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Rings graded by Z and Zd play a central role in algebraic geometry and commutative algebra,

and the purpose of this thesis is to consider rings graded by any abelian group. A commutative

ring is graded by an abelian group if the ring has a direct sum decomposition by additive

subgroups of the ring indexed over the group, with the additional condition that multiplication

in the ring is compatible with the group operation. In this thesis, we develop a theory of

graded rings by defining analogues of familiar properties—such as chain conditions, dimension,

and Cohen-Macaulayness. We then study the preservation of these properties when passing

to gradings induced by quotients of the grading group.
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Chapter 1

Introduction

In the traditional definition, a ring R is graded if it is a direct sum
⊕

i∈ZRi of additive

subgroups Ri of R, with the additional restriction that RiRj ⊆ Ri+j. Intuitively, the

motivation comes from polynomial rings, with the subgroups Ri consisting of the homogeneous

polynomials of degree i. The second condition is then simply that a degree i monomial times

a degree j monomial has degree i+ j. More recently (and even as far back as [8]), it has been

common to allow what are called multi-graded rings, or rings that are a direct sum indexed

over Zd. There is an obvious extension of the definition to G-graded rings—rings graded by

any abelian group G—given in Chapter 2. There has been substantial work done on (not

necessarily commutative) rings graded by arbitrary groups (cf. [16] or [4] for rings graded by

monoids), but we restrict our focus to classical objects of study in commutative algebra.

If H is a subgroup of G, then we can induce a natural grading of R by the quotient G/H.

This is also described in Chapter 2. One major theme of this thesis is to define properties of

the ring strictly in terms of graded objects, and ask the following questions: When we define

graded properties of the ring when graded by G, do the same properties hold when considered

as a ring graded by the quotient group G/H? Under what assumptions do the properties

descend (respectively, ascend) from the G-grading to the G/H-grading (respectively, to the
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G-grading from the G/H-grading)? A special case of this is when H = G. In this case the

descent of a given G-graded property to the G/H-grading is the same as descending to the

ring R considered as a non-graded ring, as in [7] and [18].

In Chapter 2 we develop the basic notation and language of G-graded rings. In particular,

we define G-graded analogues of many familiar properties: modules, prime ideals, localization,

Nakayama’s Lemma, and chain conditions, to name a few. We use a preceding “G-” to denote

that a given property hold only for G-graded objects, as in [12]. While there are results in

this thesis that also appear in [12], the approaches are different, and we are concerned mainly

with the passage of properties between the G- and G/H-gradings rather than between just

the G-grading and the trivial grading. The following theorem is indicative of the type of

results we are seeking:

Theorem 2.41. Suppose R is a G-graded ring. If H is a finitely generated subgroup of G,

the following are equivalent:

1. R is G-Noetherian.

2. R is G/H-Noetherian.

In Chapter 3 we develop a theory of primary decomposition for G-graded R-modules.

It can be shown ([6, Exercise 3.5]) that in a very general setting primary decompositions

and associated primes of graded modules have expected properties: all the associated primes

are graded primes, and the primary modules appearing in the primary decomposition are

also graded modules. For our purposes, however, this setting is not general enough, so we

avoid making hypotheses on the group G and opt instead to develop the theory in the graded

category. There are similarities and differences between the graded and non-graded cases.

One similarity is:
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Corollary 3.12. Suppose R is a G-Noetherian ring, M is a finitely generated G-graded

R-module, and P ∈ SpecG(R). Then P ∈ AssG(M) if and only if P = Ann(f) for some

homogeneous element f ∈M . Also, the union of the associated G-primes of R is contained

in the collection of zerodivisors of R, but this containment is not, in general, reversible.

However, this corollary highlights a difference as well: the union of the associated primes

of R is, in general, strictly contained in the collection of zerodivisors of R, a notable difference

from the non-graded case.

Chapter 4 is devoted to dimension theory, including integrality and results on (graded)

heights of graded prime ideals. Of note is an analogue of Krull’s height theorem:

Corollary 4.19. If R is G-Noetherian, and I := (a1, . . . , an) is an ideal generated by G-

homogeneous elements ai, then htG(P ) ≤ n for any minimal G-prime P of I.

Of the results on heights of primes, the most useful is a generalization of a result of

Matijevic-Roberts [14] and Uliczka [18]:

Theorem 4.22. Let R be a G-graded ring and H a finitely generated torsion-free subgroup

of G. If P ∈ SpecG/H(R), and we set P ∗ := P ∗G, then

htG/H(P ) = htG/H(P ∗) + htG/H(P/P ∗).

This and many of the other results in Chapter 4 are put to use in Chapter 5, which

deals primarily with a graded version of the Cohen-Macaulay property. By defining grade in

terms of C̆ech cohomology, we give a definition of grade and Cohen-Macaulayness for any

(commutative) G-Noetherian ring. The main theorem of the chapter is:

Theorem 5.9. Let R be a G-Noetherian graded ring, and suppose H is a finitely generated

torsion-free subgroup of G. The following are equivalent:
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1. R is G-Cohen-Macaulay.

2. R is G/H-Cohen-Macaulay.

This generalizes results of [7], [14], [18].
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Chapter 2

Notation and basic terminology

In this chapter we set up the basic language of commutative rings graded by an abelian group.

We also give definitions for some graded analogues of common objects and properties seen

in the study of commutative rings. Throughout the chapter—and the rest of this work—all

rings will be commutative with identity, and G will always be an abelian group.

2.1 G-graded rings and modules

A G-graded ring R is a ring R with a family of subgroups {Rg | g ∈ G} of R such that

R =
⊕
g∈G

Rg,

as abelian groups, and RgRh ⊆ Rg+h for all g, h ∈ G. When there is no danger of confusion,

and G is understood, we may refer to the graded ring R.

Similarly, if R is a G-graded ring, a G-graded R-module M is an R-module M together
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with a family of subgroups {Mg | g ∈ G} of M such that

M =
⊕
g∈G

Mg,

as abelian groups, and RgMh ⊆ Mg+h for all g, h ∈ G. A G-homogeneous ideal of R is a

G-graded submodule of R.

By definition, if m ∈ M then there exist unique elements mg ∈ Mg for each g ∈ G, all

but finitely many of which are zero, such that

m =
∑
g∈G

mg.

The element mg is called the gth homogeneous component of m. If m = mg 6= 0 for some

g ∈ G then m is called G-homogeneous of degree g, or just homogeneous if G is understood,

and we denote the degree of m by deg(m). As before, when there is no danger of confusion,

we may refer to the graded R-module M , or perhaps the graded module M .

Definition 2.1. Let R be a G-graded ring and M a graded R-module. Let σ(M) denote the

subgroup of G generated by {g ∈ G |Mg 6= 0}. If σ(M) = G we say M is properly graded by

G. If σ(M) = 0, we say that M is trivially graded or that M is concentrated in degree 0.

Remark 2.2. Let R be a G-graded ring and M a graded R-module. Then

1. The identity of R is homogeneous of degree 0.

2. R0 is a commutative ring with identity.

3. For all g ∈ G, Mg is an R0-module.

For a graded module M over the G-graded ring R, a G-homogeneous (or just homogeneous

if G is understood) R-submodule of M is an R-submodule N of M which has a generating set
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consisting of G-homogeneous elements. The next proposition characterizes such submodules

in a useful way, and we omit the proof.

Proposition 2.3. Let R be a G-graded ring and M a graded R-module. Let N be an

R-submodule of M . The following are equivalent:

1. N is homogeneous.

2. For every n ∈ N , all the homogeneous components of n are in N .

We also define graded subrings, and the following remark characterizes them in the same

way as the previous proposition. A G-graded subring of the graded ring R is a subring S of

R such that

S =
⊕
g∈G

Sg

where Sg = S ∩Rg for all g ∈ G.

Remark 2.4. Let R be a G-graded ring and S a subring of R. The following are equivalent:

1. S is a graded subring of R.

2. For every s ∈ S, all the homogeneous components of s are in S.

3. S is generated as an algebra over S0 by homogeneous elements.

The next two definitions describe a fundamental operation given a G-graded ring and a

subgroup H of G. In Chapters 4 and 5 we will focus a great deal on the relationship between

R as a G-graded ring and R as a G/H-graded ring.

Definition 2.5. Let R be a G-graded ring and H a subgroup of G.

1. Then

RH :=
⊕
h∈H

Rh
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is an H-graded subring of R. One can also view RH as a G-graded ring, and we will

specify when it is considered as such. If M is a graded R-module and g ∈ G then

Mg+H :=
⊕
h∈H

Mg+h

is a G-graded RH-submodule of M (considering RH as a G-graded ring). In particular,

MH is a graded RH-module.

2. The family of subgroups {Rx | x ∈ G/H} (as defined above) determines a G/H-grading

on the ring R. Of course, R as a G/G-graded (equivalently, 0-graded) ring, is just R

endowed with the trivial grading (where all elements have degree 0). Similarly, for a

G-graded R-module M ,

M =
⊕
x∈G/H

Mx

defines a G/H-grading on M , and under this grading M is a G/H-graded R-module.

Definition 2.6. A homomorphism φ : R → S of G-graded rings is called homogeneous if

φ(Rg) ⊆ Sg for all g ∈ G. In this case, we say that S is a graded R-algebra. Note that φ(R)

is a graded subring of S. We say that S is a finitely generated graded R-algebra if there

exists a finite set T of homogeneous elements of S such that S = φ(R)[T ]. (Equivalently, S

is finitely generated as an algebra over φ(R).) Similarly, a homomorphism f : M → N of

graded R-modules is homogeneous of degree h if f(Mg) ⊆ Ng+h for all g ∈ G.

Remark 2.7. If f : M → N is a homogeneous homomorphism of graded R-modules, then

ker(f) and im(f) are homogeneous submodules of M and N , respectively.

Lemma 2.8. Let R be a G-graded ring, M a G-graded R-module, H a subgroup of G, and

g ∈ G. Consider RH as a G-graded ring, and let A be a G-homogeneous RH-submodule of

Mg+H . If RA is the R-submodule of M generated by A, then RA ∩Mg+H = A.
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Proof. Clearly, RA ∩Mg+H is a G-graded RH-submodule of Mg+H and A ⊆ RA ∩Mg+H .

Let m ∈ RA ∩ Mg+H be G-homogeneous of degree g + h for some h ∈ H. Then there

exist G-homogenous elements a1, . . . , an of A such that m =
∑
riai for some ri ∈ R. Say

deg(ai) = g + hi for hi ∈ H, 1 ≤ i ≤ n. Since deg(m) = g + h, we can assume each ri is

homogeneous of degree h− hi. Hence, ri ∈ RH for all i and so m ∈ RHA = A.

2.2 Basic graded properties

In this section we begin defining graded analogues of common objects and properties seen in

the study of commutative rings. Often we will require that a condition only holds for the

homogeneous elements of a ring or module, or we will only consider properties that hold for

some collection of graded objects.

As noted before, in Chapters 4 and 5 we will be studying the relationship between R as

a G-graded ring and R as a G/H-graded ring. A common hypothesis we will make on the

subgroup H of G is that H is torsion-free, and the following discussion is quite useful, as

Proposition 2.12 is fundamental to much of Chapter 4.

Definition 2.9. A totally ordered abelian group is an abelian group G equipped with a total

order ≤ with the property that whenever a ≤ b then a+ g ≤ b+ g for all a, b, g ∈ G.

The familiar groups Z, Q, and R under addition with the usual total order are all examples

of totally ordered abelian groups. If {Gi}i∈I is a collection of totally ordered abelian groups

with respective orders ≤i and I is a totally ordered index set, one defines the lexicographic

order on the direct sum
⊕

iGi by

(ai) <lex (bi) ⇐⇒ aj <j bj where j is the smallest index i in I such that ai 6= bi.

Note that such an index j exists as ai and bi are zero for all but finitely many i. In this way,
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Zd and
⊕∞

i=1Z are totally ordered abelian groups with the lexicographic sums of the usual

order on Z.

It is easily seen that any totally ordered abelian group must be torsion-free. The converse

is also true: Any torsion-free group G can be endowed with a total order making G into a

totally ordered abelian group [13]. However, for our purposes, we need only observe that this

is true for finitely generated torsion-free abelian groups, a fact which is clear since any such

group is isomorphic to Zd for some d.

In the next definition (and many following), we incorporate the grading group as part of

the definition. This allows the specificity we require when we consider multiple gradings on

the same ring simultaneously (as in the following examples and Proposition 2.12).

Definition 2.10. A G-graded ring R is called a G-field (respectively, G-domain) if every

nonzero G-homogeneous element of R is a unit (respectively, a non-zerodivisor). The ring

R is called G-reduced if it has no nonzero G-homogeneous nilpotent elements. In case the

ring R is a 0-field (or a 0-domain, or 0-reduced), we will simply say R is a field (a domain,

reduced).

Example 2.11. The first two of the following examples show that a G-field need not be a

field (or a domain, or even reduced) in the usual sense. The third shows that we can grade a

field nontrivially so that it is also a G-field.

1. Let R = k[x1, x
−1
1 . . . , xd, x

−1
d ] where k is a field and x1, . . . , xd are indeterminates over

k. Endow R with a Zd-grading by setting deg(xi) = ei ∈ Zd, where ei is zero in every

component except the ith component and is 1 in the ith component. Note that under

this grading, the only nonzero homogeneous elements are k-multiples of monomials in

x1, . . . , xd, which are all units. Hence, R is a Zd-field, but R is clearly not a field, as

1 + x1 is not a unit, for example. However, R is both a G-domain and a domain.
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2. Let R = k[x]/(xn − 1) where k is a field and x is an indeterminate over k and n > 1.

Endow R with a Z/nZ-grading by setting deg(x) = 1 ∈ Z/nZ. (It is clear that xn−1 is

homogeneous under this grading, so the grading passes to the quotient ring R.) Every

nonzero homogenous element of R is a unit, so R is a Z/nZ-field. However, R is not a

domain, as xn − 1 is reducible. In fact, if n is prime and char(k) = n, then R is not

reduced, since in this case x− 1 is nilpotent.

3. Let k = Fp(t), where Fp is the field with p elements and t an indeterminate over Fp.

Let x be an indeterminate over k and consider R = k[x]/(xp − t). Note that as xp − t

is irreducible over k, R is a field. Give R a Z/pZ-grading by setting deg(x) = 1. Then

R is both a field and a Z/pZ-field which is not concentrated in degree 0.

The previous examples show that a G-field R need not have this property descend to the

ring R as a G/H graded ring, even when H is a torsion-free subgroup, as in part (1). On

the other hand, when R is G-reduced or a G-domain, the next proposition prohibits such

counterexamples:

Proposition 2.12. Let R be a G-graded ring and H a torsion-free subgroup of G. Then

1. R is a G-domain if and only if R is a G/H-domain.

2. R is G-reduced if and only if R is G/H-reduced.

Proof. We prove part (1); part (2) is proved similarly. Note that the “if” is clear, as any

G-homogeneous element is also G/H-homogeneous. For the other implication, suppose

a, b ∈ R are G/H-homogeneous, and suppose ab = 0, but b 6= 0. Write a = ag+h1 + · · ·+ag+h`

and b = bg′+h′1 + · · · + bg′+h′k , where ag+hi
∈ Rg+hi

, bg′+h′j ∈ Rg′+h′j
, and bg′+h′j 6= 0 for all j.

Note that F := 〈{hi}, {h′j}〉 is a finitely generated, torsion-free subgroup of H. Therefore

there exists a total order on F such that F is a totally ordered abelian group. Without loss



12

of generality, we can assume hi < h` for all i < ` and h′j < h′k for all j < k. In particular

hi + h′j = h` + h′k if and only if i = `, j = k.

Considering ab =
∑

i,j(ag+hi
)(bg′+h′j ), note that g + hi + g′ + h′j = g + h` + g′ + h′k if and

only if hi + h′j = h` + h′k, which is if and only if i = ` and j = k. Since ab = 0, this means

ag+h`
bg′+h′k = 0. As R is a G-domain, we must have ag+h`

= 0. By induction, a = 0 and R is

also a G/H-domain.

While the property of being a G-field does not necessarily descend to the G/H-grading

for a torsion-free subgroup H of G, given information about the structure of the group G, we

can still say something about the structure of the ring in certain cases.

Proposition 2.13. Let R be a G-graded ring. Suppose G = σ(R) ∼= A⊕ Z`, where ` ≥ 1. If

R is a G-field, then as G/A-graded rings,

R ∼= RA[t1, t
−1
1 , . . . , t`, t

−1
` ],

where the ti are indeterminates over RA.

Proof. Let {e1, . . . , e`} be a basis for Z`. Choose nonzero elements xi ∈ Rei
(possible since

G = σ(R)). We first need to show that the xi are algebraically independent over RA.

Give RA[t1, . . . , t`] a Z`-grading (a G/A-grading) by setting deg(ti) = ei. Consider the map

φ : RA[t1, . . . , t`]→ R which sends RA to RA and maps ti 7→ xi. This is certainly homogeneous

(under the Z`-grading), so ker(φ) is Z`-homogeneous. Suppose cm is a homogeneous element

in ker(φ) with c ∈ RA and m = tα1
1 . . . tα`

` . Then φ(cm) = cxα1
1 . . . xα`

` = 0, but, since R is a

G-field, we see this implies that c = 0. Therefore ker(φ) = 0. This gives a G/A-homogeneous

injection of RA[t1, . . . , t`] into R where the ti map to units, and this induces a map on the

localization at {(t1 · · · t`)n | n ≥ 0}. It is easy to see that the induced map is also an injection.
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Finally, it only remains to be shown that RA[t1, t
−1
1 , . . . , t`, t

−1
` ] maps onto R via a G/A-

homogeneous map. Let u ∈ Rg for some g ∈ G/A. We can write g = n1e1 + · · · + n`e` for

ni ∈ Z. Let m := xn1
1 . . . xn`

` ∈ Rg. Since m is a unit, we have m−1u ∈ R0 = RA. Thus

u = cm for some c ∈ RA.

Corollary 2.14. Let R be a G-field properly graded by a finitely generated torsion-free abelian

group G. Then dim(R) = rank(G). In particular, R is a field if and only if G = 0. (Here,

dim(R) denotes the usual Krull dimension of the ring.)

Proof. If G 6= 0 is finitely generated and torsion-free, then G ∼= Z` for some ` ≥ 1. By the

previous proposition, R ∼= R0[t1, t
−1
1 , . . . , t`, t

−1
` ], and dim(R) = ` = rank(G). In particular,

since R is a G-field, R0 is a field, and because R is properly graded, R = R0 if and only if

G = 0. In this latter case, we also have dim(R) = 0 = rank(G).

Corollary 2.15. Let R be a G-field, and suppose H is a subgroup of G. If H is cyclic, then

every G/H-homogeneous ideal of R is principal.

Proof. Notice that RH is an H-field, so that RH is isomorphic (as H-graded rings) to one

of k[t]/(tn − 1) or k[t, t−1], for k some field, depending on whether H ∼= Z/nZ or H ∼= Z,

respectively. Now suppose I is a G/H-homogeneous ideal of R. One easily checks that

I = (I ∩ RH)R: If a ∈ I is G/H homogeneous, write a = a1 + · · · + ak, where for each i,

ai ∈ Rg+hi
for some hi ∈ H and a fixed g ∈ G. Then a1 is G-homogeneous, and therefore

invertible, so a−1
1 a ∈ I ∩RH . This shows I ⊆ (I ∩RH)R, and the other containment is clear.

Since I ∩RH is principal, I must be principal as well.

We define the graded analogue of a free module in a natural way: a G-graded R-module

M over a graded ring R is called G-free if it has a basis consisting of homogeneous elements.

Here, a basis is a generating set which is R-linearly independent. In the non-graded case, any

module over a field is free, and the analogous result is true in the G-graded setting as well:
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Proposition 2.16. Let R be a G-field and M a graded R-module. Then M is G-free.

Moreover, any set of homogeneous elements which are R-linearly independent is contained

in a basis consisting of homogeneous elements, and any set of homogeneous elements which

generates M contains a basis.

Proof. Let T be a set of homogeneous elements of M which are R-linearly independent. By

Zorn’s lemma, T is contained in a maximal set S of R-linearly independent homogeneous

elements in M . We claim that S generates M . Let x be an arbitrary homogeneous element

of M . It suffices to show x is in the submodule generated by S. If x ∈ S we are done, so

assume x 6∈ S. Then S ∪ {x} is R-linearly dependent. Thus, there is some nontrivial relation

r1s1 + · · ·+ rnsn + rx = 0 where si ∈ S and ri, r ∈ R (not all zero). Furthermore, as x and

the si are homogeneous for all i we may assume r and the ri are homogeneous as well. As S

is linearly independent, we must have r 6= 0. Since R is a G-field, this means that r is a unit,

which implies x is in the submodule generated by S.

The second statement is proved similarly.

Definition 2.17. Let R be a G-graded ring and M a finitely generated graded R-module.

We let µR(M) and µGR(M), respectively, denote the least number of elements and the least

number of G-homogeneous elements, respectively, needed to generate M .

Clearly, µR(M) ≤ µGR(M) for every finitely generated graded R-module M (in general,

µ
G/H
R (M) ≤ µGR(M) for any subgroup H of G). The following is an example where µR(M) <

µGR(M):

Example 2.18. Let R = Z[x] with the standard Z-grading and consider the ideal of R

defined by I = (6, 3x, 2x2) = (6, 3x+ 2x2). One easily verifies that µR(I) = 2 and µZ
R(I) = 3.

A natural question to ask is if there are nontrivial cases when we have equality between

µR(−) and µGR(−). Proposition 2.16 gives a corollary describing one such case:
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Corollary 2.19. Let R be a G-field and M a finitely generated graded R-module. Then

µR(M) = µGR(M) = rankGR(M).

Proof. As M is G-free of rank n, then M is G/H-free of rank n for every subgroup H of

G.

2.3 Prime Ideals, Localization, and Nakayama’s

Lemma

In this section the main topics we address are graded versions of prime ideals, graded

localization, and a graded version of Nakayama’s Lemma. We also define graded versions of

maximal and radical ideals. The only difference in localization in a graded ring is that we

restrict to multiplicatively closed sets of homogeneous elements.

Since we already have the notions of G-fields, G-domains, and G-reduced rings, we define

types of homogeneous ideals in terms of these. Let R be a G-graded ring. A homogeneous

ideal I is called G-maximal (resp., G-prime, G-radical) if R/I is a G-field (resp., a G-domain,

G-reduced). We let SpecG(R) denote the set of G-prime ideals of R, and we let maxSpecG(R)

denote the set of all G-maximal ideals. It is a routine exercise to show that a homogeneous

ideal I is G-maximal if and only if there are no proper homogeneous ideals strictly containing

I.

Remark 2.20. By Proposition 2.12, if R is G-graded where G is torsion-free, then any

G-prime ideal of R is prime, and any G-radical ideal of R is radical. However, as seen by

Proposition 2.13, a G-maximal ideal of R need not be maximal.
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Remark 2.21. If R is a G-graded ring then any proper G-homogeneous ideal is contained

in a G-maximal ideal of R (by Zorn’s Lemma).

The next proposition is straightforward, and we omit the easy proof.

Proposition 2.22. Let R be a G-graded ring and M,N graded R-modules. Then

(N :R M) := {x ∈ R | xM ⊆ N}

is a G-homogeneous ideal of R. In particular, AnnR(M) := {x ∈ R | xM = 0} = (0 :R M) is

a G-homogeneous ideal.

Let R be a G-graded ring and H a subgroup of G. Suppose M is a G-graded R-module,

and N is an R-submodule of M which is G/H-homogeneous. We let N∗G denote the R-

submodule of M generated by all the G-homogeneous elements contained in N . Clearly, N is

homogeneous if and only if N = N∗G. (Here H is somewhat irrelevant, but we state it this

way to conform to the themes of the thesis.)

Remark 2.23. Let R be a G-graded ring, H a subgroup of G, and I a G/H-homogeneous

ideal of R. Let I∗ = I∗G.

1. If I is G/H-prime, then I∗ is G-prime.

2. If I is G/H-radical, then I∗ is G-radical.

Example 2.24. Let p > 0 be prime and V = Z(p). Let R = V [x] be a polynomial ring in

one variable over V . Let R be graded by Z by setting deg(x) = 1. It is easily seen that

I = (px− 1)R is a maximal ideal of R and I∗Z = 0, which is not Z-maximal.

Certainly, I∗G is the largest G-homogeneous ideal contained in a given G/H-homogeneous

ideal I, and Proposition 2.26, used in Chapters 4 and 5, shows that we can find such an ideal

“step-by-step” if we wish. First, we prove a group-theoretic lemma.
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Lemma 2.25. Let G be an abelian group. Suppose A,B are subgroups of G and g, g′ ∈ G.

Then (g + A) ∩ (g′ +B) ⊆ g′′ + (A ∩B) for some g′′ ∈ G. In particular, if R is a G-graded

ring, x ∈ R is G/(A ∩B)-homogeneous if and only if x is G/A- and G/B-homogeneous.

Proof. Suppose (g+A)∩ (g′+B) 6= ∅. Let A′ = {a ∈ A | g+a ∈ g′+B}, and choose a0 ∈ A′.

Then g + a0 = g′ + ba0 for some ba0 ∈ B. Similarly, for any a ∈ A′ there exists ba ∈ B such

that g + a = g′ + ba. Thus a− a0 = ba − ba0 ∈ A ∩B for all a ∈ A′.

Let g′′ = g + a0. Then for all a ∈ A′,

g + a = g + a0 + (a− a0)

= g′′ + (a− a0),

so that g + a ∈ g′′ + (A ∩B). Hence, (g + A) ∩ (g′ +B) ⊆ g′′ + (A ∩B).

Proposition 2.26. Suppose R is G-graded. If A and B are subgroups of G, and if I is a

G/(A+B)-homogeneous ideal, then

(I∗G/A)∗G/B = I∗G/(A∩B).

Proof. A generating set for I∗G/A is

{
x ∈ I

∣∣ x is G/A-homogeneous
}
,

and a generating set for (I∗G/A)∗G/B is

{
x ∈ I∗G/A

∣∣∣ x is G/B-homogeneous
}
.

Since it is clear that (I∗G/A)∗G/B ⊇ I∗G/(A∩B), it will suffice to show (by the above generating
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set) that any G/B-homogeneous element of I∗G/A is in the ideal generated by the G/(A∩B)-

homogeneous elements of I.

If x is a G/B-homogeneous element of I∗G/A, we can write

x = x1 + · · ·+ xn,

where xi ∈ (I∗G/A)gi+A r {0} and gi + A 6= gj + A for i 6= j. On the other hand, since x is

G/B-homogeneous, we can write

x = y1 + · · ·+ ym,

where yi ∈ Rg+bi r {0} for some g ∈ G and bi 6= bj ∈ B for i 6= j. Reordering, if necessary,

we can assume

x1 = y1 + · · ·+ yk1

x2 = yk1+1 + · · ·+ yk2

...

xn = ykn−1+1 + · · ·+ ym,

where the xi are in I and both G/A- and G/B-homogeneous, and so by Lemma 2.25,

G/(A ∩ B)-homogeneous. Then x ∈ I∗G/(A∩B) (as x is a sum of G/(A ∩ B)-homogeneous

elements), and we have equality.

Let R be a G-graded ring and S a multiplicatively closed set of G-homogeneous elements

not containing 0. Then the localization RS is a G-graded ring where for g ∈ G

(RS)g :=
{r
s

∣∣∣ r ∈ Rh, s ∈ S ∩Rh−g, h ∈ G
}
.



19

Similarly, if M is a graded R-module then MS is a graded RS-module. If P is a G-prime

ideal of R we let (P ) denote the multiplicatively closed set consisting of all G-homogeneous

elements of R not in P .

Remark 2.27. Suppose M is a G-graded module over the G-graded ring R. Because the

annihilator of M is G-homogeneous, one can easily show that for any G-prime ideal P of R,

M(P ) 6= 0 if and only if P ⊇ AnnR(M). Moreover, suppose H ≤ G so that M is both G- and

G/H-graded. In Chapter 5 we will make use of the following fact: Define T to be the set

of G/H-homogeneous elements of R not in P (in particular, T ⊇ (P )). One can show that

M(P ) = 0 if and only if MT = 0. The crux of the proof is that AnnR(M) is homogeneous

with respect to the finest grading M possesses (in this case, the G-grading).

Theorem 2.28. Suppose R is G-graded and S is a multiplicatively closed set of G-homoge-

neous elements. The map R→ RS induces a one-to-one inclusion preserving correspondence

between G-prime ideals of R whose intersection with S is empty and G-prime ideals of RS.

Proof. The standard proof works with minor modifications.

We have already noted that every G-graded ring (with identity) has at least one G-

maximal ideal. As in the non-graded case, a G-graded ring R is called G-local if it has a

unique G-maximal ideal. One sees that if P is a G-prime ideal, then R(P ) is a G-local ring

with G-maximal ideal PR(P ).

Definition 2.29. Let R be a G-graded ring. The Jacobson G-radical is defined to be the

intersection of all G-maximal ideals of R.

Proposition 2.30 (Graded Nakayama’s Lemma). Let R be a G-graded ring, M a finitely

generated graded R-module and J the Jacobson G-radical of R. If JM = M then M = 0.

Proof. We show that if M is generated by n > 0 homogeneous elements, then in fact M is

generated by n− 1 homogeneous elements. Let x1, . . . , xn be a homogeneous generating set
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for M . Then xn = r1x1 + · · ·+ rnxn for some r1, . . . , rn ∈ J . As each xi is homogeneous, we

may assume each ri is homogeneous as well. In particular (so that the degrees match up), we

may assume rn ∈ R0. Then (1− rn)xn ∈ Rx1 + · · ·+ Rxn−1. Now, as rn ∈ J and 1− rn is

homogeneous, we see that 1− rn is a unit (else the homogeneous ideal R(1− rn) is contained

in some maximal ideal). Thus, M = Rx1 + · · ·+Rxn−1.

Corollary 2.31. Let R be a G-graded ring, M a finitely generated graded R-module and

J the Jacobson G-radical of R. Let x1, . . . , xn be homogeneous elements of M . Then

{x1, . . . , xn} generate M if and only if {x1 + JM, . . . , xn + JM} generate M/JM . In

particular, µGR(M) = µGR/J(M/JM).

Proof. Suppose {x1 + JM, . . . , xn + JM} generate M/JM and let N be the (G-graded)

submodule ofM generated by x1, . . . , xn. ThenN+JM = M , which impliesM/N = J(M/N).

By Nakayama’s Lemma, M/N = 0.

Corollary 2.32. Let R be a graded G-local ring with G-maximal ideal m. Let M be a finitely

generated graded R-module. Then

µR(M) = µGR(M) = rankR/m(M/mM).

Proof. The second equality follows from the previous corollary and Corollary 2.19. If µR(M) <

rankR/m(M/mM) then µR/m(M/mM) < rankR/m(M/mM), contradicting Corollary 2.19.

2.4 Chain Conditions

The ascending and descending chain conditions on ideals or submodules are also natural

properties to study in a graded sense, and we define them in the obvious way.
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Let R be a G-graded ring and M a graded R-module. We say that M is G-Noetherian (re-

spectively, G-Artinian) if M satisfies the ascending (respectively, descending) chain condition

on G-homogeneous submodules. The ring R is a G-Noetherian (respectively, G-Artinian) ring

if it is G-Noetherian (respectively, G-Artinian) as a graded R-module. The next proposition

gives useful characterizations, and the proof only requires minor modifications to the one in

the non-graded case.

Proposition 2.33. Let R be a G-graded ring and M a graded R-module. The following

conditions are equivalent:

1. M is G-Noetherian (respectively, G-Artinian).

2. Every nonempty set of G-homogeneous submodules of M has a maximal (respectively,

minimal) element.

For G-Noetherian only, the previous conditions are also equivalent to:

3. Every G-homogeneous R-submodule of M is finitely generated.

The next proposition and corollary are analogous to results in the non-graded case, and

their proofs also require only minor modifications to work in the graded case.

Proposition 2.34. Let R be a G-graded ring and 0 → L → M → N → 0 a short exact

sequence of graded R-modules and homogeneous maps. Then M is G-Noetherian (respectively,

G-Artinian) if and only if L and N are G-Noetherian (respectively, G-Artinian).

Corollary 2.35. Let R be a G-Noetherian (respectively, G-Artinian) graded ring. Then

every finitely generated graded R-module is G-Noetherian (respectively, G-Artinian).

Proposition 2.36. Let R be a G-graded ring, H a subgroup of G, and M a G-graded

R-module. If M is G-Noetherian (respectively, G-Artinian), then Mg+H is G-Noetherian
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(respectively, G-Artinian) as an RH-module for all g ∈ G. In particular, if R is G-Noetherian,

then RH is G-Noetherian.

Proof. We prove the assertion in the case M is G-Noetherian. The Artinian case is proved

similarly. Let A1 ⊆ A2 ⊆ A3 ⊆ · · · be an ascending chain of G-graded RH-submodules of

Mg+H . Then RA1 ⊆ RA2 ⊆ RA3 ⊆ · · · is an ascending chain of G-graded R-submodules of

M . As M is G-Noetherian, there exists an integer n such that RAk = RAk+1 for all k ≥ n.

By Lemma 2.8, Ak = RAk ∩Mg+H = RAk+1 ∩Mg+H = Ak+1 for all k ≥ n. Hence, Mg+H is

G-Noetherian.

As a consequence of the previous proposition, we also get that if M is G-Noetherian, then

Mg+H is H-Noetherian as well. In particular, if R is G-Noetherian, then RH is both G- and

H-Noetherian.

Theorem 2.37 (Hilbert Basis Theorem). Let S be a G-graded ring and R a graded subring

of S. Suppose R is G-Noetherian and S is a finitely generated R-algebra. Then S is

G-Noetherian.

Proof. It is enough to prove that if S = R[x] is G-Noetherian, where x is a homogeneous

element of S, then S is G-Noetherian. Let I be a homogeneous ideal of S. For each

nonnegative integer n let

In := {rn ∈ R | rnxn + rn−1x
n−1 + · · ·+ r1x+ r0 ∈ I for some rn−1, . . . , r0 ∈ R}.

Since I and x are homogeneous, it is easily seen that In is a homogeneous ideal of R for all n.

Furthermore, In ⊆ In+1 for all n. As R is G-Noetherian, there exists k such that Ik = Ik+i

for all i ≥ 0. For 0 ≤ i ≤ k let {rij | j = 1, . . . , `i} be a homogeneous generating set for

Ii. For each such rij let fij be an element of the form rijx
i + ri−1x

i−1 + · · ·+ r1x+ r0 ∈ I,

where ri ∈ R for all i. Since rij is homogeneous, we can assume each fij is homogeneous as
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well. Let J be the ideal of S generated by the set {fij | 1 ≤ i ≤ k, 1 ≤ j ≤ `i}. We claim

that J = I. Clearly, J is homogeneous and J ⊆ I. Let s ∈ I be homogeneous. As s ∈ R[x],

s = rnx
n + rn−1x

n−1 + · · ·+ r1x+ r0 for some r0, . . . , rn ∈ R. As s and x are homogeneous,

we can assume each ri is homogeneous as well. We induct on n to show that s ∈ J . If

n = 0 then s = r0 ∈ I0 = ({f0j | j = 1, . . . , `0}) ⊆ J . Suppose 0 < n ≤ k. Then rn ∈ In,

so there exist homogeneous c1, . . . , c`n ∈ R such that rn =
∑

j cjrnj. Let g =
∑

j cjfnj ∈ J .

Then s− g is homogeneous, is in I, and can be expressed as a polynomial in x of degree less

than n. By the induction hypothesis, s − g ∈ J , and this implies s ∈ J . Finally, suppose

n > k. Then rn ∈ In = Ik, so there exists homogeneous ci ∈ R such that rn =
∑

j cjrkj. Let

g =
∑

j cjx
n−kfkj. Then as before, s − g ∈ I is homogeneous and can be expressed as a

polynomial in x of degree less than n. Hence, s− g ∈ J and so s ∈ J . Thus, I = J and I is

finitely generated.

Theorem 2.38. Let R be a G-graded ring and H a subgroup of G.

1. If R is G-Noetherian, then RH is H-Noetherian.

2. If R is G-Noetherian and G/H is finitely generated, then R is a finitely generated

RH-algebra.

Proof. Part (1) follows from Proposition 2.36. Indeed, since (RH)g = 0 for g ∈ GrH, RH is

G-Noetherian if and only if RH is H-Noetherian.

For part (2), we induct on n, the number of generators of G/H. We first consider the case

when n = 1. Suppose G = 〈H, g〉. Again by Proposition 2.36, Rx+H is a finitely generated RH-

module for all x ∈ G. Hence, if [G : H] <∞ then R is a finitely generated RH-module. Thus,

we can assume the image of g in G/H has infinite order. Consider the homogeneous ideal J

of R generated by all Rmg+H where m > 0. Let a1, . . . , a` be a homogeneous generating set

for J , where deg(ai) = mig + hi where mi > 0 and hi ∈ H. Let N := max{mi | i = 1, . . . , `}.
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Let b1, . . . , bk be homogeneous generators for the RH-module
⊕N

i=1Rig+H . Let T denote the

graded subring RH [a1, . . . , a`, b1, . . . , bk] of R. We use induction on m to show Rmg+H ⊆ T

for all m ≥ 0. Clearly, this holds for all 0 ≤ m ≤ N . Suppose m > N and x ∈ Rmg+h

for some h ∈ H. Then x ∈ J , so there exist homogeneous elements ri ∈ R, 1 ≤ i ≤ `,

such that x =
∑

i riai. Then deg(ri) = (mg + h)− (mig + hi) = (m−mi)g + (h− hi). As

0 < m −mi < m we have by the inductive hypothesis that ri ∈ R(m−mi)g+H ⊆ T for all i.

Thus, x ∈ T . One can make a similar argument using the ideal of R generated by all Rmg+H

for m < 0 to obtain R as a finitely generated T -algebra.

Assume the theorem is true whenever G/H is generated by at most n elements and

suppose G/H is generated by n+1 elements. Then there exists a subgroup K of G containing

H such that G/K is cyclic and K/H is n-generated. By part (1), RK is K-Noetherian. By

the inductive hypothesis, RK is a finitely generated RH-algebra. Finally, the cyclic case above

shows that R is a finitely generated RK-algebra. The result now follows.

As a corollary, we get the following well-known result from [9, 1.1]. Note that the corollary

is false if G is not finitely generated. For example, suppose G =
⊕∞

i=1 Z, k is a field, and

{xi}∞i=1 is a sequence of indeterminates. The ring R := k[{xi, x−1
i }∞i=1] has a natural G-grading

by setting deg(xi) = ei, where ei is the vector with a 1 in the ith position and 0 elsewhere.

Then R is a G-field, which is G-Noetherian, but clearly R is not Noetherian.

Corollary 2.39. Let R be a G-graded ring where G is finitely generated. Then R is G-

Noetherian if and only if R is Noetherian.

Proof. By the theorem applied to H = {0}, R0 is Noetherian and R is a finitely generated

R0-algebra.

Proposition 2.40. A graded ring R is G-Noetherian if and only if every G-prime ideal is

finitely generated.
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Proof. Using Zorn’s Lemma, one can show that if there exists a non-finitely-generated G-

homogeneous ideal, then there exists one maximal with respect to this property (via inclusion).

We claim that such an ideal P is G-prime. Suppose a, b ∈ R are homogeneous elements such

that ab ∈ P , yet a, b /∈ P . Since P is maximal with respect to being non-finitely-generated,

the homogeneous ideal (P, a) must be finitely generated, say (P, a) = (p1 +x1a, . . . , pn +xna).

Set K = (P :R a). Then K is homogeneous, and

K ⊇ (P, b) ) P,

so K must also be finitely generated, say K = (k1, . . . , km). Finally, we claim

P = (p1, . . . , pn, k1a, . . . , kma).

Certainly, (p1, . . . , pn, k1a, . . . , kma) ⊆ P , so suppose y ∈ P . Since P ⊆ (P, a), we may write

y =
n∑
i=1

ri(pi + xia)

=
n∑
i=1

ripi + a
n∑
i=1

rixi.

That is, we can write y = p + ak, where p ∈ P and k =
∑
rixi. But ak = y − p ∈ P , so

k ∈ K, and we can write

k =
m∑
j=1

tjkj,
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which gives

y =
n∑
i=1

ripi + a

m∑
j=1

tjkj

=
n∑
i=1

ripi +
m∑
j=1

(kja)tj.

Hence, P = (p1, . . . , pn, k1a, . . . , kma), but this contradicts the assumption that P is non-

finitely generated. Therefore, either a ∈ P or b ∈ P , and P is G-prime.

It is now clear that if there exists a non-finitely-generated G-homogeneous ideal, then we

can find a G-prime that is non-finitely-generated. Thus R is G-Noetherian if and only if all

G-prime ideals are finitely generated.

In Chapters 4 and 5, while showing the descent of properties from the G-grading on a ring

to the G/H-grading, we make several arguments via induction on the (torsion-free) rank of a

subgroup H of G. It is then crucial that we have the next theorem, which is a generalization

of Corollary 2.39.

Theorem 2.41. Suppose R is a G-graded ring. If H is a finitely generated subgroup of G,

the following are equivalent:

1. R is G-Noetherian.

2. R is G/H-Noetherian.

Proof. Certainly, we only need to show (1) =⇒ (2). By induction, it suffices to prove the

case H = 〈a〉 is cyclic. Let I be a G/H-homogeneous ideal. If x ∈ I is G/H-homogeneous,

then x ∈ Rg+H for some g ∈ G. Write

x = xk1 + · · ·+ xkm ,
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where xki
6= 0 for each i, and xki

∈ Rg+kia. If |a| =∞ and we assume g + kia 6= g + kja for

i 6= j, this uniquely determines the ki. If |a| = n <∞ we can get uniqueness by assuming

g + kia 6= g + kja for i 6= j and that 0 ≤ ki < n. Let t be an indeterminate over R and

consider R[t, t−1] as a G-graded ring where deg(t) = a. By Theorem 2.37, R[t, t−1] is also

G-Noetherian. Let

x̂(t) := xk1t
km−k1 + xk2t

km−k2 + · · ·+ xkm .

Note that x̂(t) is G-homogeneous of degree g + kma and that x̂(1) = x. Since the ideal

({x̂(t) | x is G/H-homogeneous in I})

is G-homogeneous, it is finitely generated, say by {ŝ1(t), . . . , ŝ`(t)}, where si ∈ I is G/H-

homogeneous. Then for any G/H-homogeneous x ∈ I, we can write

x̂ =
∑̀
i=1

riŝi(t),

where ri ∈ R[t]. Evaluating this expression at t = 1, we get an equation in I, showing that

any homogeneous element of I, and hence, any element of I can be written in terms of the si.

Thus I is finitely generated.

We present one final result pertaining to G-Artinian rings.

Proposition 2.42. Suppose R is a G-Artinian ring and J := J(R) is the Jacobson G-radical

of R. Then Jk = 0 for some k ≥ 1.

Proof. Because R is G-Artinian, the descending chain J ⊇ J2 ⊇ J3 ⊇ · · · stabilizes, so we

have Jk = Jk+1 for some k. Set I := Jk. To see that I = 0, we suppose I 6= 0 and derive a
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contradiction. Set

Λ = {K | K a G-homogeneous ideal of R such that IK 6= 0}.

Because I 6= 0, R ∈ Λ, and so the descending chain condition implies there is a minimal element

K ∈ Λ. Choose a homogeneous y ∈ K such that yI 6= 0. Note that (yI)I = yI2 = yI 6= 0,

so yI ∈ Λ. The minimality of K then implies that yI = K, so there exists a homogeneous

element i ∈ I such that yi = y (note that i ∈ I0). Rearranging gives (1− i)y = 0, and one

sees that 1− i is a unit because i ∈ J . This implies y = 0, a contradiction, and it must be

the case that I = Jk = 0.
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Chapter 3

Primary Decomposition

In Chapter 5 we will need a theory of graded associated primes. It can be shown ([6, Exercise

3.5]) that in a very general setting the usual primary decompositions and associated primes

of graded modules are exactly what we get if we were to define a graded version. That

is, all the associated primes are graded primes, and the primary modules appearing in the

intersection are also graded modules. For our purposes, however, it is not general enough,

and to avoid making hypotheses on the group G, we opt instead to develop the theory in the

graded category.

Definition 3.1. Let R be a G-graded ring and M a G-graded R-module. Assume N ⊆M

is a G-graded submodule. We say N is G-irreducible if whenever N = N1 ∩N2 with N1, N2

G-graded submodules of M , then we have N1 = N or N2 = N .

Proposition 3.2. Suppose N ⊆ M are graded modules over the G-graded ring R, with M

G-Noetherian. Then there exist G-irreducible modules N1, . . . , N` such that N = N1∩· · ·∩N`.

Proof. Let Λ be the collection of all graded submodules of M not having such a decomposition.

Suppose Λ 6= 0. By the G-Noetherian property, this collection must have a maximal element.

Let N be such a maximal element. Then N is not G-irreducible, so there exist G-graded
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modules N1, N2 such that N = N1 ∩N2 with Ni 6= N , i = 1, 2. By the maximality of N (and

the fact that Ni ) N), each Ni must have a decomposition into G-irreducible modules. But

this implies N = N1 ∩N2 has a decomposition as well, a contradiction. Thus Λ = ∅.

Definition 3.3. Let R be a G-graded ring and N ⊆ M graded R-modules. We say N

is G-primary if for all G-homogeneous r ∈ R the map µr : M/N
·r→ M/N induced by

multiplication by r is either injective or nilpotent.

Proposition 3.4. Suppose R is a G-graded ring. If M is a G-Noetherian R-module, and

N ⊆M is a G-irreducible submodule, then N is G-primary.

Proof. Suppose, by way of contradiction, that N is not G-primary. Then there exists a

G-homogeneous element r ∈ R such that the induced map µr : M/N → M/N is neither

injective nor nilpotent. Consider the increasing chain of (homogeneous, as r is homogeneous)

submodules of M

ker(r) ⊆ ker(r2) ⊆ · · · .

Since M is G-Noetherian, there exists n such that ker(rn) = ker(rn) = · · · ⊆M/N . Suppose

ker(rn) = N1/N for some G-graded submodule N1 ⊆M . Note that N ( N1 ( M . Indeed, the

containments must be strict, since r is neither nilpotent nor injective. Now let N2 = rnM+N .

We claim that N1 ∩ N2 = N . First note that rnM + N ) N as ker(rn) 6= M/N . Let

x ∈ N1 ∩ N2, where x = rnm + d with m ∈ M and d ∈ N . Also, since x ∈ N1, we have

rnx ∈ N . But then rnx = r2nm+ rnd, and we see that r2nm ∈ N . Since ker(r2n) = ker(rn),

m ∈ N1, and so rnm ∈ N implies x ∈ N . But N was assumed to be G-irreducible, a

contradiction. Thus N must be G-primary.

For a G-graded ring R and a homogeneous ideal I ⊆ R, we define the G-radical of I,

denoted G
√
I, to be the (G-homogeneous) ideal generated by the homogeneous elements r ∈ R

such that rn ∈ I for some n ∈ N. One can show that when G is torsion-free, G
√
I =

√
I.
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In fact, it is true that G
√
I = G/H

√
I whenever H is torsion-free. However, the ring from

Example 2.11 (2) gives an example where G
√

0 (
√

0 when G has torsion. Before proceeding

to developing the notion of primary decompositions in the graded case, we record some

elementary results concerning G-radicals of homogeneous ideals.

Remark 3.5. Suppose R is a G-graded ring and I, J are homogeneous ideals of R.

1. G
√
I ∩ J = G

√
I ∩ G
√
J .

2. If R is G-Noetherian, I contains a power of G
√
I.

Proof. (1) is straightforward, and we prove (2): Since R is G-Noetherian, we can write

G
√
I = (x1, . . . , xn), where xi is G-homogeneous for each i. Because xi ∈ G

√
I, there exists ni

such that xni
i ∈ I. Because ( G

√
I)N is generated by elements of the form xm1

1 xm2
2 · · ·xmn

n such

that
∑
mi = N , we can choose N large enough to guarantee every generator of ( G

√
I)N will

be in I.

Proposition 3.6. Suppose R is a G-graded ring, and let I be a homogeneous ideal. Then

G
√
I =

⋂
P⊇I

P,

where the intersection runs over G-prime ideals of R.

Proof. Since both ideals are G-homogeneous, it suffices to consider only homogeneous elements.

Let x ∈ G
√
I be homogeneous. Then xN ∈ I, and so xN ∈ P for each G-prime P ⊇ I. Since

P is G-prime, x ∈ I.

Because we are only concerned with G-prime ideals containing I, we may pass to the ring

R/I and suppose that I = 0. Suppose x /∈ G
√

0 is homogeneous. It suffices to find a G-prime

ideal P such that x /∈ P . Set S = {xn | n ≥ 0}. Since xn 6= 0 for all n ≥ 0, we know RS 6= 0.
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Therefore there exists a G-maximal ideal of RS by Remark 2.21. This is a G-prime ideal of

RS containing 0, and its preimage P in R satisfies P ∩ S = ∅. In particular, x /∈ P .

Proposition 3.7. Let N ⊆M be G-primary. Then G
√

AnnR(M/N) is G-prime.

Proof. Suppose ab ∈ G
√

AnnR(M/N), where a, b are homogeneous and b /∈ G
√

AnnR(M/N).

Then the map µab : M/N → M/N induced by multiplication by ab is nilpotent. On

the other hand, N is G-primary, so every such map is either nilpotent or injective, and

as b /∈ G
√

AnnR(M/N), the map µb : M/N → M/N must be injective. This implies

µa : M/N → M/N is nilpotent, or else µab : M/N → M/N would be injective. Thus

a ∈ G
√

AnnR(M/N).

In the special case where M = R, we see that the G-radical of any G-primary ideal I is

G-prime. In this case, if G
√
I = P , we say I is P -G-primary.

Definition 3.8. We call a decomposition N = N1 ∩ · · · ∩N`, where each Ni is G-primary, a

G-primary decomposition for the module N . Given such a decomposition, if

1. the G-prime ideals G
√

AnnR(M/Ni) are distinct for each i, and

2. for each i = 1, . . . , `,

Ni +
⋂
j 6=i

Nj,

such a decomposition is said to be irredundant.

Proposition 3.9. If a G-primary decomposition exists for N ⊆ M (for example, if M is

G-Noetherian), then an irredundant G-primary decomposition exists.
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Proof. First we show that if N1, N2 ⊆M are P -G-primary, then N1 ∩N2 is P -G-primary. To

do this, first observe that

P = G
√

Ann(M/N1) ∩ G
√

Ann(M/N2)

= G
√

Ann(M/N1) ∩ Ann(M/N2)

= G
√

Ann(M/(N1 ∩N2)).

Now, suppose that µr : M/(N1 ∩ N2) → M/(N1 ∩ N2) is not injective. Then there exists

x ∈M such that rx ∈ N1∩N2 and x /∈ N1∩N2 (so that x 6= 0 ∈M/(N1∩N2)). This implies

that for some i = 1, 2 we have rx ∈ Ni, yet x /∈ Ni. Then the map µr : M/Ni → M/Ni is

not injective, and hence nilpotent. Therefore, rnM ⊆ Ni, which implies rn ∈ Ann(M/Ni),

or that r ∈ G
√

Ann(M/Ni) = P = G
√

Ann(M/(N1 ∩N2). In particular, rmM ⊆ N1 ∩N2 for

some m, so that µr : M/(N1 ∩N2)→M/(N1 ∩N2) is nilpotent.

With this fact, given a G-primary decomposition as in Definition 3.8, we can collect

the P -G-primary components together and replace them by their intersection to satisfy (1).

To satisfy (2), discard any unnecessary G-primary components (which does not change the

intersection).

Lemma 3.10. Suppose R is a G-graded ring, P is a G-prime ideal, and I1, . . . , In are

homogeneous ideals of R. If P =
⋂n
j=1 Ij, then P = Ij for some j.

Proof. Clearly P ⊆ Ij for all j, so it suffices to show that Ij ⊆ P for some j. By induction,

we only need to show the case n = 2. Suppose, by way of contradiction, that I1, I2 * P .

Then for j = 1, 2, there exists a G-homogeneous element aj ∈ Ij r P . On the other hand,

a1a2 ∈ I1I2 ⊆ I1 ∩ I2 = P,

and because P is G-prime, we must have a1 ∈ P or a2 ∈ P , a contradiction. Therefore
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Ij ⊆ P for j = 1 or j = 2.

Proposition 3.11. Suppose R is a G-Noetherian ring and N ⊆ M are graded R-modules.

If N =
⋂
Ni is an irredundant G-primary decomposition, then the G-prime ideals Pi that

occur as G-radicals of the Ann(M/Ni) depend only on M and N .

Proof. Without loss of generality, we may assume N = 0. That is, the G-primes that appear

as G-radicals of the Ann(M/Ni) for a G-primary decomposition of N ⊆M are the same as

the G-primes that appear as G-radicals of the corresponding annihilators in a G-primary

decomposition of 0 ⊆M/N .

Assume N = 0 and
⋂
iNi = 0 is an irredundant G-primary decomposition. We will show

that P = G
√

Ann(M/Ni) for some i if and only if P = Ann(f) for some G-homogeneous

element f ∈M . Suppose first that P = Ann(f) = (0 :R f) is a G-prime ideal. Then

(0 :R f) = (
⋂
i

Ni :R f) =
⋂
i

(Ni :R f).

By Lemma 3.10, (0 :R f) = (Ni :R f) for some i. Let Pi = G
√

Ann(M/Ni). Because

(0 :R f) = G
√

(0 :R f) = G
√

(Ni :R f),

it will suffice to show that G
√

(Ni :R f) = G
√

Ann(M/Ni); i.e., this will show Ann(f) = Pi.

To see this, suppose x ∈ G
√

Ann(M/Ni) is homogeneous. Then xn ∈ Ann(M/Ni) for some n,

so that xnM ⊆ Ni. This implies xnf ∈ Ni, or that x ∈ G
√

(Ni :R f).

Conversely, suppose x ∈ G
√

(Ni :R f), so that xn ∈ (Ni :R f) for some n. Because Ni is

G-primary, xn defines a map µxn : M/Ni →M/Ni that is either injective or nilpotent. Then

the fact that f /∈ Ni (because (Ni :R f) = P ( R) implies that µxn is not injective. Thus

µxN = 0 for some N , so that x ∈ G
√

Ann(M/Ni).
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Now, suppose Pj = G
√

Ann(M/Nj). Because R is G-Noetherian, Remark 3.5 gives

P n
j ⊆ Ann(M/Nj)

for some n. Let t be the smallest (positive) integer such that
(⋂

i 6=j Ni

)
P t
j ⊆ Nj (note that

t ≥ 1 as
⋂
i 6=j Ni * Nj). This implies that

(⋂
i 6=j

Ni

)
P t
j ⊆

⋂
i

Ni = 0,

yet (⋂
i 6=j

Ni

)
P t−1
j * Nj.

Choose a homogeneous y ∈
(⋂

i 6=j Ni

)
P t−1
j such that y /∈ Nj. Then

yPj ⊆

(⋂
i 6=j

Ni

)
P t
j = 0,

so that Pj ⊆ Ann(y) = (0 :R y). This gives Pj ⊆ G
√

(0 :R y), and we also have

G
√

(0 :R y) = G

√
(
⋂
i

Ni :R y) =
⋂
i

G
√

(Ni :R y) = G

√
(Nj :R y) ∩

(⋂
i 6=j

G
√

(Ni :R y)

)
.

Because y ∈
⋂
i 6=j Nj, we have (Ni :R y) = R for each i 6= j, and so

⋂
i 6=j

G
√

(Ni :R y) = R.

By an argument we have already used in this proof, we have that G
√

(Nj :R y) = Pj . Putting

all of this together, we have that

Pj ⊆ Ann(y) ⊆ Pj,

which gives the desired equality.
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Given G-graded R-modules N ⊆ M and an irredundant G-primary decomposition of

N =
⋂
iNi, the G-prime ideals that appear as G-radicals of the Ann(M/Ni) are called the

associated G-primes of N in M , or the associated G-primes of M/N . We denote this set

by AssGR(M/N) or simply AssG(M/N) if R is understood. In the case N = 0, we will write

AssG(M) and simply call these the associated G-primes of M .

Corollary 3.12. For a G-Noetherian ring R, a finitely generated G-graded R-module M ,

and P ∈ SpecG(R), we have P ∈ AssG(M) if and only if P = Ann(f) for some homogeneous

element f ∈M . In particular, P ∈ AssG(R) if and only if P = Ann(f) for some homogeneous

f ∈ R. Also, the union of the associated G-primes of R is contained in the collection of

zerodivisors of R, but this containment is not, in general, reversible.

As an example, one can consider the ring R from Example 2.11 (2). As noted in the

example, R is a Z/nZ-field, so the only associated G-prime ideal is 0. On the other hand, R

need not even be reduced in general under the trivial grading.
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Chapter 4

Dimension, Integrality, and Height

One of the main goals of this chapter will be to define the G-graded dimension of a ring R

and relate it to other invariants of R or G (or both).

4.1 Dimension

Definition 4.1. Let R be a G-graded ring. We define

dimG(R) := sup{n | P0 ( P1 ( · · · ( Pn is a chain of G-prime ideals of R},

and for any G-homogeneous ideal I ⊆ R

htG(I) := inf{dimG(R(P )) | P ⊇ I and P is G-prime}.

We say that a G-prime of R is minimal over I if htG(P/I) = 0.

Remark 4.2. Suppose R is G-graded and H is a torsion-free subgroup of G.

1. From Proposition 2.12 we have SpecG(R) ⊆ SpecG/H(R).
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2. If P is a minimal G/H-prime of R (i.e., minimal over 0), then P ∗G = P .

As a preliminary example of computing dimension, consider the following. Suppose R is a

G-graded ring, t is an indeterminate over R, and set S = R[t, t−1]. Then S is a G̃ := G⊕ Z-

graded ring in the obvious way. That is, S(g,n) = Rgt
n. Observe that if H = G⊕ {0}, then

SH ∼= R (as G-graded rings). We use this idea in the proof of the next proposition.

Proposition 4.3. Let R be a G-graded ring, suppose t1, . . . , t` are indeterminates, and set

S = R[t1, t
−1
1 , . . . , t`, t

−1
` ]. If G̃ = G⊕ Z`, and we endow S with the obvious G̃-grading, then

dim
eG(S) = dimG(R).

Proof. By induction, we need only show the case ` = 1, so suppose t is an indeterminate and

G̃ = G⊕ Z. We want to show there is an inclusion preserving, one-to-one correspondence

between the G̃-prime ideals of S and the G-prime ideals of R. If P is a G̃-prime of S, then

certainly PH := P ∩ R is a G-prime ideal of R = SH . We also claim that if Q ∈ SpecG(R),

then QS ∈ Spec
eG(S). Indeed, (QS)(g,n) = Qgt

n, and so S/QS is a G̃-domain. Finally, we

only need to verify that PHS = P and (QS)H = Q, but this is clear.

One consequence of the previous proposition is the following. Let R = k[t1, t
−1
1 , . . . , td, t

−1
d ]

be Zd-graded in the obvious way, and suppose H is the subgroup of G := Zd generated by

(1, 0, . . . , 0). As a G/H-graded ring, we have R = (k[t1, t
−1
1 ])[t2, t

−1
2 , . . . , td, t

−1
d ], where all of

k[t1, t
−1
1 ] is in degree 0. Induction and the previous proposition then imply dimG/H(R) =

dim(k[t1, t
−1
1 ]) = 1.
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4.2 Integrality

Suppose R ⊆ S is an extension of G-graded rings. We say that a homogenous element x ∈ S

is integral over R if there exists an equation of the form

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0,

for some n, where ai ∈ R for i = 0, . . . , n−1. Note that we may take the ai to be homogeneous.

If every homogeneous element of S is integral over R, we say that S is integral over R, or

that R ⊆ S is an integral extension. Because the sum and product of integral elements are

also integral, this is just the usual definition of integrality for an extension of rings. However,

we state it in terms of homogeneous elements to be consistent with the themes in this thesis.

Much of the following is developed as in [2].

Given a homogeneous homomorphism of G-graded rings φ : R→ S and a G-homogeneous

ideal J ⊆ S, we define the contraction of J , denoted J ∩R, to be φ−1(J). With this notation,

it is easy to show:

• The contraction J ∩R is a homogeneous ideal of R.

• If J is G-prime, then J ∩R is also G-prime.

Proposition 4.4. Integrality is preserved by G-homogeneous quotients and localization. More

precisely, suppose R ⊆ S is an integral extension of G-graded rings.

1. If J is a G-homogeneous ideal of S, and I = J ∩R, then S/J is integral over R/I.

2. If W is a multiplicatively closed subset of G-homogeneous elements of R, then SW is

integral over RW .

Proof. Note that homogeneous ideals are, in particular, ideals, and homogeneous localization

is a special case of the usual localization. The fact that homogeneous integrality is no
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different from ordinary integrality gives us these results from the corresponding results in the

non-graded case.

Proposition 4.5. Let R ⊆ S be G-domains, and suppose S is integral over R. Then S is a

G-field if and only if R is a G-field.

Proof. Suppose R is a G-field, and let x ∈ S r {0} be homogeneous and integral over R.

Then there exists an equation of the form

xn + an−1x
n−1 + · · ·+ a0 = 0,

with minimal n and the ai ∈ R homogeneous. Since S is a G-domain, we must have a0 6= 0.

Rearranging the equation, we have

x(xn−1an−1 + · · ·+ a1) = a0,

and dividing by a0 shows that x−1 = a−1
0 (xn−1an−1 + · · ·+ a1) ∈ S. Thus S is a G-field.

Suppose S is a G-field. If x ∈ R r {0} is homogeneous, then x−1 ∈ S, and is hence

integral over R. So given an equation of integrality for x−1:

x−n + an−1x
−n+1 + · · ·+ a0 = 0,

we simply multiply through by xn−1, and rearrange to get

x−1 = −(an−1 + an−2x+ · · ·+ a0x
n−1),

so that x−1 ∈ R.

Corollary 4.6. Suppose R ⊆ S is an integral extension of G-graded rings. Let Q be a
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G-prime ideal of S and P = Q ∩R its contraction. Then Q is G-maximal if and only if P is

G-maximal.

Proof. Apply Propositions 4.4 and 4.5.

Corollary 4.7 (Incomparability). Suppose R ⊆ S is an integral extension of G-graded rings.

Suppose Q ⊆ Q′ are G-prime ideals of S. If Q ∩R = Q′ ∩R, then Q = Q′.

Proof. This is just an application of the previous corollary.

Theorem 4.8 (Lying Over). Let R ⊆ S be an integral extension of G-graded rings and P a

G-prime ideal of R. There exists a G-prime ideal Q of S such that Q ∩R = P .

Proof. By Proposition 4.4, localizing at (P ) gives an integral extension R(P ) ⊆ S(P ). Let m

be a G-maximal ideal of S(P ). By Corollary 4.6, m ∩ R(P ) is G-maximal, so we must have

m ∩ R(P ) = PR(P ). Because m is G-prime in S(P ), there exists Q ∈ SpecG(S) such that

m = Q(P ), and it is an easy exercise to show that Q ∩R = P .

Theorem 4.9 (Going Up). Suppose R ⊆ S is an integral extension of G-graded rings. If

P1 ⊆ · · · ⊆ Pn is a chain of G-prime ideals in R and Q1 ⊆ · · · ⊆ Qm, where m < n, is

a chain of G-prime ideals of S such that Qi ∩ R = Pi for i = 1, . . . ,m, then there exist

G-primes Qm+1, . . . , Qn of S such that Q1 ⊆ · · · ⊆ Qn and Qi ∩R = Pi for all i.

Proof. By induction we need only show the case m = 1, n = 2. This is a straightforward

application of Proposition 4.4 and Theorem 4.8.

Corollary 4.10. Suppose R ⊆ S is an extension of G-graded rings. If the extension is

integral, then dimG(R) = dimG(S).

Proof. This is an easy consequence of the previous several results.

Corollary 4.11. If R is a G-graded ring, H is a subgroup of G, and G/H is torsion, then

dimH(RH) = dimG(R), and dim(RH) = dim(R).
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Proof. G/H torsion implies RH ⊆ R is integral, so 4.10 implies the dimensions are equal.

With this corollary we can prove a result about the preservation of the G-Artinian

property when we pass to a quotient G/H and the induced grading on R. It is the analogue

of Theorem 2.41, but we first show a lemma which is familiar in the case of non-graded

Artinian rings.

Lemma 4.12. Let R be a G-graded ring. Then R is G-Artinian if and only if R is G-

Noetherian and dimG(R) = 0.

Proof. First, if R is G-Noetherian and dimG(R) = 0, then all G-prime ideals of R are minimal,

and so there are only finitely many G-prime ideals of R, say SpecG(R) = {P1, . . . , P`}. By

Remark 3.5, (∏̀
i=1

Pi

)k

⊆

(⋂̀
i=1

Pi

)k

=
(

G
√

0
)k
⊆ 0,

for some k. Then we can suppose Q1Q2 · · ·Qs = 0 for some Qi ∈ SpecG(R), not necessarily

distinct. Suppose s = 1. Then 0 is a G-maximal ideal, so R is a G-field, and clearly

G-Artinian. If s > 1, consider the exact sequence

0→ Q1 · · ·Qs−1 → R→ R/Q1 · · ·Qs−1 → 0.

The first module is a finitely generated graded module over R/Qs (a G-field), so it is

G-Artinian. The third is G-Artinian by induction, and so R is also G-Artinian.

Conversely, suppose R is G-Artinian. We first claim that R has only finitely many G-prime

ideals, all of which are G-maximal; i.e., dimG(R) = 0. Suppose, by way of contradiction, that

m1,m2, . . . is an infinite list of distinct G-maximal ideals. Because

m1 ⊇ m1 ∩m2 ⊇ m1 ∩m2 ∩m3 ⊇ · · ·
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is a descending chain of G-homogeneous ideals, there exists k such that m1 ∩ · · · ∩mk =

m1 ∩ · · · ∩mk ∩mk+1. Using the proof of Lemma 3.10, one sees that mi ⊆ mk+1 for some i.

Since both are G-maximal, we must have mi = mk+1, a contradiction. Therefore there are

only finitely many G-maximal ideals, say {m1, . . . ,mn}. Now suppose P ∈ SpecG(R) and let

J = m1 ∩ · · · ∩mn be the Jacobson G-radical of R. By Proposition 2.42, J is nilpotent, and

thus contained in G
√

0, which is the intersection of all G-prime ideals of R by Proposition 3.6.

In particular, m1 ∩ · · · ∩mn ⊆ P , and using the proof of Lemma 3.10 again, we see that

mi ⊆ P for some i. But because mi is G-maximal, mi = P . Thus all G-prime ideals of R are

G-maximal, and it now follows that dimG(R) = 0.

All that remains to be shown is that R is G-Noetherian. Using the same argument as

in the beginning of the proof, we can write Q1Q2 · · ·Qs = 0 for some Qi ∈ maxSpecG(R),

not necessarily distinct. We then argue by induction on s that R is G-Noetherian. If s = 1,

then R is a G-field, which clearly satisfies the ascending chain condition. Suppose s > 1 and

consider the exact sequence

0→ Q1 · · ·Qs−1 → R→ R/Q1 · · ·Qs−1 → 0.

Since R/Q1 · · ·Qs−1 is a quotient of a G-Artinian ring, it is G-Artinian, and hence G-

Noetherian by induction. The G-graded module Q1 · · ·Qs−1 is a graded R/Qs-module, since

Qs annihilates it. However, since R/Qs is a G-field, Q1 · · ·Qs−1 is a G-free R/Qs-module,

and therefore is G-Noetherian if and only if it is G-Artinian. By Proposition 2.34, R is

G-Noetherian, and we are done.

Theorem 4.13. Suppose R is G-graded and H ≤ G. If H is a finite subgroup, the following

are equivalent:

1. R is G-Artinian.
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2. R is G/H-Artinian.

Proof. We need only show (1) implies (2). First, suppose R is a G-field. Let

I0 ⊇ I1 ⊇ · · · ⊇ Ik ⊇ · · ·

be a descending chain of G/H-homogeneous ideals of R. Suppose |H| = n. Then for any

k ∈ N, if x ∈ Ik is G/H-homogeneous, we can write

x =
n∑
i=1

xi,

where xi ∈ Rg+hi
for some g ∈ G and the hi are the distinct elements of H. If x 6= 0, then at

least one of the xi is nonzero (in fact, at least two are nonzero if Ik 6= R). Now, if xi 6= 0,

then xi is invertible because R is a G-field. Therefore

x−1
i x ∈ RH . (4.1)

Also, the chain of ideals above induces a chain

Î0 ⊇ Î1 ⊇ · · · ⊇ Îk ⊇ · · ·

of ideals of RH , where Îk = Ik ∩ RH . Notice the G/H-grading on RH as a G/H-graded

subring of R is the same as the 0-grading because RH = R0+H .

We claim RH is Artinian. Indeed, by Corollary 4.11 with G replaced by H and H replaced

by 0, we have

dim(R0) = dimH(RH) and dim(R0) = dim(RH).
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Then, since RH is an H-field (as R is a G-field),

dim(RH) = dim(R0) = dimH(RH) = 0.

Further, RH is Noetherian (by Proposition 2.36 and Theorem 2.41), so it follows that RH is

Artinian. Therefore, there exists N ∈ N such that Îk = Îk+1 for all k ≥ N . We claim this

implies Ik = Ik+1 for all k ≥ N .

Indeed, suppose x ∈ Ik is G/H-homogeneous, where k ≥ N . We’ll show x ∈ Ik+1. If

x 6= 0, we can write

x =
n∑
i=1

xi

as above, and multiply by x−1
j for some xj 6= 0 as in (4.1). Then, since x−1

j x ∈ RH , we have

x−1
j x ∈ Îk = Îk+1 ⊆ Ik+1.

However, as Ik+1 is an ideal xj(x
−1
j x) = x ∈ Ik+1.

If we suppose now that (R,m) is a G-local G-Artinian ring, then for any P ∈ SpecG/H(R),

we have P ∗G = m, so

dimG/H(R) = dimG/H(R/m).

Because R/m is a G-field, we know that R/m is G/H-Artinian, and so dimG/H(R) = 0. The

fact that R is G/H-Noetherian comes from Theorem 2.41, as H is finitely generated and

R is G-Noetherian. Thus R is G-Artinian. Finally, suppose R is any G-Artinian ring. We

will show that htG/H(m) = 0 for any m ∈ maxSpecG/H(R). If m ∈ maxSpecG/H(R), then

m∗G = P for some P ∈ SpecG(R). Then the G-graded ring R(P ) (here this is G-homogeneous

localization) is G-Artinian and G-local, so R(P ) is G/H-Artinian. Now observe that by

definition, mr P contains no G-homogeneous elements of R, so m survives in R(P ), and we
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have

htG/H(m) = htG/H(mR(P )) = 0.

Thus, R is G/H-Noetherian and dimG/H(R) = 0, so R is G/H-Artinian.

The next proposition gives another useful application of the results on integrality. In

particular, it shows that for a ring graded by a finite group, the G-graded dimension and

usual dimension always coincide.

Proposition 4.14. Suppose R is a G-graded ring and H is a subgroup of G. If G/H is

torsion, then RH ⊆ R is an integral extension.

Proof. G/H being torsion is almost a nilpotence condition on G-homogeneous elements of

R. Suppose r ∈ Rg for some g ∈ G. Then there exists n such that rn ∈ Rng = Rh for some

h ∈ H. That is, r satisfies a polynomial of the form xn − s, where s ∈ RH .

Corollary 4.15. If R is a G-graded ring, where G is a torsion group, then dimG(R) =

dim(R0).

Proof. Let H = 0 in Corollary 4.11.

Theorem 4.16. Suppose R is a properly graded G-field and H is a finitely generated subgroup

of G. Then

1. dimG/H(R) = dim(RH).

Write H = A⊕B, where A is torsion-free and B is torsion. Then

2. dim(RH) = dim(RB) + rank(H).

Proof. We claim that the G/H-homogeneous ideal structure of R is completely determined

by—in fact, exactly the same as—that of RH . Let I ⊆ R be a G/H-homogeneous ideal, and
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suppose x ∈ I r {0} is G/H-homogeneous. Then we can write

x = x1 + · · ·+ xn ∈ Rg+H

for some g ∈ G, where xi ∈ Rg+hi
r {0} for hi ∈ H, hi 6= hj when i 6= j. Since R is a G-field,

each xi is invertible, so x−1
i x ∈ RH for each i. It’s straightforward then to see that

I = (I ∩RH)R.

Thus for G/H-homogeneous ideals I, J ⊆ R we have I ⊆ J if and only if I ∩RH ⊆ J ∩RH .

Also, I is G/H-prime in R if and only if I ∩RH is prime in RH . Thus dimG/H(R) = dim(RH).

For the second claim, with H = A⊕B as above, Theorem 2.13 implies that

RH
∼= RB[t1, t

−1
1 , . . . , td, t

−1
d ],

where d = rank(H). And now it’s easy to see that

dim(RH) = dim(RB) + d.

Corollary 4.17. With R as in the above theorem, if H is torsion-free, we have dimG/H(R) =

rank(H).

Proof. It suffices to show that dim(RB) = 0. This follows from the fact that if H is torsion-

free, then RH is a properly graded H-field, and so RB = R0 is an honest-to-goodness field in

the usual sense (see Corollary 2.14), so it has dimension 0.
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4.3 Heights of Primes

We begin this section by proving the graded analogues of Krull’s principal ideal theorem and

Krull’s height theorem for a G-Noetherian ring.

Theorem 4.18 (Krull’s principal ideal theorem). Let R be a G-Noetherian G-graded ring

and (a) 6= R a homogeneous principal ideal. Then htG(P ) ≤ 1 for any minimal G-prime P

of (a), and htG(P ) = 1 if a is not a zerodivisor of R.

Proof. For the first statement, consider a minimal G-prime P of (a). First note that

htG(P ) = dimG(R(P )) and that PR(P ) is a minimal G-prime of aR(P ) (in R(P )). Thus, we

can assume that R is a G-local ring whose unique G-maximal ideal m is a minimal G-prime

of (a). Thus, for any Q ∈ SpecG(R) with Q 6= m, we want to show htG(Q) = 0. Let Q(i) be

the inverse image of QiR(Q) in R and form the chain of homogeneous ideals

(a) +Q(1) ⊇ (a) +Q(2) ⊇ · · · .

Since SpecG(R/(a)) has only one element, namely m/(a), R/(a) is G-Artinian. Hence there

exists n ∈ N such that

(a) +Q(n) = (a) +Q(n+1).

We write a homogeneous s ∈ Q(n) as s = ra+ s′ with r ∈ R, s′ ∈ Q(n+1), both homogeneous.

By the definition of Q(n), it follows from ra ∈ Q(n), a /∈ Q, that r ∈ Q(n). Then we get

Q(n) = aQ(n) +Q(n+1),

and so Q(n) = Q(n+1) by the graded Nakayama’s Lemma. Then QnR(Q) = Qn+1R(Q) in R(Q)

and thus QnR(Q) = (0), again by Nakayama’s Lemma. Since Q is nilpotent, it follows that

htG(Q) = dimG(R(Q)) = 0.
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Suppose a is a non-zerodivisor. If htG(m) = 0, then m is nilpotent, so a is nilpotent, a

contradiction. Thus, we must have htG(m) > 0.

Corollary 4.19 (Krull’s height theorem). If R is G-Noetherian, and I := (a1, . . . , an) is an

ideal generated by G-homogeneous elements ai, then htG(P ) ≤ n for any minimal G-prime P

of I.

Proof. The case n = 1 has already been shown, so suppose n > 1 and that the result holds for

integers less than n. Let P be a minimal G-prime over I, and suppose, by way of contradiction,

that htG(P ) > n. That is, there exists a chain

P = Pn+1 ) Pn ) · · · ) P0

of G-primes of R. If a1 ∈ P1, then P is also minimal over P1 + (a2, . . . , an), and in the ring

R/P1, P/P1 is minimal over the image of (a2, . . . , an). Then the chain

P/P1 = Pn+1/P1 ) Pn/P1 ) · · · ) P1/P1

contradicts the induction hypothesis. Therefore, we may assume that a1 ∈ Pk and a1 /∈ Pk−1

for some 2 ≤ k ≤ n+ 1 (certainly, a1 ∈ Pn+1). It will suffice to show that there is a G-prime

ideal Q such that a1 ∈ Q and Pk ) Q ) Pk−2, for then we can repeat the procedure until we

get a chain of length n+ 1 such that a1 ∈ P1.

Consider the G-local G-domain R(Pk)/Pk−2R(Pk). Let Q′ be a minimal G-prime over the

image of a1 in this new ring. Since the image of a1 is nonzero, Q′ 6= 0. On the other hand,

by the previous theorem, htG(Q′) ≤ 1. Since PkR(Pk) has G-height at least two, the inverse

image Q of Q′ in R satisfies the required properties.

The next result is a useful lemma which gives a bound on (graded) height involving the

torsion-free rank of the subgroup.
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Lemma 4.20. Suppose R is a G-graded ring and H is a finitely generated torsion-free

subgroup of G. Let P ∈ SpecG/H(R) and set P ∗ := P ∗G. Then htG/H(P/P ∗) ≤ rank(H).

Proof. Proposition 2.12 and Remark 2.23 imply that P ∗ is both G- and G/H-prime. Con-

sidering R/P ∗ we may assume R is both a G- and G/H-domain and that P ∗ = 0. Let W be

the set of nonzero G-homogeneous elements of R. Note that P ∩W = ∅. By localizing at

W , we can assume that R is a G-field, and P is G/H-prime. Applying Corollary 4.17, we

have that dimG/H(R) ≤ rank(H), which implies that htG/H(P/P ∗) = htG/H(P ) ≤ rank(H)

(the inequality rather than equality comes from the fact that we do not know if R is properly

graded).

A direct consequence of the previous lemma is the following, which is a generalization of

a Z-graded result due to Matijevic-Roberts [14]:

Proposition 4.21. Let R be a G-graded ring and H a finitely generated torsion-free subgroup

of G with rank(H) = 1. Suppose P ∈ SpecG/H(R), and set P ∗ := P ∗G. If P ∗ 6= P , then

htG/H(P ) = htG/H(P ∗) + 1.

Proof. Let ht(−) := htG/H(−). Clearly, ht(P ) ≥ ht(P ∗) + 1, so we only need to show the

reverse inequality. If ht(P ∗) = ∞, there is nothing to show, so assume n := ht(P ∗) < ∞,

and use induction on n. If n = 0, then we want to show ht(P ) ≤ 1. Suppose, by way of

contradiction, that P ) Q1 ) Q2 is a chain of G/H-prime ideals with Q2 minimal. Applying

(−)∗G to the chain and using the fact that P ∗ is minimal, we get that P ∗ = (Q2)
∗G = Q2 by

(2) of Remark 4.2, as Q2 is minimal. Then Lemma 4.20 implies that Q1 = P or Q1 = P ∗, a

contradiction.

Suppose n > 0. Let Q be any G/H-prime ideal properly contained in P . It suffices to

show that ht(Q) ≤ n. Certainly, Q∗G ⊆ P ∗. If Q∗G = P ∗, then by Lemma 4.20, Q = P ∗. If
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Q∗G ( P ∗, then ht(Q∗G) ≤ n− 1, and by induction ht(Q) ≤ n.

Much along the lines of a recent result by Uliczka [18], we can generalize this as follows:

Theorem 4.22. Let R be a G-graded ring and H a finitely generated torsion-free subgroup

of G. If P ∈ SpecG/H(R), and we set P ∗ := P ∗G, then

htG/H(P ) = htG/H(P ∗) + htG/H(P/P ∗).

Proof. Throughout this proof, set ht(−) := htG/H(−). Use induction on n := rank(H). The

case n = 1 is the previous proposition. If n > 1, write H = A⊕B, where rank(A) = n− 1

and rank(B) = 1. Define G′ = G/B and H ′ = H/B. Since G′/H ′ ∼= G/H, we have

P ∈ SpecG/H(R) = SpecG
′/H′(R) and ht(−) = htG

′/H′(−). Set Q = P ∗G
′
. Now, H ′ is a

torsion-free subgroup of G′ with rank n− 1, so by induction

ht(P ) = ht(Q) + ht(P/Q).

If P ∗ = Q, there is nothing more to show, so suppose P ∗ ( Q. Using induction again, now

applied to H ′′ := H/A as a subgroup of G′′ := G/A, and noting that htG
′′/H′′(−) = ht(−), we

have

ht(Q) = ht(Q∗G
′′
) + ht(Q/Q∗G

′′
).

Using Proposition 2.26 and the fact that A ∩B = {0}, we have Q∗G
′′

= P ∗. Since P ∗ ( Q,

ht(Q/P ∗) = 1 by Proposition 4.21. Therefore ht(Q) = ht(P ∗) + 1, and this gives

ht(P ) = ht(P ∗) + 1 + ht(P/Q).



52

Also, since P ∗ ( Q, we have 1 + ht(P/Q) ≤ ht(P/P ∗). From this it follows that

ht(P ) ≤ ht(P ∗) + ht(P/P ∗),

and the reverse inequality is trivial.

Up until this point, none of the results we have established on height compare what

happens when we consider the same ring with different gradings. However, if we add

the hypothesis that R is G-Noetherian, we can apply Theorem 4.18 and get the following

proposition.

Proposition 4.23. Suppose R is G-graded and G-Noetherian, H is a finitely generated

torsion-free subgroup of G, and P ∈ SpecG(R). Then

htG/H(P ) = htG(P ).

Proof. Notice that since SpecG(R) ⊆ SpecG/H(R), we always have htG(P ) ≤ htG/H(P ). If

rank(H) = 1, use induction on n := htG/H(P ). Suppose n = 0. Then htG(P ) ≤ htG/H(P )

implies htG(P ) = 0. Suppose n > 0. Let Q ∈ SpecG/H(R) be contained in P with

htG/H(Q) = n−1. If Q ∈ SpecG(R), we’re done by induction. If not, then htG/H(Q∗G) = n−2

by Proposition 4.21. Now, by passing to R/Q∗G we can assume R is a G-domain and

P ∈ SpecG(R) has htG/H(P ) = 2. Then it will be enough to show that htG(P ) ≥ 2.

Let f ∈ P be a nonzero G-homogeneous element of P . Then P is not (G/H-)minimal

over (f) by Theorem 4.18. Since htG/H(P ) = 2, there exists Q′ ∈ SpecG/H(R) such that

P ) Q′ ⊇ (f) ) (0). Then (Q′)∗G ∈ SpecG(R) and P ) (Q′)∗G ) (0), so that htG(P ) ≥ 2.

This establishes the result in the case rank(H) = 1.

Suppose rank(H) > 1. Write H = A⊕ B, where rank(A) = 1. From the previous case,
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we know

htG(P ) = htG/A(P ).

By Theorem 2.41, R is G/A-Noetherian. Notice the subgroup H/A of G/A is torsion-free

and has rank one less than that of H. By induction on the rank of H (and the fact that

(G/A)/(H/A) ∼= G/H),

htG/H(P ) = htG/A(P ),

and it now follows that htG(P ) = htG/H(P ).

With this proposition and the previous theorem, we immediately get the following:

Corollary 4.24. Let R be a G-Noetherian graded ring and H a finitely generated torsion-free

subgroup of G. If P ∈ SpecG/H(R), then

htG/H(P ) = htG(P ∗G) + htG/H(P/P ∗G).

There is another natural corollary which relates the G/H-graded dimension and the

G-graded dimension of a G-Noetherian ring which follows from the previous results:

Corollary 4.25. If R is a G-graded G-Noetherian ring, and H is a finitely generated torsion-

free subgroup of G, then

dimG(R) ≤ dimG/H(R) ≤ dimG(R) + rank(H).

Proof. The first inequality simply follows from the fact that H being torsion-free implies

SpecG(R) ⊆ SpecG/H(R).

For the second inequality, if the rank of H is infinite, there is nothing to show. Therfore,

we may assume rank(H) <∞. Let m be any G/H-maximal ideal of R, and set m∗ := m∗G.
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Applying (in order) Theorem 4.22, Lemma 4.20, and Theorem 4.23, we get

htG/H(m) = htG/H(m∗) + htG/H(m/m∗)

≤ htG/H(m∗) + rank(H)

= htG(m∗) + rank(H).

Because this holds for every G/H-maximal ideal and htG(m∗) ≤ dimG(R), we have

dimG/H(R) ≤ dimG(R) + rank(H).

Example 4.26. To see that the inequality is, in some sense, the best possible, let k be a

field and x an indeterminate and consider R := k[x] and S := k[x, x−1]. Set G = H = Z and

give both rings a G-grading by setting deg(x) = 1. Note that

dimG/H(R) = 1 = dimG(R).

On the other hand, because S is a G-field,

dimG/H(S) = 1 = dimG(S) + 1.

In particular, both the upper and lower bounds can be attained.

The final two results of this section describe a situation in which dimG/H(R) = dimG(R).

Corollary 4.28 is similar to the fact that in a non-negatively Z-graded ring R, the dimension

of R can be found by examining only homogeneous prime ideals. In our situation, we have to

generalize the condition that R is non-negatively graded, however.
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Proposition 4.27. Suppose R is a G-field and H is a torsion-free subgroup of G. Then R

is a G/H-field if and only if RH = R0.

Proof. Suppose first that RH = R0, and let f be any G/H-homogeneous element of R. Since

f ∈ Rg+H for some g ∈ G, we can write

f =
k∑
i=0

fi,

where the fi are in distinct homogeneous components Rg+hi
. Since R is a G-field, we can

multiply f by f−1
0 and we see that f−1

0 f ∈ RH . Since RH = R0, f
−1
0 f = f−1

0 fi for some

1 ≤ i ≤ k. But this implies that f = 0 or that f is G-homogeneous. Thus every nonzero

G/H-homogeneous element of R is invertible.

Conversely, suppose R is a G/H-field such that RH 6= R0. Then there exists h ∈ H r {0}

such that Rh 6= 0. Choose f ∈ Rh r {0}. Since f is a unit and H is torsion-free, it is easily

seen that 1 + f cannot be a unit, a contradiction (note that since 1 + f is G/H-homogeneous,

if (1 + f)−1 exists, it must be in RH).

Corollary 4.28. Let R be a G-graded ring and H a finitely generated torsion-free subgroup

of G. Let K = {h ∈ H | Rh 6= 0}. If there exists a total order on H such that K is a

well-ordered subset, then

1. maxSpecG(R) ⊆ maxSpecG/H(R).

If, in addition, R is G-Noetherian, then

2. dimG/H(R) = dimG(R)

Proof. First assume m ∈ maxSpecG(R). Then m ∈ maxSpecG/H(R) if and only if R/m is a

G/H-field. But the previous proposition states this is if and only if (R/m)H = (R/m)0. So to
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prove (1), it suffices to show that our hypothesis on K implies that for each m ∈ maxSpecG(R),

we have (R/m)h = 0 for all h ∈ H r {0}. Suppose then that (R/m)h 6= 0 for some h 6= 0,

say f ∈ Rh r {0}. Since R/m is a G-field, we know f−1 exists and is nonzero. Then, using

either powers of f or f−1, we can find nonzero elements of (R/m)H of arbitrarily high or low

degree (with respect to the total order given on H), which is a contradiction. This proves (1).

Suppose that R is also G-Noetherian. We use induction on rank(H) = n. Suppose n = 1

and m ∈ maxSpecG/H(R) r maxSpecG(R). By Proposition 4.21,

htG/H(m) = htG/H(m∗G) + 1.

But by Remark 2.21, m∗G ⊆ N for some N ∈ maxSpecG(R). Note that in fact m∗G (

N . Indeed, if m∗G = N , then m∗G ∈ maxSpecG/H(R) by part (1), and so m = m∗G, a

contradiction. Therefore, by Propositions 4.21 and 4.23,

htG(N) = htG/H(N) ≥ htG/H(m∗G) + 1 = htG/H(m).

This shows dimG/H(R) ≤ dimG(R), and the reverse inequality is obvious. Suppose now the

result holds for all such subgroups of rank less than n. Write H = A⊕B, where rank(A) = 1

and rank(B) = n− 1.

Before using induction, note the hypothesis that there exists a total order on H such that

K is a well-ordered subset passes to any subgroup H ′ ≤ H and the subset H ′ ∩K, since

a subset of a well-ordered set is well-ordered. Thus, we can apply induction to H/A as a

subgroup of rank n − 1 of G/A (because H/A ∼= B ≤ H) and to A as a subgroup of G of

rank 1 to get:

dimG/H(R) = dimG/A(R) = dimG(R).
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4.4 Primes Extended to Polynomial Rings

It is well-known that a prime ideal p ⊆ R extends to a prime ideal p[t] := pR[t] in a polynomial

ring over R. Our situation will be the following: R is a G-graded ring, and we introduce a

natural G̃ := G ⊕ Z-grading on R[t] by setting deg(t) = (0, 1); i.e., (R[t])(g,n) = Rgt
n. As

noted in the discussion preceding Proposition 4.3, it is clear that if R is a G-domain, then

R[t] is a G̃-domain. Thus, if P ∈ SpecG(R), then PR[t] ∈ Spec
eG(R[t]).

Our goal now is to prove a generalization of the fact that in a Noetherian ring the heights

of these extended primes remain the same.

Remark 4.29. For Proposition 4.31 (and in Lemma 5.6 as well), common proofs often rely

on the familiar prime avoidance lemma. This fails—in one sense—in a very particular way in

the graded setting:

1. Let R = Z[t], where t is an indeterminate, and give R a Z-grading by setting deg(t) = 1.

Set I = (2, t), P1 = (2), and P2 = (t). Then P1 and P2 are Z-prime ideals, and

I * P1 ∪ P2, but there is no Z-homogeneous element x ∈ I such that x /∈ P1 ∪ P2.

On the other hand, the following statement still holds in general in the graded setting:

2. Suppose P1, . . . , Pn are G-homogeneous ideals of R, at most two of which are not

G-prime. If I is a G-homogenous ideal of R such that I ⊆
⋃
Pi, then I ⊆ Pi for some i.

Proof of (2). We use induction on n, the number of ideals. For n = 1, it is trivially true, and

for n = 2, it is a matter of group theory. Suppose n > 2. Then (reordering if necessary) we

may assume P1 is G-prime. If I ⊆
⋃
j 6=i Pj for some i, we are done by induction. Therefore,

for each i = 1, . . . , n, we may assume I *
⋃
j 6=i Pj; that is, there exists ai ∈ Pi such that

ai /∈
⋃
j 6=i Pj.

Now, each ai is a sum of G-homogeneous components, say ai =
∑

k bi,k. Because

ai /∈
⋃
j 6=i Pj , we know that for each i = 2, . . . , n, at least one of the homogeneous components
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is not in P1. Without loss of generality, we can assume (reordering if necessary) bi,1 /∈ P1, for

i = 2, . . . , n. Because each Pi is homogeneous, bi,1 ∈ Pi for each i = 1, . . . , n. Consider the

element

b = b1,1 + b2,1b3,1 · · · bn,1.

Certainly b ∈ I. If b ∈ P1, then b2,1 · · · bn,1 ∈ P1, and because P1 is G-prime, we get that

bi,1 ∈ P1 for some i, a contradiction. If b ∈ Pi for i = 2, . . . , n, then b1,1 ∈ Pi, also a

contradiction. Thus, we have constructed an element b ∈ I, yet b /∈
⋃
Pi, a contradiction.

We first isolate in a lemma an argument that allows us to avoid using prime avoidance.

Lemma 4.30. Suppose R is a G-Noetherian graded ring and P ∈ SpecG(R). Let f ∈ P be

homogeneous. Then htGR/(f)(P/(f)) ≥ htG(P )− 1.

Proof. Using G-homogeneous localization at P , we can assume (R,m) is G-Noetherian

and G-local, with f ∈ m. If dimG(R) is 0 or 1, there is nothing to show, so assume

dimG(R) = n ≥ 2. Suppose, by way of contradiction, that there exists a homogeneous f ∈ R

such that dimG(R/(f)) ≤ n− 2. Let

m ) Qn−1 ) · · · ) Q1 ) Q0

be a saturated chain of G-prime ideals. Note that f /∈ Q1. Indeed, if f ∈ Q1, then

dimG(R/(f)) ≥ n − 1. Therefore, modulo Q1, f is nonzero so dimG(R/(Q1, f)) ≤ n − 2.

If dimG(R/(Q1, f)) < n − 2, induction implies dimG(R/Q1) < n − 1, a contradiction. So

assume dimG(R/(Q1, f)) = n− 2 (this last condition is forced if n = 2). Thus, we have

n− 2 = dimG(R/(Q1, f)) ≤ dimG(R/(f)) ≤ n− 2,

which gives dimG(R/(f)) = dimG(R/(Q1, f)). This implies (Q1, f) is contained in some
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minimal G-prime of (f), but the minimal G-primes of (f), by Theorem 4.18, must have

G-height less than or equal to 1. Therefore, Q1 is minimal, a contradiction.

Proposition 4.31. Let R be a G-Noetherian graded ring, and suppose G̃ is as in the

discussion at the beginning of this section. For any P ∈ SpecG(R), htG(P ) = ht
eG(P [t]).

Proof. Since htG(P ) ≤ ht
eG(P [t]) is clear, we only need to show the reverse inequality. Since

G-primes of R extend to G̃-primes of R̃, one can easily show that the minimal G̃-primes of

R[t] are precisely those extended from minimal G-primes of R, so if htG(P ) = 0, we are done.

If n := htG(P ) > 0, it then suffices to show that htG(P/Q) ≥ ht
eG((P/Q)[t]) for all minimal

Q ∈ SpecG(R). Thus, we can assume R is a G-domain and

P ) Qn−1 ) · · · ) Q1 ) (0)

is a saturated chain of G-prime ideals. Since R is a G-domain, there exists a homogeneous non-

zerodivisor f ∈ Q1. By Lemma 4.30, htG(P/(f)) = n−1, and by induction, ht
eG(P [t]/(f)[t]) =

n− 1. Lemma 4.30 (with G = G̃) also gives ht
eG(P [t]) ≤ n (combining Theorems 2.37 and

2.41 shows R[t] is G̃-Noetherian).

In Chapter 5 we will find it convenient to consider R[t] graded still by G, rather than by

G̃. If we set deg(t) = g for some g ∈ G, the next corollary guarantees that the G-heights of

the extended G-primes still remain the same.

Corollary 4.32. With the setup as above, suppose P ∈ SpecG(R), and consider R[t] as a

G-graded ring by setting deg(t) = g for some g ∈ G. Then htG(P ) = htG(P [t]).

Proof. Since we know that htG(P ) = ht
eG(P [t]), we only need to use Proposition 4.23 with

G = G̃ and H = 〈(g,−1)〉, as G̃/H ∼= G and the G̃/H-grading on R[t] is the same as the

G-grading.



60

Chapter 5

Grade and Cohen-Macaulayness

For a commutative ring R, one common way of defining gradeI(R), the grade of an ideal

I ⊆ R, is to let it be the maximum length of an R-regular sequence contained in I. Recall

that an element x ∈ R is regular (on R) if x is a non-zerodivisor on R and xR 6= R. A

sequence x1, . . . , xn ∈ R is regular if x1 is regular on R and xi is regular on R/(x1, . . . , xi−1)R.

Obviously, one would simply like to define grade in a G-graded ring by the following: if

I is a homogeneous ideal, set gradeI(R) to be the maximum length of a regular sequence

of homogeneous elements. However, the following example illustrates a problem with that

definition:

Example 5.1. Let k be a field, and consider the Z-graded ring R := k[x, y]/(xy), where we

set deg x = 1 and deg y = 0. Then (x, y)R has positive grade under the trivial grading (i.e.,

in the usual sense), but every Z-homogeneous element of (x, y)R is a zerodivisor.

This is essentially the same problem one has when working with grade in non-Noetherian

rings: it can happen that a (finitely generated) ideal has annihilator 0, but no single element

has annihilator 0. In Example 5.1, the ideal (x, y)R has annihilator 0, but every homogeneous

element of (x, y)R has non-zero annihilator. As we will see in Proposition 5.3, this problem
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can be rectified by adjoining indeterminates.

Instead we define grade in terms of C̆ech cohomology, motivated in part by work on

non-Noetherian rings (cf. [1], [3], [10], [11]). This approach coincides with the classical notion

of grade in the case that the underlying ring is Noetherian, but we will not necessarily assume

this. Later, we will assume that R is G-Noetherian, but if G is not finitely generated, there

is no guarantee that R will be Noetherian with respect to the trivial grading.

The C̆ech complex can be defined in the following way. If f ∈ R, C(f) is the cochain

complex

0→ R →
r 7→ r

1

Rf → 0.

For f = f1, . . . , fn, we inductively define C(f) := C(f1, . . . , fn−1) ⊗R C(fn). The ith C̆ech

cohomology of R with respect to f is H i
f (R) := H i(C(f)). Notice that if R is G-graded and f

is a sequence of G-homogeneous elements, then the differentials in C(f) have degree 0. Hence

H i(C(f)) is G-graded for each i.

Suppose R is a G-graded ring, and I = (f1, . . . , fn) is a G-homogeneous ideal generated

by the homogeneous sequence of elements f := f1, . . . , fn. Define

gradeGI (R) = min{i | H i
f (R) 6= 0}.

Remark 5.2.

1. The modules H i
f (R) are independent of the generating set f chosen for I.

2. If I is G-homogeneous, then gradeGI (R) = grade
G/H
I (R) for all subgroups H of G. Hence,

we often drop the superscript G and simply write gradeI(R).

3. If R → S is a faithfully flat ring homomorphism of G-graded rings and I is G-

homogeneous, then gradeI(R) = gradeIS(S).
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The advantage of having a homogeneous regular sequence x = x1, . . . , xn contained in I

is that by combining Propositions 2.6 and 2.7 in [10], we get

gradeI/(x)(R/(x)) = gradeI(R)− n.

Thus, we can make inductive arguments while still staying in the graded category; this is not

possible if there are no homogeneous regular elements. One solution is to create homogeneous

elements (in fact, this is mentioned in [14, Remark 1]). In particular:

Proposition 5.3. If R is a G-graded ring and I ( R is a finitely generated homogeneous

ideal, there exist d ≥ 1 and indeterminates t1, . . . , td with deg ti = gi for some gi ∈ G,

i = 1, . . . , d, such that IR[t1, . . . , td] contains a homogeneous R[t1, . . . , td]-regular sequence of

length gradeI(R).

Proof. Notice that since the grade is determined by C̆ech cohomology, and the map R →

R[t1, . . . , td] is faithfully flat, we have

gradeI(R) = gradeIR[t1,...,td](R[t1, . . . , td]).

Therefore, if we show that by adding some (finite) number of indeterminates, we can force

the existence of one homogeneous regular element, we can iterate. Suppose gradeI(R) > 0.

Consider the G-graded ring R[x], where x is an indeterminate with deg(x) := 0. By

Chapter 5, Theorem 7 of [17], there exists a non-zerodivisor g ∈ IR[x]. Since gradeI(R) =

gradeIR[x](R[x]), by replacing R with R[x] and I with IR[x], we may assume I contains a

non-zerodivisor:

g = f1 + · · ·+ fn ∈ I,

where fi ∈ Rgi
r {0} for some gi ∈ G. We assume gi 6= gj for i 6= j (and presumably that
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n ≥ 2, or else we need not do the following construction, but n ≥ 2 is irrelevant to the proof).

Consider the subgroup of G generated by the gi, say K = 〈g1, . . . , gn〉. Then K is a finitely

generated abelian group, so we can write

K ∼= Zm ⊕ Z/m1Z⊕ · · · ⊕ Z/mrZ,

where m, r ≥ 0. Consider the following ring, where the tj are indeterminates:

R[t] := R[t1, . . . , tm, tm+1, . . . , tm+r].

For j = 1, . . . ,m, we set deg(tj) = ej with ei ∈ K the vector of length m+ r with a 1 ∈ Z in

the jth position and 0 elsewhere. For a = 1, . . . , r, we set deg(tm+a) = εa, with εa the vector

of length m + r with a 1 ∈ Z/maZ in the (m + a)th position and 0 elsewhere. Identifying

Zm ⊕ Z/m1Z⊕ · · · ⊕ Z/mrZ with K ≤ G, this ring now has a G-grading.

Each gi can be identified with

ki =
m∑
j=1

ki,jej +
r∑

a=1

`i,aεa,

where ki,j, `i,a ∈ Z and we can choose 0 ≤ `i,a < ma (here 1 ≤ j ≤ m and 1 ≤ a ≤ r, and the

restriction of the `i,a gives a unique choice). Define N := max{|ki,j| | 1 ≤ i ≤ n, 1 ≤ j ≤ m},

and set

k = (N, . . . , N︸ ︷︷ ︸
m

,m1, . . . ,mr).

For arbitrary h =
∑m

j=1 hjej +
∑r

a=1 hm+aεa, define

th = th1
1 t

h2
2 · · · t

hm+r

m+r .
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One sees that for each i = 1, . . . , n, the term fit
k−ki is homogeneous of degree k. Further,

by the choice of N and the `i,a, k− ki has all positive entries so that fit
k−ki ∈ R[t]. And as

fi ∈ I, we have fit
k−ki ∈ IR[t]. Then

g(t) :=
n∑
i=1

fit
k−ki

is homogeneous of degree k in IR[t]. All that remains to be shown is that g(t) is R[t]-regular.

Indeed, since IR 6= R, we have IR[t] 6= R[t]. Further, g(t) is a zerodivisor if and only if there

exists r ∈ Rr {0} such that rg(t) = 0, which is if and only if rfi = 0 for i = 1, . . . , n. This

implies g =
∑
fi is a zerodivisor, contradicting the choice of g, so g(t) is a G-homogeneous

non-zerodivisor, as desired.

If (R,m) is a G-local G-Noetherian ring, we set

depthG(R) = gradem(R).

Then, by making minor modifications to the proof of [10, Prop. 2.4] (Proposition 5.4 below),

we have that

depthG(R) ≤ dimG(R),

and we say that R is G-Cohen-Macaulay if

depthG(R) = dimG(R).

For a graded ring that is not necessarily G-local, we say R is G-Cohen-Macaulay if R(n) is

G-Cohen-Macaulay for each G-maximal ideal n of R.

At this point it is worth noting that a G-local ring (R,m) is G-Cohen Macaulay if and

only if H i
x(R) = 0 for all i < htG(m), where m = (x) = (x1, . . . , xr). Indeed, the “only if” is
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clear. The vanishing of the C̆ech cohomology forces depthG(m) ≥ dimG(R) = htG(m). Thus,

one only needs to see that depthG(R) ≤ dimG(R), but as mentioned above, this is just a

generalization of [10, Prop. 2.4]:

Proposition 5.4 (Prop. 2.4 in [10]). Let R be a G-graded ring with dimG(R) = d <∞ and

x := x1, . . . , xn a sequence of elements from R. Then H i
x(R) = 0 for all i > d.

Proof. Use induction on d, and note that we may assume (R,m) is G-local and (x)R ⊆ m.

Indeed, H i
x(R) = 0 if and only if

H i
x(R)(m) = H i

x
1
(R(m)) = 0,

and if (x)R * m, then (d) of Proposition 2.1 in [10] implies a unit annihilates H i
x
1
(R(m)). If

d = 0, then G
√
I = m, so every element of m is nilpotent. Thus H i

x(R) = 0 for i > 0.

Suppose d > 0 and that the result holds for rings of dimension less than d. If n ≤ d, then

there is nothing to show. Suppose n > d and let j be the largest integer such that Hj
x(R) 6= 0;

we may assume j > d. Set x′ = x1, . . . , xn−1, so that by induction on n, Hj
x′(R) = 0. From

the exact sequence

· · · → Hj−1
x′ (R)→ Hj−1

x′ (R)xn → Hj
x(R)→ 0,

we obtain Hj−1
x′ (Rxn) 6= 0. As R is G-local with dimG(R) = d, dimG(Rxn) ≤ d− 1, and so by

induction on d, j − 1 ≤ d− 1, a contradiction.

Now we introduce a useful construction. Suppose (R,m) is a G-local G-Noetherian ring.

By Proposition 5.3 above, we can adjoin a finite number of indeterminates t = t1, . . . , td, so

that

grademR[t](R[t]) = depthG(R),

and by assigning the proper degrees to the ti (as described in the proof) we get a homogeneous
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regular sequence of length depthG(R) as well. But now R[t] is no longer local. Using

Corollary 4.32, we know that htG(m) = htG(mR[t]). Setting R̃ = R[t](mR[t]) and m̃ = mR̃,

we then have that (R̃, m̃) is a G-local ring with the same G-graded dimension as R. In fact,

since m̃ = mR̃ and the extension R→ R̃ is faithfully flat, depthG(R) = depthG(R̃), so that

R is G-Cohen-Macaulay if and only if R̃ is, the advantage being that m̃ now contains a

G-homogeneous regular sequence of length depthG(R̃). This is useful in the proof of the next

proposition and Proposition 5.7, which are basic results in the study of Cohen-Macaulay

rings. Comparing to the proofs in [5], we see that we can sometimes follow the same basic

idea if we can reduce to the case where homogeneous regular elements exist.

Proposition 5.5. Let (R,m) be a G-local, G-Noetherian, and G-Cohen-Macaulay ring. Then

dimG(R/P ) = dimG(R)

for all P ∈ AssG(R).

Proof. We obviously only need to show that dimG(R) ≤ dimG(R/P ) for all P ∈ AssG(R).

Because R is G-Cohen-Macaulay, it suffices to show that depthG(R) ≤ dimG(R/P ). If

depthG(R) = 0, there is nothing to show, so assume depthG(R) > 0. We first prove the result

in the case where there exists a homogeneous regular element x ∈ m. Setting R := R/(x),

we have that R/(x) is G-Cohen-Macaulay. By induction

depthG(R) ≤ dimG(R/Q)

for all Q ∈ AssG(R). It suffices to show that for each P ∈ AssG(R), there exists Q ∈ AssG(R)

such that dimG(R/P ) > dimG(R/Q), because then we have

dimG(R/P ) > depthG(R) = depthG(R)− 1.
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Given P ∈ AssG(R), choose (z) ⊆ R that is maximal among the homogeneous principal ideals

annihilated by P . Suppose z ∈ (x). Then z = xy for some y ∈ R, and Py = 0, because x is

a non-zerodivisor. Moreover, we claim that (z) ( (y). Indeed, if y = az for some a ∈ R, then

we can multiply by x to get z = axz; note here that a, x, and z are all homogeneous, so that

deg(ax) = 0. This gives z(1− ax) = 0, but 1− ax is a (homogeneous) unit, so z = 0 (this is

a contradiction provided P 6= 0, and there is nothing to show if P = 0). Hence (z) ( (y).

But (z) was chosen to be maximal, and so we must have z /∈ (x). This implies that in the

quotient ring R, the ideal (P + (x))/(x) consists of zerodivisors on R; in fact, this ideal is

contained in (0 :R z). Thus (P + (x))/(x) ⊆ Q for some Q ∈ AssG(R). In R, the fact that

x /∈ P implies that P ( Q, so we have

dimG(R/P ) > dimG(R/Q) = dimG(R/Q).

If depthG(R) > 0, but there does not exist a homogeneous regular element in m, then

we form the ring (R̃, m̃) described above so that there is a homogeneous regular sequence

in m̃ of length depthG(R). One first needs to show that the extension of the associated

G-primes of R are precisely the associated G-primes of R̃. This is straightforward using

the characterization that associated G-primes of R are precisely G-prime ideals of the form

AnnR(f) for G-homogeneous elements f ∈ R. Using this and the fact that

dimG(R) = dimG(R̃) = dimG(R̃/P R̃)

for any P ∈ AssG(R) (note that the second equality follows from the previous argument,

as gradem(R̃) > 0, so m contains a homogeneous non-zerodivisor), we only need to show

that dimG(R/P ) = dimG(R̃/P R̃). This last equality follows from the construction of R̃:

Because R̃ is constructed by adjoining variables and then localizing, we have an isomorphism
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R̃/P R̃ ∼= (̃R/P ), and the equality follows from the fact that the operation (̃−) preserves the

dimension of the original ring.

The next lemma is a basic result, and it has a clean proof using the C̆ech complex.

Lemma 5.6. For a G-graded G-Noetherian ring R and a G-homogeneous ideal I ⊆ R, we

have gradeI(R) = 0 if and only if I ⊆ P for some P ∈ AssG(R). In particular, depthG(R) = 0

if and only if m ∈ AssG(R).

Proof. Suppose I ⊆ P for some P ∈ AssG(R) and I is generated by the (homogeneous)

sequence a = a1, . . . , ak. Since P = (0 : r) for some homogeneous r ∈ R, the first map in the

C̆ech complex

0→ R→
k⊕
i=1

Rai
→ · · · → Ra1···ak

→ 0

is not injective, as each ai is a zerodivisor. It follows that H0
a(R) 6= 0.

To see the other implication, let a be as before. Then H0
a(R) 6= 0 implies that there

exist a homogeneous r ∈ R r {0} and an ` such that ra`i = 0 for each i. This gives

(0 : (a`1, . . . , a
`
n)) 6= 0, so that (0 : In) 6= 0 for some n. Then In ⊆ (0 : r), and (0 : r) is

contained in an associated G-prime. The second statement now follows easily.

The final result we establish before we undertake the real work in proving the main

theorem in this chapter is the familiar localization of the Cohen-Macaulay property.

Proposition 5.7. Suppose R is G-Noetherian. Then R is G-Cohen-Macaulay if and only if

R(P ) is G-Cohen-Macaulay for all P ∈ SpecG(R).

Proof. Clearly, we only need to show the “only if” direction. If R is G-Cohen-Macaulay, we

may assume (R,m) is G-local: each ring R(P ) is a further localization of R(m) for some G-

maximal ideal m of R. We use induction on depthG(R(P )) to show R(P ) is G-Cohen-Macaulay.

Suppose depthG(R(P )) = 0. Then PR(P ) ∈ AssG(R(P )), but this is if and only if P ∈ AssG(R).
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By Proposition 5.5,

dimG(R/P ) = dimG(R),

whence dimG(R(P )) = 0.

Suppose depthG(R(P )) > 0. We want to show gradeP (R) > 0. Suppose, by way of

contradiction, that gradeP (R) = 0. The previous lemma implies that P ⊆ Q for some

Q ∈ AssG(R). Since R is G-local and G-Cohen-Macaulay, Proposition 5.5 implies Q is a

minimal prime, so that P ∈ AssG(R). Certainly, if P ∈ AssG(R) then PR(P ) ∈ AssG(R(P )),

giving depthG(R(P )) = 0. Therefore, we must have gradeP (R) > 0.

Form the ring (R̃, m̃) above, so PR̃ contains a regular sequence of length gradeP (R) > 0.

By construction, R̃ is G-Cohen-Macaulay. We also know that

dimG(R(P )) = htG(P ) = htG(PR̃) = dimG(R̃(P eR)),

and to see that depthG(R(P )) = depthG(R̃(P eR)), we only have to note that R̃(P eR) is a faithfully

flat R(P )-algebra. Replacing R̃ by R and PR̃ by P , we may assume now that P contains a

homogeneous regular element x.

The ring R/(x) is also G-Cohen-Macaulay, and because we have depthG(R(P )/xR(P )) =

depthG(R(P ))− 1, induction implies

depthG(R(P ))− 1 = dimG(R(P ))− 1,

so that R(P ) is G-Cohen-Macaulay.

The following lemma (with G = H = Z) is well-known for Z-graded rings, and it was

shown recently for Zd-graded rings [18]. It is integral in the proof of the next theorem, and

the proof requires substantially different tools, since the underlying ring is not necessarily

Noetherian.
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Lemma 5.8. Let R be a G-Noetherian graded ring, suppose H is a finitely generated torsion-

free subgroup of G, suppose P ∈ SpecG/H(R), and set P ∗ := P ∗G. Then R(P ) is G/H-Cohen-

Macaulay if and only if R(P ∗) is G/H-Cohen-Macaulay (where the homogeneous localizations

are with respect to the G/H-grading).

Proof. For the “only if” direction, note that R(P ∗) is just a further localization of R(P ), so by

Proposition 5.7, R(P ∗) is G/H-Cohen-Macaulay.

For the other implication, we may assume that P /∈ SpecG(R), or there is nothing to show.

Suppose x′ is a G-homogeneous sequence of elements that generates P ∗ and x is the extension

of x′ to a G/H-homogeneous generating set of P . If R(P ∗) is G/H-Cohen-Macaulay, then

0 = H i
x′R(P∗)

(R(P ∗)) ∼= H i
x′(R)(P ∗)

for all i < htG/H(P ∗) = htG(P ∗). We want to show that H i
x(R)(P ) = 0 for all i < htG/H(P ).

Reset notation: Suppose (R,m) is a G-Noetherian G-local graded ring. Let P ∈

SpecG/H(R) such that P ∗ = m ( P , and assume R(m) is G/H-Cohen-Macaulay. We

want to show that R(P ) is G/H-Cohen-Macaulay. Let x′ and x be as above; that is, x′

generates m and x is the extension to a generating set for P . We use induction on the rank

of H. Suppose rank(H) = 1 (i.e, H ∼= Z).

Define S to be the multiplicatively closed set of G/H-homogeneous elements of R not in

m. By Remark 2.27 and the fact that H i
x′(R) is G-graded over the G-local ring (R,m),

H i
x′(R)(m) = 0 if and only if H i

x′(R) = 0,

This means the condition H i
x′(R)(m) = 0 for i < htG/H(m) is equivalent to H i

x′(R) = 0 for
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i < htG/H(m) = htG(m). Because H has rank 1 and P /∈ SpecG(R), we have

htG/H(P ) = htG/H(m) + 1 = htG(m) + 1.

So now we just need to show that H i
x′(R) = 0 for i < htG(m) implies that H i

x(R)(P ) = 0 for

i < htG(m) + 1. By Corollary 2.15, we know that P = (x′, f) for some f ∈ P r m that is

G/H-homogeneous in R (that is, we can explicitly take x = x′, f). Therefore, we have a long

exact sequence in cohomology:

· · · → H i
x(R)→ H i

x′(R)→ H i
x′(R)f → H i+1

x (R)→ · · ·

and we know that H i
x′(R) = 0 = H i

x′(R)f for i < h := htG(m). This gives an exact sequence

0→ Hh
x(R)→ Hh

x′(R)
φ→ Hh

x′(R)f → Hh+1
x (R)→ 0.

We want to show that Hh
x(R) = 0, so it suffices to show φ is injective. Since φ is (induced

by) the natural localization map (up to a sign), we have φ(x) = 0 if and only if xfn = 0

for some n ∈ N. But this implies fn ∈ Ann(x) ⊆ m (since x is G-homogeneous), and m is

G/H-prime in R, so f ∈ m, a contradiction. Therefore φ is injective and Hh
x(R) = 0, which

implies H i
x(R) = 0 for i < h+ 1 = htG/H(P ). In particular, H i

x(R)(P ) = 0 for i < htG/H(P ).

If rank(H) > 1, write H = A⊕B, where A and B are also torsion-free with rank(A) = 1

and rank(B) = rank(H)− 1. Now, H/A is a finitely generated torsion-free subgroup of G/A

of rank less than rank(H), so induction (and the fact that (G/A)/(H/A) ∼= G/H) implies that

R(P ) is G/H-Cohen-Macaulay if and only if R(P ∗(G/A)) is G/H-Cohen-Macaulay. Notice that

P ∗(G/A) ∈ SpecG/H(R). Applying induction again, this time to H/B as a subgroup of G/B, we

get R(P ∗(G/A)) is G/H-Cohen-Macaulay if and only if R((P ∗(G/A))∗(G/B)) is G/H-Cohen-Macaulay.

By Proposition 2.26, (P ∗(G/A))∗(G/B) = P ∗G = P ∗, so we are done.
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We now prove the main theorem of Chapter 5. In some sense it is an analogue to a

conjecture of Nagata from [15]: for an N-graded ring, is knowing Rm is Cohen-Macaulay for

all homogeneous maximal ideals sufficient to imply R is Cohen-Macaulay? This was answered

affirmatively (for Z-graded rings) in [14]. We recover this result by setting G = H = Z in the

following theorem.

Theorem 5.9. Let R be a G-Noetherian graded ring, and suppose H is a finitely generated

torsion-free subgroup of G. The following are equivalent:

1. R is G-Cohen-Macaulay.

2. R is G/H-Cohen-Macaulay.

Proof. (2) =⇒ (1): Suppose R is G/H-Cohen-Macaulay. If P ∈ SpecG(R), then because

H is torsion-free, we have P ∈ SpecG/H(R), and R(P ) is G/H-Cohen-Macaulay, where the

(P ) denotes the set of G/H-homogeneous elements of R not in P . Let P = (x) for some

(finite) G-homogeneous generating set, and let W be the set of G-homogeneous elements of

R not in P . To see that RW is G-Cohen-Macaulay, it is enough to show that H i
x(R)W = 0

for all i < htG(P ) = htG/H(P ). We already know that H i
x(R)(P ) = 0 for all i < htG/H(P ),

and because H i
x(R) is G-graded, Remark 2.27 gives

H i
x(R)(P ) = 0 if and only if H i

x(R)W = 0.

Therefore R(P ) being G/H-Cohen-Macaulay implies RW is G-Cohen-Macaulay.

(1) =⇒ (2): Throughout, R(−) denotes G/H-homogeneous localization at a G/H-prime

ideal. From Proposition 5.7 we know that R is G/H-Cohen-Macaulay if and only if R(P ) is

G/H-Cohen-Macaulay for all P ∈ SpecG/H(R). And by the previous lemma, R(P ) is G/H-

Cohen-Macaulay if and only if R(P ∗) is G/H-Cohen-Macaulay, where P ∗ := P ∗G. Further,

since R is G-Cohen-Macaulay, we know RS is G-Cohen-Macaulay, where S is the set of
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G-homogeneous elements of R not in P ∗. Finally, because R(P ∗) is just a further localization

of RS, we can reset notation and assume that (R,m) is G-local and G-Cohen-Macaulay, and

we want to show that R(m) is G/H-Cohen-Macaulay.

Since R is G-Cohen-Macaulay, we know dimG(R) = depthG(R). But because R is

G-Noetherian and H is finitely generated and torsion-free,

dimG(R) = htG(m) = htG/H(m) = dimG/H(R(m)).

Therefore, it will suffice to show that depthG(R) = depthG/H(R(m)), or equivalently, that

gradem(R) = grademR(m)
(R(m)),

but this is really just another application of Remark 2.27.
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