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ABSTRACT 
 

PREDICTION OF DISEASE STATUS BASED ON MRI BRAIN SCANS USING SPARSE PRINCIPAL 
COMPONENT ANALYSIS 

 
By 

 
TEJAL PANKAJ VASHI 

 
APRIL 24TH, 2017 

 
 
  

 
 
INTRODUCTION:  Alzheimer’s Disease is a neurodegenerative disorder that affects millions of 
individuals worldwide and the association of brain regions to diagnosis is not presently known. 
Current methods for diagnosis are not sufficient, with the only true method for knowing if an 
individual has Alzheimer’s Disease being a post mortem analysis of brain tissue. Due to the high 
dimension of data, a classic principal component analysis to determine which variables to 
include in a model would not suffice. Sparse Principal Component Analysis deals with the 
limitations of Classic PCA and can produce which variables are highly correlated to include. 
 
AIM: Compare the results of logistic regression, classic principal component analysis, and sparse 
principal component analysis to determine the variables to include in a model to differentiate 
between Mild Cognitive Impairment and Alzheimer’s Diagnosis. 
 
METHODS: We analyzed brain scans from the Alzheimer’s Disease Neuroimaging Initiative.  
Variables were predefined by the dataset by individual. We used these variables to run a 
regular logistic regression on all the variables, ran classic PCA on every stepwise increase in 
components included in the model, and finally ran the Sparse PCA model, comparing error rate 
to differentiate between the models and select the variables to include.  
 
RESULTS:  We identified the error rate for every model, with SPCA with 8 components and a 
tuning parameters of 6 having the lowest, and then the variables included in that model were 
selected as the variables for prediction.  
 
DISCUSSION: By applying this method to high dimensional brain scan data, we identified 59 
variables to include in the model. Majority of these 59 variables agreed with the current 
literature for association with Alzheimer’s Disease. 
 

 
 
 



2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

PREDICTION OF DISEASE STATUS BASED ON MRI BRAIN SCANS USING SPARSE PRINCIPAL 
COMPONENT ANALYSIS 

 
 

by 
 

TEJAL PANKAJ VASHI 
 

B.S., UNIVERSITY OF GEORGIA 
 
 
 
 
 

A Thesis Submitted to the Graduate Faculty 
of Georgia State University in Partial Fulfillment 

of the 
Requirements for the Degree 

 
MASTER OF PUBLIC HEALTH 

 
 

ATLANTA, GEORGIA 
30303 



3 
 

 
 
 
 
 
 

APPROVAL PAGE  
 
 

PREDICTION OF DISEASE STATUS BASED ON MRI BRAIN SCANS USING SPARSE PRINCIPAL 
COMPONENT ANALYSIS 

 
by  

 
 TEJAL PANKAJ VASHI 

 
 
 
 
 
 
Approved:  
 
 
 
 
___DR. RUIYAN LUO______  
Committee Chair  
 
 
 
__DR. IKE OKOSUN_____  
Committee Member  
 
 
 

__April 24th, 2017_____________  
Date  
 
 
 
 
 
 



4 
 

Acknowledgments  
 

I would like to express my deepest regards for all the people in my life who have made this 
possible, from my family and their love and support, to the professors who have taught me for 

their guidance and instruction in my education. I would not have made it here without you. 
 

Similarly, my deepest appreciation to my committee chair, Dr. Ruiyan Luo, for her eternal 
patience, amazing poise, and unfailing guidance through the process of completing a thesis as 
well as her amazing teaching in lectures. Without her guidance, teaching, and persistent help, 
this would not have been possible, so thank you for all you have knowingly (and unknowingly) 

taught me. 
 

A most heartfelt thanks to Dr. Ike Okosun, for sitting on my committee and for the amazing and 
wonderful direction he has given me through my master degree. Thank you for always having a 

spare minute (hour) to sit and talk with me, and for your priceless advice. It is greatly 
appreciated. 

 
And finally, to God, for You have walked with me this far, and for that I am eternally grateful.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5 
 

 
Author’s Statement Page  

 
 

In presenting this thesis as a partial fulfillment of the requirements for an advanced 
degree from Georgia State University, I agree that the Library of the University shall make it 
available for inspection and circulation in accordance with its regulations governing materials of 
this type. I agree that permission to quote from, to copy from, or to publish this thesis may be 
granted by the author or, in his/her absence, by the professor under whose direction it was 
written, or in his/her absence, by the Associate Dean, School of Public Health. Such quoting, 
copying, or publishing must be solely for scholarly purposes and will not involve potential 
financial gain. It is understood that any copying from or publication of this dissertation which 
involves potential financial gain will not be allowed without written permission of the author.  

 
___TEJAL P. VASHI_____________ 
Signature of Author 

 
 
 
 
 
 
 
 
 
  



6 
 

TABLE OF CONTENTS 
 

ACKNOWLEDGMENTS ..........................................................................................................4 

LIST OF TABLES…………………………………………………………………………………………………………….…..7 

LIST OF FIGURES.………………………………………………………………………………………………………….…..8 

INTRODUCTION.....................................................................................................................9 
 
METHODS AND MATERIALS..….………………...........................................................................12  
      
RESULTS.................................................................................................................................15  
 
DISCUSSION AND CONCLUSION…..........................................................................................18                       
      
REFERENCES...........................................................................................................................25 

APPENDIX................................................................................................................................28 

 

  



7 
 

List of Tables 
 

Table 1 Correlation Matrix For the Principal Component Analysis (Restricted to the first 10 

components for clarity) 

Table 2 Percent of Total Variance Explained by Principal Component 

Table 3 Error Rate by Total Number of Components Included In Logistic Regression Model 

Table 4 Error Rate by Total Number of Components Included and Tuning Parameter Value 

 

  



8 
 

List of Figures 

Figure 1 Screeplot of Percent Variance explained and Number of Principal components 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  



9 
 

Introduction 
 

 Alzheimer’s Disease is a neurodegenerative disorder that is suspected to affect 50-75% 

of individuals over the age of 65 who have dementia, approximately some 48 million individuals 

worldwide (Duthey 2013, pg 11). It is symptomatically characterized by short term memory 

issues in early stages, and later commonly by disorientation, problems with speech, aggression 

or agitation, mood swings, difficulty remembering or thinking and understanding, and 

depression (Wenk 2003). The disease is also associated with senile plaques and neurofibrillary 

tangles in the brain tissue (Ballard et al. 2011), as well as other changes in the physiology of the 

brain (Wenk 2003).  However, there is no definitive manner with which to diagnose Alzheimer's 

Disease except post-mortem with a brain dissection (Ballard et al. 2011)  

 Due to this, there is a litany of cognitive tests that have been developed that purport to 

accurately differentiate dementia from Alzheimer's Disease, even at the earliest stages 

(Tombaugh, & McIntyre, 1992). A major issue with these cognitive tests is that the tests are 

extremely lengthy and individuals who are affected by dementia or Alzheimer's cannot pay 

attention or remain cognizant for the duration of the entire exam (Grundman et al. 2004). For 

this, a simpler diagnostic tool is needed to accurately and concisely provide feedback to 

clinicians regarding the mental state of patients.  

 The Alzheimer’s Disease Neuroimaging Initiative (ADNI), a group of researchers who 

collect, validate and utilize various types of data in the ongoing study of Alzheimer’s Disease, 

are currently collecting vast amounts of diagnostic and clinical data on individuals who have 

normal cognitive function, have mildly impaired cognitive function, or have been diagnosed 

with Alzheimer’s Disease. Though ADNI also collects biochemical, genetic, PET, neurological, 
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and clinical data on those subjects enrolled, they also collect MRI (magnetic resonance imaging) 

scans of the brains of those subjects participating. MRI is known for their diagnostic value in the 

diagnosis of Alzheimer's Disease since the characteristic loss of volume and change in 

physiology is abundantly apparent in the scan (Frisoni, Fox, Jack, Scheltens, and Thompson 

2010). Due to this reason, MRI has been previously used with some success to differentiate 

between subjects with normal cognitive function, those with mild cognitive impairment, and 

those with Alzheimer's Disease (Desikan et al. 2009), but using brain matter volume as the 

differentiator between the three groups. 

It has been previously suggested that a multivariate analysis may be superior to 

univariate techniques of analysis in analyzing brain scan data, due to the ability to interpret the 

results in a manner similar to the natural neural network structure of the brain (Habeck et al. 

2010), an example of this would be Principal Component Analysis (PCA). Principal Component 

Analysis is a statistical methodology in which dimensions of a large dataset are reduced by 

taking a linear combination of the original variables such that the output (called principal 

components) captures the maximum variance of the original data, thus curtailing information 

loss (Qi and Luo 2015). However, there are significant drawbacks to PCA, especially for high 

dimensional data and large data. In high dimensions, classic PCA does not return consistent 

estimates, with loadings returning as zero making it difficult to both interpret the components 

produced and the variables included in each component (Qi, Luo, and Zhou 2013). Due to this, 

we will utilize Sparse Principal Component Analysis, which selects linear combinations of 

subsets of variables that explain the most variance of the data with the fewest variables (Zou, 

Hastie, and Tibshirani 2006).  
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In order to address this issue, yet still take advantage of multivariate analysis for brain 

scan data, we look to modified methodologies for PCA, namely sparse PCA (SPCA). Sparse PCA 

is a type of PCA wherein the principal components are formed such that they are a linear 

combination of a small subset of the variables but still explain a high percentage of the variance 

within the data (Qi, Luo, and Zhou 2013).  This method utilizes a penalty in order to select 

variables, such that only those variables that are necessary for the model remain (Zou, Hastie, 

and Tibshirani 2006). 

Here we apply both classic PCA and sparse PCA to brain scan data in order to develop a 

predictive model that can differentiate between individuals with mild cognitive impairment and 

those with Alzheimer’s disease. Using this technique, we demonstrate that a model utilizing 

sparse PCA can be built with a small error.  
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Methods & Materials 

 Data was retrieved from the ADNI database, specifically from the phase of the project 

known as ADNI1, wherein individuals with normal cognitive function, mild cognitive 

impairment, and Alzheimer’s Disease were enrolled and data on their cognitive function, 

biomarkers, clinical data, and MRI and PET scans were collected. From this sample, we selected 

only those with mild cognitive impairment and Alzheimer’s Disease, for a total sample size of 

1433 subjects, 532 with Alzheimer’s Disease and 901 with mild cognitive impairment. For each 

of these subjects, we utilized the MR Imaging Analysis dataset, which pre-analyzed the data of 

the brain scans into numerical values for each subject by region of the brain via voxel based 

morphometry. A total of 119 brain region variables were included for analysis.  

Inclusion/Exclusion Criteria  

 Participants were included in the ADNI study if they were: aged between 55 years and 

90 years old, were on medications (not psychological medications) for more than 4 weeks prior 

to study participation onset, were not depressed or otherwise suffering from a psychological 

disorder, were able to speak English of Spanish and had the visual and auditory ability to 

complete neurological exams, were not in any other ongoing study, were willing and able to 

join a 3 year study, able to agree to DNA and ApoE sample banking as well as blood and urine 

testing, and were otherwise in good health.  

Exclusion criteria also included: not having neurodegenerative events or diseases such 

as Parkinson’s Disease or a stroke, heart attack, or other brain trauma history, other memory 
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complaints, taking anti-neuroleptics, other medications with significant central nervous system 

anticholinergic activity, or discontinuation of current permitted medications during the study.  

Demographics 

 The demographics data collected in the study was largely focused on variables that did 

not inform this study, such as marital status, occupation, retired or not (and if yes, date), type 

of residence, year of onset symptoms or of diagnosis, and primary language spoken or used in 

the testing process.  These variables, while certainly informative in other settings are not 

additive to this project. The demographic variables reviewed were: disease status, gender, age, 

education level (in total years, with though high school = 12, through college = 16, and through 

a graduate degree =20), ethnicity, and race. Majority of the sample was affected by mild 

cognitive impairment (MCI), and were male. Similarly, clear majority of the sample had some 

college and post-undergraduate education. Majority were Non-Hispanic, and identified their 

race as white. However, this should not affect the analysis as it is well known in the field that 

the demographics, such as race and gender, do not affect the disease (Ballard et al. 2011; 

Tombaugh, & McIntyre, 1992)  

Statistical Analysis 

 Statistical analysis began after first recoding the response variable (disease status) such 

that 0 was representative of mild cognitive impairment and 1 representative of those with 

Alzheimer’s Disease. From there logistic regression was run on the data using all the brain 

region variables as predictors, and the error rate was calculated. This determined that a simple 

logistic regression model including all the variables was not the best model for the project, but 
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also determined how well using such a model would be in regards to the given data. Then, 

classical principal component analysis was performed on the data so that the produced 

principal components coefficients could be determined. These components were double 

checked against eigenvalues produced from the same data. From the principal components, a 

scree plot was produced to determine which components contained the majority of the 

variance of the data, and from this information, a numerically chronologic set of components 

were selected to analyze going forward.  These selected components were then used as 

predictor variables for logistic regression using chronologic decreasing numbers of components. 

From these logistic regression equations, we then determined error rate for each number of 

components included by comparing the determined model with the original components 

coefficients. 

 We then progressed to selecting a sparse PCA model.  To begin, we set up a series of 

loops within R such that the selection process was automated. Within the loops the data were 

partitioned, the data run through the sparse PCA call in the elasticnet package and then scaled, 

and finally, tested via logistic regression then prediction error calculated. In order to optimize 

the sparse model, a tuning parameter would have to be selected, as well as the optimal number 

of components to include in the model. A tuning parameter is an externally selected value that 

is prespecified in model selection such that the lowest possible error is achieved.  Both tuning 

parameter and optimal number of components selection was achieved by creating iterative 

loops where certain values of tuning parameters were tested against the data using k-fold cross 

validation techniques.   
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In order to perform this cross validation, the data was into 10 equally sized folds so that 

we could then perform 10-fold cross validation. Cross validation is a model evaluation 

methodology that is used over residuals because it can determine how well the training data 

will be able to predict for data it does not have. This specific type of cross validation, called k-

fold cross validation (with k equally the number of folds partitioning the data), splits the data 

into k folds, and uses one fold as the test data and the k-1 fold rest as training data. This means 

that every data point gets to be in the test set once and in a training set k-1 times. This is then 

used to predict the output value for the test data (data the training data which have been used 

to build the model have not previously utilized nor does it have the output values for).   

This is achieved by running sparse PCA on the partitioned training data, and then using 

the loadings derived from this to scale the test and training data. Then the training data are run 

through logistic regression for numerically chronologic amounts of components – that is to say, 

first running the first component, then the first two components, then the first three 

components, so on until all ten components had been run. After this has been done, the error is 

calculated and used to evaluate the models created through the loops, with the lowest error 

indicating the better model. The tuning parameter and number of components included in this 

best model were then carried forward and used as parameters for a second sparse principal 

component analysis wherein the original data was utilized in order to determine the variables 

included in the final model. This model includes only the most significant variables for 

determining the difference between those with mild cognitive impairment and those with 

Alzheimer’s Disease. 
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Results 

All Variable Logistic Regression  

The subset of data only including those with mild cognitive impairment and those with 

Alzheimer’s Disease determined that there were 901 subjects with mild cognitive impairment 

and 534 subjects with Alzheimer’s Disease, for a grand total of 1435 subjects. From there, the 

logistic regression run with all the variables as predictors were run. Based on this model, the 

error rate was calculated as being 0.556045 with a cutoff value of .37, or the probability of the 

predicted disease status not matching the observed disease status based on the model was 

0.5560.  

Classic Principal Component Analysis & Scree Plot 

 The principal components that were determined (Appendix A), which returns how 

strongly each variable is correlated with each component (loadings), with the larger magnitude 

(either positive or negative) indicating stronger correlation. These concurred with the 

calculated eigenvalues of the same data.  Based on the results, all values above .1 were 

considered significant, with 112 variables having a correlation value above the threshold.  

The components were then used to create a scree plot to determine how many 

components to include in the models. The scree plot indicated that given the first ten 

components, the majority of the variance was concentrated in the first component (Figure 1) 

and that the first ten components captured about 87% of the total variation (Table 2). These 

first ten components were then taken forward as the focus of further exploration. 
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Logistic Regression using Chronologic Numerical Components 

 Logistic regression was run on the principal components obtained from the traditional 

PCA, where first the first component was evaluated, then the first two components, iteratively 

adding the next chronological component until all ten components were included in the model. 

For each, the error rate was calculated (Table 3).  Based on simply utilizing the components, the 

error rate is lowest for inclusion of 10 components and 6 components, and highest when 

including only one component. 

Cross Validation For Tuning Parameter and Number of Components Inclusion Selection 

 The sparse PCA method has a tuning parameter controlling the sparsity of components. 

The training and test data were evaluated at several different tuning parameter values at 

different numbers of component inclusion, ranging from .1 to 9 for tuning parameter values 

and from 1 to 10 for number of components. These were evaluated for classification error 

(Table 4), wherein the model with the lowest error was selected for final model building and 

variable selection. This is the model containing 8 components with a tuning parameter of 6, 

with an error of 0.165657. 

Final Model & Variable Selection via Sparse Principal Component Analysis 

 Based on the results of the cross validation, the tuning parameter was set at 6 and the 

number of components included was 8. From this information, sparse principal component 

analysis was run on the original dataset in order to build the final model and select which 

variables would be included in that model.  The variables included in this model were: middle 

occipital gyrus (right hemisphere), gyrus rectus (left hemisphere), orbital part of the superior 
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frontal gyrus (left hemisphere), middle frontal gyrus (both hemispheres), orbital portion of the 

middle frontal gyrus (both hemispheres), Rolandic operculum (both hemispheres), olfactory 

cortex (both hemispheres), medial superior frontal gyrus (right hemisphere), medial orbital 

superior frontal gyrus (both hemispheres), insula (both hemispheres),  median cingulate and 

paracingulate (right hemisphere), hippocampus (both hemispheres), amygdala (right 

hemisphere), calcarine fissure (both hemisphere), cuneus cortex (both hemispheres), inferior 

occipital gyrus (both hemispheres), fusiform gyrus (both hemispheres), superior parietal gyrus 

(both hemispheres), inferior parietal gyrus (right hemisphere), supramarginal gyrus (left 

hemisphere), angular gyrus (right hemisphere), lenticular nucleus - putamen (both 

hemispheres), lenticular nucleus – pallidum (right hemisphere), heschl gyrus (both 

hemispheres), middle temporal gyrus (right hemisphere), temporal pole – middle temporal 

gyrus (both hemispheres), temporal inferior gyrus (right hemisphere), hemispheric lobule II 

(both hemispheres), hemispheric lobule III (both hemispheres), hemispheric lobule VI (left 

hemisphere), hemispheric lobule VIIb (both hemispheres), hemispheric lobule VIII (both 

hemispheres), hemispheric lobule IX (both hemispheres), vermic lobule I/II, paracentral lobule 

(right hemisphere),  vermic lobule VI, vermic lobule VIII, vermic lobule X, and estimated total 

intercranial volume.  
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Discussion & Conclusion 

This project attempted to build a model that could be utilized to predict and 

differentiate between those with mild cognitive impairment and those with Alzheimer’s Disease 

based on MRIs of brains. The approach of sparse principal component analysis has allowed the 

development of a diagnostic model for individuals affected by cognitive decline, but also 

highlighted regions of the brain that can help differentiate between cognitive impairment and 

Alzheimer’s Disease. This approach also allowed for us to select for the least number of 

correlated variables that also explained the greatest amount of variance in the data. 

Examination of the first model, as a simple logistic regression equation which included 

all the variables, produced a model that had very small coefficients for all values, but also the 

highest error rate of all the models run. The error rate was calculated at 55% misclassification. 

From here it was increasingly apparent that a simple logistic regression model calculated in this 

manner would not be appropriate. 

The classic principal component analysis was determined, and the identification of 

values above .1 in the correlation matrix produced indicated that there were 112 variables that 

had a strong correlation with the data (given only the first 10 components for clarities sake). 

This is most of the variables included in the dataset, and also significantly, most of these values 

fall within the first two components. This is also supported by the scree plot, which similarly 

shows that the first two components contain most of the variance in the data, with the percent 

of variance contained in each component decreasing until it evens out around the 10th 

component. Thus, though these 10 components only prescribe 87% of the total variation, they 

were the components carried forward in this investigation.  
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The stepwise addition of components via logistic regression and subsequent error 

calculations indicate that the number of components do affect the error rate, with a general 

trend of fewer components meaning a higher error rate (though there is a shift in this trend for 

inclusion 6 components where the error rate drops, but it rises again for 7-9 components.  

Inclusion of 10 components also drops the error rate to equal that of inclusion of 6 components 

in the model). For all of these models, however, the error rate remains between 47%-60%. For 

inclusion of 3-1 components, the error rate was higher than the model with inclusion of all the 

variables.  

Comparatively, the error rate for the sparse principal component analysis, with the 

tuning parameter set at 6 and the number of components being 8 was 0.1656566, or 16.5%, 

demarcating this model as less erroneous than the preceding models. 

Similarly, from this model we can extract those variables that were used to model the 

SPCA model, some 59 variables. Of these variables, the following were also referenced in 

literature as having a significant association with Alzheimer’s Disease:  middle frontal gyrus , 

orbital portion of the middle frontal gyrus, hippocampus, amygdala, cuneus cortex, inferior 

occipital gyrus, superior parietal gyrus, inferior parietal gyrus, middle temporal gyrus, temporal 

pole – middle temporal gyrus,  and temporal inferior gyrus (Desikan et al., 2010). This large 

difference between the cited literature and the findings of this study can be cited to the article, 

as the article only referenced these specific regions with no appendix with further regions listed 

(it was cited as the only found study with such detailed regions explicitly stated- largely due to 

using the same dataset; most others simply name regions in broad strokes, such as the Medial 

Temporal Gyrus, which is in fact several subregions grouped together.)  
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For this, the regions found in this study were cross referenced to the regions broadly 

mentioned, and for that the following variables concurred: gyrus rectus, orbital part of the 

superior frontal gyrus, middle frontal gyrus, orbital portion of the middle frontal gyrus, Rolandic 

operculum, olfactory cortex, medial superior frontal gyrus, medial orbital superior frontal gyrus, 

insula,  median cingulate and paracingulate, hippocampus, amygdala , cuneus cortex,  fusiform 

gyrus, superior parietal gyrus, inferior parietal gyrus, supramarginal gyrus, angular gyrus, 

lenticular nucleus - putamen, lenticular nucleus – pallidum, heschl gyrus , middle temporal 

gyrus, temporal pole – middle temporal gyrus, temporal inferior gyrus, and intercranial volume 

(Poinier, & Weiner, 2017). 

With the advent and dissemination of high dimensional data analysis techniques, 

information about large datasets can be reduced and synthesized with greater speed and 

efficiency than before. Of the available techniques, sparse principal component analysis is able 

to produce results that take into account the highly correlated nature of brain scan data, but 

also to synthesize and extract only the most important variables. The variables selected are also 

supported by the data, and thus validate the found results. Of note, very few of the regions 

found were singularly associated with only one hemisphere of the brain, rather, majority of the 

variables were found to be significantly associated for both hemispheres. There is currently no 

literature available as to why this might be so, and is an avenue for further inquiry in the field.  

Similarly, though the gold standard of diagnosis of Alzheimer’s Disease is a post mortem 

autopsy, the data used here were based of brain scans – that is to say, still not 100% certain 

that the classification was correct. Though the results were validated to an extent within the 
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data collection step with cognitive tests and genetic and other biomarker data, it is still not 

completely certain, and thus this methodology should be repeated on multiple different 

datasets, as well as having the dataset cross validated with post mortem autopsies to be certain 

of the disease state.  

A final limitation is the fact that the model does not account for the variation in disease 

status that lies between mild cognitive impairment and full Alzheimer’s Disease, nor the stages 

of severity for Alzheimer’s Disease. A more robust inquiry should be explored for multiple levels 

of cognitive impairment, not simply a binary outcome as in this project. Future studies would 

attempt to utilize available brain scan data to build a model to differentiate between these 

stages, and most especially the severity of Alzheimer’s Disease. 

  



24 
 

Table 1.  Demographic Data 
 

Demographic Variable 
Count 
n (%) 

  

Disease Status  
MCI 901 (62%) 

AD 532 (37%) 

Gender  
Male 794 (55%) 

Female 584 (41%) 

Missing 55 (4%) 

Education  
Did not Complete HS 168 (12%) 

HS 203 (14%) 

College 612 (43%) 

Post Undergraduate 459 (39%) 

Ethnicity  
Hispanic 34 (2%) 

Non-Hispanic 1315 (92%) 

Oher 11 (1%) 

Missing 73 (5%) 

Race  
American Indian or Alaskan Native 1 (<1%) 

Asian 21 (1%) 

Native Hawaiian or Other Pacific Islander 0 (0%) 

Black or African American 73 (5%) 

White 1266 (88%) 

More than one race 5 (<1%) 

Unknown 2 (<1%) 

Missing 65 (4%) 

 
Majority of the sample was affected by mild cognitive impairment (MCI), and were male. 
Similarly, vast majority of the sample had some college and post-undergraduate education. 
Majority were Non-Hispanic, and identified their race as white.  
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Table 2. Percent of Total Variance Explained by Principal Component  
 

PC Total % Variance Explained 
 

 
1 0.6945843 

2 0.7364264 

3 0.770626 

4 0.8029463 

5 0.8204928 

6 0.8350852 

7 0.8471534 

8 0.857879 

9 0.8665157 

10 0.8743729 

11 0.8812432 

12 0.88738 

13 0.8931174 

14 0.8982999 

15 0.9030644 

  

The percent of total variance explained by each component (PC) is detailed, with each iterative 

value being the previous chronologic numerical component’s percent variance value plus 

whatever percent variance explained by the component.   
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Table 3. Error Rate by Total Number of Components Included In Logistic Regression Model 
 

Number of Components  Error Rate 

10 0.4822299 

9 0.5003484 

8 0.4989547 

7 0.4919861 

6 0.4822299 

5 0.5066202 

4 0.5198606 

3 0.5595819 

2 0.5554007 

1 0.5944251 

 

For each logistic regression model, the error rate was calculated and reported. The lowest were 

for including all 10 components and the first 6 components; the highest was for only including 

the first component in the model. 
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Table 4. Error Rate by Total Number of Components Included and Tuning Parameter Value 

  Number of Principal Components Included 

 
1 2 3 4 5 6 7 8 9 10 

Tuning 

Parameter 
                    

0.1 0.24172 0.224306 0.235485 0.230628 0.225772 0.22788 0.223699 0.225806 0.234164 0.226471 

0.5 0.24172 0.224306 0.235485 0.229929 0.225078 0.227181 0.223699 0.225806 0.234164 0.226471 

1 0.24172 0.223611 0.23548 0.229929 0.225078 0.227181 0.223699 0.225107 0.234164 0.226471 

2 0.24172 0.22431 0.23548 0.229929 0.225078 0.227875 0.223699 0.225107 0.233465 0.226471 

3 0.24172 0.22501 0.236179 0.229235 0.225777 0.228574 0.224398 0.225801 0.233465 0.227171 

4 0.24172 0.22501 0.236878 0.232032 0.226467 0.228579 0.224393 0.225102 0.232765 0.22787 

5 0.241026 0.226404 0.23479 0.233431 0.232027 0.229283 0.227176 0.223004 0.227894 0.229254 

6 0.190676 0.176044 0.183727 0.177472 0.177477 0.169153 0.169833 0.165657 0.169148 0.170513 

7 0.189977 0.178142 0.186519 0.180954 0.174689 0.169852 0.170537 0.165661 0.168444 0.169814 

 

For the selection of tuning parameter and number of components to include in the model, 

these are the error rates produced via testing each model. The lowest error rate was when the 

first 8 components were included and the tuning parameter was set at 6.   
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Figure 1. Screeplot of Percent Variance explained and Number of Principal components  
 

 
Scree plot of the percent variance explained  by each component. This depicts the amount of 
variance by each component, starting at the total variance for all of the components (87%) with 
the first component, but dropping to 18% for the second component, indicating that the first 
component only explained 69% of the variance. 
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Appendix A 

Correlation Matrix For the Principal Component Analysis (Restricted to the first 10 components 
for clarity) 
 

 Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

PRECENTL -0.097655 -0.021379 0.145325 -0.02066 0.010248 -0.053436 8.91E-02 -0.069326 0.027525 -0.05642 

PRECENTR -0.095458 -0.001155 0.164821 -0.050262 0.014286 -0.046749 1.22E-01 -0.066888 0.052192 -0.102004 

FRONTSUPL -0.102029 0.060415 0.096643 0.005434 -0.036125 0.081047 -1.54E-02 -0.10071 -0.083918 0.01074 

FRONTSUPR -0.100383 0.077435 0.112905 -0.005856 -0.022202 0.080207 -1.51E-03 -0.107657 -0.07014 -0.023068 

FRONTSORBL -0.099749 0.138207 0.017292 0.014615 -0.034804 0.085411 -4.34E-02 -0.030361 -0.118609 -0.038982 

FRONTSORBR -0.09934 0.138943 0.024605 0.032324 -0.055615 0.078791 -3.96E-02 -0.023358 -0.119796 -0.051245 

FRONTMIDL -0.104348 0.049642 0.05298 0.016517 0.024001 0.055704 -4.37E-02 -0.085129 -0.097055 0.015566 

FRONTMIDR -0.104408 0.085169 0.063531 0.004535 0.007339 0.058879 -5.48E-03 -0.070022 -0.072785 -0.014905 

FRTMIDORBL -0.101686 0.113162 -0.013347 0.050975 -0.04442 0.085241 -4.74E-02 -0.019996 -0.082424 0.017247 

FRTMIDORBR -0.100485 0.125538 -0.0049 0.046805 -0.043508 0.091103 -3.51E-02 -0.007895 -0.088419 0.008487 

FRONTINOPL -0.101468 0.01905 -0.03575 0.031207 0.054516 0.043549 -8.00E-02 -0.055998 -0.006192 -0.000484 

FRONTINOPR -0.103007 0.017703 -0.019112 0.040837 0.020852 0.00601 -4.92E-02 -0.076524 0.016295 -0.00488 

FRONTINTRL -0.101497 -0.011647 -0.060112 0.059594 0.074801 0.026807 -9.23E-02 -0.07507 -0.023716 -0.000855 

FRONTINTRR -0.104102 0.039045 -0.022943 0.032812 0.06888 0.028471 -3.51E-02 -0.065534 -0.026488 -0.047874 

FRONTINOBL -0.103518 0.048732 -0.041139 0.058479 0.004132 0.057031 -5.14E-02 -0.04716 0.029281 -0.030974 

FRONTINOBR -0.104242 0.07328 -0.018391 0.052098 -0.006962 0.03619 -1.94E-02 -0.019504 0.016781 -0.060121 

ROLANDOPL -0.093461 -0.041073 -0.10971 0.138242 -0.061267 -0.076626 -7.79E-02 -0.022716 0.118293 0.0548 

ROLANDOPR -0.100753 0.0051 -0.07957 0.090072 -0.013035 -0.063189 -2.38E-02 -0.010162 0.050041 -0.010766 

SUPMOTORL -0.098313 0.004887 0.123757 -0.026362 -0.065577 0.028521 6.54E-02 -0.11484 0.078696 0.049313 

SUPMOTORR -0.089963 -0.078441 0.149537 -0.007583 -0.123409 0.027647 5.04E-02 -0.176286 0.148746 0.119053 

OLFACTL -0.09655 0.038734 -0.077614 0.097497 -0.082069 -0.072235 8.12E-02 -0.022503 0.068531 0.018632 

OLFACTR -0.092986 0.033443 -0.084788 0.114 -0.080698 -0.080925 3.70E-02 -0.021054 0.118698 -0.00201 

FRONTSMEDL -0.101396 0.090526 0.007917 0.055377 -0.051494 0.095601 -2.52E-02 -0.123284 -0.032469 0.027945 

FRONTSMEDR -0.100126 0.089316 0.002097 0.054136 -0.068745 0.10979 -2.38E-02 -0.124379 -0.022755 0.047663 

FRTMEDORBL -0.09953 0.092314 -0.026606 0.080816 -0.044079 0.063727 -4.84E-02 -0.059254 -0.085754 -0.051623 

FRTMEDORBR -0.099225 0.078821 -0.036001 0.094401 -0.04015 0.04281 -6.30E-02 -0.071621 -0.067969 -0.047715 

RECTUSL -0.098859 0.075716 -0.030094 0.082307 -0.058293 0.062613 -7.04E-02 -0.054529 -0.054966 -0.046059 

RECTUSR -0.099897 0.085041 -0.027638 0.081918 -0.047298 0.044348 -5.54E-02 -0.057793 -0.064286 -0.041823 

INSULAL -0.100274 0.015217 -0.114599 0.095191 -0.030852 -0.022441 -4.72E-03 -0.015725 0.082217 0.09085 

INSULAR -0.104228 0.044338 -0.066011 0.050088 0.00928 0.010641 5.80E-03 -0.01626 0.082747 -0.000289 

CINGANTL -0.100634 0.034804 -0.016965 0.066169 0.019727 0.029013 -7.33E-02 -0.148069 -0.022309 -0.064205 

CINGANTR -0.092893 -0.057815 -0.059403 0.116238 0.014038 -0.016862 -1.24E-01 -0.201422 0.017208 -0.052746 
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CINGMIDL -0.096506 -0.071199 0.101617 0.019156 -0.03643 -0.030512 -6.26E-02 -0.15264 0.022128 0.045708 

CINGMIDR -0.093478 -0.116066 0.062379 0.083163 -0.094735 -0.040904 -6.84E-02 -0.144806 0.078835 0.084473 

CINGPOSTL -0.082699 -0.029771 0.125437 -0.032664 0.15936 -0.064885 -8.11E-02 -0.07174 -0.037269 -0.150896 

CINGPOSTR -0.090339 0.012724 0.111938 -0.018418 0.059413 -0.029296 -8.76E-03 -0.010604 0.023316 -0.162175 

HIPPL -0.083818 -0.026227 -0.179047 0.158549 -0.03683 -0.123678 7.18E-02 0.121607 0.073648 0.138909 

HIPPR -0.085311 -0.005526 -0.154154 0.159336 -0.046585 -0.125545 8.70E-02 0.136262 0.075726 0.081595 

PARAHIPPL -0.101261 0.022903 -0.036623 0.023393 0.046247 -0.042594 5.01E-02 0.025521 0.157632 -0.102882 

PARAHIPPR -0.099342 0.005139 -0.053846 -0.004286 0.105799 -0.031662 3.29E-02 0.007346 0.159706 -0.104771 

AMYGDL -0.097158 0.158557 0.010795 -0.021616 0.025538 0.052858 9.05E-02 0.063817 0.044894 -0.015175 

AMYGDR -0.098034 0.135874 -0.00032 -0.002624 0.041411 0.035889 9.38E-02 0.059914 0.060402 -0.031283 

CALCARINEL -0.101244 -0.051809 -0.006937 0.012123 -0.024327 -0.054591 1.02E-02 0.175207 0.053009 -0.090765 

CALCARINER -0.101315 -0.028339 -0.008427 -0.022402 0.040897 -0.041906 2.66E-02 0.161063 0.036753 -0.128493 

CUNEUSL -0.096046 -0.097438 0.08918 0.023217 -0.077411 -0.028709 5.81E-03 0.188879 -0.004056 -0.017424 

CUNEUSR -0.098437 -0.077458 0.073016 0.011064 -0.036763 -0.044285 2.51E-02 0.178962 -0.001516 -0.05696 

LINGUALL -0.100765 -0.039061 0.015388 -0.044108 0.102431 -0.063255 1.86E-02 0.103408 0.066526 -0.154533 

LINGUALR -0.09822 -0.075403 0.014204 -0.041005 0.045463 -0.059611 3.68E-02 0.128214 0.128237 -0.182263 

OCCSUPL -0.091453 -0.06651 0.145121 -0.005166 -0.032247 -0.074037 6.08E-03 0.217454 -0.116967 -0.028335 

OCCSUPR -0.093162 -0.069192 0.120734 -0.009886 0.012576 -0.05968 -9.09E-06 0.2253 -0.115905 -0.03256 

OCCMIDL -0.101244 -0.025074 0.06086 -0.000542 0.045924 -0.05087 -6.62E-02 0.196669 -0.115897 -0.024249 

OCCMIDR -0.10187 -0.00549 0.073376 -0.015055 0.034334 -0.019578 -5.50E-02 0.190275 -0.104658 -0.014977 

OCCINFL -0.097654 0.006854 0.021539 -0.019336 0.113185 -0.046261 -3.78E-02 0.156924 -0.09039 -0.095473 

OCCINFR -0.094614 0.078231 0.051548 -0.056762 0.133739 -0.017726 2.02E-02 0.142753 -0.088188 -0.159241 

FUSIFORML -0.103707 -0.061278 -0.041528 0.015698 0.030554 -0.017182 -1.44E-02 0.06271 0.090778 -0.03169 

FUSIFORMR -0.105854 -0.016848 -0.025779 0.014107 0.019695 -0.002988 1.16E-02 0.053155 0.081585 -0.065109 

POSTCENTL -0.095787 -0.095609 0.135464 -0.004224 -0.024667 -0.058592 1.84E-02 -0.072885 0.056825 -0.005096 

POSTCENTR -0.096043 -0.038499 0.186105 -0.045164 -0.014413 -0.02481 5.71E-02 -0.048281 0.032138 -0.027015 

PARIETSUPL -0.079386 -0.111833 0.23253 0.005898 -0.121794 -0.041359 1.93E-02 0.029603 -0.06152 0.13309 

PARIETSUPR -0.080289 -0.08349 0.235575 -0.00455 -0.118994 -0.015882 4.28E-02 0.016586 -0.043446 0.137062 

PARIETINFL -0.095939 -0.090166 0.121411 0.043085 -0.040291 -0.047377 -8.41E-02 -0.017723 -0.095359 0.124786 

PARIETINFR -0.095551 -0.067004 0.123302 0.043872 -0.058355 -0.033652 -5.94E-02 -0.000443 -0.07533 0.137191 

SUPRAMARGL -0.097285 -0.044897 -0.053332 0.056503 0.069362 -0.06179 -1.59E-01 -0.0208 -0.049253 0.043454 

SUPRAMARGR -0.098858 -0.01567 0.067556 0.004575 0.10874 -0.036548 -1.14E-01 -0.048482 -0.057856 -0.026433 

ANGULARL -0.096783 -0.05641 0.066482 0.046611 0.041918 -0.074705 -1.46E-01 0.08469 -0.125834 0.097784 

ANGULARR -0.096481 -0.043926 0.120802 -0.011924 0.084908 -0.028689 -1.06E-01 0.067008 -0.15379 0.032229 

PRECUNEUSL -0.097236 -0.091497 0.167455 -0.008275 -0.029125 -0.028608 -2.57E-02 0.000606 -0.011628 0.065742 

PRECUNEUSR -0.095718 -0.125868 0.117768 0.041108 -0.091862 -0.035898 -6.21E-02 -0.014399 0.034707 0.086354 

PARCENTLBL -0.07764 -0.065713 0.209151 -0.091365 -0.03938 -0.076213 2.07E-01 -0.086536 0.147221 -0.101071 

PARCENTLBR -0.076671 -0.111365 0.193757 -0.036272 -0.189057 0.011991 2.94E-02 -0.128745 0.17371 0.124618 
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CAUDATEL -0.089935 0.168847 -0.043403 0.05556 -0.041486 -0.05147 1.84E-01 -0.026417 -0.098115 0.143548 

CAUDATER -0.087918 0.107582 -0.089884 0.105771 -0.06273 -0.074038 1.82E-01 -0.016721 -0.062646 0.22153 

PUTAMENL -0.078069 0.096877 0.055971 -0.108747 0.333639 0.023784 1.61E-01 -0.119758 -0.07364 0.069896 

PUTAMENR -0.062639 0.043991 0.067393 -0.102588 0.414965 -0.024206 1.94E-01 -0.169378 -0.082645 0.090789 

PALLIDUML 0.063462 -0.264518 -0.013279 -0.004934 0.259925 -0.074851 -9.44E-02 -0.181314 0.036186 0.042834 

PALLIDUMR 0.072909 -0.266483 -0.063059 0.023789 0.167419 -0.080985 -1.02E-01 -0.137673 0.050778 0.065172 

THALAMUSL -0.068186 0.051879 -0.030412 0.071498 0.182427 -0.258394 3.66E-01 -0.050018 -0.104956 0.121977 

THALAMUSR -0.079322 0.051878 -0.052599 0.113209 0.059851 -0.241021 3.48E-01 0.020667 -0.041388 0.12881 

HESCHLL -0.084953 -0.052905 -0.093307 0.069701 0.073142 -0.112368 -2.14E-02 -0.002856 0.02565 0.013553 

HESCHLR -0.075357 -0.103833 -0.127611 0.146238 -0.00159 -0.153491 -7.83E-03 -0.027622 0.114859 0.019292 

TEMPSUPL -0.093785 -0.088187 -0.090173 0.062168 0.139517 -0.092142 -1.33E-01 -0.039079 0.037454 -0.015494 

TEMPSUPR -0.102632 -0.047697 -0.03383 0.04782 0.108502 -0.059867 -8.85E-02 -0.021711 0.012161 -0.035056 

TEMPPLSUPL -0.097713 0.039165 -0.075489 0.08375 0.001748 0.01152 -7.65E-03 -0.020407 0.133486 0.005679 

TEMPPLSUPR -0.100713 0.04942 -0.054233 0.088114 -0.005975 0.012412 7.45E-03 -0.018831 0.119298 -0.057975 

TEMPMIDL -0.098859 -0.073792 -0.054553 0.054378 0.116517 -0.057272 -1.74E-01 0.03838 -0.024472 0.069617 

TEMPMIDR -0.103696 -0.011464 0.000543 0.011352 0.127912 -0.033966 -9.89E-02 0.043539 -0.036532 -0.015858 

TEMPPLMIDL -0.100587 0.11195 -0.01763 0.039463 -0.018751 0.049174 -2.17E-02 0.01547 0.008936 0.023087 

TEMPPLMIDR -0.102396 0.114576 0.002358 0.036558 -0.007789 0.041796 -2.91E-03 0.012338 -0.011414 -0.032376 

TEMPINFL -0.101875 -0.002441 -0.064783 0.045485 0.050887 0.006989 -1.32E-01 0.016101 -0.005363 0.099909 

TEMPINFR -0.105191 0.04475 -0.014037 0.020261 0.048612 -0.000466 -6.28E-02 0.053342 -0.001115 -0.001002 

CEREBCR1L -0.096929 -0.081364 -0.06554 -0.052851 -0.024384 0.093057 -2.90E-02 0.111567 0.097654 0.062359 

CEREBCR1R -0.100734 -0.042335 -0.031864 -0.05064 -0.046333 0.099592 3.04E-03 0.107349 0.071269 0.019975 

CEREBCR2L -0.097349 0.03303 -0.056208 -0.074829 -0.046689 0.103851 -2.63E-02 0.118332 0.028823 0.090452 

CEREBCR2R -0.098264 0.05309 -0.050134 -0.062618 -0.055508 0.087399 -7.48E-03 0.105807 0.052118 0.073184 

CEREB3L -0.081518 -0.083747 -0.105009 -0.085179 -0.032051 0.141604 1.68E-01 0.011556 -0.076468 -0.000734 

CEREB3R -0.079782 -0.145603 -0.100333 -0.066078 -0.032455 0.161775 1.28E-01 -0.046196 -0.093406 -0.000957 

CEREB45L -0.098268 -0.030342 -0.015488 -0.109968 -0.009033 0.135046 9.93E-02 -0.017197 0.099309 -0.045366 

CEREB45R -0.091353 -0.101728 -0.042155 -0.119368 0.016211 0.166434 9.05E-02 -0.057554 0.112466 -0.021446 

CEREB6L -0.097748 -0.088625 -0.061217 -0.105338 -0.008983 0.124021 4.33E-02 0.070162 0.069038 0.036337 

CEREB6R -0.095745 -0.099802 -0.073734 -0.118269 0.034966 0.138917 7.94E-03 0.049742 0.088938 0.050194 

CEREB7BL -0.081973 0.090919 -0.0817 -0.260621 -0.039874 -0.109192 -9.06E-02 -0.021581 0.06469 0.042604 

CEREB7BR -0.08363 0.115788 -0.085717 -0.227787 -0.083374 -0.090191 -9.67E-02 -0.00976 0.070606 0.058787 

CEREB8L -0.063724 0.084281 -0.078358 -0.330539 -0.107019 -0.240242 -9.11E-02 -0.081558 0.021842 0.008321 

CEREB8R -0.065385 0.103374 -0.071676 -0.323922 -0.120802 -0.233841 -8.27E-02 -0.069383 0.023593 0.00601 

CEREB9L -0.068828 0.044362 -0.109685 -0.304606 -0.117521 -0.228983 -5.07E-02 -0.074897 -0.079614 0.021213 

CEREB9R -0.072569 -0.00068 -0.146124 -0.271661 -0.104036 -0.202851 -3.58E-02 -0.050717 -0.111029 0.075656 

CEREB10L -0.071632 -0.088878 -0.120857 0.009324 -0.189011 -0.063941 9.44E-02 -0.110818 -0.24988 -0.342692 

CEREB10R -0.044914 -0.192817 -0.155625 0.040541 -0.135046 -0.0991 8.69E-02 -0.204009 -0.162862 -0.442921 
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VERMIS12 -0.078962 -0.090975 -0.133294 -0.072079 -0.044957 0.143299 1.05E-01 0.001714 -0.280115 0.066821 

VERMIS3 -0.053296 -0.238189 -0.125289 -0.012053 0.00939 0.156372 1.79E-01 -0.078835 -0.047021 -0.035302 

VERMIS45 -0.082785 -0.163728 -0.043778 -0.069615 -0.029014 0.17535 1.27E-01 0.000399 0.020125 -0.029821 

VERMIS6 -0.075138 -0.21381 -0.07555 -0.031584 -0.119749 0.091376 7.69E-02 0.074731 0.042129 -0.045055 

VERMIS7 -0.084798 -0.058324 -0.066785 -0.042731 0.023356 0.109554 4.32E-02 0.048781 0.037807 0.090749 

VERMIS8 -0.091873 0.002117 -0.059331 -0.137486 0.093308 0.171553 9.00E-03 0.054897 -0.021493 0.081702 

VERMIS9 -0.085225 -0.019838 -0.078693 -0.170402 0.164324 0.163319 -3.43E-02 -0.009297 0.01499 0.087137 

VERMIS10 -0.002736 -0.288841 -0.173665 -0.011534 -0.051588 -0.008476 -1.49E-02 0.014088 -0.370613 0.207447 

ETIV -0.081256 -0.02689 -0.091786 -0.133629 0.146869 0.127823 -1.03E-01 -0.021786 0.13753 0.060554 

 

Correlation values for each variable per the first 10 components. Value must be greater than 

0.1.  112 variables were found to be correlated.  
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