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Let R = k[x1, . . . , xd] with k a field. A Zd-graded differential R-module is a Zd-graded

R-module D with a morphism δ : D → D such that δ2 = 0. This dissertation establishes

a lower bound on the rank of such a differential module when the underlying R-module is

free. We define the Betti number of a differential module and use it to show that when

the homology ker δ/ im δ of D is non-zero and finite dimensional over k then there is an

inequality rankRD ≥ 2d. This relates to a problem of Buchsbaum, Eisenbud and Horrocks

in algebra and conjectures of Carlsson and Halperin in topology.

Motivated by some steps of this work, further results are proved relating the homotopical

Loewy length, derived Loewy length and generalized Loewy length.
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Chapter 1

Introduction

The study of commutative algebra has grown out of the classic study of polynomial equations

and their solutions. The principal objects of study are commutative rings and their modules.

A basic tool for working with modules is a free resolution, where a module is represented by

generators and relations, and those relations are themselves represented by generators and

further relations, and so on. Corresponding to these stages of construction, a free resolution

is indexed by the integers Z. Alternatively, we can consider a free resolution to be the

final product of the construction, so that it is given “all at once” without a corresponding

Z indexing. Viewed in this way a free resolution is a module equipped with a square-zero

endomorphism coming from the differentials of the complex. Such an object is known as a

differential module.

Differential modules have appeared in several works on chain complexes, but there have

not been many studies of differential modules themselves. As described above, they capture

much of the structure of a chain complex, but they also allow richer behavior because they are

not constrained to a Z indexing. For example, differential modules simultaneously address

problems about free resolutions and problems about free complexes with homology spread

among several homological degrees. Their flexibility extends beyond algebraic contexts as
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well. One such use is in the conjectures of Carlsson and Halperin concerning a lower bound

on the rank of DG-modules with non-zero finite length homology [5, 9] (for this connection

between differential modules and DG-modules see [1, §5]). This dissertation examines dif-

ferential modules, particularly Zd-graded differential modules, with a focus on the problem

of finding a lower bound on the rank of a resolving differential module.

To be precise, let k be a field and set R = k[x1, . . . , xd]. A differential R-module D is an R-

module with a square-zero homomorphism δ : D → D called the differential. The homology

of D is defined in the usual way: H(D) = ker δ/ im δ. The results of this dissertation are

motivated by a conjecture of Avramov, Buchweitz and Iyengar on the rank of a differential

module over a local ring ([1, Conjecture 5.3]). Formulated for a Zd-graded polynomial ring,

this reads:

Conjecture 1.0.1. Let R = k[x1, . . . , xd] be a Zd-graded polynomial ring of dimension d,

and F a Zd-graded differential R-module admitting a finite free flag. If H(F ) has non-zero

finite length, then

rankR F ≥ 2d.

In this conjecture, a free flag on a differential module is a filtration compatible with

the differential (see Definition 2.0.8). It provides the appropriate lifting properties for the

category of differential modules. From [1, Theorem 5.2] it follows that the conjecture is true

when d ≤ 3.

A consequence of our results is the following result for all dimensions when the differential

δ has degree zero:

Theorem. Let F be a finitely generated Zd-graded differential R-module with differential

δ : F → F that is homogeneous of degree zero, such that F is free as an R-module. If H(F )

has non-zero finite length then rankR F ≥ 2d.



3

This follows from Theorem 3.4.4 which establishes a lower bound on the rank of a dif-

ferential module by finding a lower bound on an invariant that corresponds to the role of a

Betti number of a module (see Definition 2.0.7).

This result is new even for complexes of R-modules. Given a complex of Zd-graded free

R-modules

F = . . . // F2
// F1

// F0
// . . .

the module
⊕

i Fi with differential δ =
⊕

i ∂
i forms a differential module. When H(F ) has

non-zero finite length as an R-module then we conclude that

∑
i

rankR Fi ≥ 2d. (1.0.1)

This inequality is already known when F is a resolution—i.e. Fi = 0 for i < 0 and Hi(F ) =

0 for i 6= 0—from the work of Charalambous and Santoni on the Buchsbaum-Eisenbud-

Horrocks problem [7, 13]. Recall that for a Z-graded polynomial ring, the Buchsbaum-

Eisenbud-Horrocks problem is to show that βi(M) ≥
(
d
i

)
all Z-graded R-modules M with

non-zero finite length, where βi(M) is the i-th Betti number of M [4, 10]. Summing the

binomial coefficients gives (1.0.1) when F is a free resolution of a non-zero finite length Zd-

graded module M . However, when F is not acyclic it is not clear how to establish (1.0.1)

without using differential modules.

Some techniques available for complexes can be directly adapted to the case of differential

modules, however there are some subtle difficulties that appear. For example, there may be

no way to minimize a resolution in the category of differential modules and this creates an

obstruction to applying the usual tools of complexes (see Example 3.2.3, or Theorem 3.2.1

for some positive results). Not many techniques are available for working with differential

modules. This work should be seen as a contribution in that direction.

Chapter 2 provides the background in differential modules and Zd-graded differential
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modules. We define a notion of a Betti number for differential modules, which serves as an

essential notion for establishing a lower bound on the rank of a differential module.

Chapter 3 explores Zd-graded differential modules with an eye towards lower bounds on

the Betti number. We examine several classes of Zd-graded differential modules, presenting

some results and examples, including an example that demonstrates that the Betti number

is not always bounded below by 2d. The main theorem on the lower bound for Betti num-

bers is proven by using truncation techniques to reduce to a case where differential module

adaptations of Santoni’s results [13] can be applied.

An important step in finding a lower bound on the Betti number is to take a differential

module with finite length homology and replace it by a differential module with finite length.

In Chapter 4 we examine this phenomenon for complexes of R-modules and investigate some

ways of measuring the size of such a replacement.
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Chapter 2

Differential Modules

Throughout, k is a field, R = k[x1, . . . , xd] is the standard Zd-graded polynomial ring and

m = (x1, . . . , xd). To be specific, the grading on R is such that the degree deg(xi) ∈ Zd of

variable xi is (0, . . . , 0, 1, 0, . . . , 0) with the 1 appearing in the i-th coordinate. For m ∈ Zd,

we write mi to denote the i-th coordinate. Two elements a,b ∈ Zd are compared coordinate-

wise by setting a ≤ b if ai ≤ bi for all i. This makes Zd into a partially ordered group.

Recall that a Zd-graded module M over R is an R-module that has a decomposition⊕
m∈Zd Mm as abelian groups such that multiplication by an element of R of degree n takes

Mm to Mm+n. An R-linear map φ between Zd-graded modules M and N is a morphism if

φ(Mm) ⊆ Nm. In particular, a complex of Zd-graded modules is required to have morphisms

for its differentials.

For d ∈ Zd the shifted (or twisted) module M(d) is defined to be Md+m in degree m for

each m ∈ Zd, with the same R-module structure as M . Given a morphism φ : M → N the

shifted morphism M(d)→ N(d) defined by x 7→ φ(x) is denoted φ(d).

We will work with Zd-graded modules and Zd-graded differential modules, so definitions

will be given in that context for simplicity; see [1, 6] for details concerning arbitrary differ-

ential modules.
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Definition 2.0.2. A Zd-graded differential R-module with differential degree d ∈ Zd is a

Zd-graded R-module D with a morphism δ : D → D(d) such that the composition

D(−d)
δ(−d) // D

δ // D(d)

is zero. We say that δ is the differential of D.

When D and E are Zd-graded differential modules with the same differential degree,

define a morphism φ : D → E to be a morphism of Zd-graded modules satisfying δE ◦ φ =

φ ◦ δD. For a fixed differential degree, the category of Zd-graded differential modules with

this notion of a morphism is an abelian category.

The homology of a differential module D is the Zd-graded R-module

H(D) = ker δ/ im(δ(−d)).

The Zd-grading on H(D) is inherited from D by considering ker δ and im(δ(−d)) as sub-

modules of D with the induced grading. Any Zd-graded R-module, in particular H(D), will

be considered as a differential module with zero differential.

In the usual way, a morphism φ : D → E induces a map in homology H(φ) : H(D) →

H(E). If H(φ) is an isomorphism we say that φ is a quasi-isomorphism and write D ' E

or φ : D
'−→ E. Given an exact sequence of differential modules

0 // D1
α // D2

β // D3
// 0

there is an induced long exact sequence of in homology,

. . . // H(D1)(id)
H(α)(id)// H(D2)(id)

H(β)(id)// H(D3)(id)
γ(id) // H(D1)((i+ 1)d) // . . .
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where i ranges over the integers, and each map is a morphism of Zd-graded modules (in

particular, has degree 0). We summarize this sequence by the following diagram

H(D1)
H(α) // H(D2)

H(β)yyttttttttt

H(D3)

γ
©JJJJ

eeJJJJ
(2.0.1)

where the circle indicates that γ is a homomorphism of degree d.

See [6, Chap. IV §1] for a proof.

Bounds on the rank of a differential module will be obtained by comparing the rank and an

invariant that we call the Betti number of a differential module. To define the Betti number

we will need a notion of a tensor product of differential modules. However adapting the

usual definition of a tensor product between complexes fails to produce a differential module

when applied to two differential modules. To work around this we recall the construction of

a tensor product of a complex and a differential module, along with some of its properties

[1, §1].

Definition 2.0.3. For a complex C of Zd-graded R-modules and a Zd-graded differential

R-module D with differential degree d, define a Zd-graded differential module C �R D by

setting

C �R D =
⊕
i∈Z

(Ci(−id)⊗R D),

with differential defined by

δC�RD(c⊗ d) = ∂C(c)⊗ d+ (−1)ic⊗ δD(d),

for c⊗ d ∈ Ci(−id)⊗R D. This makes C �R D into a Zd-graded differential R-module with

differential degree d.
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We will need the following facts concerning this product. These results are proved in

[1] for arbitrary differential modules, but the proofs hold for Zd-graded differential modules

with the obvious modifications.

Proposition 2.0.4 ([1, 1.9.3]). Let X and Y be Zd-graded complexes and let D be a Zd-

graded differential module. Then there is a natural isomorphism of Zd-graded differential

modules:

(X ⊗R Y ) �R D = X �R (Y �R D).

Proposition 2.0.5 ([1, Proposition 1.10]). Let X and Y be bounded below Zd-graded com-

plexes of flat R-modules, i.e. Xi = Yi = 0 for sufficiently small i. Then

1. the functor X �R − preserves exact sequences and quasi-isomorphisms;

2. a quasi-isomorphism φ : X → Y induces a quasi-isomorphism

φ�R D : X �R D → Y �R D

for all Zd-graded differential R-modules D.

Using this tensor product, we can define a Tor functor between R-modules and differential

R-modules, and hence define a Betti number.

Definition 2.0.6. For a Zd-graded differential R-module D and a Zd-graded R-module M

set

TorR(M,D) = H(P �R D)

where P is a Zd-graded free resolution of M . This is well-defined as different choices of free

resolution produce quasi-isomorphic differential modules by Proposition 2.0.5.



9

Definition 2.0.7. We define βRm(D) to be the Betti number in degree m ∈ Zd of a differential

R-module D:

βRm(D) = rankk TorR(k,D)m.

Summing over all degrees gives the Betti number βR(D):

βR(D) =
∑
m∈Zd

βRm(D) = rankk TorR(k,D).

The connection between ranks of differential modules and Betti numbers is provided by

free flags, a notion of a free resolution for differential modules [1, §2].

Definition 2.0.8. A free flag on a differential module F is a family {F n}n∈Z of Zd-graded

R-submodules such that

1. F n = 0 for n < 0,

2. F n ⊆ F n+1 for all n,

3. δF (F n) ⊆ F n−1 for all n,

4.
⋃
n∈Z F

n = F ,

5. F n/F n−1 is a free R-module for all n.

We say that a Zd-graded differential module F with a free flag resolves D if there is a

quasi-isomorphism F
' // D in the category of Zd-graded differential modules.

Many properties of free modules have analogs for differential modules with free flags. We

will use the following two.

Proposition 2.0.9. Let D1 and D2 be differential modules and let F be a differential module

with a free flag. If α : D1 → D2 is a surjective quasi-isomorphism and β : F → D2 is a
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morphism then there is a morphism γ : F → D1 such that the following diagram commutes:

D1

' α

��
F

β
//

γ
>>~

~
~

~
D2

Sketch of proof. Let {F n}n∈Z be a free flag on F . Define γ : F → D1 inductively by defining

γn : F n → D1. We can define γ0 : F 0 → D1 using the usual lifting properties since F 0 is a

free R-module. For n > 0 we have F n = F n−1⊕ (F n/F n−1) since F n/F n−1 is free. Assuming

that we have γn−1 : F n−1 → D1 defined, we can define γn : F n → D1 by using the lifting

properties of the free module F n/F n−1 to define a map F n/F n−1 → D1. The lifting used is

important since we need δD1γ = γδF and αγ = β. However, any lifting can be modified by

adding an appropriate boundary of D1 so that it has the desired properties.

Proposition 2.0.10 ([1, Proposition 2.4]). Let F be a Zd-graded differential module with a

free flag. Then the functor −�R F preserves exact sequences and quasi-isomorphisms.

With differential modules that admit a free flag providing a resolution of a differential

module, the Tor functor is balanced, which gives the connection between the rank and Betti

number of a differential module.

Lemma 2.0.11. Let P be a free resolution of a Zd-graded module M and let F be a free flag

resolving a Zd-graded differential module D. Then H(P �RD) is isomorphic to H(M �R F )

as Zd-graded R-modules.

Proof. Let ε : P → M and η : F → D be Zd-graded quasi-isomorphisms. Then there are

Zd-graded morphisms

P �R D P �R F
P�Rηoo ε�RF // M �R F.

By Proposition 2.0.5 and Proposition 2.0.10 these are quasi-isomorphisms.
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Theorem 2.0.12. Let F be Zd-graded differential module admitting a free flag. For all

degrees m ∈ Zd we have βRm(F ) ≤ rankk Fm. Therefore,

βR(F ) ≤ rankR F.

Proof. By Lemma 2.0.11,

βRm(F ) = rankk TorR(k, F )m = rankkH(k �R F )m.

Since k is an R-module, k�RF = k⊗RF . Since H(k⊗RF )m is a subquotient of (k⊗RF )m,

we have

rankkH(k �R F )m ≤ rankk(k ⊗R F )m = rankk Fm.

Summing over all degrees gives the inequality for the Betti number,

βR(F ) =
∑
m∈Zd

βRm(F ) ≤
∑
m∈Zd

rankk Fm = rankk k ⊗R F = rankR F.

Remark 2.0.13. When δ(F ) ⊆ mF we have βRm(F ) = rankk Fm as the differential of k �R F

is zero. In general, the inequality can be strict; see Example 3.2.3.

We finish this section by recording a property of the Tor functor for use later.

Lemma 2.0.14. Consider an exact sequence of Zd-graded differential R-modules

0 // D1
α // D2

β // D3
// 0 .

For each Zd-graded R-module M there is an exact commutative diagram of Zd-graded differ-
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ential modules:

TorR(M,D1)
Tor(M,α) // TorR(M,D2)

Tor(M,β)vvnnnnnnnnnnnn

TorR(M,D3)

γ
©PPPPP

hhPPPPP

Proof. Take a free resolution P of the module M . By Proposition 2.0.5 the sequence of

differential modules remains exact after applying P �R −:

0 // P �R D1
P�α // P �R D2

P�β // P �R D3
// 0 .

The diagram (2.0.1) coming from this exact sequence is the desired one.
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Chapter 3

Lower Bound on the Betti Number

3.1 Compression

Every complex of R-modules produces a differential module by forming its compression.

This construction allows results about differential modules to be translated to results about

complexes of modules. In fact, the differential modules produced by compressing always

have differential degree 0 so it is sufficient to restrict to differential modules with differential

degree 0 if one is interested in establishing results about complexes. Note that not every

differential module of differential degree 0 arises this way (see Example 3.1.3).

Construction 3.1.1 ([1, 1.3]). If C is a complex of Zd-graded R-modules, then its com-

pression is the Zd-graded differential module

C∆ =
⊕
i∈Z

Ci

with differential δC∆ =
⊕

i∈Z ∂
C
i .

We have deg(δC∆) = 0 because the differentials of the complex C are required to have

degree zero. By the definition of δC∆ , we have H(C∆) =
⊕

i∈ZHi(C).
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When the complex C is bounded below and consists of free R-modules then the com-

pression has a free flag. Indeed, suppose Ci = 0 for i sufficiently small. Then setting

F n =
⊕

i≤nCi forms a free flag.

Computing the Betti number of a compression is a straight-forward application of The-

orem 2.0.12 and Remark 2.0.13.

Lemma 3.1.2. Let C be a bounded below complex of free modules that is minimal in the

sense that ∂Cn (Cn) ⊆ mCn−1. Then

β(C∆) =
∑
i

rankR Ci.

When C is a minimal free resolution of a module M we have

β(C∆) =
∑
i

βi(M),

where βi(M) is the usual Betti number of M .

Proof. Since C is a bounded below complex of free modules, C∆ has a free flag. We have

δ(C∆) =
⊕
i∈Z

∂i(Ci) ⊆
⊕
i∈Z

mCi−1 = mC∆,

so by Remark 2.0.13 we have

β(C∆) = rankR C∆ =
∑
i

rankR Ci.

When C is a minimal free resolution of M we have rankR Ci = βi(M), which completes the

proof.
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Obviously differential modules with non-zero differential degree do not come from com-

pressing a complex, but the following shows that there are also differential modules with

differential degree zero that are not compressions of a complex.

Example 3.1.3. Let R = k[x, y] and let F = R(0, 0) ⊕ R(−1, 0) ⊕ R(0,−1) ⊕ R(−1,−1).

Viewing F as column vectors, define a differential δ by left-multiplication by the matrix



0 x y xy

0 0 0 −y

0 0 0 x

0 0 0 0


.

This is a differential module with deg δ = 0. Represented diagrammatically this has the

form of a Koszul complex on x, y modified by adding an additional map:

R(−1,−1) [
−y
x

] //
xy

**
R(−1, 0)⊕R(0,−1)

[x y ]
// R(0, 0) // 0 .

Reading the diagram from right to left produces a free flag:

0 ⊂ R(0, 0) ⊂ R(0, 0)⊕R(−1, 0)⊕R(0,−1) ⊂

R(0, 0)⊕R(−1, 0)⊕R(0,−1)⊕R(−1,−1) = F.

To calculate H(F ), consider the first differential submodule of the flag F 0 = R(0, 0). It is

straight-forward to see that

H(F 0) = R(0, 0)

H(F/F 0) = (R(−1, 0)⊕R(0,−1))/R(−y ⊕ x).
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From the short exact sequence

0 // F 0 // F // F/F 0 // 0

we have the long exact sequence

. . . // H(F/F 0)
α // H(F 0)

β // H(F ) // H(F/F 0)
α // H(F 0) // . . .

where the map α is given by the matrix

[
x y

]
. Since α is injective, β must be a surjection,

giving

H(F ) = H(F 0)/ imα = R/(x, y) = k.

To compute the Betti number, note that δ(F ) ⊆ mF , so we have βR(F ) = rankR F = 4

by Remark 2.0.13.

3.2 Non-positive differential degree

Every differential R-module with a free flag is free as an R-module, but not conversely (see

Example 3.2.4). Even when a differential module admits a free flag there may be no way

to “minimize,” unlike finite free complexes that can be decomposed into an acyclic complex

and a minimal complex C with ∂(C) ⊆ mC (see Example 3.2.3). Restricting to the case of

a differential module D with deg δD ≤ 0 we can avoid both of these difficulties.

Theorem 3.2.1. Let F be a finitely generated Zd-graded differential R-module with deg δF ≤

0 that is free as an R-module. Then F has a free flag and a submodule F ′ that is a direct

summand in the category of Zd-graded differential R-modules such that

1. F ′ has a free flag,
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2. δ(F ′) ⊆ mF ′,

3. H(F ′) = H(F ).

Remark 3.2.2. The hypothesis that deg δ ≤ 0 is necessary. See Examples 3.2.3 and 3.2.4.

Proof. We induce on rankR F : if rankR F = 1 then the differential of F is multiplication by

an element of R. Since R is a domain, this element must be zero; hence F 0 = F is a free

flag. As δ(F 0) = 0 we conclude that δ(F ) ⊆ mF as well.

Now suppose rankR F > 1. If δ(F ) 6⊆ mF then there is some homogeneous basis element e

with δ(e) 6∈ mF . We first show that e, δ(e) ∈ F/mF are linearly independent over k. Suppose

that there is a linear relation δ(e) = ae with a ∈ k. Since δ2 = 0, we have 0 = aδ(e) = a2e,

a contradiction.

So e and δ(e) are linearly independent. By Nakayama’s lemma we can take {e, δ(e)} to

be part of a basis of F . Let G = Re ⊕ Rδ(e). Then G is a differential sub-module. So we

have an exact sequence of differential modules:

0 // G // F // F/G // 0 . (3.2.1)

Since H(G) = 0, the long exact sequence in homology coming from (3.2.1) shows that

H(F/G) = H(F ). The module F/G is free since G is generated by basis elements of F . So

by induction F/G has a free flag {Gn}n∈Z. By Proposition 2.0.9, F/G is a direct summand

of F as differential modules. Setting

F 0 = RδF (e),

F 1 = RδF (e)⊕Re,

F n = RδF (e)⊕Re⊕Gn−2, n ≥ 2
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gives a free flag on F . The induction hypothesis also shows that F/G has a direct summand

F ′ with a free flag such that δ(F ′) ⊆ mF ′ and such that H(F ′) = H(F/G) = H(F ). This

completes the proof when δ(F ) 6⊆ mF .

Now suppose that δ(F ) ⊆ mF . In this case it suffices to show that F has a free

flag. Let e1, . . . , en be a homogeneous basis for F , and let n be a minimal element of

{deg(e1), . . . , deg(en)} under the partial order on Zd. Set

G =
⊕

deg(ei)=n

Rei.

Then δF (G) ⊆ G since deg(δF (ei)) ≤ deg(ei) for all i as the degree of δF is non-positive in

each coordinate. So G is a differential sub-module.

We claim that δF |G = 0. When deg δF < 0, we have δF |G = 0 as deg(δF (ei)) < deg(ei)

and all the generators ei ofG have the same degree. When deg δF = 0 the matrix representing

δF |G has entries in k since all generators of G are in the same degree. So δF |G = 0, otherwise

there would be an element of δF (G) that is not in mF , contrary to assumption.

Since δF |G = 0 we get δF (F 0) = 0 by setting F 0 = G. As F 0 is generated by basis

elements of F , the quotient F/F 0 is a free R-module, so the induction hypothesis produces

a free flag {Gn}n∈Z for F/F 0. Setting F n = F 0⊕Gn−1 for n ≥ 0 and F n = 0 for n < 0 gives

a free flag on F .

The next example illustrates several difficulties in dealing with differential modules with

non-zero differential degree. It provides an obstruction to extending Theorem 3.4.4 to dif-

ferential modules with deg δ > 0. Furthermore, by [1, Theorem 5.2], a differential module

over k[x, y] with a free flag must have rank at least 4. So this also shows that Lemma 3.2.1

cannot be extended to differential modules with deg δ > 0 as no summand can have a free

flag.
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Example 3.2.3. Let R = k[x, y] and let F = R(0, 0) ⊕ R(0, 1) ⊕ R(1, 0) ⊕ R(1, 1) have

differential given by the matrix,

δ =



0 x y 1

0 0 0 −y

0 0 0 x

0 0 0 0


.

This is a differential module with differential degree (1, 1). As a diagram it is

R(1, 1) [
−y
x

] //
1

))
R(0, 1)⊕R(1, 0)

[x y ]
// R(0, 0) // 0 . (3.2.2)

As in Example 3.1.3, reading the diagram from right to left gives a free flag. The same

computation from Example 3.1.3 shows that H(F ) = k. As F has a free flag, we can

compute βR(F ) by rankkH(k �R F ). Applying k �R − to (3.2.2) we have the vector space

k4 (suppressing the grading) with differential given by the diagram:

k 0
//

1

""
k2

0
// k // 0 .

The homology is k2, so βR(F ) = 2.

This final example shows that a differential module that is free as an R-module need not

have a free flag; thus Lemma 3.2.1 cannot be strengthened to apply to differential modules

with deg δ > 0.

Example 3.2.4 ([1, Example 5.6]). Let F be as in Example 3.2.3. Let e be the basis

element in degree (−1,−1) and set G = Re⊕ RδF (e). Then calculation shows that F/G is
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the differential module D = R(0, 1)⊕R(1, 0) with

δ =

xy −y2

x2 −xy

 .
This is a differential module with deg δ = (1, 1). Since H(G) = 0, an exact sequence

argument shows that the map F → F/G is a quasi-isomorphism; hence H(D) = H(F ) = k.

As F admits a free flag, it is a resolution of D. So we have βR(D) = βR(F ) = 2.

The differential module D itself cannot have a free flag since rankRD = 2 < 4, as noted

before Example 3.2.3.

3.3 High-low decompositions

The main tool, Theorem 3.3.6, we use for finding a bound on the Betti number comes from

an inequality of Santoni [13] formulated to apply to differential modules. The essential idea

is to use information about the “top” and “bottom” degree parts to derive information

about the entire module. The meaning of “top” and “bottom” is made precise by a high-low

decomposition, Definition 3.3.5.

Let y be an indeterminate over R = k[x1, . . . , xd] with deg y = (0, . . . , 0, 1) ∈ Zd+1, so

that R[y] is a Zd+1-graded ring. In this section we will be concerned with comparing Zd+1-

graded differential modules over R[y] with Zd-graded differential modules over R. Via the

inclusion R ↪→ R[y], any Zd+1-graded differential module over R[y] can be considered as a

Zd-graded differential module over R, with the action of R fixing the (d + 1)-th coordinate

of the Zd+1-grading. The following result allows this change of rings to be applied to the Tor

functor.

Lemma 3.3.1. Let M be a Zd+1-graded R[y]-module and D a Zd+1-graded differential R[y]-
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module. View R[y] �R D as a R[y]-module via the action r(s⊗ d) = (rs)⊗ d. Then

TorR[y](M,R[y] �R D) ∼= TorR(M,D).

Proof. Let P be a Zd+1-graded free resolution of M over R[y]. Then using Proposition 2.0.4

one gets:

TorR[y](M,R[y] �R D) = H(P �R[y] (R[y] �R D))

∼= H((P ⊗R[y] R[y]) �R D)

∼= H(P �R D)

= TorR(M,D).

Let C be a class of Zd+1-graded differential R[y]-modules which is closed under taking

submodules and quotients. Take λ to be a superadditive function from C to an ordered

commutative monoid such that λ(C) ≥ 0 for all C ∈ C. Recall that λ is superadditive if an

exact sequence

0 // A // B // C // 0

of differential modules in C gives an inequality λ(B) ≥ λ(A) + λ(C).

Example 3.3.2. For our purposes, C will be the collection of Zd+1-graded differential R[y]-

modules with non-zero homology in finitely many degrees and λ will be the length of the

differential module.

Lemma 3.3.3. Let B be a Zd+1-graded differential R[y]-module and suppose we have the
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following commutative diagrams in C:

A

ψA
����

ι // B

ψB

��

B′
ε′ // //

φB

��

C ′� _
φC

��
A′′

� �

ι′′
// B′′ B ε

// C

Then for each m ∈ Zd+1 the following inequalities hold:

λ(im ι)m ≥ λ(im ι′′)m and λ(im ε)m ≥ λ(im ε′)m.

Furthermore, if ει = 0 then

λ(Bm) ≥ λ(im ι′′)m + λ(im ε′)m.

Proof. For the first inequality, there is a surjection im ι � imψBι, so

λ(im ι)m ≥ λ(imψBι)m = λ(im ι′′ψA)m.

Because ψA is surjective there is also a surjection im ι′′ψA � im ι′′. This gives the desired

inequality, λ(im ι)m ≥ λ(im ι′′)m.

For the second inequality, there is an inclusion im ε′ ↪→ im ε since φC is injective. By

superadditivity, λ(im ε)m ≥ λ(im ε′)m.

For the final inequality, note that ει = 0 implies that im ι ⊆ ker ε. The exact sequence

0 // ker ε // B // im ε // 0 ,

then implies λ(Bm) ≥ λ(im ε)m + λ(im ι)m ≥ λ(im ε′)m + λ(im ι′′)m using the first two

inequalities.
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Lemma 3.3.4. Let D be a Zd+1-graded differential R[y]-module. Viewing R[y] �R D as a

R[y]-module via the action r(s⊗d) = (rs)⊗d, there is a sequence of Zd+1-graded differential

R[y]-modules

0 // (R[y] �R D)(− deg y) σ // R[y] �R D
ε // D // 0 ,

with σ(1⊗ d) = y ⊗ d− 1⊗ yd and ε(a⊗ d) = ad. This sequence is exact and functorial in

D. The map σ is given by multiplication by y if and only if yD = 0.

Proof. It is straight-forward to check that σ and ε are morphisms and that the sequence is

exact and functorial. Evidently σ is multiplication by y when yD = 0. The exactness of the

sequence shows that the converse holds.

The following definition and theorem are differential module versions of Santoni’s results

for R-modules [13].

Definition 3.3.5. A Zd+1-graded differential R[y]-module D admits a high-low decomposi-

tion if there are non-zero Zd+1-graded differential R[y]-modules Dh and D` each annihilated

by y, and there are morphisms of differential R[y]-modules Dh
� � // D and D // // D` that

split in the category of Zd-graded differential R-modules.

Theorem 3.3.6. Let K be a Zd+1-graded R[y]-module such that yK = 0, and assume C is

closed under TorR[y](K,−). Let D ∈ C be a Zd+1-graded differential module with differential

degree d which admits a high-low decomposition. Then for all m ∈ Zd+1

λ(TorR[y](K,D)m) ≥ λ(TorR(K,D`)m) + λ(TorR(K,Dh)m+d−deg y).

Proof. Applying the functoriality of Lemma 3.3.4 to the high-low decomposition Dh
� � // D
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and D // // D` gives two exact commutative diagrams:

0

��

0

��

0

��
0 // (R[y] �R Dh)(− deg y) σ′ //

��

R[y] �R Dh
ε′ //

��

Dh
//

��

0

0 // (R[y] �R D)(− deg y) σ // R[y] �R D
ε // D // 0

and

0 // (R[y] �R D)(− deg y) σ //

��

R[y] �R D
ε //

��

D //

��

0

0 // (R[y] �R D`)(− deg y) σ′′ //

��

R[y] �R D`
ε′′ //

��

D`
//

��

0

0 0 0

In both diagrams the first two columns are split exact over R[y] due to the high-low de-

composition. Because Dh and D` are annihilated by y, Lemma 3.3.4 implies that σ′ and σ′′

are multiplication by y. The R[y]-action on TorR[y](K,−) is via K and yK = 0, so after

applying TorR[y](K,−) and using Lemma 3.3.1 the maps σ′ and σ′′ become zero, leaving

0

��

0

��

0 // TorR(K,Dh)
ε′ //

��

TorR[y](K,Dh)
γ′ //

��
(†)

TorR(K,Dh)(d− deg y) //

��

0

. . . σ // TorR(K,D)
ε // TorR[y](K,D)

γ // TorR(K,D)(d− deg y)
σ(d)// . . .
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and

. . . σ // TorR(K,D)
ε //

��
(‡)

TorR[y](K,D)
γ //

��

TorR(K,D)(d− deg y)
σ(d)//

��

. . .

0 // TorR(K,D`)
ε′′ //

��

TorR[y](K,D`)
γ′′ // TorR(K,D`)(d− deg y) //

��

0

0 0

Lemma 3.3.3 on the commutative squares (†) and (‡) completes the proof.

3.4 Lower bound on the Betti number

In order to apply the results for high-low decompositions we need to establish some results

on the existence of high-low decompositions Dh and D` with H(Dh) 6= 0 and H(D`) 6= 0.

Recall that mi denotes the i-th coordinate of a d-tuple m ∈ Zd.

Definition 3.4.1. Let D be a Zd-graded differential module and let 1 ≤ i ≤ d. We say that

D is bounded in the i-th direction if there are a, b ∈ Z such that mi 6∈ [a, b] implies Dm = 0.

Remark 3.4.2. When D is finitely generated the condition that D is bounded in the i-th

direction for all i is equivalent to the condition that rankkD <∞.

Lemma 3.4.3. Let D be a Zd-graded differential module with H(D) 6= 0. Fix an index

1 ≤ i ≤ d and suppose that (deg δD)i = 0. If H(D) is bounded in the i-th direction then

there is a Zd-graded differential module D′ that is quasi-isomorphic to D such that D′ has a

high-low decomposition D′h and D′` with H(D′h) and H(D′`) both non-zero.

Proof. Let a ∈ Z be the largest integer such that H(D)m = 0 whenever mi < a. Such an

integer exists because H(D) is non-zero and bounded in the i-th direction. Set

E =
⊕
m∈Zd

a≤mi

Dm.
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This is an R-submodule. Since (deg δD)i = 0 it is closed under δD as well. So E is a

differential submodule of D. By the definition of E, we have

D/E =
⊕
m∈Zd

mi<a

Dm.

Let z be a cycle in (D/E)m. If mi ≥ a then z = 0 as (D/E)m = 0. If mi < a then

z ∈ (D/E)m = Dm so there is a z′ ∈ D with δD(z′) = z as H(D)m = 0. So δD/E(z′+E) = z.

Therefore H(D/E)m = 0 for all m ∈ Zd, and so H(D/E) = 0. From a short exact sequence

we conclude that E ' D.

Let b ∈ Z be the smallest integer such that H(E)m = 0 when mi > b. Again, such an

integer exists because H(E) ∼= H(D) is non-zero and bounded in the i-th direction. Set

E ′ =
⊕
m∈Zd

b+1≤mi

Em.

Then E ′ is a differential submodule of E with H(E ′) = 0 by the definition of b. Set D′ =

E/E ′. From a short exact sequence we conclude that H(E/E ′) ∼= H(E) so that D′ =

E/E ′ ' E ' D.

By construction, D′m = 0 for mi < a and for mi > b. Also, by the definitions of a and b,

there are n,n′ ∈ Zd with ni = a and n′i = b such that H(D′)n 6= 0 and H(D′)n′ 6= 0; hence

D′n 6= 0 and D′n′ 6= 0 as well.

Set

D′` :=
⊕
m∈Zd

mi=a

D′m and D′h :=
⊕
m∈Zd

mi=b

D′m.

Then D′` and D′h are both non-zero and annihilated by xi. The two morphisms D′h
� � // D′

and D′ // // D′` split in the category of differential modules because (deg δD)i = 0. So
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D′` and D′h form a high-low decomposition. As noted above H(D′`) and H(D′h) are both

non-zero, so D′ is the desired differential module.

The proof of the following theorem uses Theorem 3.3.6 inductively, after first using

Lemma 3.4.3 to find a differential module with a high-low decomposition.

Note that H(D) is not required to be finitely generated in the following theorem. If H(D)

is finitely generated then the hypothesis on H(D) is equivalent to 0 < rankkH(D) <∞; see

Remark 3.4.2.

Theorem 3.4.4. If D is a Zd-graded differential module with deg δD = 0 and such that

H(D) 6= 0 is bounded in the i-th direction for all i, then

βR(D) ≥ 2d.

Proof. Use induction on d. For d = 0, so that R = k, we have

Tork(k,D) = H(k �k D) ∼= H(D) 6= 0.

So βk(D) ≥ 1.

Now suppose d > 1. Then H(D) is bounded in the d-th direction by assumption. By

Proposition 2.0.10 the Betti number is preserved under quasi-isomorphisms, so Lemma 3.4.3

allows us to assume that D has a high-low decomposition Dh and D` with H(Dh) 6= 0 and

H(D`) 6= 0. By definition of a high-low decomposition, H(Dh) and H(D`) are submodules

of H(D) since the splitting happens in the category of differential modules. In particular,

H(Dh) and H(D`) are bounded in the i-th direction for all i.
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So induction hypothesis applies to Dh and D`. From Theorem 3.3.6 we have:

βR(D) ≥ βk[x1,...,xd−1](D`) + βk[x1,...,xd−1](Dh)

≥ 2d−1 + 2d−1

= 2d.

Remark 3.4.5. Example 3.2.3 shows that Theorem 3.4.4 cannot be extended to differential

modules D with deg δD > 0.

Via Theorem 2.0.12 this result provides an affirmative answer to Conjecture 1.0.1 when

deg δ = 0.

Corollary 3.4.6. If F is a finitely generated Zd-graded differential module that is free as an

R-module such that deg δF = 0 and such that H(F ) has non-zero finite length then

rankR F ≥ 2d.

Proof. By Lemma 3.2.1, F has a free flag. So Theorem 2.0.12 implies that βR(F ) ≤ rankR F .

Applying Theorem 3.4.4 gives the desired inequality.
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Chapter 4

Derived Loewy Length

4.1 Notions of Loewy length

Lemma 3.4.3 can be seen as a means of taking a differential module with finite length

homology and replacing it by a new differential module that has finite length. In fact, a

similar result is true for chain complexes (see Theorem 4.1.1 below). In this chapter we will

take this as motivation for investigating and comparing ways to measure the size of such

replacements.

The following is essentially contained in [12].

Theorem 4.1.1. Let R be a noetherian ring and let C be a complex of finitely generated

R-modules such that H(C) has finite length. Then there is a complex C ′ such that C ′ has

finite length and C ′ is isomorphic to C in the derived category.

Proof. If H(C) = 0 then take C ′ to be the zero complex. Otherwise there are a, b ∈ Z with

Ha(C) 6= 0 and Hb(C) 6= 0 and Hi(C) = 0 for i < a or i > b. Let C⊆a denote the soft

truncation above a, and let C⊇b denote the soft truncation below b. Truncating in succession
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we get the complex (C⊆a)⊇b:

0 // Ca/∂(Ca+1) // Ca−1
// . . . // Cb+1

// ker ∂b // 0 .

Note that there is a quasi-isomorphism from C to C⊆a and a quasi-isomorphism from (C⊆a)⊇b

to C⊆a. So in the derived category the complex (C⊆a)⊇b is isomorphic to C.

So we may assume that Ci = 0 for i < a or i > b. Proceed by induction on a − b.

If a − b = 0, then Ha(C) = Ca and Ha(C) has finite length by hypothesis. Now suppose

a − b > 0. Let E(Ha(C)) denote the injective envelope of Ha(C). Since Ha(C) injects into

Ca we have the following diagram

Ha(C)

��

// Ca

φzzt
t

t
t

t

E(Ha(C))

.

Let C ′a = imφ. Then C ′a is artinian as it is the submodule of the injective hull of the finite

length module Ha(C). Since C ′a is finitely generated, it is also noetherian, and hence has

finite length. Note that the restriction of φ to Ha(C) must be injective by commutativity of

the diagram.

Using the push-out C ′a qCa Ca−1, build the following diagram:

Ca

φ
��

∂a // Ca−1

��

// Ca−2
// . . . // Cb

C ′a
∂′a // C ′a qCa Ca−1

∂′a−1 // Ca−2
// . . . // Cb

where ∂′a(m) = (m, 0) and ∂′a−1(m,n) = ∂a−1(n).

We claim that this is a quasi-isomorphism between the rows. An element of C ′aqCa Ca−1

is zero if and only if can be written in the form (φ(m), ∂a(m)). So m is in the kernel
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of ∂′a if and only if there is an m′ ∈ Ca with φ(m′) = m and ∂a(m
′) = 0. Thus every

element m ∈ ker ∂′a is in φ(Ha(C)). Since φ is injective when restricted to Ha(C), we get an

isomorphism Ha(C) ∼= ker ∂′a, so the homology of the two rows agrees here.

In degree a − 1, a homology class [z] maps to the class [(0, z)]. We can write a cycle

(m,n) of C ′a qCa Ca−1 in the form (0, n + ∂a(m
′)) with φ(m′) = m. Since ∂a(n) = 0, this

shows that map in degree a− 1 homology is surjective. If the cycle (0, z) is a boundary

∂′a(m) = (m, 0) = (0, ∂a(m
′))

with φ(m′) = m, then (0, z − ∂a(m′)) is zero. In particular there is an n′ ∈ Ca such that

∂a(n) = z − ∂a(m
′). Thus z is a boundary, and we conclude that the map is a quasi-

isomorphism.

Now note that the cycles ker ∂′a−1 have finite length as there is an exact sequence

0 // ∂′a(C
′
a) // ker ∂′a−1

// Ha−1(C) // 0

and both ∂′a(C
′
a) and Ha−1(C) have finite length. So the induction hypothesis applies to the

complex

C ′a qCa Ca−1

∂′a−1 // Ca−2
// . . . // Cb .

Splicing the quasi-isomorphic finite length complex with C ′a via the map ∂′a : C ′a → ker ∂′a−1

gives the desired finite length complex C ′.

In this chapter we will be concerned with measuring the sizes of possible replacements.

Let (R,m) be a commutative local ring with maximal ideal m. Denote the derived category

of R by D(R).

Definition 4.1.2. Let M be an R-module that is not necessarily finitely generated. The
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Loewy length ``R(M) of M is

``R(M) = inf{n ≥ 0 | mnM = 0}.

For a complex C of R-modules, define ``R(C) to be the Loewy length of the underlying

module.

Subscripts are omitted when the ring is understood.

When M is finitely generated then the Loewy length is finite if and only if the ordinary

length is finite, in the sense of a composition series. We are interested in extending this

invariant to the derived category D(R). One option is to allow replacements by objects that

are isomorphic in the derived category. This gives the homotopical Loewy length as defined

by Avramov, Iyengar and Miller [2].

Definition 4.1.3. Let C be a complex of R-modules. Define the homotopical Loewy length

h``R(C) to be

h``R(C) = inf{``(V ) | C ' V }.

Another option is to allow replacements by objects that “contain” the object of interest.

Allowing this extra flexibility appears to give an invariant with better homological properties.

Definition 4.1.4. Let C be a complex of R-modules. Define the derived Loewy length

d``R(C) to be

d``R(C) = inf{``(V ) | C is a retract of V in D(R)}.

Obviously

``(H(C)) ≤ d``(C) ≤ h``(C) ≤ ``(C),

but not much is known about the precise value of h``(C) or d``(C).
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We will focus attention on the Koszul complex of a minimal generating set for m. Recall

that the Koszul complex K(x1, . . . , xn) on a sequence of elements x1, . . . , xn in R is defined

to be

K(x1, . . . , xn) = K(x1)⊗R · · · ⊗R K(xn),

where K(xi) is the complex

0 // R
xi // R // 0 .

Throughout, KR will denote the Koszul complex of a minimal generating set for m. Different

choices for minimal generating sets give isomorphic Koszul complexes, however the derived

Loewy length is independent of the choice even if we allow non-minimal generating sets.

Proposition 4.1.5. Let x1, . . . , xn and y1, . . . , ym be sequences of elements of R that generate

the same ideal. Then

d``(K(x1, . . . , xn)) = d``(K(y1, . . . , ym)).

Proof. It suffices to show that

d``(K(x1, . . . , xn)) = d``(K(x1, . . . , xn, y))

for y ∈ (x1, . . . , xn). In this case there is an isomorphism of complexes K(x1, . . . , xn, y) ∼=

K(x1, . . . , xn, 0), see [3, 1.6.21]. As complexes,

K(x1, . . . , xn, 0) ∼= K(x1, . . . , xn)⊕ ΣK(x1, . . . , xn).

Thus we have

d``(K(x1, . . . , xn)) ≤ d``(K(x1, . . . , xn, y))
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as K(x1, . . . , xn) is a retract of K(x1, . . . , xn, 0).

If K(x1, . . . , xn) is a retract of V in D(R) then K(x1, . . . , xn, 0) is a retract of V ⊕ ΣV ,

so

d``(K(x1, . . . , xn, y)) ≤ d``(K(x1, . . . , xn)).

4.2 Bounds on Loewy lengths

Given the variety of notions for extending the definition of Loewy length, it is natural to

compare them. An upper bound for h``(KR) is given by [2] in the form of a new invariant.

Definition 4.2.1. Since ∂K
R

(miKn) ⊂ mi+1Kn−1, for each i we get a complex

I iKR = 0 // mi−dKR
d

// mi−s+1KR
d−1

// . . . // mi−1KR
1

// miKR
0

// 0 .

Define the spread of R to be

spread(R) = inf{i ∈ Z | H(Ij
KR) = 0 for all j ≥ i}.

Proposition 4.2.2 ([2, 6.2.2]). We have

h``R(KR) ≤ spread(R).

Proof. Let s = spread(R). Then

IsKR = 0 // ms−dKR
d

// . . . // msKR
0

// 0

is an exact subcomplex of KR. So KR ' KR/IsKR , but ms · (KR/IsKR) = 0.

By work of Serre, we know that spreadR < ∞. Part of the interest in focusing on the
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Koszul complex KR comes from the following theorem. The equivalence of the first three

conditions is due to Avramov, Iyengar and Miller [2, 6.2.3].

Theorem 4.2.3. The following are equivalent:

1. R is regular,

2. spreadR ≤ 1,

3. h``(KR) ≤ 1,

4. d``(KR) ≤ 1.

Part of the proof of this theorem relies on having an explicit collection of objects to test

the derived Loewy length.

Proposition 4.2.4. If F is a complex of free R-modules then

d``(F ) = inf{n ≥ 0 | F is a retract of F/mnF in D(R)}.

Proof. Clearly, d``(F ) is at most the right-hand side. So it suffices to check the other

inequality. Suppose that F is a retract of V in D(R) with ``(V ) = n. So we have morphisms

f : F → V and g : V → F in D(R) such that gf is the identity on F . Since F is a complex

of free modules we can assume that the morphism f : F → V is an ordinary morphism

of complexes. As mnV = 0, we have mnF in the kernel of f , so we get an induced map

f ′ : F/mnF → V .

We claim that F is a retract of F/mnF via the canonical map π : F → F/mnF . We have

(gf ′)π = g(f ′π) = gf,

and gf is the identity on F .
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Corollary 4.2.5. For F a complex of free R-modules we have

d``(F ) > sup{n | z ∈ Z(F ), [z] 6= 0 ∈ H(F ) and z ∈ mnF}.

Proof. Let m = d``(F ). Then F is a retract of F/mmF . In particular, H(F ) embeds in

H(F/mmF ). Thus every cycle in F representing a non-zero homology element must map to

a non-zero element of F/mmF . So if z is a cycle of F that is not a boundary and z ∈ mn

then we must have m > n.

With this in hand, the proof of Theorem 4.2.3 is straight-forward.

Proof of 4.2.3.

(1 ⇒ 2). Since R is regular, KR is a free resolution of the residue field k. Thus ∂(KR
1 ) =

mKR
0 , so I1

KR is exact. Thus spreadR ≤ 1.

(2⇒ 3). Clear as h``(KR) ≤ spreadR.

(3⇒ 4). Clear as d``(KR) ≤ h``(KR).

(4 ⇒ 1). By Corollary 4.2.5, there cannot be any cycles in mKR that represent non-zero

homology elements. However, for i > 0 a non-zero element of Hi(K
R) must be represented

by some cycle in mKR. Therefore Hi(K
R) = 0 for i > 0, and so KR is a finite free resolution

of the residue field k.

The lower bound in Proposition 4.2.4 can be tight and, in fact it is strong enough to

allow us to compute d``(KR) and h``(KR) for any artinian ring.

Proposition 4.2.6. Let (R,m) be an artinian ring. Then d``(KR) = h``(KR) = ``(R).

Proof. Let n = ``(R). Then mn = 0 and mn−1 6= 0. For e the embedding dimension,

We have He(K
R) = (0 : m), but mn−1 ⊆ (0 : m) and mn−1 is non-zero. So there is a

non-zero element in He(K
R) represented by a cycle in mn−1. Thus d``(KR) > n − 1 and
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d``(KR) ≤ ``(R) = n. So d``(KR) = ``(R). Since d``(KR) ≤ h``(KR) ≤ ``(R) we have

h``(KR) = ``(R) as well.

While the spread is a convenient upper bound, it is often too large. Another upper bound

can be found by extending Loewy length to give a finite number for non-artinian rings. Ding

[8] defines the generalized Loewy length of a ring as follows.

Definition 4.2.7. If dimR > 0 define the generalized Loewy length to be

g``(R) = inf{``(R/(x1, . . . , xn)) | x1, . . . , xn a system of parameters}.

If dimR = 0 set g``R = ``RR.

For Cohen-Macaulay rings we can use the generalized Loewy length as an upper bound

on the derived Loewy length.

Proposition 4.2.8. If R is Cohen-Macaulay then d``(KR) ≤ g``(R).

Proof. Take a system of parameters x1, . . . , xd. Since R is Cohen-Macaulay this is a regular

sequence. Extend this to a sequence x1, . . . , xd, xd+1, . . . , xe that generates m. By Prop. 4.1.5

we have

d``(KR) = d``(K(x1, . . . , xe)).

Set S = R/(x1, . . . , xd). The Koszul complex on x1, . . . , xd is quasi-isomorphic to S, so

K(x1, . . . , xe) is quasi-isomorphic to S⊗K(xd+1, . . . , xe) = KS. Since D(S) embeds in D(R),

if KS is a retract of V in D(S) then KS is also a retract of V in D(R). So d``R(KS) ≤

d``S(KS) = ``S(S).

Thus for all systems of parameters x1, . . . , xd we have

d``(KR) ≤ ``R/(x1,...,xd)(R/(x1, . . . , xd)).
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So g``(R) ≥ d``(KR).

This inequality can be strict, as the following example, borrowed from [11], shows.

Example 4.2.9. Let R = F2[[x, y]]/(xy2 + x2y). In this case, straight-forward computation

shows that spread(R) = 4, and that (y2 + xy, 0) ∈ R2 = KR
1 is a cycle. So we must

have 3 ≤ d``(KR) ≤ 4. The map F2 → F4 is split, so KR = F2 ⊗F2 K
R is a retract of

F4 ⊗F2 K
R = KF4⊗F2

R. So

d``R(KR) ≤ d``F4⊗R(KF4⊗R).

By computations of Hashimoto and Shida we have g``(R) = 4 and g``(F4 ⊗F2 R) = 3. By

Prop. 4.2.8 we conclude that d``R(KR) = 3.
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