
O(fj) ⊕ T1. By Lemma 2.13, we must have

ei = −r0 and fj = −r1 for some i, j. From the spectral sequence arising from the Čech

complex of E, we obtain the short exact sequence

0→ H1(P1
k,H1(−1))→ Êxt

0

R(M,k)→ H0(P1
k,H0))→ 0.

Since O(−r1) is a direct summand of H1, we have

β̂0 := dimk Êxt
0

R(M,k) ≥ dimkH
1(P1

k,H1(−1))

≥ dimkH
1(P1

k,O(−r1 − 1)) = dimkH
0(P1

k,O(r1 − 1))

= max{r1, 0},

so β̂0 ≥ r1.

Similarly, we have the short exact sequence

0→ H1(P1
k,H0)→ Êxt

1

R(M,k)→ H0(P1
k,H1))→ 0.
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Since O(−r0) is a direct summand of H0, we have

β̂1 := dimk Êxt
1

R(M,k) ≥ dimkH
1(P1

k,H0)

≥ dimkH
1(P1

k,O(−r0)) = dimkH
0(P1

k,O(r0 − 2))

= max{r0 − 1, 0},

so β̂1 ≥ r0 − 1.

The above inequalities yield max{2r0, 2r1 + 1} ≤ max{2β̂0 + 1, 2β̂1 + 2}. Recall that the

map Ext∗R(M,k) → Êxt
∗
R(M,k) is an isomorphism in positive degrees and a surjection in

degree 0. Thus, β̂1 = β1 and β̂0 ≤ β0, and the result follows.

Corollary 2.14 suggests a natural question regarding the existence of a module M in the

codimension c = 2 case where the regularity bound from Theorem 2.11 is strictly smaller

than the Avramov-Buchweitz bound. This is the subject of future pursuit.
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Chapter 3

A DG Approach to Ext∗R(M,N) Over

Complete Intersections

Let (Q,m, k) be a regular local ring and let R = Q/(f1, . . . , fc) be a complete intersection.

Define the differential graded R-module R Homdg
R (M,N) := HomR(F,G) and differential

graded R-algebra R EnddgR (M) := HomR(F, F ), where F and G are R-free resolutions of the

finitely generated R-modules M and N , respectively. The goal of this chapter is to describe

these objects as explicitly as possible. To do this, we use a correspondence between R-

modules and differential graded modules over the Koszul algebra of R over Q. We obtain a

description of R Homdg
R (M,N) in terms of well-known differential graded Q-modules, which

has the structure of a differential graded algebra over Q when M = N . In the special case

where M = Q/I with I generated by a Q-regular sequence, we obtain explicit generators

and relations for the DGA R EnddgR (M) over Q. In particular, if M = k is the residue field

of R, this description allows us to compute cohomology and recover the following result of

Sjödin from [18]:

Theorem 3.1 (Sjödin). Let (Q,m, k) be a regular local ring and let R = Q/(f1, . . . , fc) be

a complete intersection with fj ∈ m2 for 1 ≤ j ≤ n. Suppose m is minimally generated as
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m = (x1, . . . , xn) and write

fj =
∑

1≤h≤i≤n

whijxhxi (mod m3)

for whij ∈ Q. Then Ext∗R(k, k) is generated as a k-algebra by elements Z1, . . . , Zn of degree

1 and T1, . . . , Tc of degree 2 subject to the relations

Z2
i +

c∑
j=1

wiijTj, [Zh, Zi] +
c∑
j=1

whijTj, [Zh, Ti], [Th, Ti]

where whij is the image of whij in k.

3.1 Differential Graded Algebras and Modules

This section provides a review of the basic concepts and terminology of differential graded

algebras and modules found in [1]. We also describe a few basic examples and fix notation

which will be used throughout the rest of the chapter.

Definition 3.2. Let Q be a commutative ring. A differential graded algebra (DGA) over Q

is a graded Q-algebra A equipped with an endomorphism dA : A→ A of degree 1 satisfying

d2
A = 0 and the Leibniz rule

dA(ab) = dA(a)b+ (−1)|a|adA(b)

for all homogeneous elements a, b ∈ A. We say A is (graded) commutative if ab = (−1)|a|·|b|ba

for all homogeneous a, b ∈ A and a2 = 0 whenever |a| is odd. A differential graded (DG)

module M over A is a graded A-module with an endomorphism dM : M → M of degree 1
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satisfying d2
M = 0 and the Leibniz rule

dM(am) = dA(a)m+ (−1)|a|adM(m)

for all homogeneous a ∈ A and m ∈M .

We denote the underlying graded algebra of a DGA A by A\. Similarly, given a DG

A-module M , we denote the underlying graded A\-module by M \.

Any commutative ring Q concentrated in degree 0 is trivially a DGA with differential

dQ = 0. In this case, a DG Q-module is simply a complex of Q-modules. A less trivial

example of a DGA is the Koszul algebra K = Kos(q1, . . . , qr; Q) over a commutative ring

Q, with Λi
QQ

r in cohomological degree −i and differential dK defined by

dK(ci1 ∧ · · · ∧ cin) =
n∑
j=1

(−1)j−1qijci1 ∧ · · · ∧ cij−1
∧ cij+1

∧ · · · ∧ cin ,

where c1, . . . , cr is the canonical basis for Qr. In this case, a DG K-module can be realized

as a complex E of Q-modules equipped with endomorphisms s1, . . . , sr : E → E of degree

−1 which satisfy the following properties:

(1) dKsi + sidK = qi for all 1 ≤ i ≤ r

(2) sisj + sjsi = 0 for all 1 ≤ i, j ≤ r

(3) s2
i = 0 for all 1 ≤ i ≤ r

We will frequently use the following constructions, so we consider them carefully here.

Example 3.3. Let A be a commutative DGA over Q and let M and N be DG A-modules.

We can define DG A-modules M ⊗A N and HomA(M,N).
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We start by letting (M ⊗A N)\ be the quotient of M ⊗Q N by the submodule spanned

by elements of the form (am) ⊗ n − (−1)|a|·|m|m ⊗ (an). Then M ⊗A N is a DG A-module

with A-action defined by

a(m⊗ n) := (am)⊗ n = (−1)|a|·|m|m⊗ (an)

and differential defined by

dM⊗N(m⊗ n) := dM(m)⊗ n+ (−1)|m|m⊗ dN(n).

Moreover, if M and N are DGAs over A, then M ⊗A N has the structure of a DGA over A

with multiplication defined on homogeneous elements by

(m1 ⊗ n1)(m2 ⊗ n2) := (−1)|n1|·|m2|(m1m2)⊗ (n1n2).

To define the DG A-module HomA(M,N), we start by defining HomA(M,N)\ as the

collection of Q-linear maps ϕ of graded modules such that ϕ(am) = (−1)|ϕ|·|a|aϕ(m) for all

homogeneous a ∈ A and m ∈ M . Then HomA(M,N) is a DG A-module with A-action

defined by

(aϕ)(m) := aϕ(m) = (−1)|ϕ|·|a|ϕ(am)

and differential defined by

dHom(ϕ) := dN ◦ ϕ− (−1)|ϕ|ϕ ◦ dM .

If M = N , then HomA(M,M) has the structure of a DGA over A with multiplication given

by function composition. We will often denote this DGA by EndA(M) and its differential

by dEnd.
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We will frequently use quasi-isomorphisms of DGAs and DG modules. We recall these

fundamental notions here. Note that we will discuss a more general notion of quasi-isomorphic

DGAs in section 3.2. The following formulation is sufficient for our current needs.

Definition 3.4. Let A and B be DGAs over a commutative ring Q and let M and N be

DG A-modules. A map ϕ : A→ B is a quasi-isomorphism of DGAs if it is a homomorphism

of DGAs which induces an isomorphism in cohomology. A map ε : M → N is a quasi-

isomorphism of DG A-modules if it is a homomorphism of DG A-modules which induces an

isomorphism in cohomology.

We also recall the following definition given in [1]:

Definition 3.5. Let A be a commutative DGA and M a bounded below DG A-module, i.e.,

M i = 0 for i� 0. Then M is semi-free if M \ is a free A\-module.

Semi-free DGA-modules are not free modules in the category of DGA-modules. However,

they have the following basic properties, which are sufficient for our needs. Proofs of these

properties can be found in [1].

Lemma 3.6. Let A be a commutative DGA, M a DG A-module, and ε : N → N ′ a quasi-

isomorphism of DG A-modules.

1. If N and N ′ are semi-free DG A-modules, then the map M ⊗A ε : M ⊗AN →M ⊗AN ′

is a quasi-isomorphism.

2. If M is a semi-free DG A-module, then HomA(M, ε) : HomA(M,N) → HomA(M,N ′)

is a quasi-isomorphism.

We now set forth notation which will be used throughout the remainder of the chapter.

Let R = Q/(f1, . . . , fc) with (Q,m, k) a regular local ring and f1, . . . , fc a Q-regular sequence

contained in m2. Set V := Qc with canonical basis e1, . . . , ec. Let K denote the Koszul
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algebra K := Kos(f1, . . . , fc; Q), which is a DGA over Q with differential dK described

above. Since f1, . . . , fc is a regular sequence, the canonical surjection K � R is a quasi-

isomorphism of DGAs over Q.

Given a graded Q-module N , set N∗ :=
⊕
i∈Z

HomQ(N−i, Q) to be the graded dual. Let

T1, . . . , Tc denote the basis of V ∗ which is dual to the basis e1, . . . , ec of V , i.e., Ti(ej) = δij.

We will consider the following three DG Q-modules throughout the chapter:

• Λ := Λ•Q(V ), the exterior algebra on V , with |ei| = −1 and trivial differential

• S := Sym•Q(V ∗), the symmetric algebra on V ∗, with |Ti| = 2 and trivial differential

• Γ := S∗, with trivial differential

We make the following observations about these DG Q-modules and will frequently use

them without explicitly stating so.

First, K\ = Λ\. Nonzero homogeneous elements of S and Γ always have even degree.

Thus, these elements commute in the usual sense. Since S is graded commutative, for every

DG S-module M , the dual M∗ has a canonical DG S-module structure. Thus, Γ is a DG

S-module as it is the dual of the DG S-module S.

Definition 3.7. Let M be a finitely generated R-module. Then P is a Koszul resolution of

M if it is a degree-wise finitely generated Q-projective resolution of M equipped with the

structure of a DG K-module.

Koszul resolutions exist for any finitely generated R-module M and a construction can

be found in [2, Section 2.1].

For a Koszul resolution P of M , set X\ = X\
P := Λ\ ⊗Q Γ\ ⊗Q P \ and observe that X\

is a graded K\-module with K\-action defined by multiplication on Λ\. Note that there is a

second K\-action defined by the action of P , but we will only need the action on the leftmost
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factor. We wish to equip X\ with a differential dX under which X is quasi-isomorphic to P

as DG K-modules. We need the following result of Avramov and Buchweitz from [2], based

on the work of Cartan [9].

Proposition 3.8 (Avramov-Buchweitz). Consider the graded K-module L\ := Λ\⊗QΓ\⊗QΛ\

with K-action defined by multiplication on the leftmost factor of Λ\. Define dL : L\ → L\ by

dL(λ1 ⊗ γ ⊗ λ2) := dK(λ1)⊗ γ ⊗ λ2 + (−1)|λ1|λ1 ⊗ γ ⊗ dK(λ2)− δL(λ1 ⊗ γ ⊗ λ2),

where δL(λ1⊗γ⊗λ2) :=
c∑
j=1

ejλ1⊗Tjγ⊗λ2− (−1)|λ1|λ1⊗Tjγ⊗ ejλ2. Then L equipped with

dL is a DG K-module which is quasi-isomorphic to K via the map ε : L→ K defined by

ε(λ1 ⊗ γ ⊗ λ2) := λ1π0(γ)λ2,

where π0 denotes projection onto the degree 0 component of Γ.

To obtain the desired differential on X\, we tensor L with the Koszul resolution P .

Lemma 3.9. For X\ = Λ\ ⊗Q Γ\ ⊗Q P \, define an endomorphism dX : X\ → X\ by

dX(λ⊗ γ ⊗ p) := dK(λ)⊗ γ ⊗ p+ (−1)|λ|λ⊗ γ ⊗ dP (p)− δX(λ⊗ γ ⊗ p),

where δX(λ⊗ γ ⊗ p) :=
c∑
j=1

ejλ⊗ Tjγ ⊗ p− (−1)|λ|λ⊗ Tjγ ⊗ ejp. Then X\ equipped with dX

is a DG K-module which is quasi-isomorphic to P via the map η : X → P defined by

η(λ⊗ γ ⊗ p) := λπ0(γ)p,

where π0 denotes projection onto the degree 0 component of Γ.
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Proof. We consider L\ ⊗K\ P \ as a K\-module via the action on L. There is a canonical

isomorphism of K\-modules µ : L\ ⊗K\ P \ → X\ given by

µ(λ1 ⊗ γ ⊗ λ2 ⊗ p) = λ1 ⊗ γ ⊗ λ2p.

Observe that L\ ⊗K\ P \ has an induced differential as in Example 3.3, given by

dL⊗KP (λ1 ⊗ γ ⊗ λ2 ⊗ p) = dL(λ1 ⊗ γ ⊗ λ2)⊗ p+ (−1)|λ1|+|λ2|λ1 ⊗ γ ⊗ λ2 ⊗ dP (p).

We will show that dXµ = µdL⊗KP , i.e., that dX corresponds with the canonical differential

on L⊗K P under the isomorphism µ.

To this end, we observe that

µdL⊗KP (λ1 ⊗ γ ⊗ λ2 ⊗ p) = dK(λ1)⊗ γ ⊗ λ2p+ (−1)|λ1|λ1 ⊗ γ ⊗ dK(λ2)p

−
c∑
j=1

ejλ1 ⊗ Tjγ ⊗ λ2p− (−1)|λ1|λ1 ⊗ Tjγ ⊗ ejλ2p

+ (−1)|λ1|+|λ2|λ1 ⊗ γ ⊗ λ2dP (p)

= dK(λ1)⊗ γ ⊗ λ2p+ (−1)|λ1|λ1 ⊗ γ ⊗ dP (λ2p)

−
c∑
j=1

ejλ1 ⊗ Tjγ ⊗ λ2p− (−1)|λ1|λ1 ⊗ Tjγ ⊗ ejλ2p

= dX(λ1 ⊗ γ ⊗ λ2p)

= dXµ(λ1 ⊗ γ ⊗ λ2 ⊗ p)

This verifies that dX is a differential on X\ and that X ∼= L⊗K P as DG K-modules.

The DG K-module L = Λ ⊗Q Γ ⊗Q Λ is a semi-free DG K-module, as Γ\ and Λ\ are

both bounded below free Q-modules, so that L\ = Λ\ ⊗Q Γ\ ⊗Q Λ\ is a bounded below

free K\-module. Since ε : L
∼−→ K is a quasi-isomorphism of semi-free DG K-modules by
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Proposition 3.8,

X ∼= L⊗K P
ε⊗P−−→ K ⊗K P ∼= P

is also a quasi-isomorphism of DG K-modules, by Lemma 3.6(1). Using the definition of ε

in Proposition 3.8, we see that η = ε⊗ P .

Let M and N be finitely generated R-modules with Koszul resolutions P and P ′, respec-

tively. Define X\ := Λ\ ⊗Q Γ\ ⊗Q P \ and (X ′)\ := Λ\ ⊗Q Γ\ ⊗Q (P ′)\, and equip them with

differentials dX and dX′ as defined in Lemma 3.9. Note that X and X ′ are semi-free DG

K-modules, since Γ\ and P \ are both bounded below free Q-modules.

3.2 Defining RHomdg
R (M,N) and REnddgR (M)

In this section we let (Q,m, k) be a regular local ring and let R = Q/(f1, . . . , fc) be a

complete intersection. Let M and N be finitely generated R-modules. At the beginning

of the chapter we informally introduced R Homdg
R (M,N) and R EnddgR (M). We recall these

definitions here.

Definition 3.10. Let R be a complete intersection and let M and N be finitely generated

R-modules. Let F and G be free resolutions of M and N , respectively, over R. Define

R Homdg
R (M,N) := HomR(F,G) and R EnddgR (M) := HomR(F, F ).

Observe that R Homdg
R (M,N) is a DG R-module, or equivalently a complex of R-modules,

and that R EnddgR (M) is a DGA over R. The goal of this section is to show that these

definitions of R Homdg
R (M,N) and R EnddgR (M) are independent of choices of free resolutions

up to homotopy equivalence and quasi-isomorphisms of DGAs over R, respectively. This is

well-known but worth mentioning explicitly. We also describe a correspondence between

R-modules and DG K-modules, where K is the Koszul algebra K = Kos(f1, . . . , fc; Q).
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The definition of R Homdg
R (M,N) requires choices of free resolutions M and N . The next

Lemma shows that our definition is independent of these choices up to homotopy equivalence.

Lemma 3.11. The DG R-module R Homdg
R (M,N) is well-defined up to homotopy equiva-

lence.

Proof. Let F , F ′ be R-free resolutions of M and G, G′ be R-free resolutions of N . Since

any two free resolutions are homotopy equivalent, there exists chain maps α : F → F ′

and α′ : F ′ → F such that α′α ∼ idF and αα′ ∼ idF ′ . Similarly, there are chain maps

β : G → G′ and β′ : G′ → G such that β′β ∼ idG and ββ′ ∼ idG′ . We define maps

g : HomR(F,G) → HomR(F ′, G′) and h : HomR(F ′, G′) → HomR(F,G) by g(θ) := βθα′

and h(ψ) := β′ψα, respectively. Since hg(θ) = β′βθα′α with β′β ∼ idG and α′α ∼ idF ,

we have that hg ∼ idHomR(F,G). Similarly, since gh(ψ) = ββ′ψαα′ with ββ′ ∼ idG′ and

αα′ ∼ idF ′ , we have that gh ∼ idHomR(F ′,G′). Thus, HomR(F,G) and HomR(F ′, G′) are

homotopy equivalent.

We now turn our attention to R EnddgR (M). Unlike R Homdg
R (M,N), this has the structure

of a DGA over R. The definition still involves the choice of free resolution, but we show that

it is independent of this choice up to quasi-isomorphism of DGAs over R. We now need the

more general notion alluded to in the comment preceding Definition 3.4.

Definition 3.12. Let A and B be DGAs over R. Then A and B are quasi-isomorphic (as

DGAs) if there exists a diagram

A = A0
α0−→ A1

α1←− A2
α2−→ · · · αn−2−→ An−1

αn−1←− An = B

such that each Ai is a DGA over R and each αi is a homomorphism of DGAs over R which

induces an isomorphism on cohomology.
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Note that α0 or αn−1 could be the identity map, so similar diagrams with the maps on

the ends reversed would also yield valid quasi-isomorphisms of DGAs.

Lemma 3.13. The DGA R EnddgR (M) is well defined up to quasi-isomorphisms of DGAs

over R.

Proof. Let F and F ′ be any R-free resolutions of M and let G be the minimal free resolution

of M . By minimality of G, there are chain maps α : F → G and β : G → F such that

αβ = idG. Define g : HomR(G,G)→ HomR(F, F ) by g(θ) := βθα. The proof of Lemma 3.11

shows that g is a homotopy equivalence, and hence a quasi-isomorphism of DG R-modules.

For any θ, θ′ ∈ HomR(G,G), observe that

g(θθ′) = βθθ′α = βθαβθ′α = g(θ)g(θ′),

since αβ = idG. Thus, g is a quasi-isomorphism of DGAs. Applying the above argument to

F ′ results in a quasi-isomorphism of DGAs h : HomR(G,G)→ HomR(F ′, F ′). This produces

a diagram

HomR(F, F )
g←− HomR(G,G)

h−→ HomR(F ′, F ′).

So HomR(F, F ) and HomR(F ′, F ′) are quasi-isomorphic as DGAs.

We now explore the correspondence between R-modules and DG K-modules up to quasi-

isomorphism. Any R-module becomes a DG K-module by restriction of scalars along the

quasi-isomorphism K
∼−→ R. Conversely, given a DG K-module E we obtain an R-module

E ⊗L
K R.

Let P and P ′ be Koszul resolutions for M and N , respectively, and let X = XP and

X ′ = XP ′ be the semi-free DG K-modules defined in Lemma 3.9. Since K
∼−→ R and X ′ is

semi-free, we get a quasi-isomorphism X ′
∼−→ X ′⊗K R of DG K-modules by Lemma 3.6(1).
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By Lemma 3.6(2) and hom-tensor adjointness, we get a quasi-isomorphism

φ : HomK(X,X ′)
∼−→ HomK(X,X ′ ⊗K R) ∼= HomR(X ⊗K R,X ′ ⊗K R)

of DG K-modules. For τ ∈ HomK(X,X ′), we see that φ(τ)(x⊗ r) = τ(x)⊗ r. Note that

X ⊗K R = Λ⊗Q Γ⊗Q P ⊗K R ∼= Γ⊗Q P ⊗Q R,

which is a free resolution of M over R by [2, Theorem 2.4]. Thus, X ⊗K R and X ′ ⊗K R

are R-free resolutions of M and N , respectively, so we have a quasi-isomorphism of DG

K-modules

φ : HomK(X,X ′)
∼−→ R Homdg

R (M,N).

When M = N , we may choose P = P ′ and hence X = X ′. Thus, we have a quasi-

isomorphism of DG K-modules

φ : HomK(X,X)
∼−→ HomR(X ⊗K R,X ⊗K R) = R EnddgR (M).

For τ, τ ′ ∈ HomK(X,X), we have

φ(ττ ′)(x⊗ r) = (ττ ′(x)⊗ r) = φ(τ)(τ ′(x)⊗ r) = φ(τ)φ(τ ′)(x⊗ r),

so φ preserves compositions and thus is a quasi-isomorphism of DGAs over Q. In par-

ticular, H∗(HomK(X,X ′)) = Ext∗R(M,N) and H∗(HomK(X,X)) = Ext∗R(M,M). Hence-

forth, we will set out to explicitly describe the DG K-module HomK(X,X ′) and the DGA

HomK(X,X) over Q, up to quasi-isomorphism.
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3.3 The DG Module for Ext∗R(M,N)

Fix finitely generated R-modules M and N with Koszul resolutions P and P ′, respectively.

Let X = XP and X ′ = XP ′ be the DG K-modules defined in Lemma 3.9.

The goal of this section is to define a DG K-module structure on the graded Q-module

S⊗QHomQ(P, P ′) and define a quasi-isomorphism Ψ̃ : S⊗QHomQ(P, P ′)→ HomK(X,X ′) of

DG K-modules. This will give an explicit model of R Homdg
R (M,N) up to quasi-isomorphism

of DG K-modules.

We first show that S⊗QHomQ(P, P ′) is isomorphic to HomK(X,P ′) as graded Q-modules.

To do this, we need the following canonical isomorphisms of modules.

Remark 3.14. 1. Let A be a commutative ring and let L, M , and N be graded A-modules.

If L and M are projective and L is degree-wise finitely generated, then there is a

canonical isomorphism of graded A-modules

ψ : L⊗A HomA(M,N)→ HomA(L∗ ⊗AM,N)

defined by ψ(l ⊗ χ)(ξ ⊗m) := l(ξ)χ(m), where l(ξ) is the natural action of l ∈ L on

ξ ∈ L∗ =
⊕
i∈Z

HomA(L−i, A).

2. If A and B are graded commutative rings, A→ B a graded ring homomorphism, M a

graded A-module, and N a graded B-module, then there is a canonical isomorphism

of graded modules HomA(M,N)→ HomB(B ⊗AM,N) defined by φ 7→ φ̃, where

φ̃(b⊗m) := (−1)|φ|·|b|bφ(m).

To avoid being pedantic and simplify notation, we omit the \ notation in the statements

and proofs of the following three lemmas.
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Lemma 3.15. There is an isomorphism of graded Q-modules

Ψ : S ⊗Q HomQ(P, P ′)→ HomK(X,P ′)

given by the following: for each α⊗ β ∈ S ⊗Q HomQ(P, P ′), we define

Ψ(α⊗ β)(λ⊗ γ ⊗ p) := (−1)|β|·|λ|λα(γ)β(p).

Proof. Since S and P are Q-projective, S is degree-wise finitely generated, and Γ = S∗,

Remark 3.14(1) gives an isomorphism of graded Q-modules

Ψ1 : S ⊗Q HomQ(P, P ′)→ HomQ(Γ⊗Q P, P ′)

defined by

Ψ1(α⊗ β)(γ ⊗ p) := α(γ)β(p).

Since K\ = Λ\, Remark 3.14(2) gives an isomorphism of graded Q-modules

Ψ2 : HomQ(Γ⊗Q P, P ′)→ HomK(X,P ′)

defined by

Ψ2(φ)(λ⊗ γ ⊗ p) := (−1)|φ|·|λ|λφ(γ ⊗ p).

Notice that |Ψ1(α ⊗ β)| = |α| + |β| ≡ |β| (mod 2) since |α| is even. Thus, (−1)|Ψ1(α⊗β)| =

(−1)|β|. Therefore, Ψ = Ψ2Ψ1 and is an isomorphism of graded Q-modules.

We now define a K-action and differential on S ⊗Q HomQ(P, P ) under which Ψ is an

isomorphism of DG K-modules. We use Ψ and the canonical DG K-module structure on

HomK(X,P ′) to define these.
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Lemma 3.16. The graded Q-module S ⊗Q HomQ(P, P ′) has a K-module structure with

K-action defined by

ej(α⊗ β) := α⊗ (ejβ),

where (ejβ)(p) := ejβ(p) is given by the K-action on P ′. Under this action,

Ψ : S ⊗Q HomQ(P, P ′)→ HomK(X,P ′)

is an isomorphism of graded K-modules.

Proof. By Lemma 3.15, the Q-module S ⊗Q HomQ(P, P ′) is isomorphic to HomK(X,P ′),

which has a K-module structure given by the action

(ejφ)(λ⊗ γ ⊗ p) := ejφ(λ⊗ γ ⊗ p) = (−1)|φ|φ(ejλ⊗ γ ⊗ p).

We will show that the desired K-action on S⊗QHomQ(P, P ′) corresponds with this K-action

on HomK(X,P ′) under the isomorphism Ψ; that is, ejΨ(α ⊗ β) = Ψ(ej(α ⊗ β)). We have

that

(ejΨ(α⊗ β))(λ⊗ γ ⊗ p) = ej(−1)|β|·|λ|λα(γ)β(p)

= (−1)|β|·|λ|+|λ|λα(γ)ejβ(p)

= (−1)(|β|+1)·|λ|λα(γ)ejβ(p)

= Ψ(α⊗ (ejβ))(λ⊗ γ ⊗ p)

= Ψ(ej(α⊗ β))(λ⊗ γ ⊗ p)

Thus, Ψ is an isomorphism of K-modules.
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Lemma 3.17. Define an endomorphism d on the graded K-module S ⊗Q HomQ(P, P ′) by

d(α⊗ β) := α⊗ dHom(β) +
c∑
j=1

αTj ⊗ [ej, β],

where [ej, β] = ejβ− (−1)|β|βej. Then S⊗QHomQ(P, P ′) equipped with d is a DG K-module

and

Ψ : S ⊗Q HomQ(P, P ′)→ HomK(X,P ′)

is an isomorphism of DG K-modules.

Remark 3.18. We are abusing the notation [ej, β] here. In the term ejβ the ej denotes the

K-action on the DG K-module P ′, whereas in the term βej the ej denotes the K-action on

the DG K-module P . If P = P ′, then [ej, β] would be the genuine commutator.

Proof. The canonical differential on HomK(X,P ′) is given by

dHom(φ) = dP ′φ− (−1)|φ|φdX .

It suffices to compute dHom(Ψ(α⊗ β)) and show that this corresponds with d(α⊗ β) under

the isomorphism Ψ.

To this end, we have

dP ′Ψ(α⊗ β)(λ⊗ γ ⊗ p) = dP ′
(
(−1)|β|·|λ|λα(γ)β(p)

)
= (−1)|β|·|λ|

(
dK(λ)α(γ)β(p) + (−1)|λ|λα(γ)dP ′(β(p))

)
= (−1)|β|·|λ|dK(λ)α(γ)β(p) + (−1)|β|·|λ|+|λ|λα(γ)dP ′(β(p))
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and

Ψ(α⊗ β)dX(λ⊗ γ ⊗ p) = Ψ(α⊗ β) (dK(λ)⊗ γ ⊗ p) + (−1)|λ|Ψ(α⊗ β) (λ⊗ γ ⊗ dP (p))

−Ψ(α⊗ β)

(
c∑
j=1

ejλ⊗ Tjγ ⊗ p− (−1)|λ|λ⊗ Tjγ ⊗ ejp

)

= (−1)|β|(|λ|+1)dK(λ)α(γ)β(p) + (−1)|λ|+|β|·|λ|λα(γ)β(dP (p))

−
c∑
j=1

(−1)|β|(|λ|−1)ejλα(Tjγ)β(p)− (−1)|λ|+|β|·|λ|λα(Tjγ)β(ejp)

= (−1)|β|·|λ|+|β|dK(λ)α(γ) · β(p) + (−1)|λ|+|β|·|λ|λα(γ) · β(dP (p))

−
c∑
j=1

(−1)|β|(|λ|−1)+|λ|λα(Tjγ)ejβ(p)− (−1)|λ|+|β|·|λ|λα(Tjγ)β(ejp)

Combining these, we have

dHom(Ψ(α⊗ β))(λ⊗ γ ⊗ p) = dP ′Ψ(α⊗ β)(λ⊗ γ ⊗ p)− (−1)|β|Ψ(α⊗ β)dX(λ⊗ γ ⊗ p)

= (−1)|β|·|λ|dK(λ)α(γ)β(p)− (−1)|β|·|λ|dK(λ)α(γ)β(p)+

(−1)|β|·|λ|+|λ|λα(γ)dP ′(β(p))− (−1)|β|+|λ|+|β|·|λ|λα(γ)β(dP (p))+

c∑
j=1

(−1)|β|·|λ|+|λ|λα(Tjγ)ejβ(p)− (−1)|β|+|λ|+|β|·|λ|λα(Tjγ)β(ejp)

= (−1)|β|·|λ|+|λ|
[
λα(γ)dP ′(β(p))− (−1)|β|λα(γ)β(dP (p))

]
+ (−1)|β|·|λ|−|λ|

c∑
j=1

λα(Tjγ)ejβ(p)− (−1)|β|λα(Tjγ)β(ejp)

= (−1)(|β|+1)·|λ|λα(γ)
[
dP ′(β(p))− (−1)|β|λα(γ) · β(dP (p))

]
+ (−1)(|β|−1)·|λ|

c∑
j=1

λα(Tjγ)
[
ejβ(p)− (−1)|β|β(ejp)

]
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= Ψ

(
α⊗ dHom(β) +

c∑
j=1

αTj ⊗ [ej, β]

)

= Ψ(d(α⊗ β))

Thus dHomΨ(α ⊗ β) = Ψ(d(α ⊗ β)), and so d is indeed a differential on S ⊗Q HomQ(P, P ′)

which makes Ψ an isomorphism of DG K-modules.

Lemma 3.9 gives us a quasi-isomorphism η′ : X ′ → P ′ given by

η′(λ⊗ γ ⊗ p′) = λπ0(γ)p′.

Since X = Λ⊗Q Γ⊗Q P is a semi-free DG K-module, the induced map

η̃′ := HomK(X, η′) : HomK(X,X ′)→ HomK(X,P ′)

defined by η̃′(φ) := η′φ is a quasi-isomorphism by Lemma 3.6(2).

Define a K-module map Ψ̃ : S ⊗Q HomQ(P, P ′)→ HomK(X,X ′) by

Ψ̃(α⊗ β)(λ⊗ γ ⊗ p) := (−1)|β|·|λ|λ⊗ αγ ⊗ β(p),

where αγ is the natural action of S on its dual Γ = S∗. Since

η̃′Ψ̃(α⊗ β)(λ⊗ γ ⊗ p) = (−1)|β|·|λ|η′(λ⊗ αγ ⊗ β(p))

= (−1)|β|·|λ|λπ0(αγ)β(p)

= (−1)|β|·|λ|λα(γ)β(p)

= Ψ(α⊗ β),

we see that the following triangle of graded K-modules commutes:
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S ⊗Q HomQ(P, P ′)

HomK(X,X ′) HomK(X,P ′)

Ψ
Ψ̃

η̃′

Our last step is to show that the differential d on S ⊗Q HomQ(P, P ′) defined in Lemma

3.17 corresponds to the canonical differential dHom on HomK(X,X ′) under Ψ̃.

Theorem 3.19. Let R = Q/(f1, . . . , fc) be a complete intersection, M and N be finitely

generated R-modules, and P and P ′ be Koszul resolutions of M and N , respectively. If X

and X ′ are the DG K-modules defined in Lemma 3.9, then the map

Ψ̃ : S ⊗Q HomQ(P, P ′)→ HomK(X,X ′)

is a quasi-isomorphism of DG K-modules. Hence, there is a quasi-isomorphism

S ⊗Q HomQ(P, P ′)→ R Homdg
R (M,N)

of DG K-modules and an isomorphism of R-modules H∗(S⊗QHomQ(P, P ′)) ∼= Ext∗R(M,N).

Proof. It remains to verify that dHomΨ̃(α ⊗ β) = Ψ̃(d(α ⊗ β)). Recall that the canonical

differential on HomK(X,X ′) is given by

dHom(φ) := dX′φ− (−1)|φ|φdX .
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We have that

dX′Ψ̃(α⊗ β)(λ⊗ γ ⊗ p) = (−1)|β|·|λ|dX′(λ⊗ αγ ⊗ β(p))

= (−1)|β|·|λ|dK(λ)⊗ αγ ⊗ β(p) + (−1)|β|·|λ|+|λ|λ⊗ αγ ⊗ dP ′(β(p))

− (−1)|β|·|λ|
c∑
j=1

ejλ⊗ Tjαγ ⊗ β(p)− (−1)|λ|λ⊗ Tjαγ ⊗ ejβ(p)

= (−1)|β|·|λ|dK(λ)⊗ αγ ⊗ β(p) + (−1)|β|·|λ|+|λ|λ⊗ αγ ⊗ dP ′(β(p))

− (−1)|β|·|λ|
c∑
j=1

ejλ⊗ αTjγ ⊗ β(p)− (−1)|λ|λ⊗ αTjγ ⊗ ejβ(p)

and

Ψ̃(α⊗ β)dX(λ⊗ γ ⊗ p) = Ψ̃(α⊗ β)(dK(λ)⊗ γ ⊗ p) + (−1)|la|Ψ̃(α⊗ β)(λ⊗ γ ⊗ dP (p))

−
c∑
j=1

Ψ̃(α⊗ β)(ejλ⊗ Tjγ ⊗ p)− (−1)|λ|Ψ̃(α⊗ β)(λ⊗ Tjγ ⊗ ejp)

= (−1)|β|(|λ|+1)dK(λ)⊗ αγ ⊗ β(p) + (−1)|λ|+|β|·|λ|λ⊗ αγ ⊗ β(dP (p))

−
c∑
j=1

(−1)|β|(|λ|−1)ejλ⊗ αTjγ ⊗ β(p)− (−1)|λ|+|β|·|λ|λ⊗ αTjγ ⊗ β(ejp)

Combining these and observing that |Ψ̃(α⊗ β)| = |α|+ |β| ≡ |β| (mod 2), we get
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dHomΨ̃(α⊗ β)(λ⊗ γ ⊗ p) = dX′Ψ̃(α⊗ β)(λ⊗ γ ⊗ p)− (−1)|β|Ψ̃(α⊗ β)dX(λ⊗ γ ⊗ p)

= (−1)|β|·|λ|dK(λ)⊗ αγ ⊗ β(p)− (−1)|β|·|λ|dK(λ)⊗ αγ ⊗ β(p)

+ (−1)|β|·|λ|+|λ|λ⊗ αγ ⊗ dP ′(β(p))− (−1)|β|+|λ|+|β|·|λ|λ⊗ αγ ⊗ β(dP (p))

− (−1)|β|·|λ|
c∑
j=1

ejλ⊗ αTjγ ⊗ β(p) + (−1)|β|·|λ|ejλ⊗ αTjγ ⊗ β(p)

+ (−1)|β|·|λ|+|λ|
c∑
j=1

λ⊗ αTjγ ⊗ ejβ(p)− (−1)|β|+|λ|+|β|·|λ|λ⊗ αTjγ ⊗ β(ejp)

= (−1)(|β|+1)·|λ|λ⊗ αγ ⊗
[
dP ′β − (−1)|β|βdP

]
(p)

+ (−1)(|β|−1)·|λ|
c∑
j=1

λ⊗ αTjγ ⊗
[
ejβ − (−1)|β|βej

]
(p)

= (−1)(|β|+1)|λ|λ⊗ αγ ⊗ dHom(β) + (−1)(|β|−1)|λ|
c∑
j=1

λ⊗ αTjγ ⊗ [ej, β](p)

= Ψ̃

(
α⊗ dHom(β) +

c∑
j=1

αTj ⊗ [ej, β]

)
(λ⊗ γ ⊗ p)

= Ψ̃(d(α⊗ β))(λ⊗ γ ⊗ p)

Thus dHomΨ̃(α⊗ β) = Ψ̃(d(α⊗ β)) and Ψ̃ is a map of DG K-modules.

Since η̃′Ψ̃ = Ψ with Ψ and η̃′ an isomorphism and quasi-isomorphism of DG K-modules,

respectively, we have that Ψ̃ is also a quasi-isomorphism of DG K-modules.

The last claim follows from the quasi-isomorphism HomK(X,X ′)
∼−→ R Homdg

R (M,N)

from section 3.2.

We now specialize to the case when M = N . We may choose P = P ′ and hence X = X ′.

In this case both S⊗QHomQ(P, P ) and HomK(X,X) have canonical multiplicative structures

under which they are DGAs over Q.
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Corollary 3.20. If, in addition to the hypotheses of Theorem 3.19, M = N and P = P ′,

then S ⊗Q EndQ(P ) is a DGA over Q and the map

Ψ̃ : S ⊗Q EndQ(P )→ HomK(X,X)

is a quasi-isomorphism of DGAs. Moreover, there is a quasi-isomorphism

S ⊗Q EndQ(P )→ R EnddgR (M)

of DGAs over Q and an isomorphism of graded R-algebras H∗(S⊗QEndQ(P )) ∼= Ext∗R(M,M).

Proof. To see that S⊗QEndQ(P ) is a DGA over Q, we must show that the differential defined

in Lemma 3.17 satisfies the Leibniz rule. Note that since |α| is even for all homogeneous

α ∈ S, multiplication on S ⊗Q EndQ(P ) is given by

(α1 ⊗ β1)(α2 ⊗ β2) = (−1)|β1|·|α2|(α1α2)⊗ (β1 ◦ β2) = (α1α2)⊗ (β1 ◦ β2).

Thus, we have

d(α1α2 ⊗ β1 ◦ β2) = α1α2 ⊗ dEnd(β1 ◦ β2) +
c∑
j=1

α1α2Tj ⊗ [ej, β1 ◦ β2]

= α1α2 ⊗
(
dEnd(β1) ◦ β2 + (−1)|β1|β1 ◦ dEnd(β2)

)
+

c∑
j=1

α1α2Tj ⊗
(
[ej, β1] ◦ β2 + (−1)|β1|β1 ◦ [ej, β2]

)
= α1α2 ⊗ dEnd(β1) ◦ β2 +

c∑
j=1

α1α2Tj ⊗ [ej, β1] ◦ β2

+(−1)|β1|

(
α1α2 ⊗ β1 ◦ dEnd(β2) +

c∑
j=1

α1α2Tj ⊗ β1 ◦ [ej, β2]

)
= d(α1 ⊗ β1)(α2 ⊗ β2) + (−1)|β1|(α1 ⊗ β1)d(α2 ⊗ β2).
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So d satisfies the Leibniz rule and S ⊗Q EndQ(P ) is a DGA over Q.

To see that Ψ̃ is a quasi-isomorphism of DGAs, we need to check that Ψ̃ preserves

multiplication. Thus, we have

(Ψ̃(α1 ⊗ β1) ◦ Ψ̃(α2 ⊗ β2))(λ⊗ γ ⊗ p) = (−1)|β2|·|λ|Ψ̃(α1 ⊗ β1)(λ⊗ α2γ ⊗ β2(p))

= (−1)|β2|·|λ|(−1)|β1|·|λ|λ⊗ α1α2γ ⊗ β1(β2(p))

= (−1)(|β1|+|β2|)·|λ|λ⊗ (α1α2)γ ⊗ (β1 ◦ β2)(p)

= Ψ̃((α1α2)⊗ (β1 ◦ β2))(λ⊗ γ ⊗ p)

= Ψ̃((α1 ⊗ β1)(α2 ⊗ β2))(λ⊗ γ ⊗ p)

The corollary then follows immediately from Theorem 3.19.

Suppose M is a finitely generated R-module which, when viewed as a Q-module, has the

form M = Q/I with I generated by a regular sequence. For the Koszul resolution of M , we

may choose P so that P \ = Λ•Q(Qn). The remainder of this chapter focuses on obtaining a

more explicit description of S⊗QEndQ(Λ•Q(Qn)). We will do this by realizing EndQ(Λ•Q(Qn))\

as a Clifford algebra.

3.4 Clifford Algebras

In this section we present an abbreviated exposition of the theory of Clifford algebras; a more

thorough treatment can be found in [14]. Throughout this section let Q be any commutative

ring and let M be a Q-module.

Definition 3.21. A quadratic form on M is a map q : M → Q such that

(1) q(am) = a2q(m) for all a ∈ Q, m ∈M ,

(2) bq(m,n) := q(m+ n)− q(m)− q(n) is Q-bilinear.
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The main example we will need is that of the hyperbolic space of a projective module.

Example 3.22. Let W be a finitely generated projective Q-module and define a Q-module

H(W ) := W ⊕W ∗. Define a map qH : H(W ) → Q by qH((w,ϕ)) := ϕ(w) for w ∈ W and

ϕ ∈ W ∗. Then qH is a quadratic form on H(W ). This is called the hyperbolic space of W .

We will define the Clifford algebra as a quotient of the tensor algebra. Recall that the

tensor algebra of M over Q is

TQ(M) := Q⊕ T 1(M)⊕ T 2(M)⊕ · · · ⊕ T i(M)⊕ · · · ,

where T i(M) = M⊗QM⊗Q · · ·⊗QM (i factors), with multiplication given by concatenation.

Definition 3.23. Let q be a quadratic form on a Q-module M . The Clifford algebra asso-

ciated to the pair (M, q) is defined as

CQ(M, q) := TQ(M)/I(q),

where TQ(M) is the tensor algebra of M over Q and I(q) is the two-sided ideal of TQ(M)

generated by all elements of the form m⊗m− q(m) for m ∈M .

Note that I(q) has the property that every term of every generator has even degree. Thus,

the decomposition TQ(M) = T ev(M)⊕T odd(M), where T ev(M) := Q⊕T 2(M)⊕T 4(M)⊕· · ·

and T odd(M) := T 1(M)⊕ T 3(M)⊕ · · · , induces a canonical (Z/2Z)-grading on the Clifford

algebra CQ(M, q). In general, a Clifford algebra is not Z-graded. An important exception is

illustrated in the following example.

Example 3.24. Let W be a finitely generated projective Q-module. Then the Clifford

algebra of the hyperbolic space H(W ) has a canonical Z-grading. Set |w| = −1 and |ϕ| = 1
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for all w ∈ W and ϕ ∈ W ∗. Since qH(w,ϕ) = ϕ(w), I(q) is generated by elements of the

form

(w,ϕ)⊗ (w,ϕ)− ϕ(w) = w ⊗ ϕ+ ϕ⊗ w − ϕ(w),

which are all homogeneous of degree 0. Thus I(q) is a homogeneous ideal of TQ(H(W )), and

hence CQ(H(W ), qH) is Z-graded.

We end this section with two classical results involving Clifford algebras. Theorem 3.25

states that the Clifford algebra associated to a free module is itself a free module. We will

need this fact in the next section. Theorem 3.26 allows us to realize EndQ(Λ•Q(W )) as the

Clifford algebra of the pair (H(W ), qH) from Example 3.22. (Recall that the goal is to

describe EndQ(Λ•Q(Qn)) more explicitly.) Proofs of both theorems can be found in [14].

Theorem 3.25 (Poincaré-Birkhoff-Witt). If M is a free Q-module with basis {b1, . . . , br}

and q is a quadratic form on M , then CQ(M, q) is also a free Q-module with basis given

by {bi1bi2 · · · bil | 1 ≤ i1 < i2 < · · · < il ≤ r, l ≥ 0}. In particular, if rankQM = r, then

rankQCQ(M, q) = 2r.

Theorem 3.26. For any commutative ring Q and finitely generated projective Q-module

W , consider the (Z/2Z)-grading on EndQ(Λ•Q(W )) which is induced by the decomposition

Λ•Q(W ) = Λev
Q (W )⊕Λodd

Q (W ) into even and odd components. Then there is an isomorphism

ρ : CQ(H(W ), qH)→ EndQ(Λ•Q(W ))

of (Z/2Z)-graded Q-modules given by ρ((w,ϕ)) = λw + cϕ, where λw denotes left multiplica-

tion by w ∈ W and cϕ denotes contraction by ϕ ∈ W ∗, extending the map ϕ : W → Q to all

of Λ•Q(W ) via the Leibniz rule.
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Remark 3.27. Since EndQ(Λ•Q(W )) is a Z-graded Q-module with |λw| = −1 and |cϕ| = 1,

we make CQ(H(W ), qH) into a Z-graded Q-module by setting |w| = −1 and |ϕ| = 1 for all

w ∈ W and ϕ ∈ W ∗. Note that this agrees with the Z-grading from example 3.24. This

makes ρ an isomorphism of Z-graded Q-modules, and hence we have an isomorphism

S ⊗ ρ : S ⊗Q CQ(H(W ), qH)→ S ⊗Q EndQ(Λ•Q(W ))

of graded Q-modules.

3.5 Modules Defined by Regular Sequences

In this section we return to the situation where (Q,m, k) is a regular local ring, R =

Q/(f1, . . . , fc) is a complete intersection of codimension c, and K = Kos(f1, . . . , fc;Q) is

the Koszul algebra. Let I = (x1, . . . , xn) be an ideal of Q generated by a Q-regular sequence

x1, . . . , xn with fj ∈ I for 1 ≤ j ≤ c. Let M := Q/I regarded as an R-module. In this

case, we will obtain explicit generators and relations for the DG K-module S ⊗Q EndQ(P )

by viewing EndQ(P ) as a Clifford algebra.

We remark here that Tate first introduced the idea of killing cycles in arbitrary DGAs

to commutative algebra in [19]. These ideas permeate throughout this chapter.

Since fj ∈ I = (x1, . . . , xn), we can choose vij ∈ Q with fj =
n∑
i=1

vijxi. We define

vj :=


v1j

...

vnj

 ∈ Qn. We choose a Koszul resolution P of M over Q such that P \ = Λ•Q(W ),

where W := Qn has canonical basis y1, . . . , yn with |yi| = −1. The K-action on P is given

by ejp := λvjp and the differential is given by the contraction cx, where x : W
(x1,...,xn)−−−−−→ Q.

With this explicit DG K-module structure on P , the differential on S ⊗Q EndQ(Λ•Q(W ))
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defined in Lemma 3.17 can be written as

d(α⊗ β) = α⊗ [cx, β] +
c∑
j=1

αTj ⊗ [λvj , β].

Lemmas 3.16 and 3.17 give a DG K-module structure for S ⊗Q EndQ(Λ•Q(W )). We use

this structure along with the graded Q-module isomorphism S⊗ρ from Remark 3.27 to make

S ⊗Q CQ(H(W ), qH) a DG K-module.

Lemma 3.28. Let α⊗(w,ϕ) ∈ S⊗QCQ(H(W ), qH). Define a K-action on S⊗QCQ(H(W ), qH)

by ej(α⊗ (w,ϕ)) := α⊗ (vj(w,ϕ)) and an endomorphism dC of S ⊗Q CQ(H(W ), qH) by

dC(α⊗ (w,ϕ)) := α⊗ [x,w] +
c∑
j=1

αTj ⊗ [vj, ϕ].

Then S ⊗Q CQ(H(W ), qH) equipped with dC is a DG K-module and

S ⊗ ρ : S ⊗Q CQ(H(W ), qH)→ S ⊗Q EndQ(Λ•Q(W ))

is an isomorphism of DG K-modules. Moreover, S ⊗ ρ is an isomorphism of DGAs over Q.

Proof. The given K-action corresponds with the one in Lemma 3.16 under S ⊗ ρ. Indeed,

(S ⊗ ρ)(ej(α⊗ (w,ϕ))) = (S ⊗ ρ)(α⊗ vj(w,ϕ))

= α⊗ λvj(λw + cϕ)

= ej(α⊗ (λw + cϕ))

= ej(S ⊗ ρ)(α⊗ (w,ϕ)).

To see that S ⊗ ρ is an isomorphism of DG K-modules, it remains to show that dC

corresponds with the differential d defined in Lemma 3.17. We show that (S⊗ρ)dC = d(S⊗ρ).
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Indeed,

(S ⊗ ρ)dC(α⊗ (w,ϕ)) = (S ⊗ ρ)

(
α⊗ [x,w] +

c∑
j=1

Tjα⊗ [vj, ϕ]

)

= α⊗ [cx, λw] +
c∑
j=1

Tjα⊗ [λvj , cϕ]

= d(α⊗ (λw + cϕ))

= d(S ⊗ ρ)(α⊗ (w,ϕ))

To see that S ⊗ ρ is an isomorphism of DGAs over Q, we show that S ⊗ ρ preserves

multiplication. Note that in S ⊗Q CQ(H(W ), qH), multiplication is defined by the rule

(α1 ⊗ (w1, ϕ1))(α2 ⊗ (w2, ϕ2)) := α1α2 ⊗ (w1, ϕ1)(w2, ϕ2)

since |α2| is even. To this end, we have

(S ⊗ ρ)((α1 ⊗ (w1, ϕ1))(α2 ⊗ (w2,ϕ2))) = (S ⊗ ρ)(α1α2 ⊗ (w1, ϕ1)(w2, ϕ2))

= α1α2 ⊗ (λw1 + cϕ1)(λw2 + cϕ2)

= (α1 ⊗ (λw1 + cϕ1))(α2 ⊗ (λw2 + cϕ2))

= ((S ⊗ ρ)(α1 ⊗ (w1, ϕ1)))((S ⊗ ρ)(α2 ⊗ (w2, ϕ2)))

We now view S ⊗Q CQ(H(W ), qH) as CS(H(WS), qH) via extension of scalars, where

WS := W ⊗Q S ∼= Sn. Note that CS(H(WS), qH) is a DG K-module with differential defined

by

d(w,ϕ) = [x,w] +
c∑
j=1

[vj, ϕ]Tj
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where (w,ϕ) ∈ H(WS).

Note that y1, . . . , yn is a basis for WS. Let Y1, . . . , Yn be the basis of W ∗
S dual to y1, . . . , yn;

that is, Yi(yj) = δij. Then H(WS) is a free S-module with basis y1, . . . , yn, Y1, . . . , Yn.

Observe that

d(yi) = [x, yi] +
c∑
j=1

[vj, yi]Tj = x(yi) = xi

d(Yi) = [x, Yi] +
c∑
j=1

[vj, Yi]Tj =
c∑
j=1

Yi(vj)Tj =
c∑
j=1

vijTj

We now use this Clifford algebra with differential to define an explicit DGA over Q which

is quasi-isomorphic to R EnddgR (M). Let A be the DGA over Q with:

• generators T1, . . . , Tc, y1, . . . , yn, Y1, . . . , Yn with |Tj| = 2, |yi| = −1, and |Yi| = 1,

• relations y2
i , Y

2
i , [Th, Ti], [yh, yi], [Yh, Yi], [Th, yi], [Th, Yi], and [yh, Yi] − δhi, where

[a, b] = ab− (−1)|a|·|b|ba and δhi is the Kronecker delta,

• a differential defined on the generators by dA(Tj) = 0, dA(yi) = xi, dA(Yi) =
c∑
j=1

vijTj,

extended to all of A via the Leibnitz rule.

Theorem 3.29. Let R = Q/(f1, . . . , fc) be a complete intersection and let I = (x1, . . . , xn)

be an ideal of Q generated by a Q-regular sequence x1, . . . , xn with fj ∈ I for 1 ≤ j ≤ c.

Let M = Q/I regarded as an R-module. Then A is quasi-isomorphic to R EnddgR (M) as

DGAs over Q. Moreover, if we define a K-action on A by ej1A :=
n∑
i=1

vijyi, then A is

quasi-isomorphic to R EnddgR (M) as DG K-modules as well.

Remark 3.30. Note that A can be viewed as a DG S-module, in which case the above

generating set and list of relations can be reduced. We will not take this viewpoint as our

goal is to realize R EnddgR (M) as a DGA over Q, up to quasi-isomorphism.
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Proof. First note that there is a quasi-isomorphism CS(H(WS), qH)→ R EnddgR (M) of DGAs

over Q by Lemma 3.28 and Corollary 3.20. It suffices to show that the DGA CS(H(WS), qH)

is precisely A.

The fact that CS(H(WS), qH) has the same generating set and differential as A has been

established in the previous discussion. It remains to verify the relations. Since |Tj| = 2 for

1 ≤ j ≤ c, we get the relations [Th, Ti], [Th, yi], and [Th, Yi]. For the remaining relations,

recall that the quadratic form qH applied to a pair (w,ϕ) ∈ H(WS) is qH(w,ϕ) = ϕ(w). In

particular, qH(w) = 0 = qH(ϕ). Thus, w2 = qH(w) = 0 and ϕ2 = qH(ϕ) = 0 for all w ∈ WS

and ϕ ∈ W ∗
S by the defining condition of a Clifford algebra. Since yi ∈ WS and Yi ∈ W ∗

S ,

we immediately obtain the relations y2
i and Y 2

i . For any yh, yi ∈ WS and Yh, Yi ∈ W ∗
S , we

obtain the relations [yh, yi] = (yh + yi)
2 = 0 and [Yh, Yi] = (Yh + Yi)

2 = 0. Lastly, we have

[yh, Yi] = (yh + Yi)
2 = Yi(yh) = δij.

The claim that A and R EnddgR (M) are quasi-isomorphic as DG K-modules then follows

from Lemma 3.28, Corollary 3.20, and the observation that vj =
n∑
i=1

vijyi.

The generators and relations for A are not ideal for computing cohomology, and in

particular for recovering Sjödin’s Theorem in the case where M = k. In order to obtain

more useful generators and relations for this purpose, we make an additional assumption. In

addition to M being an R-module of the form M = Q/I with I generated by a Q-regular

sequence, we now assume that fj ∈ I2 for each 1 ≤ j ≤ c. Note that M = k is such a module

by our assumption that fj ∈ m2.

In this case, since fj ∈ I2 = (x1, . . . , xn)2, we can choose vij ∈ I and whij ∈ Q such that

fj =
n∑
i=1

vijxi and vij =
n∑
h=1

whijxh.
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Observe that we have

fj =
∑

1≤h,i≤n

whijxhxi

for each 1 ≤ j ≤ c. By starting with this linear combination of the xhxi’s, we see that the

vij’s and whij’s can be chosen so that whij = 0 whenever h > i. Thus, we can write

fj =
∑

1≤h≤i≤n

whijxhxi (3.31)

for each 1 ≤ j ≤ c. Define wij :=


w1ij

...

wnij

 ∈ Qn.

Recall that H(WS) is a free S-module with a basis y1, . . . , yn, Y1, . . . , Yn. For 1 ≤ i ≤ n,

define elements

Xi := Yi −
c∑
j=1

wijTj ∈ H(WS).

Since
c∑
j=1

wijTj ∈ WS, the set y1, . . . , yn, X1, . . . , Xn is also a basis for H(WS). Viewing

Xi ∈ CS(H(WS), qH), we have

d(Xi) = d(Yi)− d

(
c∑
j=1

wijTj

)
=

c∑
j=1

vijTj − x

(
c∑
j=1

wijTj

)

=
c∑
j=1

vijTj −
c∑
j=1

x(wijTj) =
c∑
j=1

vijTj −
c∑
j=1

vijTj

= 0

So y1, . . . , yn, X1, . . . , Xn is a basis for the free S-module H(WS) and the differential on

CS(H(WS), qH) is defined by d(yi) = xi and d(Xi) = 0 for 1 ≤ i ≤ n.

Let A′ be the DGA over Q with:
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• generators T1, . . . , Tc, y1, . . . , yn, X1, . . . , Xn with |Tj| = 2, |yi| = −1, and |Xi| = 1,

• relations y2
i , X

2
i +

c∑
j=1

wiijTj, [Th, Ti], [yh, yi], [Xh, Xi] +
c∑
j=1

whijTj, [Th, yi], [Th, Xi],

and [yh, Xi]− δhi, where [a, b] = ab− (−1)|a|·|b|ba, δhi is the Kronecker delta, the whij’s

are chosen as in equation 3.31, and h < i in the relation for [Xh, Xi]

• a differential defined on the generators by dA′(Tj) = 0, dA′(yi) = xi, dA′(Xi) = 0,

extended to all of A′ via the Leibnitz rule.

Theorem 3.32. Let R = Q/(f1, . . . , fc) be a complete intersection and let I = (x1, . . . , xn)

be an ideal of Q generated by a Q-regular sequence x1, . . . , xn with fj ∈ I2 for 1 ≤ j ≤ c.

Let M = Q/I regarded as an R-module. Then A′ is quasi-isomorphic to R EnddgR (M) as

DGAs over Q. Moreover, with the K-action on A′ defined by ej1A′ :=
n∑
i=1

vijyi, A′ is

quasi-isomorphic to R EnddgR (M) as DG K-modules as well.

Proof. Everything follows as in Theorem 3.29 except for the relations involving the Xi’s,

which we verify here:

X2
i = Y 2

i − Yi
c∑
j=1

wijTj −
c∑
j=1

wijTjYi −

(
c∑
j=1

wijTj

)2

= −

[
c∑
j=1

wijTj, Yi

]

= −Yi
c∑
j=1

wijTj = −
c∑
j=1

wiijTj

[Xh, Xi] = [Yh, Yi]−

[
Yh,

c∑
j=1

wijTj

]
−

[
c∑
j=1

whjTj, Yi

]
+

[
c∑
j=1

whjTj,
c∑
j=1

wijTj

]

= −(Yh

c∑
j=1

wijTj + Yi

c∑
j=1

whjTj) = −
c∑
j=1

(whij + wihj)Tj = −
c∑
j=1

whijTj

[yh, Xi] = [yh, Yi]−

[
yh,

c∑
j=1

wijTj

]
= Yi(yh) = δih
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Taking M = k, this description of A′ recovers Sjödin’s description of Ext∗R(k, k) upon

taking cohomology. In fact, we get a bit more than this, as illustrated in the following

corollary.

Corollary 3.33. Let R = Q/(f1, . . . , fc) be a complete intersection and let I = (x1, . . . , xn)

be an ideal of Q generated by a Q-regular sequence x1, . . . , xn with fj ∈ I2 for 1 ≤ j ≤ c.

Let whij ∈ Q be as in equation 3.31. Then Ext∗R(Q/I,Q/I) is generated as a (Q/I)-algebra

by elements Z1, . . . , Zn of degree 1 and T1, . . . , Tc of degree 2 subject to the relations

Z2
i +

c∑
j=1

wiijTj, [Zh, Zi] +
c∑
j=1

whijTj, [Zh, Ti], [Th, Ti],

where whij is the image of whij in Q/I. In particular, when I = m, we obtain Sjödin’s

description of Ext∗R(k, k) as a k-algebra (Theorem 3.1).

Proof. Since H(WS) ∼= S2n with basis y1, . . . , yn, X1, . . . , Xn, the Poincaré-Birkhoff-Witt

theorem (Theorem 3.25) says that A′ ∼= CS(H(WS), qH) is a free S-module of rank 22n with

basis consisting of elements of the form yi1 · · · yikXj1 · · ·Xjl with 1 ≤ i1 < · · · < ik ≤ n,

1 ≤ j1 < · · · < jl ≤ n, 0 ≤ k, l ≤ n. Thus, there is an isomorphism of free S-modules, and

hence of Q-modules,

A′ → Λ•S(H(WS))

which maps yi1 · · · yikXj1 · · ·Xjl to yi1 ∧ · · · ∧ yik ∧ Xj1 ∧ · · · ∧ Xjl . We make Λ•S(H(WS))

into a DG K-module by setting |yi| = −1, |Xi| = 1, d(yi) = xi, and d(Xi) = 0. Then the

above Q-module isomorphism is an isomorphism of DG K-modules by Theorem 3.32. We

define W ′
S := Span〈X1, . . . , Xn〉, so that H(WS) = WS ⊕W ′

S. This decomposition gives an

isomorphism

Λ•S(H(WS))→ Λ•S(WS)⊗S Λ•S(W ′
S)
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which maps yi1∧· · ·∧yik∧Xj1∧· · ·∧Xjl to (yi1∧· · ·∧yik)⊗(Xj1∧· · ·∧Xjl). This is an isomor-

phism of DG K-modules by carrying the grading and differential from Λ•S(H(WS)) through

the map. Observe that Λ•S(WS) = Kos(x1, . . . , xn ;S)
∼−→ S/(x1, . . . , xn) ∼= (Q/I)[T1, . . . , Tc]

while Λ•S(W ′
S) has trivial differential. So we have a quasi-isomorphism

Λ•S(WS)⊗S Λ•S(W ′
S)

∼−→ (Q/I)[T1, . . . , Tc]⊗S Λ•S(W ′
S)

∼−→ ΛQ/I((Q/I)n)[T1, . . . , Tc],

where (Q/I)n has basis X1, . . . , Xn, with Xi the image of Xi in Q/I. Composing the above

maps gives a quasi-isomorphism ε : A′ ∼−→ ΛQ/I((Q/I)n)[T1, . . . , Tc]. By tracking the gen-

erators T1, . . . , Tc, y1, . . . , yn, X1, . . . , Xn of A′ from Theorem 3.32 through ε, we see that

ε(Tj) = Tj, ε(yi) = 0, and ε(Xi) = Xi. Set Zi = Xi for 1 ≤ i ≤ n. Hence,

Ext∗R(Q/I,Q/I) = H∗(A′) = ΛQ/I((Q/I)n)[T1, . . . , Tc]

is generated as a (Q/I)-algebra by elements Z1, . . . , Zn of degree 1 and T1, . . . , Tc of degree

2 subject to the relations from Theorem 3.32; namely,

Z2
i +

c∑
j=1

wiijTj, [Zh, Zi] +
c∑
j=1

whijTj, [Zh, Ti], [Th, Ti].

3.6 Examples

We now look at Theorems 3.29 and 3.32 in a few special cases and use this to recover some

known results related to the work of Dyckerhoff. We also use Theorem 3.29 to compute

Hochschild cohomology of the localization of a polynomial ring.
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3.6.1 Hypersurface Case

A hypersurface is a complete intersection of codimension c = 1; specifically, R = Q/(f),

with f a non-zero divisor in a regular local ring Q. The notation in Theorems 3.29 and 3.32

can be simplified in the hypersurface case. Since hypersurfaces are an important class of

complete intersections, we present the results of these theorems in this special case.

As in the setup of Theorem 3.29, let I = (x1, . . . , xn) be an ideal of Q generated by a Q-

regular sequence x1, . . . , xn with f ∈ I. Let M = Q/I regarded as an R-module. Then there

exist vi ∈ Q with f =
n∑
i=1

vixi. If f ∈ I2 as in Theorem 3.32, then as in equation 3.31 we have

elements whi ∈ Q such that f =
∑

1≤h≤i≤n

whixhxi. We then define Xi = Yi − wiiT ∈ H(WS).

We now state the theorems in the hypersurface case as a formal remark.

Remark 3.34. Let R = Q/(f) be a hypersurface and let I and M be as above.

(1) Let A be the DGA over Q with:

• generators T, y1, . . . , yn, Y1, . . . , Yn with |T | = 2, |yi| = −1, and |Yi| = 1,

• relations y2
i , Y

2
i , [yh, yi], [Yh, Yi], [T, yi], [T, Yi], [yh, Yi]− δhi,

• a differential defined on the generators by dA(T ) = 0, dA(yi) = xi, dA(Yi) = viT ,

extended to all of A via the Leibnitz rule.

Then A is quasi-isomorphic to R EnddgR (M) as DGAs over Q. Moreover, if we define a

K-action on A by e1A :=
n∑
i=1

viyi, then A is quasi-isomorphic to R EnddgR (M) as DG

K-modules as well.

(2) Suppose f ∈ I2. Let A′ be the DGA over Q with:

• generators T, y1, . . . , yn, X1, . . . , Xn with |T | = 2, |yi| = −1, and |Xi| = 1,

• relations y2
i , X

2
i + wiiT, [yh, yi], [Xh, Xi] + whiT, [T, yi], [T,Xi], [yh, Xi]− δhi,
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• a differential defined on the generators by dA′(T ) = 0, dA′(yi) = xi, dA′(Xi) = 0,

extended to all of A′ via the Leibnitz rule.

Then A′ is quasi-isomorphic to R EnddgR (M) as DGAs over Q. Moreover, with the

K-action on A′ defined by e1A′ :=
n∑
i=1

viyi, A′ is quasi-isomorphic to R EnddgR (M) as

DG K-modules as well.

This hypersurface version can recover a result of Dyckerhoff [11], who is interested in

computing the DGA of endomorphisms of a certain (Z/2Z)-graded module which we now

define. To do so, we consider two categories associated to the hypersurface R = Q/(f),

namely the homotopy category of matrix factorizations of (Q, f) and the singularity category

of R.

A matrix factorization for (Q, f) is a free (Z/2Z)-graded Q-module E = E0⊕E1 of finite

rank equipped with a Q-linear endomorphism d of E of degree 1 (i.e., d(Ei) ⊆ Ei+1 with

subscripts taken modulo 2) satisfying d2 = f · idE. A homomorphism of matrix factorizations

from E to F is a (Z/2Z)-graded Q-linear map α : E → F of degree 0 such that dF ◦α = α◦dE.

Two homomorphisms α, β : E → F are homotopic if there exists a homomorphism h : E → F

of degree 1 such that dF ◦ h + h ◦ dE = α − β. Note that this is an equivalence relation

and is preserved by composition. The homotopy category of matrix factorizations, denoted

[MF (Q, f)], is the category whose objects are matrix factorizations of (Q, f) and whose

morphisms are the equivalence classes of homomorphisms from E to F formed by identifying

homotopic homomorphisms.

Let Db(R) denote the bounded derived category of finitely generated R-modules. A

complex in Db(R) is perfect if it is isomorphic in Db(R) to a bounded complex of finitely

generated free R-modules. Let Perf(R) denote the full subcategory of perfect complexes in

Db(R), which is known to form a thick subcategory. So we can define the Verdier quotient

Dsg(R) := Db(R)/Perf(R), called the singularity category of R. Observe that a finitely
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generated R-module M can be viewed as an object in Dsg(R) by considering it as a complex

concentrated in degree 0.

Buchweitz [6] and Eisenbud [12] proved that there is an equivalence of categories

[MF (Q, f)]→ Dsg(R)

given by (E, d) 7→ coker
(
E1

d−→ E0

)
. This equivalence allows us to associate to every

finitely generated R-module M a matrix factorization M stab.

Dyckerhoff gives a description for End(kstab), the (Z/2Z)-graded DGA of endomorphisms

of kstab. We recover this algebra using the description of A in Remark 3.34(1) by setting

T = 1. Note that since |T | = 2, this action does indeed produce a (Z/2Z)-graded module.

Proposition 3.35. Let R = Q/(f) be a hypersurface and let A be the DGA described in

Remark 3.34(1). The (Z/2Z)-graded DGA End(kstab) is recovered by setting T = 1 and

viewing the resulting object as a (Z/2Z)-graded module in the natural way. In other words,

End(kstab) ∼= A⊗Q[T ] Q[T ]/(T − 1).

Proof. Using the generators and relations of A given in Remark 3.34(1), setting T = 1 yields

the (Z/2Z)-graded algebra generated by elements

{y1, . . . , yn, Y1, . . . , Yn}

of degree 1 subject to the relations

{y2
i , Y

2
i , [yh, yi], [Yh, Yi], [Yh, yi]− δhi}.

and equipped with the differential d defined by d(yi) = xi and d(Yi) = vi. These are precisely
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the generators, relations and differential for End(kstab) given by Dyckerhoff in [11, Section

4.1].

3.6.2 Homogeneous Quadratic Case

In this section we return to the general codimension c case, though we only consider homo-

geneous quadratic complete intersections. We begin with the definition.

Definition 3.36. A (homogeneous) quadratic complete intersection is a complete intersec-

tion R = Q/(f1, . . . , fc) such that

(1) (Q,m, k) is a regular local k-algebra for which the composition k ⊆ Q � Q/m = k is

an isomorphism,

(2) m is generated by a Q-regular sequence x1, . . . , xn, and

(3) there exist elements whij ∈ k ⊆ Q such that, for all 1 ≤ j ≤ c,

fj =
∑

1≤h≤i≤n

whijxhxi.

The key point in (3) is that the whij’s are actually in k. For example, we may take Q

to be either k[x1, . . . , xn](x1,...,xn) or k[[x1, . . . , xn]] with each fj a nonzero quadratic form in

k[x1, . . . , xn].

Our goal in this section is to show that the DGA A′ described in Theorem 3.32 is formal

when R is a homogeneous quadratic complete intersection. Recall that a DGA is formal if

it is quasi-isomorphic to its cohomology viewed as a DGA with trivial differential. This is

a special case of a result of Beilinson, Ginzburg, and Soergel for Koszul algebras in [4]. It

was also shown by Dyckerhoff [11, Section 5.5] in the case of a hypersurface R = Q/(f) with

Q = k[[x1, . . . , xn]] and f a nonzero quadratic form.
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Proposition 3.37. Let R = Q/(f1, . . . , fc) be a quadratic complete intersection and let M

be a finitely generated R-module. Let A′ be the DGA described in Theorem 3.32. Then A′

is formal.

Proof. We define a DGA B over k with generators

{T1, . . . , Tc, X1, . . . , Xn}

with |Tj| = 2 and |Xi| = 1, subject to the relations

{
X2
i +

c∑
j=1

wiijTj, [Th, Ti], [Xh, Xi] +
c∑
j=1

whijTj, [Th, Xi]

}

with whij ∈ k chosen via equation 3.31, and with trivial differential. Since k ⊆ Q, we see that

B ⊆ A′. In fact, this containment is a quasi-isomorphism. Recalling that S = Q[T1, . . . , Tc],

observe that

B ∼= ΛS(Sn) ∼= Λk(k
n)[T1, . . . , Tn] ∼= H∗(A′),

where Sn and kn each have the basis X1, . . . , Xn. Thus, A′ is formal.

3.6.3 Hochschild Cohomology

We now look at the Hochschild cohomology of the localization of a polynomial ring with

respect to the maximal ideal generated by the variables. This is an application of Theorem

3.29 involving a module M = Q/I 6= k. A related computation is given by Buchweitz and

Roberts in [7].

Before considering the example, we recall the notion of Hochschild cohomology.

Definition 3.38. Let A be a commutative ring and let B be a flat commutative A-algebra.
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Then the Hochschild cohomology of B over A is defined by

HH∗(B/A) := Ext∗B⊗AB
(B,B),

where B is viewed as a (B ⊗A B)-module via multiplication.

Consider the local ring B = k[z1, . . . , zn]mB
, where mB = (z1, . . . , zn). Let g1, . . . , gc

be a B-regular sequence contained in mB and set A = k[u1, . . . , uc](u1,...,uc). We show that

there is a flat k-algebra homomorphism ϕ : A→ B defined by ϕ(uj) = gj. Indeed, consider

the k-algebra homomorphism ϕ̃ : k[u1, . . . , uc] → B defined by ϕ̃(uj) = gj. If we have

h(u1, . . . , uc) ∈ k[u1, . . . , uc] with h(0, . . . , 0) 6= 0, then ϕ̃(h) = h(f1, . . . , fc) /∈ mB. Thus

ϕ̃(h) is invertible, so that ϕ is a well-defined k-algebra homomorphism. Viewing B as an

A-algebra via ϕ, we see that B is flat, since for i > 0 we have

ToriA(k,B) = H i(Kos(u1, . . . , uc;A)⊗A B) ∼= H i(Kos(g1, . . . , gc;B)) = 0

as g1, . . . , gc form a B-regular sequence.

Note that HH∗(B/A) = Ext∗B⊗AB
(B,B) is a (B ⊗A B)-module. If µ : B ⊗A B → B

denotes the canonical multiplication map on B ⊗A B, then observe that kerµ acts trivially

on B, and so HH∗(B/A) is actually a B-module via µ.

When considering B ⊗A B, we will let z1, . . . , zn denote the variables for the first factor

of B and let w1, . . . , wn denote the variables for the second factor of B. Though B ⊗A B is

not a local ring, m := (z1, . . . , zn, w1, . . . , wn) is a maximal ideal with residue field k. Since

µ−1(mB) = m, if α ∈ B ⊗A B with α /∈ m, then µ(α) /∈ mB and is therefore invertible.

Hence, localizing the Hochschild cohomology modules does not change the modules, i.e.,
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HH∗(B/A)m ∼= HH∗(B/A). In particular, we have

HH∗(B/A) ∼= Ext∗(B⊗AB)m(B,B).

Define Q := (B ⊗k B)m = k[z1, . . . , zn, w1, . . . , wn](z1,...,zn,w1,...,wn), where we now view

m = (z1, . . . , zn, w1, . . . , wn) as a maximal ideal of B ⊗k B. For each 1 ≤ j ≤ c, set

fj := gj(z1, . . . , zn) − gj(w1, . . . , wn) ∈ Q and R := Q/(f1, . . . , fc). Observe that Q is

a regular local ring, f1, . . . , fc is a Q-regular sequence, and R is a complete intersection.

Furthermore, we see that (B⊗AB)m ∼= R by realizing it as a quotient of Q = (B⊗k B)m by

identifying the actions of uj through ϕ on each factor of B. Thus,

(B ⊗A B)m ∼= (B ⊗k B)m/(g1 ⊗ 1− 1⊗ g1, . . . , gc ⊗ 1− 1⊗ gc) = Q/(f1, . . . , fc) = R.

Set xi := zi − wi ∈ Q and I := (x1, . . . , xn) ⊆ Q. Observe that x1, . . . xn form a Q-regular

sequence. For each 1 ≤ j ≤ c, we have fj ∈ I. Note that we can realize the (B ⊗A B)m-

module M := B as a quotient of Q = (B ⊗k B)m by identifying the actions of zi on the first

factor of Q with the action of wi on the second factor. So

M = B ∼= (B ⊗k B)m/(z1 − w1, . . . , zn − wn) = Q/I.

Therefore, HH∗(B/A) ∼= Ext∗(B⊗AB)m(B,B) ∼= Ext∗R(M,M) where R = Q/(f1, . . . , fc) is a

complete intersection, M = Q/I with each fj ∈ I, and I is generated by the regular sequence

x1, . . . , xn. We may now apply Theorem 3.29 to obtain the following Proposition.

Proposition 3.39. Let B = k[z1, . . . , zn](z1,...,zn) and let g1, . . . , gc be a B-regular sequence.

Let A = k[u1, . . . , uc](u1,...,uc) and consider B as a flat A-algebra via ϕ : A → B defined by

ϕ(ui) = gi. Choose elements vij ∈ Q = (B ⊗k B)(z1,...,zn,w1,...,wn) which satisfy the equation
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gj(z1, . . . , zn) − gj(w1, . . . , wn) =
n∑
i=1

vij(zi − wi). Then HH∗(B/A) is quasi-isomorphic to

the cohomology of the DGA over Q with generators

{T1, . . . , Tc, y1, . . . , yn, Y1, . . . , Yn}

with |Tj| = 2, |yi| = −1, and |Yi| = 1, subject to the relations

{y2
i , Y

2
i , [Th, Ti], [yh, yi], [Yh, Yi], [Th, yi], [Th, Yi], [yh, Yi]− δhi},

with differential given by d(Tj) = 0, d(yi) = zi − wi, and d(Yi) =
c∑
j=1

vijTj.

To give an explicit description of HH∗(B/A), we need to find vij ∈ Q which satisfy

fj =
n∑
i=1

vijxi. Such vij’s must satisfy a nice property which we now illustrate.

For notational simplicity, we let Z := (z1, . . . , zn) and W := (w1, . . . , wn). Given any

h(Z,W ) ∈ Q = k[z1, . . . , zn, w1, . . . , wn](z1,...,zn,w1,...,wn), let h(Z) denote the rational function

in k[z1, . . . , zn](z1,...,zn) obtained by setting wi = zi. We claim the vij’s satisfy vij =
∂gj(Z)

∂zi
.

Recall that fj(Z,W ) = gj(Z) − gj(W ) and xi = zi − wi. So for 1 ≤ h ≤ n and 1 ≤ j ≤ c,

there exist vhj(Z,W ) ∈ Q with

fj(Z,W ) =
n∑
h=1

vhj(Z,W )(zh − wh).

Taking the partial derivative with respect to zi on both sides, we obtain

∂gj(Z)

∂zi
=
∂fj(Z,W )

∂zi
=

n∑
h=1

∂vhj(Z,W )

∂zi
(zh − wh) + vij(Z,W ).

Setting wi = zi, we obtain
∂gj(Z)

∂zi
= vij(Z).

We end by verifying this calculation with an explicit example when c = 1. Let B =
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k[z1, z2](z1,z2) and let g = z2
1 + 2z3

2 . We then have Q = k[z1, z2, w1, w2](z1,z2,w1,w2) as well as

f = z2
1 + 2z3

2 − w2
1 − 2w3

2. We need to write f = v1(z1 − w1) + v2(z2 − w2) (where v1 = v11

and v2 = v21). We may choose v1 = z1 + w1 and v2 = 2(z2
2 + z2w2 + w2

2). Note that

v1 = 2z1 =
∂g

∂z1

and v2 = 6z2
2 =

∂g

∂z2

,

so these satisfy the above property.

Our choices for v1 and v2 are not unique. For example, we could have also chosen

v1 = z1 +w1 + (z2 −w2) and v2 = 2(z2
2 + z2w2 +w2

2)− (z1 −w1). These satisfy our defining

equation as well as vi =
∂g

∂zi
for i = 1, 2.
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