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ABSTRACT 
 

PATHWAY GROUP LASSO FOR INTEGRATING METABOLOMICS AND TRANSCRIPTOMICS 
 

by 
 

SOPHIA A. BANTON 
 

JUNE 17, 2015 
 
 

INTRODUCTION:  Transcriptomics and metabolomics are high-throughput technologies that are 
critical to contemporary biomedical sciences, measuring gene expression levels and metabolite 
concentrations, respectively. Effective methods of integrating metabolomics and 
transcriptomics data are highly desired. Gene and metabolic pathways represent accumulated 
expert knowledge in particular domains. LASSO regression is widely used for feature selection, 
and group LASSO incorporates prior knowledge of groups of variables.  
 
AIM: To address the current need to integrate the two data types, a novel approach in the 
framework of group LASSO was developed and tested using a set of metabolomics and 
transcriptomics data on malaria intermittent preventative treatment with pyrimethamine in 
Rhesus macaques (Macaca mulatta). 
 
METHODS: Groups are predefined using biological pathways and variables in groups will be 
standardized separately. The leading principal components were obtained for each pathway for 
each of the two data types, and then combined into an integrated matrix, which together with 
the group information served as input for a group LASSO regression model.   
 
RESULTS:  We identified multiple pathways that were top contributors to the differences due to 
pyrimethamine exposure in the macaques and jointly predicted the association of member 
genes and metabolites to plasma hemoglobin levels. 
 
DISCUSSION: By applying this integration approach via group LASSO, we identified multiple 
pathways that are top contributors to the differences due to pyrimethamine exposure in the 
macaques and jointly predicted the association of member genes and metabolites to plasma 
hemoglobin levels. Our findings are consistent with current literature, and provide high-quality 
mechanistic hypotheses. Pathway group LASSO is thus a novel and effective method of 
integrating metabolomics and transcriptomics data. 
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Introduction: 

 

Globally, malaria continues to be a major public health concern accounting for three to 

five hundred million infections and twenty-percent of all childhood deaths annually1. 

Historically, anti-malarial pharmaceutical usage has been largely centered on methods of 

chemoprophylaxis with chloroquine. However, chloroquine resistance in malaria parasites and 

poor adherence among drug recipients led to poor effectiveness.  To overcome this hurdle, 

intermittent preventative treatment (IPT) was introduced in the early part of the twenty-first 

century to replace chemoprophylaxis. Recommendations for its use by the World Health 

Organization (WHO)2, 3 and the single dose advantage of IPT with pyrimethamine have led to its 

use as the primary form of IPT in regions in which malaria is endemic4.  

The Malaria Host-Pathogen Interaction Center5 has developed the malaria IPT model in 

Rhesus macaques, and generated detailed data using transcriptomics and metabolomics. 

Transcriptomics is an established scientific methodology that examines the global expression 

level of mRNAs using either DNA microarrays or massively parallel sequencing. Metabolomics 

is an emerging field, where high performance mass spectrometry is used to profile small 

molecules (metabolites) in biological samples. Statistical analyses of the data produced by both 

methods typically lead to the identification of genes and metabolites that are associated with the 

outcome or exposure of interest. Gene and metabolic pathways represent accumulated expert 

knowledge in particular domains, pivotal to the interpretation of these data. The integration of 

transcriptomics and metabolomics at pathway level is thus highly desired in many research 

projects. Thus, we sought to identify key features across both the transcriptome and metabolome 

that can be used to predict host response to pyrimethamine and specifically its impact on plasma 

hemoglobin levels. 
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Within the framework of this study, data integration is taken to mean the process by 

which multiple types of omic data are combined as predictor variables in statistical models to 

allow more systematic and complete modelling of multifactorial traits or phenotypes. The 

reasoning behind such a definition is the supposition that these non-Mendelian traits reflect an 

intricate interplay in biological system variation at multiple levels of regulation 6. Thus, the 

ability to identify significant host factors and their connections that explain or predict biological 

predisposition to disease or clinical outcome is the primary motivation of omic integration 6. 

Here, we report a novel approach of omic data integration in a framework of group 

LASSO (least absolute shrinkage and selection operator) regression, and demonstrate its 

application using a set of metabolomics and transcriptomics data on malaria intermittent 

preventative treatment with pyrimethamine in Rhesus macaques (Macaca mulatta). LASSO 

regression is widely used for feature selection, and group LASSO incorporates prior knowledge 

of group information. Groups were predefined using biological pathways and standardized 

separately. Using this technique, we demonstrate that the significant biological pathways 

detected by a metabolomics and transcriptomics study can be successfully integrated to identify 

key genes and metabolites that regulate hemoglobin plasma levels following pyrimethamine 

exposure.  

Materials and Methods: 

Animals 

Five rhesus macaques (Macaca mulatta; age, 2 y.), all males, from the Yerkes National 

Primate Center were selected for study and each primate was exposed to all treatment conditions 

in a crossover experimental design. The primates were housed at the Yerkes National Primate 

Center and maintained in accordance with the Emory University Institutional Animal Care and 
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Use Committee (IACUC). The study design and the husbandry of the animals have been 

described elsewhere7.  Briefly four monkeys were housed in pairs and a fifth monkey was housed 

alone. These monkeys were followed over a 100 day time course; during which samples for 

clinical and omic measurements were collected daily. 

Study design was to collect samples 1) baseline upon entry into the study, 2) baseline 

after 20 days, 3) after primary pyrimethamine exposure on day 27, 4) after primary 

pyrimethamine injection and before secondary pyrimethamine injection on day 52, 5) after 

secondary pyrimethamine exposure on days 59, 6) after secondary pyrimethamine injection and 

before tertiary pyrimethamine injection on day 90, and 7) after tertiary pyrimethamine injection 

on day 98.  Pyrimethamine (1 mg/kg) was delivered intramuscularly once on day 20 and for 

three successive days beginning at days 52 and 90.  This constitutes two pre-drug time points 

(TP1 and TP2), two inter-drug time points (TP4 and TP6), and three post-drug time points (TP3, 

TP5, and TP7). Samples for transcriptomics analysis were collected at time points 1-7, while 

samples for metabolomics were collected at time points 3-7.  

Transcriptomics 

Peripheral blood (PB) samples from each time were point processed and analyzed using a 

previously described protocol7.  Briefly, RNA was isolated using a RNeasy minikit from Qiagen. 

RNA samples (1 μg total RNA) were delivered to the Yerkes National Primate Center Genomics 

Core, where samples were assessed for quality and prepared for gene expression array analysis as 

per manufacturer protocol.  

 

Metabolomics 
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Plasma samples were collected with EDTA after sedation with 10 mg/ml of ketamine 

given by intramuscular (i.m.) injection.  Samples were processed and analyzed using a previously 

described protocol8.  Briefly, each biological sample was run in triplicate using a 10 µl injection 

volume with separation by C18 reverse phase chromatography (Higgins Analytical, Targa, 2.1 x 

10 cm) using an acetonitrile gradient8 with electrospray ionization and detection with a Thermo 

Scientific LTQ-Velos Orbitrap mass spectrometer of m/z 85 to 2000 at 60,000 resolution.  

Following liquid chromatography-high resolution mass spectrometry (LC-MS), the data 

were collected and pre-processed using the XCalibur file converter software.  apLCMS9 and 

xMSAnalyzer10 were used for feature detection and extraction.  A metabolic feature was defined 

as a specific mass-to-charge ratio (m/z) along with its retention time and associated ion intensity; 

14,339 features were detected.  Data were log2 transformed and subjected to standard quality 

assessment including exclusion of data for technical replicates with greater than thirty percent 

missing values.  For all further analyses, the median of the three technical replicates of each 

metabolic feature were used. 

 

Statistical Analysis 

Statistical analysis was completed in two stages with the primary stage being used for 

exploratory data analysis. First, Spearman correlation was used to identify features that are 

associated with hemoglobin levels in the metabolome and transcriptome independently. Then, a 

mixed-effects ANOVA model was used to identify the genes and metabolites that are 

differentially expressed across the experimental conditions for each data type. The results of the 

ANOVA were then subjected to principal component analysis (PCA) to observe whether or not 

the transcriptomes and metabolomes were correlated across the experimental conditions. 
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Statistical significance was determined at p < 0.05 for all tests. In the second stage of analysis, a 

group LASSO regression model was constructed to integrate the two data types by identifying 

the differences across experimental conditions at the pathway level, and jointly predict the 

association of the selected pathways to plasma hemoglobin levels. 

For Spearman correlation, each feature for each primate at each time point was correlated 

against the hemoglobin levels recorded for the primate at the same time point.  The mixed-effects 

ANOVA model was constructed using drug-exposure as the fixed effect and animal as the 

random effect. Drug exposure was treated as a predictor with three levels that reflected pre-drug 

(TP1 and TP2), inter-drug (TP4 and TP6) and post-drug (TP3, TP5, and TP7) exposures.  

Following feature selection with ANOVA, the top ten principal components of each platform 

were subjected to Pearson correlation (p < 0.05). These primary analyses were used to establish 

whether the data set was suitable for integration with LASSO regression. 

In order to remove bias from analytical platforms for group LASSO regression, gene 

expression and metabolite data were standardized separately. The groups of genes and 

metabolites were defined based on a collection of metabolic pathways. PCA was performed on 

each pathway of genes or metabolites separately for the data with subjects in drug exposure 

groups (inter-drug vs. post-drug). The pre-drug measurements were not used because samples 

were not available for metabolomic data. Filtering by variance explained from PCA reduced the 

usable number of pathways from 64 to 38 .The leading principal components for each pathway 

were then combined into an ordered integrated matrix, in which rows contain principal 

components from both the transcriptome and the metabolome per subject. These principal 

component scores are used as new predictors in a group LASSO regression with groups defined 

by pathways. With group LASSO, the coefficients of group members are either all reduced to 
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zero or retain non-zero coefficients. Each integrated pathway of genes and metabolites was 

assigned a chronological number, and all 38 groups were used to test for the association of each 

pathway with plasma hemoglobin levels. Since a single model is built for the integration of all 

pathways using this approach, this method answers the question of which biological pathways 

best predict pathway level association with the clinical outcome. All statistical analyses were 

conducted and all figures were generated using R. 

 

Results  

 

Features from both the metabolome and transcriptome are associated with plasma 

hemoglobin levels following pyrimethamine exposure 

 

 Spearman correlation determined that there were 1,074 genes from the whole blood 

transcriptome and 305 metabolic features from the plasma that were correlated with plasma 

hemoglobin levels in the macaques for time points 3 to 7 (p < 0.05) (Figure 1). The mixed effects 

ANOVA model, in which drug effect was the fixed term and animal was the random term, 

determined that 925 genes and 1,660 metabolites were differentially expressed across the 

treatment conditions (p < 0.05) (Figure 2). Pearson correlation of the top ten principal 

components of the significant features of each data type showed that subsets of features are 

potentially co-regulated within the biological system (Figure 3).  

 

Grouping by LASSO provides pathway level information and reduces the number of 

significant features 

 

The group LASSO regression model identified eight pathways associated with 

hemoglobin levels in macaques (Table 1). The number of genes and metabolites present in these 

pathways were 182 and 52 respectively. These pathways involve porphyrin and chlorophyll 

metabolism, redox metabolism, branched-chain amino metabolism, and lipid metabolism. 
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Multiple vitamin pathways were also selected for association with plasma hemoglobin levels by 

the group LASSO model including vitamin A (retinol) and vitamin C.  

To verify the findings of the group LASSO method, the porphyrin and chlorophyll 

metabolism pathway was selected for further inspection, because heme itself is one type of 

porphyrin. From this pathway, the most significant gene in terms of correlation with hemoglobin 

and differential expression between inter and post-drug exposures was the ALAS2 gene 

(Pearson’s r = -0.53, p = 0.0069; t = -2.225, p = 0.0365) (Figure 4). The end product of the 

ALAS2 gene, aminolevulinic acid (m/z = 154.0472) was also selected by the group LASSO 

model as a member of the porphyrin metabolism pathway (Pearson’s r = 0.43, p = 0.0333; t = 

3.98, p = 0.0010) (Figure 4). This metabolite was also significantly correlated with hemoglobin 

and differentially expressed between inter and post-drug exposures (Figure 4). Additional genes 

involved in heme synthesis (ALAD and FECH) from the porphyrin pathway were selected by 

LASSO, and these genes were both significantly correlated with hemoglobin (ALAD - Pearson’s 

r = 0.48, p = 0.0145; FECH - Pearson’s r = -0.49, p = 0.0127). While FECH is differentially 

expressed between inter and post-drug exposures (t = -2.673, p = 0.0143), the ALAD gene is not 

(t = 0.1883, p = 0.8524) (Figure 5).  Other genes from the porphyrin metabolism pathway that 

were significantly correlated with plasma hemoglobin were the HCCS (Pearson’s r = 0.46, p = 

0.0209) and MMAB (Pearson’s r = 0.41, p = 0.0396) genes. 

 

   

Discussion and Conclusion 

 

The present study was designed to investigate the effects of the anti-malarial drug 

pyrimethamine on the physiology of macaques that have been administered sub-curative doses. 

This multi-omic approach has enabled us not only to shed light on the impact of pyrimethamine 
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on plasma hemoglobin levels in Rhesus macaques, but to also develop a novel method for 

integrating transcriptomics and metabolomics data.  

Primary analysis of both omic data types using Spearman correlation and mixed effects 

ANOVA revealed that there were indeed gene and metabolites that were correlated with plasma 

hemoglobin levels in the macaque, and that there were genes and metabolites that could separate 

the samples based on drug exposure. As is typical with most omic studies, the list of potential 

genes and metabolites that were statistically significant was numerous. Thus we chose to develop 

a novel methodology of integrating the data types using group LASSO regression by assigning 

the principal components of the data types to knowledge-based pathways.  Prior to integration, 

the metabolomics data was better at classifying the pyrimethamine exposure level of macaques 

than the gene expression data (Figures 6 and 7). Our approach allowed us to account for 

variation between drug exposures (inter-drug vs post-drug) and to use this information to predict 

associations to hemoglobin at the pathway level.  

Our pathway group LASSO regression model selected 8 biological pathways that were 

associated with hemoglobin levels in the macaques. Among these pathways was the porphyrin 

and chlorophyll metabolism pathway that contains genes and metabolite that are involved in 

heme synthesis. Heme is a well-known porphyrin, which functions a cofactor in the hemoglobin 

protein that distributes oxygen to the cells of animals and humans. Inspection of the members of 

the porphyrin and chlorophyll metabolism pathway revealed that it contained three genes and 

one metabolite that are involved in heme synthesis, and that these genes and the metabolite were 

either statistically significant for correlation with hemoglobin, differentially expressed between 

inter and post-drug exposures, or both.  The ALAS2 gene (Figure 4A and 4B) produces an 

erythroid-specific mitochondrially active aminolevulinic acid synthase, which catalyzes the first 
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step in the heme biosynthesis pathway. The end product of the reaction, aminolevulinic acid 

(Figure 4C and 4D) was also detected using our methods. The remaining two genes from the 

pathway were ALAD and FECH. The ALAD gene produces a cytosolic enzyme that catalyzes 

the second step in the porphyrin and heme biosynthetic pathway, and the FECH gene produces 

ferrochelatase (FECH, protoheme ferrolyase), an enzyme that catalyses the terminal (eighth) step 

in the biosynthesis of heme. Other pathway members that met the statistical threshold for 

significance were the HCSS and MMAB genes.  The HCCS gene produces an enzyme called 

holocytochrome c-type synthase, which is involved in a reaction that adds heme to make mature 

cytochrome c. Finally, the MMAB gene produces an enzyme that is involved in the formation of 

a compound called adenosylcobalamin (AdoCbl), which is derived from vitamin B12. The ability 

of the LASSO model to select the porphyrin metabolism pathway was therefore both biologically 

and statistically sound.  

The remaining pathways selected by group LASSO include a number of pathways that 

are involved in anemia. The roles of vitamins A and C in anemia have long been established11. 

Heme synthesis, which would be triggered by anemic cellular conditions, originates at the 

mitochondria, so the selection of the nicotinate and nicotinamide metabolism pathway for 

association with hemoglobin levels by our group LASSO method is also biologically sound. The 

branched-chain amino acids (valine, leucine, and isoleucine) are proteogenic, so the involvement 

of this pathway is likely a reflection of increased hemoglobin synthesis in the macaques 

following pyrimethamine administration.  

 The evolution of biological science from a descriptive to a quantitative discipline has 

ushered in an era of high-throughput omic studies. While the prospect of answering research 

questions using omic technologies is appealing, sorting through the lengthy targets generated by 
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these methods is not. Certainly, the full potential of multi-omic studies has not been reached, and 

this partly due to a great need to integrate the data generated by these studies. To make study 

results more manageable, it is not unusual for investigators to subject the results to additional 

analyses to uncover system-wide associations such as pathway enrichment and network 

modelling. These methods represent domain-knowledge guided approaches6. Our method 

addresses the challenge of reducing the targets of interest, while preserving pathway level 

information. 

Our findings are consistent with current literature, and our technique provides a means by 

which this sort of pathway refinement can be performed. As with multiple other strategies for 

analyzing omic data, it is difficult to assess the statistical power of the methods used here. A 

major limitation is that our results are based on a small population of five subjects, though they 

were followed over a 100 day time course. Additional studies must be performed to determine 

the universal power of our approach. Nonetheless, our findings provide new insights into the 

mode of action by which pyrimethamine influences hemoglobin metabolism, demonstrating that 

pathway group LASSO is a novel and effective method of integrating metabolomics and 

transcriptomics data.  
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Table 1. Pathways selected by group pathway LASSO for association with plasma hemoglobin 

in macaques between and after pyrimethamine exposure with the numbers of contributing 

features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pathway 

 

Number 

of Genes 

Number 

of Metabolites 

Ascorbate and aldarate metabolism  (Vitamin C) 5 4 

Glycerophospholipid metabolism  53 7 

Linoleic acid metabolism  6 6 

Cysteine and methionine metabolism  26 11 

Porphyrin and chlorophyll metabolism  20 9 

Retinol metabolism (Vitamin A) 16 6 

Valine, leucine and isoleucine degradation  38 6 

Nicotinate and nicotinamide metabolism  18 3 

Total features 182           52 
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Figure 1 

 

 
 

Figure 1. Features in the Rhesus macaques that are significantly correlated with hemoglobin 

levels at time points (TP) 3 – 7. (A) Heat map showing the 1,074 genes that are associated with 

hemoglobin (p < 0.05). (B) Heat map showing the 305 metabolites that are associated with 
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hemoglobin (p < 0.05). Inter-drug exposure includes samples from TP4 and TP6. Post-drug 

exposure includes samples from TP3, TP5, and TP7. 

Figure 2 

 

 
 

 

 

Figure 2. Genes and metabolites in the macaques that were differentially expressed across 

experimental time points (TP) due to drug exposure. (A) The top 925 genes (p < 0.05). (B) The 

top 1660 metabolites (p < 0.05). Pre-drug exposure includes samples from TP1 and TP2. Inter-

drug exposure includes samples from TP4 and TP6. Post-drug exposure includes samples from 

TP3, TP5, and TP7. 
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Figure 3

 

Figure 3. Correlation of Principal Components of differentially expressed genes and metabolites 

before pathway assignment. (A) Pearson correlation of top 10 principal components before 

testing for statistical significance. Pearson correlation of top 10 principal components after 

testing for statistical significance (p < 0.05).  
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Figure 4 

 

 
 

Figure 4. The most significant gene and metabolite from the porphyrin metabolism pathway that 

was selected by Group Pathway LASSO. (A) The ALAS2 gene is correlated with plasma 

hemoglobin (Pearson’s r = -0.53, p = 0.0069). (B) The ALAS2 gene is differentially expressed 

between inter and post-drug exposure conditions (t = -2.225, p = 0.0365). (C) Aminolevulinic 

acid is correlated with plasma hemoglobin (Pearson’s r = 0.43, p = 0.0333). (D) Aminolevulinic 
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acid is differentially expressed between inter and post-drug exposure conditions (t = 3.98, p = 

0.0010). 

Figure 5 

 

Figure 5. Significant genes and metabolites from the porphyrin metabolism pathway that were 

selected by Group Pathway Lasso. (A) The ALAD gene is correlated with plasma hemoglobin 

(Pearson’s r = 0.48, p = 0.0145); however the ALAD gene (B) is not differentially expressed 

between inter and post-drug exposure conditions (t = 0.1883, p = 0.8524). (C) The FECH gene is 

correlated with plasma hemoglobin (Pearson’s r = -0.49, p = 0.0127). (D) FECH is differentially 

expressed between inter and post-drug exposure conditions (t = -2.673, p = 0.0143). 
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Figure 6 

 

Figure 6. Plot of principal component analysis (PCA) of metabolites that are differentially 

expressed in macaques between and after treatment with pyrimethamine.  PC1, principal 

component 1; PC2, principal component 2; PC3, principal component 3. Each point/circle 

represents a sample. Samples from inter-drug exposure (TP4 and TP6) are colored in cyan and 

samples from post-drug exposure (TP3, TP5, and TP7) are colored in red. 
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Figure 7 

 

 

Figure 7. Plot of principal component analysis (PCA) of genes that are differentially expressed 

in macaques before, between, and after treatment with pyrimethamine.  PC1, principal 

component 1; PC2, principal component 2; PC3, principal component 3. Each point/circle 

represents a sample. Samples from pre-drug exposure (TP1 and TP2) are colored blue, samples 



27 
 

from inter-drug exposure (TP4 and TP6) are colored in red, and samples from post-drug 

exposure (TP3, TP5, and TP7) are colored in green. 
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