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This thesis concerns three topics in commutative algebra:

1) The projective line over the integers (Chapter 2),

2) Prime ideals in two-dimensional quotients of mixed power series-polynomial

rings (Chapter 3),

3) Fiber products and connected sums of local rings (Chapter 4),

In the first chapter we introduce basic terminology used in this thesis for all three

topics.

In the second chapter we consider the partially ordered set (poset) of prime ideals

of the projective line Proj(Z[h, k]) over the integers Z, and we interpret this poset as

Spec(Z[x]) ∪ Spec(Z[ 1
x
]) with an appropriate identification.

We have some new results that support Aihua Li and Sylvia Wiegand’s conjecture

regarding the characterization of Proj(Z[h, k]). In particular we show that a possi-

ble axiom for Proj(Z[h, k]) proposed by Arnavut, Li and Wiegand holds for some

previously unknown cases.

We study the sets of prime ideals of polynomial rings, power series rings and mixed

power series-polynomial rings in Chapter 3. Let R be a one-dimensional Noetherian

domain and let x and y be indeterminates. We describe the prime spectra of certain

two-dimensional quotients of mixed power series/polynomial rings over R, that is,

Spec(
R[[x]][y]

Q
) and Spec(

R[y][[x]]

Q′ ), where Q and Q′ are certain height-one prime



ideals of R[[x]][y] and R[y][[x]] respectively.

In the last chapter we describe some ring-theoretic and homological properties of

fiber products and connected sums of local rings. For Gorenstein Artin k-algebras R

and S where k is a field, the connected sum, R#kS, is a quotient of the classical fiber

product R ×k S. We give basic properties of connected sums over a field and show

that certain Gorenstein local k-algebras decompose as connected sums. We generalize

structure theorems given by Sally, Elias and Rossi that show two types of Gorenstein

local k-algebras are connected sums.
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Chapter 1

Introduction with Basic

Commutative Algebra Terms

We discuss prime ideals in Noetherian rings and decomposition of certain Goren-

stein rings in this thesis. For this we give a short list of some basic definitions and

other relevant terms in commutative algebra.

1.1 Rings and Prime Ideals

A ring R is a nonempty set together with two binary operations, addition and

multiplication, such thatR is an abelian group with respect to addition; multiplication

is associative and both right and left distributive over addition, that is, for all a, b,

c ∈ R, a(b+ c) = ab+ac, (b+ c)a = ba+ ca; and there exists a multiplicative identity

element 1R such that 1Rr = r = r1R for all r ∈ R. All rings considered in this thesis

are commutative; that is, ab = ba, for all a, b ∈ R. A field is a ring in which 1R ̸= 0R

and every nonzero element is invertible; that is, for every a ∈ R, there is an element

b ∈ R with ab = 1R.
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An ideal in a commutative ring R is a nonempty subset I such that if a, b ∈ I,

then a+ b ∈ I and if r ∈ R and c ∈ I, then rc ∈ I. An ideal P of a commutative ring

R is prime if P ̸= R and if a, b ∈ R and ab ∈ P imply a ∈ P or b ∈ P . The ring R is

called an integral domain if the ideal (0) is prime. A maximal ideal of R is a proper

ideal not contained in any other ideal except the whole ring R. IfM ⊂ R is a maximal

ideal, then R/M is a field, so M is prime. A ring is called a local ring if it has a

unique maximal ideal; a ring is semilocal if it has only finitely many maximal ideals.

A minimal prime ideal of R is a prime ideal that does not contain any other prime

ideal. The ring R is called reduced if, for every nonzero r ∈ R and every positive

integer n, rn ̸= 0, that is, R has no nonzero nilpotent elements.

The embedding dimension of a local ring (R,m, k), denoted edim(R), is defined

to be the minimal number of generators needed for the maximal ideal mR. If I and

J are ideals of R, then (I : J) = {x ∈ R | xJ ⊆ I}. In particular, ann(J) = (0 : J)

denotes the annihilator of J .

For a ring R and a prime ideal P of R, RP , the localization at P , is the set

consisting of fractions with denominator not in P ; that is, RP = {a/b | a ∈ R, b ∈

R \ P}. If R is an integral domain, then R(0) consists of all fractions with nonzero

denominator and is called the field of fractions of R. For example, the field Q of

rational numbers is the field of fractions of the integers Z.

A Noetherian ring is a ring that satisfies the ascending chain condition, that is,

every strictly ascending chain I1 ⊂ . . . ⊂ In ⊂ In+1 ⊂ . . . of ideals of R is “eventually

stationary”, that is, the chain has only finitely many terms. If R is a Noetherian

ring, then R has only finitely many minimal prime ideals. In this thesis all rings are

commutative and Noetherian.

A finite strictly increasing sequence of n+1 prime ideals Pn ⊂ . . . ⊂ P1 ⊂ P0 of a

ring R is called a chain of primes of length n. If P is a prime ideal of R, the supremum
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of the lengths of all chains of primes such that P = P0 is called the height of P and

is denoted by ht(P ). The Krull dimension of a ring R, or simply the dimension of

R, is denoted by dim(R) and is defined to be the supremum of the heights of prime

ideals in R. For example, the ring of integers has dimension one; the ring Z[x] of

polynomials over the integers has dimension two.

An Artinian ring is a ring that satisfies the descending chain condition; that is, for

every strictly descending chain I1 ⊃ . . . ⊃ Ii ⊃ Ii+1 ⊃ . . . of ideals of R, there exists

k ∈ N such that Ik = Ik+i for all i ∈ N. A commutative ring R is Artinian if and

only if R is Noetherian and every prime ideal of R is maximal, that is, dim(R) = 0,

[29, Corollary 8.45].

For a ring R, an R-module M is a set with addition and scalar multiplication by

elements of R, that satisfies for all r, s ∈ R and m,n ∈ M :

r(sm) = (rs)m r(m+ n) = rm+ rn (r + s)m = rm+ sm 1m = m.

A zerodivisor on an R-module M is an element r ∈ R for which there exists

m ∈ M such that m ̸= 0 but rm = 0. An element of R which is not a zerodivisor on

M is referred to as a non-zerodivisor on M . A sequence (x1, . . . , xn) of elements of M

is M -regular provided that x1 is a non-zerodivisor on M and xi is a non-zerodivisor

on M/(x1, · · · , xi−1M) for i = 2, . . . , n. The depth of an R-module M is defined as

sup{n | ∃ an M -regular sequence (x1, . . . , xn) in M} and is denoted by depthR(M)

or depth(M). We denote the length of a module M by λ(M).

We write Z for the ring of integers, N for the set of natural numbers, Q for the

field of rational numbers, and R for the field of real numbers. We set N0 = N ∪ {0};

|N| = ℵ0.

Let (R,mR, k) denote a commutative local ring for the remaining items for this

section. We say R is Henselian if for every monic polynomial f(x) ∈ R[x] satisfying

f(x) ≡ g0(x)h0(x) modulo m[x], where g0 and h0 are monic polynomials in R[x] such



4

that g0R[x] + h0R[x] + m[x] = R[x], there exist monic polynomials g(x) and h(x) in

R[x] such that f(x) = g(x)h(x) such that both g(x)− g0(x) and h(x)−h0(x) ∈ m[x].

In other words, if f(x) factors modulo m[x] into two comaximal factors, then this

factorization can be lifted back to R[x], [23], [9].

A finitely generated R-module M is called Cohen-Macaulay (CM) if depth(M) =

dim(M) where dim(M) is defined as dim(R/ ann(M)). A nonzero R-module M is

called maximal Cohen-Macaulay (MCM) if depth(M) = dim(R). We say R is a

Cohen-Macaulay ring provided depth(R) = dim(R).

The local ring R is Gorenstein Artin if the k-vector space annR(mR) is one-

dimensional; that is, dimk(soc(R)) = 1 where soc(R) = annR(mR) = {r ∈ R |

rmR = 0}. A commutative local ring R is Gorenstein if R is Cohen-Macaulay and

dimk(soc(R)) = 1.

For an Artinian local ring R, the Loewy length of R is ℓℓ(R) := max{i | mi
R ̸= 0}.

1.2 Notation for Partially Ordered Sets

Let U be a partially ordered set, sometimes abbreviated poset. A chain in U is a

totally ordered subset of U . Every poset U we study has a unique minimal element

u0 and every chain in U has finite length.

For u ∈ U , the height of u is denoted by ht(u) and is the length t ∈ N0 of a maximal

length chain in U of the form u0 < u1 < u2 · · · < ut = u; the dimension of U , dim(U),

is the maximum of {ht(u) | u ∈ U}; set max(U) = {maximal elements of U} and

min(U) = {minimal elements of U}. Set Hi(U) := {u ∈ U | ht(u) = i} for each

i ∈ N0.

For every pair of elements u, v of U , and every pair of subsets S ⊆ H1(U), and

T ⊂ H2(U), we define
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u↑ = {w ∈ U | u < w}, v↓ = {w ∈ U | w < v}, (u, v)↑ = u↑ ∩ v↑,

S↑ = {t ∈ U | t ∈ s↑, for all s ∈ S}, and Le(T ) = {x ∈ U | x↑ = T}.

For R a commutative ring, the prime spectrum of R, denoted by Spec(R), is

the set of all prime ideals of R. Spec(R) is a partially ordered set, ordered by the

inclusion relation on the set of prime ideals of R. We use the same notation for the

partially ordered set Spec(R), such as P ↑ denotes the prime ideals of R properly

containing P ∈ Spec(R). Similarly, for a and b elements of R, we define a↑ := {P ∈

Spec(R) | a ∈ P} and (a, b)↑ := {P ∈ Spec(R) | a ∈ P and b ∈ P}. We use min(R)

for the set of minimal ideals of R, and max(R) for the set of maximal ideals of R.

Put V (S) = VR(S) = {q ∈ Spec(R) | S ⊆ q}, for a subset S of R; for a ∈ R, put

VR(a) = VR({a}). For each i ∈ N0, we set Hi(R) := {q ∈ Spec(R) | ht(q) = i}

We illustrate prime spectra using “Spec Graphs” in Chapters 2 and 3. The vertices

of a spec graph represent the prime ideals of the spectra and each edge represents

an inclusion between the two prime ideals corresponding to the endpoints of the

segments.
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Chapter 2

The Projective Line over the

Integers

The contents of this chapter are contained in the author’s paper with Christina

Eubanks-Turner: Projective Line over the Integers, which appeared in De Gruyter

Proceedings in Mathematics, Progress in Commutative Algebra 2.

2.1 Introduction

Let h and k be indeterminates over the integers Z. The projective line Proj(Z[h, k])

over the integers can be viewed as the partially ordered set under inclusion of all prime

ideals of Z[h, k] that are generated by finite sets of homogeneous polynomials in h and

k other than those prime ideals that contain both h and k. For x an indeterminate over

Z, the prime spectrum of Z[x] or Spec(Z[x]), the partially ordered set of prime ideals

of Z[x] under inclusion, is sometimes called the affine line over Z. In this chapter

we let x = h/k and we view Proj(Z[h, k]) as the union of its affine pieces Spec(Z[x])

and Spec(Z[ 1
x
]). In this view of Proj(Z[h, k]), the intersection of Spec(Z[x]) with

Spec(Z[ 1
x
]) is identified with Spec(Z[x, 1

x
]); cf. Notation 2.2.6(2).
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In 1986, Roger Wiegand gave five axioms that characterize the prime spectrum

of Z[x] as a partially ordered set; see [31] and Definition 2.2.3 below. Four of those

axioms hold for Proj(Z[h, k]), but Proj(Z[h, k]) fails to satisfy the key fifth axiom of

Spec(Z[x]); see [19]. So far no one has completed a characterization of Proj(Z[h, k]),

although there have been several related results. In 1994 William Heinzer, David

Lantz and Sylvia Wiegand determined those partially ordered sets that occur as the

projective line Proj(R[h, k]) when R is a one-dimensional semilocal domain. In 1997,

Aihua Li and Sylvia Wiegand described some properties of Proj(Z[h, k]). In 2002,

Meral Arnavut conjectured that a modified form of the key axiom of Spec(Z[x])

would complete a characterization of Proj(Z[h, k]); she gave partial results toward

her conjecture; see [3] and Axiom 2.4.2 below.

The key axiom for Spec(Z[x]) stipulates the existence of “radical elements”, de-

fined in Definition 2.2.1, for pairs (S, T ) of finite subsets of Spec(Z[x]), where the

elements of S have height one and those of T have height two. Radical elements often

exist for sets S and T in Proj(Z[h, k]), but not always. We expect that the determina-

tion of when radical elements exist would lead to a characterization of Proj(Z[h, k]).

In this chapter we continue the investigation of the projective line over the integers.

In the process we give further evidence for Arnavut’s conjecture. Among our main

results are new cases when radical elements exist, such as Theorem 2.5.5 and Theo-

rem 2.5.8. In Theorem 2.5.5, we show the existence of radical elements when every

maximal ideal of T ∩ Spec(Z[x]) has form (x, p)Z[x], where p is a prime integer; each

(x, p) corresponds to exactly one maximal ideal of form ( 1
x
, p)Z[ 1

x
] ∈ T ∩ Spec(Z[ 1

x
]);

and vice versa. In Theorem 2.5.8, we find radical elements for sets of form

S = {(p1), . . . , (pn), (x), ( 1x), (x− a), (x− b)}, and

T = {(x, p1), . . . , (x, pℓ), ( 1x , pℓ+1), . . . , (
1
x
, pn)},
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where the pi are prime integers relatively prime to a, b ∈ Z, under certain conditions.

It is difficult to produce prime ideals that are the correct radical elements. For

the proof of Theorem 2.5.5, we use Hilbert’s Irreducibility Theorem to find radical

elements. For the proof of Theorem 2.5.8, we use Euler’s theorem. Theorem 2.5.8 is

a special case of the conjecture and answers a question in Arnavut’s paper [3].

In section 2.2 we restate relevant notation, definitions and previous results of

Meral Arnavut, Aihua Li and Sylvia Wiegand from [3], [18], and [19]. In section

2.3 we discuss the coefficient subset of Proj(Z[h, k]) from [18]. A coefficient subset

of Proj(Z[h, k]) behaves like the set of all prime ideals of Proj(Z[h, k]) generated by

prime integers. In section 2.4 we summarize Meral Arnavut’s results towards the

conjecture. Our new results are in section 2.5; they all support the conjecture.

2.2 Definitions and Previous Results

In this chapter we use the notation for partially ordered sets defined in Section 1.2.

In Definition 2.2.3, we give the five axioms that Roger Wiegand showed charac-

terize Spec(Z[x]) as a partially ordered set; see [31]. The key axiom is easier to state

if we first define “radical element”.

Definition 2.2.1. ([18]) Let U be a partially ordered set of dimension two and let S

and T be finite subsets of U such that ∅ ̸= S ⊆ H1(U) and T ⊆ H2(U). If w ∈ H1(U)

satisfies (1) and (2), then w is called a radical element for (S, T ):

(1) w < t, for every t ∈ T ,

(2) Whenever m ∈ U is greater than both w and s, for some s ∈ S, then m ∈ T .

(In other words, w is a radical element for (S, T ) if and only if
∪
s∈S

(w, s)↑ ⊆ T ⊂ w↑.)
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The following picture illustrates the relations between a radical element and the

associated sets S and T in a two-dimensional poset:

@ T

S • • w

(0)

Figure 2.2.1. Radical Element

For convenience we also introduce the following notation that is used later.

Notation 2.2.2. A ht(1,2)-pair of a poset U is a pair (S, T ) of finite subsets S and

T of U such that ∅ ̸= S ⊆ H1(U) and T ⊆ H2(U).

Definition 2.2.3. Let U be a partially ordered set. The following five axioms are

called the Countable Integer Polynomial (CZP) Axioms :

(P1) U is countable and has a unique minimal element.

(P2) U has dimension two.

(P3) For each element u of height-one, u↑ is infinite.

(P4) For each pair u, v of distinct elements of height-one, (u, v)↑ is finite.

(RW) Every ht(1,2)-pair of U has at least one radical element in U .

Note: Such a set also satisfies Axiom P3′ below, which follows from Axiom RW.

(P3′) For every height-two element t, the set t↓ is infinite.
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Axiom RW is essential because it distinguishes Spec(Z[x]) from other similar prime

spectra such as Spec(Q[x, y]) [31]. The following theorem from R. Wiegand shows

that the CZP axioms characterize Spec(Z[x]).

Theorem 2.2.4. ([31]) A partially ordered set U satisfies the CZP axioms of Defini-

tion 2.2.3 if and only if U is order isomorphic to Spec(Z[x]).

Remarks 2.2.5. The first two remarks are from ([18], [19]):

(1) By Theorem 2.2.4, every ht(1,2)-pair of Spec(Z[x]) has infinitely many radical

elements in Spec(Z[x]).

(2) Since Spec(Z
[
1
x

]
) ∼= Spec(Z[x]), every ht(1,2)-pair of Spec(Z

[
1
x

]
) has infinitely

many radical elements in Spec(Z
[
1
x

]
).

(3) The following discussion shows how the existence of radical elements is im-

portant for showing that two posets U and V that both satisfy axioms for

Proj(Z[h, k]) are order isomorphic. Since Proj(Z[h, k]) is a countable set, we

would want to define an order-isomorphism φ at each stage between finite sub-

sets F and G of U and V respectively, and then extend φ to U and V . If

u0 and v0 are the minimal elements of U and V respectively, S is the set of

height-one elements of F , T is the set of height-two elements of F , and φ is

an order-isomorphism from F = {0} ∪ S ∪ T in U to G = {0} ∪ S ′ ∪ T ′ in V ,

we would try to extend φ so that a radical element for (S, T ) goes to a radical

element for (S ′, T ′). This is a simplification of the process; actually a height-one

set S, and a height-two set T , might be enlarged first and φ defined on enlarged

ht(1,2)-pair before defining the map φ on a radical element. The process is de-

scribed more explicitly in Roger Wiegand’s paper [30]. If we knew which pairs

had radical elements, we could perhaps obtain such an order-isomorphism.
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Notation 2.2.6. As mentioned in the introduction, the projective line over the inte-

gers, denoted by Proj(Z[h, k]), where h and k are indeterminates, has two standard

interpretations as a partially ordered set. The first interpretation is from algebraic

geometry; the second is more ring-theoretic and is used in this paper.

(1) Proj(Z[h, k]) is the set of all prime ideals of Z[h, k] generated by finite sets of

homogeneous polynomials in the variables h and k, but not those prime ideals

containing both h and k.

(2) Proj(Z[h, k]) := Spec(Z[x]) ∪ Spec(Z
[
1
x

]
), where Spec(Z[x]) ∩ Spec(Z

[
1
x

]
) is

identified with Spec(Z[x, 1
x
]). In this identification each prime ideal of the form

pZ[x], where p is a prime integer, is considered the same as pZ[ 1
x
], and f(x)Z[x] is

identified with x− deg(f)f(x)Z[ 1
x
], for every irreducible polynomial f(x) of Z[x] \

xZ[x] with deg(f) > 0.

In particular, in the second view, if f(x) = anx
n + · · · + a1x + a0 ∈ Z[x] is

irreducible, and an ̸= 0 and a0 ̸= 0, then we identify (f(x)) ∈ Spec(Z[x]) with

( 1
xnf(x)) ∈ Spec(Z[ 1

x
]), written (f(x)) ∼ ( 1

xnf(x)), where

1
xnf(x) = a0(

1
x
)n + · · ·+ an−1(

1
x
) + an.

Thus (x2+2x+3)Z[x] ∼ (1+ 2
x
+ 3

x2 )Z[ 1x ]. The only elements of Spec(Z
[
1
x

]
) that

are not in Spec(Z[x]) are the height-one prime 1
x
Z[ 1

x
] and the height-two maximals

(p, 1
x
)Z

[
1
x

]
, where p is a prime integer. Similarly xZ[x] is the only height-one element

of Spec(Z[x]) not in Spec(Z
[
1
x

]
), and {(p, x)Z[x], p is a prime integer} is the set of

all the height-two elements that are in Spec(Z[x]) but not in Spec(Z
[
1
x

]
).

Here is an illustration of Proj(Z[h, k]) with this interpretation, from [19].
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(x, p) , . . . ( 1
x
, p) , . . .

(x) (f) . . . (p) ( 1
x
)

. . .

0

Spec(Z[x, 1
x
])

Spec(Z[ 1
x
])

Spec(Z[x])

Figure 2.2.6. Proj(Z[h, k])

The following proposition is useful for finding radical elements. The proof is straight-

forward and is omitted.

Proposition 2.2.7. ([3]) Let f(x) = anx
n + ... + a0 ∈ Z[x], where a0, ..., an ∈ Z

and an ̸= 0, let ℓ(f) denote the leading coefficient an of f(x) and let c(f) denote the

constant term a0 of f(x).

(1) If p is a prime integer, then

(a) f(x) ∈ (x, p)Z[x] ⇐⇒ p | c(f) ;

(b) (f(x)) = ( 1
xnf(x)) ⊆ ( 1

x
, p)Z

[
1
x

]
⇐⇒ p | ℓ(f).

(2) If f(x) is an irreducible element of Z[x] of positive degree in x, then

(c) ℓ(f) = ±1 ⇐⇒ (f, 1
x
)↑ = ∅ ⇐⇒ (f)↑ ⊆ Spec(Z[x]).

(d) c(f) = ±1 ⇐⇒ (f, x)↑ = ∅ ⇐⇒ (f)↑ ⊆ Spec(Z[ 1
x
]).

By the following theorem, some adjustment of the CZP axioms of Definition 2.2.3

is necessary in order to describe Proj(Z[h, k]).
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Theorem 2.2.8. ([19]) Proj(Z[h, k]) satisfies Axioms P1-P4 of Definition 2.2.3, but

does not satisfy Axiom RW of Definition 2.2.3. Thus Proj(Z[h, k]) � Spec(Z[x]).

The following example shows that the (RW) axiom fails for Proj(Z[h, k]):

Example 2.2.9. ([19]) Let S = {( 1
x
), (2), (5)} and T = {(x, 2), ( 1

x
, 2), ( 1

x
, 3)} in

Proj(Z[h, k]). Then the pair (S, T ) does not have a radical element in Proj(Z[h, k]).

Proof. Suppose w ∈ Proj(Z[h, k]) is a radical element for (S, T ). Then, in order to

satisfy Definition 2.2.1.1, w ⊂ (x, 2) and w ⊂ ( 1
x
, 3), and so w cannot be generated by

a prime integer. Also w cannot be (x) or ( 1
x
). Thus w = (g(x)), for some irreducible

polynomial g(x) ∈ Z[x] of positive degree. Write g(x) = anx
n + · · ·+ a1x+ a0, where

n ≥ 1, a0 ̸= 0, and ai ∈ Z. Since w is a radical element,
∪

s∈S(w, s)
↑ ⊆ T .

Case 1: Suppose there exists i, 1 ≤ i ≤ n, such that 5 does not divide ai. Then,

modulo 5, g has positive degree. Thus the image g of g in Z/5Z has at least one

irreducible factor g1 of positive degree over Z/5Z, and g1 can be considered in Z[x].

Now (5) ∈ (g1, 5) and w = (g(x)) ∈ (g1, 5). But (g1, 5) /∈ T , and (g1, 5) ∈ (w, 5)↑ \ T .

This contradicts Definition 2.2.1(2). Thus Case 1 does not occur.

Case 2: 5 | ai, for every i > 0. Then 5 does not divide a0 since g(x) is irreducible

in Z[x]. Thus w = (g(x)) ⊂ ( 1
x
, 5), since 5 | an, by Proposition 2.2.7(1)(b). Also

(5) ⊂ ( 1
x
, 5); thus ( 1

x
, 5) ∈ (w, 5)↑. But ( 1

x
, 5) /∈ T , again a contradiction. Therefore

(S, T ) has no radical element.

Remark 2.2.10. If there is a radical element w for a ht(1,2)-pair in Proj(Z[h, k]),

then w /∈ S. Otherwise, w↑ ⊆ T by Definition 2.2.1(1), and this would imply T is

infinite by (P3) of Definition 2.2.3, a contradiction.

Our goal in this paper is to determine answers to Questions 2.2.11.
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Question 2.2.11. For which ht(1,2)-pairs of Proj(Z[h, k]) do radical elements exist?

Which pairs have no radical element?

In what follows we obtain partial answers to these questions.

2.3 The Coefficient Subset and Radical Elements

of Proj(Z[h, k])

In this section we give some more background and describe various ht(1,2)-pairs of

Proj(Z[h, k]) in order to obtain partial answers to Question 2.2.11. In particular the

“coefficient” subset C0 of Proj(Z[h, k]) of prime ideals generated by prime elements

of Z is relevant. It is more feasible that a ht(1,2)-pair (S, T ) has a radical element if,

for every prime element p of Z with (p) ∈ S, there is a maximal ideal M ∈ T so that

p ∈ M Proposition 2.3.5.

First in Proposition 2.3.1 we observe that some ht(1,2)-pairs (S, T ) inherit in-

finitely many radical elements in Proj(Z[h, k]) from Spec(Z[x]) or Spec(Z[ 1
x
]). This

is because Spec(Z[x]) and Spec(Z[ 1
x
]) are CZP Theorem 2.2.4.

Proposition 2.3.1. ([19])

Every ht(1,2)-pair (S, T ) of Proj(Z[h, k]) has infinitely many radical elements in

case (1) or (2) hold:

(1) For every s ∈ S, s↑ ⊆ Spec(Z[x]), and T ⊆ Spec(Z[x]).

(2) For every s ∈ S, s↑ ⊆ Spec(Z[ 1
x
]), and T ⊆ Spec(Z[ 1

x
]).

Next we consider subsets of Proj(Z[h, k]) like the subsets of prime ideals generated

by all prime integers of Proj(Z[h, k]). We consider the existence of radical elements

for various ht(1,2)-pairs subject to conditions involving such a “coefficient” subset.
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Definition 2.3.2. ([3]) Let U be a poset of dimension two. A subset C of height-one

elements is called a coefficient subset of U if

(1) For every p ∈ C, p↑ is infinite;

(2) For every pair p, q of distinct elements of C, p ̸= q ∈ C, (p, q)↑ = ∅;

(3)
∪

p∈C p↑ = H2(U);

(4) For every p ∈ C and u ∈ H1(U)\C, we have (p, u)↑ ̸= ∅, and p↑ =
∪

v∈H1(U)\C(p, v)
↑.

Definition 2.3.3. Let A ⊆ H1(U), with (a, b)↑ = ∅ for every a, b ∈ A. A coefficient

subset C is said to be attached to A if, for every p ∈ C and every a ∈ A, |(p, a)↑| = 1.

Example 2.3.4. The set C0 of all prime ideals of Z[x] generated by prime integers

is a coefficient subset of Proj(Z[h, k]) attached to {(x), ( 1
x
)}. It is also attached to

{(x), ( 1
x
), (x− 1)} or {(x), ( 1

x
), (x+ 1)}.

Proposition 2.3.5. ([19]) Let (S, T ) be a ht(1,2)-pair and let C be a coefficient

subset of Proj(Z[h, k]). Suppose that there exist distinct elements P0 and P1 of C

such that P0 ∈ S and T ∩ P ↑
0 = ∅, but T ∩ P ↑

1 ̸= ∅. Then

(1) (S, T ) has no radical element except possibly P1,

(2) If T * P ↑
1 , then P1 is not a radical element by Definition 2.2.1.1,

(3) There exists Q ∈ H1(Proj(Z[h, k])) \ C and t ∈ P ↑
1 ∩Q↑ ∩ T ; thus P1 is not a

radical element for (S ∪ {Q}, T ).

Proof. ([19]) For item 1, let t ∈ T ∩ P ↑
1 . Suppose Q were a radical element for (S, T )

and Q ̸= P1. If Q ∈ C, then (Q,P1)
↑ = ∅ by (ii) of Definition 2.3.2, and so t /∈ Q↑, a

contradiction to Definition 2.2.1 for Q a radical element. Thus Q /∈ C, and so there
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exists t′ ∈ (P0, Q)↑ by (4) of Definition 2.3.2. By hypothesis t′ ∈ P ↑
0 =⇒ t′ /∈ T ,

again contradicting that Q is a radical element. Thus (S, T ) has no radical element

except possibly P1.

Item 2 follows directly from Definition 2.2.1.

For item 3, since P ↑
1 is infinite, there exists t ∈ P ↑

1 \ T . Now by (4) of Defini-

tion 2.3.2, there exists Q /∈ C with t ∈ P ↑
1 ∩Q↑. Thus P1 is not a radical element for

the pair (S ∪ {Q}, T ).

Corollary 2.3.6. ([19]) Let (S, T ) be a ht(1,2)-pair in Proj(Z[h, k]). If T ̸= ∅, then

there exists a finite subset S
′
of H1(Proj(Z[h, k])) such that S ⊆ S

′
and (S

′
, T ) has

no radical element in Proj(Z[h, k]).

The following results, Proposition 2.3.7 and Theorem 2.3.8, are used later to

construct radical elements in various cases.

Proposition 2.3.7. ([16], page 102, exercise 3) Let R be a domain and let y be an

indeterminate over R. Suppose (i) {a, b} is an R-sequence or (ii) (a, b) = R, where

b ̸= 0. Then (a+ by) is a prime ideal of R[y].

Theorem 2.3.8. ([17], page 141) Hilbert’s Irreducibility Theorem. If f ∈

Q[x1, ..., xr, x] is an irreducible polynomial, then there exist a1, ..., ar ∈ Q such that

f(a1, ..., ar, x) remains irreducible in Q[x].

Meral Arnavut shows that the coefficient subset of Proj(Z[h, k]) is unique. She

also gives partial results concerning the existence of radical elements in Proj(Z[h, k]).

Proposition 2.3.9. ([3]) C0 := {pZ[x] | p is a prime integer } is the only coefficient

subset of Proj(Z[h, k]).

Proof. We sketch the proof from [3] briefly. If Γ is a coefficient subset of Proj(Z[h, k])

such that Γ ̸= C0, then Γ ∩ C0 = ∅. Let p be a prime integer. Then (p)↑ is infinite
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and
∪

γ∈Γ(γ, p)
↑ = (p)↑. Hence Γ is infinite. Therefore there exist distinct elements

α and β in Γ− C0 − {(x), ( 1
x
)}; say α = (f(x)), β = (g(x)), for two relatively prime

irreducible polynomials f(x) and g(x) of Z[x] of positive degree. By Proposition 2.3.7,

(f + yg) is a prime ideal in Z[x, y], where y is an indeterminate over Z[x]. By

Hilbert’s Irreducibility Theorem 2.3.8, there exists a prime integer p so that f + pg is

irreducible in Z[x]. By Definition 2.3.2(2), no height-two prime ideals contain both

f and g. If (f + pg) /∈ Γ, we contradict (f, g)↑ = ∅. Hence (f + pg) ∈ Γ. But

(f, p)↑ ⊆ (f)↑ ∩ (f + pg)↑ = (f, f + pg)↑. This contradicts Definition 2.3.2(2).

Remark 2.3.10. ([3]) Let (S, T ) be a ht(1,2)-pair in Proj(Z[h, k]). If T ̸= ∅, then

(S, T ) has at most one radical element in C0.

Proposition 2.3.11. ([3]) Let (S, T ) be a ht(1,2)-pair in Proj(Z[h, k]). If (S, T ) has

a radical element Q in Proj(Z[h, k]) then either (1) S ∩ C0 ⊆
∪

M∈T (M
↓ ∩ C0) or (2)

Q ∈ C0. In case (2), if T = ∅, then S ⊆ C0; if T ̸= ∅, then Q is the only radical

element.

Proof. (Sketch from [3]) If (1) fails, there exists P ∈ S ∩ C0 with T ∩ P ↑ = ∅. Then

Q↑ ∩ P ↑ = ∅. Thus, by Definition 2.3.2(4), Q ∈ C0. Also
∪

s∈S(s,Q)↑ ⊆ T ⊆ Q↑.

Thus if T = ∅, then s ∈ C0, for all s ∈ S. If T ̸= ∅, then T contains an element of

form (f(x), p), where p is a prime integer and either f(x) ∈ Z[x] has positive degree

or f(x) = 1
x
. In either case (f(x), p) ∈ Q↑ implies (p) = Q, and so Q is unique.

Meral Arnavut notes that, if Condition 1 of Proposition 2.3.11(1) is not satis-

fied, then it is difficult to find radical elements; cf. [3], and Proposition 2.3.5 and

Proposition 2.3.11 of this paper.

Proposition 2.3.12. ([3]) Let (S, T ) be a ht(1,2)-pair in Proj(Z[h, k]) such that

(1) S ∩ C0 ⊆
∪

M∈T (M
↓ ∩ C0), and
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(2)
∪

s∈S(s,
1
x
)↑ ⊆ T , or (2′)

∪
s∈S(s, x)

↑ ⊆ T .

Then (S, T ) has infinitely many radical elements in Proj(Z[h, k]).

Proof. We give the proof with hypothesis (2); the proof for (2′) is similar (replace 1
x

by x). Since (s, 1
x
)↑ ⊆ T , for every s ∈ S, and T is finite, ( 1

x
) /∈ S. Therefore S ⊆

Spec(Z[x]). If T = ∅, then, for every s ∈ S, s↑ ⊆ Spec(Z[x]). Thus, by Proposi-

tion 2.3.1, (S, T ) has infinitely many radical elements in Proj(Z[h, k]) as desired. If

T ̸= ∅, let p1, . . . , pr denote the distinct positive prime integers such that

{(p1), . . . , (pr)} =
∪

M∈T (M
↓ ∩ C0).

Then, for each t ∈ T , some pi ∈ t. Let f1, . . . , fn be irreducible polynomials of

Z[x] of positive degree so that S − C0 = {(f1), . . . , (fn)}. Let T ′ = T − ( 1
x
)↑.

Therefore T ′ ⊆ Spec(Z[x]) and S ⊆ Spec(Z[x]). Since Spec(Z[x]) is CZP, there are

infinitely many radical elements for (S, T ′) in Spec(Z[x]). By Proposition 2.3.10,

(S, T ′) has at most one radical element in C0. Thus (S, T ′) has infinitely many

radical elements in Spec(Z[x]) − C0. Let P0 be such a radical element; say P0 =

(f(x)), where f(x) is an irreducible polynomial of Z[x] of positive degree so that

f(x) /∈ xZ[x]∪ f1Z[x]∪ · · · ∪ fnZ[x]∪Z. Let λ be a positive integer greater than the

degree of f(x). Then f(x) and the product p1 · · · prf1 · · · fnxλ are relatively prime in

Z[x]. By Proposition 2.3.7, (yp1 · · · pr f1 · · · fnxλ + f(x)) is a prime ideal of Z[x, y],

where y is an indeterminate over Z[x]. By Hilbert’s Irreducibility Theorem 2.3.8, for

each λ, there exists a prime integer pλ such that gλ(x) = pλp1 · · · prf1 · · · fnxλ + f(x)

is an irreducible polynomial of Z[x]; thus wλ := (gλ(x)) is a prime ideal of Z[x]. For

each λ > deg(f), wλ is a radical element for (S, T ) in Proj(Z[h, k]). Thus (S, T ) has

infinitely many radical elements.
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2.4 The Conjecture for Proj(Z[h, k]) and Previous

Partial Results

In Proposition 2.3.12 some conditions are given for a ht(1,2)-pair (S, T ) so that

there are infinitely many radical elements. Item 2 of Proposition 2.3.12 implies ( 1
x
) /∈

S and item 2′ implies that (x) /∈ S. In either case, we get infinitely many radical

elements in Proj(Z[h, k]). If both (x) and ( 1
x
) belong to S, it is more difficult to

find a radical element. The following conjecture first given by Aihua Li and Sylvia

Wiegand, then adjusted by Meral Arnavut, addresses this case; cf. [19], [3].

Proj(Z[h, k]) Conjecture 2.4.1. ([3]) Let (S, T ) be a ht(1,2)-pair in Proj(Z[h, k]).

Assume

(1) S ∩ C0 ⊆
∪

m∈T (m
↓ ∩ C0), and

(2) (x) ∈ S, ( 1
x
) ∈ S.

Then there exist infinitely many radical elements for (S, T ) in Proj(Z[h, k]).

It appears that some axiom regarding the existence of radical elements analogous

to Axiom RW is necessary for Proj(Z[h, k]). The following axiom was proposed by Li

and Wiegand and modified by Arnavut, cf. [19], [3].

Axiom 2.4.2. Axiom P5. ([3]) Let U be a poset of dimension two.

(P5a) There exist a unique coefficient subset Γ of U and special elements u1, u2 ∈ U

such that (u1, u2)
↑ = ∅ and Γ is attached to u1 and u2. (Thus, for every γ ∈ Γ,

|(γ, u1)
↑| = 1 = |(γ, u2)

↑|.)

(P5b) Let S be a nonempty finite subset of H1(U) and let T be a nonempty finite

subset of H2(U).



20

(P5b.1) If γ↑ ∩ T ̸= ∅, for every γ ∈ S ∩ Γ, then there exist infinitely many radical

elements for (S, T ).

(P5b.2) If there exists an element γ ∈ S ∩Γ such that γ↑ ∩ T = ∅, then there is at most

one possible radical element γ0 for (S, T ), and γ0 ∈ Γ \ S.

Arnavut shows that Conjecture 2.4.1 implies Axiom P5 above for Proj(Z[h, k])

and that U := Proj(Z[h, k]) \C0 is CZP; cf. [3]. We believe that this will lead to a

complete characterization of Proj(Z[h, k]).

We give a special case of the Conjecture 2.4.1 when T = ∅.

Proposition 2.4.3. ([3]) Suppose S is a finite subset of H1(Proj(Z[h, k])) of the form

S = {(x), ( 1
x
), (f1), . . . , (fn)},

where f1, . . . , fn are monic irreducible polynomials of Z[x] of positive degree. Then

(S, ∅) has infinitely many radical elements in Proj(Z[h, k]).

Remark 2.4.4. Similarly one can find infinitely many radical elements if T = ∅

and S is a finite subset of H1(Proj(Z[h, k])) such that S = {(x), ( 1
x
), (f1), ..., (fn)},

where f1, ..., fn are irreducible polynomials in Z[x] of positive degree with c(fi) = ±1.

However we do not know what happens when T = ∅, c(fi) ̸= ±1 and ℓ(fi) ̸= ±1. In

this case if there is a radical element (g(x)) where g(x) is an irreducible polynomial,

then c(g) = ±1, ℓ(g) = ±1 and (g(x), fi(x)) = 1. If we could find such radical

elements, the conjecture would hold for T = ∅. This might help prove the conjecture

for the T ̸= ∅ case as well.

Meral Arnavut introduces the following notation and gives some partial results

related to the conjecture, recorded here as Theorem 2.4.6, cf. [3].
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Notation 2.4.5. Let T be a nonempty finite subset of H2(Proj(Z[h, k])).

Let F := {p ∈ Z, p prime | (x, p) ∈ T} and let G := {p ∈ Z, p prime | ( 1
x
, p) ∈ T}.

Then A1 := F \G, A2 := F ∩G, and A3 := G \ F are disjoint sets.

Define ai :=
∏

p∈Ai
p , for i = 1, 2, 3. Thus a1, a2 and a3 are pairwise relatively

prime integers. For each i, if Ai = ∅, we set ai = 1. Now let n ∈ N, and define

fn(x) ∈ Z[x] by

fn(x) :=


a3x

n + a1, if F ∩G = ∅ (i.e., a2 = 1)

an2a3x
2 + a1a3x+ an2a1, if F ∩G ̸= ∅

Theorem 2.4.6. ([3]) Let (S, T ) be an ht(1,2)-pair in Proj(Z[h, k]) and let F , G, A1,

A2, A3, a1, a2, a3 and fn be as in as in Notation 2.4.5. Suppose

• T ⊆ (x)↑ ∪ ( 1
x
)↑,

• S ∩ C0 ⊆ {(p) | p ∈ F ∪G},

• (x) ∈ S, ( 1
x
) ∈ S.

Then:

(1) If (s, fn)
↑ ⊆ T , for every s ∈ S \ (C0∪{(x), ( 1

x
)}), then (fn) is a radical element

for (S, T ) in Proj(Z[h, k]).

(2) If S \ C0 = {(x), ( 1
x
)}, then (S, T ) has infinitely many radical elements in

Proj(Z[h, k]).

(3) If F ∩ G = ∅ and, for every irreducible polynomial f(x) of Z[x] such that

(f) ∈ S \ (C0 ∪ {(x), ( 1
x
)}), (3i) or (3ii) holds, that is,

(3i) ℓ(f) is a unit, and a1 divides every coefficient of f(x) except ℓ(f),
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(3ii) c(f) is a unit, and a3 divides every coefficient of f(x) except c(f),

then (S, T ) has infinitely many radical elements in Proj(Z[h, k]).

(4) If F ∩G = ∅ and S \ C0 = {(x), ( 1
x
)} ∪ {(x+ α)}, for some α ∈ Z such that a1

and α are relatively prime, then (S, T ) has a radical element in Proj(Z[h, k]).

Corollary 2.4.7. ([3]) Let

S = {(p1), ..., (pn), (x), ( 1x), (f1), ..., (fm)},

T = {(x, p1), ..., (x, pℓ), ( 1x , pℓ+1), ..., (
1
x
, pn)},

where 0 ≤ ℓ ≤ n, p1, ..., pn are distinct prime integers.

(1) If fi(x) ∈ Z[x] has the form xdi + p1...pℓbi, for some di ∈ N and bi ∈ Z with

1 ≤ i ≤ m, then (S, T ) has infinitely many radical elements.

(2) If fi(x) ∈ Z[x] has the form bipℓ+1...pnx
di + 1, for some di ∈ N and bi ∈ Z with

1 ≤ i ≤ m, then (S, T ) has infinitely many radical elements.

2.5 New Results Supporting the Conjecture

In this section we give some new results that further support Conjecture 2.4.1.

We consider various different types of ht(1,2)-pairs in Proj(Z[h, k]).

Theorem 2.5.1. Let (S, T ) be an ht(1,2)-pair in Proj(Z[h, k]). Suppose

(1) T ⊆ (x)↑,

(2) S ∩ C0 ⊆ {(p) | (x, p) ∈ T , p ∈ Spec(Z)},

(3) S \ C0 = {(x), ( 1
x
)} ∪ {(a1x+ 1), ..., (amx+ 1)} for some ai ∈ Z, i = 1, ...,m.
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Then (S, T ) has infinitely many radical elements in Proj(Z[h, k]).

Proof. Assume that T ̸= ∅. Since T ⊆ (x)↑ by (i), we have F ̸= ∅ where F := {p ∈

Z, p prime | (x, p) ∈ T}. Let λ ∈ N be such that λ ≥ 2. Define

gλ(x) := xm+λ + b(a1x+ 1) · · · (amx+ 1) ∈ Z[x]

where the ai are as in (3) and b =
∏
p∈F

p. We show wλ = (gλ(x)) is a radical element

for (S, T ) in Proj(Z[h, k]). By Eisenstein’s Criteria, gλ(x) is irreducible in Z[x]. To

see that wλ satisfies Definition 2.2.1, let t ∈ T . Then t = (x, p), for some p ∈ F . But

p | c(gλ), and so wλ ⊂ t, for every t ∈ T . Let s ∈ S and let M ∈ H2(Proj(Z[h, k])) be

such that gλ(x) ∈ M and s ⊂ M . We consider (wλ, s)
↑ for all possible types of s ∈ S:

(1) Since (gλ(x), aix+ 1) = (1), (gλ(x), aix+ 1)↑ = ∅, for all i = 1, ...,m.

(2) Since (gλ(x),
1
x
) = (1), ( 1

x
, gλ(x))

↑ = ∅.

(3) Since (gλ(x), x) = (x, b), M = (x, p), for some p ∈ F , and hence M ∈ T .

(4) Since (gλ(x), p) = (xm+λ, p), for p ∈ F such that p | b, M = (x, p).

Thus M ∈ T , and so (p, gλ(x))
↑ ∈ T .

Thus wλ = (gλ(x)) is a radical element for (S, T ) in Proj(Z[h, k]) for each λ ∈ N,

and so there are infinitely many radical elements wλ for (S, T ).

If T = ∅, then take b = 1 and define

gλ(x) := xm+λ + (a1x+ 1) · · · (amx+ 1) ∈ Z[x].

Similarly wλ = (gλ(x)) is a radical element for (S, T ) in Proj(Z[h, k]), for λ ∈ N.

Remark 2.5.2. Similarly there exist infinitely many radical elements for a ht(1,2)-

pair (S, T ) in Proj(Z[h, k]) satisfying the following:
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(1) T ⊆ ( 1
x
)↑,

(2) S ∩ C0 ⊆ {(p) | ( 1
x
, p) ∈ T , p ∈ Spec(Z)},

(3) S \ C0 = {(x), ( 1
x
)} ∪ {(x+ a1), ..., (x+ am)} for some ai ∈ Z, i = 1, ...,m.

Proposition 2.5.3. Consider

S = {(p1), ..., (pn), (x), ( 1x), (x+ a1), ..., (x+ am)},

T = {(x, p1), ( 1x , p2), ..., (
1
x
, pn), (x+ a1, p1), ..., (x+ am, p1)}

where p1, ..., pn are distinct prime integers, n > 1, a1, . . . , am ∈ Z and (ak, p1) = 1 for

each k = 1, ...,m. Then (S, T ) has infinitely many radical elements in Proj(Z[h, k]).

Proof. Let λ ∈ N. Define hλ(x) = bλxλ(x + a1)...(x + am) + pλ1 where b =
n∏

i=2

pi.

We show that wλ = (hλ(x)) is a radical element for (S, T ) in Proj(Z[h, k]). First, by

Eisenstein’s Criteria for Z[ 1
x
], hλ(x) is irreducible in Z[ 1

x
]. Also wλ ⊂ t for all t ∈ T .

Let s ∈ S and M ∈ H2(Proj (Z[h, k])) be such that hλ(x) ∈ M and s ⊂ M . We

consider (wλ, s)
↑ for all possible types of s ∈ S:

Since (hλ(x), x + ak) = (x + ak, p
λ
1), M = (x + ak, p1) is the only maximal ideal

that contains (hλ(x), x+ αk), for k = 1, ...,m, that is, (hλ(x), x+ ak)
↑ ∈ T .

Since (hλ(x), x) ⊆ (x, pλ1), M = (x, p1) is the only maximal ideal that contains

(hλ(x), x), that is, (hλ(x), x)
↑ ∈ T .

Since (hλ(x),
1
x
) = (bλ, 1

x
), for i = 2, ..., n, M has form ( 1

x
, pi) for some i, and the

( 1
x
, pi) are the only maximal ideals that contain (hλ(x),

1
x
), for i = 2, ..., n.

Since (hλ(x), p1) = (bλxλ(x+a1)...(x+am)), M = (x, p1) or M = (x+ak, p1) ∈ T ,

for some k = 1, ...,m, and these are the only maximal ideals that contain (hλ(x), p1).

If s = (pi), for i = 2, ..., n, then we get (hλ(x), pi) = (pλ1 , pi) = (1) since pi | b.

Therefore, for each λ ∈ N, wλ is a radical element for (S, T ).
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Proposition 2.5.4. Let α1, . . . , αm ∈ Z be such that gcd(α1, . . . , αm) ̸= 1. Suppose

that p1, . . . , pk are all the prime integers that are factors of any of the αi and that p1

divides each of the αi. Say each αi = pei11 · · · peikk , for some eiℓ ≥ 0. Then let n ≥ 1

and choose prime integers q1, . . . , qn distinct from p1, . . . , pk. Let

B1 := {(x, qj), (x+ αi, qj)}1≤i≤m
1≤j≤n , B2 := {(x+ αi, pℓ)

∣∣ pℓ - αi}1≤ℓ≤k
1≤i≤m,

B3 := {(x, p1) . . . (x, pk)}, and set

S = {(x), ( 1
x
), (x+ α1) . . . , (x+ αm)} ∪ {(qj)}1≤j≤n ∪ {(pℓ)}1≤ℓ≤k,

T = B1 ∪B2 ∪B3.

Then (S, T ) has infinitely many radical elements in Proj(Z[h, k]).

Proof. Let λ ∈ N. Define a0 :=
∏

(1≤ℓ≤k
1≤j≤n)

pℓ · qj and hλ(x) = xλ(x+ α1)...(x+ αm) + a0.

We show that wλ = (hλ(x)) is a radical element for (S, T ) in Proj(Z[h, k]).

Note that hλ(x) is irreducible by Eisenstein in Z[x], since gcd(α1, . . . , αm) ̸= 1

and p1 | gcd(α1, . . . , αm). Also wλ ⊂ t for all t ∈ T .

Let s ∈ S and t ∈ H2(Proj (Z[h, k])) be such that hλ(x) ∈ t and s ⊆ t.

If s = (qj), (hλ, qj) = (xλ(x+α1)...(x+αm), qj), for j = 1, ..., n, and so (hλ, qj)
↑ =

{(x, qj), (x + α1, qj), . . . , (x + αm, qj)} ⊂ B1. Similarly, if s = (pℓ), then (hλ, pℓ)
↑ ⊂

B2 ∪ B3, for ℓ = 1, ..., k. If s = (x), then (hλ, x) ⊂ (x, qj), for all j, 1 ≤ j ≤ n and

also (hλ, x) ⊂ (x, pℓ), 1 ≤ ℓ ≤ k. If s = ( 1
x
), then (hλ,

1
x
) = (1) because hλ is a

monic polynomial of Z[x]. If s = (x+ αi) for some i, 1 ≤ i ≤ m, then (hλ, x+ αi) ⊂

(x+αi, qj) ∈ B1 for some j, 1 ≤ j ≤ ℓ. If pℓ - αi, then (hλ, x+αi) ⊂ (x+αi, pℓ) ∈ B2

and if pℓ | αi, (hλ, x+ αi) ⊂ (x+ αi, pℓ) ∈ B3, for each i, 1 ≤ i ≤ m and 1 ≤ ℓ ≤ k.

Therefore, in any of the latter cases, (hλ, x+ αi)
↑ ⊂ T , for i, 1 ≤ i ≤ m. Thus wλ

is a radical element for (S, T ) in Proj(Z[h, k]). Now, since λ ∈ N, there are infinitely

many wλ in Proj(Z[h, k]) and so (S, T ) has infinitely many radical elements.
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Theorem 2.5.5. There exist infinitely many radical elements for every ht(1,2)-pair

in Proj(Z[h, k]) of the form S = {(x), ( 1
x
), (p1), ..., (pn)} and T = {(x, p1), ..., (x, pn),

( 1
x
, p1) , ..., (

1
x
, pn)}, where p1, . . . , pn are distinct prime integers.

Proof. First consider the subsets

Sx := {(x), (p1), ..., (pn)}, Tx := {(x, p1), ..., (x, pn)}

S 1
x
:= {( 1

x
), (p1), ..., (pn)}, T 1

x
:= {( 1

x
, p1), ..., (

1
x
, pn)}

Then Sx ∪ Tx ⊆ Spec(Z[x]). Thus we see that for every λ ∈ N,

fλ(x) := xλ + p1 . . . pn ∈ Z[x]

(fλ) is a radical element for (Sx, Tx) in Spec(Z[x]) since f(x) is irreducible by Eisen-

stein. Similarly for

hλ(
1

x
) := p1 . . . pn +

1

xλ
∈ Z[

1

x
]

(h( 1
x
)) is a radical element for {S 1

x
, T 1

x
}. We identify h( 1

x
) with

gλ(x) := xλhλ(
1

x
) = xλp1 . . . pn + 1 ∈ Z[x].

Let y be another indeterminate over Z[x] and let k(x) = p1...pnx
λ. Then

fλ(x)gλ(x) = x2λp1...pn + ((p1...pn)
2 + 1)xλ + p1...pn.

Since fλ(x)gλ(x) and k(x) are relatively prime elements of Z[x], fλ(x)gλ(x) + yk(x)

is a prime ideal in Z[x, y] by Proposition 2.3.7. Thus there exists a prime integer

q so that fλ(x)gλ(x) + q(p1...pnx
λ) is irreducible in Z[x] by Hilbert’s Irreducibility

Theorem 2.3.8.
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We show that wλ := (rλ(x)) = (fλ(x)gλ(x)+ qk(x)) is a radical element for (S, T )

for all λ ∈ N. First observe

rλ(x) = p1...pnx
2λ + ((p1...pn)

2 + 1 + qp1...pn)x
λ + p1...pn.

It is easy to see that wλ ⊂ t for every t ∈ T , since pi | ℓ(r) and pi | c(r), for i = 1, ..., n.

Also (rλ, x) ⊆ (pi, x) for all i = 1, ..., n. Similarly (rλ,
1
x
) ⊆ ( 1

x
, pi), for all i = 1, ..., n.

Moreover (rλ, pi) = (xλ, pi) and so (x, pi) is the only maximal element that contains

(rλ, pi)
↑, for i = 1, ..., n. Thus (rλ, pi)

↑ ∈ T , for i = 1, ..., n. Therefore wλ is a radical

element for each λ ∈ N.

Example 2.5.6. There are infinitely many radical elements for every ht(1,2)-pair in

Proj(Z[h, k]) of the form

S = {(x), ( 1
x
), (2), (3), (5)}

T = {(x, 2), (x, 3), (x, 5), ( 1
x
, 2), ( 1

x
, 3), ( 1

x
, 5)}.

First consider the following subsets as in the previous proof of Theorem 2.5.5:

Sx = {(x), (2), (3), (5)}, Tx = {(x, 2), (x, 3), (x, 5)}

S 1
x
= {( 1

x
), (2), (3), (5)}, T 1

x
= {( 1

x
, 2), ( 1

x
, 3), ( 1

x
, 5)}.

Then Sx ∪ Tx ⊆ SpecZ[x] and for every λ ∈ N, fλ(x) := xλ + 30 in Z[x] generates

a radical element for (Sx, Tx) in Spec(Z[ 1
x
]). Similarly hλ(

1
x
) := 30 + 1

xλ ∈ Z[ 1
x
] is a

radical element for (S 1
x
, T 1

x
). We identify hλ(

1
x
) with gλ(x) := 30xλ + 1 ∈ Z[x]. Let y

be another indeterminate over Z[x]. Since fλ(x)gλ(x) and 30xλ are relatively prime

elements of Z[x], (fλ(x)gλ(x)+y(30xλ)) is a prime ideal of Z[x, y] by Proposition 2.3.7.

There exists a prime integer q so that fλ(x)gλ(x) + q(30xλ) is irreducible in Z[x] by
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Hilbert’s Irreducibility Theorem 2.3.8. Therefore w = (fλ(x)gλ(x)+30qxλ) is a radical

element for each λ ∈ N.

In [3], Arnavut raises some questions about particular ht(1,2)-pairs in Proj(Z[h, k]).

We consider one such unanswered question below.

Question 2.5.7. Does (S, T ) have a radical element if

S = {(p1), ..., (pn), (x), ( 1x), (x− a), (x− b)},

T = {(x, p1), ..., (x, pℓ), ( 1x , pℓ+1), ..., (
1
x
, pn)},

where 0 ≤ ℓ ≤ n, gcd(ab, p1...pℓ) = 1, and the pi are distinct prime integers for

i = 1, ..., n?

Theorem 2.5.8 answers Question 2.5.7 in a special case.

Theorem 2.5.8. Assume a and b are relatively prime integers and let S and T be

the following subsets of Proj(Z[h, k]):

S := {(p1), . . . , (pn), (x), ( 1x), (x− a), (x− b)},

T := {(x, p1), . . . , (x, pℓ), ( 1x , pℓ+1), . . . , (
1
x
, pn)},

where 0 ≤ ℓ ≤ n, gcd(ab, p1...pℓ) = 1, and the pi are distinct prime integers for

i = 1, ..., n. Suppose also that pq divides (1−pt)(b2 + ab+ a2)+qa3b3 and (1−pt +

qb2a2)(b + a) where p = p1 . . . pℓ, q = pℓ+1 . . . pn, t = lcm(ϕ(a2), ϕ(b2)), and ϕ is the

Euler phi function. Then (S, T ) has infinitely many radical elements in Proj(Z[h, k]).

Proof. Consider the polynomial g(x;u, v, w) of the form

g(x;u, v, w) = qx4 + (pqu)x3 + (pqv)x2 + (pqw)x+ (p)t



29

where t = lcm(ϕ(a2), ϕ(b2)).

We show there exist infinitely many triples u, v, and w ∈ Z such that (g(x;u, v, w))

is a radical element for (S, T ) in Proj(Z[h, k]).

First, by Euler’s theorem, (p)ϕ(a
2) ≡ 1 (mod a2) and (p)ϕ(b

2) ≡ 1 (mod b2), since

gcd(a,p) = 1 and gcd(b,p) = 1. Thus pt − 1 ≡ 0 (mod a2b2), that is, a2b2 divides

pt − 1.

To find u, v, and w ∈ Z, we solve the system of linear equations g(a;u, v, w) = 1

and g(b;u, v, w) = 1; that is,

qa4 + pqa3u+ pqa2v + pqaw + pt = 1, and

qb4 + pqb3u+ pqb2v + pqbw + pt = 1.

This becomes:

u+
v

a
+

w

a2
=

1− pt − qa4

pqa3
(2.5.1)

u+
v

b
+

w

b2
=

1− pt − qb4

pqb3
(2.5.2)

By subtracting (5.2) from (5.1), we get

v

(
b− a

ab

)
+ w

(
b2 − a2

a2b2

)
=

(1− pt)(b3 − a3) + q(b− a)a3b3

pqa3b3
· (2.5.3)

After simplifying (5.3), we deduce

v + w

(
a+ b

ab

)
=

(1− pt)(b2 + ab+ a2) + qa3b3

pqa2b2
· (2.5.4)
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Therefore, for every w = abk where k ∈ Z, we get

v =
(1− pt)(b2 + ab+ a2) + qa3b3

pqa2b2
− (a+ b)k. (2.5.5)

Similarly, by eliminating v, and letting w = abk for k ∈ Z, we get

u = −(1− pt + qb2a2)(b+ a)

pqa2b2
− k. (2.5.6)

Note that pq divides (1− pt)(b2 + ab + a2) + qa3b3 and (1− pt + qb2a2)(b + a).

Moreover a2b2 divides 1− pt. Hence u and v are integers in (5.5) and (5.6).

Now we claim that for every triple of integers u, v and w that we have found

above, the polynomial g(x;u, v, w) := qx4+(pqu)x3+(pqv)x2+(pqw)x+(p)t ∈ Z[x]

generates a radical element for (S, T ). First g(x;u, v, w) is irreducible by Eisenstein’s

Criteria in Z[ 1
x
]. Since c(g) = pt and ℓ(g) = q, we have (g(x;u, v, w)) ⊆ z, ∀ z ∈ T .

Consider (g(x;u, v, w), s)↑ for each s ∈ S:

For s = (x), (g(x;u, v, w), x) = (pt, x) ⊆ (pi, x) ∈ T , where i = 1, . . . , ℓ.

For s = ( 1
x
), we have (g(x;u, v, w), 1

x
) = (q, 1

x
). The only maximal ideals contain-

ing (q, 1
x
) are (pj,

1
x
) ∈ T , for j = ℓ+ 1, . . . , n.

For s = (pi), where i = 1, . . . , ℓ, we get (g(x;u, v, w), pi) = (qx4, pi). The only

maximal ideals containing (qx4, pi) are (x, pi), since (q, pi) = (1).

For s = (pj), where j = ℓ+ 1, . . . , n, we have (g(x;u, v, w), pj) = (pt, pj) = (1).

For s = (x− a), we have (g(x;u, v, w), x− a) = 1 since g(a;u, v, w) = (1).

Similarly, for s = (x− b), we get (g(x;u, v, w), x− b) = (1) since g(b;u, v, w) = 1.

Therefore we conclude that (g(x;u, v, w)) is a radical element for (S, T ), for all

u, v and w ∈ Z as chosen in the proof. Thus there are infinitely many radical elements

for this (S, T )-pair in Proj(Z[h, k]).
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Example 2.5.9. For S = {(2), (3), (x), ( 1
x
), (x− 5), (x− 7)} and T = {(x, 2), ( 1

x
, 3)},

the polynomial g(x;u, v, w) := 3x4 + 6ux3 + 6vx2 + 6wx + 2420 ∈ Z[x] generates a

radical element for (S, T ) for w = 0,

u =
(1− 2420 + 3 · 52 · 72)(5 + 7)

2 · 3 · 52 · 72
∈ Z , and

v =
(1− 2420)(52 + 35 + 72) + 3 · 53 · 73

2 · 3 · 52 · 72
∈ Z .

Note that u and v are integers since 52 ·72 divides 1−2420, and also 2·3 = 6 divides

the numerators (1− 2420 + 3 · 52 · 72)(5 + 7) and (1− 2420)(52 + 35 + 72) + 3 · 53 · 73.

Also, if w = 5 · 7 · k = 35k, for k ∈ Z, then we get different integers u and v, that

is, g(x;u, v, w) generates a different radical element for every k ∈ Z. Therefore (S, T )

has infinitely many radical elements in Proj(Z[h, k]).

2.6 Summary and Questions

There is still much to be done for the characterization of Proj(Z[h, k]). In particular,

the determination of which (S, T )-pairs have radical elements appears to be very

challenging. In the future we hope to address some of the following questions:

Question 2.6.1. (1) In the setting of Theorem 4.2.7 with

S = {(p1), ..., (pn), (x), (
1

x
), (f1), ..., (fm)},

T = {(x, p1), ..., (x, pl), (
1

x
, pl+1), ..., (

1

x
, pn)},

where 0 ≤ l ≤ n, p1, ..., pn are distinct prime integers, is there a radical element

for (S, T ) if
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(i) The leading coefficient of f1...fm is not a unit and pl+1...pn does not divide

the leading coefficient of fi, for some i?

(ii) The constant coefficient of f1...fm is not a unit and p1...pl does not divide

the constant coefficient of fi, for some i?

(iii) gcd(p1...pn, ℓ(f1...fm)) = 1 and gcd(p1...pn, c(f1...fm)) = 1?

(2) Does the (S, T )-pair in Theorem 2.5.8 have a radical element if we remove some

assumptions?

(3) Let u1, ..., un, v1, ..., vm ∈ H1(Proj (Z[h, k])) − C0, and let P ∈ C0. Does there

exist a Q ∈ C0 such that |
∪n

i=1(ui, P )↑| = |
∪m

j=1(vj, P )↑|?

(4) What happens if we change T?
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Chapter 3

Prime Ideals in Quotients of Mixed

Power Series/Polynomials

This chapter contains work in progress with Christina Eubanks-Turner and Sylvia

Wiegand.

3.1 Introduction

Over the past sixty years many algebraists have studied Kaplansky’s question,

posed in 1950: “Which partially ordered sets occur as the prime spectrum of a Noethe-

rian ring?”, [13], [14], [21], [22]. His question is still open and difficult, even when

restricted to two-dimensional Noetherian domains. Some progress has been made in

describing Spec(R), the partially ordered set of prime ideals of R, for certain two-

dimensional polynomial rings R and power series rings, [11], [12], [28], [30], [31]. For

example, as we mention in the previous chapter, in his 1986 article, Roger Wiegand

gives axioms characterizing Spec(Z[x]), the prime spectrum of the ring of polyno-

mials in one variable x over Z [31]. In 1989 William Heinzer and Sylvia Wiegand
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characterized the prime spectrum of R[y] for R a one-dimensional countable semilo-

cal Noetherian domain and y an indeterminate, [11]. Chandni Shah extended their

characterization to the uncountable case, [28].i By “characterizing” a prime spectrum,

we mean giving a set of axioms such that the prime spectrum satisfies the given ax-

ioms and any two partially ordered sets satisfying the axioms are order-isomorphic.

In 1996 Aihua Li and Sylvia Wiegand proved that, if f, g1, . . . , gm ∈ Z[y] and f is

nonzero, then the prime spectrum of Z[y][g1
f
, . . . , gm

f
] is order-isomorphic to the prime

spectrum of Z[y], [19]. Two years later, in 1998, Serpil Saydam and Sylvia Wiegand

showed that, if D is a ring of algebraic integers in a field K that is a finite extension

of the rational numbers, f, g1, . . . , gm ∈ Z[y], f is nonzero and x is an indeterminate,

then Spec(D[x, g1
f
, . . . , gm

f
]) is order isomorphic to Spec(Z[x]), [27]. In 2006, William

Heinzer, Christel Rotthaus, and Sylvia Wiegand described the prime spectrum of

R[[x]], the power series ring in an indeterminate x over a one-dimensional integral

domain R [10]. ii

A birational extension of an integral domain is an overring contained in its field of

fractions. In their 2011 article, Christina Eubanks-Turner, Melissa Luckas, and Serpil

Saydam study prime spectra of birational extensions of R[[x]] of form B = R[[x]][g/f ],

where R is a one-dimensional Noetherian domain with infinitely many maximal ideals

and f and g ∈ R[[x]] are such that f ̸= 0, and either {f, g} is a R[[x]]-sequence or

(f, g) = R[[x]] [8]. They characterize Spec(B) when R is a countable Dedekind

domain. If y is another indeterminate, then R[[x]][g/f ] is isomorphic to
R[[x]][y]

(fy − g)
,

the ring of the three-dimensional mixed power series/polynomial ring R[[x]][y] modulo

the height-one prime ideal (fy − g) of R[[x]][y].

The primary goal of this chapter is to describe the prime spectra of two-dimensional

iThe generalization by Chandni Shah needed a small cardinality fix [32].
iiTheir description became a characterization with the cardinality fix of [32].
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quotients of R[[x]][y] and R[y][[x]], that is, Spec(
R[[x]][y]

Q
) and Spec(

R[y][[x]]

Q′ ), for

certain height-one prime ideals Q of R[[x]][y] and Q′ of R[y][[x]], where R is a one-

dimensional Noetherian domain. We give examples of spectra that arise when R is the

ring Z of integers and Q and Q′ are particular prime ideals of their respective rings;

see Example 3.6.1 and Example 3.6.2. Although the rings R[y][[x]] and R[[x]][y] are

similar for R a one-dimensional Noetherian domain, their prime spectra are different.

For example, xy + 1 is an element of both R[[x]][y] and R[y][[x]]; xy + 1 generates

a height-one prime ideal in R[[x]][y], but is a unit of R[y][[x]]. We also study the

maximal ideals of R[[x]][y] and R[y][[x]]. For example we show that there are no

height-one maximal ideals in R[y][[x]] or in R[[x]][y] and, in the case when R has

infinitely many maximal ideals, there are no height-two maximal ideals in R[y][[x]];

see Proposition 3.3.3 and Proposition 3.3.5(1).

If R is a one-dimensional Noetherian domain and Q and Q′ are certain height-one

prime ideals of R[[x]][y] and R[y][[x]], respectively, then the dimensions of
R[[x]][y]

Q

and
R[y][[x]]

Q′ are usually two; see section 5. In certain exceptional cases for Q and

Q′ these dimensions are both 1 and the prime spectrum resembles a fan; see Defini-

tion 3.5.1 and Theorem 3.5.2. We give a set of axioms in Definition 3.5.4 that are

satisfied by the two-dimensional image rings of mixed power series/polynomial rings;

see Theorem 3.5.5. In the two-dimensional case, there are finitely many nonmaximal

j-primes in these mixed power series/polynomial rings. Generally we avoid letting Q

or Q′ be the ideal generated by x unless R is semilocal. In case Q or Q′ is (x), the

prime spectrum we seek is order-isomorphic to R[y]. When Q = (x)R[[x]][y] and R is

semilocal or R = Z, Spec(R[y]) has been characterized, [11], [28], [32], [31]. However,

if R = Q[z], a polynomial ring over the rational numbers in another indeterminate z,

Spec(Q[z, y]) is unknown.
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We have some partial results concerning which partially ordered sets satisfy the

axioms of Definition 3.5.4; see Proposition 3.7.1. For certain height-one prime ideals

of Q and Q′ in the case where R[[x]][y]/Q and R[y][[x]]/Q′ are two-dimensional, we

can compute the cardinality of the set of height-one maximal ideals. As we point out

in Corollary 3.5.6, most of the spectra of R[[x]][y]/Q and R[y][[x]]/Q′are determined

by the spectrum of R[y]/I. We give examples of some spectra that arise when R = Z.

3.2 Notation and Background

In this section we give more notation, we describe previous results, and we list

basic facts and remarks about prime spectra of polynomial rings and power series

rings. We use the notation for partially ordered sets from Section 1.2.

In Remark 3.2.1 we establish that the rings we study in this chapter are well

behaved.

Remarks 3.2.1. (1) If a ring A is Cohen-Macaulay and xi and yj are indeterminates

over A for 1 ≤ i ≤ n, 1 ≤ j ≤ m, and n,m ∈ N0, then the mixed polynomial/power

series rings A[[{xi}ni=1]][{yj}mj=1] and A[{yj}mj=1][[{xi}ni=1]] are Cohen-Macaulay [20,

Theorem 17.7]. Thus they are catenary ; that is, for every inclusion of prime ideals

P ⊆ Q, any two maximal chains of prime ideals from P to Q have the same length

[20, Theorem 17.9].

(2) If R is a Noetherian integral domain of dimension one, then R is Cohen-Macaulay

[20, Exercise 17.1, p. 139]. Thus every mixed polynomial/power series that is a finite

extension of a one-dimensional Noetherian domain R is catenary by (1).

Lemma 3.2.2 is useful for counting prime ideals in our rings.

Lemma 3.2.2. [32, Lemma 4.2], [8, Lemma 3.6] Let T be a Noetherian domain,
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let y be an indeterminate and let I be a proper ideal of T . Let β = |T | and ρ = |T/I|.

Then (1) |T [y]| = |(T/I)[y]| = ρ · ℵ0 = β · ℵ0, and (2) |T [[y]]| = βℵ0 = ρℵ0 .

Theorem 3.2.3 gives information concerning the relative heights of prime ideals of

the polynomial ring A[y] or the power series ring A[[x]] and their contractions to A

when A is Noetherian.

Theorem 3.2.3. [20, Theorem 15.1] Let φ : A → B be a homomorphism of

Noetherian rings, let P be a prime ideal of B, and set p = P ∩ A (identified with

φ−1(P )). Then:

(i) ht P ≤ ht p+ dim(BP/pBP );

(ii) If φ is flat, or more generally if the going-down theorem holds between A and

B, then equality holds in item i.

3.2.1 Results, Basic Facts about Spec(A[y])

In Remarks 3.2.4 and several results following it we describe prime ideals in a

polynomial ring over a Noetherian domain A.

Remarks 3.2.4. Let A be a Noetherian domain of dimension d with field of fractions

K and let y be an indeterminate over K.

(1) If I is a nonzero ideal of A[y] such that I ∩A = (0), then I = h(y)K[y] ∩A[y],

for some h(y) ∈ A[y] of degree ≥ 1. This follows since K[y] = (A \ {0})−1A[y]

is a principal ideal domain (PID). Thus the set of prime ideals P of A[y] such

that P ∩A = (0) is in one-to-one order-preserving correspondence with the set

of height-one prime ideals of K[y], via P 7→ PK[y] 7→ PK[y] ∩ A[y]. If P is a

prime ideal of R[y] such that P ∩ A = (0), then ht(P ) = 1.
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(2) If p is a prime ideal of A, then pA[y] is a prime ideal of A[y] and ht(pA[y]) =

ht(p), [24, Proposition 10].

(3) If P is a prime ideal of A[y], then ht(P ∩ A) ≤ ht(P ) ≤ ht(P ∩ A) + 1 Theo-

rem 3.2.3.

(4) If M is a prime ideal of A[y] of height d+1, then M is a maximal ideal of A[y],

the ideal m = M∩A is a maximal ideal of A of height d, and M = (m, h(y))A[y],

where h(y) is irreducible in A[y] = A[y]/(m[y]) ∼= (A/m)[y]; This follows from

item (3) and [16, Theorem 28, p. 17].

(5) If P ∈ Spec(A[y]) with ht(P ) = 1 and (0) ̸= p = P ∩ A, then ht(p) = 1 and

pA[y] = P . This follows from item (2) and item (3).

(6) If q ∈ Spec(A) and b ∈ A is such that (1 + yb, q)A[y] = A[y], then b ∈ q.

To see this, write (1 + yb)f(y) + g(y) = 1, where f(y) ∈ A[y] and g(y) ∈ qA[y].

Then f(y) /∈ qA[y] and

f(y) + ybf(y)− 1 ∈ qA[y] (3.2.4.0)

Write f(y) = a0 + a1y + a2y
2 + · · · anyn + yn+1h(y), where an /∈ q and h(y) ∈

qA[y]. Looking at the coefficient of yn+1 in Equation 3.2.4.0, we conclude that

anb ∈ qA[y] ∩ A = q. Since an /∈ q, we have b ∈ q, as desired.

Lemma 3.2.5. Let A be a Noetherian domain. If Q ∈ Spec(A[y]) is a height-one

maximal ideal, then

(1) Q ∩ A = (0),

(2) dim(A) = 1 and |max(A)| < ∞; say max(A) = {m1, . . . ,mt}, and
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(3) Q contains an element of form h(y) = yg(y) + 1, where g(y) ∈ (∩t
i=1mi)[y].

Moreover if A is one-dimensional and semi-local with maximal ideals m1, . . . ,mt and

Q ∈ Spec(A[y]) is minimal over an element of form h(y) = yg(y) + 1, where 0 ̸=

g(y) ∈ (∩t
i=1mi)[y], then Q is a height-one maximal ideal of A[y].

Proof. For item 1, by Remarks 3.2.4(5), if Q ∩ A ̸= (0), then Q = (Q ∩ A)A[y] (

(Q ∩ A, y)A[y], a contradiction to Q maximal. Thus item 1 holds.

For item 2, we refer to [16, Theorems 24, p. 15 and 146, p. 107], where a ring A

such that a maximal ideal of A[Y ] intersects A in (0) is called a G-domain.

For item 3, if (∩t
i=1mi)[y] ⊆ Q, then mi[y] ⊆ Q, for some i = 1, . . . , t, and so

mi[y] = Q, since ht(mi[y]) ≥ 1 = ht(Q) by Remark 3.2.4(2). This yields a con-

tradiction since (mi[y], y) properly contains mi[y]. Thus ((∩t
i=1mi)[y], Q) = A[y],

and so there exist h(y) ∈ Q, s(y) ∈ (∩t
i=1mi)[y], and r1(y), r2(y) ∈ A[y] such that

h(y)r1(y)+ s(y)r2(y) = 1. Let f(y) := h(y)r1(y). Then f(y) ∈ Q since h(y) ∈ Q. Let

denote the image in A/((∩t
i=1mi)[y]). Then f(y) + s(y)r2(y) = 1, and so f(y) = 1.

Therefore f(y) = yg(y) + a0 ∈ Q where g(y) ∈ (∩t
i=1mi)[y] and a0 = 1 + b, where

b ∈ ∩t
i=1mi; thus a0 is a unit of A. Now replacing f by a−1

0 f yields the result.

For the moreover statement, if Q ∩A = mi for some i, then 1 ∈ (mi, f(y)) ⊆ Q, a

contradiction. Thus the statement holds.

Theorem 3.2.6 was proved by Heinzer and S. Wiegand in the countable case,

then for other cardinalities by Shah and R. Wiegand and S. Wiegand. The theorem

has been slightly adjusted here using the fact that |(R/m)[y]| = |R[y]|, for every

m ∈ maxR by Lemma 3.2.2.

Theorem 3.2.6. [11, Theorem 2.7], [28, Theorem 2.4], [32, Theorem 3.1] Let R be

a one-dimensional Noetherian domain with exactly n maximal ideals, m1, . . . ,mn, let
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y be an indeterminate and let α = |R[y]|. Then there exist exactly two possibilities

for U = Spec(R[y]) up to cardinality, depending upon whether or not R is Henselian.

iii

• In case R is not Henselian, U satisfies Axioms I − V I below:

(I) |U | = |R| and U has a unique minimal element u0 = (0).

(II) |H1(U) ∩max(U)| = α.

(III) dim(U) = 2, |H2(U)| = α.

(IV ) There exist exactly n height-one elements u1, . . . , un such that |u↑
i | is infinite.

Furthermore for 1 ≤ i ≤ n

(i) u↑
1 ∪ · · · ∪ u↑

n = |H2(U)|; (ii) u↑
i ∩ u↑

j = ∅ if i ̸= j; (iii) |u↑
i | = α.

(V ) If ht(v) = 1 and v ̸= ui for all i with 1 ≤ i ≤ n, then |v↑| < ∞.

(V I) For every nonempty finite subset of T of H2(U), |Le(T )| = α,

• In case R is Henselian, then n = 1, and U satisfies Axioms I − V and V I ′:

(V I ′) For every finite nonempty subset T ⊆ H2(U), Le(T ) = ∅ if |T | > 1, and

|Le(T )| = α if T = 1.

α u1 α α · · ·

• • • · · ·

u0

Diagram 3.2.6.h: Spec(R[y]), R Henselian

iiiFor the definition of Henselian; see Section 1.1.
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α u1 u2 · · · un MESS

α α · · · α

u0

Diagram 3.2.6.nh: Spec(R[y]), R non-Henselian.

The relations satisfied by the MESS box are too complicated to show, but they

are described in Axiom V I.

Notes 3.2.7. If R is a one-dimensional Noetherian domain with infinitely many

maximal ideals, and y is an indeterminate, then Spec(R[y]) is not known in general.

The following cases are known:

(1) Spec(Z[y]) has a characterization of five axioms, [31, Theorem 2] .

(2) Let k be an algebraic extension of a finite field and let z be another indeter-

minate. Then Spec(k[z, y]) is order-isomorphic to Spec(Z[y]); see [31, Theorem

2].

(3) Let D be an order in an algebraic number field. Then Spec(D[y]) is order-

isomorphic to Spec(Z[y]), [31, Theorem 1].

(4) In case D is an order in an algebraic number field, z is another indeterminate,

and Q = (fz − g), where f, g is an R[y]-sequence or f ̸= 0 and (g, f) = R[y],

then Spec(D[y][z]/Q) ∼= Spec(Z[y]), [27].

The prime spectrum of Q[z, y], where Q is the rational numbers is unknown but

it is known that it is not order-isomorphic to Spec(Z[y]), [31].
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3.2.2 Results, Basic Facts about Spec(A[[x]])

Next we describe prime ideals in power series rings over a Noetherian domain A.

Remarks 3.2.8. Let A be a Noetherian domain and x an indeterminate.

(1) Every maximal ideal of A[[x]] has the form (m, x)A[[x]] where m is a maximal

ideal of A, [23, Theorem 15.1] (Nagata). Thus x is in every maximal ideal of

A[[x]].

(2) If p is a prime ideal of A, then pA[[x]] ∈ Spec(A[[x]]) and ht(pA[[x]]) = ht(p),

[5, Theorem 4] or [4, Theorem 4].

(3) If P is a prime ideal of A[[x]], then ht(P ∩ A) ≤ ht(P ) ≤ ht(P ∩ A) + 1

Theorem 3.2.3.

The following characterization of Spec(R[[x]]) for R a one-dimensional Noetherian

domain is due to Heinzer, Rotthaus, S. Wiegand [10] and R. Wiegand and S. Wiegand

[32].

Theorem 3.2.9. [10, Theorem 3.4], [32, Theorem 4.3] Let R be a one-dimensional

Noetherian domain and let x be an indeterminate. Let β = |R[[x]]| and let α =

|max(R)|. Then U := Spec(R[[x]]) satisfies axioms I, III, IV , and V of Theo-

rem 3.2.6, and U satisfies (II∗) and (V I∗) below. The unique nonmaximal element

of IV is ux = (x)R[[x]]. Each maximal ideal of R[[x]] has form (m, x)R[[x]], where

m ∈ max(R).

(II∗) H1(U) ∩max(U) = ∅.

(V I∗) Le(T ) = β if |T | = 1.

Thus Spec(R[[x]]) is shown in the following diagram:
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(x) β β · · ·

• • • · · ·

(#{bullets} = α)

(0)

Diagram 3.2.9.0: Spec(R[[x]])

In Diagram 3.2.9.0, the cardinality of the set of bullets equals the cardinality of

max(R) since the set of height-two maximal ideals of R[[x]] is in one-to-one corre-

spondence with the set of maximal ideals of the coefficient ring R. The boxed β

beneath each maximal ideal of R[[x]] means that there are exactly β prime ideals in

that position (beneath that maximal ideal and no other). Every two posets described

by Diagram 3.2.9.0 are order-isomorphic.

3.2.3 Mixed Power Series/Polynomial Rings

Here we give some properties of prime spectra for mixed power series/polynomial

rings.

Remarks 3.2.10. Let A be a Noetherian domain and x an indeterminate.

(1) The inclusion map φ : A[[x]][y] ↩→ A[y][[x]] is flat since A[y][[x]] is the (x)-adic

completion of A[[x]][y]. In general φ is not faithfully flat; for example, the

proper ideal I = (xy − 1)A[[x]][y] of A[[x]][y] satisfies IA[y][[x]] = A[y][[x]].

(2) In case M is a maximal ideal of A[y][[x]], we see that

φM : A[[x]][y]M∩A[[x]][y] ↩→ A[y][[x]]M



44

is faithfully flat. Thus, for every proper ideal I of A[[x]][y]M∩A[[x]][y], we have

IA[y][[x]]M ∩ A[[x]][y]M∩A[[x]][y] = I.

The proper ideals of A[[x]][y]M∩A[[x]][y] are in one-to-one correspondence with

the ideals of A[[x]][y] contained in M ∩ A[[x]][y] and the ideals of A[y][[x]]M

are in one-to-one correspondence with the ideals of A[y][[x]] contained in M.

Thus prime ideals of A[y][[x]] contained in M intersect down to prime ideals of

A[[x]][y] contained in M∩ A[[x]][y] via

P 7→ P ∩ A[[x]][y] ∈ Spec(A[[x]][y]) ∩ (M∩ A[[x]][y])↓,

for P ∈ Spec(A[y][[x]]) ∩ (M)↓, and, for I an ideal of A[[x]][y] contained in

M∩ A[[x]][y],

I = IA[y][[x]] ∩ A[[x]][y].

(3) An ideal M is a maximal ideal of A[y][[x]] if and only if M = (M,x)A[y][[x]],

for some maximal ideal M of A[y], by Remarks 3.2.8(1). This implies that M∩

A[[x]][y] = (M,x)A[[x]][y] is a maximal ideal of A[[x]][y] by Remarks 3.2.8(1).

Conversely if M is a maximal ideal of A[[x]][y] of height d + 2, then by Re-

marks 3.2.4.(4), M ∩ A[[x]] has height d + 1 and x ∈ M. Thus, M/(x) is a

maximal ideal of A[[x]][y]/(x) ∼= A[y] and has height d + 1. By the correspon-

dence between ideals of A[[x]][y] containing x and ideals of A[y], we see that

M/(x) corresponds to a maximal ideal M of A[y], and since (M,x) (consid-

ered in A[[x]][y]) also corresponds to M, we take M = (M,x). The upshot of

this is that a maximal ideal of A[[x]][y] of height d+ 2 has form (M,x), where

M ∈ max(A[y]).
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Proposition 3.2.11. Let A be a Noetherian domain, let x, y be indeterminates and

let Q be a height-one prime ideal of A[[x]][y] such that Q ∩ A[y] ̸= (0). Then

Q = (Q ∩ A[y])A[[x]][y] = (Q ∩ A[y])A[y][[x]] ∩ A[[x]][y].

Proof. SinceQ∩A[y] is a prime ideal of A[y] and ht(Q∩A[y]) = 1 by Remarks 3.2.4(5),

we have (Q∩A[y])A[y][[x]] is a prime ideal ofA[y][[x]] of height one by Remarks 3.2.8(2).

Also Q∩A[y] is contained in a maximal ideal N of A[y]. Then M = (N, x)A[y][[x]] is

a maximal ideal of A[y][[x]] and (Q∩A[y])A[y][[x]] ⊆ M and so (Q∩A[y])A[[x]][y] =

((Q ∩ A[y])A[y][[x]]) ∩ A[[x]][y] is a prime ideal of A[[x]][y] using Remarks 3.2.10(2).

Since (0) ̸= (Q ∩ A[y])A[[x]][y] ⊆ Q and ht(Q) = 1, we have Q = (Q ∩ A[y])A[[x]][y],

as desired.

Proposition 3.2.12. Let A be a Noetherian domain, let x and y be indeterminates

and let Q be a prime ideal of A[[x]][y] such that (Q, x)A[[x]][y] ̸= A[[x]][y]. Then

Q = (QA[y][[x]]) ∩ A[[x]][y].

Proof. It suffices to show that (Q, x) ̸= A[[x]][y] =⇒ QA[y][[x]] ⊆ N , for some

maximal ideal N of A[y][[x]], by Remarks 3.2.10(2). Let (Q, x) = (I, x), where I is

an ideal of A[y]. Then I is a proper ideal of A[y] since (Q, x)A[[x]][y] ̸= A[[x]][y].

Therefore there exists a maximal ideal N of A[y] containing I. It follows that N =

(N, x) is a maximal ideal of A[y][[x]] that contains (I, x)A[y][[x]]. Since QA[y][[x]] ⊆

N , we are done.

Proposition 3.2.13. Let e, n ∈ N0, let A be a Cohen-Macaulay integral domain of

dimension e, and let x, y1, . . . , yn be indeterminates.
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(1) An ideal I of A[[x]][y1, . . . , yn] is a maximal ideal of height n+e+1 if and only if

I = (m, x)A[[x]][y1, . . . , yn] for some maximal ideal m of A[y1, . . . , yn] of height

n+ e; see [8, Proposition 3.2].

(2) If m is a maximal ideal of A[y1, . . . , yn] of height t, then (m, x)A[[x]][y1, . . . , yn]

is a maximal ideal of A[[x]][y1, . . . , yn] of height t+ 1; see [8, Proposition 3.2]

(3) Every maximal ideal of A[y1, . . . , yn][[x]] has form (n, x) where n is a maximal

ideal of A[y1, . . . , yn]; see Remarks 3.2.8(1).

In case n = 0, the first item of the next proposition is given by Heinzer, Rotthaus,

and S.Wiegand in [10]. It is extended to R[[x]][y1, . . . , yn] for n ≥ 1 in [8].

Proposition 3.2.14. Let e, n ∈ N0, let R be an e-dimensional Noetherian domain,

and let x, y1, . . . , yn be indeterminates.

(1) [8, Proposition 3.11] LetQ be a height-(n+e) prime ideal inR[[x]][y1, . . . , yn].

If x /∈ Q, then Q is contained in a unique maximal ideal of R[[x]][y1, . . . , yn].

(2) [10, Proposition 2.4] Let P be a prime ideal of height e+n inR[y1, . . . , yn][[x]].

If x /∈ P , then P is contained in a unique maximal ideal of R[y1, . . . , yn][[x]].

3.2.4 Counting Intermediate Prime Ideals

For A either R[[x]][y1, . . . , yn] or R[y1, . . . , yn][[x]] and a nonmaximal prime ideal

Q of A with ht(Q) = dim(A) − 2, we are interested in the number of prime ideals

between Q and a maximal ideal of height equal to the dimension of A.

We observe that, for certain prime ideals Q of A with ht(Q) = dim(A)− 2, there

are no maximal ideals of maximal height that contain Q.
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Remark 3.2.15. Let e and n be nonnegative integers with n + e ≥ 2, let R

be a Cohen-Macaulay e-dimensional integral domain and let x, y1, . . . , yn be inde-

terminates. Let Q be a prime ideal of R[[x]][y1, . . . , yn] or of R[y1, . . . , yn][[x]] with

ht(Q) = n+e−1. In any of the following three cases, Q is not contained in a maximal

ideal of heightn+ e+ 1.

(1) (Q, x) = (1),

(2) Every height-(n+ e) prime ideal containing (Q, x) is a maximal ideal, or

(3) (Q,m) = (1) for every m ∈ max(R),

To see this, we observe that, for A = R[[x]][y1, . . . , yn] or A = R[y1, . . . , yn][[x]],

every maximal ideal M of A having maximal height n+e+1 has form M = (N, x)A,

where N is a maximal ideal of R[[y1, . . . , yn] of height n+ e, by Proposition 3.2.8(1)

or by Remarks 3.2.10(3). Furthermore, ht(N ∩ R) = e, by repeated use of Re-

mark 3.2.4(4), and so m ⊆ N , for some m ∈ maxR of height e. In cases 1 or 3, if Q

were contained in a maximal ideal M of either ring, where ht(M) = n+ e+ 1, then

Q ∪ {x} ⊆ M or Q ∪ m ⊆ M would imply that 1 ∈ M , a contradiction. In case 2,

no maximal ideal containing (Q, x) is contained in a larger maximal ideal.

When R is a one-dimensional Noetherian domain and n = 1, we use Proposi-

tion 3.2.16, an adjustment of [8, Proposition 3.8, Remark 3.9], to find the cardinality

of the set of all height-two prime ideals of R[[x]][y] or R[y][[x]] that are properly

between a height-one prime ideal Q and a height-three maximal ideal P such that

x /∈ Q, (Q, x) ̸= (1), and (Q, x) is not a maximal ideal.

Proposition 3.2.16. Let e and n be nonnegative integers with n + e ≥ 2, let R

be a Cohen-Macaulay e-dimensional integral domain and let x, y1, . . . , yn be indeter-

minates. Let A be either R[[x]][y1, . . . , yn]] or R[y1, . . . , yn][[x]]. Let Q ⊆ P be prime

ideals of A with ht(Q) = n + e − 1 and ht(P ) = n + e + 1. Then Q↑ ∩ P ↓ contains
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|R[[x]]| height-(n+ e) prime ideals in either of the following cases:

(1) A = R[[x]][y1, . . . , yn], x /∈ Q, and m * Q, for every m ∈ max(R), or

(2) A = R[y1, . . . , yn][[x]] and x /∈ Q.

Proof. In either case for A, the prime ideal P has form (n, x)A, where n is a maximal

ideal of R[y1, . . . , yn] of height n+e, by Proposition 3.2.8(1) or by Remarks 3.2.10(3),

as in the proof of Remarks 3.2.15. By repeated use of Remark 3.2.4(4), there exists

m ∈ max(R) with m = P ∩R. Thus ht(n) = n+ e, and we have

A/P ∼= (A/(xA)/(P/(xA)) ∼= R[y1, . . . , yn]/n; and R/m ↩→ R[y1, . . . , yn]/n.

Let β := |(Hn+e(A)) ∩ (Q↑ ∩ P ↓)|, let γ := |R/m| and let γ1 := |R[y1, . . . , yn]/n|.

Then γℵ0 = γ1
ℵ0 since γ1 = γ · ℵ0, and |A| = |R[[x]]| = γℵ0 , by Lemma 3.2.2. Since A

is Noetherian implies every ideal of A is finitely generated, we have β ≤ γℵ0 .

Let N1, . . . , Nm be all the minimal prime ideals of A containing (Q, x) and con-

tained in P ; that is, (Q, x) ⊆ Ni ⊆ P for each i. Since ht(Q) = n + e − 1 and

Q ⊂ (Q, x), Krull’s Principal Ideal Theorem and the catenary condition of Re-

marks 3.2.1 imply ht(Ni) = n + e, for each i. Since ht(P ) = n + e + 1, and the

Ni have height n+ e, we see (n, x) = P * N1 ∪ . . . ∪Nm.

For item 1 with A = R[[x]][y1, . . . , yn], since m * Q, we have m * Ni for each i

and so m * N1 ∪ . . . ∪Nm. Let a ∈ m \ (N1 ∪ . . . ∪Nm) and let C be a complete set

of γ distinct coset representatives of R/m.

For item 2, with A = R[y1, . . . , yn][[x]], since x ∈ Ni, for every i, we have n *

N1 ∪ . . .∪Nm. Let a ∈ n \ (N1 ∪ . . .∪Nm) and let C be a complete set of γ1 distinct

coset representatives of R[y1, . . . , yn]/n.
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SetH =
{
a+

∞∑
i=1

wix
i
∣∣wi ∈ C

}
. ThenH ⊆ (n, x)A = P , but a ∈ n\(N1∪. . .∪Nm)

and so h /∈ (Q, x) for every h ∈ H.

Claim: Let p ∈ Hn+e(A) be strictly between Q and P ; that is, Q ( p ( P = (n, x).

Then p contains at most one element of H.

Proof. If p contains two distinct elements h1 and h2 of H, then, for h1 and h2 as

given below with wi, vi ∈ C, for every i ∈ N, we have

h1 := a+
∞∑
i=1

wix
i ∈ p ∩H and h2 := a+

∞∑
i=1

vix
i ∈ p ∩H;

h1 ̸= h2 ⇒ h1 − h2 =
∞∑
i=1

wix
i −

∞∑
i=1

vix
i =

∞∑
i=1

(wi − vi)x
i ∈ p

⇒ h1 − h2 = xt((wt − vt) + (wt+1 − vt+1)x+ . . .) ∈ p,

where t is the smallest positive integer so that wt ̸= vt.

Since p is prime, x ∈ p or (wt − vt) + (wt+1 − vt+1)x + . . . ∈ p. If x ∈ p, then

(Q, x) ⊆ p ⊆ (n, x), and so, since ht(p) = n + e, we have p = Ni, for some i.

Then h1 ∈ Ni and x ∈ Ni would imply a ∈ Ni, a contradiction to the choice of a.

Thus x /∈ p. On the other hand, if (wt − vt) + (wt+1 − vt+1)x + . . . ∈ p, then, in

case A = R[[x]][y1, . . . , yn], we have (wt − vt) + (wt+1 − vt+1)x + . . . ∈ (m, x), and so

wt − vt ∈ m, a contradiction to wt and vt in distinct cosets of m.

In case A = R[y1, . . . , yn][[x]], we have (wt − vt) + (wt+1 − vt+1)x + . . . ∈ (n, x),

and so wt − vt ∈ n, a contradiction to wt and vt in distinct cosets of n.

Therefore the claim holds.

We return to the proof of Proposition 3.2.16. By Remarks 3.2.1, A is catenary.

Since A is also Noetherian, Krull’s Principal Ideal Theorem implies that there is

at least one prime ideal of height n + e between P and (Q, h) for each h ∈ H.
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Since distinct elements of H yield distinct prime ideals in Q↑ ∩ P ↓, there are at

least γℵ0 height-(n + e) prime ideals in Q↑ ∩ P ↓. Thus γℵ0 ≤ β. Now we have

|Q↑ ∩ P ↓| = β = |R[[x]]|, and so the proposition holds.

3.3 Maximal Ideals and j-spectra

In this section, we study the set of maximal ideals of three-dimensional mixed

polynomial/power series rings, with emphasis on the numbers of various types that

arise. We use the following setting:

Setting 3.3.1. Let R be a one-dimensional Noetherian domain with field of fractions

K and let x and y be indeterminates over K. Let A be either R[y][[x]] or R[[x]][y].

We begin with the maximal ideals of maximal height, that is, height three.

Proposition 3.3.2. Assume Setting 3.3.1 and let M be a height-three maximal ideal

of A. Then M = (m, x, h(y))A, for some m ∈ max(R) and some h(y) irreducible in

R[y] = R[y]/(m[y]) ∼= (R/m)[y]. Conversely, the ideals (m, x, h(y))A are maximal and

have height three, for every m ∈ max(R) and h(y) irreducible in R[y] = R[y]/(m[y]) ∼=

(R/m)[y]. Thus there are |R[y]| = |R| · ℵ0 height-three maximal ideals of A.

Proof. For R[y][[x]], M = (M,x), where M ∈ max(R[y]) and ht(M) = 2, by Re-

mark 3.2.8(1). By [8, Proposition 3.4], such a maximal ideal M of R[y] has the form

(m, h(y))R[y], where m ∈ max(R) and h(y) is irreducible in R[y] ∼= (R/m)[y]. Thus

every maximal height-three ideal of R[y][[x]] is generated by m, x and h(y) ∈ R[y] as

desired.

For R[[x]][y], M = (M,x), where M ∈ max(R[y]) and ht(M) = 2, by Re-

marks 3.2.10(3). As in the paragraph above, this implies that M has the desired

form, and so the result holds.
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For the converse, the ideal of A generated by m, x and h(y) ∈ R[y], where h(y) is

irreducible in R[y] = R[y]/(m[y]) ∼= (R/m)[y], are in one-to-one correspondence with

the ideals of R[y] generated by m and h(y) ∈ R[y] via the natural map πx : A → R[y]

with kernel (x), and these are maximal ideals of R[y].

Let γ denote the cardinality of the set of all maximal ideals of form (m, x, h(y))

in A. Then by the correspondence above, γ equals the cardinality of the set of

all maximal ideals of form (m, h(y)) in R[y]. Since every ideal is finitely generated,

γ ≤ |R[y]| = |R| ·ℵ0. Furthermore γ is at least as big as the number of maximal ideals

of form (m, h(y)) in R[y] for a fixed m ∈ max(R). Since each maximal ideal (m, h(y))

in R[y] corresponds to a height-one maximal ideal of k[y], where k = R/m; each is

generated by an irreducible element of the PID k[y]. Thus γ is at least the cardinality

of a complete set of nonassociate irreducible elements of k[y]. There are (at least)

|k[y]| = |R/m[y]| of these.iv Hence, using Lemma 3.2.2, γ ≥ |R/m[y]| = |R[y]|, and

so we have γ = |R| · ℵ0, as desired.

Proposition 3.3.3. There are no height-one maximal ideals inR[y][[x]] or inR[[x]][y].

Proof. If M is a maximal ideal of R[y][[x]], then by Remark 3.2.8(1), M = (M,x),

where M ∈ max(R[y]). Thus ht(M) ≥ 1, but x /∈ M, and so ht(M) ≥ 2, as desired

for R[y][[x]].

Since dim(R[[x]]) = 2, Lemma 3.2.5(2) implies that R[[x]][y] has no height-one

maximal ideals.

3.3.1 Height-two Maximal Ideals

We consider the maximal ideals of height-two in R[[x]][y] and R[y][[x]]. First we
ivIt is enough to prove this for a finite field k, since always {(y−α)}α∈k consists of nonassociate

irreducible elements and has cardinality |k|. Thus if k is infinite, then |{ nonassociate irreducible
elements }| ≥ |k| = |k| · ℵ0 = |k[y]|, using Lemma 3.2.2. If k is finite, it is straightforward to show
that |{ nonassociate irreducible elements }| = ℵ0 = |k[y]|.
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prove a lemma adjusted from [10, Proposition 2.4].

Lemma 3.3.4. Let R be a one-dimensional Noetherian domain, let x be an indeter-

minate, and let Q be a height-one prime ideal of R[[x]]. If x /∈ Q, thenD = R[[x]]/Q is

a one-dimensional local domain with maximal ideal mD that is complete with respect

to the (x)-adic topology, and so D is Henselian.

Proof. Since x /∈ Q, Q is not maximal by Remarks 3.2.8(1). Thus D = R[[x]]/Q has

dimension one. By [20, Theorem 8.7], D is complete with respect to the xD-adic

topology and every maximal ideal of D is a minimal prime of the principal ideal xD.

Therefore D is a complete semilocal ring. Since D is an integral domain, it is local

by [20, Theorem 8.15]. Therefore D is a Henselian local domain with maximal ideal

mD, [20, Theorem 8.3].

Proposition 3.3.5. Let R be a one-dimensional Noetherian domain and let x and y

be indeterminates.

(1) If R has infinitely many maximal ideals, then R[y][[x]] has no height-two max-

imal ideals.

(2) If M is a height-two maximal ideal of R[[x]][y], then (i) ht(M∩R[[x]]) = 1 and

(ii) ht(M∩R[y]) ≤ 1.

(3) If M is a height-two maximal ideal of R[[x]][y] and x /∈ M, then M contains

an element 1 + xyg(x, y), for some 0 ̸= g(x, y) ∈ R[[x]][y]. If P := M∩ R[[x]],

then D := R[[x]]/P is a one-dimensional Henselian Noetherian local domain

and M = (P,Q)R[[x]][y], where Q is the preimage in R[[x]][y] of a height-one

maximal ideal of (R[[x]]/P )[y] under the natural homomorphism πP : R[[x]] →

D with kernel P , extended to R[[x]][y] → D[y] by defining πP (y) = y.
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(4) If R has infinitely many maximal ideals and M is a height-two maximal ideal

of R[[x]][y], then x /∈ M.

(5) If R is semilocal, then there are one-to-one correspondences among the set of

height-two maximal ideals of R[y][[x]], the set of height-one maximal ideals of

R[y] and the set of height-two maximal ideals of R[[x]][y] that contain x:

(max(R[y][[x]])) ∩ (H2(R[y][[x]]) ↔ (max(R[y])) ∩H1(R[y])

↔ (VR[[x]][y](x)) ∩ (max(R[[x]][y]) ∩ (H2(R[[x]][y]))

via N → N ∩R[y] = N → N ′ = (N, x)R[[x]][y].

Thus a height-two maximal ideal M of R[y][[x]] has form M = (M,x)R[y][[x]],

where M is a height-one maximal ideal of R[y], and (M,x)R[[x]][y] is also a

maximal ideal of R[[x]][y] that contains x.

(6) If Q ∈ Spec(R[y][[x]]) is minimal over (yg(y) + 1)R[y][[x]], for some 0 ̸= g(y) ∈

J (R)(R[y]), then Q is a height-one prime ideal of R[y][[x]], R is semilocal and

the only maximal ideal of R[y][[x]] containing Q is (Q, x).

If M is a height-two maximal ideal of R[[x]][y] and x ∈ M, then R is semilocal

and M = (M,x), where M is a height-one maximal ideal of R[y],

(7) If R is semilocal,

a) Every height-two maximal ideal of R[y][[x]] containing x contains an ele-

ment of form yg(y) + 1, for some 0 ̸= g(y) ∈ J (R)(R[y]), where

J (R) = ∩m∈maxR m, the Jacobson radical of R.

b) There are |R| height-two maximal ideals of R[y][[x]].
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Proof. For item 1, if R has infinitely many maximal ideals, then R[y] has no height-

one maximal ideals by Lemma 3.2.5(2), and so every maximal ideal of R[y] has height

two. Since every maximal ideal of R[y][[x]] has form (M,x) where M is a maximal

ideal of R[y], every maximal ideal of R[y][[x]] has height three.

For item 2, part i, if M is a height-two maximal of R[[x]][y], and ht(M∩R[[x]]) =

2, then M ∩ R[[x]] is a height-two maximal ideal of R[[x]], and so the ideal (M ∩

R[[x]])R[[x]][y] is prime, has height two, and thus equals M, but

(M∩R[[x]])R[[x]][y] ( (M∩R[[x]], y)R[[x]][y] ̸= R[[x]][y],

a contradiction to M maximal. Also, if (M ∩ R[[x]]) = (0), then ht(M) ≤ 1, by

Remarks 3.2.4(3). Therefore ht(M∩R[[x]]) = 1. Thus item 2.i holds.

Similarly, for item 2, part ii, if ht(M∩R[y]) = 2, then

M = (M∩R[y])R[[x]][y] ( (M∩R[y], x)R[[x]][y],

a contradiction to M maximal. Thus ht(M∩R[y]) ≤ 1

For item 3, suppose y ∈ M. This implies that M/(y) is a maximal ideal of

R[[x]][y]/(y) ∼= R[[x]]. Thus M = (M, y), where M is a maximal ideal of R[[x]], and

so, by Theorem 3.2.9, M has height two. But then M = (M, y) has height three, a

contradiction. Thus we may assume that y /∈ M. Hence xy /∈ M and so 1 ∈ (M, xy).

We write 1 = f(x, y) − xyg(x, y), where f(x, y) ∈ M and g(x, y) ∈ R[[x]][y]. Then

f(x, y) = 1+xyg(x, y), as desired for the first statement. (Since f(x, y) ̸= 1, g(x, y ̸=

0.) For the second statement we use Lemma 3.3.4.

For items 4 and 5, we see that x ∈ M =⇒ M/(x) is a maximal ideal of

R[[x]][y]/(x) ∼= R[y]. Thus M = (M,x), where M is a maximal ideal of R[y] and

ht(M) = 1. By Lemma 3.2.5(2), maxR is finite. Thus item 4 holds.
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For item 5, if N is a maximal ideal of R[y][[x]], then N = (N, x), where N is a

maximal ideal of R[y] by Remark 3.2.8(1), and then ht(N) = 1. Using the canonical

map π′
x : R[y][[x]] → R[y] with kernel (x), yields the first part of the correspondence.

The analogous canonical map πx : R[[x]][y] → R[y] yields the second part.

For item 6, the first statement, we have that ht(Q) ≤ 1 by Krull’s Principal Ideal

Theorem. Since Q ̸= (0), ht(Q) = 1. By the definition of Q, we see that Q∩R[y] ̸= (0)

and Q = (Q∩R[y])R[y][[x]] by Proposition 3.2.11. If Q∩R ̸= (0), then ht(Q) ≥ 1, a

contradiction. Thus Q∩R = (0), and so, by Lemma 3.2.5(3), Q∩R[y] is a height-one

maximal ideal of R[y]. By Lemma 3.2.5(2), R is semilocal. By Remark 3.2.8(1),

every maximal ideal M of R[y][[x]] has form (M,x), where M is some maximal ideal

of R[y]. Then M ⊆ Q∩R[y], and so Q∩R[y] = M , M = (Q, x), and this is the only

maximal ideal containing Q.

For the second statement, since x ∈ M, the image M/(x) is a maximal ideal

of R[[x]][y]/xR[[x]][y] ∼= R[y] and so corresponds to a height-one maximal ideal

M of R[y]. This implies that M = (M,x)R[[x]][y], and that R is semilocal by

Lemma 3.2.5(2).

For part a of item 7, we have from item 5 that a height-two maximal ideal N of

R[y][[x]] has form N = (N, x), where N is a height-one maximal ideal of R[y]. By

Lemma 3.2.5(3), N contains an element yg(y) + 1, where 0 ̸= g(y) has coefficients in

J (R) = ∩m∈maxRm and every prime ideal Q of R[y] minimal over such an element of

R[y] is a height-one maximal ideal of R[y].

For part b of item 7, let a ∈ J with a ̸= 0, and, for each b ∈ R, define the

polynomial hb(y) = ay(y− b) + 1. The ring R is infinite, because every finite integral

domain is a field. We claim that if b ̸= c ∈ R, then at most one of hb(y) and hc(y) is

an element of a height-one prime ideal Q of R[y]. This is because such a prime ideal

Q is a height-one maximal ideal of Q and has 0 intersection with R, whereas if both
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were contained in Q, then

0 ̸= ay(b− c) = hb(y)− hc(y) ∈ Q =⇒ 0 ̸= b− c ∈ R ∩Q,

a contradiction. Thus the number of such Q is at least |R|. On the other hand R[y]

is Noetherian and every prime ideal is finitely generated and so the number of ideals

of R[y] is at most |R[y]| · ℵ0 = |R| · ℵ0 · ℵ0 = |R|, since R is infinite. Thus part b

holds.

Proposition 3.3.6. For every height-one prime ideal Q of R[[x]] such that x /∈ Q,

there exist |R[[x]]| height-two maximal ideals N of R[[x]][y] containing Q, and |R|

height-three maximal ideals M of R[[x]][y] that contain Q.

Proof. Since Q ̸= (x), Theorem 3.2.9 implies there exists a unique m ∈ max(R) with

Q ( (m, x)R[[x]].

For the second statement of Proposition 3.3.6, we see that every maximal ideal

of the form M = (m, x, h(y)), where the image h(y) in R[[x]][y] = R[[x]][y]/(m, x) is

an irreducible polynomial, is a height-three maximal ideal of R[[x]][y] that contains

Q and there are |R| = |R[y]| of them, as shown in the proof of Proposition 3.3.2.

Every n ∈ max(R) with n ̸= m is comaximal with Q by Theorem 3.2.9. Thus every

height-three maximal ideal N = (n, x, h(y)) with n ∈ max(R) and n ̸= m does not

contain Q. Thus the M = (m, x, h(y)) as above are the only maximal height-three

ideals that contain Q. Thus the second statement holds.

For the first statement of Proposition 3.3.6, by Lemma 3.3.4, D = R[[x]]/Q is a

one-dimensional Henselian Noetherian local domain. The unique maximal ideal of D

is mD = πQ(m, x), where πQ : R[[x]][y] → D[y] with ker(πQ) = Q.

As in the proof of Proposition 3.2.16, let C be a complete set of distinct coset
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representatives of R/m and let 0 ̸= a ∈ m. Let

H = {h(x, y) = 1 + y(a+
∞∑
i=1

cix
i)}ci∈C ⊆ R[[x]][y].

For convenience, let hc = a+
∑∞

i=1 cix
i denote the y coefficent of h ∈ H. Notice that

if hc ∈ Q, then 1 = −hcy + (1 + yhc), and so in this case Q is comaximal in R[[x]][y]

with the element h = 1 + yhc.

Claim 3.3.7. (1) If (h,Q)R[[x]][y] = R[[x]][y], then hc ∈ Q.

(2) There exists at most one h ∈ H with hc ∈ Q.

(3) For h ̸= ℓ ∈ H, and h, ℓ /∈ Q, (Q, h, ℓ) = R[[x]][y].

Proof. For item 1, we use Remark 3.2.4(6). For items 2 and 3, assume that h and ℓ

are distinct elements of H with ℓc = a +
∑∞

i=1 dix
i and hc = a +

∑∞
i=1 cix

i. Let i be

the smallest coefficient so that ci ̸= di. Then h− ℓ = y(hc − ℓc) and so

h− ℓ = xiy(ci − di +
∞∑

j=i+1

(cj − dj)x
j−i) = xiyu; u = ci − di +

∞∑
j=i+1

(cj − dj)x
j−i,

for some i ∈ N. Since ci and di are distinct cosets of m in R, we have ci − di /∈ m and

u is not an element of (m, x)R[[x]].

For item 2, suppose that ℓc, hc ∈ Q. Then x /∈ Q, y /∈ Q and ℓc − hc ∈ Q imply

u ∈ Q. However Q ⊆ (x,m), a contradiction to the above argument. This proves

item 2.

For item 3, suppose a maximal ideal M contains Q∪{h}∪ {ℓ}. Then xiyu ∈ M,

and so x ∈ M, y ∈ M or u ∈ M. If x ∈ M, then M∩ R[[x]] is a prime ideal that

contains Q and x, and so (m, x) ⊆ M. However, also h ∈ M =⇒ ay + 1 ∈ M,

whereas a ∈ m =⇒ ay+ 1 is comaximal with (m, x) a contradiction, and so x /∈ M.
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Suppose that y ∈ M. Then h = 1 + yhc ∈ M =⇒ 1 ∈ M, a contradiction.

Finally, if u ∈ M, we saw above that u ∈ R[[x]], but u /∈ (m, x). By Theorem 3.2.9,

u is in no maximal ideal of R[[x]] that contains Q and thus u is comaximal with Q,

again a contradiction. This proves item 3, and so the claim is proved.

For each h ∈ H, except, if such an h exists, the one h such that (h,Q) = (1), let

Nh be a prime ideal minimal over (Q, h(x, y))R[[x]][y]. Since Q has height one and

R[[x]][y] is catenary by Remarks 3.2.1, we have ht(Nh) = 2.

Every height-three maximal ideal containing Q has form (x, n, h(y)) for some

h(y) ∈ R[y] and n ∈ max(R), using Proposition 3.3.2. By the observation, from

Theorem 3.2.9, that every maximal ideal of R other than m is comaximal with Q, the

only possible height-three maximal containing Nh is (x,m, h(y)) for some h(y) ∈ R[y].

Since each hc ∈ (m, x), we see that h /∈ (x,m). Thus each Nh is a height-two maximal

ideal and so there are at least |H| = |R/m|ℵ0 = |R[[x]]| height-two maximal ideals

containing Q, using Lemma 3.2.2. Since R[[x]][y] is Noetherian implies every ideal is

finitely generated, we have that the number of height-two maximal ideals containing

Q is less than or equal to |R[[x]][y]| = |R[[x]]|, and we are done.

3.3.2 j-primes of R[[x]][y] and R[y][[x]]

We start with the definition of a j-prime ideal and j-spectrum of a commutative ring.

Definition 3.3.8. Let A be a commutative ring.

• A j-prime of A is a prime ideal of A that is an intersection of maximal ideals

of A;

• The j-spectrum of A is j-Spec(A) := {j-primes ∈ Spec(A)}.
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For U a partially ordered set, we say that u ∈ U is a j-element if u is an intersection

of maximal elements of U .

Note 3.3.9. A maximal ideal of a ring A, respectively a maximal element of a par-

tially ordered set U , is considered to be a j-prime, respectively a j-element. The non-

maximal j-primes provide crucial information for the determination of prime spectra

for our rings.

We use Setting and Notation 3.3.10 in the remainder of this subsection.

Setting and Notation 3.3.10. Let R be a one-dimensional domain and let x and

y be indeterminates. Let A be either R[[x]][y] or R[y][[x]] and let Q be a height-one

prime ideal of A such that x /∈ Q and (Q, x)A ̸= A. Set B := A/Q. Let I be a

nonzero ideal of R[y] such that (I, x)A = (Q, x)A.

Note 3.3.11. The ideal I from Setting and Notation 3.3.10 is a height-one ideal of

R[y]; that is, every prime P of R[y] minimal over I has height one.

Proof. If I = (0), then (I, x) = (x) ̸= (Q, x), since Q ̸= (0) and (x) + Q. Thus

I ̸= (0). Thus ht(P ) ≥ 1. Since ht(Q) = 1 and x /∈ Q, ht(I, x) = ht(Q, x) ≤ 2 by

Krull’s principal ideal theorem because A is catenary 3.2.1. By the same reasoning,

since x /∈ P , ht(P, x) > ht(P ) and so ht(P ) = 1.

We show in this subsection that the j-primes of A that contain Q also contain x.

It follows that each j-prime of A corresponds to a minimal prime ideal of R[y]/I and

vice-versa. We begin to demonstrate this correspondence with the following remarks.

Remarks 3.3.12. With Setting and Notation 3.3.10, consider the following canonical

surjections:

(1) π : A −→ B = A/Q with ker(π) = Q,

(2) πx : A −→ R[y] with ker(πx) = (x).
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(i) Since Q is a height-one prime ideal of A, B is a Noetherian integral domain

with dim(B) ≤ 2.

(ii) π and πx induce natural order-preserving maps π−1 and π−1
x on the prime spec-

tra;

π−1 : Spec(B) → Spec(A); π−1
x : Spec(R[y]) ∼= Spec(A/xA) → Spec(A)

Spec(B) ∼= VA(Q) and Spec(R[y]) ∼= VA(x),

VR[y](I) ∼= VA(x, I) = VA(x,Q) ∼= VB(x).

(iii) Since A is catenary, the correspondences in Remark 3.3.12(ii) above imply that,

for each n ≤ 2, the height-n prime ideals of A can be identified with the height-

(n + 1) prime ideals of A containing Q ; and the height-n prime ideals of R[y]

can be identified with height-(n+ 1) prime ideals of A containing x.

(iv) For a commutative ring C and a height-one prime ideal Q of C[[x]], the ideal

(Q, x)C[[x]] is a proper ideal of C[[x]], [8]. To see this, if (Q, x)C[[x]] = C[[x]],

then there exists b(x) ∈ C[[x]] such that x(b(x))− 1 ∈ Q, a contradiction since

bx− 1 is a unit of C[[x]]. Thus (Q, x) ̸= (1).

Proposition 3.3.13. Assume Setting 3.3.10. By Remarks 3.3.12,

(1) Spec(B/xB) ∼= Spec(R[y]) ∩ (VR[y]I) ∼= Spec(R[y]/I).

(2) j-Spec(B) \ {(0)} \ {height-one maximal elements} ∼= Spec(B/xB);

Spec(B/xB) = j-Spec(B/xB), and Spec(R[y]/I) = j-Spec(R[y]/I).

(3) The height-one prime ideals of B that contain x correspond to the height-one

prime ideals of R[y] that contain I.
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Proof. Item 1 follows from Remarks 3.3.12(ii). For item 2, suppose that P is a

nonzero nonmaximal height-one j-prime ideal of B. Then P is an intersection of

height-two maximal ideals of B. Every maximal ideal M of height two of B = A/Q

contains x since every height-three maximal ideal of A contains x by Proposition 3.3.2.

Thus x ∈ P and the correspondences in Remarks 3.3.12(ii) carry P over to a unique

element of Spec(B/xB) that is the intersection of maximal ideals there, and then, as

in item 1, to a unique element of j-Spec(R[y]/I). Furthermore, if M is a height-two

maximal ideal of B, then x ∈ M , and item 1 shows that M corresponds to a unique

maximal element of j-Spec(R[y]/I). For every element of j-Spec(R[y]/I), the steps

are reversible by Remarks 3.3.12 and we have the desired isomorphisms. Note that

R[y][[x]] has no height-one maximal ideals if max(R) = ∞ by Lemma 3.2.5(2).

For item 3, we observe that the nonmaximal height-one j-primes are the minimal

elements of VB(x) by item 2.

In the next section we describe Spec(R[y]/I), where I is an ideal of R[y] such that

(I, x) = (Q, x) and (I, x) = (Q′, x), as in Setting 3.3.10.

3.4 Prime Spectra for Images of R[y]

In this section we give a description and examples of Spec(R[y]/I), where R is

a one-dimensional Noetherian domain, y is an indeterminate, and I is a height-one

ideal of R[y].

In particular we show that Spec(R[y]/I) satisfies the following definition.

Definition 3.4.1. Let ℓ ∈ N0 and let γ1, . . . , γℓ be cardinal numbers. Let F be a

finite partially ordered set of dimension at most one with ℓ minimal elements such

that every height-one element of F is greater than at least two height-zero elements
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of F . A partially ordered set U of dimension 0 or 1 has image polynomial type

(ℓ; (γ1, . . . , γℓ);F ), abbreviated as (IPT), if there exists an order-isomorphism φ :

F → U such that, if P1, P2, . . . , Pℓ are the minimal elements of F :

(1) |U | = |F |+ γ1 + . . .+ γℓ.

(2) min(U) = H0(U) = {φ(P1), . . . , φ(Pℓ)} .

(3) H1(U) =
∪

φ(Pi)
↑ = φ(F \ {P1, . . . , Pℓ}) ∪

∪t
i=1 Ti, where

Ti := φ(Pi)
↑ \ (∪j ̸=iφ(Pj)

↑), that is, Le(Ti) = {φ(Pi)}; |Ti| = γi.

(4) {φ(P1), . . . , φ(Pℓ)} ⊇ {u ∈ U | |u↑| = ∞, ht(u) = 0}, the set of nonmaximal

j-elements of U .

(5) For every i ̸= j, φ(Pi)
↑ ∩ φ(Pj)

↑ = φ(P ↑
i ∩ P ↑

j ) ⊆ φ(F ).

Notes 3.4.2. (i) The axioms are somewhat redundant for more clarity.

(ii) If γi = γ for every i with 1 ≤ i ≤ ℓ, we abbreviate the type of the image polynomial

poset U to (ℓ; γ;F ).

We record our setting for the rest of this section:

Setting and Notation 3.4.3. Let R be a one-dimensional Noetherian domain,

let y be an indeterminate, and let I be an ideal of R[y] of height one. We iden-

tify Spec(R[y]/I) with VR[y](I) and consider three categories of minimal elements of

VR[y](I), namely:

Define V0(I) := {mR[y] | I ⊆ mR[y],m ∈ maxR};

V1(I) := H1(R[y]) ∩max(R[y]) ∩ VR[y](I);

V2(I) := H1(R[y]) ∩ VR[y](I) \ V0(I) \ V1(I).

Let V0(I) := {q1, . . . , qt}; V1(I) = {qt+1, . . . , qm}; V2(I) = {qm+1, . . . , qℓ}.
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Then V0(I)∪V1(I)∪V2(I) = {q1, . . . , qℓ} is the set of minimal elements of VR[y](I)

and they correspond to the minimal elements of Spec(R[y]/I).

Let F = {q1, . . . , qℓ} ∪ {q↑i ∩ q↑j}1≤i<j≤ℓ, a subset of VR[y](I). For each i with

1 ≤ i ≤ ℓ, let Ti = q↑i \ (
∪

j ̸=i q
↑
j ), the height-two maximal ideals of R[y] that contain

qi but none of the other qjs. Then Ti = ∅ if qi ∈ V1(I).

Let γi = |Ti| for each i with 1 ≤ i ≤ ℓ.

Thus Spec(R[y]/I) corresponds to F ∪
∪
{Ti}ℓi=1.

Proposition 3.4.4. With Setting and Notation 3.4.3, Spec(R[y]/I) is a partially

ordered set of image polynomial type (ℓ; (γ1, . . . , γℓ);F ), for ℓ, {γi}ℓi=1, F as in (3.4.3).

Proof. Let q1, . . . , qℓ, F and Ti be as defined in Setting and Notation 3.4.3. Then

Spec(R[y]/I) = F∪
∪
{Ti}ℓi=1 satisfies the axioms of Definition 3.4.1; that is, Spec(R[y]/I)

has image polynomial type (ℓ; (γ1, . . . , γℓ);F ).

Remarks and Pictures 3.4.5.

(1) IfR is semilocal, with maximal idealsm1, . . . ,ms, then V1(I) ̸= ∅ by Lemma 3.2.5(2).

Here is a possible picture of Spec(R[y]/I) in this case:

q3 q4 q1 = m1[y] q2 = m2[y] q5 q6

γ3

• • •
γ4 γ5 γ6

R semilocal, s = 2, ℓ = 6

(2) If R is Henselian, then R is local, say with maximal ideal m and R[y] has

the special property that each nonmaximal height-one prime is contained in a

unique maximal ideal.
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Here are two possible pictures of Spec(R[y]/I) in this case:

q2 q3 q1 = m[y] q4 q5 q6

• • •

R Henselian, ℓ = 6

q2 q3 q1 = m[y] q4 q5 q6

• •

R Henselian, ℓ = 6

(3) If max(R) is infinite, then R[y] has no maximal ideals of height one and so

V1(I) = ∅ by Lemma 3.2.5(2). A possible picture of Spec(R[y]/I), for R = Z,

is in Example 3.6.1.

3.5 Putting It All Together

In this section we give our main results for the spectra of homomorphic images of

three-dimensional polynomial/power series rings, over a one-dimensional Noetherian

domain, as described in the introduction.

For R a one-dimensional Noetherian domain and x and y indeterminates over R,

we give a partial description of prime spectra of homomorphic images of the mixed

power series/polynomial rings R[[x]][y] and R[y][[x]] modulo a height-one prime ideal.

In some cases, we can determine these spectra more precisely.
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Definition 3.5.4 of this section contains a general set of axioms that are satisfied by

the two-dimensional image rings of these mixed power series/polynomial rings. These

axioms hold for the partially ordered sets of prime ideals of image rings of the form

B = R[[x]][y]/Q and B′ = R[y][[x]]/Q′, where Q and Q′ are height-one prime ideals

of R[[x]][y] and R[y][[x]] respectively, except for three special cases for Q: Namely,

(Q, x) is a maximal ideal, (Q, x) = (1) and (Q,m) = (1) for every m ∈ max(R); and

the analogous cases for Q′. First we take care of the special cases for Q and Q′.

3.5.1 Special Cases

Definition 3.5.1. A partially ordered set U is a fan if U is one-dimensional with a

unique minimal element. This includes a partially ordered set U with exactly two

elements, one of height zero and another one of height one above the minimal element.

Theorem 3.5.2. Let R be a one-dimensional Noetherian domain and let x and y be

indeterminates over R. Let A = R[[x]][y] or R[y][[x]], let Q be a height-one prime

ideal of A, and let B = A/Q. In any of the following three cases, Spec(B) is a fan.

(i) Every height-two prime ideal of A containing (Q, x)A is maximal.

(ii) (Q, x) = (1).

(iii) (Q,m) = (1), for every m ∈ maxR.

Moreover, if A = R[y][[x]], then Spec(B) is a fan with two elements.

Proof. In each of these cases, Q is not contained in any height-three prime ideal of

either ring A by Remark 3.2.15. Since no maximal ideals of A have height one by

Proposition 3.3.3, every maximal ideal of A containing Q has height two. It follows

that dim(B) = 1. Since B is an integral domain, Spec(B) is a fan.

To see that there is just one maximal ideal in A/Q in case A = R[[x]][y], we use

Proposition 3.3.5(7).
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We believe that Spec(B) is a fan with |R[[x]]| elements if A = R[[x]][y] in Theo-

rem 3.5.2. This cardinality argument is in progress.

3.5.2 The General Case of Dimension Two

Except for the special cases of Theorem 3.5.2, the prime spectra of homomorphic

images of mixed power series/polynomial rings R[[x]][y] and R[y][[x]] by height-one

prime ideals are two dimensional and satisfy the axioms of Definition 3.5.4, if R is

a one-dimensional Noetherian domain and x and y are indeterminates over R; see

Theorem 3.5.5.

We use the following setting and notation for the rest of this section.

Setting and Notation 3.5.3. Let R be a one-dimensional Noetherian domain and

let x and y be indeterminates over R and let A = R[[x]][y] or R[y][[x]]. Let Q be a

height-one prime ideal of A such that x /∈ Q, no prime ideal of height two containing

(Q, x)A is maximal, the ideal (Q, x)A is not all of A, and, for some m ∈ maxR, the

ideal (Q,m)A ̸= A. Set B := A/Q, and let I be the height-one ideal of R[y] such that

(I, x)A = (Q, x)A. We refer also to Setting and Notation 3.4.3; in particular, let the

set F , the sets Ti and the cardinalities γi, for 1 ≤ i ≤ ℓ, be as defined there.

The axioms of Definition 3.5.4 are intentionally redundant, in order to explain the

situation in more detail.

Definition 3.5.4. Let ℓ ∈ N0 and let ϵ, β, γ1, . . . , γℓ be cardinal numbers with ϵ, γi ≤

β, for each γi. Let F be a finite partially ordered set of dimension at most one with ℓ

minimal elements such that every non-minimal maximal element of F is greater than

at least two minimal elements of F . A partially ordered set U of dimension 1 or 2 is

image polynomial power series of type (ϵ; β; ℓ; (γ1, . . . , γℓ);F ), abbreviated as (IPPS),
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if there exists an order-isomorphism φ : F → U such that, if P1, P2, . . . , Pℓ are the

minimal elements of F :

(1) |U | = β and U has a unique minimal element u0.

(2) |{H1(U) ∩max(U)}| = ϵ; {φ(P1), . . . , φ(Pℓ)} ⊆ H1(U).

(3) H2(U) =
∪

φ(Pi)
↑ = (φ(F ) \ {φ(P1), . . . , φ(Pℓ)}) ∪ {Ti}ℓi=1, where each

Ti = φ(Pi)
↑ \ (∪j ̸=iφ(Pj)

↑) and |Ti| = γi.

(4) {φ(P1), . . . , φ(Pℓ)} contains the set {u ∈ U | |u↑| = ∞, ht(u) = 1} of nonmaxi-

mal j-elements of U .

(5) For every u ∈ H1(U) \ φ(F ), there exists a unique maximal element in U that

is greater than or equal to u.

(6) For every 1 ≤ i < j ≤ ℓ, φ(Pi)
↑ ∩ φ(Pj)

↑ = φ(P ↑
i ∩ P ↑

j ) ⊆ φ(F ).

(7) For every finite nonempty subset T ⊆ H2(U) \ F , Le(T ) = ∅ if |T | > 1 and

|Le(T )| = β if |T | = 1.

Main Theorem 3.5.5. Let R be a one-dimensional Noetherian domain, let x and

y be indeterminates, let A be R[[x]][y] or R[y][[x]], let Q be a height-one prime ideal

of A with Q ̸= (x); (Q, x) ̸= (1); no height-two prime ideal containing (Q,m) is

maximal; and (Q,m) ̸= (1), for every m ∈ maxR, set β =
∣∣R[[x]]

∣∣ and let B := A/Q.

Then Spec(B) is image polynomial power series of type (ϵ; β; ℓ; (γ1, . . . , γℓ);F ), for

F, ℓ and γi as in Settings 3.5.3 and 3.4.3 and some cardinal number ϵ.

Proof. To determine the type, we need F, ϵ, ℓ and the γi. We assign ϵ to be the

number of height-one maximal ideals of B for the generality of this theorem.

To identify the other parts of the type and check the axioms in Definition 3.5.4,

we proceed as follows: Let I be the height-one prime ideal of R[y] such that (I, x)A =



68

(Q, x)A, let ℓ = |min(R[y]/I)|, let {q1, . . . , qℓ} be the minimal elements of VR[y](I)

that correspond to min(R[y]/I) and let F be as in Notation 3.4.3. For each i with 1 ≤

i ≤ ℓ, let φ(qi) = Pi := π(qi, x)A ∈ Spec(B). By Remarks 3.3.12, VR[y](I) ∼= VB(x).

Thus the Pi corresponds to qi via π(π−1
x (qi)) = π(qi, x)A = Pi, where π : A → A/Q

and π−1
x : A → R[y] are the canonical surjections in Remarks 3.3.12. Similarly let

each Ti,B be the set of prime ideals of B containing only Pi (of the elements of φ(F )—

these correspond to the height-two prime ideals of R[y] such that the only element of

F contained in them is qi.

Now let FB = {P1, . . . , Pℓ} ∪ {P ↑
i ∩ P ↑

j }i̸=j, and let each γi,B be the cardinality of

P ↑
i \ (∪j ̸=iP

↑
j ). Thus FB corresponds to the set F of Setting 3.4.3 and γi is as defined

there.

We show that Spec(A/Q) satisfies the axioms in Definition 3.5.4.

Since Q ̸= (x), (Q, x) ̸= (1), (Q,m) ̸= (1) and no height-two prime ideal con-

taining (Q,m) is maximal for all m ∈ max(R), we have A has β height-two prime

ideals containing Q and contained in each height-three maximal ideal by Proposi-

tion 3.2.16. Thus Spec(A/Q) has at least β elements. Since |A| = β and A is

Noetherian, |Spec(A)| = β. Since A/Q is an integral domain, axiom 1 holds.

By Proposition 3.4.4, Spec(R[y]/I) is a partially ordered set of image polynomial

type (ℓ; (γ1, . . . , γℓ);F ), that is, Spec(R[y]/I) satisfies the axioms in Definition 3.4.1.

By the correspondence, Spec(A/Q) also satisfies axioms 3, 4, and 6 in Definition 3.5.4,

and also |P ↑
i | = |φ(qi)↑| = γi.

Every height-two prime ideal N of A with x /∈ N is contained in a unique maximal

ideal of A by Proposition 3.2.14. Thus, by the correspondence, for every height-one

prime ideal N of Spec(A/Q) \φ(F ), there exists a unique maximal ideal in A/Q that

contains N , that is, axiom 5 holds.

Now let T be a finite nonempty subset of height-two prime ideals of A/Q not in
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φ(F ). By Proposition 3.2.16, there are β height-two prime ideals between any single

height-three maximal ideal of A and Q. Then, by Proposition 3.2.14, we see that

all but finitely many of these height-two prime ideals are only in the height-three

maximal ideal. Thus |Le(T )| = β if |T | = 1. If |T | > 1, then |Le(T )| = ∅ since the

elements of T that are not in φ(F ) are the height-two elements above exactly one

minimal element of φ(F ). This proves axiom 7.

The following corollary follows from the proof of Theorem 3.5.5.

Corollary 3.5.6. Let R be a countable one-dimensional Noetherian domain, let x

and y be indeterminates, let A = R[[x]][y] or R[y][[x]], let Q be a height-one prime

ideal of A and let B = A/Q. Assume |max(R)| is infinite. Then Spec(B) \ {the set

of height-one maximal ideals} is determined by Spec(R[y]/I), where I is a height-one

prime ideal of R[y] such that (I, x)A = (Q, x)A.

3.6 Examples over the Ring of Integers

Example 3.6.1. For α = (2y − 1) · 3 · (y + 1) · y · (y(y + 1) + 6) · 2 · (3y + 1),

what is Spec(Z[[x]][y]/(x− α))? First we consider Spec(Z[y]/(α)). Note that (3, y +

1), (3, y), (5, y + 2), (2, y + 1) are the only maximal ideals of Z[y] that contain two or

more of the height-one prime ideals minimal over α. This is because

(a) the sets {y + 1, y} and {2, 3} are certainly comaximal in Z[y].

(b) For p a prime element of Z with p > 3, the set {y + 1, y, y(y + 1) + 6}, where

denotes image in (Z/p)[y], is comaximal.

(c) The set {2y − 1, 3y + 1, y + 1, y} is comaximal in (Z/pZ)[y] for p > 5. To see

this, first, 2(p− 1)/2 = 1 =⇒ 2y − 1 ≡ y − (k − 1)/2, which is comaximal with

all the other elements given, mod p. Secondly, the inverse of 3 in Z/pZ is k, where
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3 ≤ k ≤ p− 1, since 3 · 1 ̸≡ 1 and 3 · 2 ̸≡ 1 (mod p). Since 3y + 1 = y + k in Z/pZ,

we see that it is comaximal in Z/pZ with the other elements of the set, if p > 5.

(d) For p = 5,

2y − 1 = 2y + 4 = 2(y + 2) = y + 2 = 3(y + 2) = (3y + 6) = (3y + 1)

=⇒ (5, 2y − 1) = (5, 3y + 1).

Thus Spec(Z[y]/(α)) looks like the diagram below:

(2y − 1) (3) (y + 1) (y) (y(y + 1) + 6) (2) (3y + 1)

{(p, 2y − 1)} {(3, h(y))} ∞ ∞ ∞ ∞ ∞
(3, y) (5, y + 2) (2, y + 1) (2, y)(3, y + 1) (3, y) (5, y + 2) (2, y + 1) (2, y)

Diagram 3.6.1.0: Spec(Z[y]/(α))

That is, there is a countably infinite clump of height-one prime ideals above (2y−

1), one for each prime integer p ≥ 7. There is an infinite clump of height-one prime

ideals above (3), one for each maximal ideal (h(y)) in (Z/3Z)[y], where (3, h(y)) is a

maximal ideal of Z[y] and (3, h(y)) is not already represented among the other height-

one prime ideals listed. The other boxes labeled “∞” show similar sets of height-one

prime ideals.

From Diagram 3.6.1.0 we see that j-Spec(Z[[x]][y]/(x−α)) looks like this diagram:

(x, 2y − 1) (x, 3) (x, y + 1) (x, y)

(0) = (x− α)

(x, y(y + 1) + 6) (x, 2) (x, 3y + 1)

{(p, x, 2y − 1)}

|R|

{(3, x, h(y))} |N| |N| |N| |N| |N|
(3, x, y) (5, x, y + 2) (2, x, y + 1) (2, x, y)(3, x, y + 1) (3, x, y) (2, x, y + 1) (2, x, y)

Diagram 3.6.1.1: Spec(Z[[x]][y]/(x− α))
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Example 3.6.2. Consider Q′ = (x + 455y2 + 322y + 56) in Z[y][[x]]. What is

Spec(Z[y][[x]]/Q′)? Let B′ = Z[y][[x]]/Q′ First note that the element x + 455y2 +

322y + 56 is irreducible in Z[y][[x]] since it has degree one in x. Thus Q′ is a

prime ideal of Z[y][[x]]. The minimal prime ideals of (Q′, x)Z[y][[x]] are (x, 13y + 4),

(x, 5y + 2), (x, 7) and so these correspond to the prime ideals u1 := (x, 5y + 2)B′,

u2 := (x, 13y + 4)B′, u3 := (x, 7)B′. Thus the spec graph below shows the relations

for B′.

∞

(x, y, 2)B (x, y + 1, 3)B

∞

(x, 3y + 2, 7)B

∞

(x, 5y + 2, 7)B

(x, 5y + 2)B (x, 13y + 4)B (x, 7)B ∞

(0)

Diagram 3.6.2.1

3.7 Work in Progress

In future work we hope to give more details about which ϵ, γi and F can occur in

the types of Spec(A/Q), for Q a height-one prime ideal of A = R[[x]][y] or R[y][[x]],

where R is a one-dimensional Noetherian domain and x and y are indeterminates.

We have the following result for A = R[[x]][y] and Q a height-one prime ideal of

R[[x]]. The proof follows from Proposition 3.3.6.

Proposition 3.7.1. IfQ ∈ Spec(R[[x]]) has height one, then Spec(R[[x]][y]/QR[[x]][y])
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has |R[[x]]| height-one maximal ideals. That is, Spec(R[[x]][y]/QR[[x]][y]) is image

polynomial-power series of type (|R[[x]]; |R[[x]]; ℓ; (γ1, . . . , γℓ;F ), where ℓ, F and each

γi are as found in Settings 3.5.3 and 3.4.3.
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Chapter 4

Fiber Products and Connected

Sums of Local Rings

The contents of this chapter are work in progress with H. Ananthnarayan and Z.

Yang:

4.1 Introduction

We start this chapter by discussing the fiber product of local rings R and S over

another local ring T , denoted R×T S. Our main goal is to analyze basic homological

properties of fiber product rings; some of which were given in [2]. We present several

examples to illustrate the set of zero-divisors, reducedness and Cohen-Macaulayness of

such rings. These examples complement the existing literature and provide motivation

for further study of fiber product rings.

If T = k, R and S are Artinian, neither of which is isomorphic to k, then the

fiber product ring R ×k S cannot be Gorenstein; see Proposition 4.2.12. Therefore

H. Ananthnarayan, L. Avramov and F. Moore, using fiber products, introduced and
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studied the connected sum of R and S over T , denoted R#TS, and defined to be

quotients of the fiber product R×T S; see [2]. This construction produces Gorenstein

local rings under mild conditions. For example, if R and S are Gorenstein Artin

k-algebras, then it follows from [2, Theorem 2.8] that R#kS is also Gorenstein. If

R and S are Gorenstein Artin k-algebras, and if R#kS is a nongraded Gorenstein

ring, then we prove in Proposition 4.3.12 that the associated graded ring of R#kS is

a fiber product.

J. Sally, in 1979, characterized stretched Gorenstein local rings when the charac-

teristic of k is different from two [26]. J. Elias and M. E. Rossi, three decades later,

proved a similar structure theorem for short Gorenstein local rings for the case where

k is an algebraically closed field of characteristic zero [7]. In case Q is a Gorenstein

k-algebra that is either stretched or short, the structure theorems of Sally and Elias

– Rossi imply that Q is a connected sum Theorem 4.3.2. Our main result of the

last section of this chapter, Theorem 4.3.24, generalizes these structure theorems; it

shows that Gorenstein local k-algebras whose associated graded rings have certain

structures decompose as connected sums.

4.2 Fiber Products

We start with the definition of the fiber product of local rings and an example.

Definition 4.2.1. Let R, S and T be commutative rings with ring maps εR : R → T ,

and εS : S → T . The fiber product of R and S over T , denoted R×T S, is defined as

R×T S = {(r, s) ∈ R× S | εR(r) = εS(s)}.

The fiber product P := R ×T S is a subring of R × S and it is the pullback

of εR and εS, i.e., the following diagram commutes for the natural projection maps
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pR : R×T S → R and pS : R×T S → S:

R
εR

$$I
IIIII

P

pR
::tttttt

pS $$J
JJJJJ T

S
εS

::uuuuuu

(4.2.1)

Example 4.2.2. Let R = k[X]/(X4), S = k[Y ]/(Y 3) and T = k, where k is a field.

Then R×k S ∼= k[X,Y ]/(X4, Y 3, XY ). We denote the respective images of X and Y

in R and S by x and y. The set {(1, 1), (x, 0), (x2, 0), (x3, 0), (0, y), (0, y2)} is a k-basis

for R×k S and we draw the following picture to represent R×k S:

•

•

•

•

•

•

R×k S = k[X, Y ]/(XY,X4, Y 3)

(1, 1)

(x, 0)

(x2, 0)

(x3, 0)

(0, y)

(0, y2)

Here vertices represent the k-basis elements and horizontal rows represent the

degrees of the monomials of R ×k S. Multiplying by x takes it into the next row to

the left and multiplying by y takes it into the next row to the right.

In 1985 Ogoma explored when the fiber product of Noetherian rings is again

Noetherian. His main result is as follows:

Theorem 4.2.3. [25, Theorem 2.1] Let R and S be Noetherian rings. Set

C = εR(R) ∩ εS(S) where εR : R → T and εS : S → T are the ring maps in

Definition 4.2.1. Then the fiber product R×T S is Noetherian if and only if

(1) C is Noetherian;
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(2) I/I2 and J/J2 are finite C-modules where Ker(εR) = I and Ker(εS) = J .

Setup 4.2.4. We assume that R, S and T are Noetherian rings with surjective maps

εR : R → T , and εS : S → T . We set I = Ker(εR), J = Ker(εS), and P = R×T S.

We list some basic properties of the fiber product P = R×T S also [1] and [2].

Remarks 4.2.5. With notation as in Setup 4.2.4,

(1) R×T S ⊆ R×k S ⊆ R× S.

(2) For (r, s) ∈ R×T S, we have

(i) r ∈ I if and only if s ∈ J .

(ii) (r, 0) ∈ P and (0, s) ∈ P if and only if r ∈ I and s ∈ J . Hence (I, 0) and

(0, J) are ideals of P which we identify with I and J in P , respectively.

With this identification, we have I ∩ J = 0 in P .

(iii) r is a unit in R if and only if s is a unit in S if and only if (r, s) is a unit

in R×T S.

(3) For ideals p ⊆ I and q ⊆ J , the natural projection maps R ×T S to R and S

induce the isomorphisms R/p ∼= P/(p, J), and S/q ∼= P/(I,q). In particular,

R ∼= P/J , S ∼= P/I and T ∼= P/I + J . If S = T , then R×T T ∼= R.

(4) We have the following exact sequences of P -modules

0 −→ I ⊕ J −→ R⊕ S
εR⊕εS−−−−→ T ⊕ T −→ 0 (4.2.2)

0 −→ R×T S
η−→ R⊕ S

(εR,−εS)−−−−−→ T −→ 0 (4.2.3)
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Also 4.2.3 yields a relation between the lengths of P -modules:

λ(R×T S) + λ(T ) = λ(R) + λ(S) (4.2.4)

Let (R,mR, k), (S,mS, k) and (T,mT , k) be local rings.

(5) P = R×T S is local with unique maximal ideal:

mP = mR ×T mS = {(x, y) ∈ mR ×mS : εR(x) = εS(y)}.

(6) For (r, s) ∈ P , (r, s) ∈ mP = mR ×T mS if and only if r ∈ mR and s ∈ mS.

(7) If (0 :R I) ⊆ I and (0 :S J) ⊆ J , then (0 :R×TS (I + J)) = {(r, s) | r ∈ (0 :R I)},

and (0 :R×TS (I + J)) = {(r, s) | s ∈ (0 :S J)}.

In particular, taking I = mR and J = mS, we get

soc(R×k S) = {(r, s) | r ∈ soc(R), s ∈ soc(S)}.

Proposition 4.2.6. [1, Proposition 4.3] Let Z
fR // //R

εR // //T and Z
fS // //S

εS // //T

be such that εRfR = εSfS. Then there is a ring homomorphism ϕ : Z → R ×T S

defined by ϕ(z) = (fR(z), fS(z)). Furthermore,

(i) If Ker(fR) ∩Ker(fS) = 0, then ϕ is injective.

(ii) If Ker(εRfR) = Ker(fR) +Ker(fS) (or Ker(εSfS) = Ker(fR) +Ker(fS)), then ϕ

is surjective.

Z

fS

  

fR

&&
ϕ

##
R×T S

pS

��

pR
// R

εR

��
S

εS // T



78

Corollary 4.2.7. [1, Corollary 4.4] Let (A,m, k) be a local ring, p and q be ideals

in A. Then

A/(p ∩ q) ∼= A/p×A/(p+q) A/q.

In particular, if p ∩ q = 0, then A ∼= A/p×A/(p+q) A/q.

Proof. [1, Corollary 4.4] Set Z = A/(p∩q), R = A/p, S = A/q and T = A/(p+q)

in Proposition 4.2.6. Note that Ker(fR) = p/(p ∩ q), Ker(fS) = q/(p ∩ q) and

Ker(εRfR) = Ker(εSfS) = (p+ q)/(p ∩ q). This completes the proof.

As a consequence, we have a nice presentation for the fiber products of quotients

of polynomial rings over a field k.

Theorem 4.2.8. [1, Theorem 4.19] Let I and J be ideals of the polynomial rings

k[X1, . . . , Xm] and k[Y1, . . . , Yn] over a field k, respectively. If R = k[X1, . . . , Xm]/I

and S = k[Y1, . . . , Yn]/J , then

R×k S ∼= k[X,Y ]/(I,J , XiYj : 1 ≤ i ≤ m, 1 ≤ j ≤ n).

Corollary 4.2.9. [1, Corollary 4.20] If R and S are graded quotients of polyno-

mials over k, then R×k S is also graded.

Before working on the homological properties of the fiber products, we give more

examples.

Examples 4.2.10. Let k be a field.

(1) If R = k[X, Y ], S = k[Z,W ] and T = k, then, by Theorem 4.2.8, we have

R×k S ∼= k[X, Y, Z,W ]/(XZ,XW, Y Z, Y W ).
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(2) Let R = k[X,Y ]/(XY 2, X3 − Y 2), S = k[Z,W ]/(ZW,Z2 − W 2) and T = k.

Then R×kS = k[X,Y, Z,W ]/(XZ,XW,Y Z, Y W,ZW,XY 2, Z2−W 2, X3−Y 2)

by Theorem 4.2.8.

(3) Let R = k[X], S = k[Y ] and T = k[Z]/(Zn) where n ∈ N and n ≥ 2. Then

we have R ×T S ∼= k[X,Y ]/(XnY − Y 2) if we take A = k[X,Y ]/(XnY − Y 2),

p = (Xn − Y ) and q = (Y ) in Corollary 4.2.7.

4.2.1 Homological Properties of Fiber Product Rings

In this section we study some homological properties of fiber product rings. We

start by giving some information about the numerical invariants of the fiber products

which are also listed in [2]. Assume (R,mR, k), (S,mS, k) and (T,mT , k) are local

rings.

Remarks 4.2.11. [2, Lemma 1.5] With notation as in Setup 4.2.4, the following

inequalities and equalities hold:

(1) edim(R×T S) ≥ edim(R) + edim(S)− edim(T ).

(2) dim(R×T S) = max{dim(R), dim(S)} ≥ min{dim(R), dim(S)} ≥ dim(T ).

(3) depth(R×T S) ≥ min{depth(R), depth(S), depth(T ) + 1} and

depth(T ) ≥ min{depth(R), depth(S), depth(R×T S)− 1}.

Proposition 4.2.12. [2, Proposition 1.7] Assume that T is Cohen-Macaulay and

set d = dim(T ). The ring P := R×T S is Cohen-Macaulay of dimension d if and only

if R and S are Cohen-Macaulay of dimension d. If P is Cohen-Macaulay of dimension
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d, then the following inequalities hold:

type(R) + type(S) ≥ type(R×T S)

≥ max{type(R) + type(S)− type(T ), typeR(I) + typeS(J)}.

If, in addition, I and J are non-zero, then R×T S is not Gorenstein.

Remark 4.2.13. If dim(R×T S) ̸= dim(T ), then the Cohen-Macaulayness of R×T S

does not imply that R and S are Cohen-Macaulay.

The next example shows that if R ×T S is Gorenstein, then R and S are not

necessarily Cohen-Macaulay, in general.

Example 4.2.14. Let R = k[X, Y ]/(Y 2), S = k[X,Y ]/(X2, XY ) and T = k[X,Y ]/

(X2, XY, Y 2). Then, by Corollary 4.2.7, we have P = k[X,Y ]/(X2Y ) ∼= R×T S which

is Gorenstein. Note that dim(P ) = 1 and dim(T ) = 0. R and T are Cohen-Macaulay,

but S is not Cohen-Macaulay.

Proposition 4.2.15. Assume R and S are Cohen-Macaulay of dimension d. Then

R×T S is Cohen-Macaulay ⇐⇒ I is MCM R-module.

⇐⇒ J is MCM S-module.

⇐⇒ depth(T ) ≥ d− 1.

Proof. It follows from Lemma 4.2.11 that dim(P ) = max{dim(R), dim(S)}=d and

depth(P ) ≥ min{depth(R), depth(S), depth(T ) + 1}

depth(T ) ≥ min{depth(R), depth(S), depth(P )− 1}
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Thus either depth(P ) = d and depth(T ) ≥ d− 1, or depth(P ) = depth(T ) + 1. If

depth(P ) = d, then depth(T ) ≥ d− 1. If depth(P ) = t ≤ d, then depth(T ) ≥ t− 1.

On the other hand, depth(P ) = t ≥ min{d, depth(T ) + 1}, i.e., t ≥ depth(T ) + 1.

(t ≥ depth(T ) + 1 ≥ (t− 1) + 1 = t). Similarly, either depth(I) = d and depth(T ) ≥

d− 1 or depth(I) = depth(T ) + 1. Therefore

depth(P ) = min{d, depth(T ) + 1} = depthR(I) = depthS(J).

In particular,

depth(P ) = d ⇐⇒ depth(T ) ≥ d− 1

⇐⇒ depthR(I) = d

⇐⇒ depthS(J) = d.

This proves the claim.

Recall that the type of a finitely generated module M over a local ring R is defined

as type(M) = dimk Ext
depth(M)(k,M); see [6, Definition 1.2.15].

Proposition 4.2.16. Assume R and S are Cohen-Macaulay of dimension d. If P =

R×T S is Gorenstein, then type(T ) = 1.

Proof. It follows from Proposition 4.2.15 that depth(T ) ≥ d − 1 since P is Cohen-

Macaulay. Since P is Gorenstein, T cannot be Cohen-Macaulay of dimension d

by Proposition 4.2.12. Therefore depth(T ) = d − 1. Consider the short exact se-

quence of P -modules: 0 → P → R ⊕ S → T → 0. Applying HomP (−, k), we see

that the sequence Extd−1(R ⊕ S, k) → Extd−1(T, k) → Extd(P, k) is exact. Since

depth(R) = depth(S) = d, Extd−1(R ⊕ S, k) = 0. Thus Extd−1(T, k) ↩→ Extd(P, k).
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Recall that P is Gorenstein ring. Hence type(P ) = 1 by [?, Theorem 3.2.10], i.e.,

dimk Ext
d(P, k) = 1. Moreover Extd−1(T, k) ̸= 0 as depth(T ) = d − 1. This implies

that dimk Ext
d−1(T, k) = 1, i.e., type(T ) = 1.

4.2.2 When are Fiber Product Rings Reduced?

In this section we analyze when fiber product rings are reduced. Recall that a

commutative ring R is called reduced if it has no non-zero nilpotent elements, i.e., if

for every nonzero r ∈ R and every positive integer n, rn ̸= 0, equivalently, if x ∈ R

and x2 = 0, then x = 0. The nilpotent elements of R form an ideal of R, called

the nilradical of R. Therefore R is reduced if and only if its nilradical is the zero

ideal. For an ideal I of R, the radical of I, is denoted by
√
I and is defined as

√
I = {r ∈ R | rn ∈ I for some n > 0}. Also

√
I is the intersection of all prime

ideals containing I. Moreover, R/I is reduced if and only if I =
√
I.

Throughout this section, we assume Setup 4.2.4.

Remarks 4.2.17. Assume Setup 4.2.4.

(1) For ideals I and J in P = R ×T S, we have I ∩ J = (0). By Corollary 4.2.7,

P/(I ∩ J) ∼= P ∼= P/J ×P/(I+J) P/I. Thus

P is reduced ⇐⇒ (0) = I ∩ J =
√
I ∩ J ;

R is reduced ⇐⇒ J =
√
J ;

T is reduced ⇐⇒ I + J =
√
I + J ;

S is reduced ⇐⇒ I =
√
I.

(2) The following statements are equivalent:
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(i) R and S are domains.

(ii) I and J are prime ideals of R×T S.

(iii) R×T S is a reduced ring and I and J are prime ideals of R×T S.

Proof. It is clear that (iii) implies (ii), and (ii) implies (iii) since I ∩ J = (0).

Moreover the equivalence of (i) and (ii) follows from the fact that R ∼= P/J and

S ∼= P/I by Remark 4.2.5(3).

The next proposition gives criteria for fiber product rings to be reduced.

Proposition 4.2.18. Let R, S and T be local rings given as in Setup 4.2.4. Then

(i) If R and S are reduced, then the fiber product R×T S is reduced.

(ii) If R×T S and T are reduced, then R and S are reduced.

Proof. (i) By Remark 4.2.5(3), R ∼= P/J and S ∼= P/I. Since R and S are reduced,
√
J = J and

√
I = I. Then it follows that R×T S is reduced since 0 = I ∩ J =

√
I ∩

√
J =

√
I ∩ J .

(ii) Since R ×T S and T are reduced, (0) = I ∩ J =
√
I ∩ J =

√
I ∩

√
J and

I+J =
√
I + J by Remark 4.2.17. Thus I⊕J = I+J =

√
I + J =

√√
I +

√
J .

Note that
√
J ⊆

√
I +

√
J implies that

√
J ⊆

√√
I +

√
J = I + J . Similarly,

√
I ⊆ I + J . Therefore

√
I +

√
J = I + J . Now we show J =

√
J . Clearly

J ⊆
√
J . Let x ∈

√
J . Then x ∈

√
I+

√
J = I+J . Write x = a+b where a ∈ J

and b ∈ I. Thus x − a = b ∈ I ⊆
√
I. Since x − a ∈

√
J , b ∈

√
J ∩

√
I = (0),

that is, x − a = b = 0. Hence x = a ∈ I. Thus J =
√
J . Similarly I =

√
I.

Therefore R and S are reduced.
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The following example shows that Proposition 4.2.18(ii) requires T to be reduced.

Example 4.2.19. Let A = k[X,Y, Z,W ] where k is a field, X, Y, Z and W are

indeterminates. Consider the ideals p = (Z) ∩ (X,Y 2) = (XZ,ZY 2) and q = (X) ∩

(Z,W 2) = (XZ,XW 2) in A. Then p ∩ q = (XZ) and p + q = (XZ,W 2X,Y 2Z).

By Corollary 4.2.7, we have R ×T S = A/(p ∩ q) = k[X,Y, Z,W ]/(XZ) where R =

A/p = k[X,Y, Z,W ]/(XZ,ZY 2), S = A/q = k[X, Y, Z,W ]/(XZ,XW 2) and T =

A/(p+ q) = k[X, Y, Z,W ]/(XZ,W 2X, Y 2Z). Here R, S and T are not reduced since

p ̸= √
p = (XZ, Y Z), q ̸= √

q = (XZ,XW ) and p + q ̸=
√
p+ q = (XZ,XW, Y Z).

But R×T S is reduced since p ∩ q =
√
p ∩ q.

The next example shows that Proposition 4.2.18(i) does not imply that T is re-

duced.

Example 4.2.20. Let A = k[X,Y ] where k is a field, X, Y are indeterminates.

Consider the ideals p = (X − Y 2), q = (X) in A. Then p + q = (X,Y 2), p ∩ q =

(X(X−Y 2)) in A. By Corollary 4.2.7, we have R×T S = A/(p∩q) = k[X,Y ]/(X2−

XY 2) where R = A/p = k[X, Y ]/(X − Y 2), S = A/q = k[X, Y ]/(X) ∼= k[Y ] and

T = A/(p + q) = k[X, Y ]/(X, Y 2) = k[Y ]/(Y 2). Note that in this example R ×T S,

R, S are reduced, but T is not.

Remark 4.2.21. Let (R,mR, k), (S,mS, k) and (T,mT , k) be local rings given as in

Setup 4.2.4. If P = R ×T S is reduced, but R and S are not, then we can rearrange

P so that P ∼= R′ ×T ′ S ′ where R′ and S ′ are reduced:

By Remarks 4.2.5(3), we have R = P/J , S = P/I and T = P/(I + J). Since

R and S are not reduced, I ̸=
√
I and J ̸=

√
J . Since P is reduced, 0 = I ∩ J =

√
I ∩ J =

√
I ∩

√
J . Let p′ =

√
J , q′ =

√
I. Thus, by Corollary 4.2.7, P ∼= R′ ×T ′ S ′

where R′ = P/p′, S ′ = P/q′ and T ′ = P/(p′ + q′).
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4.2.3 Zero-Divisors of the Fiber Product

A zerodivisor on an R-module M is an element r ∈ R for which there exists

m ∈ M such that m ̸= 0 but rm = 0. By Z( ), we denote the set of zero-divisors of

a module. In this section we investigate the set of zero-divisors of the fiber product,

P := R×T S, i.e., Z(R×T S).

We consider the following subsets of P :

Z1 = {(0, j) ∈ P | j ∈ J}

Z2 = {(i, 0) ∈ P | i ∈ I}

Z3 = {(x, y) ∈ P | x ∈ Z(R) \ {0}, y ∈ Z(S) \ {0}}

Z4 = {(x, y) ∈ P | x /∈ Z(R), ∃ 0 ̸= k ∈ J such that ky = 0}

Z5 = {(x, y) ∈ P | y /∈ Z(S), ∃ 0 ̸= ℓ ∈ I such that ℓx = 0}

Remark 4.2.22. Clearly Z(R×T S) ⊆ Z1∪Z2∪Z3∪Z4∪Z5. However this inclusion

is not an equality in general: Although Z1 ∪Z2 ∪Z4 ∪Z5 is contained in Z(R×T S),

the following example shows that Z3 may not be contained in Z(R×T S).

Example 4.2.23. Let R = k[X,Y, Z]/(X2, XY,XZ), S = k[U, V ]/(U2, UV ) and

T = k[ϵ, δ]/(ϵ2, ϵδ, δ2). Consider the maps εR : R → T via X 7→ ϵ, Y 7→ ϵ, Z 7→ δ

and εS : S → T via U 7→ δ, V 7→ ϵ. Let x, y, z, u, v denote the respective images of

X,Y, Z, U, V in R and S. Note that Ker(εR) = (y2, yz, z2) and Ker(εS) = (v2). Here

y ∈ Z(R) and v ∈ Z(S). Also (y, v) ∈ P since εR(y) = εS(v). Then (y, v) ∈ Z3.

Suppose (y, v)(a, b) = (0, 0) for some (a, b) ̸= (0, 0) in R×T S. Then ya = 0 in R and

vb = 0 in S. This implies that a ∈ (x) and b ∈ (u). Then (a, b) = (x, 0) or (0, u) or

(x, u). However, none of these options belong to R×T S. Therefore (y, v) /∈ Z(R×T S).

Question 4.2.24. Let (R,mR, k) and (S,mS, k) be local rings given as in Setup 4.2.4.

If T = k, then is Z(R×k S) = Z1 ∪ Z2 ∪ Z3 ∪ Z4 ∪ Z5?
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4.3 Connected Sums

4.3.1 Connected Sums of Local Rings over a Field

If (R,mR, k) and (S,m, k) are local rings with R ̸= k ̸= S, then P = R ×k S is a

local ring and soc(P ) = soc(R)⊕ soc(S) by Remarks 4.2.5(5) and Remarks 4.2.5(7).

As a consequence of this, when R and S are Artinian local rings with R ̸= k ̸= S, P =

R ×k S is not Gorenstein. However Ananthnarayan, Avramov and Moore construct

a suitable quotient which is a Gorenstein ring; see [2].

Definition 4.3.1. [2] Let R and S be Gorenstein Artin local rings with R ̸=

k ̸= S. Let soc(R) = (δR) and soc(S) = (δS). Identifying δR with (δR, 0) and

δS with (0, δS), we define a connected sum of R and S over k, denoted R#kS, as

R#kS = (R×k S)/(δR − uδS), where u is a unit in S.

Since connected sums are quotients of fiber products, we have the following pre-

sentation of connected sums of Gorenstein Artin quotients of polynomial rings over a

field k.

Theorem 4.3.2. [1, Theorem 4.22] Let I and J be ideals of the polynomial rings

k[X1, . . . , Xm] and k[Y1, . . . , Yn] over a field k, respectively. If R = k[X1, . . . , Xm]/I

and S = k[Y1, . . . , Yn]/J , then

R#kS ∼= (R×k S)/(δR − uδS)

∼= k[X,Y ]/(I,J ,∆R − u∆S, XiYj : 1 ≤ i ≤ m, 1 ≤ j ≤ n),

where u is a unit in S, ∆R ∈ k[X] and ∆S ∈ k[Y ] are such that their respective

images in R and S are δR and δS.
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The following example shows that connected sums over R and S over k depend

on the unit u chosen.

Example 4.3.3. [2, Example 3.1] Let R = Q[Y ]/(Y 3) and S = Q[Z]/(Z3). Let y

and z denote the respective images of Y and Z in R and S. Then soc(R) = (y2) and

soc(S) = (z2). The connected sums Q1 = (R×kS)/(y
2−z2) and Q2 = (R×kS)/(y

2−

pz2) are not isomorphic where p is a prime number not congruent to 3 modulo 4. For

a proof of this fact; see [2].

Corollary 4.3.4. [1, Corollary 4.23] Let R and S be graded Artinian local

quotients of polynomial rings over k such that ℓℓ(R) = ℓℓ(S). Then R#kS is also

graded.

Examples 4.3.5. Let k be a field.

(1) Let R = k[X]/(X4), S = k[Y ]/(Y 3) and T = k. By Example 4.2.2, we have

R ×k S = k[X, Y ]/(XY,X4, Y 3). Then R#kS ∼= (R ×k S)/(X3 − uY 2) ∼=

k[X, Y ]/(XY,X3−uY 2), where soc(R) = (X3), soc(S) = (Y 2), and u is a unit.

(2) Let R = k[X]/(X4), S = k[Y, Z]/(Y Z, Y 2−Z2), and T = k. By Theorem 4.2.8,

we have R×k S = k[X, Y, Z]/(XY,XZ, Y Z,X4, Y 2 −Z2). Then it follows that

R#kS = k[X,Y, Z]/(XY,XZ, Y Z,X3 − uY 2, Y 2 − Z2), where u is a unit.

The following theorem is a special case of [2, Theorem 2.8].

Theorem 4.3.6. [2, Theorem 2.8] Let R and S be Gorenstein Artin local rings

with R ̸= k ̸= S. Then a connected sum of R and S over k is also Gorenstein.

Definition 4.3.7. Let (R,mR, k) be a Noetherian local ring.

(1) The graded ring associated to the maximal ideal mR of R, denoted grmR
(R) (or

simply gr(R)), is defined as gr(R) ∼= ⊕∞
i=0m

i
R/m

i+1
R .
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(2) If R = ⊕i≥0Ri is a finitely generated graded k-algebra, where R0 = k and Ri

consist of the elements in R of degree i, we define the Hilbert function of R as

HR(i) = dimk(Ri) for i ≥ 0. If R is not graded, we define HR(i) = Hgr(R)(i).

Remark 4.3.8. Let us now list some notation and facts about associated graded

rings needed for the rest of this chapter.

(a) Note that for any n ≥ 0, a minimal generating set of gr(R)n = ⊕∞
i=nm

i
R/m

i+1
R ,

the nth power of the maximal ideal gr(R)1 of gr(R), lifts to a minimal generating

set of mn
R.

(b) Let x ∈ R be such that x ∈ mi
R \mi+1

R . We define x∗ ∈ gr(R), called the initial

form of x, to be the element of degree i that is the image of x in mi/mi+1. Let

I ⊆ R be an ideal. We define I∗ to be the ideal in gr(R) defined by ⟨x∗ : x ∈ I⟩.

Note that if A ∼= R/I, then gr(A) ∼= gr(R)/I∗.

4.3.2 Properties of Connected Sums

We prove some basic properties of connected sums in this section. We begin with the

following remarks.

Remarks 4.3.9. Let the notation be as in Definition 4.3.1.

(1) If (δS) = soc(S), then (uδS) = soc(S) for any unit u ∈ S. Hence, one can write

R#kS ∼= (R×k S)/(δR − δ′S), where (δR) = soc(R) and (δ′S) = soc(S).

(2) Since 0 ̸= δR − uδS ∈ soc(R×k S), we have λ(R#kS) = λ(R×k S)− 1.

(3) As a consequence of item 2, we have a relation between the Hilbert functions

of R, S and R#kS: HR#kS = HR +HS −Hk.
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Proposition 4.3.10. Let R and S be Gorenstein Artin local rings with R ̸= k ̸= S.

Let Q ∼= R#kS. Then Q/ soc(Q) ∼= R/ soc(R)×k S/ soc(S).

Proof. Let P = R ×k S, (δR) = soc(R) and (δS) = soc(S). We know that soc(P ) =

soc(R)⊕ soc(S). Let π : P −→−→ Q be the natural surjection. Since Q ∼= P/(δR−uδS)

for some unit u ∈ S, and λ(Q) = λ(P ) − 1, π(δR) ̸= 0 in Q. Hence π(δR) ∈ soc(Q)

and dimk(soc(Q)) = 1 force soc(Q) = (π(δR)). Thus Q/ soc(Q) ∼= (R ×k S)/(δR −

uδS, δR) ∼= R/(δR)×k S/(δS).

Lemma 4.3.11. If both R and S are Artinian k-algebras, then

gr(R×k S) ∼= gr(R)×k gr(S).

Proof. Let P = R ×k S. By Remarks 4.2.5.(3), we have R ∼= P/J , S ∼= P/I, and

k = P/(I + J). Thus if I = (y1, . . . , ym) and J = (z1, . . . , zn), we see that mP =

(y1, . . . , ym, z1, . . . , zn) is the maximal ideal of P . Hence m∗
P = (y∗1, . . . , y

∗
m, z

∗
1 , . . . , z

∗
n)

is the maximal ideal mgr(P ) of gr(P ). Thus (y∗1, . . . , y
∗
m) ⊆ I∗ and (z∗1 , . . . , z

∗
n) ⊆ J∗

forces I∗+J∗ = mgr(P ). Since λ(P ) = λ(R)+λ(S)− 1 and λ(gr(P )) = λ(P ), we have

λ(gr(P )) = λ(gr(R)×k gr(S)).

Now, by Remark 4.3.8(b), R = P/J and S = P/I implies that gr(R) ∼= gr(P )/J∗

and gr(S) ∼= gr(P )/I∗. In particular, the natural projection gr(P ) −→−→ k factors

through the surjective maps gr(P ) −→−→ gr(R) and gr(P ) −→−→ gr(S). Hence gr(P )

maps onto gr(R) ×k gr(S). Since λ(gr(P )) = λ(gr(R) ×k gr(S)), we get the desired

isomorphism.

Proposition 4.3.12. Let R and S be Gorenstein Artin k-algebras with ll(R) ̸= ll(S).

Then the associated ring of R#kS is a fiber product.

Moreover, if ll(R) and ll(S) are at least 3, Q is not a standard graded k-algebra.
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Proof. Let P = R ×k S and Q = R#kS. Let soc(R) = (δR) and soc(S) = (δS).

Since Q ∼= P/(δR − uδS) for some unit u in S, by Remark 4.3.8(b), we have gr(Q) ∼=

gr(P )/(δR − uδS)
∗. Without loss of generality, we may assume that ll(R) > ll(S).

Hence (δR − uδS)
∗ = (uδS)

∗. Thus we see that gr(Q) ∼= (gr(R) ×k gr(S))/(uδS)
∗ ∼=

gr(R)×k gr(S/δS).

Finally, if ll(R) > ll(S) ≥ 3, then gr(R) ̸= k ̸= gr(S/δS). Hence gr(Q) is not

Gorenstein, by Remark 4.2.1(d). Thus Q ̸∼= gr(Q), hence Q is not standard graded.

The following example illustrates the situation in Proposition 4.3.12.

Example 4.3.13. Let Q = k[X,Y ]/(X2, XY − Y 3). Then Q is a nongraded con-

nected sum, i.e., for U = X−Y 2 and V = Y , Q ∼= k[U, V ]/(U3, V ) #k k[U, V ]/(U, V 5)

∼= k[X]/(X3)#kk[X,Y ]/(X−Y 2, Y 5). Also we have gr(Q) ∼= k[X,Y ]/(XY,X2, Y 5) ∼=

k[X]/(X3)×k k[Y ]/(Y 5).

Propositions 4.3.10 and 4.3.12 lead to the following questions:

Questions 4.3.14. Let R, S and Q be Gorenstein Artin k-algebras.

(1) If Q/ soc(Q) ∼= R/ soc(R)×k S/ soc(S), then is Q ∼= R#kS?

(2) If gr(Q) is a fiber product, can we decompose Q as a connected sum?

One can see from Remarks 4.2.5.(3) that if P = R ×k S, then R and S can

be identified with appropriate quotients of P . On the other hand, if Q = R#kS, in

general, it is not clear how one can recover R and S from Q. The following proposition

shows that one can do so when Q is a k-algebra.
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Proposition 4.3.15. Let R and S be Gorenstein Artin k-algebras. If Q = R#kS

with Q ∼= k[Y1, . . . , Ym, Z1, . . . , Zn]/IQ, R ∼= k[Y1, . . . , Ym]/IR, S ∼= k[Z1, . . . , Zn]/IS,

then IR = IQ ∩ k[Y ] and IS = IQ ∩ k[Z].

Proof. By Theorem 4.3.2, we see that IQ = IR + IS + (∆R −∆S) + (YiZj : 1 ≤ i ≤

m, 1 ≤ j ≤ n), where soc(R) = (δR), soc(S) = (δS) and ∆R and ∆S are the respective

preimages of δR and δS in k[Y ] and k[Z]. Hence it is clear that IR ⊆ IQ ∩ k[Y ] and

IS ⊆ IQ ∩ k[Z]. To complete the proof, it is enough to show that IQ ∩ k[Y ] ⊆ IR,

since IQ ∩ k[Z] ⊆ IS will follow by symmetry.

Let F (Y ) ∈ IQ∩k[Y ]. We can write F = F1(Y )+F2(Z)+
∑

FijYiZj+(∆R−∆S)G,

where F1 ∈ IR, F2 ∈ IS and Fij, G ∈ k[Y , Z]. Write G = G1(Y )+G2(Z)+
∑

GijYiZj,

where G1 ∈ k[Y ], G2 ∈ k[Z] and Gij ∈ k[Y , Z]. Now,

F2(Z) +
∑

FijYiZj + (G−G1(Y ))∆R −G∆S = F − F1 −∆RG1(Y ) ∈ k[Y ].

Since every monomial in F2(Z)+
∑

FijYiZj+(G−G1(Y ))∆R−G∆S is a multiple

of some Zj, the sum must be zero. Thus F = F1(Y ) +∆R ·G1(Y ). Hence we need to

prove ∆R ·G1(Y ) ∈ IR.

Write G1 = c+H, where H ∈ (Y ) and c ∈ k is a constant. Note that H∆R ∈ IR

since Yi ·∆R ∈ IR for each i, hence the proof is complete if we prove c = 0.

Note that c∆R+∆RH(Y ) = F−F1 ∈ IQ. HenceH∆R ∈ IR ⊆ IQ forces c∆R ∈ IQ.

Since δR generates soc(R), ∆R /∈ IR, and hence not in IQ. Therefore c cannot be a

unit, forcing c = 0, as desired.

A question that comes up naturally at this juncture is whether the converse of the

above statement is true, i.e., if Q = k[Y , Z]/IQ is Gorenstein Artin, is Q ≃ R#kS,

where R = k[Y ]/IQ ∩ k[Y ] and S = k[Z]/IQ ∩ k[Z]?
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The following show that R and S defined as above are not necessarily Gorenstein

when Q is Gorenstein Artin k-algebra. However, we have a positive answer in the

situation of Theorem 4.3.17.

Example 4.3.16. Let Q =
k[x, y, z]

(xy − z3, x3, y3)
. Then, for IQ = (xy−z3, x3, y3), we have

IQ∩k[y, z] = (y3, y2z3, yz6, z9). Then S = k[y, z]/IQ∩k[y, z] which is not Gorenstein.

Theorem 4.3.17. Let Q = k[Y1, . . . , Ym, Z1, . . . , Zn]/IQ be a Gorenstein Artin local

ring. Let R = k[Y ]/IR and S = k[Z]/IS where IR = IQ ∩ k[Y ] and IS = IQ ∩ k[Z].

Suppose Yi · Zj ∈ IQ for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Then

(a) R and S are Gorenstein Artin and

(b) Q ∼= R#kS.

Proof. Note that the inclusions k[Y ], k[Z] ↩→ k[Y , Z] induce inclusions R ↩→ Q and

S ↩→ Q. Let y and z denote the respective images of Y and Z in the quotient rings

Q, R and S.

(a) Let f ∈ soc(R). Then Yi · F ∈ IR ⊆ IQ for each i, where F ∈ k[Y ] is a

preimage in k[Y ] of f . Moreover, since YiZj ∈ IQ for each i and j, ZjF ∈ IQ. Hence

f ∈ soc(Q). Therefore 0 ̸= soc(R) ⊆ soc(Q) which is a one-dimensional k-vector

space. Thus dimk(soc(R)) = 1, i.e., R is Gorenstein Artin.

We can show that S is also a Gorenstein Artin local ring by a similar argument.

(b) Let soc(R) = (δR), soc(S) = (δS), ∆R and ∆S be the respective preimages of

δR and δS in k[Y ] and k[Z]. We will show that IQ = IR + IS + (Yi · Zj : 1 ≤ i ≤

m, 1 ≤ j ≤ n) + (∆R − u∆S), for some unit u ∈ k.

From the hypothesis, to prove

IR + IS + (Yi · Zj : 1 ≤ i ≤ m, 1 ≤ j ≤ n) + (∆R − u∆S) ⊆ IQ,



93

we only need to prove ∆R − u∆S ∈ IQ for some unit u ∈ k. From the proof of (a),

we note that 0 ̸= δR ∈ soc(Q) and 0 ̸= δS ∈ soc(Q). Since Q is Gorenstein, δR = uδS

in Q, i.e., there is a unit u ∈ k such that ∆R − u∆S ∈ IQ.

In order to prove the reverse inclusion, consider F ∈ IQ. Write F = F1(Y ) +

F2(Z) +
∑

FijYiZj where F1 ∈ k[Y ], F2 ∈ k[Z] and Fij ∈ k[Y , Z]. Since Yi · Zj ∈ IQ

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, F1(Y ) + F2(Z) ∈ IQ. Furthermore, the same reason forces

YiF1, ZjF2 ∈ IQ for each i and j. In particular, F1 ∈ (∆R) + IR and F2 ∈ (∆S) + IS.

Note that F1 ∈ IR ⇐⇒ F2 ∈ IS, and the proof is complete if this happens.

Let f1 and f2 be the respective images of F1 and F2 in R and S. Suppose F1 /∈ IR,

F2 /∈ IS. Then f1 ∈ soc(R) and f2 ∈ soc(S) imply f1 = uRδR in R and f2 = uSδS in

S for some units uR, uS ∈ k. Since δR = uδS in Q, f1 = −f2 in Q forces uS = −uuR.

Thus F1−uR∆R = G1 ∈ IR, F2+uuR∆S = G2 ∈ IS. Thus F = F1+F2+
∑

FijYiZj =

G1 +G2 +
∑

FijYiZj + uR(∆R − u∆S), as desired.

4.3.3 Decomposing a Gorenstein Artin Ring as a

Connected Sum

In this section we explore the connections between associated graded rings and

connected sums. In particular, we study conditions on the associated graded ring of

an Artinian Gorenstein ring which force it to be a connected sum.

We start with the definition of short and stretched Gorenstein rings.

Definition 4.3.18. Let (Q,mQ, k) be a Gorenstein Artin local ring with Hilbert

function HQ.

(i) We say thatQ is a short Gorenstein ring ifHQ = (1, h, n, 1), i.e., ifm3
Q = soc(Q).
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(ii) We say Q is a stretched Gorenstein ring if HQ = (1, h, 1, . . . , 1), i.e., m2
Q is

principal and m3
Q ̸= 0.

Example 4.3.19. Let Q = k[x, y, z]/(xy, xz, yz, x3 − y2, y2 − z2). Then Q is both

stretched and short Gorenstein k-algebra since HQ = (1, 3, 1, 1).

In her paper([26]) on stretched Gorenstein rings, Sally proved the following struc-

ture theorem for stretched Gorenstein local rings (Q,mQ, k) when char(k) ̸= 2.

Theorem 4.3.20. [26, Theorem 1.1, Corollary 1.2] Let (Q,mQ, k) be a stretched

local Gorenstein Artin ring of length h+s, embedding dimension h and ms
Q = soc(Q)

with s > 2 and h > 1. Let Q = S/I, where (S,n) is a regular local ring of dimension

h and the characteristic of S/n is not 2. Then

Q ∼= S/({ZiZj | i ̸= j, ZiY, Y
t − UiZ

2
i : 1 ≤ i, j ≤ h− 1}),

where n = (Y, Z1, . . . , Zh−1) and the Ui are units in S.

In [7], Elias and Rossi proved a similar structure theorem for short Gorenstein

local rings (Q,mQ, k) when char(k) = 0 and k is algebraically closed. The next

theorem is a special case of their theorem in the k-algebra case.

Theorem 4.3.21. [7, Theorem 4.1] Let (Q,mQ, k) be a short local Gorenstein

Artin k-algebra with Hilbert function HQ = (1, h, n, 1). Then Q ∼= R#kS where R

is a graded Gorenstein k-algebra with HR = (1, n, n, 1) and S is a Gorenstein Artin

k-algebra m3
S = 0.

If Q is a Gorenstein Artin k-algebra, then in either short Gorenstein or the

stretched Gorenstein case, Q is a connected sum by Theorem 4.3.2. Theorem 4.3.24

at the end of this section generalizes these two results of Sally and Elias–Rossi.
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Next we give a Gorenstein ring construction due to A. Iarrobino, [15]. He studied

a filtration of ideals of an associated graded ring, G = gr(Q), of a Gorenstein Artin

local ring Q and showed that there is a graded Gorenstein quotient of G = gr(Q).

Definition and Theorem 4.3.22. [15] Let (Q,mQ, k) be a Gorenstein Artin

local ring with associated graded ring G = grmQ
(Q) and ms

Q = soc(Q). Consider a

filtration of ideals 0 ⊆ C(s− 2) ⊆ · · · ⊆ C(1) ⊆ C(0) = G, where the ith graded piece

of C(a) is given by

C(a)i =
(0 :Q ms−a−i+1

Q ) ∩mi
Q

(0 :Q ms−a−i+1
Q ) ∩mi+1

Q

.

Then Q(0) := G/C(1) is a graded Gorenstein quotient of G with deg(soc(Q(0))) = s.

Furthermore, since C(1)i = 0 for i ≥ s−1 by definition, HQ(0)(i) = HG(i) for i ≥ s−1.

Remark 4.3.23. By the above discussion, using the fact that the Hilbert function

of a graded Gorenstein k-algebra is palindromic, we see the following:

(i) If Q is a short Gorenstein ring with HQ = (1, h, n, 1), then HQ(0) = (1, n, n, 1).

(ii) If Q is a stretched Gorenstein ring with HQ = (1, h, 1, . . . , 1), then HQ(0) =

(1, 1, 1, . . . , 1).

Thus if Q is either a short or a stretched Gorenstein ring, we see that there is a

surjective map π : G = grm(Q) −→−→ Q(0) such that Ker(π)i = 0 for i ≥ 2.

This observation leads us to the following theorem.

Theorem 4.3.24. Let (Q,mQ, k) be Gorenstein Artin k-algebra. Let π : G =

gr(Q) � A be a surjective map where A is a graded Gorenstein with deg(soc(A)) =

s ≥ 3. Assume ker(π)i = 0, i ≥ 2. Then Q ∼= R#kS where R is a Gorenstein ring

such that gr(R) = A and S is a Gorenstein ring with m3
S = 0.
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Remarks 4.3.25. We first make a few observations. Let the setup be as in the

hypothesis of the Theorem 4.3.24. Note that the induced map π : mi
G −→ mi

A is an

isomorphism for i ≥ 2.

(a) (0 :Q m2
Q) ∩m2

Q = ms−1
Q .

Proof. Let w ∈ (0 :Q m2
Q). Then π(w∗) ∈ (0 :A m2

A). Since A is graded

Gorenstein, we have (0 :A m2
A) = ms−1

A and hence π(w∗) ∈ ms−1
A . Suppose

further w ∈ m2
Q. Then deg(w∗) ≥ 2 in G. Since π : Gi −→ Ai is an isomorphism

for i ≥ 2, π(w∗) ∈ ms−1
A = As−1 forces w∗ ∈ ms−1

G , i.e., w ∈ ms−1
Q . Thus

(0 :Q m2
Q) ∩m2

Q ⊆ ms−1
Q . The other inclusion is clear since ms

Q = soc(Q).

(b) (0 :Q m2
Q)/m

s−1
Q is annihilated by mQ and dimk((0 :Q m2

Q)/m
s−1
Q ) = edim(Q) −

edim(A).

Proof. By (a),

(0 :Q m2
Q)

ms−1
Q

∼=
(0 :Q m2

Q)

(0 :Q m2
Q) ∩m2

Q

∼=
(0 :Q m2

Q) +m2
Q

m2
Q

is annihilated by mQ.

Let n = λ(ker(π)) = edim(Q) − edim(A). Note that since (0 :Q m2
Q) is the

canonical module of Q/m2
Q, λ(0 :Q m2

Q) = λ(Q/m2
Q). Also, ker(π)i = 0 for

i ≥ 2 gives λ(mi
Q) = λ(mi

G) = λ(mi
A) for i ≥ 2. Hence λ((0 :Q m2

Q)/m
s−1
Q ) =

λ(Q/m2
Q) − λ(ms−1

A ) = λ(Q/m2
Q) − λ(A/m2

A), where the last equality follows

from λ(ms−1
A ) = λ(A/m2

A), which holds since A is a graded Gorenstein ring.

Thus dimk((0 :Q m2
Q)/m

s−1
Q ) = λ((0 :Q m2

Q)/m
s−1
Q ) = edim(Q)− edim(A) = n.

(c) If w ∈ (0 :Q m2
Q)\ms−1

Q , then w ∈ mQ\m2
Q, w·mQ = soc(Q) and w∗ ∈ soc(G)\m2

G.
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Proof. If w ∈ m2
Q, then w ∈ m2

Q ∩ (0 :Q m2
Q) = ms−1

Q by (a). Hence w /∈ m2
Q and

so w∗ /∈ m2
G. Now w ·m2

Q = 0 implies that wmQ ⊆ soc(Q). Since Q is Gorenstein

and s ≥ 3, soc(Q) ⊆ wmQ proving wmQ = soc(Q) = ms
Q. In particular, since

s ≥ 3, w∗ ∈ soc(G) \m2
G.

We first prove the following proposition:

Proposition 4.3.26. Let (Q,mQ, k) be a Gorenstein Artin k-algebra. Let π : G =

gr(Q) � A be a surjective map where A is a graded Gorenstein with deg(soc(A)) =

s ≥ 3. Assume ker(π)i = 0, i ≥ 2. Then there is a minimal generating set

{y1, . . . , ym, z1, . . . , zn} of mQ such that

(i) yizj = 0 in Q for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Futhermore

(ii) (z1, . . . , zn) ⊆ (0 :Q m2
Q) and hence for every 1 ≤ i, j ≤ n, zizj ∈ soc(Q),

(iii) (z1, . . . , zn) ∩ (0 :Q (z1, . . . , zn)) = soc(Q) and

(iv) mi
Q = (y1, . . . , ym)

i for i ≥ 2.

Proof. By Remark 4.3.25(b), we can choose elements z1, . . . , zn ∈ (0 :Q m2
Q) \ ms−1

Q

such that their images form a basis for (0 :Q m2
Q)/m

s−1
Q . By Remark 4.3.25(c), zi ∈

mQ \m2
Q for each i.

(ii) Notice that z1, . . . , zn is a part of a minimal generating set of mQ, i.e., z1, . . . , zn

are linearly independent modulo m2
Q. Indeed, suppose a1z1 + a2z2 + . . . + anzn = 0

(mod m2
Q). Thus

∑n
i=1 aizi ∈ m2

Q ∩ 0 :Q m2
Q = ms−1

Q by Remark 4.3.25(a), and hence∑
aizi = 0 in (0 :Q m2

Q)/m
s−1
Q . Since {z1, . . . , zn} is linearly independent, ai ≡ 0 (mod

mQ) for all i. Thus ai ∈ mQ for all i, proving that z1, . . . , zn are linearly independent

modulo m2
Q.

Finally, since zim
2
Q = 0, zimQ ⊆ soc(Q) for each i. Hence for every 1 ≤ i, j ≤ n,

zizj ∈ soc(Q).
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(iii) If w ∈ (z1, . . . , zn) ⊆ (0 :Q m2
Q), then w ·ms−1

Q = 0. Hence, if w ∈ (z1, . . . , zn)∩

(0 :Q (z1, . . . , zn)), then w ∈ (0 :Q ((z1, . . . , zn))+ms−1
Q ) = (0 :Q (0 :Q m2

Q)) = m2
Q since

Q is Gorenstein Artin. Thus w ∈ (0 :Q m2
Q)∩m2

Q = ms−1
Q by Remark 4.3.25(a). Write

w =
∑n

i=1 aizi. Since w ∈ ms−1
Q and z1, . . . , zn are linearly independent modulo ms−1

Q ,

ai ∈ mQ. Thus, w ∈ (z1, . . . , zn) · mQ = ms
Q = soc(Q). Therefore (z1, . . . , zn) ∩ (0 :Q

(z1, . . . , zn)) ⊆ soc(Q). Since Q is Gorenstein, the other inclusion is clear and the

equality follows, proving (iii).

(i) Since n = λ(ker(π)) = edim(Q)− edim(A), we can find elements y1, . . . , ym ∈

mQ \m2
Q that extend z1, . . . , zn to a minimal generating set {y1, . . . , ym, z1, . . . , zn} of

mQ, wherem = edim(A). NowmQ·(z1, · · · , zn) = soc(Q) implies that λ(z1, · · · , zn) =

λ((z1, · · · , zn)/mQ(z1, · · · , zn)) + 1 = n+ 1. Hence

λ(0 :Q (z1, · · · , zn)/m2
Q) = λ(0 :Q (z1, · · · , zn))− λ(m2

Q)

= λ(Q/(z1, · · · , zn))− λ(m2
Q)

= λ(Q/m2
Q)− λ((z1, · · · , zn))

= 1 + λ(mQ/m
2
Q)− (n+ 1)

= edim(Q)− n = edim(A) = m.

Let x1, . . . , xm ∈ 0 :Q (z1, . . . , zn) \m2
Q be elements whose images form a basis for

(0 :Q (z1, . . . , zn)/m
2
Q). Then xi ∈ mQ \ m2

Q, i = 1, . . . ,m, are such that x1, . . . , xm

are linearly independent modulo m2
Q.

Fix i, 1 ≤ i ≤ m. Write xi =
∑m

j=1 aijyj +
∑n

k=1 bikzk. If aij ∈ mQ for every j,

then
∑m

j=1 aijyj ∈ m2
Q ⊆ 0 :Q (z1, . . . , zn). Hence xi −

∑m
j=1 aijyj =

∑n
k=1 bikzk ∈ 0 :Q

(z1, . . . , zn) ∩ (z1, . . . , zn) = ms
Q by Claim 3. Hence xi ∈ m2

Q, a contradiction.

Thus for each i, there is a j such that aij /∈ mQ. Without loss of generality,

suppose that a11 is a unit. Replace xi by xi − ai1a
−1
11 x1 for i ≥ 2 to assume ai1 = 0
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for i ≥ 2. By the same argument as above, we first assume that a22 is a unit, and

hence by replacing xi by xi − ai2a
−1
22 x2 for j ≥ 3, can assume that ai2 = 0 for i ≥ 3.

Continuing thus, we can assume that aii is a unit for all i, 1 ≤ i ≤ m, and aij = 0 for

i > j.

We now show that (xm−i, . . . , xm, z1, . . . , zn) = (ym−i, . . . , ym, z1, . . . , zn) by in-

duction on m − i. Let i = 0. Since amm is a unit and amj = 0 for j < m,

ym = a−1
mmxm − (

∑n
k=1 a

−1
mmbmkzk). This proves the statement for the base case of

the induction.

Suppose (xm−i, . . . , xm, z1, . . . , zn) = (ym−i, . . . , ym, z1, . . . , zn) for 0 ≤ i < m −

1. As before, we can show that ym−i+1 ∈ (xm−i+1, ym−i, . . . , ym, z1, . . . , zn) since

am−i+1,m−i+1 /∈ mQ and am−i+1,j = 0 for j < m + i − 1. Then induction shows that

ym−i+1 ∈ (xm−i+1, . . . , xm, z1, . . . , zn). Replacing the yi’s by xi’s, we can choose yi

such that yi ∈ 0 :Q (z1, . . . , zn), i.e., yizj = 0 for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

(iv) Next we show that mi
Q = (y1, . . . , ym)

i for i ≥ 2. Since zi ∈ 0 :Q m2
Q,

π(z∗i ) ∈ 0 :A m2
A = ms−1

A . But zi ∈ mQ \ m2
Q implies that deg(z∗i ) = 1 in G. Hence

either deg(π(z∗i )) = 1 or π(z∗i ) = 0 in A. Since π(z∗i ) ∈ ms−1
A , deg(π(z∗i )) ̸= 1, forcing

π(z∗i ) = 0 in A. Counting lengths, we see that ker(π) = (z∗1 , . . . , z
∗
n).

Now mA = π(mG) = π(y∗1, . . . , y
∗
m, z

∗
1 , . . . , z

∗
n). Since π(z∗i ) = 0, we have mA =

(π(y∗1), . . . , π(y
∗
m)). Thus m

i
A = (π(y∗1), . . . , π(y

∗
m))

i for each i. Since π : mi
G −→ mi

A is

an isomorphism for i ≥ 2, we have mi
G = (y∗1, . . . , y

∗
m)

i and hence mi
Q = (y1, . . . , ym)

i

for i ≥ 2.

As a consequence, one can prove the following lemma, which we use in the proof

of Theorem 4.3.24.

Lemma 4.3.27. Let the notation be as in Proposition 4.3.26. Write Q ∼= Q̃/IQ
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where Q̃ = k[Y1, . . . , Ym, Z1, . . . , Zn] and IQ ⊆ (Y , Z)2. Then

I∗Q = I∗R + (Y ∗
i Z

∗
j , Z

∗
jZ

∗
k : 1 ≤ i ≤ m, 1 ≤ j, k ≤ n)

where IR = k[Y1, . . . , Ym] ∩ IQ.

Proof. By the above Proposition, mQ = (y1, . . . , ym, z1, . . . , zn) where yizj = 0, 1 ≤

i ≤ m, 1 ≤ j ≤ n. Hence we can writeQ ≃ Q̃/IQ where Q̃ = k[Y1, . . . , Ym, Z1, . . . , Zn],

IQ ⊆ (Y , Z)2 and YiZj ∈ IQ for each i and j. Hence for 1 ≤ i ≤ n, 1 ≤ j ≤ m,

Y ∗
i Z

∗
j ∈ I∗Q. Also, since IR ⊆ IQ, I

∗
R ⊆ I∗Q.

Let δ ∈ (y1, . . . , ym)
s generate soc(Q) and ∆ ∈ (Y1, . . . , Ym)

s be its preimage in Q̃.

By Proposition 4.3.26(ii), zizj = gijδ for some gij in Q. Let Gij ∈ Q̃ be a lift of gij.

One can see that since ∆ ∈ (Y1, . . . , Ym)
s and s ≥ 3, Z∗

i Z
∗
j = (ZiZj −Gij∆)∗ ∈ I∗Q for

1 ≤ i, j ≤ m. Thus we have proved I∗R+(Y ∗
i Z

∗
j , Z

∗
jZ

∗
k : 1 ≤ i ≤ m, 1 ≤ j, k ≤ n) ⊆ I∗Q.

For the other inclusion, consider F ∈ IQ. Write F = F1(Y ) + F2(Z) + F3, where

F1 ∈ (Y )k[Y ], F2 ∈ (Z)k[Z] and F3 ∈ (YiZj : 1 ≤ i ≤ m, 1 ≤ j ≤ n) ⊆ IQ. Since the

set of the monomials appearing in each Fi is disjoint from the set of the monomials

appearing in the other two, F ∗ ⊆ (F ∗
1 , F

∗
2 , F

∗
3 ).

Now, F ∗
3 ⊆ (Y ∗

i Z
∗
j : 1 ≤ i ≤ m, 1 ≤ j ≤ n). Moreover, since F ∈ IQ ⊆ (Y , Z)2,

we see that F2 ∈ (Z)2k[Z] and hence F ∗
2 ⊆ (Z∗

jZ
∗
k : 1 ≤ j, k ≤ n). If deg(F1)

∗ >

min{deg(F ∗
2 ), deg(F

∗
3 )}, then F ∗ ∈ (F ∗

2 , F
∗
3 ) ⊆ (Y ∗

i Z
∗
j , Z

∗
jZ

∗
k : 1 ≤ i ≤ n, 1 ≤ j, k ≤

m) and we are done.

Thus, in order to prove the lemma, it is enough to prove the following claim.

C laim: Suppose deg(F1)
∗ ≤ min{deg(F ∗

2 ), deg(F
∗
3 )}. Then F ∗

1 ∈ I∗R.
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Proof of Claim. Since F2 ∈ (Z)2k[Z], there are Fij ∈ k[Z] such that

F2 =
∑

1≤i,j≤n

FijZiZj =
∑

1≤i,j≤n

Fij(ZiZj −Gij∆) +
∑

1≤i,j≤n

FijGij∆.

We see that F2 = F4 + F5, where F4 =
∑

1≤i,j≤n Fij(ZiZj − Gij∆) ∈ IQ and

F5 =
∑

1≤i,j≤n FijGij∆. Note that degF ∗
5 > deg(F ∗

2 ) (since deg(∆∗) = s ≥ 3 >

deg(ZiZj)
∗).

If for some k, Zk divides FijGij, then (Y )(Z) ⊆ IQ, forces FijGij∆ ∈ IQ. Hence

we can rewrite F5 = F ′
5 + F ′′

5 , where

F ′
5 =

∑
Zk divides FijGij for some k

FijGij∆ ∈ IQ and F ′′
5 =

∑
No Zk divides FijGij

FijGij∆,

i.e., F ′′
5 ∈ k[Y1, . . . , Yn]. Thus F = F1+F3+F4+F ′

5+F ′′
5 , where F1, F

′′
5 ∈ k[Y1, . . . , Yn],

F3, F4, F
′
5 ∈ IQ and deg(F ′′∗

5 ) > deg(F ∗
2 ) ≥ deg(F ∗

1 ). In other words, F1 + F ′′
5 ∈

IQ ∩ k[Y1, . . . , Yn] = IR and (F1 + F ′′
5 )

∗ = F ∗
1 . This proves the claim and hence the

lemma.

Proof of Theorem 4.3.24. As observed in the proof of the above lemma, we can write

Q ∼= Q̃/IQ where Q̃ = k[Y1, . . . , Ym, Z1, . . . , Zn], IQ ⊆ (Y , Z)2 and YiZj ∈ IQ for each

i and j. Let IR = k[Y1, . . . , Ym] ∩ IQ and IS = k[Z1, . . . , Zn] ∩ IQ.

For 1 ≤ i ≤ n, 1 ≤ j ≤ m, YiZj ∈ IQ. Therefore, by Theorem 4.3.17, Q ∼= R#kS,

where R = k[Y1, . . . , Ym]/IR and S = k[Z1, . . . , Zn]/IS.

Let us first prove that m3
S = 0. Notice that by Proposition 4.3.26(ii),

(Y1, . . . , Ym, Z1, . . . Zn)
2 · Zj ⊆ IQ

for each j. Therefore (Z1, . . . , Zn)
3 ⊆ IS proving m3

S = 0.
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Now we want to prove that gr(R) ∼= A. Since G ∼= gr(Q̃)/I∗Q, we have

A ∼= G/(z∗1 , . . . , z
∗
n)

∼= gr(Q̃)/(I∗Q + (Z∗
1 , . . . , Z

∗
n)).

Now, by the above lemma,

I∗Q = I∗R + (Y ∗
i Z

∗
j , Z

∗
jZ

∗
k : 1 ≤ i ≤ n, 1 ≤ j, k ≤ m).

Hence we get

gr(R) ∼= k[Y ∗
1 , . . . , Y

∗
m]/I

∗
R
∼= gr(Q̃)/(I∗R + (Z∗

1 , . . . , Z
∗
n))

∼= gr(Q̃)/(I∗Q + (Z∗
1 , . . . , Z

∗
n))

∼= A.
�

Theorem 4.3.24 yields to the following question.

Question 4.3.28. Let Q be a Gorenstein Artin k-algebra. Assume gr(Q) ∼= A×k B

where either

(1) A is a graded Gorenstein Artin k-algebra and B ∼= k[Z]/(Zt) with t ≤ s− 2,

or

(2) A ∼= k[Y ]/(Y s) and B is a Teter ring with ms−2
B = 0.

Is Q ∼= R#kS for some Gorenstein Artin rings R and S?
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