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We study Richard Thompson’s group V , and some generalizations of this group.

V was one of the first two examples of a finitely presented, infinite, simple group.

Since being discovered in 1965, V has appeared in a wide range of mathematical

subjects. Despite many years of study, much of the structure of V remains unclear.

Part of the difficulty is that the standard presentation for V is complicated, hence

most algebraic techniques have yet to prove fruitful.

This thesis obtains some further understanding of the structure of V by showing

the nonexistence of the wreath product Z ≀ Z2 as a subgroup of V , proving a con-

jecture of Bleak and Salazar-Dı̀az. This result is achieved primarily by studying the

topological dynamics occurring when V acts on the Cantor Set. We then show the

same result for one particular generalization of V , the Higman-Thompson Groups

Gn,r. In addition we show that some other wreath products do occcur as subgroups

of nV , a different generalization of V introduced by Matt Brin.
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Chapter 1

Introduction

In broad strokes, this thesis concerns topics in geometric group theory. This area

studies infinite groups, in particular groups that are finitely generated. Although

it has roots in a publication by William Rowan Hamilton in 1856, geometric group

theory became an established field upon the 1987 publication of “Hyperbolic groups”

by Mikhail Gromov. It has become a field in the intersection of group theory and

topology with interactions with many other areas of mathematics along with some

parts of theoretical computer science.

More specifically, this thesis contributes to the study of Thompson’s group V , and

some generalizations of this group, by studying the structure of these groups through

showing the existence or lack of certain subgroups. The groups F < T < V were

discovered by Richard Thompson in 1965 during research into mathematical logic. A

standard introduction to the area is [13].

Thompson’s group V can be thought of as the subgroup of the automorphism

group of the Cantor set C in which the functions are completely determined by a

finite list of prefix replacements. Interest in this group is broad as V appears in a

variety of mathematical subjects, including the theory of interval exchange maps from
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dynamics [1], algorithmic group theory [19], circuit and complexity theory [3], and

logic and combinatorial group theory [25].

In group theory, the first evidence that these groups are of interest came from

Thompson himself soon after his discovery of the group. In unpublished notes,

Thompson proved that T and V are finitely presented simple infinite groups. These

were the first two known examples of such groups. More recently, the conjugacy prob-

lem has been solved in V in three separate, but related, ways [2,16,22], and many of

the homological properties of V have been investigated [12]. In [19] it is shown that

V has a context free co-word problem. There are other structure results, for exam-

ple [5, 8]. However, it appears that using an algebraic approach using a presentation

is hard, and not too much is known about V . This is in contrast to F which is well

understood and many results have been published using purely algebraic methods.

Context free languages arise in formal language theory. A subset of the set of all

strings from a fixed alphabet is context free if there exists a non-deterministic finite

state pushdown automata (NPDA) that recognizes the language. Recall that for a

group G, the word problem for G is the set of all strings in a presentation that are

equal in the group to the identity. It was shown by Muller and Schupp in [20, 21]

that the class C F of groups that have a context free word problem is equivalent

to the the class of groups that are virtually free (i.e., those that have a finite index

subgroup which is free). A natural generalization of the class C F is the class coC F ,

groups that have context free co-word problem, and was first introduced by Holt,

Rees, Röver, Thomas in [17]. A group is in coC F when the set of all strings in a

presentation that are not equal to the identity is context free. Both of these classes

are independent of the choice of finite generating set used.

In [17], it is shown that coC F is closed under direct products, standard restricted

wreath products where the top group is C F , passing to finitely generated subgroups,
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and passing to finite index over-groups. We are primarily concerned with two conjec-

tures from that paper. The first is if C ≀ T is in coC F then T must be in C F . The

second is that coC F is not closed under free product. The most popular candidate

to show the latter is Z ∗ Z
2. This was put into doubt by Lehnert and Schweitzer

in [19] which shows V , which is rife with free products of its subgroups and contains

abundant copies of Z and Z
2, is in coC F . However, Bleak and Salazar-Dı̀az showed

in [8] that Z ∗ Z2 does not embed into V .

One interesting aspect of the proof in [8] is that it suggests that V does not have

a subgroup that acts on the Cantor Set locally as Z
2. This would be necessary to

build the desired free product using a standard ping-pong argument. It would also

be necessary to build the wreath product Z ≀ Z2 using Brin’s pre-wreath structure

construction.

In [4] Bleak showed that Z ≀Z2 does not embed into F , and in [6] Bleak, Kassabov,

and Matucci showed Z ≀ Z2 does not embed into T . Guba and Sapir showed in [15]

that there are subgroups isomorphic to Z ≀ Z in F , and hence in T and V as well.

In Section 2, we provide necessary background. In Section 3, we analyze the

dynamics of V acting on the Cantor set to show the following:

Theorem 19. Z ≀ Z2 does not embed into V .

This proves Bleak and Salazar-Dı̀az’s Conjecture 4 in [8]. Additionally, as Z
2 is

not virtually free, the theorem adds some evidence to the conjecture that the top

group must be C F .

Section 4 concerns some generalizations of V . The best known generalization are

the finitely presented simple groups Gn,r collectively known as the Higman-Thompson

groups. We show the following:

Corollary 21. Z ≀ Z2 does not embed into Gn,r for any pair of integers r ≥ 1 and



4

n ≥ 2.

A different generalization V is the collection of groups nV originally described

by Brin in [9]. These are also finitely presented simple groups with V = 1V . It is

immediate from the definition of nV that if n < m then nV < mV . It was shown

in [7] that mV is not isomorphic to nV when m 6= n. This proof uses a theorem of

Rubin. This result does not seem to be easily modified to show the following.

Conjecture 1. If n < m then mV does not embed into nV .

The main obstacle to adapting the approach in [7] is that while the locally dense

property of a group of homeomorphisms is preserved under isomorphisms, it is not

preserved under general group monomorphisms. This property is needed to apply

Rubin’s Theorem.

One possible approach to showing Conjecture 1 is to find groups Hn such that

Hn injects into nV but Hn does not inject into (n − 1)V . To this end, we make the

following two conjectures.

Conjecture 2. For n ∈ N, Z ∗ Zn+1 does not embed into nV .

Conjecture 3. For n ∈ N, Z ≀ Zn+1 does not embed into nV .

In this paper, we show two additional results that deal with the existence of

some embeddings into nV . These, combined with a proof of either Conjecture 2 or

Conjecture 3 would give a proof of Conjecture 1.

Theorem 25. For n ∈ N, Z ∗ Zn embeds into nV .

Theorem 27. For n ∈ N, Zn ≀ Zn embeds into nV .

We desire only that Z ≀ Zn embeds, but it takes minimal extra effort to prove the

stronger statement.
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The techniques used in this thesis depend heavily on the groups in the wreath

products being infinite. However, it seems likely that the lack of an injection in

Theorem 19 comes from the Z2 component. Therefore, we ask the following question.

Question 4. If there is an injection from G ≀Z2 into V , must G be the trivial group?
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Chapter 2

Background Definitions

Throughout this thesis, we will have functions act on their underlying set on the

right, so if φ : X → X is a function, and x ∈ X , then xφ is the image of x under the

action of φ. If Y ⊆ X , then we similarly denote by Y φ the set {yφ|y ∈ Y }. Following

these conventions, if additionally ψ : X → X is a bijective map, then conjugation and

the commutator will be denoted as φψ = ψ−1φψ and [φ, ψ] = φ−1ψ−1φψ = φ−1φψ =

ψ−1φψ respectively.

We will define Supp (φ) = {x ∈ X|xφ 6= x}. Note this is slightly different from the

standard analysis definition which takes the closure of this set. That this is preferable

for our purposes is evident in the following standard lemma from permutation group

theory.

Lemma 5. Let φ, ψ ∈ Aut(X), then Supp (φψ) = (Supp (φ))ψ.

2.1 Cantor Set

In this section, we fix our notation for the Cantor Set.

Let A be any set. Then A∗ will denote the free monoid on A. In other words, A∗
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is the set of all finite sequences with entries in A. The operation is concatenation.

The set of all countable infinite sequences with entries in A will be denoted by Aω.

If x ∈ A∗ and y ∈ Aω then xy ∈ Aω will be the concatenation of x with y. The

Cantor Set C is a topological space with the underlying set being the set of all infinite

sequences of zero’s and ones i.e, C = {0, 1}ω. We now describe the topology on C.

Let b ∈ {0, 1}∗ and define the cone set of b by Bb = {x ∈ C|x = by for some y ∈ C}.

The basis of C is the set of cone sets for all such finite sequences.

We will be interested in open sets which are a finite union of basis elements, which

we will call conventional open sets.

2.2 Thompson’s Group V

Let T2 = T be the infinite, rooted, directed, binary tree. If we consider the left edge

out of a node as representing 0 and the right edge representing 1, then the limit space

of directed paths in T is exactly C. Any vertex in T can be uniquely denoted by a

string v ∈ {0, 1}∗ that gives the path from the root to the particular vertex. If the

path to v passes through w we say v is a descendent of w, and that w is an ancestor

of v. If the vertices are adjacent, we say v is the parent of v0 and v1, and the latter

are the children of v. If x ∈ C, v ∈ {0, 1}∗, and x = vu, then we say x is under v.

The set of all x ∈ C under v is called the Cantor set under v and is denoted as Cv.

Note that Cv is precisely the set Bv.

R. Thompson’s group V can be thought of as a particular subgroup of Aut(C). To

describe this subgroup, we need a little more terminology. Call a subgraph of T that

consists of any vertex, its two children, and the edges between them a caret. Let D

and R be finite rooted binary subtrees of T , with the same root as T , each the union

of exactly n distinct carets. Each will have exactly n+1 leaves. An element of V can
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be represented (non-uniquely) by the triple (D,R, σ) where σ is a bijection from the

leaves of D to the leaves of R. We will call (D,R, σ) a tree pair representative.

We now describe how to interpret a tree pair as an automorphism of C. Say that

φ ∈ Aut(C). We will use the notation φ ∼ (D,R, σ) to denote that φ is represented

by the tree pair (D,R, σ). Given x ∈ C, we need to identify the element of the Cantor

set denoted by xφ. There is a unique leaf w of D such that x is under w. Say x = wv.

Let w′ = wσ, a leaf in R. Then, xφ = w′v. In other words, φ acts on x by replacing

the prefix w of x which appears as a leaf in D with the prefix w′ which appears as

the leaf in R. With this interpretation, it is immediate that (D,R, σ) is a bijection

from C to itself. This function is continuous as the inverse image of a cone set of

appropriate depth is again a cone set. It is a homeomorphism as (R,D, σ−1) is an

inverse. We also note that a tree pair induces an action on almost all nodes of T .

Thus, if b ∈ {0, 1}∗, we can often talk about bφ. This only fails to have meaning on a

finite number of vertices near the root of D. Note that as not every vertex or edge of

T close to the root is mapped under the action of φ, φ is not a tree homomorphism.

We will often use the phrase maps to when referring to the action of φ on either the

vertices of T or the elements of C; the context should always make it clear which

usage we mean.

Figure 2.1 shows an example of a tree pair u ∼ (D,R, σ), with D on the left, R on

the right, and the bijection denoted by corresponding numbers on the leaves. As an

example of the action of u on the leafs of D, we note 000u = 1110 and 0101u = 00111.

A tree pair is not a unique representative of an element. This is easily seen by

taking any leaf of the domain of any tree pair and splitting it into two more leafs

below. Do the same to the corresponding leaf of the range tree. Associate the new

leaves to each other with the same orientation as before. This is now a new tree pair

representative for the same element of V .
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Figure 2.1: A tree pair for the element u

2.3 Revealing Pairs

Brin, in [9], showed that certain tree pair representatives - called Revealing Pairs -

of a particular element of V can be used to find useful elements and subsets of the

Cantor Set. Fix a particular tree pair (D,R, σ) representing φ ∈ V . Consider the

common tree C = D ∩ R. This is also a finite rooted subtree of T consisting of

the vertices and edges common to both D and R. A leaf of C is exactly one of the

following:

1. the root of a non-empty subtree of D;

2. the root of a non-empty subtree of R;

3. a leaf of both D and R.

A leaf satisfying the last condition is called a neutral leaf. If a leaf of C satisfies

the first condition, call the maximal subtree of D which is rooted at that node a

component of D \R. Similarly, each maximal non-empty subtree of R which is rooted

at a node of C is called a component of R \ D. Note that we are using the phrase

component of D \R to represent the phrase “topological component of the closure of

D \R in D”, where we think of D as a 1-complex. In particular, we are including the
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root of the maximal subtree in the component of D \ R. The analogous is true for

the other case as well.

The tree pair P is called a Revealing Pair if it satisfies two conditions. The first

condition is that for each component X of D \R, X has a leaf rX which, as a vertex

of T , and under iteration of the action of φ on the nodes of T , travels through the

neutral leaves of C until it is finally mapped to the root of X . The vertex rX is unique

for X , and is called the repelling leaf of X or the repeller of X . The other leaves of

X are called sources.

The second condition is the similar condition for R \ D; if nY is the root of a

component Y of R \D then iteration of the action of φ on the vertices of T has nY

travel through the neutral leaves of C until it finally maps to a leaf ℓY of Y . Note

that ℓY is a descendent of nY . We call the leaf ℓY the attracting leaf of Y or the

attractor of Y . The other leaves of Y are called sinks.

Brin, in the discussion proceeding Lemma 10.2 of [9], shows that each element in

V has a revealing pair representative. Again, this representative is not unique. The

theory of revealing pairs was expounded upon by Salazar-Dı́az in [23].

Let φ ∈ V . One consequence of Proposition 10.1 of [9] is that there is a minimal

non-negative power k so that φk acts on C with no non-trivial finite orbits. Set

ϕ = φk. Assume that the tree pair P = (D,R, σ) is a revealing pair representing ϕ.

We obtain a list of useful results that appear to have first been shown in [9] and first

explicitly stated in [6].

Lemma 6. (Brin 04; Bleak and Salazar-Dı̀az 2009) Suppose θ ∈ V such that θ admits

no non-trivial finite orbits in its action on C. Suppose further that a revealing pair

Pθ = (Dθ, Rθ, σθ) represents θ.

1. Any repeller rX of a component X of Dθ \ Rθ always maps to the root of X
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under Pθ .

2. The root nY of any component Y of Rθ \Dθ always maps to the attractor ℓY of

Y under Pθ.

3. The map θ restricted to any Cantor set underlying a node rX or nY as above is

affine with slope not equal to one.

4. Every point in C which is fixed by θ and which does not underlie a node rX or

nY as above lies under a neutral leaf of Pθ upon which θ must act as the identity.

We return to our discussion of the element ϕ constructed previously. By an

application of the standard Contraction Lemma, we observe that if a leaf ℓ of D is

mapped below itself in T by the rule P , then there will be a unique fixed point in

the Cantor Set underlying ℓ. Similarly, if ℓ maps above itself, considering the inverse

map ϕ−1, we also have a fixed point. Fixed points underlying repellers of D will be

called repelling fixed points of ϕ, and fixed points underlying attractors will be called

attracting fixed points of ϕ. This is summed up in the following.

Corollary 7. (Brin 04) Suppose θ ∈ V such that θ admits no non-trivial finite orbits.

Suppose further that a revealing pair Pθ = (Dθ, Rθ, σθ) represents θ. For each repeller

rx of a component X of Dθ\Rθ, there is a unique repelling fixed point px underlying it,

and for each attractor ℓY of Rθ \Dθ there is a unique attracting fixed point underlying

it.

We will be very interested in the repelling and attracting fixed points of an element

throughout. Elements of the set of repelling and attracting fixed points under the

action of ϕ are called important points of ϕ, and we denote the set of all such points

as I(ϕ). Note the number of important points is the same as the sum of the number

of repellers and attractors which is bounded by the sum of the number of leafs of
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Domain and Range trees. In particular, the cardinality of I(ϕ) is finite. Important

points were first defined by Bleak and Salazar-Dı́az in [8].

In our example u ∈ V from Figure 1, we see that (D,R, σ) is a revealing pair.

Below are the leaves of D and R sorted into the various categories listed above.

• The neutral leaves are 000, 0101, 100, and 1010.

• There are 4 repellers for u: 01000, 0110, 10110, and 1100.

• There are 6 sources: 010010, 010011, 01110, 01111, 10111, and 1101.

• There are 3 attractors: 00110, 101000, and 1111.

• There are 6 sinks: 0010, 00111, 101001, 101010, 101011, and 1110.

• The attracting fixed points are at 01000, 0110, 10110, and 10110.

• The repelling fixed points are at 00110, 101000, and 1111.

Throughout the remainder of this thesis, if we discuss the important points of an

element θ of V, it is to be understood that θ does not admit finite non-trivial orbits in

its action on C. Lastly, we note two definitions we will use in a way that is nonstandard

in topological dynamics. Given a revealing pair Q = (S, T, ρ) representing θ, the

Cantor Set underlying each root of a component of S \ T represents a repelling basin

for θ, and, similarly, the Cantor set underlying a root of a component of T \ S

represents an attracting basin for θ.

2.4 Components of Support

We will make use of a small part of the idea of flow graphs introduced in [5]. Again,

let P = (D,R, σ) be a revealing pair representative for an element φ ∈ V . Let {Ei}
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be the components of D \R and {Fj} be the components of R \D.

As discussed in the last subsection, each component Ei has a repeller, and all other

leaves are sources. Similarly, each component Fj has one leaf called an attractor,

and all other leaves are called sinks. For each source leaf s0, there is a path s0 =

n0, n1, . . . , nt = sk through neutral leaves n1, ..., nt−1 of C, and then visiting a sink

sk, so that φp will throw the Cantor set underlying s0 = n0 onto the Cantor set

underlying np for all indices 0 ≤ p ≤ t. Call the path n0, . . . , nt the source-sink chain

s0 − sk for P.

For our purposes, the flow graph of P is a labeled bipartite graph with one vertex

corresponding to each repelling or attracting basin of P . The vertex on the flow

graph is labeled by the root of the basin. The edges correspond with, and are labeled

by, source-sink chains connecting repelling basins to attracting basins. (This is a

simplified version of the flow graph as defined by Bleak et al in [5]. See that, or [8],

for the more general situation.)

Let Z be a connected component of the flow graph for P. The union of the Cantor

sets underlying all the vertices in the labels of Z is called the Cantor set underlying

Z. Different revealing pairs of the element will have a different number of flow lines,

but the fixed points are independent of the representation. Therefor, it is immediate

that the Cantor set underlying a component Z is independent of the revealing pair

representing φ. Thus, we will also call this union a component of support of φ. The

union of all the components of support of φ will be denoted Supp (φ). Note that this

is the topological closure of Supp φ. In other words, Supp (φ) = Supp (φ) ∪ I(φ).

Figure 2.2 is the flow graph of the element u given in Figure 2.1. Notice that u

has 2 components of support.
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Figure 2.2: Flow Graph for the element u

2.5 Non-trivial Finite Periodic Orbits

In the previous section, and in most of the rest of this dissertation, results include the

hypothesis that there are no non-trivial finite orbits in the action of the considered

element. There are two types of non-trivial finite orbits. In the first, there is an

entire neighborhood of the Cantor set in which every point has a non-trivial finite

orbit. This neighborhood is not in the support of the element raised to an appropriate

power. In the second type, every point near the point with a non-trivial finite orbit

has an infinite orbit. When the element is raised to an appropriate power, the finite

orbit points turn into important points. The element ϕ given in Figure 2.3 shows

both scenarios.

Let x = w ∈ C. Then we note that 10xϕ = 11x and 11xϕ = 10x. Hence,
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Figure 2.3: An element ϕ ∈ V that has non-trivial periodic orbits.

every element of C1 is on a periodic orbit of length 2. Next, note that 0011xϕ =

010x, 010xϕ = 011x, and 011x = 001x. In particular, 00111 is on a periodic orbit of

length 3, but no other point in C0011 is.

As we wish to have no non-trivial periodic orbits, we need to raise ϕ to a multiple

of both 2 and 3. Figure 2.4 is ϕ6.

This is the general situation although the formal proof of this is technical. The

following is a rewording of Proposition 10.1 in [9], the proof of which encompasses

the entirety of Section 10.

Lemma 8. (Brin, 04) Suppose µ ∈ V . There is an integer ℓ such that µℓ has no

non-trivial periodic orbits.

2.6 Wreath Products

Let A and T be groups. Set B = ⊕t∈TA. Then, the Wreath Product of A and T is

A ≀ T = B⋊ T where the semi-direct product action of T on B is right multiplication

on the index in the direct sum. We say T is the top group, A is the bottom group,
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Figure 2.4: The element φ6 has no non-trivial periodic orbits.

and B is called the base group.

For an example, let b = (ft)t∈T ∈ B. If we act on b by s ∈ T we get a new element

b′ ∈ B that is a shift. In particular, b′ = (fts)t∈T . Said a different way, the element

ft0 of A that is in the entry of b indexed by t0 is also the element in the entry of b′

indexed by t0s
−1. The element of A that is in the coordinate of b′ indexed by t0 is

the same element of A that is in the coordinate of b indexed by t0s.

Now, let b = (ft)t∈T , b
′ = (gt)t∈T ∈ B and r, s ∈ T . Note that for every t ∈ T , we

have ft and gt are elements of A. Then (b, r) and (b′, s) are two elements of A ≀ T .

We can multiply these as follows:

(b, r) · (b′, s) = ( (ft)t∈T , r) · ( (gt)t∈T , s) = ( (ft · gtr)t∈T , rs).
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Chapter 3

Z ≀ Z2 does not embed into R.

Thompson’s group V

The key idea of the proof of the main result of this thesis is to suppose there is an

embedding and build other embeddings from it. We will slowly improve the dynamics

of the new injections until we have one which is too simple, deriving a contradiction.

In order to do that, we need a few definitions in order to help us understand the

dynamics.

Definition If α ∈ V, x ∈ C then we use O(α, x) to denote {xαn|n ∈ Z}, the orbit of

x under α. For Θ ∈ V,X ⊆ C, we say Θ flees X if ∀x ∈ X , O(Θ, x) ∩X = {x}. We

say Θ moves rapidly through X , if ∀x ∈ X , |O(Θ, x) ∩X| <∞.

We are mostly interested in the latter two definitions in order to rule out the

existence of important points in certain regions.

Proposition 9. If Θ ∈ V has no nontrivial finite orbits and moves rapidly through

a conventional open set X, then I(Θ) ∩X = ∅.
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Proof. We show the contrapositive. Suppose that Θ ∈ V , X is a conventional open

set, and a ∈ I(Θ) ∩X . We wish to show that Θ does not moves rapidly through X .

We will assume that a is an attracting fixed point, and that X is entirely contained

in A, the attracting basin for Θ containing a. If a is a repelling fixed point, the same

proof will work looking at the negative orbit, and if X is not entirely in the attracting

(or repelling) basin, consider the intersection of X and the basin instead.

Fix b ∈ X \ a and set bn = bΘn for all integers n. As b 6= a and is in A, bn ∈ A

for all n ≥ 0 by Lemma 6 and Corollary 7. Further, whenever m 6= n, bm 6= bn

since there are no nontrivial finite orbits and a is the unique fixed point in X . So,

|O(Θ, b) ∩X| = ∞.

We will often times raise certain elements to powers. In general, this may introduce

a new important point. The following proposition shows this cannot occur under

controlled circumstances.

Proposition 10. If Θ ∈ V flees a conventional open set X, and n ∈ Z, then Θn also

flees X. Similarly, if Θ moves rapidly through X, then so does Θn.

Proof. It suffices to note that for all x ∈ X , {x} ⊆ O(Θn, x) ⊆ O(Θ, x).

Thus, 1 ≤ |O(Θn, x) ∩X| ≤ |O(Θ, x) ∩X|.

3.1 Some Relevant Facts

Say that α and β have a common root if there is a γ and integers n,m such that

γm = α and γn = β. Here, γ is such a root. Brin and Squier showed in [11] that

in F commuting one bump elements, i.e. elements with one component of support,
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either have disjoint support or have a common root. Not surprisingly, the situation

is more complicated in V as seen in part (iii) of the following Lemma. This Lemma

was first proved by Bleak and Salazar-Dı̀az in [8] (as part of Lemma 2.5 and Lemma

2.6 in that paper) following the same underlying idea that Brin used. The proof is

given since the techniques will be useful later on, and the author has streamline the

proof of part (ii).

Lemma 11. (Bleak, Salazar-Dı̀az, 09) Suppose g, h ∈ V , each with no non-trivial

periodic orbits. Suppose further, for (i) and (ii), that g and h commute. Then:

i. I(g) ∩ I(h) = I(g) ∩ Supp (h) = I(h) ∩ Supp (g);

ii. If X and Y are components of support of g and h respectively, then X = Y or

X ∩ Y = ∅;

iii. Suppose g and h have a common component of support X, and on X the actions

of g and h commute. Then, there are non-trivial powers m and n such that

gm = hn over X.

Proof. For the first claim, since Supp (h) = Supp (h)∪I(g), it is enough to show that

if x ∈ I(g) ∩ Supp (h) then x ∈ I(h). If x /∈ I(h) then, for n ∈ N, define xn = xhn.

Then

xng
hn = (xhn)h−nghn = xghn = xhn = xn.

So, xn ∈ I(gh
n

). As g and h commute, gh
n

= g. Thus, every element in the orbit of x

under h is an important point of g. This would imply that g has an infinite number

of important points. As the number of important points of an element of V is always

finite, we conclude x ∈ I(h).

For the second, if X ∩ Y = ∅ then the result is proved. So, we consider the case

that X ∩ Y is not empty. As X and Y are each a finite union of basic open sets,
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X ∩ Y is also a finite union of basic open sets. Thus, we can choose an x ∈ X ∩ Y

that is not an important point of f or g.

Suppose there was a m ∈ N for which xhm /∈ X . Let i = lim xgn, so i ∈ I(g).

There are two cases to consider.

If i ∈ Supp (h) then i ∈ I(h) as well by part (i). For sufficiently large s, xs := xhs

is close enough to i that xsh
m is still in the basin of attraction (with regard to g)

containing i. Then, xhmgs /∈ X , but xgshm ∈ X .

Otherwise, i ∈ Supp (h). So, there is a sufficiently large integer n such that

xgn /∈ Supp (h). Then xgnhm = xgn ∈ X \ Y and xhmgn = xhm ∈ Y \X .

In both case we have a contradiction as g and h commute. Thus xhm ∈ X for all

m.

For the third claim, fix a particular revealing pair Pg = (Dg, Rg, σg) for g along

with a particular p ∈ I(g) ∩ I(h) ∩ X . As g and h both act as affine maps - each

with slopes a power of 2 - close to p, there is neighborhood Np and nonzero integers

n,m such that gm = hn on Np. For each q ∈ I(g) ∩ X for which gmh−n is trivial

on a neighborhood of q, let Nq be such a neighborhood. Note that Np is one such

neighborhood. Let N be the union of all the Nq defined above.

If N is not a neighborhood of I(g) ∩X , then the connectivity of the component

X of the flow graph of g implies there are r, a ∈ I(g) ∩ X with r a repeller and a

an attractor. Further, exactly one of a and r is in N and the source-sink chain from

the repelling basin Br containing r to the attracting basin Ba containing a. In the

case that r is not in N , there is a y ∈ Br ∩ Supp (gmh−n) and a positive integer

k such that xgk ∈ N ∩ Ba. In the alternate case that a is not in N , there is a

y ∈ Ba ∩ Supp (gmh−n) and a negative integer k such that xgk ∈ N ∩ Br. In either

case, Lemma 5 shows that (gmh−n)g
k

has support where gmh−n acts as the identity.

But (gmh−n)g
k

= gmh−n as g and h commute. Hence N is a neighborhood of I(g)∩X .
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If x ∈ Supp (gmh−n) ∩ X , then there is a sufficiently large k ∈ N such that xgk

is close enough to an attractor of g that x ∈ N . Again, this is a contradiction as

(gmh−n)g
k

would have support in N . Thus, gmh−n acts as the identity on X , hence

gm = hm when restricted to X .

There is a collection of facts shown in [8] that we will use. The relevant part of

that paper was focused on the non-embedding of Z∗Z2 into V . A construction called

an (a, b, c)-commutator was used to great effect. The proofs of the facts in sections

4.2.2 and 4.2.3 of [8] go through to our setting with one change. We will now define

an (a, b, c)-commutator and then prove one lemma of our own. With that done, we

will then state and prove the results of [8] that we need.

Let Y be a non-empty set, closed under inverses and let a, b, c, w ∈ Y ∗. We

say that w is an (a, b, c)-commutator if there are integers n > 0, xi, yi,and zi with

|xi|+ |yi| 6= 0 and zi 6= 0 for all 0 ≤ i ≤ n such that in Y ∗

w = [ax1by1 , [ax2by2 , . . . [axn−1byn−1 , [axnbyn , czn]zn−1 ]zn−2 . . . ]z1 ].

We have one immediate fact.

Proposition 12. (Bleak, Salazar-Dı̀az, 09) Let a, b, c ∈ Y ∗ for some nonempty set

Y closed under inverses and suppose t is an (a, b, c)-commutator. If 0 6= k ∈ Z and

w is an (a, b, tk)-commutator, then w is also an (a, b, c)-commutator.

The one result we need in order to adopt the facts in [8] mirrors the result that if

Z
2 ∗ Z = 〈a, b, c|[a, b]〉, t is an (a, b, c)-commutator, and k is a nonzero integer, then

〈a, b, tk〉 factors as 〈a, b〉 ∗ 〈tk〉. We will make use of the following.

Lemma 13. Let A ≀ T = B ⋊ T , with T torsion free. If a ∈ T and b ∈ B are both

non-trivial then [a, b] is a non-trivial element of the base.
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Proof. Say a = (eB, r) and b = ( (ft)t∈T , eT ) where eB and eT are the identity elements

in B and T respectively. Then we compute

[a, b] = a−1b−1ab

= (e, r−1)( (f−1
t )t∈T , e)(e, r)( (ft)t∈T , e)

= ((f−1
tr−1)t∈T , r

−1)(e, r)( (ft)t∈T , e)

= ((f−1
tr−1)t∈T , e) · ( (ft)t∈T , e)

= ((f−1
tr−1 · ft)t∈T , e)

Thus, [a, b] is in the base. It remains to show that it is non-trivial. As B is a direct

sum, there are only a finite number of non-identity entries in b, say the ones indexed

by tα1
, . . . , tαN

∈ T If for some ℓ, tαℓ
r−1 6= tαk

for any k, we are done as the entry

indexed by tℓ in [a, b] is f−1
ℓ·r−1 · fℓ = fℓ 6= eA.

Otherwise, assume we have indexed in such a way that tα1
r−1 = tα2

. Note that

tα2
r−1 = tα1

r−2. Then, for some 1 < ℓ ≤ N , tα1
r−ℓ = tα1

. Thus, r−ℓ = eT . This

contradicts T being torsion free.

In particular, if a and b generate the top group Z
2 and c is a non-trivial element of

the base then the previous lemma tells us that any (a, b, c)-commutator is a non-trivial

element of the base.

With that, we can now quote the results we need from sections 4.2.2 and 4.2.3 [8].

The proofs are given here for completeness and closely follow the original.

Lemma 14. (Bleak, Salazar-Dı̀az, 2009) Let µ, ν, ρ ∈ V . Further, suppose for parts

(2) and (3) that Z ≀ Z2 < V .

1. If y is an important point of µ or ν, and ρ acts as the identity in some neighbor-
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hood Uy of y, then any (µ, ν, ρ)-commutator τ will act as the identity in some

neighborhood Vy of y.

2. Suppose ρ is a non-trivial element of the base, and µ, ν generate the top group

Z
2. If I(ρ)∩ (I(µ)∪ I(ν)) 6= ∅, then there is a non-trivial element of the base τ

such that, such that I(τ) ∩ (I(µ) ∪ I(ν)) = ∅. In particular, 〈µ, ν, τ〉 ∼= Z ≀ Z2.

3. Suppose ρ is a non-trivial element of the base, and µ, ν generate the top group

Z
2. If Supp (ρ) ∩ (I(µ) ∪ I(ν)) 6= ∅, then there is a non-trivial element of the

base τ such that Supp (τ) ∩ (I(µ) ∪ I(ν)) = ∅. In particular, 〈µ, ν, τ〉 ∼= Z ≀ Z2.

Proof. (1) Let y and Uy be as in the hypothesis. Suppose that p and q are integers

with not both equal to zero, and z a non-zero integer. Set τ = [µpνq, ρz]. We will

show that τ acts as the identitiy on a neighborhood Ny of y. The full claim follows

from a straightforward induction.

Note that τ = (ρ−1)µ
pνq · ρ, thus the support of τ is contained in Supp (ρ) ∪

(Supp (ρ))µpνq. Let My be a neighborhood of y disjoint from the action of ρ, say the

intersection of Uy and the complement of the support of ρ, and set m to be the node

in T whose cone set isMy. Find a node n under m such that µpνq acts affinely on the

cone set Bn and Bnµ
−pν−q ⊂ My. As the support of ρ lies outside of My, the action

of ρ on C cannot throw the support of ρ into Bn. Thus, τ acts as the identity on Bn.

(2) Suppose there is an x ∈ I(ρ) ∩ (I(µ) ∪ I(ν)). Either x ∈ I(µν), or µν acts

as the identity in a neighborhood of x. (The second case occurs when µ and ν are

local inverses.) In either case, τ ′ := [µν, ρ] acts trivially in a neighborhood of x as τ ′

resolves as ρ−1ρ near x. Set τ = (τ ′)j where j is the minimal positive integer such

that τ has no non-trivial finite orbits. Then 〈µ, ν, τ〉 ∼= Z ≀ Z2 follows directly from

Lemma 13.
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If I(τ) ∩ (I(µ) ∪ I(ν)) 6= ∅, repeat this process with τ taking the place of ρ in

the previous paragraph. This process will terminate in a finite number of steps as

the number of important points of µ and ν is finite, and (1) shows that each new

iteration of τ will act as the identity in a neighborhood of each previously cleaned up

important point.

(3) We may assume by (2) that I(ρ) ∩ (I(µ) ∪ I(ν)) = ∅. If Supp (ρ) contains

none of the fixed points of µ and ν, there is nothing to be done. Otherwise, there is a

x ∈ Supp (ρ) ∩ (I(µ) ∪ I(ν)). Lemma 11 shows that x is not in the support of either

µ or ν. We consider two cases based on how µ acts near y = xρ−1.

In the first, we assume y is disjoint from the support of µ. Define τ ′ = [µ, ρ].

Observe

xτ ′ = xµ−1ρ−1µρ = xρ−1µρ = yµρ = yρ = x.

Thus, x is fixed by τ ′. In fact, the action of τ ′ fixes a small neighborhood of x by the

fundamental theorem of calculus.

In the other case, y is in the support of µ. If y is also in the support of ν, then

by Lemma 11, there are integers p and q such that µpνq is trivial on their common

component of support containing y. If y is not in the support of ν, let p = 0 and

q = 1. Either way, τ ′ = [µpνq, ρ] fixes a neighborhood around x.

Now, regardless of how µ interacts with y, we have an (µ, ν, ρ)-commutator τ ′.

Set τ = (τ ′)j where j is the minimal positive integer such that τ has no non-trivial

finite orbits. Again, Lemma 13 directly implies that 〈µ, ν, τ〉 ∼= Z ≀ Z2.

Thus, if Supp (ρ) ∩ (I(µ) ∪ I(ν)) 6= ∅, the cardinality of Supp (τ) ∩ (I(µ) ∪ I(ν))

is at least one smaller than |Supp (ρ) ∩ (I(µ) ∪ I(ν))| as y has been removed and no

new points have been added by (1). Applying the process described above may result

with I(τ) ∩ (I(µ) ∪ I(ν)) 6= ∅. However, again by (1), we will only have to apply (2)
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a finite number of times to eliminate common fixed points. We can then apply the

process above to again reduce the size of |Supp (θ) ∩ (I(µ) ∪ I(ν))|, where θ is the

current generator of the base being considered. Thus, we find a τ as in the claim after

a finite number of applications of the process in this part of the proof and of (2).

3.2 Proof of Theorem

We now fix some notation that will be used throughout the remainder of this section.

Consider Z ≀ Z2, with the top group generated by σ and τ , and the bottom group

generated by ζ . Suppose that φ′ : Z ≀Z2 → V is a group homomorphism. Set s0 = σφ′

and t0 = τφ′. By Lemma 8, there is an integer ℓ such that sℓ0 and tℓ0 have no non-

trivial periodic orbits. Define s = (σφ′)ℓ and t = (τφ′)ℓ. Set φ : Z ≀ Z2 → V by

ζφ = ζφ′, σφ = s, and τφ = t. Note φ is also a homomorphism of Z ≀ Z2 into V .

Further, if φ′ is injective, so is φ.

Let T = 〈t, s〉 < V be the image under φ of the top group. Note that T ∼= Z
2 if φ

is injective. From the discussion on flow graphs, T has a finite number of components

of support, say X1, . . .Xk. Each component Xi is either a component of support of

t or has empty intersection with the support of t. The same is true for s. Applying

Lemma 11.3, for i = 1, . . . , k, there are nontrivial words u′i = trisqi such that u′i acts

trivially on Xi. (If Xi is a component of support of t but not s, then one possibility

is u′i = s.) Let ui be the least positive power of u
′
i such that ui contains no nontrivial

finite orbits. Since u′i acts trivially on Xi, it is immediate that ui acts trivially on Xi

as well.

Choose a non-trivial element γ of the base group. Apply Lemma 14.3 followed by

Lemma 8 to γ to obtain a non-trivial (s, t, γ)-commutator γ0 ∈ V with no non-trivial
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finite orbits such that Supp (γ0) ∩ (I(s) ∪ I(t)) = ∅. Lemma 13 informs us that γ0 is

still in the base.

We will now build a series of non-trivial elements of the base group. After-

wards, we will investigate the properties of these new elements, eventually reach-

ing a contradiction. The sequence will be constructed by removing the important

points of γ0 from the support of T one component of support at a time, start-

ing with X1. Recall that 1 6= u1 ∈ T acts as the identity on X1. As I(u1) ⊂

I(s) ∪ I(t), we have I(u1) ∩ Supp (γ0) = ∅. Thus, there is a power p1 such that

Supp (u1) ∩ Supp (γ0) ∩ Supp (γ0)u
p1
1 = ∅. Set w1 = up11 . Note that if x ∈ C is in the

support of both γ0 and u1, then w1 moves x off the support of γ0.

Define γ′1 = [γ0, w1] and γ1 = (γ′1)
K1, where K1 is the smallest positive integer

such that γ1 has no non-trivial finite orbits.

This process will be repeated. Once γi−1 is defined, consider ui. It is trivial over

Xi and I(ui) ∩ Supp (γi−1) = ∅. Thus, there is a power pi such that

Supp (ui) ∩ Supp (γi−1) ∩ Supp (γi−1)u
pi
i = ∅.

Set wi = upii . Define γ′i = [γi−1, wi] and γi = (γ′i)
Ki, where Ki is the smallest positive

integer such that γi has no non-trivial finite orbits.

There are various scenarios when a point of C is in the support of γ′i. We will

group the possibilities into three important classes.

Definition If x ∈ Supp γ′i we say x is i-Type 1 if x ∈ Supp (wi)∩Supp (γi−1), i-Type

2 if x ∈ Supp (wi) \ Supp (γi−1) i-Type 3 if x /∈ Supp (wi).

When it is clear, we will talk about elements of Type 1 instead of i-Type 1 and

similarly for the other types. Knowing which class an element of the support of γ′i is
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in, along with knowing how γi−1 and its inverse act on that element, will tell us what

class γ′i sends that element to along with a description of the new element.

Lemma 15. Suppose x0 ∈ Supp γ′i and, for n ∈ Z define xn = x0 (γ
′
i)
n. Then for

fixed m ∈ Z,

1. if xm is of Type 1 and xmγ
−1
i−1 ∈ Supp (wi), then xm+1 = xmγ

−1
i−1 and is of Type

1;

2. if xm is of Type 1 and xmγ
−1
i−1 /∈ Supp (wi), then xm+1 = xmwi and is of Type

2;

3. if xm is of Type 2 and xmw
−1
i γi−1 ∈ Supp (wi), then xm+1 = xmw

−1
i γi−1wi and

is of Type 2;

4. if xm is of Type 2 and xmw
−1
i γi−1 /∈ Supp (wi), then xm+1 = xmw

−1
i γi−1wi =

xmw
−1
i γi−1 and is of Type 3;

5. if xm is of Type 3, then xm+1 = xmγ
−1
i−1 and is of Type 1;

6. if xm is of Type 2, then xmw
−1
i ∈ Supp (γi−1).

Additionally, this list is a complete list of possibilities.

Proof. The proofs for all five parts are similar and involve tracking the elements.

Since γ′i = γ−1
i−1w

−1
i γi−1wi, we will ease the tracking by defining a = xmγ

−1
i−1, b =

aw−1
i , and c = bγi−1. We note that xm+1 = cwi.

For part 1, the assumption is that a ∈ Supp (wi) and, as xm ∈ Supp (γi−1), so is

a. Hence, b /∈ Supp (γi−1) and so c = b. So, xm+1 = a.

For part 2, a /∈ Supp (wi), so b = a and thus c = xm. So, xm+1 = xmwi.
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For part 6, assume xm is of Type 2. If xmw
−1
i /∈ Supp (γi−1) then we have b = c,

and thus a = d. Since xm = a always in Type 2, this would imply that xm = xm+1,

contradicting xm ∈ Supp (γ′i).

For part 3 and 4, xm = a. As stated above, b ∈ Supp (γi−1), so c 6= b. Thus,

xm+1 = xmw
−1
i γi−1wi. In part 4, the last wi acts trivially, while it doesn’t in part 3.

For part 5, we first consider the case where a /∈ Supp (wi). Then b = a and

c = xm. Thus xm+1 = xm as xm is fixed by wi. However, xm is in the support of γ′i.

Thus, we know that a ∈ Supp (wi) ∩ Supp (γi−1). Thus, b is not in the support of

γi−1, hence c = b and xm+1 = a.

Figure 3.1: A picture of the
proof of parts 1 and 2 of
Lemma 15. The ovals are
components of support of
wi, the squares are supports
of γi−1 inside the supports
of wi. In this example, both
x1 and x2 are of i-Type 1
and x3 is of i-Type 2.

Figure 3.2: A picture of the
proof of parts 3, 4 and 5 of
Lemma 15. In this example,
x3 and x4 are of i-Type 2,
while x5 is of i-Type 3 and
x6 is of i-Type 1.
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Figure 3.1 and Figure 3.2 illustrate the proof of Lemma 15. The preceding lemma

is quite powerful. For example, it enables us to show that our aim to construct each

of the elements γi to have no important points in the corresponding Xi is achieved.

Proposition 16. If x ∈ Xi, n ∈ N, and y = x(γ′i)
n ∈ Xi, then y = x.

Proof. Let xn = x(γ′i)
n. As x = x0 ∈ Xi, and wi acts trivially on Xi, x0 is of Type 3.

Hence, by Lemma 15, we have x1 = xγ−1
i−1 and is of Type 1. By that same Lemma, we

also know that there is an m such that xr = xγ−ri−1 and is of Type 1 for all 1 ≤ r ≤ m

but xm+1 is of Type 2. The other possibility is that xr is of Type 1 for all r > 0, but by

hypothesis the positive orbit eventually returns to the support of wi and hence must

pass through a Type 2 element on its way to a Type 3 element. Then, xm+1 = xmwi.

Applying Lemma 15.3 m − 1 more times finds x2m = x1wi. A single application of

Lemma 15.4 then show x2m+1 = x2mw
−1
i γi−1 = x1wiw

−1
i γi−1 = x1γi−1 = x0.

Thus, |O(x, γ′i)| < ∞. Also, xr ∈ Supp (wi) for 1 ≤ r ≤ m, and in particular is

not in Xi. Thus, O(x, γ′i) ∩Xi = {x}.

Proposition 17. For any i, γi flees Xi. In particular, I(γi) ∩Xi = ∅.

Proof. Suppose x ∈ Supp (γ′i)∩Xi. Proposition 16 shows that if x ∈ Xi and there is

a positive integer n such that x(γ′i)
n ∈ Xi, then the orbit of x under γ′i is periodic.

Hence, O(x, γi) = {x}.

It cannot be the case that there is no positive integer such that x(γ′i)
n ∈ Xi, but

there is a negative integer n such that y = x(γ′i)
n ∈ Xi, as considering y instead of x

with the above argument shows that y = x.

We are left to conclude that O(x, γ′i)∩Xi = {x}. Then O(x, γi)∩Xi = {x}. The

second sentence of the statement of the corollary now follows from Proposition 10.
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Recall that our strategy is to recursively build the γi’s. Thus, it is not sufficient

to simply ensure that there are no important points of γi in Xi. We also need to

ensure there are no important points of γi in Xj for all 1 ≤ j ≤ i. Informally, we

cleaned up these Xj’s previously be eliminating the important points, and we wish

to not mess than up again while cleaning Xi. The following Lemma shows that the

process described above does not add any important points into the previously fixed

components of support.

Lemma 18. If γi−1 moves rapidly though Xj for all j < i, then γi also moves rapidly

though Xj for all j < i. Additionally, for no x ∈ C does O(x, γi) have more than one

element of i-Type 3.

Proof. Fix a j < i and an x ∈ Xj ∩Supp γ′i. Recall that γ
′
i = γ−1

i−1γ
wi

i−1. If wi is trivial

over Xj then γ′i is as well and the result is immediate. Otherwise, the support of

(γ−1
i−1) is disjoint from the support of γwi

i−1 inside Xj and x is in the support of exactly

one of (γ−1
i−1) and γ

wi

i−1. We consider cases, observing that the above shows that x is

not of Type 3.

1. The element x, and every point in O(x, γ′i), is of i-Type 1.

Define xn := xγ−ni−1. Then, by Lemma 15.1, we see that xn = x(γ′i)
n for all n ∈ Z.

Thus, O(x, γi−1) = O(x, γ′i). As O(x, γi) ⊆ O(x, γ′i), we have |O(x, γi) ∩Xj | ≤

|O(x, γ′i) ∩Xj| = |O(x, γi−1) ∩Xj | <∞.

2. The element x, and every point in O(x, γ′i), is of i-Type 2.

Define xn := xw−1
i γni−1wi. Then, by Lemma 15.1, we see that xn = x(γ′i)

n for all

n ∈ Z. Let y denote the point xw−1
i and for all integers n let yn = yγ−ni−1. Then

we note that y satisfies the hypotheses of Case 1. Thus, O(y, γ′i) = O(y, γi−1).
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We also note that xn = ynwi, in particular xn and yn share a component of

support. Hence, |O(x, γ′i)∩Xj | = |O(y, γi−1)∩Xj | which is finite by assumption.

3. Every point in O(x, γ′i), is of i-Type 1 or of i-Type 2, with both types occurring.

Suppose at first that the element x is of Type 1. Informally, in this case,

iterations of x by γ′i follows the orbit of x under γi−1 in the reverse order

until the orbit of γi−1 moves into a component of support that is fixed by wi.

Instead of following into this component, future iterations nearly turn around

and retrace its steps, except the sequence is now shifted by the action of wi.

Formally, define xn := x(γ′i)
n. Let N be the index such that xN is of Type

1, but xN+1 is of Type 2. Lemma 15 guarantees both the existence and the

uniqueness of N . If we call y = XN and yp = yγpi−1, then we have for p ≤ N

that xp = yN−p. Continuing to use Lemma 15, we see that xN+1 = y0wi and,

in general for p > N , xp = yp−N−1wi. In particular, if a is a lesser integer than

b and a + b = 2N + 1, then xa and xb are related by xb = xawi and thus are

in the same component of support. Further, xa = ya−N ∈ O(x, γi−1). In Xj

there are at most two elements of the orbit of x under γ′i for each element of

O(x, γi−1)∩Xj . Thus, |O(x, γi)∩Xj | ≤ |O(x, γ′i)∩Xj | ≤ 2|O(x, γi−1)∩Xj| <∞.

If x is instead an element of Type 2, then the above can be easily modified, or

one can consider z = xw−1
i in the preceding paragraph.

4. There is an element in O(x, γ′i) that is of Type 3.

Let y be an element of O(x, γ′i) that is of Type 3 and define yn = y(γ′i)
n for in-

tegers n. Note y = y0. By definition, O(y, γ′i) = O(x, γ′i). By Lemma 15.5,

y1 = yγ−1
i−1 is of Type 1. This is equivalent to writing y1γi−1 = y0. By

Lemma 15.4, y−1 is of Type 2 and y0 = y−1w
−1
i γi−1. We now have two al-
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ternative ways of expressing y0, and setting them equal to each other obtains

y1γi−1 = y−1w
−1
i γi−1. Thus, y1 = y−1w

−1
i .

Now suppose, for N > 0, that yN is of Type 1, y−N is of Type 2, and yN =

y−Nw
−1
i . Again referring to Lemma 15, we see that y−(N+1) is either of Type

1 or of Type 2. If y−(N+1) is of Type 2, then y−(N+1)w
−1
i γi−1 ∈ Supp (wi). We

also can write

y−N = y−(N+1)w
−1
i γi−1wi

yNwi = y−(N+1)w
−1
i γi−1wi

yN = y−(N+1)w
−1
i γi−1

yNγ
−1
i−1 = y−(N+1)w

−1
i

yN+1 = y−(N+1)w
−1
i

In particular, if y−N is of Type 2 for allN > 0, then yN is of Type 1 for allN > 0.

Thus {y(γ′i)
n : n > 0} ⊂ O(y, γi−1) and {y(γ′i)

n : n < 0} ⊂ O(y, γi−1)w
−1
i .

Note that |O(y, γi−1)w
−1
i ∩Xj| = |O(y, γi−1) ∩Xj| = |O(x, γi−1) ∩Xj |. In this

subcase, O(x, γi) only has one element not in Supp (wi). As O(y, γ′i) = O(x, γ′i)

we have |O(x, γ′i) ∩Xj | ≤ 2|O(x, γi−1) ∩Xj |+ 1 <∞.

On the other hand, y−(N+1) might be of Type 1. Then, Lemma 15.2 informs us

that y−(N+1)wi = y−N . Thus y−(N+1) = y−Nw
−1
i = yN . Thus, |O(x, γ′i)| < ∞

and thus |O(x, γi)| = {x}.

We are now able to prove the main theorem.
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Theorem 19. Z ≀ Z2 does not inject into V .

Proof. Consider again the homomorphism φ′ of Z ≀Z2 into V . Assume, for the sake of

contradiction, that φ′ is injective, hence φ is as well. Now consider γ0, the non-trivial

element of the base group with Supp (γ0) disjoint from the important points of s and

t as discussed at the beginning of this section. By Proposition 17, we see that γ1 has

no important points in X1. Recursively, if γi has no important points in Xj for j ≤ i,

then - by another application of Proposition 17 - we see that γi+1 has no important

points in Xi+1 and Lemma 18 further implies that γi+1 has no important points in

Xj for j ≤ i.

In particular, γk has no important points in any of the components of support of

wk. By Lemma 18, if x ∈ C, then O(x, γk) has at most one point y not in Supp (wk).

Taking the cone set of any node above y that is not in the support of wk and applying

Proposition 9 shows that γk has no important points outside the components of

support of wk and hence I(γk) = ∅. This implies that γk is of finite order. As Z ≀ Z2

is torsion free, and γk is in the image of φ, we see that γk must be trivial.

However, each γ′i is the commutator of a non-trivial element of the base group and

a non-trivial element of the torsion free top group Z
2. Thus, by Lemma 13 each γ′i is

non-trivial and of infinite order, in particular γk is non-trivial. This is a contradiction.

We conclude there is no such injection φ′.
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Chapter 4

Generalizations of V

There are various ways to generalize Thompson’s group V . Two will be discussed

in this section. In both subsections, the class of groups will be defined and results

similar to the above will be discussed.

4.1 Higman-Thompson Groups

The Higman-Thompson groups Gn,r were first described in 1970 by Higman in [16].

These were an infinite family of finitely presented groups that are simple (when n is

even) or contain an index 2 simple group (when n is odd). Fix integers r ≥ 1 and

n ≥ 2. We will now describe the group Gn,r.

Define T = {τ1, . . . , τr} and Σ = {α1, . . . , αn} to be disjoint sets of cardinality r

and n, respectively. Set Ω = TΣω, i.e., the set of all infinite sequences of the form

w = τiαi1 , αi2, . . . with τi ∈ T and αij ∈ Σ for all j ≥ 1. The set of finite sequences

TΣ∗ is defined analogously. Note that TΣ∗ is precisely the set of prefixes for Ω.

We define a barrier as a finite subset B of TΣ∗ such that each w ∈ Ω has exactly

one element of B as a prefix. As an example, {τ1α1α1, τ1α1α2, τ1α2, τ2} is a barrier
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when n = r = 2 but neither {τ1α1, τ1α1α2, τ1α2, τ2} nor {τ1α1, τ1α2, τ2α1} is a barrier

in this case.

A prefix replacement is a triple f = (D,R, σ) where D and R are barriers and σ is

a bijection between D and R. The prefix replacement f defines a prefix replacement

permutation of Ω as follows: for w ∈ Ω, wf is the string w but with the unique prefix

p ∈ D of w replaced with the prefix pσ ∈ R. One should observe that different prefix

replacements can induce the same prefix replacement permutation.

Consider the set Gn,r of all prefix replacement permutations of Ω and the op-

eration of composition. That the composition of prefix replacement permutations

is a prefix replacement permutation is most easily seen by considering expansions.

The expansion of a barrier B is a new barrier B′ obtained as follows: let p ∈ B.

Then B′ contains all of B except p and including the n elements of the form pσj .

Building on this, the expansion of a prefix replacement f = (D,R, σ) is a new triple

f ′ = (D′, R′, σ′) where D′ is the expansion of D at p ∈ D, R′ is the expansion of R at

pσ. The new function σ′ acts the same as σ on all elements of B′ \ B and maps the

new elements by pαjσ
′ = pσαj . It is immediate that f and f ′ induce the same map

on Ω. Suppose f1, f2 ∈ Gn,r with fi induced by (Di, Ri, αi) for i = 1, 2. Then we can

repeatedly expand both triples such that fi is induced by (D′
i, R

′
i, α

′
i) for i = 1, 2 and

R′
1 = D′

2. Thus f1f2 is induced by (D′
1, R

′
2, σ

′
1σ

′
2).

It is immediate that Gn,r is a group. The identity element is realized by the triple

(I, I, 1) where I = T and 1 is the identity map. The inverse of an element induced

by f = (D,R, σ) is induced by (R,D, σ−1). Composition of functions is well known

to be associative.

The above description is not the most common one for Higman-Thompson groups,

however it is very similar to the approach used by Holt and Röver in [18] and based off

the idea by Thompson in [24] that we can think of these groups as prefix replacements.
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In the original description, these groups are automorphism groups of algebras. The

groups can also be defined almost exactly as in the description of V above, only with

D and R each being a forest of r trees rather than just one tree each, and each tree

in the forest being an n-ary tree rather than the binary tree. In any description, it is

immediate that G2,1 is isomorphic to V .

The following result is well known, and is first shown as part of the proof of

Theorem 7.3 in [16],

Lemma 20. (Higman, 74) Let r ≥ 1 and n ≥ 2 be integers. Then Gn,r embeds into

G2,1.

This leads to a natural extension of Theorem 19.

Corollary 21. Z ≀ Z2 does not inject into Gn,r for any pair of integers r ≥ 1 and

n ≥ 2.

Proof. Suppose there were integers r ≥ 1 and n ≥ 2 and an injective group homomor-

phism φ : Z ≀ Z2 → Gn,r. By Lemma 20, there is an injective group homomorphism

ψ : Gn,r → G2,1 = V . Thus φ ◦ ψ is an injective group homomorphism from Z ≀ Z2 to

V , contradicting Theorem 19.

4.2 Brin’s Groups nV

In this subsection, we discuss a different generalization of Thompson’s group V . The

groups nV , defined for positive integers n, also act on the Cantor set, although we

will think of them acting on n dimensional Cantor dust Cn endowed with the product

topology. In this sense, we think of nV as a higher dimensional version of V = 1V .
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Informally, we can interpret Theorem 19 to say that a rank two free abelian group

joined to Z with a wreath product does not embed into 1V . In the following, we will

carefully define the groups nV . We will then show two positive results in the same

flavor as Theorem 19, namely that a rank n free abelian group joined with Z by a

wreath product does embed into nV , as does a rank n free abelian group joined with

Z by a free product.

4.2.1 Description of nV

Recall that the cone set of b ∈ {0, 1}∗ is Bb = {x ∈ C|x = by for some y ∈ C}, the set

of all elements of C with b as a prefix, and all of the sets of this form defines a basis

for C. An element of V can be described by two collections, D and R, of cone sets of

C that each partition C and a bijection between the two collections. The map then

replaces the prefix of an element of the Cantor set represented in D by the associated

prefix in R.

We will use the following convention for the rest of this thesis: if we have a finite list

of strings b1, . . . , bn ∈ {0, 1}∗, then we will use B1, . . . , Bn to refer to their respective

cone sets. In C
n, a subset R is an n-rectangle if there are strings p1, . . . , pn ∈ {0, 1}∗

such that R = (P1, . . . , Pn).

Suppose D = (P1, . . . , Pn) and R = (Q1, . . . , Qn) are two n-rectangles. The n-

rectangle map τD,R : D → R maps z to z′ where the i-th coordinate of z is pizi and

the i-th coordinate of z′ is qizi. In other words, τD,R affinely maps the n-rectangle D

to the n-rectangle R by prefix replacement in each coo.

A pattern is a partition of Cn into a finite collection of n-rectangles. An element

f of nV is a homeomorphism of Cn that can be represented by a domain pattern D, a

range patternR, and a bijection β between the n-rectangles in D and the n-rectangles
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Figure 4.1: The element φ ∈ 2V , represented by 2-rectangles.

in R such that f restricted to Di ∈ D acts as τDi,Ri
. One should note that different

pairs of patterns can represent the same element of nV .

Figure 4.1 is a visual representation of the element φ ∈ 2V with the following

three 2-rectangles in each its domain and range pattern:

D1 = (0, ∅) R1 = (∅, 0)

D2 = (1, 0) R2 = (1, 1)

D3 = (1, 1) R3 = (0, 1)

The horizontal dimension in the figure corresponds to the first coordinate in the

algebraic description and the vertical dimension corresponds to the second coordinate.

The points on each axis are in binary with 0 drawn to the left and top and 1 on the

right and bottom. For example, note that (0110x, 0101y)φ = (110x, 00101y) and

(11001x, 10110y)φ = (01001x, 10110y).

4.2.2 Baker’s Map

One might try to show some sort of generalization of Theorem 19 for the groups nV

by following a similar strategy to the previous proof, however, there is an immediate
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Figure 4.2: The bakers map in 2V .

obstacle. The proof to Theorem 19 depended heavily on the dynamics of the action

of V on C. The dynamics were completely describable in 1V , but can be much more

challenging to understand in nV for n ≥ 2.

For example, Figure 4.2 shows a 2V version of the baker’s map. It is called this

because the action on C
2 should remind the reader of kneading dough. We will focus

this discussion on 2V . Hopefully it will be evident how to make functions as least as

complicated dynamically in higher dimensions.

The following elegant argument was given in [9], where it is attributed to Dennis

Pixton. Just for this section, think of a point in C× C as a doubly infinite sequence

in the following way. The first coordinate will be written from left to right, and the

second coordinate from right to left. Placing the two sequences next to each other,

separated by a “binary point”, allows us to view the the point as a function from Z to

{0, 1}. If we write xi for the image of i and place the binary point between x−1 and x0,

then the first coordinate of the point is represented by the sequence (xi)i≥0 and the

second coordinate is represented by the sequence (x−i)i>0. The differing conventions

of the sequences, with the first coordinate have an index starting at 0 and the second

at 1, is necessary to set up the next statement, which is Lemma 8.1 in [9].

Lemma 22. (Brin, 04) The baker’s map corresponds to shifting a doubly infinite

sequence from {0, 1} one position. Specifically, if b is the baker’s map, and x : Z →
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{0, 1} is a sequence representing an element of C× C, then (b(x))i = xi+1.

Proof. There are two cases to consider. In the first, x0 = 0. Thus, x is located in the

left half of the domain rectangle in Figure 4.2. Thus, b(x) has a zero removed in the

first location of the first coordinate, and 0 added in the first location of the second

coordinate. This is equivalent to moving the binary point to the left one place. The

second case, when x0 = 1, is similar.

This has a collection of consequences that we will be interested in, the first is

explicitly mentioned in [9].

Corollary 23. 1. There is no bound on the size of the finite orbits of the baker’s

map.

2. The set of points in C × C with finite orbits under the baker’s map is dense in

C× C.

3. The set of points in C×C with infinite orbits under the baker’s map is dense in

C× C.

Proof. For the first, note that any periodic function x : Z → C× C with period p lies

in a finite orbit of the baker’s map with period p by Lemma 22.

For the second, let S = (s1, s2) be any rectangle. It suffices to show that there is a

point of finite order in S. Consider the point given by the periodic function s whose

image is the repeated string s1s
−1
2 (where s−1

2 is the string s2 in reverse order) and for

which the binary point is between the last character of s1 and the last character of

s2 (hence the first of s−1
2 ). Then s ∈ S and has a finite orbit under the baker’s map.

For the last, again let S = (s1, s2) be any rectangle. It suffices to show that there

is a point of infinite order in S. Consider a non-periodic function t whose image has
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s1 on the right of the binary point and s2 in reverse on the left. Then t ∈ S and, as

t is non-periodic, the image of t under the baker’s map has infinite order.

Notice the difference between Lemma 8 and Corollary 23.1. It was this observation

that the baker’s map has non-trivial entropy while every element in V has trivial

entropy that encompassed the proof that V is not isomorphic to 2V . This also seems

to make difficult the task of properly defining the analogue to important points.

The remainder of this thesis will show the existence of some embeddings into nV .

4.2.3 Free Products, the Ping Pong Lemma, and an

Embedding Result

The free product of two groups is a well known algebraic construction. Given two

subgroups H1, H2 < H , a basic question is whether the group 〈H1, H2〉 generated

by H1 and H2 is the free product H1 ∗ H2. One set of sufficient conditions for this

decomposition to exist is given by the ping-pong lemma, a technique attributed to

Felix Klein in the late 1800’s. It is known that the hypotheses are not necessary;

there are free products that do not arise from a ping-pong. The following version is

Item 24 of Chapter 2 in [14].

Lemma 24. Let H be a group acting on a set X, and let H1, H2 be two subgroups of

H with H1 containing at least 3 elements and H2 containing at least 2. Suppose that

there exist two non-empty subsets X1 and X2 of X with X2 not included in X1 such

that

X2h1 ⊆ X1 for all h1 ∈ H1,

X1h2 ⊆ X2 for all h2 ∈ H2.
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Then, 〈H1, H2〉 is isomorphic to H1 ∗H2.

We can now prove our result about free products and nV .

Theorem 25. For all n ∈ N, Zn ∗ Z embeds into nV .

Proof. Fix n ∈ N. We will construct a subset A = {a1, . . . , an} of nV such that

each ak is of infinite order and ak commutes with aj if j 6= k. Further, we will

show that if ar11 . . . arnn = 1 then r1 = · · · = rn = 0. Thus 〈A〉 ∼= Z
n. We will then

construct an element b such that 〈b〉 ∼= Z. Lastly, we will apply Lemma 24 to conclude

〈A, b〉 ∼= Z
n ∗ Z.

For k ∈ {1, . . . , n}, define an element ak ∈ nV as follows. The set Cn is partitioned

into 4 n-rectangles for both the domain and the range partition. The bijection is given

by the subscripts and all non-trivial prefixes occur in the k-th coordinate. The domain

n-rectangles (denoted Di) and the range n-rectangles (denoted Ri) are:

D1 = (∅, . . . , ∅, 000, ∅, . . . , ∅) R1 = (∅, . . . , ∅, 00, ∅, . . . , ∅)

D2 = (∅, . . . , ∅, 001, ∅, . . . , ∅) R2 = (∅, . . . , ∅, 1, ∅, . . . , ∅)

D3 = (∅, . . . , ∅, 01, ∅, . . . , ∅) R3 = (∅, . . . , ∅, 011, ∅, . . . , ∅)

D4 = (∅, . . . , ∅, 1, ∅, . . . , ∅) R4 = (∅, . . . , ∅, 010, ∅, . . . , ∅).

The elements a1 and a2 in the 2V case are shown in Figure 4.3.

Consider a point x whose k-th coordinate begins with a 1. Then xak has all

coordinates the same as x except for the k-th one, which is now starts with 01. As ak

only changes values of the k-th coordinate, we will only refer to this coordinate for

the rest of this discusion. Each further application of ak changes the prefix 01 to the

prefix 011. In particular, xamk begins with a 0 for all m > 0. Considering negative

powers of ak, observe xa
−1
k changes the prefix from 1 to 001. Each further application
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changes the prefix 00 to 000. Thus, xamk begins with a 0 for all m 6= 0, and hence ak

has infinite order.

Note that if k 6= j, ak and aj commute since ak only changes the k-th coordinate,

aj only changes the j-th coordinate, and that each only considers the entry in its

relevant coordinate to decide how to act. Hence, the order of application of the

functions does not change the outcome. Further, if α = ar11 . . . arnn = 1, then in

particular α does not act on the i’th coordinate hence ri = 0. This is true for each of

the n coordinates. Thus, 〈A〉 ∼= Z
n.

We now define b ∈ nV . Again, the bijection will be given in the subscripts. In

both the domain and the range there will be 4(2n− 1) = 2n+2 − 4 n-rectangles in the

partition. There are 2n − 1 n-rectangles of the form (a1, . . . , an) where ai ∈ {0, 1}

and
∑
ai < n. Each one will be associated with three sub-n-rectangles sitting in the

n-rectangle in which every coordinate starts with a one, and these three will all have

the same first coordinate. These will be numbered in a similar way to the way the

ak’s were above, so all nonzero powers of b will take the larger n-rectangles to a thin

slice of (1, . . . , 1)

More precisely, consider u1, . . . , un where ui ∈ {0, 1}, with at least one ui not 1.

Consider m = u1u2 · · ·un, an integer between 0 and 2n − 2, written in binary. Then

(a) The element a1 (b) The element a2

Figure 4.3: The generators for the Z
2 subgroup in the proof of Theorem 25 when

n = 2.
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Figure 4.4: The element b from the proof of Theorem 25 in the case n = 2.

we define:

D4m+1 = (u1, . . . , un) R4m+1 = (1m+10, 110, 1 . . . , 1)

D4m+2 = (1m+10, 100, 1 . . . , 1) R4m+2 = (1m+10, 10, 1 . . . , 1)

D4m+3 = (1m+10, 101, 1 . . . , 1) R4m+3 = (u1, . . . , un)

D4m+4 = (1m+10, 11, 1 . . . , 1) R4m+4 = (1m+10, 111, 1 . . . , 1).

We left the case when m = 2n − 1 separate only because of notational considera-

tions; the idea is the same. In this case, we have

D4m+1 = (u1, . . . , un) R4m+1 = (1m+2, 110, 1 . . . , 1)

D4m+2 = (1m+2, 100, 1 . . . , 1) R4m+2 = (1m+2, 10, 1 . . . , 1)

D4m+3 = (1m+2, 101, 1 . . . , 1) R4m+3 = (u1, . . . , un)

D4m+4 = (1m+2, 11, 1 . . . , 1) R4m+4 = (1m+2, 111, 1 . . . , 1).

It is routine to verify that the set of all Di’s partition cube, and the same for the set

of all Ri’s. Figure 4.4 shows the element b in the 2V case.

Let B = 〈b〉 ∼= Z. We now show that 〈A,B〉 = 〈A〉 ∗ 〈B〉 which would finish
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the proof. By definition, nV acts on C
n. Set X to be the n-rectangle of elements

whose first letter is 1 in all coordinates. Set Y to be the union of all n-rectangles

with exactly one digit in each coordinate and with at least one coordinate consisting

of a 0. (Note this is the complement of X .) Let 1A 6= w ∈ 〈A〉. As mentioned above,

the generators of A commute, so we can assume w = aplkl . . . a
p1
k1

where ki < ki+1 and

pi 6= 0. Let U ′ = (u′1, . . . , u
′
n) be the n-rectangle defined by u′j = 0 if j = ki for some

i and 1 otherwise. Thus, Xw ⊂ U ′ ⊂ Y .

It remains to show Y bn ⊂ X for n 6= 0. Note that Y is the union of the 2n − 1

n-rectangles that have a 0 as a prefix in some coordinate. By construction, each of

these n-rectangles is mapped into X by any nonzero power. Thus, all of Y is as well.

4.2.4 Wreath Products, Pre-wreath Structures, and an

Embedding Result

The wreath product was discussed in Section 2. There is an analogous idea to the

Ping-Pong Lemma to sometimes detect if a group is a (standard restricted) wreath

product defined by Brin in [10]. We will explain this technology, and then use it to

show that for all n ∈ N, the group Z
n ≀ Zn embeds into nV .

Recall that if Z is a set and G is a subgroup of Sym(Z), the group of all bijections

from Z to itself, then we call (G,Z) a permutation group. A pre-wreath stucture is a

quadruple (Z, Y,H,X) where H is a non-trivial group, X, Y, and Z are sets, and the

following five conditions are satisfied:

(1) H ≤ Sym(Z);

(2) Supp (H) ⊆ Y ⊆ Z;
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(3) ∅ 6= X ⊆ Y ;

(4) For all h ∈ H , we have that Xh ∩X 6= ∅ implies h|X = 1|X;

(5) For all 1 6= h ∈ H , there is a j ∈ H so that Xjh 6= Xj.

We call the collection of sets XH = {Xh|h ∈ H} the carrier of the structure

(Z, Y,H,X). For our purpose, the most important aspect of this idea is the result

labeled Proposition 2.5 in [10] repeated here.

Lemma 26. (Brin, 05) Let (Z, Y,H,X) and (Z,X,G,W ) be pre-wreath structures.

Then

1. (Z, Y, 〈G,H〉,W ) is a pre-wreath structure;

2. The carrier of (Z, Y, 〈G,H〉,W ) is WGH = {Wgh|g ∈ G, h ∈ H};

3. The permutation group (〈G,H〉,WGH) is isomorphic to the permutation group

(G ≀H, (WG)× (XH)).

The proof of this is not difficult, but is technical and is too long to be included

here. We use this lemma as the main tool in the proof of the following theorem.

Theorem 27. For all n ∈ N, Zn ≀ Zn embeds into nV .

Proof. Fix a positive integer n. We will identify 2n elements of nV that will generate

a group isomorphic to Z
n ≀ Zn.

We start with the generators of the bottom group. For an integer 1 ≤ k ≤ n,

the range and domain patterns for hk ∈ nV have four rectangles, with all non-trivial
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prefixes occurring in the k-th coordinate. Specifically, we have

D1 = (∅, . . . , ∅, 000, ∅, . . .∅) R1 = (∅, . . . , ∅, 00, ∅, . . .∅)

D2 = (∅, . . . , ∅, 001, ∅, . . .∅) R2 = (∅, . . . , ∅, 1, ∅, . . . ∅)

D3 = (∅, . . . , ∅, 01, ∅, . . .∅) R3 = (∅, . . . , ∅, 011, ∅, . . .∅)

D4 = (∅, . . . , ∅, 1, ∅, . . .∅) R4 = (∅, . . . , ∅, 010, ∅, . . .∅).

As no coordinate besides the k-th determines how hk will act, and it acts by only

changing the k-th coordinate, hk will commute with hℓ whenever k 6= ℓ. Let X ⊂ C
n

contain exactly those points with a prefix of 1 in every coordinate. Take any x ∈ X .

Then the k-th coordinate of xhk will have 010 as a prefix. Any further application

of hk to this point will replace the prefix 01 with 011. Hence, for any m > 0, the

k-th coordinate of xhmk will begin with a 0. In particular xhmk 6= x. Hence, hk has

infinite order. Further, if α = ar11 . . . a
rn
n = 1 then r1 = · · · = rn = 0 as each generator

changes a different coordinate and no coordinate is changed as α is trivial. Thus,

H = 〈h1, . . . , hn〉 ∼= Z
n.

Consider (Cn,Cn, H,X). We will show it is a pre-wreath structure. As H < nV ,

conditions (1) and (2) are satisfied. As X is a nonempty subset of Cn, condition (3)

(a) The element g1 (b) The element g2

Figure 4.5: The generators for the bottom group in the proof of Theorem 27 when
n = 2.
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Figure 4.6: The element h1
from the proof of Theo-
rem 27 in the case n = 2.
This is one of the generators
of the top group. Notice in
essence this is the element g1
shrunk into the lower right
quadrant.

is also satisfied. The discussion in the last paragraph shows that X is moved off itself

by any positive power of any of the generators of H . A similar exercise will show the

same for negative powers. As any h ∈ H can be written as h = hα1

1 · hαn
n and each

generator acts on a distinct coordinate, we see that any non-trivial h ∈ H will move

X completely off itself. Thus condition (4) is satisfied, and (5) is as well using the

identity for j in all cases.

We now look at the generators for the top group. We will simply take the isomor-

phic copy of everything above, placing a prefix 1 in front of everything. Specifically,

for an integer 1 ≤ k ≤ n, the range and domain patterns for gk ∈ nV have four

rectangles containing all the support of the function. All prefixes that are not 1 occur

in the k-th coordinate. We have

D1 = (∅, . . . , ∅, 1000, ∅, . . .∅) R1 = (∅, . . . , ∅, 100, ∅, . . .∅)

D2 = (∅, . . . , ∅, 1001, ∅, . . .∅) R2 = (∅, . . . , ∅, 11, ∅, . . .∅)

D3 = (∅, . . . , ∅, 101, ∅, . . .∅) R3 = (∅, . . . , ∅, 1011, ∅, . . .∅)

D4 = (∅, . . . , ∅, 11, ∅, . . .∅) R4 = (∅, . . . , ∅, 1010, ∅, . . .∅).

Let W ⊂ C
n contain exactly those points with a prefix of 11 in every coordinate.

The arguments that G = 〈g1, . . . , gn〉 ∼= Z
n and that (Cn, X,H,W ) is a pre-wreath

structure are virtually identical to the bottom group case.
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Thus, by Lemma 26, 〈G,H〉 is isomorphic to G ≀H ∼= Z
n ≀ Zn.

There is a connection between Theorem 27 and the notion of demonstrative groups

first discussed in [8]. We will show the connection while deriving a second proof of

Theorem 27. This proof will use Proposition 3.6 in [8], which was proved indepen-

dently and concurrently to the previous material in this section.

If H is a group that acts on a space Y , then we say G ≤ H is a demonstrative

group of H over Y if and only if there exists an open set U ⊂ Y such that for

any pair of distinct elements g1, g2 ∈ G, we have Ug1 6= Ug2. We say that H acts

with local representation if and only if H acts faithfully on U and for any nonempty

open set U ⊂ Y there is a subgroup HU < H where HU is isomorphic to H and

Supp (HU) ⊂ U .

Part 2 of the following proposition refers to the elements h1, . . . , hn defined in the

proof of Theorem 27 and the set X also defined there.

Proposition 28. For all n ∈ N, the following are true:

1. The group nV acts with local representation on C
n;

2. The group Z
n = 〈h1, . . . , hn〉 is a demonstrative group of nV over X.

Proof. For the first statement, let U be any nonempty open set in C
n. As C

n is a

finite product of copies of C, the set of all n-rectangles is a basis. Fix a n-rectangle

B = (B1, . . . , Bn) ⊂ U . Define nVU to be the subset of nV containing every element

whose support is entirely in B. We need to show nVU is isomorphic to nV . Let

Λ : nV → nVU as follows. Given φ ∈ nV , for each n-rectangle R = (R1, . . . , Rn) in

either the domain pattern or the range pattern for φ, φΛ will have the n-rectangle

(B1R1, . . . , BnR1) in the same pattern. Extra n-rectangles will be added to complete
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out the pattern of φΛ, causing it to act trivially outside R. It is straight forward to

see that Λ is a well defined group isomorphism.

The second statement was shown in the proof of Theorem 27.

We now recall the statement of Proposition 3.6 in [8].

Proposition 29. Suppose H acts on a space Y with local realization, and that G ≤

H is a demonstrative subgroup of H with demonstration set U , then the standard

restricted wreath product H ≀G embeds in H.

Thus we have the following as a consequence.

Corollary 30. For any n, nV ≀ Zn embeds into nV .

Proof. Proposition 28 informs us we can apply Proposition 29 with H = nV , Y = C
n,

and H = Z
n, obtaining the result.

Theorem 27 now follows immediately. The latter approach does prove a stronger

result. However, quoting [8] immediately after the proof of Proposition 3.6:

We note in passing that it not easy to find a non-trivial wreath product

as a demonstrative subgroup; it is difficult to find an open set which will

move entirely off itself under the action of all possible non-trivial elements

in the base group.

Thus, we feel that the first proof of Theorem 27 has some merit on its own.
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