
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Dissertations, Theses, and Student Research Papers
in Mathematics Mathematics, Department of

April 2008

C*-Extreme Points of the Generalized State Space
of a CommutativeC*-Algebra
Martha Gregg
University of Nebraska at Lincoln, s-mgregg1@math.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/mathstudent

Part of the Science and Mathematics Education Commons

This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Dissertations, Theses, and Student Research Papers in Mathematics by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Gregg, Martha, "C*-Extreme Points of the Generalized State Space of a Commutative C*-Algebra" (2008). Dissertations, Theses, and
Student Research Papers in Mathematics. 4.
http://digitalcommons.unl.edu/mathstudent/4

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathstudent?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathstudent?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathematics?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathstudent?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathstudent/4?utm_source=digitalcommons.unl.edu%2Fmathstudent%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages


C∗-EXTREME POINTS
OF THE GENERALIZED STATE SPACE OF A

COMMUTATIVE C∗-ALGEBRA

by

Martha Case Gregg

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Doctor of Philosophy

Major: Mathematics

Under the Supervision of Professor David R. Pitts

Lincoln, Nebraska

May, 2008



C∗-EXTREME POINTS
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Adviser: Professor David R. Pitts

The generalized state space of a commutative C∗-algebra, denoted SH(C(X)), is the set

of positive unital maps from C(X) to the algebra B(H) of bounded linear operators on a

Hilbert space H. C∗-convexity is one of several non-commutative analogs of convexity which

have been discussed in this context. We show that a C∗-extreme point of SH(C(X)) satisfies

a certain spectral condition on the operators in the range of an associated measure, which is

a positive operator-valued measure on X. We then show that C∗-extreme maps from C(X)

into K+, the C∗-algebra generated by the compact and scalar operators, are multiplicative,

generalizing a result of D. Farenick and P. Morenz.
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Chapter 1

Introduction

1.1 Positive and Completely Positive Maps

Positive maps play a key role in the study of C∗-algebras, and the GNS construction (see, for

example, [3, Theorem I.9.6]) which builds a representation of a C∗-algebra from a positive

linear functional, is of great importance in the subject. W. Forrest Stinespring’s paper of

1955 [18], which generalizes the GNS construction to allow a completely positive unital map

to be dilated to a representation and characterizes completely positive maps, is a significant

extension of the ideas of Gelfand, Naimark, and Segal. Completely positive maps have been

studied extensively since the publication of Stinespring’s paper; recently they have received

increased attention because of their importance in quantum computing. Section 1.3 presents

a very brief explanation of the role of these maps in quantum information theory.

Let H be a Hilbert space and B(H) the bounded linear operators on H. The set of unital

positive linear functionals of a C∗-algebra A is called the state space of A. The correspond-

ing collection of unital completely positive maps from A to B(H) is called the generalized

state space. Arveson solved several extremal problems in the space of completely positive

maps; in particular, he characterized the extreme points of the generalized state space [1,
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Theorem 1.4.6]. As a result of this theorem, Arveson is able to demonstrate the existence

of non-multiplicative extreme points in the generalized state space of a commutative C∗-

algebra. In contrast, in the classical state space of a commutative C∗-algebra, extreme

points are always multiplicative (see, for example [15]). Farenick and Morenz [6] examine

another class of extreme points in the generalized state space, the C∗-extreme points. Their

results show that, when H is finite dimensional, the C∗-extreme points of the generalized

state space of a commutative C∗-algebra are necessarily multiplicative. Thus, in some re-

spects, the C∗-extreme points of the generalized state space mirror the extreme points of the

state space. Farenick and Morenz suggest that “the C∗-extreme points are the appropriate

extreme points” [5, p. 1727] for the generalized state space. In Section 1.2, we will examine

what is known about the relationship between several distinguished classes of points in the

generalized state spaces, including pure and multiplicative maps in addition to extreme and

C∗-extreme maps. Several other brands of noncommutative convexity have also been studied

in the context of the generalized state spaces of a C∗-algebra; two of these will be discussed

in Section 1.4.

In Chapter 2, we will examine operator-valued measures. The role of these operator-

valued measures in the generalized state spaces of B(H) is comparable to that of the regular

Borel measures in the state space of C(X): each bounded linear map φ : C(X) → B(H) in

the generalized state space of C(X) can be expressed as integration against a unital positive

operator-valued measure, which is uniquely determined by φ. We will exploit several useful

properties of these operator-valued measures in the proof of Theorem 2.2.1, which gives a

necessary condition for a map to be C∗-extreme in the generalized state space of C(X).

Examples will be given which demonstrate that this necessary condition is not sufficient,

and that non-multiplicative C∗-extreme points exist when H has infinite dimension.

Theorem 2.2.1 will enable us to prove that C∗-extreme maps in the generalized state

space of C(X) which have their range in the unital C∗-algebra generated by the compact
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operators must be multiplicative. This result, Theorem 3.1.2, extends a result of Farenick

and Morenz [6, Proposition 2.2], and leads to a complete description of the structure of these

maps, and the support of the associated operator-valued measures.

1.2 Extreme, C∗-Extreme, Pure and Multiplicative

Maps

Henceforth, let A be an arbitrary unital C∗-algebra, X a compact Hausdorff space, C(X)

the commutative unital C∗-algebra of continuous functions on X, and H a Hilbert space.

Recall that we say a ∈ A is positive, and write a ≥ 0, if a is self-adjoint and has non-

negative spectrum (we will denote the spectrum of a by σ(a)). The positive elements play

an important role in the study of C∗-algebras; for example, every element of a C∗-algebra

can be written as a linear combination of four positive elements (see, for example, [3, p.7

and Corollary 1.4.2]). There is also a partial ordering of the self-adjoint elements of A
determined by the positive elements: for self-adjoint a, b ∈ A we say a ≤ b if b − a ≥ 0.

Given the importance of positive elements in the study of C∗-algebras, it is not surprising that

maps which preserve positivity (and hence order) are of great interest in the field. Denote

the bounded linear operators on H by B(H). Given a bounded linear map φ : A → B(H)

and n ∈ N, define maps φ(n) : Mn → Mn(B(H)) by

φ(n)([aij]) = [φ(aij)] .

Definition 1.2.1. Let φ : A → B(H) be positive. If φ(n) is positive, we say that φ is

n-positive. If φ is n-positive for every n, we say that φ is completely positive.

It would be difficult to discuss completely positive maps without mentioning Stinespring’s

Theorem [18, Theorem 1]. This theorem characterizes completely positive maps, and gener-
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alizes the GNS construction.

Theorem 1.2.2. [18, Theorem 1] For a unital C∗-algebra A and a Hilbert space H, φ :

A −→ B(H) is a completely positive map if and only if there exist a Hilbert space K, a

bounded linear map V : H −→ B(K), and a representation π : A −→ B(K) such that

φ = V ∗πV .

If the map φ in Stinespring’s Theorem is unital, then V is an isometry. Also, with the

stipulation that [π(A)V (H)] = K, the decomposition φ = V ∗πV is unique up to unitary

equivalence. In this case, we call φ = V ∗πV a minimal Stinespring decomposition.

Definition 1.2.3. The generalized state space of A is

{φ : A → B(H) |φ is completely positive and φ(1) = I},

which we will denote by SH(A), using the notation of [6].

For a commutative C∗-algebra, every positive map is also completely positive [18, Theo-

rem 4] so that SH(C(X)) = {φ : C(X) → B(H) |φ is positive and φ(1) = I}. If H = C, the

generalized state space SC(A) coincides with the classical state space of A. Several special

classes of maps in the generalized state space have been studied, including extreme and pure

maps [1], C∗-extreme maps [6],[22], [7], and multiplicative maps. We begin with formal

definitions of these types of maps, and a discussion of what is known about the relation-

ships between them. To avoid possible confusion, we will refer to extreme points as “linear

extreme”. The definition of a linear extreme point is no doubt known to the reader, but is

included here for comparison to C∗-extreme points, which are less likely to be familiar.

Definition 1.2.4. Let φ, ψ1, . . . , ψn ∈ SH(A) and t1, . . . , tn ∈ (0, 1) with t1 + · · · + tn = 1.

Then

φ(f) = t1ψ1(f) + · · ·+ tnψn(f)
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is a proper linear convex combination. If, whenever φ is written as a proper linear convex

combination of ψ1, ..., ψn it follows that φ = ψ1 = · · · = ψn, then we call φ a linear extreme

point.

Before defining C∗-extreme points, we need the following:

Definition 1.2.5. We say that φ, ψ ∈ SH(C(X)) are unitarily equivalent, and write φ ∼ ψ,

if there is a unitary u ∈ B(H) such that φ(f) = u∗ψ(f)u for every f ∈ C(X).

Definition 1.2.6. Let φ, ψ1, . . . ψn ∈ SH(C(X)) and t1, . . . tn ∈ B(H) be invertible with

t∗1t1 + . . . + t∗ntn = I. Then

φ(f) = t∗1ψ1(f)t1 + . . . + t∗nψn(f)tn

is called a proper C∗-convex combination. For convenience, we write φ = t∗1ψ1t1+· · ·+t∗nψntn.

We call a map φ ∈ SH(C(X)) C∗-extreme if, whenever φ is written as a proper C∗-convex

combination of ψ1, . . . , ψn, then ψj ∼ φ for each j = 1, . . . , n.

Note that in the definition of C∗-extreme points, it is sufficient to take n = 2 [22,

Proposisition 2.1.2]. The requirement that the C∗-convex coefficients tj be invertible is

analogous to the restriction that the convex coefficients in a proper linear convex combination

be non-zero [6, p. 1726]. In addition, observe that for a non-trivial projection P ∈ φ(A)′

φ = PφP + P⊥φP⊥,

so that allowing the C∗-convex coefficients to be non-invertible would mean that no reducible

maps could be C∗-extreme. In addition to linear extreme and C∗-extreme points of SH(A),

we will also be interested in the generalized states which are pure.
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Definition 1.2.7. [1, p. 160] A completely positive map φ : A → B(H) is called pure if

whenever ψ ≤ φ, ψ = tφ for some t ∈ [0, 1]. (Note that these maps need not be unital.)

The relationships between linear extreme, C∗-extreme, pure and multiplicative maps in

SH(A) are summarized in Table 1, below. Explanations and examples follow.

SC(C(X)) extreme = C∗-extreme = pure = multiplicative

SC(A) extreme = C∗-extreme = pure ) multiplicative

SCn(C(X)) extreme ) C∗-extreme = multiplicative

SCn(A) extreme ) C∗-extreme ) pure

C∗-extreme ) multiplicative

φ : C(X) → K+ extreme ) C∗-extreme = multiplicative

SH(C(X)) extreme \ C∗-extreme ) multiplicative

SH(A) extreme \ C∗-extreme ) pure

C∗-extreme ) multiplicative

Table 1

the symbol \ indicates that the relationship is unknown

Recall that two representations of a C∗-algebra are disjoint if they have no unitarily

equivalent sub-representations. Similarly, two unital completely positive maps φ1, φ2 is called

disjoint if π1, π2 are disjoint representations, where φj = v∗j πjvj is a minimal Stinespring

representation for each j[6, p. 1731]. Farenick and Morenz have proven that for any choice

of A or H, every ∗-representation is both linear extreme and C∗-extreme [6, Proposition 1.2].

In addition, Zhou [22, Proposition 3.4.1] has shown that, regardless of the choice of H or A,

any direct sum of disjoint pure maps is C∗-extreme, so that, in particular, any pure map is

C∗-extreme. Note that, by a theorem of Arveson [1, Corollary 1.4.3], pure generalized states
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are exactly those elements of SH(A) whose minimal Stinespring dilation is an irreducible

representation. As all irreducible ∗-representations of a commutative C∗-algebra are one

dimensional, there are no pure maps in SH(C(X)) when dim H > 2.

Now consider the case H = C (the first row of Table 1). If φ ∈ SC(C(X)), then the linear

extreme, pure, and multiplicative maps coincide [15, Lemma 3.4.6, Theorem 3.4.7]. For any

C∗-algebra A, when H = C, the coefficients of a C∗-convex combination will be scalars, so

that linear and C∗-convex combinations are the same. Also, if maps in SC(A) are unitarily

equivalent, they must be equal (as the only unitary operators are multiplication by a scalar

of modulus one). Thus, in SC(A) the linear extreme and C∗-extreme maps are identical. In

addition, Farenick and Morenz [6, Theorem 2.1] prove that when H is finite dimensional,

any C∗-extreme map is a direct sum of pure maps. Thus, when H = C, C∗-extreme maps

are also pure. To see that the multiplicative maps of SC(A) are properly contained in the

pure maps, we consider the following example.

Example 1.2.8. Define a map φ : M2 → C by

φ(aij) = a11.

It is evident that φ is not multiplicative. The identity representation of M2 is a minimal

Stinespring dilation of φ, and is irreducible, thus φ is pure [1, Corollary 1.4.3].

We have now established all the containments and equalities in the first row of Table 1. If

H is finite dimensional (middle row of Table 1), or if φ : A → K+ (bottom row), Farenick and

Morenz have shown that every C∗-extreme point is also linear extreme [6, Proposition 1.1].

In this case, however, there are linear extreme points of the generalized state space which

are not C∗-extreme as we will see in Example 1.2.11. A theorem of Arveson characterizes

the linear extreme maps in SCn(C(X)); before stating the theorem we give the following
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definition:

Definition 1.2.9. [1, p. 165] Let M1, . . . ,Mn be subspaces of H. If whenever T1, . . . , Tn are

operators for which Mj contains the ranges of both Tj and T ∗
j for each j and

T1 + · · ·+ Tn = 0

it follows that

T1 = · · · = Tn = 0

then we call the subspaces M1, . . . ,Mn weakly independent.

Arveson offers an example of weakly independent spaces: if x, y are linearly independent

vectors, and z = x + y, then the 1-dimensional spaces sp{x}, sp{y}, and sp{z} are weakly

independent, although they are not linearly independent. In fact, the ranges of the rank-1

projections xx∗, yy∗ and zz∗ will be weakly independent as long as the vectors x, y, and z are

pairwise linearly independent. (Here, the rank one operator xx∗ is given by xx∗(v) = 〈v, x〉x,

for any vector v ∈ H.)

Theorem 1.2.10. [1, Theorem 1.4.10] A map φ in {φ : C(X) → Mn |φ(1) = S} is linear

extreme if and only if

φ(f) = f(x1)P1 + · · ·+ f(xk)Pk,

where x1, . . . , xk are distinct points of X and P1, . . . , Pn are positive operators with weakly

independent ranges and P1 + · · ·+ Pk = S.

The following example demonstrates the construction of an extreme point of SCn(C(X))

which is not C∗-extreme.

Example 1.2.11. Let X = {x1, x2, x3}, and {e1, e2} be the standard basis for C2 and

e3 = 1√
2
(e1 + e2). Then the rank one operators e1e

∗
1, e2e

∗
2, and e3e

∗
3 have weakly independent
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ranges. Define a map

ψ : C(X) → M2

by

ψ(δj) = eje
∗
j

where δj = χ{xj}
is the characteristic function of the singleton set {xj}. Theorem 1.2.10

guarantees that the map ψ is an extreme point in {φ : C(X) → M2 |φ(1) = S}, where

S := e1e
∗
1 + e2e

∗
2 + e3e

∗
3. However, ψ is not unital. Note that

S = I + e3e
∗
3,

so that S is an invertible operator. Thus we may define a map φ by

φ(f) = S−
1
2 ψ(f)S−

1
2 .

Setting

Pj = S−
1
2 (eje

∗
j)S

− 1
2 = (S−

1
2 ej)(S

− 1
2 ej)

∗

we see that each Pj is positive and that

P1 + P2 + P3 = I

so that φ ∈ SC2(C(X)), i.e., φ is unital. Since e1, e2, and e3 are pairwise linearly independent

and S is invertible, the vectors S−
1
2 e1, S

− 1
2 e2, and S

− 1
2 are also pairwise linearly independent.

The ranges of P1, P2, and P3 are therefore weakly independent, so that φ is an extreme

point of SC2(M2). However, φ is not multiplicative, since P1, P2, and P3 are not orthogonal

projections.
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Farenick and Morenz have shown that a map φ ∈ SCn(C(X)) is C∗-extreme if and

only if it is multiplicative [6, Proposition 2.2], or equivalently, if the operators P1, . . . , Pn of

Theorem 1.2.10 are projections with orthogonal ranges. We will prove, in Theorem 3.1.2, that

C∗-extreme maps with range in K+, the algebra generated by the compact operators and I,

must also be multiplicative, thus extending this result of Farenick and Morenz. Also, Farenick

and Zhou have given a structure theorem for C∗-extreme maps in SCn(A) [7, Theorem 2.1],

which is stated below as Theorem 1.2.12. Example 3.2.1, due to Zhou, exhibits a map in

SC2(M2 ⊕ M1) which is C∗-extreme but not multiplicative. Farenick and Zhou define a

nested sequence of compressions of a representation π to be a sequence of unital completely

positive maps φj such that φ1 = w∗
0πw0 is a minimal Stinespring decomposition, and for

each j, φj+1 = w∗
jφjwj, where each wj is an isometry.

Theorem 1.2.12. [7, Theorem 2.1] Let H be a finite dimensional Hilbert space and A a

unital C∗-algebra. Then φ ∈ SH(A) is C∗-extreme if and only if there are pairwise non-

equivalent irreducible representations π1, . . . , πk of A and nested sequences of compressions

φπi
j of each representation πi so that φ is unitarily equivalent to the direct sum

k∑
i=1

⊕
(

ni∑
j=1

⊕φπi
j

)

of pure unital completely positive maps φπi
j .

When H has infinite dimension (final row of Table 1), C∗-extreme maps in SH(C(X))

need not be multiplicative; Examples 2.3.5 and 2.3.6, due to Farenick and Morenz, of non-

multiplicative C∗-extreme maps will be given in Chapter 2. Lastly, in the final row of Table 1,

the following question remains unanswered; it was interest in this question which prompted

the author to pursue the study of C∗-convexity.

Question 1.2.13. When H is infinite dimensional and φ is a C∗-extreme point of SH(A),
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must φ also be linear extreme?

1.3 The Connection to Quantum Computing

Completely positive maps play an important part in the area of quantum information theory.

The (very brief) introductory material given here is taken largely from [16]. In quantum

computing, a closed quantum system is associated to a Hilbert space H, and the state of the

system at a given time is a unit vector v ∈ H, or the rank one projection vv∗ ∈ B(H). If we

do not know the state of the system completely, but only its probability distribution, then

the operator

P =
∑

p(v)vv∗,

where p(v) is the probability the system is in state v, and the sum ranges over all states

v ∈ H, represents the state of the system. The operator P is positive with trace one; i.e, P

is a density operator. A map

π : B(H) → B(H)

given by

π(A) = U∗AU,

where U ∈ B(H) is a unitary operator, describes the evolution of a closed quantum system.

The map π is positive and trace-preserving, so that density operators will evolve to density

operators.

An open quantum system, associated with a Hilbert space H is in interaction with an

environment, associated with a larger Hilbert space K ⊇ H. Evolution in the open system

can be viewed as a compression of the unitary evolution on the closed system containing it.

Thus, evolution on the open system is described by a completely positive trace-preserving
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map φ : B(H) → B(H), where

φ = V ∗πV

for a unitary transformation π : B(K) → B(K) and a bounded linear map V : H → K.

Although current attention is focused on finite dimensional Hilbert spaces, future work

is expected to include infinite dimensional spaces. It is not clear what role C∗-extreme maps

might play in quantum computing. The natural topology on SH(A) is the bounded weak

topology. A bounded net φλ ∈ SH(A) converges to φ in the bounded weak topology if and

only if the corresponding net φλ(a) converges in the weak operator topology to φ(a), for

every a ∈ A. When H is finite dimensional, Farenick and Morenz have proved a Krein-

Milman type theorem [6, Theorem 3.5], showing that the C∗-convex hull of the C∗-extreme

points of SH(A) is dense, with respect to the bounded-weak or BW-topology, in SH(A).

So any φ ∈ SH(A) can be written as a C∗-convex combination of C∗-extreme maps. Thus

C∗-extreme maps in SH(A) may reasonably be viewed as the “building blocks” for unital

completely positive maps. It is not known if this result holds in the infinite dimensional case.

The new results presented in this thesis pertain to positive unital maps φ : C(X) → B(H),

so it is not immediately apparent if there will be any possibility of application of this work

to the field of quantum computing. Given a quantum channel φ : B(H) → B(H), we could

consider the restriction of φ to any commutative C∗-subalgebra of B(H). Applying the

results of Chapter 2 or 3 to the restricted map might determine whether the restricted map

is C∗-extreme, but will not determine whether the original map was C∗-extreme.

1.4 Non-Commutative Convexity

In addition to C∗-convexity, two other types of non-commutative convexity appear in the

literature. CP -convexity has been studied by Fujimoto [9, 8, 10, 11, 12]; matrix convexity

was introduced by Wittstock [20, 21] and further pursued by Effros and Winkler [4] and
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Farenick [5]. This section gives a brief discussion of both of these versions of non-commutative

convexity, and discusses their relationship to C∗-convexity.

A map φ : A → B(H) is completely contractive if φ(n) is contractive for every n ∈ N.

Equivalently, φ is completely contractive if

‖φ‖cb := sup
n∈N

‖φ(n)‖ ≤ 1.

In [12], Fujimoto defines a CP -state on a C∗-algebra A to be any completely contractive

map φ : A → B(H) and denotes the collection

{φ : A → B(H) |φ is completely positive and ‖φ‖cb ≤ 1}

by QH(A). Note that maps in QH(A) need not be unital. A CP -convex combination for a

map φ ∈ QH(A) is given by

φ =
∑

t∗i ψiti,

where ψi ∈ QH(A), each ti is an operator (which need not be invertible) in B(H) and
∑

t∗i ti ≤ I. The sum, which may be infinite, will converge in the bounded-strong or BS-

topology. (In the BS-topology, a bounded net (φα) converges if and only if the net (φα(a))

converges strongly in B(H) for each a ∈ A.) Clearly, a C∗-convex combination of maps ψi ∈
SH(A) will also be a CP -convex combination in QH(A). Fujimoto denotes the CP -extreme

maps in QH(A) by DH(A) and has demonstrated that any CP -extreme map of QH(A) is

either a pure approximately unital completely positive map (i.e., a map φ with minimal

Stinespring decomposition φ = V ∗πV where V ∗V = I) or an irreducible representation of A
on H; note that when H has infinite dimension, only the latter alternative is possible. Since

there are potentially many more CP -convex combinations representing a given map φ than

there are C∗-extreme combinations, a C∗-extreme map φ ∈ SH(A) need not be CP -extreme
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in QH(A). However, Farenick and Morenz have shown that all pure and multiplicative maps

in SH(A) are C∗-extreme [6, Proposition 1.2], all CP -extreme maps will be C∗-extreme.

Another non-commutative analog of convexity is matrix convexity, introduced by Witt-

stock [20, 21] and further developed by Effros and Winkler [4] and Webster and Winkler

[19].

Definition 1.4.1. A matrix convex set [21, 1.1] K = (Kn)n∈N in a vector space V is a

collection of non-empty convex sets where each Kn ⊆ Mn(V ) satisfies the following two

conditions:

1. for any matrix α ∈ Mr,n with α∗α = 1, we have α∗Krα ⊆ Kn

2. for any m,n ∈ N, Km ⊕Kn ⊆ Km+n.

Wittstock uses matrix convexity to define matrix sublinear functionals [20, 2.1.2], analo-

gous to sublinear (real-valued) functionals, and prove a matricial Hahn-Banach theorem [20,

Theorem 2.3.1]. Effros and Winkler prove a second Hahn-Banach type theorem [4, Theorem

6.1] which uses matrix gauges, rather than the matrix sublinear functionals employed by

Wittstock. Subsequent work by Webster and Winkler [19] includes the following definition

of extreme points appropriate to this type of convexity.

Definition 1.4.2. [19, Definition 2.1] Let V be a vector space and K = (Kn)n∈N a matrix

convex set. Then v ∈ Kn is a matrix extreme point if whenever

v =
k∑

i=1

γ∗i viγi

with γi ∈ Mni,n right invertible (i.e., there exists α ∈ Mn,ni
with γα = Ini

), vi ∈ Kni
, and

∑
γ∗i γi = In, then each ni = n and vi ∼ v.
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Webster and Winkler observe that if n is fixed in this definition (i.e., when ni = n and

Ki = Kn for each i), we have exactly the definition of a C∗-extreme point in Kn; thus matrix

extreme points are always C∗-extreme. If v ∈ K1 then v is matrix extreme if and only if

v is matrix extreme, so that, if K1 is compact, there are always matrix extreme points in

K. However, Webster and Winkler give an example [19, Example 2.2] in which there are

no matrix extreme points in Kn when n > 1. They then go on to prove a Krein-Milman

Theorem for compact matrix convex sets [19, Theorem 4.3].

Effros and Winkler include in their examples of matrix convex sets the collectionM(V,W ) =

(Mn(V, W ))n∈N where V, W are operator systems and

Mn(V, W ) = {φ : V → Mn(W ) |φ is completely positive and unital}.

As pointed out in [7], if we take V = A to be a C∗-algebra and W = C, we have

Mn(A,C) = SCn(A).

So the collection S(A) = (SCn(A))n∈N is a matrix convex set. Webster and Winkler show that

the matrix extreme points of SCn(A) are exactly the pure maps in SCn(A) [19, Example 2.3].

Thus, if A = C(X) is a commutative C∗-algebra, SCn(C(X)) will contain no matrix extreme

points for n > 1. In contrast, Farenick and Morenz have shown that these generalized state

spaces contain many C∗-extreme points. In fact, they prove a Krein-Milman type theorem

for C∗-extreme points in the generalized state spaces SCn(A): SCn(A) is the closed C∗-convex

hull of its C∗-extreme points (where the closure is taken with respect to the bounded weak

topology) [6, Theorem 3.5]. These results of Webster and Winkler and Farenick on matrix

extreme states give information about the C∗-extreme maps in the generalized state spaces

SCn(A), whereas the major results of this thesis concern C∗-extreme maps in SH(C(X)),
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where the dimension of H is infinite.
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Chapter 2

C∗-Extreme Maps on C(X)

2.1 Operator-Valued Measures

We begin with a discussion of B(H)-valued measures, which closely follows the develop-

ment given in Paulsen [17]. These operator-valued measures play a key role in the proof

of Theorem 2.2.1, which is the main result of this chapter. Given a bounded linear map

φ : C(X) → B(H) and vectors x, y ∈ H, the bounded linear functional

f 7→ 〈φ(f)x, y〉

corresponds, via the Riesz Representation Theorem, to a unique regular complex Borel

measure µx,y on X such that

∫
fdµx,y := 〈φ(f)x, y〉 for any f ∈ C(X).

Denote the σ-algebra of Borel sets of X by S. For a set B ∈ S, the sesquilinear form

(x, y) 7→ µx,y(B)
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then determines an operator µ(B). Thus we obtain an operator-valued measure µ : S −→
B(H) which is:

1. weakly countably additive, i. e., if {Bi}∞i=1 ⊆ S are pairwise disjoint, and B =
⋃∞

i=1 Bi

then

〈µ(B)x, y〉 =
∞∑
i=1

〈µ(Bi)x, y〉 for every x, y ∈ H.

2. bounded, i. e., ‖µ‖ := sup{‖µ(B)‖ : B ∈ S} < ∞.

3. regular, i. e., for each pair of vectors x and y in H, the complex measure µx,y is regular.

Furthermore, this process works in reverse: given a regular, bounded, and weakly countably

additive operator-valued measure µ : S −→ B(H), define Borel measures

µx,y(B) := 〈µ(B)x, y〉

for each x, y ∈ H. Then the operator φ(f) is uniquely determined by the equations

〈φ(f)x, y〉 :=

∫
fdµx,y;

the map φ : C(X) −→ B(H) is then seen to be bounded and linear. This construction shows

that each operator valued-measure gives rise to a unique bounded linear map, and vice-versa.

The following proposition summarizes properties shared by operator valued-measures and

their associated linear maps. A proof of (2) is given; the proof of (1) is similar, and is

omitted. The proof of (3), also omitted, is similar to the well-known proof of (4), which is,

of course, the Spectral Theorem.

Proposition 2.1.1. [17, Proposition 4.5] Given an operator-valued measure µ and its asso-

ciated linear map φ,
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1. φ is self-adjoint if and only if µ is self-adjoint,

2. φ is positive if and only if µ is positive,

3. φ is a homomorphism if and only if µ(B1 ∩B2) = µ(B1)µ(B2) for all B1, B2 ∈ S,

4. φ is a ∗-homomorphism if and only if µ is spectral (i.e., projection-valued).

Proof. Assume that φ is positive linear map. For any positive function f ∈ C(X),

φ(f) ≥ 0.

Thus, for any vector x ∈ H
〈φ(f)x, x〉 ≥ 0.

Equivalently, ∫
fdµx,x ≥ 0.

As this holds for any positive function f ∈ C(X), µx,x is a positive measure. So for any

Borel set B ⊆ X,

µx,x(B) ≥ 0.

Equivalently,

〈µ(B)x, x〉 ≥ 0.

Hence µ(B) ≥ 0 and µ is a positive operator-valued measure.

Conversely, assume that µ is a positive operator-valued measure. Fix x ∈ H; for any

B ∈ S
〈µ(B)x, x〉 =

∫

X

χ
B
dµx,x ≥ 0.

Thus µx,x is a positive (real-valued) measure. If f is a positive non-zero function in C(X),
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then there is some open set G ⊆ supp f such that f |G ≥ 1
2
‖f‖. Then

∫

X

fdµx,x ≥ 1

2
‖f‖

∫

X

χ
G
dµx,x.

Equivalently

〈φ(f)x, x〉 ≥ 1

2
‖f‖〈µφ(G)x, x〉,

so that

φ(f) ≥ 1

2
‖ f ‖ µ(G) ≥ 0.

Thus φ is a positive linear map.

Remark 2.1.2. Let BX = {f : X → C | f is a bounded Borel measurable function}. If

φ : C(X) → B(H) is a positive map, we may use the corresponding positive operator-valued

measure to extend φ to a map φ̃ : BX → B(H) by defining

φ̃(f) =

∫

X

fdµφ,

for every f ∈ BX . The measure µφ may then be viewed as the restriction of φ̃ to the

characteristic functions of Borel sets. For simplicity, we will simply write φ, rather than φ̃,

and use the notations µφ(F ) and φ(χ
F
) interchangeably.

Proposition 2.1.3. Let φ ∈ SH(C(X)), µφ the associated operator valued map, and F a

Borel set of X. If µφ(F ) is a projection, µφ(F ) ∈ φ(C(X))′.

Proof. Suppose that µφ(F ) is a projection, and choose f ∈ C(X) with 0 ≤ f ≤ 1. Write

f = χ
F
f + (1− χ

F
)f.

Then φ(χ
F
f) ≤ µφ(F ), so these operators commute. Similarly, φ((1−χ

F
)f) ≤ µφ(X \F ) =
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I − µφ(F ), so that φ((1− χ
F
)f) also commutes with µφ(F ). Therefore φ(f) commutes with

µφ(F ). If f is any continuous function, we can express f as a linear combination of positive

functions with ranges in [0, 1]. Thus φ(f) will commute with µφ(F ).

Lemma 2.1.4. Positive maps φ, ψ : C(X) → B(H) are unitarily equivalent if and only if

the corresponding positive operator-valued measures µφ and µψ are also unitarily equivalent.

Proof. Suppose that

ψ = u∗φu,

for a unitary operator u ∈ B(H). Fix vectors x, y ∈ H; for any f ∈ C(X)

〈ψ(f)x, y〉 = 〈φ(f)ux, uy〉.

Equivalently, ∫
fdµψx,y =

∫
fdµφux,uy .

Thus

µψx,y = µφux,uy .

It follows that for any Borel set B ⊆ X

〈µψ(B)x, y〉 = 〈µφ(B)ux, uy〉.

As this holds for any choice of x, y ∈ H,

µψ ∼ µφ.

Conversely, let µψ, µφ be two positive operator-valued measures S → B(H), and φ and ψ the
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corresponding positive maps. Suppose that

µψ = u∗µφu

for a unitary operator u ∈ B(H). Then for any Borel set B ∈ S

〈µψ(B)x, y〉 = 〈µφ(B)ux, uy〉,

or equivalently, ∫
χ

B
dµψx,y =

∫
χ

B
dµφux,uy .

If f ∈ C(X), f is the pointwise limit of a bounded sequence of simple functions fn, so

〈ψ(f)x, y〉 =

∫
fdµψx,y

= lim
n→∞

∫
fndµψx,y

= lim
n→∞

∫
fndµφux,uy

=

∫
fdµφux,uy

= 〈u∗φ(f)ux, y〉.

This is true for any choice of x, y ∈ H; thus

ψ = u∗φu.

Let us say that a unital positive operator-valued measure µφ : S → B(H) is C∗-extreme
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in the set of unital positive B(H)-valued measures on X if, whenever µφ is written

µφ = t∗1µ1t1 + ... + t∗nµntn,

where each tj ∈ B(H) is invertible,
∑n

j=1 t∗j tj = I and each µj is a unital positive B(H)-

valued measure, then µj ∼ µφ for each j = 1, ...n. Lemma 2.1.4 now yields the following

proposition, which is vital in the proofs of Theorems 2.2.1 and 3.1.2.

Proposition 2.1.5. A map φ ∈ SH(C(X)) is C∗-extreme if and only if the associated

operator-valued measure µφ is C∗-extreme.

Proof. Assume that φ ∈ SH(A) is C∗-extreme, let µφ be the associated positive operator-

valued measure, and suppose that

µφ = t∗1µ1t1 + . . . + t∗nµntn

expresses µφ as a proper C∗-convex combination of unital positive B(H)-valued measures.

For each j, let ψj be the positive map given by µj. Then

φ = t∗1ψ1t1 + . . . + t∗nψntn

expresses φ as a proper C∗-convex combination of ψ1, . . . , ψn. Therefore, for each j there is

a unitary operator uj ∈ B(H) such that

φ = u∗jψjuj.

By Lemma 2.1.4, µφ = u∗µju. Thus µφ is seen to be C∗-extreme. Conversely, if µφ is

C∗-extreme, and

φ = t∗1ψ1t1 + . . . + t∗nψntn
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is a proper C∗-convex combination, we can reverse the above process, letting µj be the unital

positive operator-valued measure determined by ψj. In this case, there are unitary operators

uj such that

µφ = u∗jµjuj.

Once again, Lemma 2.1.4 implies that the maps φ and ψj will also be unitarily equivalent.

A final result about positive operator-valued measures relates the ranges of a unital posi-

tive map φ the corresponding positive operator-valued measure: the range of µφ is contained

in the weak operator topology closure of φ(C(X)), which will be denoted by WOT-cl φ(C(X)).

The proof of this fact requires some care, because while φ(C(X)) is an operator space, it is

not generally an algebra.

Proposition 2.1.6. Let φ : C(X) → B(H) be a positive bounded linear map, and µφ the as-

sociated operator-valued measure. Then for each Borel set F ⊆ X, µφ(F ) ∈ WOT-cl φ(C(X)).

Proof. Let G ⊆ X be an open set. Then a basic WOT-open set in B(H) centered at φ(χ
G
)

has the form:

O = Oε,x1,...,xn,y1,...,yn(φ(χ
G
))

= {T ∈ B(H) : |〈(T − φ(χ
G
))xj, yj〉| < ε for j = 1 . . . n},

where xj, yj ∈ H and ε > 0. We wish to show that for any such open set there is a function

f ∈ C(X) with φ(f) ∈ O. Recall that a complex measure µ is regular if its total variation,

|µ| is regular. For each j = 1, . . . , n, choose a compact set Kj ⊆ G with

|µxj ,yj
|(G \Kj) <

ε

2
.
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Then, setting

K =
n⋃

j=1

Kj

we have, for each j = 1, . . . , n,

|µxj ,yj
|(G \K) <

ε

2
.

Urysohn’s Lemma now guarantees the existence of a continuous function f : X → [0, 1] with

f |K = 1 and f |GC = 0. Then, since χ
K
≤ f ≤ χ

G
, we have

0 ≤ f − χ
K
≤ χ

G\K
.

Hence, for each j = 1, . . . , n,

|〈(µφ(G)− φ(f))xj, yj〉| ≤ |〈(φ(χ
G
)− φ(χ

K
))xj, yj〉|+ |〈(φ(f)− φ(χ

K
))xj, yj〉|

≤ |µxj ,yj
(G \K)|+

∣∣∣∣
∫

(f − χ
K
)dµxj ,yj

∣∣∣∣

≤ |µxj ,yj
|(G \K) +

∫
(f − χ

K
)d|µxj ,yj

|

< ε.

Therefore φ(f) ∈ O, as required.

Now let

F = {F ⊆ X : F is a Borel set and φ(χ
F
) ⊆ WOT-cl φ(C(X))}.

We have just shown that F contains every open set of X. If B1, . . . , Bm ∈ F are disjoint

sets, then
m⋃

i=1

Bi ∈ F
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also. Next suppose that {Bi} is a countable family of sets in F ; we may assume without loss

of generality that {Bi} are a disjoint family. Set B =
⋃∞

i=1 Bi. Then, since µφ is weakly

countably additive,

〈µφ(B)x, y〉 =
∞∑
i=1

〈µφ(Bi)x, y〉

for any x, y ∈ H. That is,

µφ(B) = WOT- lim
N

µφ

( N⋃
i=1

Bi

)
;

thus, B ∈ F . This shows that F is a σ-algebra containing the open sets of X. Therefore, F
is the σ-algebra of Borel sets of X.

Notice that Proposition 2.1.6 shows that if the range of φ is contained in a C∗-subalgebra

A of B(H), then the range of µφ is contained in the weak operator topology closure of A,

i.e, A′′.

2.2 A Necessary Condition for C∗-Extreme Maps

We can now prove the major result of this chapter, a theorem which gives a necessary

condition for a positive map φ on a commutative C∗-algebra (or equivalently its associated

positive operator-valued measure) to be C∗-extreme.

Theorem 2.2.1. Let X be a compact Hausdorff space, and φ : C(X) −→ B(H) a unital,

positive map. Denote by µφ the unique positive operator-valued measure associated to φ. If

φ is C∗-extreme, then for every Borel set F ⊂ X, either

(1) µφ(F ) is a projection, so that by Proposition 2.1.3 µφ(F ) ∈ φ(C(X))′, or

(2) σ(µφ(F )) = [0, 1].

Moreover, if (2) occurs and µφ(F ) has an eigenvalue in (0, 1), then the point spectrum of

µφ(F ) must contain (0, 1).
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Proof. Suppose there is a Borel set F ⊆ X so that µφ(F ) is not a projection and σ(µφ(F )) 6=
[0, 1]. We will show that φ is not C∗-extreme by constructing a proper C∗-convex combination

t∗1ψ1t1 + t∗2ψ2t2 = φ

in which ψ1 and ψ2 are not unitarily equivalent to φ. Choose x ∈ (0, 1) \ σ(µφ(F )) and

let (a, b) be the largest open subinterval of (0, 1) which contains x but does not intersect

σ(µφ(F )). To be precise, let

(a, b) =
⋃
{(α, β) ⊆ (0, 1) : x ∈ (α, β), (α, β) ∩ µφ(F ) = ∅}

Note that this choice of the interval (a, b) insures that at least one of the pair {a, b} is in

σ(µφ(F )). In particular, if a > 0 then a ∈ σ(µφ(F )) and if b < 1 then b ∈ σ(µφ(F )). Choose

s1 ∈
(

1
2

(
a−ab
b−ab

)
, 1

2

)
, and set s2 = 1− s1. For k = 1, 2, define

Qk =
1

2
µφ(F ) + skµφ(F

C) = skI + (
1

2
− sk)µφ(F ).

Note that 0 6∈ σ(Qk) = sk + (1
2
− sk)σ(µφ(F )), so that both Qk’s are invertible. Now define

new positive operator-valued measures µ1 and µ2 by

µk(B) = Q
− 1

2
k

(
1

2
µφ(B ∩ F ) + skµφ(B ∩ FC)

)
Q
− 1

2
k ,

where B is any Borel set of X. Observe that each of the µk’s is a positive operator-valued

measure with µk(X) = I. Next, define tk = Q
1
2
k , for k = 1, 2. Then, for any Borel set B of

X,
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t∗1µ1(B)t1 + t∗2µ2(B)t2 = Q
1
2
1 Q

− 1
2

1

(
1

2
µφ(B ∩ F ) + s1µφ(B ∩ FC)

)
Q
− 1

2
1 Q

1
2
1

+ Q
1
2
2 Q

− 1
2

2

(
1

2
µφ(B ∩ F ) + s2µφ(B ∩ FC)

)
Q
− 1

2
2 Q

1
2
2

= µφ(B ∩ F ) + µφ(B ∩ FC)

= µφ(B).

Each tk is invertible and

t∗1t1 + t∗2t2 = Q1 + Q2 = µφ(F ) + µφ(F
C) = I.

Thus t∗1µ1t1 + t∗2µ2t2 is a proper C∗-convex combination of µ1 and µ2.

It is still necessary to show that µφ is not unitarily equivalent to at least one of µ1 or

µ2. Set g(t) = [sk + (sk − 1
2
)t]−

1
2 . As g is continuous on [0, 1], and Q

− 1
2

k = g(µφ(F )), Q
− 1

2
k

commutes with µφ(F ). Thus, for k = 1, 2, we have

µk(F ) = Q
−1/2
k

(
1

2
µφ(F )

)
Q
−1/2
k

=
1

2
µφ(F )

(
skI +

(
1

2
− sk

)
µφ(F )

)−1

.

Let fk(t) = 1
2
t
(
sk +

(
1
2
− sk

)
t
)−1

. Observe that each fk is continuous on [0, 1], and that

µk(F ) = fk(µφ(F )). Therefore, by the spectral mapping theorem, σ(µk(F )) = fk(σ(µφ(F ))).

It is easy to check that for t ∈ (0, 1), t < f1(t) < 1, while 0 < f2(t) < t, and that both fk’s
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are strictly increasing. In addition, since s1 > 1
2

(
a−ab
b−ab

)
, if a > 0,

a < f1(a) =
1

2
a

(
1

s1 + (1
2
− s1)a

)
<

a
a(1−b)
b(1−a)

(1− a) + a
= b ≤ f1(b).

A similar computation shows that when b < 1, f2(a) ≤ a < f2(b) < b. Consider the following

two cases (these are not mutually exclusive, but at least one must occur):

Case (i) a 6= 0. In this case a ∈ σ(µφ(F )). Thus f1(a) ∈ σ(µ1(F )), but since f1(a) ∈ (a, b),

f1(a) /∈ σ(µφ(F )). Also a ∈ σ(µφ(F )) \ σ(µ2(F )). This shows that σ(µφ(F )) 6=
σ(µk(F )); therefore µφ and µk are not unitarily equivalent.

Case (ii) b 6= 1. In this case, b ∈ σ(µφ(F )). As above, it follows that f2(b) ∈ σ(µ2(F )) \
σ(µφ(F )) and b ∈ σ(µφ(F )) \ σ(µ1(f)). It follows that neither µ1 nor µ2 is unitarily

equivalent to µφ.

Let ψk be the unital positive maps associated with the positive operator-valued measures

µk. Then φ = t∗1ψ1t1 + t∗2ψ2t2; this is a proper C∗-convex combination of ψ1 and ψ2, where

φ is not unitarily equivalent to either ψk. Therefore, φ is not C∗-extreme.

Now suppose that σ(µφ(F )) = [0, 1] and that there exist a, b ∈ (0, 1) with a ∈ σpt(µφ(F ))

and b ∈ σ(µφ(F )) \ σpt(µφ(F )). Assume that a < b (if not, simply exchange the roles of a

and b). Using essentially the same construction as above, we define

Qk =
1

2
µφ(F ) + skµφ(F

C) = skI + (
1

2
− sk)µφ(F )

where s1 = 1
2

(
a−ab
b−ab

)
, and s2 = 1− s1. Then setting

µk(B) = Q
− 1

2
k

(
1

2
µφ(B ∩ F ) + skµφ(B ∩ FC)

)
Q
− 1

2
k ,



30

and tk = Q
− 1

2
k , we have µφ expressed as a proper C∗-convex combination of ψ1 and ψ2:

µφ = t∗1ψ1t1 + t∗2ψ2t2.

As above, µ1(F ) = f1(µφ(F )), and f1(a) = b. Thus, b is an eigenvalue of µ1(F ). Since the

point spectrum is also a unitary invariant, this shows that φ is not C∗-extreme.

Remark 2.2.2. Notice that the result concerning eigenvalues in Theorem 2.2.1 shows that

if a map φ ∈ SH(C(X)) is C∗-extreme, then the operators in the range of µφ may have

eigenvalues only when H is a non-separable Hilbert space.

In their paper of 1997 [6], Farenick and Morenz show that a positive map from a commuta-

tive C∗-algebra into a matrix algebra Mn is C∗-extreme if and only if it is a ∗-homomorphism.

In view of the spectral condition given by Theorem 2.2.1, a shorter proof is possible.

Corollary 2.2.3. [6, Proposition 2.2] Let X be a compact Hausdorff space and φ : C(X) −→
Mn a positive map. Then φ is C∗-extreme if and only if it is a ∗-homomorphism.

Proof. It is already known that if φ is a representation (i.e.,∗-homomorphism), then φ is

C∗-extreme [6, Proposition 1.2]. On the other hand, if φ is not a representation, then the

associated positive operator-valued measure µφ is not a spectral measure. In this case, there

is a Borel set F ⊂ X for which µφ(F ) is not a projection. As µφ(F ) is an n × n matrix,

σ(µφ(F )) consists of at most n isolated points. We may therefore apply the theorem to

conclude that φ is not C∗-extreme.

Note that in the proof of Theorem 2.2.1, Qk, Q
− 1

2
k and tk = Q

1
2
k are elements of the

C∗-algebra generated by µφ(F ). As noted in Proposition 2.1.6, the range of µφ is contained

in the WOT-closure of the range of φ. Thus we have the following corollary to the proof of

Theorem 2.2.1:
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Corollary 2.2.4. Let M ⊆ B(H) be a von Neumann algebra, φ : C(X) −→ M a unital

positive map, and µφ the positive operator-valued measure associated to φ. If φ fails to

meet the spectral condition described in Theorem 2.2.1, then φ can be written as a proper

C∗-convex combination

φ = t∗1ψ1t1 + t∗2ψ2t2,

where each tk ∈ M, each ψk : C(X) −→ M, and neither ψk is unitarily equivalent to φ in

B(H).

2.3 Examples

Theorem 2.2.1 gives a necessary condition for a positive unital map φ to be C∗-extreme.

Example 2.3.4 demonstrates that this condition is not sufficient. Before presenting the

example, we will need to prove Proposition 2.3.2; a result of Choi, stated here as Lemma 2.3.1,

will be of use in its proof.

Lemma 2.3.1. [2, Theorem 3.1] If φ is a 2-positive map between C∗-algebras A and B, then

the set {a ∈ A : φ(a∗a) = φ(a∗)φ(a)} is a closed subalgebra of A. In fact, it is just the

multiplicative domain,

Aφ := {a ∈ A : φ(xa) = φ(x)φ(a) for all x ∈ A}.

Proposition 2.3.2. If X = {x1, x2}, then a positive unital map φ : C(X) → B(H) is

C∗-extreme if and only if φ(z) is an isometry or co-isometry, where z ∈ C(X) is given by

z(xk) = (−1)k, k = 1, 2. In this case, φ is also multiplicative.
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Proof. If φ(z) is an isometry (resp. co-isometry), then

φ(z∗z) = I = φ(z)∗φ(z), ( resp., φ(zz∗) = I = φ(z)φ(z)∗).

In this case, z ∈ C(X)φ (resp., z∗ ∈ C(X)φ), the multiplicative domain of φ. However,

z (resp. z∗) generates all of C(X) as an algebra. Thus φ is multiplicative, and therefore

C∗-extreme.

On the other hand, if φ(z) is neither an isometry nor a co-isometry, then φ(z) can be

written

φ(z) =
1

2
(S1 + S2),

where S1 and S2 are either isometries or co-isometries [14, Cor 1.2]. Since φ(z) is not an

isometry or co-isometry, it is not unitarily equivalent to either Sj. Note that any function

f ∈ C(X) can be written

f(xj) =
1

2
[f(x2) + f(x1)] +

1

2
[f(x2)− f(x1)]z(xj).

We can now define positive maps ψj, j = 1, 2 by

ψj(f) =
1

2
(f(x1) + f(x2))I +

1

2
(f(x2)− f(x1))Sj.

Since ψ1(z) = S1 and ψ2(z) = S2 are isometries or co-isometries, the maps ψ1 and ψ2 are

multiplicative, and therefore positive and unital. Thus

φ(f) =
1

2
(ψ1(f) + ψ2(f)),

expresses φ as a proper C∗-convex combination of maps ψ1 and ψ2 which are not unitarily

equivalent to φ, so φ is not C∗-extreme.
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Remark 2.3.3. Note that the proof of Proposition 2.3.2 demonstrates that for X = {x1, .., xn}
and z(xn) = e2πik/n, if φ(z) is an isometry, then φ is multiplicative.

Write |X| for the cardinality of the set X. It may seem natural to try to extend Propo-

sition 2.3.2 to maps in SH(C(X)) where 2 < |X| < ∞. However this problem turns out to

be quite difficult. We will discuss this issue further in Section 2.5.

Consider the Hilbert spaces L2(T,m), where m is normalized Lebesgue measure on the

unit circle T, and H2, the classical Hardy space. Let Tf = PMfP be the Toeplitz operator

for f . We will make use of a result of Hartman and Wintner [13, p.868], which shows that

for a real-valued function f ∈ L∞(T,m), the spectrum of Tf is the closed convex hull of the

essential range of f . In particular, for a set S ( T with 0 < m(S) < 1, we have

σ(Tχ
S
) = [0, 1].

Example 2.3.4. Let X = {x1, x2} and set U = {eiθ : 0 ≤ θ < π}, so that U is the top

half of the unit circle, and L = T \ U . Then we may define an operator-valued measure

µφ by µφ({x1}) = Tχ
U

and µφ({x2}) = Tχ
L
. The map φ corresponding to µφ will be unital

and positive, and by [13, p. 868] will meet the spectral condition set out in Theorem 2.2.1.

However, φ is not multiplicative, and therefore not C∗-extreme.

We now consider an example of a C∗-extreme map which is not multiplicative. The

positive map φ defined below was considered by Arveson [1, p. 164] as an example of an ex-

treme point in the generalized state space. Farenick and Morenz [6, Example 2] subsequently

showed that φ is also a C∗-extreme point, although not a homomorphism.

Example 2.3.5. [1], [6] Consider the representation π : C(T) −→ B(L2(T,m)) given by

π(f) = Mf . The spectral measure associated to π is given by µπ(B) = Mχ
B
, where B ⊆ X
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is a Borel set. Define a unital positive map

φ : C(T) −→ B(H2)

by

φ(f) = PMfP.

Since µπ(B) = Mχ
B
, we have µφ(B) = PMχ

B
P = Tχ

B
, a Toeplitz operator. Thus σ(µφ(B)) =

σ(Tχ
B
) and, if µφ(B) 6∈ {0, I}, then σ(µφ(B)) = [0, 1] [13, p.868]. Thus, for any Borel set

B ⊆ X, either µφ(B) = [0, 1] or µφ(B) is a trivial projection; that is, φ satisfies the conditions

of Theorem 2.2.1.

In Example 2.3.5, the image of z under φ is Tz, which is unitarily equivalent to the forward

shift operator, and is thus, an isometry. The proof given by Farenick and Morenz that the

map φ of Example 2.3.5 is C∗-extreme uses explicitly the fact that φ(z) is an isometry, and

therefore a C∗-extreme point of the unit ball of B(H) [14, Corollary 1.2], and also relies

implicitly on the fact that the multiplicative domain of φ is the non-selfadjoint subalgebra

A of C(T) generated by z. This algebra is Dirichlet dense in C(T); that is, the norm closure

of A + A∗ is C(T).

As the following example shows, it is possible to use the map φ of Example 2.3.5 to

construct additional non-multiplicative C∗-extreme maps.

Example 2.3.6. Let φ : C(T) → B(H2) be the map of Example 2.3.5, which is a C∗-extreme

point of SH2(C(T)). Extend φ to a map on the Borel measurable functions of the circle, as

in Remark 2.1.2. There is a one-to-one correspondence between Borel measurable functions

on T, and Borel measurable functions on [0, 2π], given by f 7→ g where g(t) = f(eit). Define
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a map ψ : C([0, 2π]) → B(H2) by ψ(g) = φ(f), where g(t) = f(eit). Suppose that

ψ = t∗1ψ1t1 + t∗2ψ2t2

is a proper C∗-extreme convex combination. Define maps φ1, φ2 : C(T) → B(H) by

φj(f) = ψj(g)

where f(eit) = g(t) Then

φ = t∗1φ1t1 + t∗2φ2t2.

Since φ is C∗-extreme, there are unitaries uj so that

φ(f) = ujφj(f)uj.

But then

ψ(g) = u∗jψj(g)uj.

Thus ψ is C∗-extreme in SH2(C([0, 2π])).

2.4 Zhou’s Characterization of C∗-extreme points

In [22, 3.1.2, 3.1.5], Zhou gives two characterizations of C∗-extreme maps; the second of these

is stated below as Theorem 2.4.1. The goal of this section is to describe the relationship

between Theorem 2.4.1 and Theorem 2.2.1.

Theorem 2.4.1. [22, 3.1.5] Let φ : A → B(H) be a completely positive map. Then φ is a



36

C∗-extreme point if and only if the following condition is satisfied:

(†) whenever ρ ≤ φ, we can write ρ = A∗φA for some operator A ∈ B(H).

Moreover, if ρ(1) is invertible, then A may be taken to be invertible .

Remark 2.4.2. Note that Theorem 2.4.1 gives an alternate proof of the fact, mentioned in

Section 1.2, that every pure map is also C∗-extreme. For, if φ is pure and ψ is any completely

positive map with ψ ≤ φ, then there is some t ∈ (0, 1) so that ψ = tφ. But then

ψ = (
√

tI)φ(
√

tI).

Returning to our discussion of the connection between Theorem 2.4.1 and Theorem 2.2.1,

we wish to show directly that if a map φ ∈ SH(C(X)) satisfies condition (†), then for every

Borel set F ⊆ X either µφ(F ) is a projection, or σ(µφ(F )) = [0, 1]. As in the proof of

Theorem 2.2.1, we will prove the contrapositive. Assume that there is a Borel set F ⊆ X for

which µφ(F ) is not a projection and σ(µφ(F )) ( [0, 1]. We will show that φ fails to satisfy

condition (†); that is, there is a map ρ ≤ φ which cannot be expressed in the form ρ = A∗φA.

Proceeding as we did in the proof of Theorem 2.2.1, choose an interval (a, b) ( (0, 1) satisfying

1. (a, b) ∩ σ(µφ(F )) = ∅, and

2. any open interval which properly contains (a, b) will intersect σ(µφ(F )).

Choose s1 ∈ (1
2

a−ab
b−ab

, 1
2
). Then construct operators Qk and measures µk:

Qk =
1

2
µφ(F ) + skµφ(F

C) = skI + (
1

2
− sk)µφ(F ),

µk(B) = Q
− 1

2
k

(
1

2
µφ(B ∩ F ) + skµφ(B ∩ FC)

)
Q
− 1

2
k ,
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for k = 1, 2 and for any Borel set B. Letting ψk be the maps associated with µk, we have

φ = t∗1ψ1t1 + t∗2ψ2t2,

where tk = Q
1
2
k . Then the maps ρ1 = t∗1ψ1t1 and ρ2 = t∗2ψ2t2 are both positive maps, and

ρk ≤ φ for k = 1, 2.

Suppose, to seek a contradiction, that ρ1 = A∗φA for some A ∈ B(H). Since both ψ1

and φ are unital maps,

ρ1(1) = t∗1t1 = A∗A.

Set

T = (t∗1t1)
1
2 = (A∗A)

1
2 .

Then, the polar decompositions of t1 and A may be written

t1 = uT, and A = wT.

Note that, since t1 is invertible, A must also be invertible, so that both u and w are unitaries.

Thus,

T = u∗t1 = w∗A,

and,

t1 = uw∗A,

where uw∗ is a unitary.
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It follows that

ρ1 = t∗1ψ1t1 = (uw∗A)∗ψ1(uw∗A)

= A∗(uw∗)∗ψ1(uw∗)A

But then,

A∗φA = A∗(uw∗)∗ψ1(uw∗)A.

Multiplying on the left by (A∗)−1 and on the right by A−1, we obtain

φ = (uw∗)∗ψ1(uw∗).

But this is a contradiction, as it was shown in the proof of Theorem 2.2.1 that φ and ψ are

not unitarily equivalent. We conclude that there is no operator A for which

ρ1 = A∗φA.

That is, φ fails to satisfy condition (†).

2.5 When X is Finite

Let X be a finite set, and write |X| for the cardinality of X; denote by z be the function

z(xj) = e
2iπj
|X| .

In Proposition 2.3.2 it was shown that when X = {x1, x2} a map φ : C(X) → B(H) is

C∗-extreme if and only if it is multiplicative. It seems reasonable to hope that this result
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could be extended to C(X) for any finite set X. However, the proof of Proposition 2.3.2

relied on the fact that the C∗-algebra C(X) is generated as a vector space by the functions

1 and z when |X| = 2. When |X| > 2, this is no longer the case. Since z does generate

C(X) as an algebra when |X| is finite, it follows that whenever φ(z) is an isometry, φ will

be multiplicative and therefore C∗-extreme (see Remark 2.3.3). Unfortunately, it is not

clear whether φ(z) must be an isometry (and φ therefore be multiplicative) in order for

φ to be C∗-extreme. The following discussion gives some insight into why this apparently

straightforward question has been so resistant to solution.

Let X = {x1, x2, x3} and let P1, P2, P3 be positive operators in B(H) with I = P1+P2+P3

and σ(Pj) = [0, 1] for j = 1, 2, 3. To construct an example of such operators, let

Sj =

{
eiθ ∈ T :

2π(j − 1)

3
≤ θ <

2πj

3

}
,

for j = 1, 2, 3, then set Pj = Tχ
Sj

. Define a positive map φ : C(X) → B(H) by

φ(δj) = Pj,

where δj is the characteristic function of {x}. Then a proper C∗-convex combination for φ

will have the form

φ(δj) = t∗1ψ1(δj)t1 + t∗2ψ2(δj)t2,

for j = 1, 2, 3. To determine whether φ is C∗-extreme, we need to know if such a C∗-convex

combination exists in which (without loss of generality) ψ1 is not unitarily equivalent to φ.

Consider the C∗-algebra A = C([0, 1]) ∗ C([0, 1]), the free product of two copies of

C([0, 1]). Let f1 and f2 be generators of the first and second free factors of A, respectively.

Given any positive unital map φ ∈ SH(C(X)) we can define a representation πφ of A by



40

setting

πφ(fj) = Pj,

for j = 1, 2, and extending πφ. Then two such maps, say φ and ψ1, will be unitarily equivalent

if and only if the corresponding representations πφ and πψ1 are unitarily equivalent.

The above construction shows that every φ ∈ SH(C(X)) gives rise to a representation

of A. However, the reverse is not true. Each representation of A on B(H) carries the

generators f1 and f2 of A to operators π(fj) in B(H) with 0 ≤ π(fj) ≤ I. In order to define

a corresponding unital positive map φ, with

φ(δj) = π(fj) for j = 1, 2, and

φ(δ3) = I − (φ(f1) + φ(f2)),

we need π(f1) + π(f2) ≤ I. Thus the ideal

J =
⋂

φ∈SH(C(X))

ker πφ

will be nontrivial. The representations of the algebra A/J will be in one-to-one corre-

spondence with the maps in SH(C(X)), and the unitary equivalence classes of the repre-

sentations of A/J will correspond exactly to those in SH(C(X)). Thus, our attempt to

determine whether φ is C∗-extreme, leads us to questions about the representation theory

of A = C([0, 1]) ∗ C([0, 1]) and the quotient algebra A/J . The representation theory for A
and A/J is unlikely to be easily understood.
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Chapter 3

C∗-Extreme Maps into K+

3.1 Maps into K+

Now let us consider the case of a unital positive map φ on a commutative C∗-algebra C(X)

whose range is in K+, the C∗-algebra generated by the compact operators and the identity

operator. In [6, Proposition 1.1] Farenick and Morenz show that if such a map φ is C∗-

extreme, then φ is also extreme. It is possible, however, to say more. Theorem 2.2.1

requires the operators in the range of the positive operator-valued measure µφ either to

be projections, or to have spectrum equal to [0, 1]. In contrast, the spectrum of a positive

operator K + αI ∈ K+ must be a sequence of positive numbers with a single limit point

at α. This dichotomy suggests that Theorem 2.2.1 may give additional information about

these maps. However, Proposition 2.1.6 tells us only that the operators in the range of µφ

must be in WOT-cl φ(C(X)), and WOT-cl K+ = B(H). The desired result is, therefore, not an

immediate consequence of Theorem 2.2.1, but will require some additional effort on our part.

Both the result of Theorem 2.2.1 (the spectral condition on the operators in the range of µφ)

and the technique used in its proof, will be used below. The result is Theorem 3.1.2, which

shows that C∗-extreme maps into K+ must be multiplicative, and gives their structure.
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In the succeeding lemma and theorem, let q be the usual quotient map q : B(H) →
B(H)/K(H), and set τ = q ◦ φ, see Figure 1.

C(X)
φ //

τ
##G

G
G

G
G K+

q

²²
C

Figure 1

Then τ is a positive linear functional, so there is a unique positive real-valued Borel measure

µτ on X so that

τ(f) =

∫

X

fdµτ for every f ∈ C(X).

For any function f ∈ C(X), write Kf = φ(f)− τ()f)I, so Kf ∈ K and

φ(f) = Kf + τ(f)I.

Lemma 3.1.1. Let φ : C(X) → K+ be unital, positive, and C∗-extreme. Then the map τ is

multiplicative.

Proof. As in the proof of Theorem 2.2.1, we will prove the contrapositive. Assume that τ is

not multiplicative; then the support of µτ must contain at least two distinct points, which

we will call x1 and x2. Let N1 be a neighborhood of x1 which does not contain x2. By

Urysohn’s Lemma, there exists a continuous function f : X → [0, 1] such that f(x1) = 1 and

f |NC
1

= 0; note that τ(f) 6= 0.

Choose α and β in (0, 1) with α > β and let

Q1 = αφ(f) + βφ(1− f) = (α− β)φ(f) + βI, and

Q2 = (1− α)φ(f) + (1− β)φ(1− f) = (β − α)φ(f) + (1− β)I.



43

Note that since 0 ≤ f ≤ 1, the spectrum of φ(f) is contained in the closed unit interval.

Thus,

σ(Q1) ⊆ [β, α], and

σ(Q2) ⊆ [1− α, 1− β].

So both Qj’s are invertible positive operators. Define maps ψ1 and ψ2 by

ψ1(g) = Q
− 1

2
1 [αφ(fg) + βφ((1− f)g)] Q

− 1
2

1 , and

ψ2(g) = Q
− 1

2
2 [(1− α)φ(fg) + (1− β)φ((1− f)g)] Q

− 1
2

2 .

Both ψj’s are positive, unital maps with ranges in K+. Setting tj = Q
1
2
j , we have

t∗1ψ1(g)t1 + t∗2ψ2(g)t2 = αφ(fg) + βφ(g − fg) + (1− α)φ(fg) + (1− β)φ(g − fg)

= φ(fg) + φ(g − fg)

= φ(g), for every g ∈ C(X).

Since t∗1t1 + t∗2t2 = I, the above expression gives φ as a proper C∗-convex combination of ψ1

and ψ2.

We now wish to show that ψ1 and ψ2 are not unitarily equivalent. To this end, let N2

be a neighborhood of x2 with N1 ∩ N2 = ∅. Then we may choose a continuous function

h : X → [0, 1] with h|NC
2

= 0 (i.e., supp h ⊆ N2) and h(x2) = 1; thus fh = 0,(1− f)h = h,

and τ(h) 6= 0.

Since h ∈ C(X), φ(h) = Kh + τ(h)I ∈ K+. Note that τ(h) > 0, since h > 0 on some
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neighborhood of x2, and that the essential spectrum of φ(h) is {τ(h)}. Now compute

ψ1(h) = Q
− 1

2
1 (αφ(fh) + βφ((1− f)h)) Q

− 1
2

1

= βQ
− 1

2
1 φ(h)Q

− 1
2

1

= βQ
− 1

2
1 KhQ

− 1
2

1 + βτ(h)Q−1
1

The first term in this sum is compact, while the second term can be written

βτ(h)Q−1
1 = βτ(h)[(α− β)Kf + ((α− β)τ(f) + β)I]−1,

where φ(f) = Kf + τ(f)I. Thus

(q ◦ ψ1)(h) =
βτ(h)

(α− β)τ(f) + β
I +K.

Similar computations yield

ψ2(h) = (1− β)Q
− 1

2
2 KhQ

− 1
2

2 + (1− β)τ(h)Q−1
2 , and

(q ◦ ψ2)(h) =
(1− β)τ(h)

(β − α)τ(f) + (1− β)
I +K.

So the essential spectra of ψ1(h) and ψ2(h) are

{
βτ(h)

(α− β)τ(f) + β

}
and

{
(1− β)τ(h)

((β − α)τ(f) + (1− β)

}
,

respectively. However, if these are equal, then

β(β − α)τ(f) + β(1− β) = (1− β)(α− β)τ(f) + β(1− β),
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so that,

β = β − 1,

which is clearly impossible. This shows that the essential spectra of ψ1(h) and ψ2(h) are

distinct, so that ψ1(h) and ψ2(h) are not unitarily equivalent. So

φ = t∗1ψ1t1 + t∗2ψ2t2

expresses φ as a proper C∗-convex combination of positive unital maps ψ1 and ψ2 which are

not both unitarily equivalent to φ, demonstrating that φ is not C∗-extreme. This proves the

lemma.

We can now prove the following:

Theorem 3.1.2. Let φ : C(X) → K+ be unital and positive. Then φ is C∗-extreme if and

only if φ is a homomorphism.

Proof. If φ is multiplicative, then φ is C∗-extreme [6, Proposition 1.2]. Conversely, if φ is C∗-

extreme, Lemma 3.1.1 shows that the map τ = q ◦ φ is multiplicative, so that τ(f) = f(x0)

for some point x0 ∈ X.

Let N be any neighborhood of x0. Then there exists a continuous function g
N

: X → [0, 1]

with g
N
(x0) = 0 and g

N
|NC = 1.

In this case τ(g
N
) = 0, so

φ(g
N
) = Kg

N
∈ K.

Note that χ
NC

≤ g
N
, so that φ(χ

NC
) ≤ φ(g

N
). Since K is hereditary, it follows that φ(χ

NC
)

is compact. By Theorem 2.2.1, either φ(χ
NC

) is a projection or σ(φ(χ
NC

)) = [0, 1]. As a

compact operator cannot have the unit interval as its spectrum, φ(χ
NC

) must be a projection
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of finite rank. So for any closed set F 63 x0, φ(χ
F
) is a finite rank projection. Next we will

show that the same is true for any Borel set B which does not contain x0. Set

Λ := {K ⊆ B : K closed},

and partially order Λ by inclusion. Then µφ(K) is an increasing net of projections. Thus the

SOT-lim
K

µφ(K) =: Q exists, and is a projection, namely the projection onto
⋃

K∈Λ

ran µφ(K).

Since the measures µx,x are regular for any choice of x ∈ H, we have

µx,x(B) = sup
K∈Λ

µx,x(K)

or, equivalently,

〈µφ(B)x, x〉 = sup
K∈Λ

〈µφ(K)x, x〉

= 〈Qx, x〉.

As this holds for any x ∈ H,

Q = µφ(B).

If B is a Borel set in X which does contain x0, then the preceding argument shows that

µφ(B
C) is a projection. Thus µφ(B) is also a projection. Hence µφ is a projection valued

measure, and φ is a homomorphism.

Remark 3.1.3. When φ : C(X) → K+, as in Theorem 3.1.2, we can obtain more information

regarding the support of µφ. We have shown above that for any closed set K with x0 6∈ K,

µφ(K) is a finite rank projection, say of rank n. If x1, x2 are distinct points of K ∩ supp µφ,

let N1 ⊆ K be a neighborhood of x1 which does not contain x2. Then K \N1 is closed and
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x0 6∈ K \N1, so µφ(K \N1) is a projection of finite rank and

0 < rank µφ(K \N1) < rank µφ(K) = n.

Since

µφ(K) = µφ(K \N1) + µφ(N1),

it follows that µφ(N1) is also a projection with

0 < rank µφ(N1) < n.

Clearly this process can be iterated at most n times; we conclude that any closed set K 63 x0

contains at most finitely many points of supp µφ. Consequently, supp µφ \ {x0} is a discrete

set with at most one accumulation point at x0.

If H is a separable Hilbert space, then it is clear from the proof of Theorem 3.1.2 and

the preceding remark that the support of µφ must be at most countable with a single limit

point at x0. In this case, φ must have the form

φ(f) =
∑

x∈supp(µφ)

f(x)Px,

where Px = µφ({x}) is a finite rank projection for each x 6= x0. The rank of Px0
, on the other

hand, may be finite or infinite. The following example, in which we consider a nonseparable

Hilbert space, illustrates the structure of unital positive maps φ : C(X) → K+.

Example 3.1.4. Let H be a nonseparable Hilbert space with dimension at least as great as

the cardinality of R, and let X = R ∪ {ω} be the one point compactification of (R, d), the

reals equipped with the discrete topology. Choose an orthonormal set {ex}x∈R in H indexed

by the reals, and write Px for the projection onto the span of ex. Then, for any function
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f ∈ C(X), the set

S(f) := {x ∈ X : f(x) 6= f(ω)}

is at most countable, and

lim
n→∞

f(xn) = f(ω),

where {xn} is any enumeration of S(f). Define a positive map φ on C(X) by

φ(f) =
∑

x∈S(f)

[f(x)− f(ω)]Px + f(ω)I.

Then for each x ∈ R, the function δx = χ{x} is continuous and φ(δx) = µφ({x}) = Px. As

in the proof of Theorem 3.1.2, if G is any neighborhood of ω, then GC is a closed set not

containing ω, and φ(χ
G
) is a projection. In this case the descending net φ(χ

G
) of projections

converges to the trivial projection φ(χ{ω}) = 0. Thus µφ is a projection valued measure.

Note that we could define similar maps φ1 and φ2 by

φ1(f) =
∑

x∈S(f)\{0}
[f(x)− f(ω)](Pex + P−ex) + f(ω)I,

and

φ2(f) =
∑

x∈S(f)

[f(x)− f(ω)]Parctan x + f(ω)I.

For these two maps, we have φ1(χ{ω}) = P0, while φ2(χ{ω}) is the projection onto the closed

span {ran Px : x ∈ (−∞, π
2
] ∪ [π

2
,∞)}. Thus, the measure of {ω} may be a projection of

either finite or infinite rank.
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3.2 Efforts to Extend Theorem 3.1.2

As we have seen, Theorem 3.1.2 gives a complete characterization of C∗-extreme maps in

SH(C(X)) with range in K+, and leads to a description of the structure of these maps. This

section will address the question of whether Theorem 3.1.2 can be extended to a larger class

of completely positive maps.

Consider, for example, unital completely positive maps φ : A → K+, where A is a CCR

algebra. Then there are non-multiplicative C∗-extreme points in SH(A); Zhou gives the

following example of a C∗-extreme map [22, 3.3.3].

Example 3.2.1. Take A = M2 ⊕M1 and write elements a ∈ A in the form

a =




a1,1 a1,2 0

a2,1 a2,2 0

0 0 a3,3




.

Then the map φ : M3 → M2, given by

φ(a) =
1

2




a1,1 + a3,3 a1,1 − a3,3

a1,1 − a3,3 a1,1 + a3,3




is C∗-extreme. However, φ is not multiplicative. For example, taking

a =




1 1 0

−1 1 0

0 0 1




and b =




1 −1 0

1 1 0

0 0 3




,
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we obtain

φ(a)φ(b) =




2 −1

−1 2




while

φ(ab) =




5
2

−1
2

−1
2

5
2


 .

On the other hand, consider maps φ : C(X) → A where A is an AF algebra other than

K+. The proof of Theorem 3.1.2 depends strongly on the fact that the spectrum of a self-

adjoint compact operator is a sequence of real numbers converging to zero. In an AF algebra

other than K+, the spectrum of an operator might very well be the entire unit interval. It

seems unlikely, therefore, that the technique used in the proof of Theorem 3.1.2 will yield

results about maps with range in other AF algebras.
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