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In past years mathematical models of natural occurrences were either entirely

continuous or discrete. These models worked well for continuous behavior such as

population growth and biological phenomena, and for discrete behavior such as ap-

plications of Newton’s method and discretization of partial differential equations.

However, these models are deficient when the behavior is sometimes continuous and

sometimes discrete. The existence of both continuous and discrete behavior created

the need for a different type of model. This is the concept behind dynamic equations

on time scales. For example, dynamic equations can model insect populations that are

continuous while in season, die out in, say, winter, while their eggs are incubating or

dormant, and then hatch in a new season, giving rise to a nonoverlapping population.

Throughout this work, we will be concerned with certain dynamic equations on

time scales. We start with a brief introduction to the time scale calculus and some

theory necessary for the new results. The main concern will then be the oscilla-

tory behavior of solutions to certain second order dynamic equations. In Chapter

3, an equation of particular interest is one containing both advanced and delayed

arguments. We will use the method of Riccati substitution to prove some oscillation

results of the solutions.

In Chapter 4 we again study the oscillatory behavior of a second dynamic equation.

However, in this chapter, the equation only has delayed arguments. In addition to

using Riccati substitution, we use the method of upper and lower solutions to develop

necessary and sufficient conditions for oscillatory solutions. In the final chapter we are



interested in the existence of nonoscillatory solutions of dynamic equations on time

scales. The common theme among these results is the use of the Riccati substitution

technique and the integration of dynamic inequalities.
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Chapter 1

Introduction

The theory of time scales is a new area of mathematics that unifies and extends
discrete and continuous analysis. The time scale calculus allows us to model situations
in which the behavior is both continuous and discrete. For example, it can model
insect populations that are continuous while in season, die out in, say, winter, while
their eggs are incubating or dormant, and then hatch in a new season, giving rise to
a non overlapping population.

In recent years there has been an increasing interest in studying the oscillation and
nonoscillation of solutions of dynamic equations on time scales. Already many results
concerning second order dynamic equations have been established [3, 7, 15]. In this
present work we aim to extend the results of [11] and [16] to dynamic equations on
time scales and to improve those of [26]. For oscillation of nonlinear delay dynamic
equations, Zhang and Shanliang [26] considered the equation

y∆∆(t) + q(t)f(y(t− τ)) = 0, t ∈ T (1.1)

where τ ∈ R and t − τ ∈ T, f : R → R is continuous and nondecreasing, and
uf(u) > 0 for u 6= 0. By using comparison theorems, they proved that the oscillation
of (1.1) is equivalent to that of the nonlinear dynamic equation

y∆∆(t) + q(t)f(yσ(t)) = 0, t ∈ T (1.2)

where σ(t) is the next point in the time scale, and established some sufficient condi-
tions for oscillation by applying the results established in [9] for (1.2) on unbounded
above time scales. In Chapter 3 we show that the oscillation of

(p(t)y∆(t))∆ + q(t)f(y(τ(t))) = 0,

where τ(t) is a delay given by a function, τ , of t, is equivalent to that of

(p(t)y∆(t))∆ + q(t)f(yσ(t)) = 0.
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on an isolated time scale T where supT =∞.
In extending the results of [11] to dynamic equations on time scales, we establish

oscillation criteria for the second order nonlinear dynamic equation

y∆∆ + f (t, yσ(t), y(τ(t))) = 0 (1.3)

with retarded argument in Chapter 4. In order to obtain the results for (1.3), we
improve and extend some results of [6] and [17].

In the final chapter, Chapter 5, we are interested in the asymptotic behavior of
solutions of dynamic equations on time scales. In [16], the author obtains necessary
and sufficient conditions for the existence of a bounded nonoscillatory solution of y′′+
f(t, y)g(y′) = 0 with a prescribed limit at ∞ and necessary and sufficient conditions
for a nonoscillatory solution whose derivative has a positive limit at ∞. We extend
some of these results to

y∆∆ + f(t, yσ)g(y∆) = 0.
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Chapter 2

Preliminaries

In this chapter we introduce some basic concepts concerning the calculus on time
scales. Most of these results will be stated without proof. The proofs can be found
in [2] and [5].

2.1 The Calculus on Time Scales

A time scale T is an arbitrary nonempty closed subset of the real numbers. Thus R, Z,
N, N0, i.e., the real numbers, the integers, the natural numbers, and the nonnegative
integers are examples of time scales.

Definition 2.1.1. Let T be a time scale. For t ∈ T, we define the forward jump
operator σ : T→ T by

σ(t) = inf {s ∈ T : s > t} ,

and the backward jump operator ρ : T→ T by

ρ(t) = sup {s ∈ T : s < t} .

In the case that {s ∈ T : s > t} is empty, we put inf ∅ = supT (i.e., σ(t) = t if T
has a maximum t). Similarly, if {s ∈ T : s < t} is empty, we put sup ∅ = inf T (i.e.,
ρ(t) = t if T has a minimum t).

If f : T→ R is a function, we define the function fσ : T→ R by

fσ(t) = f(σ(t)) for all t ∈ T.

Points are classified as follows: If σ(t) > t, we say t is right-scattered, while if
ρ(t) < t we say t is left-scattered. Also, if t < supT and σ(t) = t, then t is said to
be right-dense, and if t > inf T and ρ(t) = t, then t is called left-dense. Points that
are right-scattered and left-scattered at the same time are called isolated, and points
that are both right and left dense are called dense.
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Definition 2.1.2. The graininess function, µ : T→ [0,∞), is defined by

µ(t) := σ(t)− t.

The backward graininess function, ν : T→ [0,∞), is defined by

ν(t) := t− ρ(t).

Definition 2.1.3. We also need below the set Tκ which is derived from the time
scale T as follows: If the maximum, m, of T is left-scattered, then Tκ = T \ {m}.
Otherwise, Tκ = T.

Throughout this work we make the blanket assumption that a and b are points in
T. Often we assume a ≤ b. We then define the interval [a, b] in T by

[a, b] := {t ∈ T : a ≤ t ≤ b}.

2.2 Differentiation

Now we consider a function f : T → R and define the so-called delta derivative of
f at a point t ∈ Tκ. By convention we will define lim

s→t
f(s) = f(t) if t is an isolated

point.

Definition 2.2.1. Assume f : T → R is a function and let t ∈ Tκ. Then we define
f∆(t) to be the number (provided it exists) with the property that given any ε > 0,
there is a neighborhood U of t such that

|[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s| for all s ∈ U.

We call f∆(t) the delta (or Hilger) derivative of f at t. Moreover, we say that f is
delta differentiable (or in short: differentiable) on Tκ provided f∆ exists for all t ∈ Tκ.

Some useful relationships concerning the delta derivative are now given.

Theorem 2.2.2. Assume f, g : T → R are functions and let t ∈ Tκ. Then we have
the following:

(i) If f is differentiable at t, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is differentiable at t with

f∆(t) =
f(σ(t))− f(t)

µ(t)
.
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(iii) If t is right-dense, then f is differentiable at t iff the limit

lim
s→t

f(t)− f(s)

t− s

exists as a finite number. In this case,

f∆(t) = lim
s→t

f(t)− f(s)

t− s
.

(iv) If f is differentiable at t, then f(σ(t)) = f(t) + µ(t)f
∆

(t).

Looking at properties (ii) and (iii) in the above theorem gives us a more intuitive
understanding of the derivative that cannot be gained via the definition alone. If
t ∈ T is right dense, then the delta-derivative behaves much the same way as the
usual derivative. It can be viewed as the slope of the tangent line to the function at
t, although if t is both right-dense and left-scattered, the limit is a one-sided limit.
On the other hand, if t is right-scattered, then f∆(t) is the slope of the line segment
containing f(t) and f(σ(t)). In this instance, the behavior of the function to the left
of t is irrelevant beyond the requirement that f is continuous at t. Thus, the delta
derivative combines the discrete behavior of the forward difference operator and the
continuous behavior of the usual derivative.

We next provide the theorem that allows us to find the derivative of sums, prod-
ucts, and quotients of differentiable functions.

Theorem 2.2.3. Assume f, g are differentiable at Tκ. Then:

(i) The sum f + g : f : T→ R is differentiable at t with

(f + g)∆ (t) = f∆(t) + g∆(t).

(ii) For any constant α, αf : T→ R is differentiable at t with

(αf)∆ (t) = αf∆(t).

(iii) The product fg : T→ R is differentiable at t with

(fg)∆ (t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)).

(iv) If g(t)g(σ(t)) 6= 0, then
f

g
is differentiable at t and

(
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
.
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Finally, we present a chain rule which calculates (f ◦ g)∆, where

g : T→ R and f : R→ R.

This chain rule is due to Christian Pötzsche, who derived it first in 1998.

Theorem 2.2.4. Let f : R→ R be continuously differentiable and suppose g : T→ R
is delta differentiable. Then f ◦g : T→ R is delta differentiable on Tκ and the formula

(f ◦ g)∆ (t) =

{∫ 1

0

f ′(g(t) + hµ(t)g∆(t))dh

}
g∆(t)

holds t ∈ Tκ.

2.3 Integration

Of course, the calculus on time scales would not be complete without a concept of
integration to complement the derivative. In order to describe functions that are
“integrable,” we introduce the following concept.

Definition 2.3.1. A function f : T → R is called rd-continuous provided it is
continuous at right-dense points in T and its left-sided limits exist (finite) at all left-
dense points in T. The set of rd-continuous functions f : T → R will be denoted in
this dissertation by

Crd = Crd(T) = Crd(T,R).

The set of functions f : T → R that are differentiable and whose derivative is rd-
continuous is denoted by

C1
rd = C1

rd(T) = C1
rd(T,R).

Definition 2.3.2. A function F : T → R is called an antiderivative of f : T → R
provided

F∆(t) = f(t) ∀ t ∈ Tκ.

Then we define the Cauchy integral by∫ b

a

f(t)∆t = F (b)− F (a), ∀ a, b ∈ T.

Theorem 2.3.3. Every rd-continuous function has an antiderivative. In particular,
if t0 ∈ T, then F defined by

F (t) :=

∫ t

t0

f(τ)∆τ for t ∈ T
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is an antiderivative of f.

The following theorem provides useful properties of delta integrals.

Theorem 2.3.4. If a,b,c ∈ T, α ∈ R, and f,g ∈ Crd, then

(i)

∫ b

a

[f(t) + g(t)]∆t =

∫ b

a

f(t)∆t+

∫ b

a

g(t)∆t;

(ii)

∫ b

a

(αf)(t)∆t = α

∫ b

a

f(t)∆t;

(iii)

∫ b

a

f(t)∆t = −
∫ a

b

f(t)∆t;

(iv)

∫ b

a

f(t)∆t =

∫ c

a

f(t)∆t+

∫ b

c

f(t)∆t;

(v)

∫ b

a

fσ(t)g∆(t)∆t = (fg)(b)− (fg)(a)−
∫ b

a

f∆(t)g(t)∆t where f, g can be inter-

changed;

(vi) If |f(t)| ≤ g(t) on [a, b), then∣∣∣∣∫ b

a

f(t)∆t

∣∣∣∣ ≤ ∫ b

a

g(t)∆t;

(vii) if f(t) ≥ 0 for all a ≤ t < b, then

∫ b

a

f(t)∆t ≥ 0.

The following result provides useful properties of the delta integral.

Theorem 2.3.5. Let a, b ∈ T and f ∈ Crd.

(i) If T = R, then ∫ b

a

f(t)∆t =

∫ b

a

f(t)dt,

where the integral on the right is the usual Riemann integral from calculus.

(ii) If [a, b] consists of only isolated points, then

∫ b

a

f(t)∆t =


∑

t∈[a,b) µ(t)f(t) if a < b

0 if a = b

−
∑

t∈[b,a) µ(t)f(t) if a > b.
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Chapter 3

Oscillation Criteria for Functional
Dynamic Equations

3.1 Oscillation of Nonlinear Dynamic Equations

We shall consider the second order nonlinear functional dynamic equation

(p(t)y∆(t))∆ + q(t)f(y(τ(t))) = 0 (3.1)

and the second order nonlinear dynamic equation

(p(t)y∆(t))∆ + q(t)f(yσ(t)) = 0 (3.2)

on an isolated time scale T with supT = ∞. We assume p, q, τ, and f satisfy the
following Condition (E):

(i) p ∈ Crd(T, (0,∞)) satisfies

∫ ∞
t0

1

p(t)
∆t =∞, t ∈ T.

(ii) q ∈ Crd(T,R+).

(iii) τ ∈ Crd(T,T) satisfies

lim
t→∞

τ(t) =∞ and ∃ M > 0 such that |R(t)−R(τ(t))| < M ∀ t ∈ T

where R(t) =

∫ t

t0

1

p(s)
∆s.

(iv) f : R→ R is continuous, increasing, and

f(−u) = −f(u) for u ∈ R and uf(u) > 0 for u 6= 0.
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By a solution of (3.1) we mean a nontrivial real-valued function y satisfying (3.1)
for t ≥ t0 ≥ a ∈ T, where a > 0. A solution y of (3.1) is said to be oscillatory if it
is neither eventually positive nor eventually negative; otherwise, it is nonoscillatory.
Equation (3.1) is said to be oscillatory if all its solutions are oscillatory. Our attention
is restricted to those solutions of (py∆)∆ + q(t)f(y(t)) = 0 which exist on some half
line [ty,∞)T and satisfy sup {|y(t)| : t > t0} > 0 for any t0 ≥ ty.

Definition 3.1.1. A nonempty closed subset K on a Banach space X is called a cone
if it possess the following properties:

(i) if α ∈ R+ and x ∈ K, then αx ∈ K.

(ii) if x, y ∈ K, then x+ y ∈ K.

(iii) if x ∈ K \ {0}, then −x ∈ K.

Let X be a Banach space and K be a cone with nonempty interior. Then we
define a partial ordering ≤ on X by

x ≤ y if and only if y − x ∈ K.

Our main result, which follows, is an extension of Theorem 2.1 of [26].

Theorem 3.1.2. Assume (E) holds and
µ(t)

p(t)
is bounded. We further assume

τ(t) ≤ σ(t) for all t or τ(t) ≥ σ(t) for all t. Then the oscillation of the second order
nonlinear dynamic equation

(p(t)y∆(t))∆ + q(t)f(yσ(t)) = 0 (3.2)

is equivalent to the oscillation of the second order nonlinear functional dynamic equa-
tion

(p(t)y∆(t))∆ + q(t)f(y(τ(t))) = 0. (3.1)

We will need the following fixed-point theorem [10].

Theorem 3.1.3. (Knaster’s Fixed-Point Theorem) Let X be a partially ordered Ba-
nach space with ordering ≤. Let Ω be a subset of X with the following properties: The
infimum of Ω belongs to Ω and every nonempty subset of Ω has a supremum which
belongs to Ω. If S : Ω→ Ω is an increasing mapping, then S has a fixed point in Ω.

In order to prove Theorem 3.1.2, we will need to begin with the following lemmas.

Lemma 3.1.4. Assume that (E) holds. A necessary and sufficient condition for
equation (3.2) to be oscillatory is that, the inequality

(p(t)y∆(t))∆ + q(t)f(yσ(t)) ≤ 0, (3.3)
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has no eventually positive solutions.

Proof. SUFFICIENCY. Assume (3.3) has no eventually positive solutions. Then
neither does (3.2), and so (p(t)y∆(t))∆ + q(t)f(yσ(t)) = 0 is oscillatory. If y is an
eventually negative solution of (3.2), then let x = −y. Then x is eventually positive
and

(px∆)∆ + qf(xσ) = −(py∆)∆ − qf(yσ) = −
[
(px∆)∆ + qf(xσ)

]
= 0

for t ≥ T sufficiently large by Condition (E) (iv). Thus x is an eventually positive
solution of (3.3), which is a contradiction. Hence, (p(t)y∆(t))∆ + q(t)f(yσ(t)) = 0 is
oscillatory.

NECESSITY. Suppose that (3.2) is oscillatory, and by way of contradiction, as-
sume that (3.3) has an eventually positive solution y, namely, there exists t0 ∈ T
(t0 ≥ a) such that y(t) > 0 for t ≥ t0. As σ(t) ≥ t for all t, σ(t) ≥ t0 for all
t ∈ [t0,∞)T. Then yσ(t) > 0 for t ≥ t0. Using this fact along with the sign condition
on f in (E), we have [p(t)y∆(t)]∆ ≤ 0 for t ≥ t0, and so p(t)y∆(t) is decreasing on
[t0,∞)T.

We claim that y∆(t) > 0 for all large t. If not, then for some t1 ∈ [t0,∞)T, we
have y∆(t1) ≤ 0. It follows that p(t)y∆(t) ≤ 0, t ∈ [t1,∞). Now, if y∆(t2) < 0 for
some t2 ≥ t1, then

y(t)− y(t2) =

∫ t

t2

y∆(s) ∆s

=

∫ t

t2

p(s)y∆(s)

p(s)
∆s

≤ p(t2)y∆(t2)

∫ t

t2

∆s

p(s)

→ −∞ as t→∞,

which is a contradiction to our assumption that y(t) > 0 for t ≥ t0. Hence it follows
that y∆(t) ≡ 0 on [t1,∞), and so (p(t)y∆(t))∆ ≡ 0 and q(t)f(yσ(t)) > 0, which is
contradictory. Consequently, there exists T ∈ T (T ≥ t0) such that

y(t) > 0, y∆(t) > 0, and (p(t)y∆(t))∆ ≤ 0

for all t ≥ T . Since p(t)y∆(t) is continuous, the integrals below are well-defined.
Integrating (p(t)y∆(t))∆ + q(t)f(yσ(t)) ≤ 0 from t to s yields

p(s)y∆(s)− p(t)y∆(t) +

∫ s

t

q(u)f(yσ(u)) ∆u ≤ 0, for s, t ∈ T and s ≥ t,

i.e.,

p(t)y∆(t) ≥ p(s)y∆(s) +

∫ s

t

q(u)f(yσ(u)) ∆u. (3.4)
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Since p(t)y∆(t) > 0 is decreasing for t ≥ T , lim
t→∞

p(t)y∆(t) = k ≥ 0 exists. Letting

s→∞ in (3.4) we obtain

y∆(t) ≥ k

p(t)
+

1

p(t)

∫ ∞
t

q(u)f(yσ(u)) ∆u ≥ 1

p(t)

∫ ∞
t

q(u)f(yσ(u)) ∆u. (3.5)

Since
∫∞
t
q(u)f(yσ(u)) ∆u exists and is continuous, integrating (3.5) from T to t yields

y(t) ≥ y(T ) +

∫ t

T

1

p(s)

∫ ∞
s

q(u)f(yσ(u)) ∆u∆s, t ≥ T. (3.6)

Define X to be the Banach space of all continuous functions on [a,∞)T satisfying
lim
t→∞

x(t) =∞, where ‖ · ‖ is defined by

‖x‖ := max
t∈[a,∞)T

|x(t)| for all x ∈ X.

Let

Ω :=
{
ω ∈ C([t0,∞)T,R+) : 0 ≤ ω(t) ≤ 1 and lim

t→∞
ω(t) =∞ for t ≥ t0

}
,

which is endowed with the usual pointwise ordering ≤: ω1 ≤ ω2 ⇔ ω1(t) ≤ ω2(t) for
t ≥ t0.

One can show that for any nonempty subset N of Ω supN ∈ Ω and inf Ω ∈ Ω.
Define a mapping S on Ω by

(Sω)(t) =

{
1, if t0 ≤ t ≤ T ,

1
y(t)

(
y(T ) +

∫ t
T

1
p(s)

∫∞
s
q(u)f(yσ(u)ωσ(u)) ∆u∆s

)
, if t ≥ T .

We claim that SΩ ⊂ Ω and S is monotone increasing. For any ω ∈ Ω, (Sω)(t) is
certainly continuous and for t ≥ T,

q(t)f(yσ(t)ωσ(t)) ≤ q(t)f(yσ(t))

since 0 ≤ ωσ(t) ≤ 1 and f is nondecreasing. Therefore, from (3.6), it follows that
0 ≤ (Sω)(t) ≤ 1 for t ≥ T , and so S(ω) ∈ Ω. Moreover, if ω1 ≤ ω2, ω1, ω2 ∈ Ω, then,
since f is nondecreasing, f(yσ(u)ω1(u)) ≤ f(yσ(u)ω2(u)) and so (Sω1)(t) ≤ (Sω2)(t).
Therefore, by Knaster’s Fixed Point Theorem, there exists ω̃ ∈ Ω such that Sω̃ = ω̃.
Hence,

ω̃(t) =
1

y(t)

(
y(T ) +

∫ t

T

1

p(u)

∫ ∞
u

q(v)f(yσ(v)ω̃σ(v)) ∆v∆u

)
, for t ≥ T.
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Observe that

ω̃(t) ≥ y(T )

y(t)
> 0 for t ≥ T.

Set z(t) := ω̃(t)y(t). Then z(t) > 0 is continuous and

z(t) = y(T ) +

∫ t

T

1

p(u)

∫ ∞
u

q(v)f(zσ(v)) ∆v∆u, for t ≥ T.

As z∆(t) =
1

p(t)

∫ ∞
t

q(u)f(zσ(u)) ∆u and (p(t)z∆(t))∆ = −q(t)f(zσ(t)),

(p(t)z∆(t))∆ +q(t)f(zσ(t)) = 0 has a positive solution, which is a contradiction to the
assumption that all solutions of (3.2) are oscillatory. This completes the proof.

Lemma 3.1.5. Assume that (E) holds. Then, every solution of the second order
nonlinear functional dynamic equation (p(t)y∆(t))∆ + q(t)f(y(τ(t))) = 0 oscillates if
and only if the inequality

(p(t)y∆(t))∆ + q(t)f(y(τ(t))) ≤ 0

has no eventually positive solutions.

The proof is similar to that of Lemma 3.1.4 and so we omit it.
We can now prove Theorem 3.1.2.

Proof of Theorem 3.1.2. Since
µ

p
is bounded, there exists N > 0 such that

µ(t)

p(t)
≤ N

for all t. Let K := M +N , where M > 0 is such that

|R(t)−R(τ(t))| < M ∀ t ∈ T where R(t) =

∫ t

t0

1

p(s)
∆s.

SUFFICIENCY. The oscillation of (3.2) implies that of (3.1). Suppose, to the con-
trary, that y is a nonoscillatory solution of (3.1). We will only consider the case where
there exists t0 ∈ T such that y(t) > 0 for t ≥ t0, since the other case is similar.

From equation (3.1) and Condition (E), there exists t1 ∈ T (t1 ≥ t0) such that

y(t) > 0, (py∆)(t) > 0, (py∆)∆(t) ≤ 0, y(τ(t)) > 0, t ≥ t1

as in the proof of Lemma 3.1.4. Hence, since p(t)y∆(t) > 0 is decreasing for t ≥ t1,
lim
t→∞

p(t)y∆(t) = L ≥ 0 exists. We will distinguish several cases.

(I) Assume σ(t) ≤ τ(t) for all t. It follows that y(τ(t)) ≥ yσ(t) > 0 as y is
increasing. Consequently,

(p(t)y∆(t))∆ + q(t)f(yσ(t)) ≤ (p(t)y∆(t))∆ + q(t)f(y(τ(t))) = 0,
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and so (3.3) has an eventually positive solution. By Lemma 3.1.4, equation
(3.2) has a nonoscillatory solution, which is a contradiction.

(II) Suppose next that τ(t) ≤ σ(t) for all t.

(a) Assume L > 0. Then there exists t2 ∈ T with t2 ≥ t1 such that p(t)y∆(t) ≤
L + 1, for all t ≥ t2. Since lim

t→∞
τ(t) = ∞, there is a t3 ≥ t2 such that

τ(t) ≥ t2 for t ≥ t3. Therefore, if t ≥ t3, we have

yσ(t)− y(τ(t)) =

∫ σ(t)

τ(t)

p(s)y∆(s)

p(s)
∆s

≤ (L+ 1)

∫ σ(t)

τ(t)

∆s

p(s)

= (L+ 1)[Rσ(t)−R(t) +R(t)−R(τ(t))]

≤ (L+ 1)

[∣∣∣∣∣
∫ σ(t)

t

∆s

p(s)

∣∣∣∣∣+ |R(t)−R(τ(t))|

]

≤ (L+ 1)

[
µ(t)

p(t)
+M

]
.

Consequently,
y(τ(t)) ≥ yσ(t)− (L+ 1)K, t ≥ t3.

Let z(t) = y(t)− (L+ 1)K. Note that for all t large enough,

p(t)y∆(t) ≥ L.

By integrating both sides from t0 to t we obtain

y(t)− y(t0) ≥ L

∫ t

t0

1

p(s)
∆s.

By letting t → ∞, we see that z(t) > 0 for large enough t. Hence, for all
sufficiently large t,

z(t) > 0, zσ(t) ≤ y(τ(t)), and (p(t)z∆(t))∆ + q(t)f(zσ(t)) ≤ 0.

Hence, (3.3) has an eventually positive solution. By Lemma 3.1.4, we
have that (p(t)y∆(t))∆ + q(t)f(yσ(t)) = 0 is nonoscillatory, which is a
contradiction.

(b) Assume L = 0. Since both y∆(t) and y(t) are positive, there exists ε0 > 0
and t2 ≥ t1 such that y(t) > Mε0 for all t ≥ t2. Corresponding to this
ε0, there exists t3 ≥ t1 such that p(t)y∆(t) ≤ ε0 for all t ≥ t3. Now, if
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t ≥ T := max {t2, t3}, we have

yσ(t)− y(τ(t)) =

∫ σ(t)

τ(t)

p(s)y∆(s)

p(s)
∆s

≤ ε0

∫ σ(t)

τ(t)

∆s

p(s)

≤ ε0

[∣∣∣∣∣
∫ σ(t)

t

∆s

p(s)

∣∣∣∣∣+ |R(t)−R(τ(t))|

]

≤ ε0

[
µ(t)

p(t)
+M

]
.

Consequently,
y(τ(t)) ≥ yσ(t)− ε0K, t ≥ T.

Again, we set z(t) := y(t)− ε0K. Then for sufficiently large t

z(t) > 0, zσ(t) ≤ y(τ(t)), and (p(t)z∆(t))∆ + q(t)f(zσ(t)) ≤ 0.

Hence, (3.3) has an eventually positive solution. Again by Lemma 3.1.4,
(p(t)y∆(t))∆ + q(t)f(yσ(t)) = 0 is nonoscillatory, which is a contradiction.

NECESSITY. The oscillation of (3.1) implies that of equation (3.2). Suppose that
there is a nonoscillatory solution y(t) of (3.2) and without loss of generality, we assume
there exists t1 ∈ T such that

y(t) > 0, p(t)y∆(t) > 0, and (p(t)y∆(t))∆ ≤ 0, t ≥ t1.

Since p(t)y∆(t) > 0 is decreasing for t ≥ t1, lim
t→∞

p(t)y∆(t) = L ≥ 0 exists. We

distinguish several cases.

(I) Assume τ(t) ≤ t for all t. As y is increasing, yσ(t) ≥ y(τ(t)). Furthermore, as
f is increasing, we have

(p(t)y∆(t))∆ + q(t)f(y(τ(t))) ≤ (p(t)y∆(t))∆ + q(t)f(yσ(t)) = 0.

So y(t) is an eventually positive solution of (p(t)y∆(t))∆ + q(t)f(y(τ(t))) ≤ 0.
By Lemma 3.1.5, equation (3.1) is nonoscillatory, which is a contradiction.

(II) Suppose τ(t) ≥ σ(t) for all t.

(a) Assume L > 0. It follows that there exists t2 ∈ T with t2 ≥ t1 such that
p(t)y∆(t) ≤ L+ 1 for all t ≥ t2. Since lim

t→∞
τ(t) =∞, there is a t3 ≥ t2 such



15

that τ(t) ≥ t2 for t ≥ t3. Therefore, if t ≥ t3, we have

y(τ(t))− yσ(t) =

∫ τ(t)

σ(t)

p(s)y∆(s)

p(s)
∆s

≤ (L+ 1)[R(τ(t))−R(σ(t))]

≤ (L+ 1)[R(τ(t))−R(t) +R(t)−R(σ(t))]

≤ (L+ 1)[M +N ],

which leads to

yσ(t) ≥ y(τ(t))− (L+ 1)K, t ≥ t3.

Let z(t) := y(t)− (L+ 1)K. Then for sufficiently large t, we have

z(t) > 0, z(τ(t)) ≤ yσ(t), and (p(t)z∆(t))∆ + q(t)f(z(τ(t))) ≤ 0.

This leads to a contradiction as in part (I) above.

(b) Assume L = 0. Since y∆(t) > 0 and y(t) > 0, there is an ε0 > 0 and
a t2 ≥ t1 such that y(t) > Mε0 for all t ≥ t2. Corresponding to this
ε0, there exists t3 ≥ t1 such that p(t)y∆(t) ≤ ε0 for all t ≥ t3. Now, if
t ≥ T := max {t2, t3}, we have

y(τ(t))− yσ(t) =

∫ τ(t)

σ(t)

p(s)y∆(s)

p(s)
∆s

≤ ε0

∫ τ(t)

σ(t)

∆s

p(s)

≤ ε0

[
M +

µ(t)

p(t)

]
,

and so yσ(t) ≥ y(τ(t))− ε0K for t ≥ T . Now set z(t) := y(t)− ε0K. Then
for sufficiently large t

z(t) > 0, z(τ(t)) ≤ yσ(t), and (p(t)z∆(t))∆ + q(t)f(zσ(t)) ≤ 0,

which again leads to a contradiction.

This completes the proof.

Remark 3.1.6. Under the assumptions Theorem 3.1.2 we see that the functional τ
in equation (3.1) has no influence on its oscillation.

As a corollary to Theorem 3.1.2 we have the following:
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Corollary 3.1.7. Let T = Z and τ : Z→ Z. Assume q : N0 → N0 is continuous and
f , τ , and p satisfy (E). Then, the oscillation of the two equations

∆(p(t)∆y(t)) + q(t)f(y(t+ 1)) = 0

and
∆(p(t)∆y(t)) + q(t)f(y(τ(t))) = 0

is equivalent.

Proof. Since µ(t) = 1 ∀ t ∈ Z and yσ(t) = y(t + 1), the result follows from Theorem
3.1.2.

Remark 3.1.8. One can prove analogous results when considering

(p(t)y∆(t))∆ + q1(t)f1(y(τ1(t))) + q2(t)f2(y(τ2(t))) = 0

and

(p(t)y∆(t))∆ + q1(t)f1(yσ(t)) + q2(t)f2(yσ(t)) = 0

and their corresponding inequalities.

Let r ∈ R and assume that p · r is a differentiable function. Assume that
(E1) There exists M > 0 such that r(t)er(t, t0) ≤M for all large t.

(E2) Condition (E) holds,
µ(t)

p(t)
is bounded, and |f(u)| ≥ K|u| for u 6= 0 for some

K > 0, and define the auxiliary functions

H1(t) = H1(t, t0) := 1 +
µ(t)

p(t)
∫ t
t0

∆s
p(s)

,

H2(t) = H2(t, t0) :=
1 + µ(t)r(t)

p(t)er(t, t0)
,

H3(t) = H3(t, t0) := er(σ(t), t0)

[
Kp(t) +

1

2
r∆(t) +

r2(t)

4H1(t)

]
,

H4(t) = H4(t, t0) := r(t)− r(t)(1 + µ(t)r(t))

H1(t)
,

for t > t0, for some t0 ∈ T.
By combining Theorem 3.1.2 and Theorem 3.1 in [9], we obtain the following

result:

Theorem 3.1.9. Assume that (E1) and (E2) hold. Furthermore, assume that there
exists r ∈ R+ such that p · r is differentiable and such that for any t0 ≥ a there exists
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a t1 > t0 so that

lim sup
t→∞

∫ t

t1

H(s)∆s =∞,

where

H(t) = H(t, t0) = H3(t)− (H4(t))2H1(t)

4H2(t)
,

for t > t0. Then equation (3.1) is oscillatory on [a,∞)T.

We end this section with comparing (p(t)y∆)∆ + q(t)f(y(τ(t))) to

(p(t)y∆(t))∆ + q̃(t)g(y(τ̃(t))) = 0, (3.7)

on a time scale T where q̃, g, and τ̃ satisfy condition (E) and
µ

p
is bounded.

From Theorem 3.1.2 we see that the oscillation of (3.7) is equivalent to that of

(p(t)y∆(t))∆ + q̃(t)g(yσ(t)) = 0. (3.8)

We get the following result.

Theorem 3.1.10. Assume condition (E) holds and
µ

p
is bounded on T. Further

assume that q̃(t) ≤ q(t) for all large t and |g(u)| ≤ |f(u)| for |u| > 0. Then, the
oscillation of equation (3.7) implies that of equation (3.1).

Proof. Otherwise, without loss of generality, we assume that (3.1) has an eventually
positive solution. From Theorem 3.1.2, equation (3.2) also has an eventually positive
solution y(t). Then

(p(t)y∆(t))∆ + q̃(t)g(yσ(t))) ≤ (p(t)y∆(t))∆ + q(t)f(yσ(t))) = 0,

which implies (3.8) has an eventually positive solution. So, equation (3.7) also has
an eventually positive solution, which is a contradiction.

3.2 Oscillation of a Linear Dynamic Equation

In this section we give two theorems about the oscillatory behavior of

(p(t)y∆(t))∆ + q(t)yσ(t) = 0 (3.9)

on a time scale T where supT =∞, p ∈ Crd(T, (0,∞)) and q ∈ Crd(T,R). These are
Theorems 3.2.2 and 3.2.7.
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We impose the following condition∫ ∞
a

1

p(s)
∆s =∞ and

∫ ∞
a

q(s) ∆s <∞ for some a ∈ T. (E3)

To prove our main result, we need the following lemma.

Lemma 3.2.1. [14] Assume

lim inf
t→∞

∫ t

T

q(s) ∆ ≥ 0 and 6≡ 0 (E4)

for all large T , and ∫ ∞
τ

1

p(s)
∆s =∞. (E5)

If y is a solution of (3.9) such that y(t) > 0, for t ∈ [T,∞)T, then there exists
S ∈ [T,∞)T such that y∆(t) > 0 for t ∈ [S,∞)T.

Proof. The proof is by contradiction. We consider two cases:

(a) Suppose that y∆(t) < 0 for t ∈ [T,∞)T. Define Q(t, T ) =
∫ t
T
q(s)∆s. We may

assume, by condition (E4), that T is such that Q(t, T ) ≥ 0 for t ∈ [T,∞)T.
Indeed, if no such T exists, then for T ∈ [τ,∞)T fixed but arbitrary, we define

T1 = T1(T ) := sup

{
t > T :

∫ t

T

q(s)∆s < 0

}
.

If T1 = ∞, then choosing tn → ∞ such that Q(tn, T ) < 0 for all n, we obtain
a contradiction to (E4). Hence, we must have T1 is finite, which implies that
Q(t, T1) ≥ 0 for t ∈ [T1,∞)T. Now an integration by parts gives (with T1 = T )∫ t

T

q(s)yσ(s)∆s =

∫ t

T

Q∆(s, T )yσ(s)∆s

= Q(t, T )y(t)−
∫ t

T

Q(s, T )y∆(s)∆s

≥ 0.

Integrating (3.9) we have, from this last estimate,

y∆(t) ≤ p(T )y∆(T )

p(t)
(3.10)

for t ∈ [T,∞)T. Integrating (3.10) for t ≥ T we see that y(t) → −∞ by (E5), a
contradiction. Therefore, y∆(t) < 0 cannot hold for all large t.
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(b) Next, if y∆(t) ≯ 0 eventually, then for every (large) T ∈ [τ,∞)T there exists T0

in [T,∞)T such that y∆(T0) ≤ 0 and we may suppose that lim inf
t→∞

∫ t

T0

q(s)∆s ≥ 0.

Since y(t) > 0 for t ∈ [T,∞), the function z(t) :=
p(t)y∆(t)

y(t)
satisfies the Riccati

equation

z∆(t) + q(t) +
z2(t)

p(t) + µ(t)z(t)
= 0

for t ∈ [T,∞)T with p(t) + µ(t)z(t) > 0. Integrating the Riccati equation from
T0 to t gives

z(t) = z(T0)−
∫ t

T0

q(s)∆s−
∫ t

T0

z2(s)

p(s) + µ(s)z(s)
∆s.

Therefore it follows that lim sup
t→∞

z(t) < 0, using the facts that z(T0) ≤ 0, z(t) is

eventually nontrivial, and (E4) holds. Hence there exists T2 ∈ [T,∞)T such that
z(t) < 0 for t ∈ [T2,∞)T and so y∆(t) < 0 for t ∈ [T2,∞)T, a contradiction to
part (a). The proof is complete.

Before we state Theorem 3.2.2, we need the following defintions.

A0(t) =

∫ ∞
t

q(s) ∆s,

A1(t) = A0(t) +

∫ ∞
t

A2
0(s)

p(s) + µ(s)A0(s)
∆s,

...

An(t) = A0(t) +

∫ ∞
t

A2
n−1(s)

p(s) + µ(s)A0(s)
∆s,

if the integrals on the right-hand side exist.
Our first result is a generalization of Theorem 3.1 of [26].

Theorem 3.2.2. Assume (E3) and (E4) hold, and one of the following two conditions
holds:

(i) there exists some positive integer m such that An is well defined for n = 0, 1, 2, . . . ,
m− 1, and

lim
t→∞

∫ t

a

A2
m−1(s)

p(s) + µ(s)Am−1(s)
∆s =∞.
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(ii) An is well defined for n = 0, 1, 2, . . . , and there exists t∗ ∈ T (t∗ ≥ t0) such that

lim
n→∞

An(t∗) =∞

for all n.

Then the second order dynamic equation

(p(t)y∆(t))∆ + q(t)yσ(t) = 0 (3.9)

is oscillatory.

Proof. If not, without loss of generality, we assume (3.9) has an eventually positive
solution y(t). From Lemma 3.2.1, we get that there exists t1 ∈ T (t1 ≥ t0) such that

y(t) > 0 and y∆(t) > 0 for all t ≥ t1.

Define the function z by

z(t) =
p(t)y∆(t)

y(t)
for t ≥ t1. (3.11)

Then z(t) > 0 and

p(t) + µ(t)z(t) = p(t) + µ(t)
p(t)y∆(t)

y(t)
=
p(t)y(t) + p(t)µ(t)y∆(t)

y(t)
> 0,

for t ≥ t1. From (3.11) we get that

z∆(t) =
(p(t)y∆(t))∆y(t)− (p(t)y∆(t))y∆(t)

y(t)yσ(t)

=
(p(t)y∆(t))∆

yσ(t)
− p(t)(y∆(t))2

y(t)yσ(t)
· p(t)
p(t)
· y

2(t)

y2(t)

= −q(t)−
(
p(t)y∆(t)

y(t)

)2
y(t)

p(t)yσ(t)

= −q(t)− z2(t)
y(t)

p(t)(y(t) + µ(t)y∆(t))

= −q(t)− z2(t) · y(t)

y(t)

(
1

p(t)(1 + µ(t)y
∆(t)
y(t)

)

)

= −q(t)− z2(t)

p(t) + µ(t)z(t)
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for t ≥ t1. Hence, z is a solution of the Riccati equation

z∆(t) = −q(t)− z2(t)

p(t) + µ(t)z(t)
, t ≥ t1. (3.12)

Integrating both sides of (3.12) from t1 to t we get

z(t)− z(t1) +

∫ t

t1

z2(s)

p(s) + µ(s)z(s)
∆s = −

∫ t

t1

q(s) ∆s, t ≥ t1.

Then, as z(t) > 0,∫ t

t1

z2(s)

p(s) + µ(s)z(s)
∆s ≤ z(t1)−

∫ t

t1

q(s) ∆s ≤ z(t1), t ≥ t1.

Letting t→∞ we have that

lim
t→∞

∫ t

t1

z2(s)

p(s) + µ(s)z(s)
∆s <∞.

Integrating (3.12) from t to s we obtain

z(t) = z(s) +

∫ s

t

q(τ) ∆τ +

∫ s

t

z2(τ)

p(τ) + µ(τ)z(τ)
∆τ

>

∫ s

t

q(τ) ∆τ +

∫ s

t

z2(τ)

p(τ) + µ(τ)z(τ)
∆τ.

for s, t ∈ T and s ≥ t ≥ t1. Letting s→∞ we have

z(t) ≥
∫ ∞
t

q(s) ∆s+

∫ ∞
t

z2(s)

p(s) + µ(s)z(s)
∆s, t ≥ t1. (3.13)

Assume Condition (i) holds and m = 1. From (3.13) we obtain that z(t) ≥ A0(t) for
all t ≥ t1.

Observe that F (u) =
u2

c1 + c2u
is increasing for u > 0, where c1, c2 ≥ 0 are

constants. It follows that∫ ∞
t

A2
0(s)

p(s) + µ(s)A0(s)
∆s ≤

∫ ∞
t

z2(s)

p(s) + µ(s)z(s)
∆s <∞.

This contradicts (i). If m > 1, we have

z(t) ≥
∫ ∞
t

q(s) ∆s+

∫ ∞
t

A2
0(s)

p(s) + µ(s)A0(s)
∆s = A1(t), for t ≥ t1.
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Repeating the above procedure, we get that z(t) ≥ Am−1(t) for all t ≥ t1, and∫ ∞
t

A2
m−1(s)

p(s) + µ(s)Am−1(s)
∆s ≤

∫ ∞
t

z2(s)

p(s) + µ(s)z(s)
∆s <∞,

which contradicts Condition (i).
Assume that Condition (ii) holds. Similar to the above proof, we obtain

An(t) ≤ z(t) for n = 0, 1, 2, . . .. Then, as y(t) > 0,

lim
n→∞

An(t∗) ≤ z(t∗) <∞,

which gives a contradiction to Condition (ii). The proof is complete.

Remark 3.2.3. If T = R and p(t) = 1 for all t, then Theorem 3.2.2 is the same as
Yan’s result for second order linear differential equations [25].

To prove the next result, we need the following lemmas:

Lemma 3.2.4. [2, Theorem 4.61] Assume a ∈ T, p > 0, and let ω := supT. If
ω < ∞, then we assume ρ(ω) = ω. If (py∆)∆(t) + q(t)yσ(t) = 0 has a positive
solution on [a, ω), then there is a positive solution u, called a recessive solution at ω,
such that for any second linearly independent solution v, called a dominant solution
at ω,

lim
t→ω−

u(t)

v(t)
= 0,

∫ ω

a

∆t

p(t)u(t)uσ(t)
=∞, and

∫ ω

b

∆t

p(t)v(t)vσ(t)
<∞,

where b < ω is sufficiently close. Furthermore

p(t)v∆(t)

v(t)
>
p(t)u∆(t)

u(t)

for t < ω sufficiently close.

Lemma 3.2.5. [2, Theorem 4.55] Assume z is a solution of the the Riccati equation

Rz = 0, where Rz(t) := z∆(t) + q(t) +
z2(t)

p(t) + µ(t)z(t)

on [a, σ2(b)]T with p(t) + µ(t)z(t) > 0 on [a, σ2(b)]T. Let u be a continuous function
on [a, σ2(b)]T whose derivative is piecewise right-dense continuous with
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u(a) = u(σ2(b)) = 0. Then we have for all t ∈ [a, σ2(b)]T,

(zu2)∆(t) = p(t)[u∆(t)]2 − q(t)u2(σ(t))

−

{
z(t)uσ(t)√

p(t) + µ(t)z(t)
−
√
p(t) + µ(t)z(t)u∆(t)

}2

.

Using the previous lemmas, we have the following theorem which was proven for
differential equations by Kelley and Peterson in [21].

Theorem 3.2.6. Assume I = [a,∞)T. If

∫ ∞
a

∆t

p(t)
=∞ and there is a t0 ≥ a and a

u ∈ C1
rd[t0,∞) such that u(t) > 0 on [t0,∞)T and∫ ∞

t0

{q(t)[uσ(t)]2 − p(t)[u∆(t)]2}∆t =∞,

then the second-order dynamic equation

(p(t)y∆(t))∆ + q(t)yσ(t) = 0 (3.9)

is oscillatory on I.

Proof. We prove this theorem by contradiction. So assume (3.9) is nonoscillatory on
I. Lemma 3.2.4, there is a dominant solution y at∞ such that for t1 ≥ a, sufficiently
large, ∫ ∞

t1

∆t

p(t)y(t)yσ(t)
<∞,

and we may assume y(t) > 0 on [t1,∞)T. Let t0 and u be as in the statement of this
theorem. Let T =max{t0, t1}; then let

z(t) :=
p(t)y∆(t)

y(t)
, t ≥ T.

It follows that

z∆(t) =
(p(t)y∆(t))∆y(t)− p(t)(y∆(t))2

y(t)yσ(t)

= −q(t)y
σ(t)

yσ(t)
−
(
p(t)y∆(t)

y(t)

)2
y(t)

p(t)yσ(t)

= −q(t)− z2(t)
y(t)

p(t)[y(t) + µ(t)y∆(t)]

= −q(t)− z2(t)

p(t) + µ(t)z(t)
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and
p(t) + µ(t)z(t) > 0 for all t ≥ T.

Then by Lemma 3.2.5, we have for t ≥ T

(zu2)∆(t)

= p(t)[u∆(t)]2 − q(t)u2(σ(t))−

{
z(t)u(σ(t))√
p(t) + µ(t)z(t)

−
√
p(t) + µ(t)z(t)u∆(t)

}2

≤ p(t)[u∆(t)]2 − q(t)u2(σ(t)).

Integrating from T to t, we obtain

z(t)u2(t) ≤ z(T )u2(T )−
∫ t

T

{
q(t)u2(σ(t))− p(t)[u∆(t)]2

}
∆t

which implies
lim
t→∞

z(t)u2(t) = −∞.

However, then there is a T1 ≥ T such that for t ≥ T1

z(t) =
p(t)y∆(t)

y(t)
< 0.

This implies that y∆(t) < 0 for t ≥ T1, and hence y is decreasing on [T1,∞)T. However,∫ ∞
T1

1

p(s)
∆s = y(T1)yσ(T1)

∫ ∞
T1

1

p(s)y(T1)yσ(T1)
∆s

≤ y(T1)yσ(T1)

∫ ∞
T1

1

p(s)y(s)yσ(s)
∆s

< ∞,

which is a contradiction.

We conclude this section with an example that shows how Theorem 3.2.6 can be
used to obtain oscillation criteria.

Example 3.2.7. If a > 0 and ∫ ∞
a

σα(t)q(t) ∆t =∞,

where 0 < α < 1, then y∆∆ + q(t)yσ = 0 is oscillatory on [a,∞)T.
We will show that this follows from Theorem 3.2.6. In the Pötzsche Chain Rule

[2, Theorem 1.90], let g(t) = t and f(t) = t
α
2 , for 0 < α < 1. Then with
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u(t) = (f◦g)(t) = t
α
2 , we have

u∆(t) = (f◦g)∆(t) =

{∫ 1

0

α

2
[t+ hµ(t) · 1]

α−2
2 dh

}
· 1

=
α

2

∫ 1

0

(t+ hµ(t))
α−2

2 dh

≤ α

2

∫ 1

0

t
α−2

2 dh

=
α

2
t
α−2

2

since α− 2 < 0. Therefore, it follows that (u∆(t))2 ≤ α2

4
tα−2 for all t. Hence,

∫ ∞
a

{
q(t)[uσ(t)]2 − p(t)[u∆(t)]2

}
∆t ≥

∫ ∞
a

{
q(t)σα(t)− α2

4
tα−2

}
∆t =∞

since 0 < α < 1 implies ∫ ∞
a

tα−2 ∆t <∞.

Thus y∆∆ + q(t)yσ = 0 is oscillatory on [a,∞)T by Theorem 3.2.6.

3.3 Oscillation of a Nonlinear Dynamic Equation

with Advanced and Delayed Arguments

In this section we establish several oscillation results (Theorems 3.3.5-3.3.10) for
the second order nonlinear functional dynamic equation

y
∆∆

+ f
(
t, yσ(t), yτ1(t), yτ2(t), yξ1(t), yξ2(t)

)
= 0 (3.14)

on a time scale [t0,∞)T where f ∈ C(T× R5,R). We shall assume

τi(t) ≤ t ≤ σ(t) ≤ ξi(t)

for all t ∈ T and τi, ξi ∈ Crd(T,T) for i = 1, 2. We also assume

lim
t→∞

τi(t) =∞ = lim
t→∞

ξi(t)

for i = 1, 2. Here we use the notation yτ (t) = y(τ(t)) and yξ(t) = y(ξ(t)). Our
goal is to establish some new oscillation and nonoscillation results for this equation.
We apply results from the theory of lower and upper solutions for related dynamic
equations along with some additional estimates on the positive solutions.
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Concerning the function f = f(t, u, v1, v2, w1, w2), we will always assume that f
satisfies the following Condition (A):

f(t, u, v1, v2, w1, w2) = −f(t,−u,−v1,−v2,−w1,−w2)

and
f(t, u, v1, v2, w1, w2) > 0 if u, v1, v2, w1, w2 > 0, t ∈ T.

We begin with the following preliminary lemmas.
Lemma 3.3.1. Let y ∈ C2

rd[t0,∞)T satisfy y(t) > 0, y∆(t) > 0, y∆∆(t) ≤ 0 for
t ≥ T ≥ t0. Then for each 0 < k < 1 there exists Tk ≥ T ≥ t0 such that the following
hold:

(i)

yτ (t) := y(τ(t)) ≥ kyσ(t)
τ(t)

σ(t)
, t ≥ Tk,

and

(ii)

yξ(t) := y(ξ(t)) ≤ yσ(t)
ξ(t)

kσ(t)
, t ≥ Tk.

Proof. (i) For t > T ≥ t0 we have

yσ(t)− yτ (t) =

∫ σ(t)

τ(t)

y∆(s)∆s ≤ y∆(τ(t))(σ(t)− τ(t))

as y is decreasing, and so

yσ(t) ≤ yτ (t) + y∆(τ(t))(σ(t)− τ(t)). (3.15)

Also we have

yτ (t)− y(T ) =

∫ τ(t)

T

y∆(s)∆s ≥ y∆(τ(t))(τ(t)− T ) (3.16)

and hence
yτ (t)

y∆(τ(t))
≥ y(T )

y∆(τ(t))
+ (τ(t)− T ) (3.17)

which implies
y∆(τ(t))

yτ (t)
≤ 1

(τ(t)− T ) +
y(T )

y∆(τ(t))

<
1

τ(t)− T
. (3.18)
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Therefore, (3.15) and (3.18) imply

yσ(t)

yτ (t)
≤ 1 +

y∆(τ(t))

yτ (t)
(σ(t)− τ(t))

≤ 1 +
σ(t)− τ(t)

τ(t)− T
(3.19)

=
σ(t)− T
τ(t)− T

.

Now given any 0 < k < 1, there exists Tk such that

σ(t)− T
τ(t)− T

<
1

k

σ(t)

τ(t)
, t ≥ Tk. (3.20)

Consequently, we have from (3.19) and (3.20)

yτ (t) ≥ kyσ(t)
τ(t)

σ(t)
, t ≥ Tk

and this completes the proof of (i).

The proof of (ii) is similar. We have for T < t ≤ σ(t) ≤ ξ(t)

yξ(t)− yσ(t) =

∫ ξ(t)

σ(t)

y∆(s)∆s ≤ y∆(σ(t))(ξ(t)− σ(t))

and so we have
yξ(t)

yσ(t)
≤ 1 +

y∆(σ(t))

yσ(t)
(ξ(t)− σ(t)). (3.21)

Also we have
yσ(t) ≥ y(T ) + y∆(σ(t))(σ(t)− T )

so that

yσ(t)

y∆(σ(t))
≥ y(T )

y∆(σ(t))
+ (σ(t)− T ) ≥ kσ(t), t ≥ Tk, 0 < k < 1.

Hence, from (3.21) we have

yξ(t)

yσ(t)
≤ 1 +

ξ(t)− σ(t)

kσ(t)
=

(k − 1)σ(t) + ξ(t)

kσ(t)
≤ ξ(t)

kσ(t)
, t ≥ Tk.

This completes the proof of the lemma.

We continue with the following result for the case when f(t, u, v1, v2, w1, w2)
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satisfies the following Condition (B):
For each fixed t ∈ T, f is nonincreasing in w1, w2 > 0 for fixed u, v1, v2 > 0, f is

nondecreasing in v1, v2 > 0 for fixed u,w1, w2 > 0, and f is nondecreasing in u > 0
for fixed v1, v2, w1, w2 > 0.

We introduce the functions gi(t), hi(t) defined by

gi(t) :=
τi(t)

σ(t)
, hi(t) :=

ξi(t)

σ(t)
, (3.22)

where i = 1, 2. In order to prove our main results, we need a method for studying
boundary value problems (BVP). Namely we will define functions called upper and
lower solutions that, not only imply the existence of a BVP but also provide bounds
on the location of the solution. Consider the second-order equation

y∆∆ = f(t, yσ) (3.23)

where f is continuous on [a, b]T × R.

Definition 3.3.2. [2, Definition 6.53] We say that α ∈ C2
rd is a lower solution of

(3.23) on [a, σ2(b)]T provided

α∆∆(t) ≥ f(t, ασ(t)) for all t ∈ [a, b]T.

Similarly, β ∈ C2
rd is called an upper solution of (3.23) on [a, σ2(b)]T provided

β∆∆(t) ≤ f(t, βσ(t)) for all t ∈ [a, b]T.

Theorem 3.3.3. [2, Theorem 6.54] Let f be continuous on [a, b]T ×R. Assume that
there exist a lower solution α and an upper solution β of (3.23) with

α(a) ≤ A ≤ β(a) and α(σ2(b)) ≤ B ≤ β(σ2(b))

such that
α(t) ≤ β(t) for all t ∈ [a, σ2(b)]T.

Then the BVP

y∆∆ = f(t, yσ) on [a, b]T, y(a) = A, y(σ2(b)) = B

has a solution y with

α(t) ≤ y(t) ≤ β(t) for all t ∈ [a, σ2(b)]T.

The following is a generalization of Theorem 7.4 of [20].
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Theorem 3.3.4. Let f be continuous on [a, b]T×R. Assume that there exist a lower
solution α and an upper solution β of (3.23) with α(t) ≤ β(t) for all t ∈ [a,∞)T.
Then for any α(a) ≤ c ≤ β(a) the BVP

y∆∆ = f(t, yσ), y(a) = c (3.24)

has a solution y with

α(t) ≤ y(t) ≤ β(t) for all t ∈ [a,∞)T.

Proof. It follows from Theorem 3.3.3 that for each n ≥ 1 there is a solution yn(t)
of [a, a + n]T with yn(a) = c, yn(a + n) = β(a + n) and α(t) ≤ yn(t) ≤ β(t) on
[a, a + n]T. Thus, for any fixed n ≥ 1, ym(t) is a solution on [a, a + n]T satisfying
α(t) ≤ ym(t) ≤ β(t) for all m ≥ n. Hence, for m ≥ n, the sequence ym(t) is pointwise
bounded on [a, a+ n]T.

We claim that {ym(t)} is equicontinuous on [a, a+ n]T for any fixed n ≥ 1. Since
f is continuous and ym(t) ≤ β(t) for all t ∈ [a, a+ n]T, there is constant K > 0 such
that |y∆∆

m (t)| = |f(t, yσm(t))| ≤ K for all t ∈ [a, a+ n]T. It follows that

y∆
m(t)− y∆

m(a) =

∫ t

a

y∆∆
m (s) ∆s

≤
∫ t

a

K ∆s

= K(t− a)

≤ K(a+ n− a)

= Kn

which gives that
|y∆
m(t)| ≤ |y∆

m(a)|+ |Kn| =: L.

Consequently,

|ym(t)− ym(s)| = |
∫ t

s

y∆
m ∆s| ≤ L|t− s| < ε

for all t, s ∈ [a, a+ n]T provided |t− s| < δ =
ε

L
. Hence the claim holds.

So by Ascoli-Arzela and a standard diagonalization argument, {ym(t)} contains
a subsequence which converges uniformly on all compact subintervals [a, a + n]T of
[a,∞)T to a solution y(t), which is the desired solution of the (3.24) that satisfies
α(t) ≤ y(t) ≤ β(t) for all t ∈ [a,∞)T.

In the results that follow by∫ ∞
tf (t, u, v1v2, w1, w2) ∆t =∞
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we mean ∫ ∞
T

tf (t, u, v1v2, w1, w2) ∆t <∞

for some T sufficiently large.
Our first main result in this section is:

Theorem 3.3.5. Assume conditions (A) and (B) hold. Then all bounded solutions
of y

∆∆
+ f
(
t, yσ(t), yτ1(t), yτ2(t), yξ1(t), yξ2(t)

)
= 0 are oscillatory in case∣∣∣∣∫ ∞ tf (t, α, αkg1(t), αkg2(t),
α

k2
h1(t),

α

k2
h2(t)

)
∆t

∣∣∣∣ =∞ (3.25)

for all α 6= 0 and for some k ∈ (0, 1), where gi(t), hi(t) for i = 1, 2 are given by
(3.22).

Proof. If not, let u(t) be a bounded nonoscillatory solution which we may assume
satisfies

u(t) > 0, uτi (t) > 0, t ≥ T ≥ t0, i = 1, 2.

Consequently, u
∆∆

(t) = −f(t, uσ(t), uτ1(t), uτ2(t), uξ1(t), uξ2(t)) < 0 for t ≥ T and
so u∆(t) is decreasing for t ≥ T . It follows that u∆(t) > 0 for t ≥ T . Indeed, if
u∆(t1) ≤ 0 for some t1 ≥ T , then u∆(t) ≤ 0 for all t ≥ t1. Now if u∆(t2) < 0 for some
t2 ≥ t1, then

u(t)− u(t2) =

∫ t

t2

u∆(s)∆s ≤ u∆(t2)(t− t2)→ −∞

as t → ∞, which is a contradiction to our assumption that u(t) > 0 for t ≥ T ≥ t0.
Also, if u∆(t1) = 0, then u∆(t) ≡ 0 on [t1,∞)T, and so

u∆∆(t) ≡ 0 = −f(t, uσ(t), uτ1(t), uτ2(t), uξ1(t), uξ2(t)),

which is again a contradiction. Hence, we conclude that for all t ≥ T

u(t) > 0, u∆(t) > 0, uτi(t) > 0

for i = 1, 2. From Lemma 3.3.1, given 0 < k < 1, there exists T 1
k ≥ T such that

uτ1(t) ≥ kg1(t)uσ(t) and uξ1(t) ≤ 1

k
h1(t)uσ(t)

for t ≥ T 1
k and there exists T 2

k ≥ T such that

uτ2(t) ≥ kg2(t)uσ(t) and uξ2(t) ≤ 1

k
h2(t)uσ(t)
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for t ≥ T 2
k . By the monotonicity assumption on f we have

0 = u
∆∆

(t) + f
(
t, uσ(t), uτ1(t), uτ2(t), uξ1(t), uξ2(t)

)
(3.26)

≥ u
∆∆

(t) + f

(
t, uσ(t), kg1(t)uσ(t), kg2(t)uσ(t),

1

k
h1(t)uσ(t),

1

k
h2(t)uσ(t)

)
for t ≥ Tk := max{T 1

k , T
2
k }. Now, if we set

F (t, uσ(t)) := f

(
t, uσ(t), kg1(t)uσ(t), kg2(t)uσ(t),

1

k
h1(t)uσ(t),

1

k
h2(t)uσ(t)

)
,

then (3.26) shows that β(t) := u(t) is an upper solution for the dynamic equation
u∆∆ +F (t, uσ(t)) = 0. Also, the constant function α(t) := u(Tk) satisfies the inequal-
ity α∆∆(t) + F (t, ασ(t)) ≥ 0, and so α(t) is a lower solution. Therefore, by Theorem
3.3.4, the BVP

y
∆∆

+ F (t, yσ(t)) = 0, y(Tk) = u(Tk)

has a solution y(t) with

u(Tk) ≤ y(t) ≤ u(t), t ≥ Tk.

It follows that y(t) > 0 and y
∆∆

(t) ≤ 0. Therefore y∆(t) > 0. Now, since y(t) is
bounded, we have that lim

t→∞
y(t) := L > 0 exists. Integration for Tk < s < T̃ implies

y∆(T̃ )− y∆(s) +

∫ T̃

s

F (r, yσ(r))∆r = 0.

Letting T̃ →∞ we obtain

y∆(s) ≥
∫ ∞
s

F (r, yσ(r))∆r,
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and so integrating again for Tk < t̃ < t, we obtain

y(t) − y(t̃) =

∫ t

t̃

y∆(s)∆s

≥
∫ t

t̃

∫ ∞
s

F (r, yσ(r))∆r∆s

=

∫ t

t̃

∫ r

t̃

F (r, yσ(r))∆s∆r +

∫ ∞
t

∫ t

t̃

F (r, yσ(r))∆s∆r (3.27)

=

∫ t

t̃

(r − t̃)F (r, yσ(r))∆r +

∫ ∞
t

(t− t̃)F (r, yσ(r))∆r

≥
∫ t

t̃

(r − t̃)F (r, yσ(r))∆r.

From (3.27) we have

y(t) ≥ y(t̃) +

∫ t

t̃

(r − t̃)F (r, yσ(r))∆r >

∫ t

t̃

(r − t̃)F (r, yσ(r))∆r.

Since y(t) ≤ u(t) ≤ M for some M > 0 and

∫ t

t̃

(r − t̃)F (r, yσ(r))∆r is an increasing

function of t, it follows that∫ ∞
t̃

(r − t̃)F (r, yσ(r))∆r <∞.

Since 2r ≥ t̃ for r sufficiently large, it follows that

∫ ∞
t̃

rF (r, yσ(r))∆r < ∞. For

the same 0 < k < 1 as in the first part of the proof, we may assume that we have
y(t) ≥ kL for t ≥ T̃k ≥ Tk. Since y(t) ≤ yσ(t) ≤ L, using the monotonicity of f ,

f

(
t, yσ(t), kg1(t)yσ(t), kg2(t)yσ(t),

1

k
h1(t)yσ(t),

1

k
h2(t)yσ(t)

)
≥ f

(
t, yσ(t), kg1(t)yσ(t), kg2(t)yσ(t),

L

k
h1(t),

L

k
h2(t)

)
≥ f

(
t, kL, k2g1(t)L, k2g2(t)L,

L

k
h1(t),

L

k
h2(t)

)
.

Therefore, with α := kL, it follows that∫ ∞
T̃k

rf
(
r, α, αkg1(r), αkg2(r),

α

k2
h1(r),

α

k2
h2(r)

)
∆r <∞,

a contradiction to our assumption (3.25).
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This completes the proof.

The next result shows that a converse of Theorem 3.3.5 is true under an additional
assumption.

Theorem 3.3.6. Assume f satisfies conditions (A) and (B) and that

lim inf
t→∞

gi(t) := mi > 0 and lim sup
t→∞

hi(t) := Mi <∞, (3.28)

where gi(t), hi(t), 1 ≤ i ≤ 2, are defined in (3.22). Also, assume that σ(t)/t is
bounded. Then, if

y
∆∆

+ f
(
t, yσ(t), yτ1(t), yτ2(t), yξ1(t), yξ2(t)

)
= 0 (3.14)

has a bounded nonoscillatory solution, it follows that∣∣∣∣∣
∫ ∞

σ(t)f

(
t, α, αkm̃, αkm̃,

αM̃

k2
,
αM̃

k2

)
∆t

∣∣∣∣∣ <∞ (3.29)

for some α 6= 0 and for any 0 < k < 1, where m̃ and M̃ satisfy m̃ < mi and
M̃ > Mi for i = 1, 2.

Proof. Note that for any β∣∣∣∣∫ ∞ σ(t)f(t, β, . . . , β)∆t

∣∣∣∣ <∞
if, and only if, ∣∣∣∣∫ ∞ tf(t, β, . . . , β)∆t

∣∣∣∣ <∞
since σ(t)/t is bounded on T.

Assume (3.28) holds. Then for ε > 0 with ε < min{m1, m2}, there exists ti ≥ t0
such that gi(t) ≥ mi − ε := m̃i provided t ≥ ti and there exists Ti ≥ t0 such that
hi(t) ≤Mi + ε := M̃i provided t ≥ Ti, i = 1, 2. It follows that for α > 0

αgi(t) ≥ αm̃i ≥ αm̃

where m̃ := min{m̃1, m̃2} ≤ m̃i < mi, and

1

α
hi(t) ≤

1

α
M̃i ≤

1

α
M̃

where M̃ := max{M̃1, M̃2} ≥ M̃i > Mi, i = 1, 2. Assume (3.14) has a bounded
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nonoscillatory solution. Then by Theorem 3.3.5,∣∣∣∣∫ ∞ tf (t, α, αkg1(t), αkg2(t),
α

k2
h1(t),

α

k2
h2(t)

)
∆t

∣∣∣∣ <∞
for some α 6= 0 and for all 0 < k < 1. By the monotonicity assumption of f , we have∫ ∞

tf

(
t, α, αkm̃, αkm̃,

αM̃

k2
,
αM̃

k2

)
∆t <∞,

which proves the result.

The previous result says that condition (3.28) is sufficient in order to replace the
auxiliary functions gi(t), hi(t) for i = 1, 2, given by (3.22) with upper bounds. Our
next result gives a sufficient condition for

y
∆∆

+ f
(
t, yσ(t), yτ1(t), yτ2(t), yξ1(t), yξ2(t)

)
= 0 (3.14)

to have bounded nonoscillatory solutions.

Theorem 3.3.7. Assume f satisfies conditions (A) and (B). If∣∣∣∣∫ ∞ σ(t)f
(
t, α, α, α,

α

2
,
α

2

)
∆t

∣∣∣∣ <∞, (3.30)

for all α 6= 0, then (3.14) has a bounded nonoscillatory solution.

Proof. If (3.30) holds, assume to be specific that α > 0 and let 0 < β < α. Choose
T ≥ t1 ∈ T such that τ1(t), τ2(t) ≥ t1 for t ≥ T and such that∫ ∞

T

σ(t)f
(
t, α, α, α,

α

2
,
α

2

)
∆t <

β

2
.

Define y0(t) ≡ β for t ≥ t0 and

yn+1(t) =

{
β −

∫∞
T

(σ(s)− T )f(s, yσn(s), yτ1n (s), yτ2n (s), yξ1n (s), yξ2n (s))∆s, t < T,
β −

∫∞
t

(σ(s)− t)f(s, yσn(s), yτ1n (s), yτ2n (s), yξ1n (s), yξ2n (s))∆s, t ≥ T

Observe t1 ≤ τi(t) ≤ t ≤ σ(t) ≤ ξi(t) for all t ≥ T and i = 1, 2. We claim that

β

2
≤ yn(t) ≤ β t ≥ T and all n ≥ 0. (3.31)

By construction the claim holds for y0(t). Notice that when τi(t) < T ≤ t for any
i = 1, 2, yn(τi(t)) < β as y∆(t) ≡ 0 for all t ∈ T less than T . Assume the inequality
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holds for ym(t), 1 ≤ m ≤ n. Then for t ≥ T

ym+1(t) = β −
∫ ∞
t

(σ(s)− t)f(s, yσm(s), yτ1m(s), yτ2m(s), yξ1m(s), yξ2m(s))∆s

≥ β −
∫ ∞
t

σ(s)f(s, yσm(s), yτ1m(s), yτ2m(s), yξ1m(s), yξ2m(s))∆s

≥ β −
∫ ∞
t

σ(s)f
(
s, α, α, α,

α

2
,
α

2

)
∆s

> β − β

2

=
β

2
.

Furthermore, since s ≥ T , we have yσm(s), yτ1m(s), yτ2m(s), yξ1m(s), yξ2m(s) are all positive.
Hence by condition (A)

(σ(s)− t)f(s, yσm(s), yτ1m(s), yτ2m(s), yξ1m(s), yξ2m(s)) ≥ 0

for s ≥ t ≥ T . Consequently, ym+1(t) ≤ β for t ≥ T . Therefore, by induction, (3.31)
holds.

It remains to show that the set {yn(t)}∞n=0 is equicontinuous. To do this, we show
that

{
y∆
n (t)

}∞
n=0

is uniformly bounded. It follows that

|y∆
n (t)| =

∣∣∣∣0− [ ∫ ∞
t

−f(s, yσn(s), yτ1n (s), yτ2n (s), yξ1n (s), yξ2n (s))∆s

+ (σ(t)− σ(t))f(t, yσn(t), yτ1n (t), yτ2n (t), yξ1n (t), yξ2n (t))
]∣∣∣∣

=

∣∣∣∣∫ ∞
t

f(s, yσn(s), yτ1n (s), yτ2n (s), yξ1n (s), yξ2n (s))∆s

∣∣∣∣
≤
∣∣∣∣∫ ∞
t

f(s, β, β, β, β/2, β/2)∆s

∣∣∣∣
≤
∫ ∞
T

|σ(s)f(s, β, β, β, β/2, β/2)|∆s

<
β

2
.

Therefore, the Ascoli-Arzela theorem along with a standard diagonalization ar-
gument yields a subsequence of {yn(t)}∞n=0 which converges uniformly on compact
subintervals of [T,∞)T to a solution y(t) of (3.14) satisfying β/2 ≤ y(t) < β, t ≥ T .
This proves the theorem.

We next introduce the following condition which replaces the nonincreasing as-
sumption for the function f in the w1, w2 variables by assuming f is nondecreasing
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in w1, w2 for w1, w2 > 0 and for fixed t ∈ T and u, v1, v2 > 0.
The function f is said to satisfy Condition (B̃) if for each fixed t ∈ T, f is

nondecreasing in w1, w2 > 0 for fixed u, v1, v2 > 0, f is nondecreasing in v1, v2 > 0 for
fixed u,w1, w2 > 0, and f is nondecreasing in u > 0 for fixed v1, v2, w1, w2 > 0.

Of course, if f is independent of w1, w2 > 0, then conditions (B) and (B̃) coincide.
Now we have the following:

Theorem 3.3.8. Assume conditions (A) and (B̃) hold. Then all solutions of

y
∆∆

+ f
(
t, yσ(t), yτ1(t), yτ2(t), yξ1(t), yξ2(t)

)
= 0 (3.14)

are oscillatory in case∣∣∣∣∫ ∞ tf(t, α, αkg1(t), αkg2(t), α, α)∆t

∣∣∣∣ =∞ (3.32)

for all α 6= 0 and for some k ∈ (0, 1), where gi(t) for i = 1, 2 is given by (3.22).

Proof. If u is an eventually positive solution of (3.14), as in the proof of Theorem
3.3.5, we conclude that for all t ≥ t1 ≥ t0

u(t) > 0, u∆(t), uτ1(t) > 0, uτ2(t) > 0.

Hence, by Lemma 3.3.1 given 0 < k < 1, there exists Tk = max{T1, T2} ≥ t1 so that
uτi(t) ≥ kgi(t)u

σ(t) for all t ≥ Tk and i = 1, 2. Furthermore, since u∆(t) > 0 for
t ≥ t1 and i = 1, 2, uξi(t) ≥ uσ(t). Therefore, by the monotonicity assumption on f
from (B̃), it follows that

0 = u
∆∆

(t) + f
(
t, uσ(t), uτ1(t), uτ2(t), uξ1(t), uξ2(t)

)
≥ u

∆∆

(t) + f(t, uσ(t), kg1(t)uσ(t), kg2(t)uσ(t), uσ(t), uσ(t)).

If we set F̃ (t, uσ) := f(t, uσ(t), kg1(t)uσ(t), kg2(t)uσ(t), uσ(t), uσ(t)), then the remain-
der of the proof is similar to that of Theorem 3.3.5.

If we replace assumption (B) by (B̃) in Theorem 3.3.6, then we may give a nec-
essary and sufficient condition for the existence of a bounded nonoscillatory solution.
In this case, we only need to assume the first part of (3.28).

Theorem 3.3.9. Assume f satisfies (A) and (B̃) and that

lim inf
t→∞

gi(t) := mi > 0, (3.33)

where gi(t) :=
τi(t)

σ(t)
, 1 ≤ i ≤ 2. Assume further that σ(t)/t is bounded. Then equation
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(3.14) has a bounded nonoscillatory solution, if and only if,∣∣∣∣∫ ∞ σ(t)f(t, α, α, α, α, α)∆t

∣∣∣∣ <∞ (3.34)

for some α 6= 0.

Proof. Assume (3.14) has a bounded nonoscillatory solution. By condition (3.33), we
have for any ε > 0 with ε < min{mi|1 ≤ i ≤ 2} and any δ > 0, there exists ti ≥ t0
such that

δgi(t) ≥ δ(mi − ε) = δm̃i

where m̃i < mi, i = 1, 2. By definition of gi(t), we have 0 ≤ mi ≤ gi(t) ≤ 1 for
t ≥ ti, i = 1, 2. Hence

δm ≤ δm̃i < δmi ≤ δ

for i = 1, 2, where m := min{m̃1, m̃2}. Then by Theorem 3.3.8 and the monotonicity
of f , we have∫ ∞

tf(t, δm, δm, δm, δm, δm)∆t ≤
∫ ∞

tf(t, δm, δm, δm, δ, δ)∆t

≤
∫ ∞

tf(t, δm, δm̃1, δm̃2, δ, δ)∆t

<

∫ ∞
tf(t, δm, δm1, δm2, δ, δ)∆t

≤
∫ ∞

tf(t, δ, δg1(t), δg2(t), δ, δ)∆t

< ∞.

By letting α = δm, we obtain (3.34) is necessary for the existence of a bounded
nonoscillatory solution.

Conversely, if (3.34) holds, assume to be specific that α > 0 and let 0 < β < α.
Choose T ≥ t1 ≥ t0 such that τ1(t), τ2(t) ≥ t1 for t ≥ T such that∫ ∞

T

tf(t, α, α, α, α, α)∆t <
β

2
.

If we define y0(t) ≡ β for t ≥ t0 and

yn+1(t) =

{
β −

∫∞
T

(σ(s)− T )f(s, yσn(s), yτ1n (s), yτ2n (s), yξ1n (s), yξ2n (s))∆s, t < T,
β −

∫∞
t

(σ(s)− t)f(s, yσn(s), yτ1n (s), yτ2n (s), yξ1n (s), yξ2n (s))∆s, t ≥ T,

then the remainder of the proof is similar to that of Theorem 3.3.7.

To extend Theorems 3.3.5 and 3.3.6 to unbounded solutions, we introduce the
class Φ of functions φ such that φ(u) denotes a continuous nondecreasing function of
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u satisfying uφ(u) > 0, u 6= 0 with∫ ±∞
±1

du

φ(u)
<∞.

We will say that f(t, u, v1, v2, w1, w2) satisfies Condition (H ) provided for some
φ ∈ Φ there exists c 6= 0 and 0 < α < 1 such that for all t ≥ T

inf
|u|≥c

f(t, u, αg1(t)u, αg2(t)u, 1
α
h1(t)u, 1

α
h2(t)u)

φ(u)

≥ k

∣∣∣∣f (t, c, αg1(t)c, αg2(t)c,
1

α
h1(t)c,

1

α
h2(t)c

)∣∣∣∣
for some positive constant k.

We may now prove the following result:

Theorem 3.3.10. Suppose φ ∈ Φ. Assume f satisfies conditions (A), (B), and (H).
Then all solutions of

y
∆∆

+ f
(
t, yσ(t), yτ1(t), yτ2(t), yξ1(t), yξ2(t)

)
= 0 (3.14)

are oscillatory in case∣∣∣∣∫ ∞ tf (t, α, αkg1(t), αkg2(t),
α

k2
h1(t),

α

k2
h2(t)

)
∆t

∣∣∣∣ =∞ (3.25)

holds for all α 6= 0, where k is the constant appearing in condition (H).

Proof. If (3.25) holds for all α 6= 0, assume u(t) be a nonoscillatory solution of (3.14)
with

u(t) > 0, u(τ1(t)) > 0, u(τ2(t)) > 0 for t ≥ T.

As in the proof of Theorem 3.3.5, given 0 < α < 1 from condition (H) there exists
Tα ≥ T such that

u∆∆ + f

(
t, uσ(t), αg1(t)uσ(t), αg2(t)uσ(t)

1

α
h1(t)uσ(t),

1

α
h2(t)uσ(t)

)
≤ 0, t ≥ Tα.

(3.35)
Hence we obtain a solution y(t) of

y∆∆ + f

(
t, yσ(t), αg1(t)yσ(t), αg2(t)yσ(t),

1

α
h1(t)yσ(t),

1

α
h2(t)yσ(t)

)
= 0 (3.36)

with 0 < u(Tα) ≤ y(t) ≤ u(t), t ≥ Tα. We next define the continuously differentiable
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real-valued function

G(u) :=

∫ u

u0

ds

φ(s)
,

where u0 := y(Tα) > 0. Observe that G′(u) = 1/φ(u). By the Pötzche Chain Rule,

(G(y(t))∆ =

(∫ 1

0

dh

φ(yh(t))

)
y∆(t) ≥

(∫ 1

0

dh

φ(yσ(t)

)
y∆(t) =

y∆(t)

φ(yσ(t))

where yh(t) := y(t) + hµ(t)y∆(t) ≤ yσ(t). Since φ is nondecreasing, we have
1

φ(yh(t))
≥ 1

φ(yσ(t))
. Consequently,

(G(y(t)))∆ ≥ y∆(t)

φ(yσ(t)))
(3.37)

Furthermore, since y(t) > 0 and y∆(t) is nonincreasing, lim
t→∞

y∆(t) = L1 with

0 ≤ L1 <∞. Now integrating (3.36) for t ≥ T̃ ≥ Tα gives

0 = y∆(t)− y∆(T̃ )

+

∫ t

T̃

f

(
s, yσ(s), αg1(s)yσ(s), αg2(s)yσ(s),

1

α
h1(s)yσ(s),

1

α
h2(s)yσ(s)

)
∆s

and letting t→∞ in the above, we obtain

y∆(T̃ )

= L1 +

∫ ∞
T̃

f

(
s, yσ(s), αg1(s)yσ(s), αg2(s)yσ(s),

1

α
h1(s)yσ(s),

1

α
h2(s)yσ(s)

)
∆s

≥
∫ ∞
T̃

f

(
s, yσ(s), αg1(s)yσ(s), αg2(s)yσ(s),

1

α
h1(s)yσ(s),

1

α
h2(s)yσ(s)

)
∆s

>

∫ t

T̃

f

(
s, yσ(s), αg1(s)yσ(s), αg2(s)yσ(s),

1

α
h1(s)yσ(s),

1

α
h2(s)yσ(s)

)
∆s.
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Now multiplying by
(
φ(yσ(T̃ ))

)−1

, we obtain

y∆(T̃ )

φ(yσ(T̃ ))

≥ 1

φ(yσ(T̃ ))

∫ t

T̃

f

(
s, yσ(s), αg1(s)yσ(s), αg2(s)yσ(s),

1

α
h1(s)yσ(s),

1

α
h2(s)yσ(s)

)
≥
∫ t

T̃

f
(
s, yσ(s), αg1(s)yσ(s), αg2(s)yσ(s), 1

α
h1(s)yσ(s), 1

α
h2(s)yσ(s)

)
φ(yσ(s))

∆s (3.38)

≥
∫ t

T̃

kf

(
s, c, αg1(s)c, αg2(s)c,

1

α
h1(s)c,

1

α
h2(s)c

)
∆s

for sufficiently large T̃ (by condition (H)) where c := u(Tα) > 0. Observe that since
y∆(t) > 0, we have lim

t→∞
y(t) = L2 with 0 < L2 <∞ and so

lim
t→∞

G(y(t)) = lim
t→∞

∫ y(t)

u0

du

φ(u)
=

∫ L2

u0

du

φ(u)
= L <∞. (3.39)

Therefore as t→∞ we have∫ ∞
Tα

(G(y(s)))∆ = lim
t→∞

[G(y(t))−G(y(Tα))] <∞.

We integrate (3.38) for t ≥ T̃ and using (3.37) to obtain∫ t
T̃

(G(y(s)))∆∆s

≥
∫ t
T̃

y∆(s)
φ(yσ(s))

∆s

≥
∫ t
T̃

∫ s
T̃
kf
(
r, c, αg1(r)c, αg2(r)c, 1

α
h1(r)c, 1

α
h2(r)c

)
∆r∆s

= k
∫ t
T̃

(s− T̃ )f
(
s, c, αg1(s)c, αg2(s)c, 1

α
h1(s)c, 1

α
h2(s)c

)
∆s. (3.40)

However, the left side of (3.40) is bounded as t → ∞ whereas the right side is
unbounded by assumption (3.25). This contradiction shows that all solutions of (3.14)
are oscillatory.

We would like to illustrate some of the results above by means of several examples.
We first consider the linear case when the equation contains an advanced argument.
In the first example, we need the following lemma. Using this lemma is often referred
to as the Riccati substitution technique. (See Theorem 4.42 of [2]).

Lemma 3.3.11. The linear equation

Ly ≡ y∆∆ + q(t)yσ = 0
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is nonoscillatory if and only if there is a function z satisfying the Riccati dynamic
inequality

z∆ + q(t) + S(z)(t) ≤ 0 (3.41)

with 1 + µ(t)z(t) > 0 for large t, where

S(z) :=
z2

1 + µ(t)z
.

Example 3.3.12. Consider the linear functional dynamic equation

y∆∆ + p(t)yσ(t) + q(t)yτ (t) + r(t)yσ(t) = 0 (3.42)

where p(t), q(t), r(t) > 0 for t ≥ t0 > 0 and are rd-continuous. If we set

Q(t) := p(t) + q(t)
τ(t)

σ(t)
+ r(t)

then (3.42) is oscillatory in case

y∆∆ + λQ(t)yσ = 0 (3.43)

is oscillatory for some 0 < λ < 1. To see this, suppose that u(t) is a nonoscillatory
solution of (3.42) with u(t) > 0 for t ≥ T . Since u∆∆(t) ≤ 0 for all t, we have
u∆(t) > 0 for t ≥ T. Then by Lemma 3.3.1, for λ < k < 1 there is a Tk ≥ T such that

u∆∆(t) +

(
p(t) + kq(t)

τ(t)

σ(t)
+ r(t)

)
uσ(t) ≤ 0, t ≥ Tk.

Then with z(t) :=
u∆(t)

u(t)
, we see that z(t) satisfies the Riccati dynamic inequality

(3.41) with q(t) replaced by p(t) +kq(t) τ(t)
σ(t)

+ r(t). By Lemma 3.3.11, this means that
the equation

y∆∆ +

(
p(t) + kq(t)

τ(t)

σ(t)
+ r(t)

)
yσ(t) = 0

is nonoscillatory and so by the Sturm-Picone Comparison Theorem [14, Lemma 6],
(3.43) is also nonoscillatory. This contradiction shows that (3.42) is oscillatory. If we
apply a specific oscillation criterion, we conclude that (3.42) is oscillatory if

lim inf t

∫ ∞
t

(
p(s) + q(s)

τ(s)

σ(s)
+ r(s)

)
∆s >

1

4

(see Example 3.4 in [13]).

Example 3.3.13. Let f(t, u, v) := p(t)uγ1 + q(t)vγ2 , where γ1, γ2 > 0 and are the
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quotients of odd positive integers. We assume also that p(t), q(t) > 0 for all large

t and are rd-continuous. Observe condition (A) holds so that with g(t) =
τ(t)

σ(t)
we

conclude from Theorem 3.3.5 that all bounded solutions of

y∆∆ + p(t)(yσ(t))γ1 + q(t)(yτ (t))γ2 = 0 (3.44)

are oscillatory if ∫ ∞
t (p(t) + q(t)(g(t))γ2) ∆t =∞.

If γ1, γ2 > 1, then with φ(u) = uγ, where 1 < γ < min{γ1, γ2}, it is not difficult
to show that f(t, u, v) = p(t)uγ1 + q(t)vγ2 satisfies condition (H). Therefore, from
Theorem 3.3.10, we conclude that all solutions of (3.44) are oscillatory provided∫ ∞

t (p(t)αγ1 + q(t)(αg(t))γ2) ∆t =∞ (3.45)

for all α 6= 0. Moreover, (3.45) holds for all α 6= 0 if and only if∫ ∞
tp(t)∆t+

∫ ∞
tq(t)(g(t))γ2∆t =∞. (3.46)

Conversely, if lim inf
t→∞

g(t) := m1 > 0, then (3.46) is necessary for all solutions of (3.44)

to be oscillatory.

As an illustration of the situation when f involves an advanced argument, we
consider

Example 3.3.14. Suppose that

f(t, u, v, w) :=
p(t)uγ1 + q(t)vγ2

1 + r(t)w2

where p(t), q(t) > 0, r(t) ≥ 0 are rd-continuous and γ1, γ2 > 0. From Theorem 3.3.5,
we conclude that all bounded solutions of

y∆∆ +
p(t)(yσ(t))γ1 + q(t)(yτ (t))γ2

1 + r(t)(yξ(t))2
= 0 (3.47)

are oscillatory in case

k4

∫ ∞ t [p(t)αγ1 + q(t)(αg(t))γ2 ]

k4 + r(t)(αh(t))2
∆t =∞

for all α 6= 0 and some k ∈ (0, 1). Moreover, (3.47) has a bounded nonoscillatory
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solution iff ∫ ∞
tf(t, α, α, α)∆t <∞

for some α 6= 0.

The results in the last two examples may be regarded as extensions of some oscil-
lation criteria due to Atkinson [1].
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Chapter 4

Oscillation Criteria for Nonlinear
Delay Dynamic Equations

4.1 Oscillation of a Dynamic Equation with a

Single Delay

It is the purpose of this section to establish oscillation criteria for second order non-
linear dynamic equations with a single retarded argument. Specifically, we consider
the equation

y∆∆ + f
(
t, yσ(t), y(τ(t))

)
= 0, (4.1)

where f ∈ C([0,∞)T × R2), τ ∈ C([0,∞)T, [0,∞)T), and

0 < τ(t) ≤ t, lim
t→∞

τ(t) =∞. (4.2)

We shall restrict our attention to solutions of (4.1) which exist on the time scale
[T,∞)T. Our main results include Theorems 4.1.2 and 4.1.11.

We begin this section by introducing the auxiliary functions H(t, t0) and ηi(t, t0)
defined by

H(t, t0) = t− t0 and ηi(t, t0) :=
H(τi(t), t0)

H(σ(t), t0)
, 1 ≤ i ≤ n.

From Erbe and Peterson [8], we have the following lemma.

Lemma 4.1.1. [8, Lemma 1.2] Let y(t) be a solution of

(
p(t)y∆(t)

)∆
+

n∑
i=1

qi(t)y(τi(t)) = 0
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which satisfies

y(t) > 0, y∆(t) > 0,
(
p(t)y∆(t)

)∆ ≤ 0

for all τi(t) ≥ T ≥ t0. Then for each 1 ≤ i ≤ n we have

y(τi(t)) > ηi(t, T )yσ(t), τi(t) > T.

We continue with a general result for the case when y∆∆ + f
(
t, yσ(t), y(τ(t))

)
= 0

is linear of the form
y∆∆ + q(t)y(τ(t)) = 0, (4.3)

where q ∈ C[0,∞)T.

Theorem 4.1.2. Suppose q(t) ≥ 0 for t > 0. Assume that the equation

y∆∆ + λ
τ(t)

σ(t)
q(t)yσ(t) = 0, (4.4)

is oscillatory on (0,∞)T for some 0 < λ < 1. Then all solutions of (4.3) are oscilla-
tory.

Proof. Suppose, to the contrary, that (4.3) has a nonoscillatory solution and without
loss of generality, we assume there is an eventually positive solution u. That is, there
exists T0 ∈ [0,∞)T such that u(t) > 0 for t ≥ T0. Since τ(t) → ∞ as t → ∞, there
exists T ∈ [0,∞)T such that u(t) > 0 and u(τ(t)) > 0 for t ≥ T . Hence u∆(t) decreases
to a limit which must be nonnegative. In fact, we must have u∆(t) > 0 on [T,∞)T
for if u∆(t0) = 0 for some t0 > T , then u∆(t) ≡ 0 on [t0,∞)T. Consequently, from
(4.3) we would have q(t) ≡ 0 on [t0,∞)T, since u(τ(t)) > 0 on [T,∞)T, contradicting
the fact that (4.4) is oscillatory. So we have

u(t) > 0, u∆(t) > 0, u∆∆(t) ≤ 0 on [T,∞)T.

From Lemma 4.1.1 we have u(τ(t)) > η(t, T )uσ(t), τ(t) > T . So for any 0 < k < 1
there is a Tk ≥ T such that

u(τ(t)) ≥ τ(t)− T
σ(t)− T

≥ k
τ(t)

σ(t)
uσ(t), t ≥ Tk.

It follows that

u∆∆(t) + k
τ(t)

σ(t)
q(t)uσ(t) ≤ 0, t ≥ Tk. (4.5)

Let z(t) =
u∆(t)

u(t)
and Q(t) = k

τ(t)

σ(t)
q(t). Also, let

S[z] =
z2

1 + µ(t)z
.
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Then p(t) + µ(t)z(t) = 1 + µ(t)
u∆(t)

u(t)
> 0 for t ≥ T and

z∆ +Q+ S(z) =
uu∆∆ − (u∆)2

uuσ
+Q+

(
u∆

u

)2
1

1 + µu
∆

u

=
uu∆∆ − (u∆)2

uuσ
+Q+

(
u∆

u

)2
u

u+ µu∆

=
uu∆∆ − (u∆)2

uuσ
+Q+

(u∆)2

uuσ

=
u∆∆

uσ
+Q

≤ 0.

Hence, by Lemma 1.1 of [8], u∆∆ + Quσ = 0 is nonoscillatory. Choosing 0 < k < 1

such that k > λ, we have Q(t) > λ
τ(t)

σ(t)
q(t) =: R(t). Thus, by the Sturm-Picone

Comparison Theorem [14, Lemma 6], u∆∆ + R(t)uσ(t) = 0 is nonoscillatory. This
contradiction proves the theorem.

As a corollary to Theorem 4.1.2, we have

Corollary 4.1.3. All solutions of

y∆∆ + q(t)y(τ(t)) = 0, (4.3)

are oscillatory in case either of the following holds:

(i)

∫ ∞
(σ(t))α−1τ(t)q(t) ∆t =∞ for some 0 < α < 1

(ii) lim inf
t→∞

t

∫ ∞
t

τ(t)

σ(t)
q(t) ∆t >

1

4
and µ(t) is bounded.

Proof. If (i) holds, then for any λ > 0,

∫ ∞
σα(t)λ

τ(t)

σ(t)
q(t) ∆t =∞. By Example 3.2.7,

y∆∆ +λ
τ(t)

σ(t)
q(t)yσ(t) = 0 is oscillatory since 0 < α < 1. Hence, by Theorem 4.1.2, all

solutions of y∆∆ + q(t)y(τ(t)) = 0, equation (4.3), are oscillatory. Next assume (ii)

holds. Then by Theorem 3.1 of [23], y∆∆ +
τ(t)

σ(t)
q(t)yσ(t) = 0 is oscillatory. Since µ(t)

is bounded, we have that y∆∆ +
τ(t)

σ(t)
q(t)y(τ(t)) = 0 is oscillatory by Theorem 3.1.2

with f(t) = t. Since 0 < τ(t) ≤ t ≤ σ(t), by the Sturm-Picone Comparison Theorem
[14, Lemma 6], (4.3) is oscillatory.
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To prove another corollary of Theorem 4.1.2, we need the following results.

Lemma 4.1.4. If y is an eventually positive solution of

y∆∆ + λ
τ(t)

σ(t)
q(t)yσ(t) = 0, (4.4)

then there is a t0 ∈ [a,∞)T such that

y(t) ≥ y(τ(t)) > 0, y∆(t) > 0, and y∆∆(t) < 0 (4.6)

for all t ≥ t0 ≥ a.

Lemma 4.1.5. [4] Let a ∈ T. If T is a time scale that is unbounded above, then∫ ∞
a

∆t

t
=∞.

Lemma 4.1.6. If ∫ ∞
τ(t)q(t)∆t =∞, (4.7)

then every bounded solution of equation (4.4) is oscillatory on [a,∞)T.

Proof. Suppose that there exists an eventually positive and bounded solution y of
(4.4). Then there exists t0 ∈ T such that (4.6) holds, and without loss of generality,
there exist α, β ∈ R such that

0 < α < y(t) < β for all t ≥ t0.

Let Y (t) = ty∆(t). Then

Y (t) = Y (t0) +

∫ t

t0

Y ∆(s) ∆s

= Y (t0) +

∫ t

t0

{
y∆(s) + σ(s)y∆∆(s)

}
∆s

= Y (t0) +

∫ t

t0

{
y∆(s)− σ(s)λ

g(s)

σ(s)
q(s)yσ(s)

}
∆s

= Y (t0) + y(t)− y(t0)− λ
∫ t

t0

g(s)q(s)yσ(s) ∆s

≤ Y (t0) + β − y(t0)− λ
∫ t

t0

g(s)q(s)yσ(s) ∆s

≤ Y (t0) + β − y(t0)− λα
∫ t

t0

g(s)q(s) ∆s

→ −∞ as t→∞,
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i.e., there is a constant M > 0 such that

y∆(t) ≤ −M
t

for t ≥ T

for some T ≥ t0, and this implies that lim
t→∞

y(t) = −∞ by Lemma 4.1.5, contradicting

y(t) > 0 for all t ≥ t0. Thus every bounded solution of y∆∆ + λ
τ(t)

σ(t)
q(t)yσ(t) = 0 is

oscillatory.

In addition to the above lemmas, we should recall the following about upper and
lower solutions. Consider the second-order equation

y∆∆ = f(t, yσ) (4.8)

where f is continuous on [a, b]T × R.

Definition 4.1.7. [2, Definition 6.53] We say that α ∈ C2
rd is a lower solution of

(4.8) on [a, σ2(b)]T provided

α∆∆(t) ≥ f(t, ασ(t)) for all t ∈ [a, b]T.

Similarly, β ∈ C2
rd is called an upper solution of (4.8) on [a, σ2(b)]T provided

β∆∆(t) ≤ f(t, βσ(t)) for all t ∈ [a, b]T.

Theorem 4.1.8. [2, Theorem 6.54] Let f be continuous on [a, b]T ×R. Assume that
there exist a lower solution α and an upper solution β of (4.8) with

α(a) ≤ A ≤ β(a) and α(σ2(b)) ≤ B ≤ β(σ2(b))

such that
α(t) ≤ β(t) for all t ∈ [a, σ2(b)]T.

Then the BVP

y∆∆ = f(t, yσ) on [a, b]T, y(a) = A, y(σ2(b)) = B

has a solution y with

α(t) ≤ y(t) ≤ β(t) for all t ∈ [a, σ2(b)]T.

Recall the following generalization of Theorem 7.4 of [20].

Theorem 4.1.9. Let f be continuous on [a, b]T×R. Assume that there exist a lower
solution α and an upper solution β of (4.8) with α(t) ≤ β(t) for all t ∈ [a,∞)T. Then
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for any α(a) ≤ c ≤ β(a) the BVP

y∆∆ = f(t, yσ) y(a) = c (4.9)

has a solution y with

α(t) ≤ y(t) ≤ β(t) for all t ∈ [a,∞)T.

Now we can state and prove another corollary of Theorem 4.1.2.

Corollary 4.1.10. All bounded solutions of the linear second-order dynamic equation
y∆∆ + q(t)y(τ(t)) = 0 are oscillatory in case∫ ∞

τ(t)q(t)∆t =∞ (4.7)

holds.

Proof. Let u(t) be a bounded nonoscillatory solution of u∆∆ + q(t)u(τ(t)) = 0 with
u(t) > 0 and u(τ(t)) > 0 for t ≥ T . Since u∆∆(t) ≤ 0 for all t, we have u∆(t) > 0 on
[T,∞)T. As in the proof of Theorem 4.1.2, for any 0 < k < 1 there exists a Tk ≥ T
such that

u∆∆(t) + k
τ(t)

σ(t)
q(t)uσ(t) ≤ 0

for t ≥ T ≥ Tk. Let α(t) = u(T ) and β(t) = u(t). Then

f(t, ασ(t)) = −λτ(t)

σ(t)
q(t)uσ(T ) ≤ 0 = α∆∆(t)

and

f(t, βσ(t)) = −λτ(t)

σ(t)
q(t)uσ(t) ≥ β∆∆(t) with k = λ.

So α, β are lower and upper solutions, respectively, of y∆∆ + λ
τ(t)

σ(t)
q(t)yσ(t) = 0,

equation (4.4). As u is increasing, β(t) ≥ α(t) on [Tk,∞)T. Then by Theorem 4.1.9,
there is a solution y(t) of (4.4) satisfying u(T ) ≤ y(t) ≤ u(t) on [Tk,∞)T. As u is
bounded, y is a bounded nonoscillatory solution of (4.4). This is a contradiction to
Lemma 4.1.6 and proves the theorem.

We end this section with a general result for the case when

y∆∆ + f(t, yσ(t), y(τ(t))) = 0
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is linear of the form
(p(t)y∆)∆ + q(t)y(τ(t)) = 0, (4.10)

where p : T→ (0,∞) is rd-continuous and satisfies

∫ ∞ 1

p(t)
∆t =∞ and

q ∈ Crd[0,∞)T.

Theorem 4.1.11. Suppose q(t) ≥ 0 for t > 0. Assume that the equation

(p(t)y∆)∆ + λ
τ(t)

σ(t)
q(t)yσ(t) = 0

is oscillatory on (0,∞)T for some 0 < λ < 1. Then all solutions of (4.10) are
oscillatory.

Proof. If not, we may assume that u(t) is a nonoscillatory solution of (4.10) with
u(t) > 0 on [T,∞)T. As τ(t) → ∞ as t → ∞, we may also assume that u(τ(t)) > 0
for t ≥ T . Consequently,

(p(t)u∆(t))∆ = −q(t)u(τ(t)) ≤ 0 for t ≥ T.

Integrating twice from T to t gives

u(t) ≤ u(T ) + p(T )u∆(T )

∫ t

T

1

p(s)
∆s t ≥ T.

As shown in Theorem 3.1.2, it follows that p(t)u∆(t) > 0 on [T,∞)T. So we have

u(t) > 0, p(t)u∆(t) > 0, (p(t)u∆(t))∆ ≤ 0, u(τ(t)) > 0 on [T,∞)T.

From Lemma 4.1.1 we have u(τ(t)) > η(t, T )uσ(t), τ(t) > T . So for any 0 < k < 1
there is a Tk ≥ T such that

u(τ(t)) ≥ τ(t)− T
σ(t)− T

uσ(t) ≥ k
τ(t)

σ(t)
uσ(t), t ≥ Tk.

Since (pu∆)∆ + q(t)u(τ(t)) = 0, we have

(p(t)u∆(t))∆ + k
τ(t)

σ(t)
q(t)uσ(t) ≤ 0, t ≥ Tk.

Let z(t) =
p(t)u∆(t)

u(t)
and Q(t) = k

τ(t)

σ(t)
q(t). Then we have

p(t) + µ(t)z(t) = p(t) + µ(t)
u∆(t)

u(t)
> 0 for t ≥ T
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and

z∆ +Q+ S(z) =
u(pu∆)∆ − p(u∆)2

uuσ
+Q+

(
pu∆

u

)2
1

p+ µpu
∆

u

=
u(pu∆)∆ − p(u∆)2

uuσ
+Q+

(
pu∆

u

)2
u

p(u+ µu∆)

=
u(pu∆)∆ − p(u∆)2

uuσ
+Q+

p(u∆)2

uuσ

=
(pu∆)∆

uσ
+Q

≤ 0.

Hence, by Lemma 1.1 of [8], u∆∆ + Quσ = 0 is nonoscillatory. Choosing λ < k < 1,

we have Q(t) > λ
τ(t)

σ(t)
q(t) =: R(t). Thus, by the Sturm-Picone Comparison Theorem

[14, Lemma 6], u∆∆ + R(t)uσ(t) = 0 is nonoscillatory. This contradiction proves the
theorem.

4.2 Oscillation of a Dynamic Equation with

Several Delays

In this section we establish several oscillation results for the nonlinear delay dy-
namic equation

y∆∆ + f(t, yσ(t), y(τ1(t)), . . . , y(τn(t))) = 0 (4.11)

where for some positive integer n, f ∈ C ([0,∞)T × Rn+1) , τi ∈ C ([0,∞)T,T+)
for 1 ≤ i ≤ n, and

0 < τi(t) ≤ t, and lim
t→∞

τi(t) =∞, 1 ≤ i ≤ n. (4.12)

Results of particular importance are Theorems 4.2.2 and 4.2.4. We also provide
examples to further establish the importance of Theorem 4.2.2.

Throughout this section we shall assume f(t, u, v1, . . . , vn) satisfies

f(t, u, v1, . . . , vn) = −f(t,−u,−v1, . . . ,−vn) (4.13)

and
f(t, u, v1, . . . , vn) > 0 for u, v1, . . . , vn > 0 and all t ≥ 0. (4.14)

Further, we assume that for each fixed t and u > 0, f(t, u, v1, . . . , vn) is nondecreasing
in vi for vi > 0, 1 ≤ i ≤ n and that for each fixed t and vi > 0, 1 ≤ i ≤ n,
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f(t, u, v1, . . . , vn) is nondecreasing in u for u > 0.
Our first result is a generalization of Theorem 3 of [24].

Theorem 4.2.1. Let f(t, y) be a continuous function of the variables t ≥ t0 and
|y| < ∞. Assume that for all t > 0 and y 6= 0, yf(t, y) > 0, and for each fixed t,
f(t, y) is nondecreasing in y for y > 0. Then a necessary condition for

y∆∆ + f(t, yσ) = 0, t ≥ t0 (4.15)

to have a bounded nonoscillatory solution is that∫ ∞
tf(t, c)∆t <∞ (4.16)

for some constant c > 0.

Proof. Suppose y(t) is a bounded eventually positive solution of (4.15). So there
exists T ∈ [t0,∞)T such that y(t) > 0 for t ≥ T . As f(t, y) > 0 for all y > 0, y∆∆ is
eventually negative. So y∆ is decreasing and tends to a limit L that is positive, zero,
negative, or −∞. If L < 0 or if L = −∞, y would be eventually negative. Hence
lim
t→∞

y∆(t) = L with 0 ≤ L < ∞. In fact, L = 0, since if L > 0, then y(t) would be

unbounded. Integrating (4.15) from s to t, we obtain

y∆(s) = y∆(t) +

∫ t

s

f(u, yσ(u))∆u.

Letting t→∞ gives

y∆(s) =

∫ ∞
s

f(τ, yσ(τ))∆τ (4.17)

since 0 = L <∞.
As y(t) is nondecreasing and bounded, it increases to a finite limit l > 0. By the

monotonicity of f , we have for any ε > 0 with l − ε > 0 there exists Tε such that

f(t, l) ≥ f(t, yσ(t)) ≥ f(t, l − ε), t ≥ Tε (4.18)



53

for all t ≥ T . Integrating (4.17) from T to t, we have

y(t)− y(T ) ≥
∫ t

T

∫ ∞
s

f(u, yσ(u))∆u∆s

=

∫ t

T

∫ u

T

f(u, yσ(u))∆s∆u+

∫ ∞
t

∫ t

T

f(u, yσ(u))∆s∆u

=

∫ t

T

(u− T )f(u, yσ(u))∆u+

∫ ∞
t

(t− T )f(u, yσ(u))∆u

≥
∫ t

T

(t− T )f(u, yσ(u))∆u

≥
∫ t

T

(t− T )f(u, l − ε)∆u

by (4.18). So

y(t) ≥ y(T ) +

∫ t

T

(u− T )f(u, l − ε)∆u >
∫ t

T

(u− T )f(u, l − ε)∆u. (4.19)

Therefore, l ≥ y(t) ≥
∫ t
T

(u−T )f(u, l− ε)∆u. Since l− ε > 0, letting t→∞ in (4.19)
implies ∫ ∞

T

(u− T )f(u, l − ε)∆t <∞.

Hence (4.16) is necessary.

Recall the auxiliary functions H(t, t0) and ηi(t, t0) defined by

H(t, t0) = t− t0 and ηi(t, t0) :=
H(τi(t), t0)

H(σ(t), t0)
, 1 ≤ i ≤ n.

The following two results are extensions of Erbe [11].

Theorem 4.2.2. All bounded solutions of the nonlinear dynamic equation

y∆∆ + f (t, yσ(t), y(τ1(t)), . . . , y(τn(t))) = 0 (4.11)

are oscillatory in case∣∣∣∣∫ ∞ tf(t, α, αη1(t, t0), . . . , αηn(t, t0))∆t

∣∣∣∣ =∞ (4.20)

for all α 6= 0 and t0 ∈ T.

Proof. Assume not and let u(t) be a bounded nonoscillatory solution of (4.11) which



54

we may assume satisfies

u(t) > 0, u∆(t) > 0, u∆∆(t) ≤ 0, u(τi(t)) > 0, t ≥ T ≥ t0, 1 ≤ i ≤ n.

By Lemma 4.1.1, we know that for each 1 ≤ i ≤ n,

u(τi(t)) > ηi(t, T )uσ(t), τi(t) > T.

Then by the monotonicity of f we have
u∆∆ + f(t, uσ(t), η1(t, T )uσ(t), . . . , ηn(t, T )uσ(t))

≤ u∆∆ + f(t, uσ(t), u(τ1(t)), . . . , u(τn(t))) = 0.

Define
F (t, w) := f(t, w, η1(t, T )w, . . . , ηn(t, T )w).

Then it follows that F (t, uσ(t)) = f(t, uσ(t), η1(t, T )uσ(t), . . . , ηn(t, T )uσ(t)). Apply-
ing Theorem 4.1.9 with α(t) ≡ u(T ) ≤ u(t) ≡ β(t), we obtain the existence of a
solution y(t) of

y∆∆ + F (t, yσ) = 0

with u(T ) ≤ y(t) ≤ u(t) on [T,∞)T. However, by Theorem 4.2.1 it follows that∣∣∣∣∫ ∞ tF (t, c)∆t

∣∣∣∣ <∞
for some constant c 6= 0. Since lim

t→∞

ηi(t, T )

ηi(t, t0)
= 1, given any 0 < k < 1, there exists Tk

such that ηi(t, T ) ≥ kηi(t, t0), t ≥ Tk, 1 ≤ i ≤ n. Hence∣∣∣∣∫ ∞ tf(t, ck, ckη1(t, t0), . . . , ckηn(t, t0))∆t

∣∣∣∣ <∞
by the monotonicity of f and the fact that 0 < k < 1. It follows that with c̃ = ck∣∣∣∣∫ ∞ tf(t, c̃, c̃η1(t, t0), . . . , c̃ηn(t, t0))∆t

∣∣∣∣ <∞,
which contradicts (4.20). This completes the proof.

The next theorem shows that the converse of Theorem 4.2.2 is true under addi-
tional assumptions.

Theorem 4.2.3. Assume for each i ∈ {1, . . . , n} there exists ρi > 0 such that

lim inf
t→∞

ηi(t, t0) ≥ ρi for t0 ∈ T (4.21)
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and assume σ(t)/t is bounded on T. Then the nonlinear dynamic equation

y∆∆ + f(t, yσ(t), y(τ1(t)), . . . , y(τn(t))) = 0 (4.11)

has a bounded nonoscillatory solution if, and only if,∣∣∣∣∫ ∞ σ(t)f(t, α, α, . . . , α)∆t

∣∣∣∣ <∞ (4.22)

for some α 6= 0.

Proof. Note that for any β∣∣∣∣∫ ∞ σ(t)f(t, β, . . . , β)∆t

∣∣∣∣ <∞
if, and only if, ∣∣∣∣∫ ∞ tf(t, β, . . . , β)∆t

∣∣∣∣ <∞
since σ(t)/t is bounded on T.

We prove first the necessity of (4.22). By assumption, given any ε > 0 with
ε < 1

2
min{ρi|1 ≤ i ≤ n} there exists Ti ≥ t0 such that ηi(t, t0) ≥ ρi − ε for t ≥

Ti and 1 ≤ i ≤ n. Assume (4.11) has a bounded nonoscillatory solution. Then by

Theorem 4.2.2,

∣∣∣∣∫ ∞ tf(t, α, αη1, . . . , αηn)∆t

∣∣∣∣ < ∞ for some α 6= 0. From (4.21), we

have
αηi(t, t0) ≥ α(ρi − ε) =: αρ̃i, t ≥ Ti

where 0 < ρ̃i < ρi. Hence, by the monotonicity of f , we have∣∣∣∣∫ ∞ tf(t, α, αρ̃1, . . . , αρ̃n)∆t

∣∣∣∣ <∞.
Let ρ̃ := min {ρ̃i|1 ≤ i ≤ n}. Observe that ηi(t, t0) ≤ 1 implies that 0 < ρ̃i ≤ 1 for
t ≥ Ti and for all i. Hence αρ̃ ≤ αρ̃i ≤ α for all 1 ≤ i ≤ n. Thus∣∣∣∣∫ ∞ tf(t, αρ̃, αρ̃, . . . , αρ̃)∆t

∣∣∣∣ <∞,
which shows that (4.22) is necessary.

Suppose (4.22) holds. Assume to be specific that α > 0 and let 0 < β < α.
Choose T ≥ t1 ≥ t0 so that τi(t) ≥ t1 if t ≥ T for all i = 1, . . . , n and so that∫ ∞

T

σ(s)f(s, β, β, . . . , β)∆s <
β

2
.
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Define y0(t) ≡ β for t ≥ t0 and

ym+1(t) =

{
β −

∫∞
T

(σ(s)− T )f(s, yσm(s), ym(τ1(s)), . . . , ym(τn(s)))∆s, t < T,
β −

∫∞
t

(σ(s)− t)f(s, yσm(s), ym(τ1(s)), . . . , ym(τn(s)))∆s, t ≥ T.

Observe t1 ≤ τi(t) ≤ t for all t ≥ T and i = 1, . . . , n. We claim that

β

2
≤ ym(t) ≤ β t ≥ T and all m ≥ 0. (4.23)

By construction the claim holds for y0(t). Notice that when τi(t) < T ≤ t for any
i = 1, . . . , n, ym(τi(t)) < β as y∆

m(t) ≡ 0 for all t ∈ T less than T . Assume the
inequality holds for yk(t), 1 ≤ k ≤ m. Then for t ≥ T

ym+1(t) = β −
∫ ∞
t

(σ(s)− t)f(s, yσm(s), ym(τ1(s)), . . . , ym(τn(s)))∆s

≥ β −
∫ ∞
t

σ(s)f(s, yσm(s), ym(τ1(s)), . . . , ym(τn(s)))∆s

> β −
∫ ∞
t

σ(s)f (s, β, β, . . . , β) ∆s

> β − β

2

=
β

2
.

Furthermore, since s ≥ T , we have yσm(s), ym(τ1(s)), . . . , ym(τn(s)) are all positive.
Hence by (4.14)

(σ(s)− t)f
(
s, yσm(s), ym(τ1(s)), . . . , ym(τn(s))

)
≥ 0

for s ≥ t ≥ T . Consequently, ym+1(t) ≤ β for t ≥ T . Therefore, by induction, the
claim holds.

Furthermore, for t ≥ T ,

y∆
m+1(t) = 0− (σ(t)− σ(t))f(s, yσm(s), ym(τ1(s)), . . . , ym(τn(s)))

−
∫ ∞
t

(−1)f(s, yσm(s), ym(τ1(s)), . . . , ym(τn(s)))∆s

≤
∫ ∞
t

f(s, β, β, . . . , β)∆s,

and so
{
y∆
m(t)

}∞
m=0

is uniformly bounded for t ≥ T . Hence, the set {ym(t)}∞m=0 is
uniformly bounded and equicontinuous. Therefore, the Ascoli-Arzela theorem along
with a standard diagonalization argument yields a subsequence of {ym(t)}∞m=0 which
converges uniformly on compact subintervals of [T,∞) to a solution y(t) of (4.11)



57

satisfying β/2 ≤ y(t) < β, t ≥ T . This proves the theorem as β > 0.

We shall note later (see Remark 4.2.7) that the converse of Theorem 4.2.2 is not
true. To extend Theorems 4.2.2 and 4.2.3 to unbounded solutions, we introduce the
class Φ of functions φ such that φ(u) is a nondecreasing continuous function of u
satisfying uφ(u) > 0, u 6= 0 with ∫ ±∞

±1

du

φ(u)
<∞.

We will say that f(t, u, v1, . . . , vn) satisfies Condition (C) provided for some φ ∈ Φ
there exists c 6= 0 and 0 < α < 1 such that

lim inf
|u|→∞

f(t, u, αη1(t, t0), . . . , αηn(t, t0))

φ(u)
≥ k|f(t, c, αη1(t, t0)c, . . . , αηn(t, t0)c)| (4.24)

for some positive constant k and all t ≥ T .
We continue with a generalization of Theorem 4 of [24].

Theorem 4.2.4. Suppose φ ∈ Φ. Let f(t, y) be a continuous function of the variables
t ≥ t0 and |y| <∞ such that for all t > 0 yf(t, y) > 0, y 6= 0 and satisfies with respect
to φ(y) the following conditions: there is a c 6= 0 such that

lim inf
|y|→∞

f(t, y)

φ(y)
≥ k|f(t, c)|, (4.25)

for some positive constant k, and for all t ≥ T ,

lim
|y|→∞

∣∣∣∣∫ y 1

φ(u)
du

∣∣∣∣ <∞. (4.26)

Assume also that µ(t)/t is bounded on T. Then a necessary and sufficient condition
for the second-order dynamic equation

y∆∆ + f(t, yσ) = 0 (4.15)

to be oscillatory is that ∣∣∣∣∫ ∞ σ(t)f(t, c)∆t

∣∣∣∣ =∞, (4.27)

for all c 6= 0.

Proof. Note that if µ(t)/t is bounded, then (4.27) holds if and only if∣∣∫∞ tf(t, c)∆t
∣∣ =∞ for all c 6= 0.

Assume (4.15) is oscillatory and
∣∣∫∞ tf(t, c)∆t

∣∣ < ∞ for some c 6= 0. Hence, by
Theorem 4.2.1, y∆∆(t) + f(t, yσ(t)) = 0 has a bounded nonoscillatory solution. So
condition (4.27) is necessary.
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Conversely, assume (4.27) holds and let y(t) be a solution of (4.15) where we
assume y is eventually positive. As in the proof of Theorem 4.2.1, y∆(t) is decreasing
and hence must tend to a nonnegative limit. Since (4.27) holds, from Theorem 4.2.1,
we see that y(t) cannot be bounded. So we assume that lim

t→∞
y(t) =∞.

We next define the continuously differentiable real-valued function

G(u) :=

∫ u

u0

ds

φ(s)
.

Observe that G′(u) = 1/φ(u). By the Pötzsche Chain Rule [2, Theorem 1.90],

(G(y(t))∆ =

(∫ 1

0

dh

φ(yh(t))

)
y∆(t) ≥

(∫ 1

0

dh

φ(yσ(t)

)
y∆(t) =

y∆(t)

φ(yσ(t))
,

where yh(t) := y(t) + hµ(t)y∆(t) ≤ yσ(t). Since φ is nondecreasing we have that
1

φ(yh(t))
≥ 1

φ(yσ(t))
. Now integrating (4.15) for t ≥ T gives

0 = y∆(t)− y∆(T ) +

∫ t

T

f(s, yσ(s))∆s,

and since y∆(t) > 0 for all large t, we obtain

y∆(T ) = y∆(t) +

∫ t

T

f(s, yσ(s))∆s >

∫ t

T

f(s, yσ(s))∆s.

Now multiplying by (φ(yσ(T )))−1, we obtain

y∆(T )

φ(yσ(T ))
≥ 1

φ(yσ(T )

∫ t

T

f (s, yσ(s)) ∆s

≥
∫ t

T

f(s, yσ(s))

φ(yσ(s))
∆s (4.28)

≥
∫ t

T

k

2
f(s, c)∆s

for sufficiently large T . Since lim
t→∞

y(t) =∞, we have

lim
t→∞

G(y(t)) = lim
t→∞

∫ y(t)

T

du

φ(u)
=

∫ ∞
T

du

φ(u)
<∞.
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We integrate (4.28) for t ≥ T to obtain∫ t

T

(G(y(s)))∆∆s ≥
∫ t

T

y∆(s)

φ(yσ(s))
∆s

≥
∫ t

T

∫ s

T

k

2
f (r, c) ∆r∆s (4.29)

=
k

2

∫ t

T

(s− T )f (s, c) ∆s.

However, by letting t → ∞ in (4.29), the left side is bounded whereas the right side
is unbounded by assumption (4.27), a contradiction.

We may now prove the following result:

Theorem 4.2.5. Assume f satisfies condition (C) and that σ(t)/t is bounded. Then
all solutions of y∆∆ + f(t, yσ(t), y(τ1(t)), . . . , y(τn(t))) = 0 are oscillatory in case∣∣∣∣∫ ∞ σ(t)tf(t, α, αη1(t, t0), . . . , αηn(t, t0))∆t

∣∣∣∣ =∞ (4.30)

holds for all α 6= 0. In addition, if lim inf
t→∞

ηi(t, t0) ≥ ρi (ie, inequality (4.21) holds),

then (4.30) is also necessary.

Proof. Assume (4.30) holds for all α 6= 0 and let u(t) be a nonoscillatory solution of
u∆∆ + f(t, uσ(t), u(τ1(t)), . . . , u(τn(t))) = 0 which we may assume satisfies

u(t) > 0, u∆(t) > 0, u∆∆(t) ≤ 0, u(τi(t)) > 0, t ≥ T ≥ t0, 1 ≤ i ≤ n.

By Lemma 4.1.1 we know that for each 1 ≤ i ≤ n

u(τi(t)) > ηi(t, T )uσ(t), τi(t) > T.

By the monotonicity of f we have

u∆∆ + f(t, uσ(t), η1(t, T )uσ(t), . . . , ηn(t, T )uσ(t)) ≤ 0.

As in the proof of Theorem 4.2.2, we obtain the existence of a solution y(t) of
y∆∆ + F (t, yσ) = 0 with 0 < u(T ) ≤ y(t) ≤ u(t), t ≥ T . Now by Theorem 4.2.4, it
follows that ∣∣∣∣∫ ∞ σ(t)f(t, c, cη1(t, T ), . . . , cηn(t, T ))∆t

∣∣∣∣ <∞,
for some c 6= 0, which is a contradiction.

Conversely, assume (4.21) holds and (4.30) does not for some α 6= 0. It follows
that for any ε > 0 with ε < 1

2
min {ρ̃i|1 ≤ i ≤ n} there exists Ti ≥ t0 such that



60

ηi(t, t0) ≥ ρi − ε for t ≥ Ti and 1 ≤ i ≤ n. Let ρ̃i := ρi − ε, 1 ≤ i ≤ n and
ρ̃ := min {ρ̃i|1 ≤ i ≤ n}. Then

αηi(t, t0) ≥ α(ρi − ε) = αρ̃i ≥ αρ̃

for t ≥ T for t ≥ Ti. Then by the monotonicity of f and the fact that ηi ≤ 1 for
t ≥ T , we have ∣∣∣∣∫ ∞ σ(t)f(t, αρ̃, . . . , αρ̃)∆t

∣∣∣∣ <∞,
which gives (4.22). Therefore, by Theorem 4.2.3,

y∆∆ + f(t, yσ(t), y(τ1(t)), . . . , y(τn(t))) = 0

has a bounded nonoscillatory solution.

As corollaries to these results, we obtain and extend the results of Gollwitzer [17]
for the equation

y∆∆(t) + q(t)(y(τ(t)))γ = 0 (4.31)

where 0 < τ(t) ≤ t and q(t) is continuous and eventually nonnegative on [T,∞)T,
and γ > 1 is the quotient of odd integers.

Corollary 4.2.6. All solutions of (4.31) are oscillatory provided∫ ∞
t1−γq(t)(τ(t))γ∆t =∞ (4.32)

and µ(t)/t is bounded.

Proof. Assume (4.32) holds. Define φ(u):= uγ. Then uφ(u) > 0 for u 6= 0 and by

Theorem 2.6 of Erbe and Hilger [12],

∫ ±∞
±1

du

φ(u)
<∞ and uφ(u) > 0 for u 6= 0. Let

f(t, u, v) := q(t)vγ(t) and let c = 1 and 0 < α < 1. Then

f(t, u, αη(t)u)

φ(u)
=

αγq(t)
(
τ(t)
t

)γ
uγ

uγ

= αγq(t)

(
τ(t)

t

)γ
= k|f(t, c, αη(t)c)|

for k = 1 and all t ≥ T . Furthermore∣∣∣∣∫ ∞ t(f, t, α, αη(t))∆t

∣∣∣∣ =

∣∣∣∣∫ ∞ t1−γq(t)αγ(τ(t))γ∆t

∣∣∣∣ =∞.
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Hence, by Theorem 4.2.5, equation (4.31) is oscillatory.

Remark 4.2.7. Theorem 4.2.2 shows that∫ ∞
tq(t)∆t =∞ (4.33)

is a necessary condition for all solutions of (4.31) to oscillate, in case γ > 1, with just
the assumptions that 0 < τ(t) ≤ t and lim

t→∞
τ(t) = ∞. However, (4.33) is no longer

sufficient as the following examples demonstrate.

Example 4.2.8. Let T = [1,∞)R. Consider equation (4.31) with

q(t) = β(1− β)tα and τ(t) = tδ,

where α = β(1− γδ)− 2 with 0 < β, δ < 1 and γδ < 1, and γ is the quotient of odd
integers. For this example, y(t) = tβ is a nonoscillatory solution but

∫∞
tq(t)∆t =∞.

We have

y′′(t) + q(t)(y(τ(t)))γ = β(β − 1)
[
tβ−2 − tα+βγδ

]
= β(β − 1)

[
tβ−2 − tβ(1−γδ)−2+βγδ

]
= β(β − 1)

[
tβ−2 − tβ−2

]
= 0.

However, ∫ ∞
tq(t)dt =

∫ ∞
T

tβ(1− β)tαdt, for T sufficiently large

= β(1− β) lim
R→∞

∫ R

T

t1+αdt

=
β(1− β)

2 + α
lim
R→∞

[
R2+α − T 2+α

]
= ∞

since 2 + α > 0.

Example 4.2.9. For q > 1, let T = qN0 . We want to find a function Q : T→ R and a
function y : T→ R such that y(t) is a nonoscillatory solution y∆∆ +Q(t)yγ(τ(t)) = 0
and

∫∞
tQ(t)∆t = ∞, where τ(t) : T → T is such that τ(t) ≤ t and lim

t→∞
τ(t) = ∞

and γ > 1 is a quotient of odd positive integers.
Let y(t) = tβ with β < 1. Since σ(t) = tq > t, we have

y∆(t) = tβ−1 q
β − 1

q − 1
.
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After simplifying, we obtain

y∆∆(t) =
qβ − 1

(q − 1)2
tβ−2[qβ−1 − 1].

It follows that

Q(t) =
qβ − 1

(q − 1)2
· t

β−2[1− qβ−1]

yγ(τ(t))
=: Cq

tβ−2

yγ(τ(t))
.

Now choose τ(t) = q

⌊
k

2

⌋
, where b·c is the greatest integer function. Then

τ(t) ≤ t and lim
t→∞

τ(t) =∞. Consequently

Q(t) =

{
Cqt

β(2−γ)−4
2 , if k is even,

Cqt
β(2−γ)−4

2 q
γβ
2 , if k is odd.

(4.34)

Now∫ ∞
tQ(t)dt = Cq lim

R→∞

{∫ R
T
t
β(2−γ)

2 dt, if k is even,∫ R
T
t
β(2−γ)

2 q
γβ
2 dt, if k is odd

for T sufficiently large

= Cq(q − 1) lim
n→∞


n−1∑
k=m

qk
β(2−γ)

2 , if k is even,

q
γβ
2

n−1∑
k=m

qk
β(2−γ)

2 , if k is odd

= ∞

if q
β(2−γ)

2 > 1. That means β(2 − γ) must be nonnegative. If it were negative, then
y∆∆(t) would be positive, which cannot happen as shown in the proof of Theorem
4.2.2. Hence, in order for the dynamic equation y∆∆ + Q(t)yγ(τ(t)) = 0 to have a
nonoscillatory solution y(t) = tβ and for

∫∞
tQ(t)∆t =∞, we must choose 0 ≤ β < 1

and 1 < γ ≤ 2.

In order to prove another extension of a second theorem of Gollwitzer [17], we
need the following result.

Lemma 4.2.10. Let y(t) be a positive solution of (4.31) defined on [t0,∞)T for some
t0 > 0 that satisfies y∆(t) > 0 and y∆∆(t) ≤ 0 on [t0,∞)T. If∫ ∞

(τ(t))γq(t)∆t =∞, (4.35)

where 0 < γ < 1 is the quotient of positive integers, then there exists a t1 ≥ t0 such
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that
y(t)

y∆(t)
≥ t

for t ≥ t1 and
y(t)

t
is decreasing on [t1,∞)T.

Proof. Let y(t) be as in the statement of the lemma and assume (4.35) holds. Let
Y (t) := y(t)− ty∆(t). Then Y ∆(t) = −σ(t)y

∆∆
(t) ≥ 0 for t ∈ [t0,∞)T. This implies

that Y (t) is increasing on [t0,∞)T. We claim there is a t1 ∈ [t0,∞) such that Y (t) ≥ 0
on [t1,∞)T. Assume not, then Y (t) < 0 on [t0,∞)T. Therefore(

y(t)

t

)∆

=
ty∆(t)− y(t)

tσ(t)
= − Y (t)

tσ(t)
> 0, t ∈ [t0,∞)T,

which implies that
y(t)

t
is increasing on [t0,∞)T. Pick t2 ∈ [t0,∞)T such that

τ(t) ≥ τ(t0) for t ≥ t2. Then y(τ(t))/τ(t) ≥ y(τ(t1))/τ(t1) =: d > 0, which gives
y(τ(t)) ≥ dτ(t) for t ≥ t2. Now by integrating both sides of (4.31) from t2 to t, we
obtain

y∆(t)− y∆(t2) +

∫ t

t2

q(s)(y(τ(s)))γ∆s = 0.

This implies that

y∆(t2) ≥
∫ t

t2

q(s)(y(τ(s)))γ∆s ≥ dγ
∫ t

t2

q(s)τ γ(s)∆s,

which contradicts (4.35). Hence there is a t1 ∈ [t0,∞)T such that Y (t) ≥ 0 on
[t1,∞)T. Moreover,(

y(t)

t

)∆

=
ty∆(t)− y(t)

tσ(t)
= − Y (t)

tσ(t)
≤ 0, t ∈ [t0,∞)T,

and we have that
y(t)

t
is decreasing on [t1,∞)T. This completes the proof of the

lemma.

We end this section with an extension of a third theorem of Gollwitzer [17] for
equation

y∆∆(t) + q(t)(y(τ(t)))γ = 0. (4.31)

Theorem 4.2.11. Let 0 < γ < 1 in equation (4.31). Then all solutions of (4.31) are
oscillatory if, and only if, (4.35) holds.

Proof. We first show that condition (4.35) is sufficient. Assume y(t) is a positive solu-
tion and q(t) ≥ 0 for sufficiently large t. Since (4.35) holds we see that for sufficiently
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large t, y∆∆(t) ≤ 0, y∆(t) > 0, and y(t) > 0. Let c be fixed and sufficiently large.

If we multiply both members of (4.31) by
(
y∆(τ(t))

)−γ
and use Lemma 4.2.10, we

obtain
[y∆(τ(t))]−γy∆∆(t) + q(t)(τ(t))γ ≤ 0.

Since y∆(t) is nonincreasing and positive, we see that y∆(τ(t)) ≥ y∆(t) for t ≥ c and
hence

[y∆(t)]−γy∆∆(t) + q(t)(τ(t))γ ≤ 0.

Integrating we obtain∫ t

c

[y∆(s)]−γy∆∆(s)∆s+

∫ t

c

q(s)Lγ(τ(s))γ∆s ≤ 0.

It remains to show that the first term is bounded below. Once we obtain this, we will
reach a contradiction since (4.35) holds. To this end, consider [(y∆)−γ+1]∆. Using the
Pötzsche Chain Rule [2, Theorem 1.90], we have

[(y∆(t))−γ+1]∆ = (1− γ)

(∫ 1

0

[(1− h)y∆(t) + hy∆(σ(t))]−γdh

)
y∆∆(t).

As y∆∆(t) ≤ 0 for all sufficiently large t, we have y∆(σ(t)) ≤ y∆(t). Consequently,

(1− h)y∆(t) + hy∆(σ(t)) ≤ (1− h)y∆(t) + hy∆(t) = y∆(t).

Now as 0 < γ < 1 and y∆∆(t) ≤ 0, we have

[(y∆(t))−γ+1]∆ ≤ (1− γ)y∆∆(t)
(
y∆(t)

)−γ
.

Consequently,∫ t

c

(
y∆(s)

)−γ
y∆∆(s)∆s ≥ 1

1− γ

∫ t

c

[(y∆(s))−γ+1]∆∆s

=
1

1− γ
[
(y∆(t))−γ+1 − (y∆(c))−γ+1

]
≥ 0

> −∞

as t→∞. Hence equation y∆∆(t) + q(t)(y(τ(t)))γ = 0 is oscillatory.
Conversely, suppose that

∫∞
(τ(s))γq(s)∆s < ∞. It is sufficient to construct a

nonoscillatory solution on some half-line [t0,∞)T. Choose t0 so large that∫ ∞
t0

(τ(s))γq(s)∆s <
1

2
.
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Consider the solution y(t) which is defined by the initial data

y∆(t0) = 1, y(t) = 0, t ≥ t0.

Then y(t) > 0 for some t > t0. We claim that this solution does not vanish on [t0,∞)T.
If y(t1) = 0 for some t1 > t0, then there exits t2 ∈ (t0, t1)T such that y∆(t2) ≤ 0.
However, this will contradict the following statement: the function y∆(t) can never
vanish on (t0, t1)T. Since y∆∆(t) ≤ 0 on (t0, t1)T, we see, after two integrations, that

y(t) ≤ (t− t0), t0 ≤ t ≤ t1.

From y∆∆(t) + q(t)(y(τ(t)))γ = 0, we have

y∆(t) = 1−
∫ t

t0

q(s)(y(τ(s)))γ∆s ≥ 1−
∫ t

t0

q(s)(τ(s)− t0)γ∆s ≥ 1

2
.

Hence y∆(t) never vanishes and the proof is complete.
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Chapter 5

Asymptotic Behavior for
Functional Dynamic Equations

5.1 Asymptotic Behavior of Dynamic Equations

In this section we are concerned with the asymptotic behavior of the solutions of the
following second order nonlinear dynamic equation:

y∆∆ + f(t, yσ)g(x∆) = 0 (5.1)

where supT = ∞. Our goal is to establish conditions for existence of solutions of
(5.1). The conditions are given in Theorems 5.1.1, 5.1.4, and 5.1.5.

We shall assume the following conditions hold:
(A0) f, fy : T× R→ R are continuous in y and rd-continuous in t and

g : R→ R is continuous.
(A1) f(t, 0) = 0, t ∈ [0,∞)T.
(A2) fy(t, y) ≥ 0 and is nondecreasing in y for t ∈ [0,∞)T and y ≥ 0.
(A3) g(v) > 0 for all v ∈ R.

We shall study (5.1) by considering the equation

y∆∆ + fy(t, α)y = 0, (5.2)

where α is some real constant depending on the solutions of (5.1). To do this we
should recall the results from Section 4.1 on upper and lower solutions.

We now establish necessary and sufficient conditions for the existence of certain
types of solutions of (5.1).

Theorem 5.1.1. Assume (A0)-(A3) hold and let α0 > 0. Furthermore, assume σ(t)/t
is bounded. Then the following statements are equivalent:

(i) For each 0 < α < α0 there is a solution uα(t) of u∆∆(t) + f(t, uσ)g(u∆) = 0
satisfying lim

t→∞
uα(t) = α.



67

(ii)
∫∞

σ(t)fy(t, α)∆t <∞ for 0 < α < α0.

Proof. Assume
∫∞

σ(t)fy(t, α1)∆t = ∞ for some 0 < α1 < α0 and let α1 < β < α0.
Let uβ(t) be the corresponding solution of u∆∆

β +f(t, uσβ)g(u∆
β ) = 0 with lim

t→∞
uβ(t) = β.

Choose δ > 0 such that α1 + δ < β and let T ≥ 0 be such that uσβ(t) ≥ α1 + δ for all
t ≥ T . Then for t ≥ T

u∆∆
β = −f(t, uσβ)g(u∆

β ) ≤ 0.

Hence u∆
β > 0 and decreases to a limit, and this limit must be zero since uβ is bounded.

Therefore, uβ(t) ≤ β for t ≥ T . By applying the Mean Value Theorem, we obtain

f(t, uσβ(t))− f(t, α1)

uσβ(t)− α1

= fy(t, η(t)) for some η(t) ∈ (α1, u(βσ(t))).

Now by the monotonicity of fy (condition (A2)), we have

fy(t, α1) ≤ fy(t, η(t))

≤
f(t, uσβ(t))− f(t, α1)

uσβ(t))− α1

≤
uσβ(t)

uσβ(t)− α1

f(t, uσβ(t)

uσβ(t)

≤ β

δ

f(t, uσβ(t))

uσβ(t)

for t ≥ T . Since lim
t→∞

u∆(t) = 0, there exists T1 ≥ T such that g(u∆
β (t)) ≥ g(0)

2
> 0

for all t ≥ T1. Hence, for t ≥ T1, we have

u∆∆
β (t) = −f(t, uσβ(t))g(u∆

β (t))

≤ −fy(t, α1)

β
δuσβ(t)

g(0)

2

= −kfy(t, α1)uσβ(t)

where k = g(0)
δ

2β
. Also, α∆∆

1 = 0 ≥ −kfy(t, α1)α1. Hence, by Theorem 3.3.4, there

is a solution z(t) of z∆∆ + kfy(t, α1)zσ = 0 with 0 < α1 ≤ z(t) ≤ uβ(t) ≤ β on
[T,∞)T. By Theorem 4.2.1, it follows that∫ ∞

kctfy(t, α1)∆t <∞
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for some c > 0. Since σ(t)/t is bounded, we have∫ ∞
σ(t)fy(t, α1)∆t <∞,

which is the desired contradiction.
Conversely, let 0 < α < α0 be such that∫ ∞

σ(t)fy(t, α)∆t <∞

and let
M = max{g(v) : 0 ≤ v ≤ α}.

Choose T ≥ 0 such that∫ ∞
T

(σ(s)− T )fy(s, α)∆s <
1

M
and

∫ ∞
T

fy(s, α)∆s <
1

M
.

We shall now define a sequence of functions on [T,∞)T in the following manner:
Let y0(t) = α, t ≥ T . Now for t ≥ T

0 ≤
∫ ∞
t

(σ(s)− t)f(s, α)g(0)∆s

=

∫ ∞
t

(σ(s)− t)[f(s, α)− f(s, 0)]g(0)∆s

=

∫ ∞
t

(σ(s)− t)αfy(s, η(s))g(0)∆s, η(s) ∈ (0, α)

≤
∫ ∞
t

(σ(s)− t)αfy(s, α)g(0)∆s

≤ αM

∫ ∞
t

(σ(s)− t)fy(s, α)∆s

≤ αM

∫ ∞
T

(σ(s)− T )fy(s, α)∆s

< α.

By defining y1(t) := α −
∫∞
t

(σ(s) − t)f(s, α)g(0)∆s, t ≥ T , we have 0 ≤ y1(t) < α.



69

Differentiating y1, we obtain

y∆
1 (t) = 0−

[∫ ∞
t

−f(s, α)g(0)∆s+ (σ(t)− σ(t))f(t, α)g(0)

]
=

∫ ∞
t

f(s, α)g(0)∆s

≤ M

∫ ∞
t

f(s, α)∆s

= M

∫ ∞
t

[f(s, α)− f(s, 0)]∆s

= αM

∫ ∞
t

fy(s, η(s))∆s, η(s) ∈ (0, α)

≤ αM

∫ ∞
T

fy(s, α)∆s

< α.

So 0 ≤ y∆
1 (t) < α for t ≥ T . Proceeding inductively, we define for all m ≥ 1

ym+1(t) := α−
∫ ∞
t

(σ(s)− t)f(s, yσm(s))g(y∆
m(s))∆s, t ≥ T, (5.3)

and obtain 0 ≤ ym(t), y∆
m(t) ≤ α for all m ≥ 1. Hence the sequence {ym(t)}∞m=0 is

uniformly bounded and equicontinuous. The Ascoli-Arzela theorem along with a stan-
dard diagonalization argument yields a uniformly convergent subsequence {ymk(t)}
on compact subintervals of [T,∞)T. Let

uα(t) := lim
k→∞

ymk(t),

for t ∈ [T,∞). It follows that

lim
k→∞

f(t, ymk(t))g(y∆
mk

(t)) = f(t, uα(t))g(u∆
α (t))

uniformly on compact subintervals of [T,∞)T. Replacing m in equation 5.3 by mk

and letting k →∞, we get

uα(t) = α−
∫ ∞
t

(σ(s)− t)f(s, uσα(s))g(u∆
α (s))∆s

on [T,∞)T. It follows that uα(t) is a solution of u∆∆
α (t) + f(t, uσα)(t)g(u∆

α ) = 0. As
lim
t→∞

uα(t) = α, the proof is complete.

Remark 5.1.2. If f(t, y) = −f(t,−y) and g(v) > 0 and is continuous for v ∈ R,
then we see that

∫∞
σ(t)fy(t, α)∆t < ∞ for 0 < |α| < α0 if and only if for each
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0 < |α| < α0 there is a solution uα(t) of u∆∆ + f(t, uσ)g(u∆) = 0 with lim
t→∞

uα(t) = α.

Corollary 5.1.3.
∫∞

σ(t)fy(t, α)∆t < ∞ for all α > 0 if and only if there is a
solution uα(t) of u∆∆ + f(t, u)g(u∆) = 0 with lim

t→∞
uα(t) = α for all α > 0.

In [22] it is shown that y′′ + a(t)y2n+1 = 0, n ≥ 0, where a(t) ≥ 0 for t ≥
0 and g(v) = 1 for all v, has solutions for which

lim
t→∞

y(t)

t
= α > 0

if and only if ∫ ∞
t2n+1a(t)dt <∞.

We will show that an analogous result is true for the dynamic equation (5.1) provided
f(t, y) satisfies the following additional condition.

(A4) There exist real numbers c > 0 and λ > 0 such that lim inf
v→∞

f(t, v)

vfv(t, cv)
≥ λ > 0,

for all sufficiently large t.
We first establish the following result.

Theorem 5.1.4. Assume (A0)-(A3) hold and let there exist a real number β > 0 with∫ ∞
σ(t)fy(t, βσ(t))∆t <∞.

Then there exist solutions to y∆∆ + f(t, yσ(t))g(y∆) = 0, say y(t), such that lim
t→∞

y(t)

t
exists and is positive.

Proof. Let T > 0 be such that∫ ∞
T

σ(t)fy(t, βσ(t))∆t <
1

2M
,

where M = max{g(v) : 0 ≤ v ≤ β}. We define a solution of u∆∆ + f(t, uσ)g(u∆) = 0
by

u(T ) = 0, u∆(T ) = β,

and we assert that the solution satisfies u∆(t) ≥ β

2
for t ≥ T . Observe that u(t) >

0 and u∆(t) > 0 for some t > T . Assume, for the sake of contradiction, that there is

a δ > 0 with δ <
β

2
and a t1 > T with u∆(t1) = δ and u(t) > 0 on (T, t1]T. Then for
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T ≤ t ≤ t1 we have

u∆(T ) = u∆(t) +

∫ t

T

f(s, uσ(s))g(u∆(s))∆s. (5.4)

Since u∆∆(t) ≤ 0 on (T, t1]T and u(t) is decreasing on (T, t1]T, we have

u∆(t) ≤ β on (T, t1)T and u(t) ≤ β(t− T ) on (T, t1)T.

Applying the Mean Value Theorem to (5.4) and the monotonicity of fy we have

β = u∆(T ) = u∆(t) +

∫ t

T

f(s, uσ(s))g(u∆(s))∆s

≤ u∆(t) +M

∫ t

T

f(s, uσ(s))∆s

= u∆(t) +M

∫ t

T

[f(s, uσ(s))− f(s, 0)]∆s

= u∆(t) +M

∫ t

T

uσ(s)fy(s, η(s))∆s, 0 < η(s) < uσ(s)

≤ u∆(t) +Mβ

∫ t

T

(σ(s)− T )fy(s, u
σ(s))∆s

≤ u∆(t) +Mβ

∫ t

T

σ(s)fy(s, βσ(s))∆s

< u∆(t) +Mβ
1

2M

= u∆(t) +
β

2
.

Hence, u∆(t1) >
β

2
, a contradiction. Thus, u∆(t) ≥ β

2
on [T,∞)T and lim

t→∞
u∆(t)

exists and is positive. By L’Hôpital’s Rule [2, Theorem 1.120] , we have lim
t→∞

u(t)

t
exists and is positive.

If we assume condition (A4), then we may establish the converse of Theorem 5.1.4.

Theorem 5.1.5. Assume conditions (A0)-(A4) hold. Then (5.1) has a solution, say

y(t), such that lim
t→∞

y(t)

t
exists and is positive if and only if∫ ∞
σ(t)fy(t, βσ(t))∆t <∞ for some β > 0.
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Proof. Let α > 0 and let y(t) be solution of (5.1) with

lim
t→∞

y(t)

t
= α.

Let T ≥ 0 be such that y(t) ≥ αt/2 for t ≥ T and let

m := min{g(v) : 0 ≤ v ≤ y∆(T )}.

By condition (A4), there is a T1 ≥ T such that

f(t, yσ(t)) ≥ λyσ(t)fy(t, cy
σ(t)) ≥ λ

ασ(t)

2
fy

(
t,
ασ(t)

2

)
= kσ(t)fy

(
t,
ασ(t)

2

)

for t ≥ T1, where k =
λα

2
. Since 0 < y∆(t) ≤ y∆(T ) for t ≥ T , we have

f(t, yσ(t))g(y∆(t)) ≥ mkσ(t)fy

(
t,
cασ(t)

2

)
, t ≥ T1.

Therefore,

y∆(T1) = y∆(t) +

∫ t

T1

f(s, yσ(s))g(y∆(s))∆s

≥ y∆(t) +

∫ t

T1

mkσ(s)fy

(
s,
cασ(s)

2

)
.

Since lim
t→∞

y∆(t) ≥ 0, ∫ ∞
T1

σ(s)fy

(
s,
cασ(s)

2

)
<∞,

and this proves the theorem.

5.2 Asymptotic Behavior of a Dynamic Equation

with a Single Delay

In this section we establish a result similar to Theorem 5.1.1 for the second order
nonlinear functional equation

y∆∆ + f(t, yτ )g(y∆) = 0 (5.5)

where 0 < τ(t) ≤ t and lim
t→∞

τ(t) = ∞ with supT = ∞. We assume conditions

(A0)-(A3) hold as well.
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We can prove a result similar to .

Theorem 5.2.1. Assume (A0)-(A3) hold and let α0 > 0. If for each 0 < α < α0

there is a solution uα(t) of u∆∆(t) + f(t, uτ )g(u∆) = 0 satisfying lim
t→∞

uα(t) = α, then∫∞
τ(t)fy(t, α)∆t <∞ for 0 < α < α0.

Proof. Assume
∫∞

τ(t)fy(t, α1)∆t = ∞ for some 0 < α1 < α0 and let α1 < β < α0.
Let uβ(t) be the corresponding solution of u∆∆

β +f(t, uτβ)g(u∆
β ) = 0 with lim

t→∞
uβ(t) = β.

Choose δ > 0 such that α1 + δ < β and let T ≥ 0 be such that uτβ(t) ≥ α1 + δ for all
t ≥ T . Then by condition (A2), for t ≥ T

u∆∆
β = −f(t, uτβ)g(u∆

β ) ≤ 0.

Therefore u∆
β > 0 is decreasing and is concave down. It follows that uβ(t) increases

to β. Consequently, u∆
β > 0 and decreases to zero. So we have

uβ(t) > 0, u∆
β (t) > 0, and u∆∆

β (t) ≤ 0 on [T,∞)T.

Then by Lemma 4.1.1 we have u(τ(t)) > η(t, T )uσ(t), τ(t) > T . So for any 0 < k < 1
there is a Tk ≥ T such that

u(τ(t)) ≥ τ(t)− T
σ(t)− T

uσ(t) ≥ k
τ(t)

σ(t)
uσ(t), t ≥ Tk.

Define

F (t, u) := f

(
t, ku(t)

τ(t)

σ(t)

)
.

Since f is increasing in the second variable, we have

f(t, uβ(τ(t))) ≥ f

(
t, kuσβ(t)

τ(t)

σ(t)

)
= F (t, uσβ(t)).

By applying the Mean Value Theorem, we obtain

F (t, uσβ(t))− F (t, α1)

uσβ(t)− α1

=
∂F

∂u
(t, η(t)) = k

τ(t)

σ(t)
fu(t, η(t)) for some η(t) ∈ (α1, β

σ(t)).
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Now by the monotonicity of fu (condition (A2)), we have

k
τ(t)

σ(t)
fu(t, η(t)) =

F (t, uσβ(t))− F (t, α1)

uσβ(t)− α1

≤
uσβ(t)

uσβ(t)− α1

F (t, uσβ(t))

uσβ(t)

≤
uσβ(t)

uτβ(t)− α1

F (t, uσβ(t))

uσβ(t)

≤ β

δ

F (t, uσβ(t))

uσβ(t)

for t ≥ T . Since lim
t→∞

u∆(t) = 0, there exists T1 ≥ T such that g(u∆
β (t)) ≥ g(0)

2
> 0

for all t ≥ T1. Hence, for t ≥ T1, we have

u∆∆
β (t) = −f(t, uτβ(t))g(u∆

β (t))

= −F (t, uσβ(t))g(u∆
β (t))

≤ −F (t, uσβ(t))
g(0)

2

≤ −k τ(t)

σ(t)
fu(t, α1)

δ

β
uσβ(t)

g(0)

2

= −mτ(t)

σ(t)
fu(t, α1)uσβ(t)

where m = g(0)
kδ

2β
. Also, α∆∆

1 = 0 ≥ −mτ(t)

σ(t)
fu(t, α1)α1. Hence, by Theorem 3.3.4,

there is a solution z(t) of z∆∆ +m
τ(t)

σ(t)
fz(t, α1)zσ = 0 with 0 < α1 ≤ z(t) ≤ uβ(t) ≤ β

on [T,∞)T. By Theorem 4.2.1, it follows that∫ ∞
tcm

τ(t)

σ(t)
fz(t, α1)∆t <∞

for some c > 0. Since τ(t) ≤ t ≤ σ(t) and mc > 0, we have∫ ∞
τ(t)fz(t, α1)∆t <∞,

which is the desired contradiction.

In the future, we would like to develop similar results to those of Section 5.1 for
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the second order nonlinear functional equation

y∆∆ + f(t, yτ )g(y∆) = 0 (5.5)

where 0 < τ(t) ≤ t and lim
t→∞

τ(t) =∞ with supT =∞.
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