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ABSTRACT  

 
INTRODUCTION:   

Host genetic variants are known to impact infectious disease susceptibility and outcomes. 

However, the genes underlying these impacts are not well characterized. Multiplex bead assays 

(MBA) provide an affordable and rapid means of large scale screening for multiple phenotypic 

measures of immune response. Transformation and normalization approaches for MBA data 

have not been agreed upon, especially concerning screening applications.  

AIM:  

To compare preprocessing techniques in improving validity of quantitative loci trait analyses 

which utilize MBA phenotypic data with high levels of predictor technical variability using 

experimental data.    

METHODS:  

This research uses primary dendritic cells derived from a set of sixty-one genetically diverse 

mouse strains to study activation response of an antiviral pathway (RIG-I). Primary outcomes 

were IFNα and IFNβ secretion following RIG-I agonist treatment. Multiple transformation and 

normalization approaches were used to estimate true IFNα and IFNβ responses. Evaluation 

criteria included three quantitative measures (tail length, kurtosis, skewness) and three 

qualitative measures (QQ-plot, Bland-Altman plot, Mean-SD plot).  

RESULTS:   

Most qualitative measures and quantitative measures found log transformation with quantile 

normalization was most appropriate for normalizing data and reducing technical variability 



 
 

between batches and replicates. Unfortunately, no statistically significant (α = 0.90) loci of 

interest were identified with this normalized data.  

DISCUSSION:  

The data used to test these methods had notable limitations, mainly only two phenotypic 

markers and dramatic variability in both technical and biological replicates. While normalization 

and transformation techniques did ameliorate these issues, additional approaches such as 

mixed effects modeling may be able to further improve these types of analysis.  
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INTRODUCTION 

There is an increasing awareness of and appreciation for the role that genetic variants 

play in host susceptibility and disease outcomes in the context of infectious disease1,2. 

Improved understanding in this area has the potential to inform epidemiology studies in 

endemic and outbreak scenarios as well as proactive interventions against emerging infectious 

diseases3. Further, understanding the mechanisms underlying these variations may yield 

additional insight into the biological processes influencing disease lifecycle.   

Viral diseases provide an excellent means of studying the impact of host genetics on the 

course of infection due to the diversity of host immune response, highly characterized viral 

genomes, and availability of animal models. Particularly, viruses in the genus Flavivirus, a group 

of single-stranded, vector born RNA viruses, are of interest due to their unique interactions 

with host immune systems. Two members of this genus are of particular public health interest 

in the United States, West Nile virus (WNV) and Zika virus (ZikV). WNV accounted for 2,175 

deaths in the US in 2015 and is actively transmitted in a majority of states4. In early 2016, ZikV 

spread to Puerto Rico and Florida, with over 15,000 locally acquired infections, 18 cases of birth 

defects, and 6 cases of pregnancy loss reported far5.  Both these viruses have shown significant 

variation in disease outcomes in in vitro models6, animal models7, and human subjects8,9. While 

the neurological effects of WNV and the birth defects of ZikV can be life threatening, the 

majority of infected individuals are asymptomatic in the presence of viral replication8,9. 

Differences between hosts which underlie these divergent outcomes are still poorly understood 

though antiviral pathways involved in response, such as RIG-I and MDA5, have been more 

extensively studied.  
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We hypothesized that host genetic variation can partially explain differences in cellular 

response to WNV and ZikV infections based in the RIG-I signaling pathway. This research used 

primary dendritic cells derived from a set of sixty-one genetically diverse and characterized 

mouse strains, known as Collaborative Cross (CC) strains, to study cellular response to RIG-I 

antagonist treatment as well as viral infection (WNV and ZikV). This mouse population has been 

previously used to study influenza and was found to mirror some aspects of diverse human 

immune responses during viral infection10. Measured outcomes include two surface markers of 

dendritic cell activation (CD86, CD40), excretion of cytokines IFNα and IFNβ, transcription of 

IFNβ, viral titers, quantity of viral RNA, and viral protein expression (WNV only) all measured at 

48h post infection. Phenotypic outcomes were associated with single nucleotide 

polymorphisms (SNPs) in CC strain genomes. Using quantitative trait loci analysis (QTL), we 

determined the statistical significance and robustness of these associations to identify genomic 

regions contributing to observed phenotype outcomes. 

Preliminary analysis found IFNβ response measured by commercial multiplex bead assay 

(MBA) captured notable variation between strains with both RIG-I antagonist treatment and 

viral infection and was therefore suitable for QTL analysis. However, measurement and 

normalization approaches for MBA data have not been universally agreed upon, especially 

concerning the application of MBA for screening and association studies. Batch and plate 

effects were noticed with included controls and replicates. Multiple approaches have been 

proposed for handling MBA data, but none have been specifically tailored to QTL analysis and 

small numbers of analytes. Different assays capturing the same phenotypic data often employ 

unique pre-processing strategies, such as microarray and RT-PCR, and standard normalization 
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techniques cannot be assumed to be appropriate for diverse assays. Because relatively small 

differences were seen in screening, QTL analysis is likely to be highly sensitive to any pre-

processing approach. We compared combinations of five transformation (none, log2, asinh, 

Box-Cox, Weighted Box-Cox) and four normalization (none, quantile, loess, reduced spline 

normalization) strategies to estimate true IFNα and IFNβ responses. Each strategy was tested in 

the normalization and transformation of data generated from previously described CC 

screening experiment. Evaluation criteria included three quantitative measures (tail length, 

kurtosis, skewness) and three qualitative measures (QQ-plot, Bland-Altman plot, Mean-SD 

plot). Qualitative measures were reviewed blinded by two separate raters with inter-rater and 

intra-rater reliability calculated. 

The most promising normalization and transformation method was selected based off 

the results of these measures. After preliminary analysis, primary outcomes were chosen to be 

IFNα and IFNβ secretion following RIG-I agonist treatment.  The raw data and normalized data 

were used in parallel in QTL analysis to demonstrate the impact that normalization had upon 

analysis outcome. However, only the normalized data was fully analyzed for loci of interest to 

avoid misinterpretation. No statistically significant (α = 0.90) results were found. Most 

significant loci of interest were analyzed to determine if they suggested any genes related to 

viral immune response.  
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LITERATURE REVIEW 
 

2.1 Public Health Implications of Flaviviruses  

Family Flaviviridae genus Flavivirus includes over 70 viruses many of which are 

pathogenic to humans, including dengue virus, Japanese encephalitis, yellow fever, West Nile 

virus, and Zika virus. This family is collectively referred to as flavivurses. Flaviviruses are 40-

60nm, enveloped, positive-sense single-stranded RNA viruses11. While each virus’s life history is 

unique, the main route of transmission is through infected arthropods (mosquitos or ticks). 

Flaviviruses infect a wide range of species including mammals12, birds13,14, and reptiles15 with 

many being zoonotic16,17. Symptoms from flavivirus infections vary greatly by host species, 

strain, and host genetics including fever, birth defects, encephalitis, and death. Given the 

prevalence of this viral family, spillover events and continued emergence of infectious disease 

are likely, especially in the context of changes in biodiversity and growing interfaces between 

humans and wildlife9,18.  Further understanding how host genetics impact immune responses 

on the cellular level can elucidate the health impacts of this family of viruses in both humans 

and wildlife. This project is interested particularly in two viruses of public health importance, 

WNV and ZikV, discussed below.  

 Since being introduction to the United State in 1999, West Nile Virus (WNV) has led to 

over 1,900 human deaths with nearly 43,000 reported cases4. It is estimated that 80% of WNV 

infected individuals remain assymptomatic19. For those individuals who experience symptoms, 

the most common manifestations are fever and rash. Rarer and more severe symptoms occur 

in about 1% of the population with elderly and immunocompromised individuals at higher risk. 

Severe symptoms stem from neuroinvasive WNV resulting in meningitis, encephalitis, and 
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poliomyelitis19 and may lead to death.  It is worth noting that birds are WNV’s natural host and 

serve as the primary reservoir for the disease with Blue Jays, House Finches, and American 

Crows being particularly susceptible making eradication and control efforts difficult. American 

Crows are estimated to have an approximately 89% mortality rate with WNV infection20. Five 

lineages are also believed to have recently emerged presenting with different morbidities and 

mortalities13,21. WNV is expected to continue to be a public health concern in the United States 

and globally.  

 Zika virus (ZikV) became a serious public health concern following the discovery of an 

association between viral infection in pregnant women and rick of microcephaly. An increase in 

microcephaly incidence in Brazil in early 2015 is suspected to have been caused by a ZikV 

pandemic22. Since the beginning of concerted monitoring by the CDC in January 2015, 5,182 

cases have been reported within the United States with 222 cases believed to be due to local 

transmission in Florida and Texas5. Symptoms are generally mild to moderate and, similarly to 

WNV, mainly consist of rash, fever, joint paint, and conjunctivitis9,23,24. It is suspected that a 

majority of ZikV infections are asymptomatic, but thorough screening studies have yet to be 

publication. Exact rate of birth defects in the presence of ZikV infection is also a matter of 

ongoing study25,26. No evidence of disease due to Zika virus has been reported in other species 

except for non-human primates, which show mild symptoms5. While ZikV is no longer 

considered a “public health emergency of international national concern”, active transmission 

has been established in multiple countries and the birth defects seen following infection will 

have long term ramifications for communities, especially within South and Central America as 

well as the U.S. territories of Puerto Rico, American Samoa, and the U.S. Virgin Islands.    
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 The burden of disease for this family of viruses is difficult to calculate and estimates vary 

greatly27,28. Further, the burden varies by region often with less developed regions having both 

a limited surveillance structure and the highest burden27. While vaccines exist for yellow fever 

virus, Japanese encephalitis virus, and various tick-borne encephalitis viruses, WNV and dengue 

virus vaccines are in development but facing significant hurdles, primarily cost effectiveness 

given low incidence of disease and the need for a tetravalent vaccine respectively29.  Zika virus 

vaccine efforts have been somewhat fast tracked with the 2015 epidemic30, however the 

immune response to ZikV and potential vaccines as well as how this response varies within the 

diverse human population is still unknown31.   

2.2 The Innate Immune System and RIG-I Signaling Pathway 

Responses to viral infection rely upon the innate immune system, a nonspecific defense 

mechanism which is activated by the chemical properties of an antigen. These properties are 

collectively referred to as pathogen-associated molecular patterns (PAMPs). PAMPs include 

envelope proteins, protein-lipid complexes, and viral nucleic acid and may be found on the cell 

surface of infected cells, in the cytoplasm, and within endosomes. These PAMPs activate 

pathogen recognition receptors (PRRs) which cause a signaling cascade. This cascade leads to 

the secretion of chemokines and cytokines, notably type 1 interferons, a group which includes 

IFNα and IFNβ. These signaling molecules attract and activate immune cells within the nearby 

area.  

RIG-I-like receptors (RLRs) are a class of cytoplasmic PRRs. RLRs including retinoic acid-

induced gene (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of 

genetics and physiology 2 (LGP2). These molecules share a common structure consisting of a 
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DExD/H-box helicase domain and a c-terminal repressor domain. Activation of MDA5 or RIG-I 

leads to the activation of the mitochondrial activator of virus signaling (MAVS) through 

interaction of caspase activation and recruitment domains (CARDs). The knockout of MAVS 

protein in experimental mice serves as a useful control for confirming that in absence of this 

signaling pathway, secretions of IFNα and IFNβ are undetectable and establishing the 

background signal which can be expected from an assay. Finally, the CARDs’ interaction leads to 

a signaling cascade which results in the activation of two transcription factors, interferon 

regulatory factor (IRF) 3 and NF-κB. These two transcription factors move from the cytosol to 

the nucleus and induce transcription of immune response genes, including our secreted 

cytokines of interest IFN-α and IFN-β.  

 Knockout of the RLR signaling pathway showed increased mortality compared to wild 

type (C57BL/6) mice following WNV infection with a systems biology approach revealing 

hundreds of potential genes involved in host antiviral response32. Given the complex regulation 

of the innate immune system by both host and virus33, additional pathways and candidate 

genes seem likely to emerge. While screens have been used previously to investigate this 

regulation32,34, the systems biology approach has relied heavily on knock-out and knock-down 

mouse models and has failed to capture naturally occurring variation which may be more 

nuanced and provide more relevant insights into immune response.  

2.3 Collaborative Cross (CC) Mice 

Significant variation in disease processes are known to occur and are of interest to the 

scientific and medical communities. While it is currently unclear what factors contribute to 

variable host responses, isolating genetic variation from other factors, such as pathogen dose, 
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demography, and environment, allows us to focus on the role of genetics in viral disease. 

Directly studying human immune response to viral infection involves numerous difficulties such 

as bias against asymptomatic infections, environmental confounders, and cost. However, 

mouse models offer the opportunity to isolate genetics from other environmental factors. 

Humans share 99% of mouse genes. Further, mice have well studied phenotypes mirroring a 

variety of human disease.  

Purposed in 2004 by Churchill et al., Collaborative Cross (CC) refers to a panel of 

recombinant inbred mouse strains which can be used to facilitate the analysis of complex traits 

and parallel the diversity of wild populations while keeping the ability to replicate experiments 

with genetically “identical” individuals over time35. Eight founder strains (A/J, C57BL/6J, 

129S1/SvImJ, NOD/LtJ, NZO/HlLtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ) were bred with the 

intention of providing 1000 CC strains capturing 90% of phenotypic variation within the mouse 

population35.  Currently there are 150 CC strains in existence, though some of these strains are 

still within the inbreeding process (current generation is less than F20)36. This limited number of 

mice reduced resolution and power and does not yet have the ability to detect non-additive 

effects such as dominance or epistasis. However, research utilizing Collaborative Cross strains 

for QTL mapping or related genome wide association studies has already been done to study 

the association between phenotypic variation and genetic loci37–41, including susceptibility to 

viral disease3,42,43.  

Additional validations have been done on these CC strains to confirm variation relevant 

to various areas of study 35,44. Specifically, diversity in lymphocytes and antigen-presenting cells 

has been characterized in pre-CC mice (F5 mice) and used for QTL analysis45. Notably, CD11c+ / 
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CD11b – dendritic cell MFI varied greatly between tested CC strains suggesting that immune 

response may vary due to immunophenotypic population characteristics rather than variation 

in signaling pathways within the cell themselves.   

The Collaborative Cross model has been shown to mirror West Nile virus disease 

outcomes in humans46. Graham et al. measured disease states in F1 CC mice following WNV 

infection including weight loss, clinical score, viral load, IFN-β secretion, and T-cell response. A 

wide range of susceptibilities were observed including asymptomatic, symptomatic, and 

symptomatic with center nervous system involvement46. Further, this study found that CC 

strain genetic variation in Oas1b, a gene with a well-established association to WNV 

susceptibility47,  was associated with WNV disease state.  CC models should be considered 

validated for application in the study of immune systems and viral disease.  

2.4 Quantitative Trait Locus (QTL) Analysis  

Quantitative trait locus (QTL) analysis is an increasingly common statistical method of 

taking a continuous phenotypic outcome and associating it with a high dimensional set of 

genetic loci given a group of genetically diverse individuals48. While these methods have been 

utilized often in agricultural studies, the method’s success has been mixed49. Current limitations 

on this method include assumption of single allele additive genetic traits, very large sample size 

requirements, and poor resolution50.  Multiallelic, dominant traits as well as additive effects are 

likely to be more common, especially when looking at complex traits such as immune 

response51. Current methods of QTL incorporate environmental and epistatic interaction effects 

but have limited capacity to control for interaction of multiple alleles for the same trait52. 

Collaborative cross studies have previously made use of QTL analysis 37,38,38,45. However, 
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most of these continue to be underpowered due to limited resources and strain number53,54. A 

R processing pipeline has been developed specifically for CC mice and their counterparts, 

diversity outbred mice. The DOQTL processing pipeline utilizes a linear mixed model with sex 

and batch covariates and can be used to fit an additive SNP model55. Genotypes from founder 

strains can be estiamted for each of the CC lines using probabilistic imputation56. This pipeline 

has limitations, mainly the absence of built-in checks for normality, poor variance estimation, 

and analysis based solely on a single phenotype. This single phenotypic input has been 

previously noted to be problematic for understanding effects which may be regulated at by 

transcriptional, translational, and degradation processes57.  Further, complicating the analysis is 

the need to understand the causal relationship which may involve the interaction of multiple 

pathways on multiple levels within the cell to interpret gene interactions.  

Specialized QTL analysis methods have been proposed for viral studies, which tend to be 

more dynamic systems than that observed in traditional QTL studies58,59. Additional procedures, 

using the SCOPA software, can make use of multiple correlated phenotypes, especially useful in 

measuring cytokine responses which tend to be highly correlated60. The limited capabilities of 

current CC QTL analyses means that results from these techniques, especially in underpowered 

scenarios, should be taken as suggestive of relationships to loci rather than indicative of any 

novel regulators. In this same sense, a large number of candidate genes will be missed in these 

approaches53. While this is still an emerging field, the potential of these techniques for 

understanding simple to complex phenotypic traits holds great promise and should be explored 

in public health genetic research.  
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2.5 Multiplex Bead Assays  

 Fluorescence emission is a common assay strategy within the life sciences and can be 

seen a variety of techniques including immunohistochemistry, flow cytometry, and microarrays. 

Recently, fluorescence emission has been applied within multiplex bead assays. The most 

common commercial system is Luminex. While glass and polymer beads have been used since 

the late 1970s for antigen detection, a reliable system for identifying between beads in a mixed 

population was only recently established using polymer beads coated with a known ratio of two 

fluorescent dyes with antigen detection on a third fluorescent channel61. Over one hundred 

unique bead types with different detection antibodies attached have been used simultaneously 

to detect antigens of interest within the same sample62. This assay has also been rigorously 

tested and proven comparable to the previous gold standard for antigen and antibody 

detection, the ELISA63. 

 Multiplex bead assay results are typically reported as median fluorescent intensity 

which are then normalized based off the median fluorescent intensities from a known standard 

curve and blank samples. General guidelines recommend collecting at least 30 beads per bead 

type per well to obtain this median and ideally closer to one hundred beads per bead type per 

well. While the median fluorescent intensity has been used consistently and to good effect62,64, 

differences in variation between bead batches, sample preparation strategies, and replicate 

wells have been noticed62,63,65. Some researchers have proposed using individual bead level 

data to measure confidence around each reported value66 or utilizing a trimmed subset 

population of beads64. Carry-over between wells within the assay has also been a concern with 

potential biases introduced, especially with sample replicates run with only horizontally on a 
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plate67. While not directly implemented within the work, mixed effect models in conjunction 

with normalization based off individual beads within a well has the potential to significantly 

reduce technical variability stemming from multiplex bead assays and improve the accuracy of 

sensitive screening applications such as QTL analysis.  
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METHODS 
3.1 Ethics Statement 

The mouse studies in this work were performed in strict accordance with the recommendations 

in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All 

mouse studies were performed at the University of North Carolina (Animal Welfare Assurance # 

A3410-01) using a protocol approved by the UNC Institutional Animal Care and Use Committee 

(IACUC). All studies were performed in the manner described and minimized pain and suffering.  

3.2 Harvesting of Bone Marrow Derived Dendritic Cells  

8-10 week old male Collaborative Cross mice were sacrificed. Hindlimbs were collected at UNC-

Chapel Hill and shipped overnight on ice to Emory University for processing the next day. Hind 

limbs were processed similarly to methods escribed previously68 using chilled RPMI with 10% 

heat-inactivated FBS, sodium pyruvate, non-essential amino acids, L-glutamine, and 

antibiotic/antimitotic (here after referred to as cRPMI) instead of cold PBS for flushing 

procedures. Briefly, two hind limbs were collected from each euthanized animal ensuring that 

tibia and femur remained intact by gently dislocating femur from hip joint. Hind limbs were 

then placed in cRPMI, stored on ice, and shipped overnight for processing. Hind limbs were kept 

at 4C upon receipt and for the entire processing period.  Limbs were briefly washed by dunking 

in a 70% EtOH solution followed by sterile 1x PBS. Muscle tissue was then removed from the 

limb leaving bone with visible marrow. The end of the tibia and femur were removed using a 

clean razor blade. Bones were flushed with chilled cRPMI until clear. Resulting extracted 

marrow was strained through a 70µm cell strainer. Cell counts were taken with 1% Trypan. 
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Collected bone marrow cells were then seeded at a concentration of 2x106 cells per 6-well plate 

with cRPMI plus 20ng/mL GM-CSF. Cells were allowed to rest overnight. Media was changed on 

days 2, 4, 6 post-harvest. On day 7 post-harvest, cells were collected and reseeded at a 

concentration of 1x105 per well of a 96 well plate for RIG-I agonist treatment or viral infection. 

Samples from batch were processed in 3 groups (a,b,c) containing 15, 27, and 27 mice including 

one BL6 control in addition to MAVS KO controls. A subset of hypo and hyper responders from 

this batch was then duplicated in batch 2, a single batch of 35 mice with biological replicates 

with technical quadruplicates for each biological replicate (grouped a-d, e-h).  

3.3 RIG-I Agonist Treatment  

On day 7 post-harvest, 10ng of RIG-I antagonist derived from the 3’-UTR of hepatitis C virus69 

was transfected per 1x105 cells (per well) of mature BMDCs using an mRNA transfection kit. 

Cells were incubated for an additional 24 hours. Supernatants were harvested and frozen at        

-80C. Cell pellets were saved in Buffer RLT (QIAgen) and β-Mercaptoethanol at a final 

concentration of 0.143M (Mirus).  

3.4 WNV and ZikV Infection  

On day 7 post-harvest, cells were infected with WNV or ZikV at an MOI of 10 (Vero cell titers) 

for 1 hour. After 1 hour incubation, inoculum was removed and fresh cRPMI were added to the 

cells. Cells were incubated for an additional 24 hours. Supernatants were harvested and frozen 

at -80C. Cell pellets were saved in Buffer RLT (QIAgen) and β-Mercaptoethanol at a final 

concentration of 0.143M.  

3.5 Flow Cytometry  

The following mouse anti-human antibodies were purchased from BioLegend or Becton 
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Dickinson: CD11c (B-Ly6), CD80 (2D10), and CD40 (5C3). Following 10min of Fc receptor 

blockade on ice (Human TruStain FcX, BioLegend), 1x105 cells were sequentially stained for 

surface markers and viability (Ghost Dye Red 780, Tonbo Biosciences) for 20min on ice. Cells for 

surface staining were suspended in 10% FCS/PBS and incubated with antibodies for 20min at 

4°C. Cells were washed, fixed with BD Fix buffer, and acquired on a BD LSR II with all analysis 

performed using FlowJo version 10. 

3.6 Focus Forming Assay  

Supernatants collected from BMDCs infected with WNV or ZikV were serially diluted 1:10 with 

DMEM supplemented with 1% FBS and used to infect Vero cells for 1 hour at 37C. Cells and 

inoculum were overlaid with methylcellulose solution (OptiMEM [Corning], 1% 

Antibiotic/Antimycotic [Corning], 2% FBS, and 2% methylcellulose [Sigma Aldrich]) and 

incubated for either 24hr (WNV) or 72hr at 37oC (ZikV). Following incubation, wells were 

washed with 1x PBS to remove methylcellulose and fixed with either 2% PFA (WNV) or 1:1 

methanol : acetone mixture (ZikV) for 30 minutes at room temperature. Cells were then 

blocked with 5% milk in PBS for 1hr at RT. Cells were incubated with primary antibody (mouse 

4G2 monoclonal antibody) at 1μg/mL in 5% milk in PBS for 2hr at RT. Foci were developed with 

TrueBlue Peroxidase Substrate (KPL). Plates were read on a CTL-ImmunoSpot S6 Micro 

Analyzer. 

3.7 Multiplex Bead Array 

Cytokine analysis was performed on supernatants obtained from 1x105 BMDCs following the 

indicated treatment conditions using a custom magnetic 2-plex panel with mouse IFNβ and 

IFNα (eBioscience) per the manufacturer’s instructions, and read on a Luminex 100 Analyzer. 
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Supernatant samples from WNV or ZikV infections were UV inactivated for 30 minutes before  

cytokine analysis. 

3.8 Statistical Analysis 

All data manipulations, computations, and visualizations were conducted in RStudio (Version 

1.0), R (Version 3.2), and BioConductor (3.4). Transformation procedures included none, log2 

transformation, asinh transformation, Box-Cox transformation, and weighted Box-Cox 

transformation. Estimations of λ were obtained using the boxcox function in MASS package 

(7.3). Unweighted Box-Cox transformations were applied using the BoxCox function in forecast 

package (8.0.) Weighted Box-Cox transformations were applied using the bct function in 

TeachingDemos package(2.10).  Log2 and asinh functions from base R were used. Normalization 

methods included loess normalization, quantile normalization, and robust-spline normalization. 

All normalization strategies use the lumiN function from the lumi package (2.26).  Additional 

manipulations included functions from the following packages: MethComp (1.22), matrixStats 

(0.51), doBy(4.5), reshape2 (1.4), car (2.4), plyr (1.8), timeDate (3012.100). Bland-Altman plots 

were generated using the bland.altman.plot function from the BlandAltmanLeh package (0.3). 

QTL and related analyses were performed using the DOQTL package.  

3.9 Evaluation of Normalization and Transformation Methods 

Six criteria were used to evaluate the effects of preprocessing, three involving visual inspections 

of normalization plots and three involving empirical criteria. For visual inspections, graphs were 

rated on a three degree scale; 1 – poor, 2 – fair, 3 – good. Graphs were blinded and rated by 

two separate raters. 10 of the 40 plots within each plot category were repeated twice to gain a 

measure of intra-rater reliability. Cohen’s kappa for inter-rater agreement was for 0.94, 0.70, 
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and 0.73 for Bland-Altman plots, MeanSD plots, and QQ-plots respectively. Intra-rater reliability 

was perfect for both raters. For the 23 out of 120 plots (5 Bland-Altman plots, 10 MeanSD plots, 

8 QQ-plots) which had disagreement on the plot rating, a third rater was used as a tie breaker. 

This third rater rated each questionable plot twice (order of graphs was randomized) and did so 

blinded to previous ratings. Intra-rater reliability for this third rater was also perfect.  

3.9.1. MeanSD plot  

Ranked means were plotted against standard deviation to help visualize homoscedasticity 

(equal variance).  Thus, points should make roughly a straight line close to the x-axis. The 

following instructions were given to raters:  

Rank 3: 

 scatterplot parallels the x-axis with low variation  

 the standard deviation is stable over the mean of signal intensities 

Rank 2:  

 scatterplot parallels the x-axis with medium variation  

 the standard deviation has no clear trend  

Rank 1:  

 scatterplot does not consistently parallel the x-axis with medium variation  

 the standard deviation has a clear trend  
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3.9.2. Bland-Altman Plot  

Bland-Altman plot visualizes the difference between two measurements against their mean. In 

this case, the different measurements represent different batches. For batch 1, the means of 

sub-batches 1a and 1b contained no repeated individuals and were combined and compared to 

sub-batch 1c. No technical replicates were performed within this batch. Duplicate values 

between the three batches represent biological replicates. For batch 2, two biological replicates 

were performed with four technical replicates within each biological replicate. Averages of 

normalized and transformed values for each biological replicate were compared. For batch 1 

and 2, average of replicates from batch 1 and average of replicates from batch 2 were 

compared. The following instructions were given to raters:  

Rank 3: 

 mean lies at or very close to zero  

 variation is constant around the mean 

Rank 2:  

 mean lies somewhat far from zero 

 variation appears to form a trend around the mean 

Rank 1:  

 mean lies very far from zero 

 variation appears to form a trend or funnel around the mean 
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3.9.3. QQ-Plot 

Quantile-quantile plots help diagnose how well measurements align to a theoretical 

distribution (in this case the normal distribution). The more closely points follow the line, the 

more closely they follow the expected distribution.  

The following instructions were given to raters:  

Rank 3: 

 Points closely follow line 

 Line bisects graph 

 Points do not have clear “steps”  

Rank 2:  

 Points someone closely follow the line but may have some small departures at more 

extreme values   

 Line roughly bisects graph 

 Points do not have clear “steps”  

Rank 1:  

 Points do not follow line 

 Line does not dissect graph at all 

 Clear steps are visible  
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3.9.4. Skewness 

Skew was calculated as S =  | log (  
𝑥0.975− 𝑥0.5

𝑥0.5− 𝑥0.025
) | . Using this estimation of skewness, a perfectly 

symmetric distribution would have an S-value equal to zero.  For this ranking, an S-value less 

than 0.5 was considered acceptable.  

3.9.5. Tail Length 

Tail length was calculated as T = (  
𝑥0.975− 𝑥0.025

𝑥0.875− 𝑥0.123
). Using this estimation of tail length, a normal 

distribution would have a T-value equal to 1.704. For this ranking, a T-value between 1.5 and 

2.5 was considered acceptable.  

3.9.6. Kurtosis 

Kurtosis is a measure of how heavy or light tailed a distribution is. Kurtosis was calculated using 

the timeDate function which utilized the Pearson coefficient (K) of kurtosis. Mesokurtic 

(normal) curves have K = 3. K > 3 is more peaked than normal resulting in a leptokurtic curve. K 

< 3 is less peaked resulting in a platykurtic curve. Values greater than zero and less than 6 were 

considered preferable.  

3.10 QTL Analysis  

All QTL analyses were performed with the DOQTL package in R70. Compiled genomes for CC 

strains were kindly provided by Dr. Martin Ferris at UNC-Chapel Hill. The DOQTL package makes 

use of Haley-Knott regression. Briefly, a linear mixed model is fitted on mouse diplotype, the 
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specific combinations of SNPs occurring on a pair of chromosomes including sex as a covariate 

and a random effect term is included to correct for polygenic covariance. This is considered the 

full model. A null model without the diplotype term is compared to the full model resulting in a 

likelihood ratio for the points between marker loci (SNPs). LOD score (-log10(p-value)) is 

calculated for each loci, and loci sequence is approximated from founder strain sequence 

associated with marker loci probabilities. This regression method assumes equal variance and 

normal distribution across phenotypes63.  

3.11 LOD Threshold  

LOD thresholds were based off 1000 permutations sampling sixty-one phenotypes from a 

Gaussian distribution from all provided genomes. Threshold was set at the point where the 

proportion of permutations in which a loci was correctly detected on any autosome was less 

than or equal to 0.10. LOD threshold at alpha of 0.90 for both cytokines was 6.63. 
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RESULTS 

4.1 Transformation and Normalization 

Large batch effects can be seen when looking at raw values for both cytokines (Figure 

4.1). Raw values from IFNα and IFNβ also have significant differences in magnitude of variance 

observed (Table 4.1). Particularly notable transformations are the log2 and asinh which resulted 

in significant improvement in reducing skew of distribution, especially in the case of IFNα (Table 

4.2). Both unweighted and weighted Box-Cox methods increased skew and shifted tail length 

and kurtosis away from true normal relative to performing no transformations. Quantile 

normalization proved most successful of the normalization strategies applied, especially when 

applied in conjunction with log2 transformation (Tables 4.2, 4.3). Loess normalization also 

performed well in conjunction with log2 and asinh transformations (Tables 4.2, 4.3). Loess and 

reduced spline normalization proved inappropriate for use when the majority of replicate data 

was missing as was the case for batch 1 and batch 1 and 2 combined (data not shown). Log2 

and asinh transformation worsened tail length and kurtosis, as did both quantile and loess 

normalization. Qualitative and quantitative measures largely mirrored on another. QQ-Plots 

showed the greatest departure from other measures, in particular receiving mid ratings to high 

ratings for log2 and asinh transformations within Batch 1 across both IFNα and IFNβ. Log2-

quantile strategy was determined to be the most promising based off of observed performance 

for both cytokines. Visualizing normalized data using this selected strategy, one can see overall 

decreased variability within a batch effect (Figure 4.1). 
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4.2 QTL Analysis  
 

QTL analysis proved highly sensitive to the log2-quantile strategy employed. Comparing 

log2-quantile manipulated data with raw data, we see major changes in both LOD values and 

the loci of interest themselves. While we see most of these locations are lost following 

normalization, clear peaks of LOD are seen for both cytokines (Figure 4.2). Using an LOD loci 

cutoff of 6.63, no loci were statistically significant. However, clear peaks were seen within the 

QTL visualization. The peaks with the greatest LOD values were analyzed further and the 

highest peaks for both cytokines contained potential genes of interest (Table 4.1 and Figure 

4.2). Potential genes and transcriptional modulators contained within loci of interest were not 

investigated further. Unfortunately, no founder strains were clearly associated with the loci of 

interest (Figure 4.2).   

4.3 Genes of Interest – IFNα 

The loci of interest with the greatest LOD resulting from QTL analysis of normalized IFNα 

cytokine phenotypes was located on chromosome 12 between base pairs 103310975 and 

103406350. This region contained three genes: Fam181a, Asb2, and Otub2. Fam181a is a poorly 

characterized gene which has been implicated in nervous system development and function73.  

Asb2 promotes protein ubiquitination by forming non-canonical E3 ligase complexes74–76. E3 

ligase complexes have been previously implicated in viral infection with viral genes and host 

genes manipulated by viruses resulting to both enhanced and diminished ubiquitination which 

benefit the viral infections77. Most promisingly,  Otub2 has been shown to inhibit virus induced 

cytokine signaling with Sendai virus infection in mice78. In addition, Otub2 has been found to 
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impact ubiquitination on the cellular level resulting in preferential changes in DNA repair 

mechanism79.   

4.4 Genes of Interest – IFNβ 

The loci of interest with the greatest LOD resulting from QTL analysis of normalized IFNβ 

cytokine phenotypes was located on chromosome 4 between base pairs 65124174 and 

65616238. This region also contained three genes: Pappa, Astn2, and Trim32.  Pappa has been 

linked to NFκB responses within various cancers80–82. The NFκB inflammatory signaling response 

is engaged by the RLR signaling pathway as well. Astn2 has been studied primarily in relation to 

neural malformations83–85. Somewhat strangely, mutations in this gene have been shown to 

alter hair follicle orientation86. Trim32 has been implicated within RLR signaling pathways 

within fish in response to iridovirus and nodavirus87. In addition, it has been shown to regulated 

influenza A virus via ubiquitination within mice88.   
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DISCUSSION 
5.1 Transformation and Normalization  

The poor performance of Box-Cox transformation was surprising given the previous 

reported success with this method56. This poor performance may be due to the small number 

of replicates. Only quantile normalization was capable of handling the unbalanced sampling 

present within batch 1 and between batches 1 and 2. The aims of these methods were two fold, 

to create a more normalized distribution to fit the assumptions of the statistical model and to 

attempt to reduce the batch effects seen within the data. Bland-Altman plots in particular 

proved a useful tool in enabling both the visualization of variance and the difference remaining 

between batches following normalization. Further, it is worth noting that different 

normalization methods had different levels of success with different antigens tested.  While 

quantile normalization consistently offered improved normality measures compared to raw 

data, like most of its fellow methods, this improvement appeared to come at the cost of tail 

length and kurtosis. A more detailed analysis of variation among these elements within 

regression would be necessary before a proper weight could be assigned.  

The grading of the qualitative measures was optimized for reliability rather than 

precision. The lack of categorization for quantitative measures was purposeful as it allowed for 

more nuanced analysis. The final selection of transformed and normalized data for testing 

relative to raw data in QTL analysis was however largely subjective and based off of the 

author’s assessment of all six measures rather than a quantitative ranking.  

Normalization strategies were based largely off of previous techniques developed for 

microarray data. Some key differences hinder their implementation in the context of MBA, 

primarily smaller number of analytes and replicates. Other issues with applying normalization 
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strategies in this study included the unbalanced sampling with a non-randomly selected 

number of individuals receiving biological replicates and/or technical replicates.  

5.2 QTL Analysis 

One of the strengths of this methodology was using permutations to derive the LOD 

cutoffs. This method is more reflective of statistical significance than setting an a priori, 

arbitrary cutoffs independent of phenotypes utilized64.  This method did not provide a clear 

cutoff for founder strain effects, which the author did decide a prior to set as LOD cutoff minus 

one. Due to the use of SNPs to estimate the probability of sequence inheritance from founder 

strains, it is unclear whether gene sequences are conserved between founders and thereby the 

LOD of founder effects are likely to be an underestimation of allele affects.  

5.3 Technical Variation 

The major weakness of this study was the variance observed between batches, 

biological replicates, and technical replicates. The extreme level of this variation can be seen 

when ranking random subsets of combined data from batches 1 and 2. Here different random 

samples of phenotypic measures taken from the data set will lead to strains being ranked 

alternatively within the lowest or highest quartiles of the observed phenotypes. One solution 

may be to include additional controls beyond the single BL6 within each batch and then 

normalize to each batch using one of various statistical techniques including multivariate 

regression or Bayesian approaches. Another solution would be to more thoroughly incorporate 

random biological replicates from various CC lines within different batches. This would have the 

added advantage of providing a greater number of biological and replicates for phenotypes of 

interest.  
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While there is likely to have been numerous sources of variation combining and 

compounding one another to result in the observed variance, additional pilot experiments 

suggest that further purification of the bone marrow extracted cells will greatly reduce 

technical variation within a biological replicates within batches (data not shown). This suggests 

the bone marrow derived dendritic cells used within this work were actually a highly mixed 

population of cells. Therefore, each technical replicate had a unique level of cytokine 

production dependent on the distribution of cells within the well population and how those 

cells interacted to elicit a response to RIG-I antagonist or viral infection. Additional flow 

cytometry experiments following BMDC culturing could determine if this is the case.  

5.6 Future Directions and Concluding Remarks  

Statistical analysis of MBAs is still in its early stages. While QTL analysis has been 

frequently utilized in agricultural research, this method faces serious power limitations when 

conducting screening research in current CC strains. Therefore, it is not surprising that our 

screening yielded no statistically significant results at an alpha of 0.90. Yet, we found the clear 

formation of peaks graphing LOD across the murine genome suggestive that results obtained 

may still be useful moving forward and that significance may be a poor tool for gauging 

screening outcomes with phenotypic expression with large variation. Both of the highest LOD 

peaks identified within the QTL analysis yielded potential genes of interest previously 

associated with innate immune response to viral infection. While both cytokines should be 

closely correlated, the loci mapped varied greatly. Both loci suggested that rather the RLR 

signaling pathway, ubiquitination following viral infection may be more greatly influenced by 

host genetics. The combined use of these methods for understanding how genetic variation 
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within a population may contribute to host immune response and viral susceptibility is novel 

and requires a carefully considered statistical approach.  Future work includes looking at 

expression of identified genes of interest at the transcriptional and translational level, trying to 

reproduce these results in vivo, and repeating analysis including founder strains to see if a 

specific allele resulting in phenotypic change can be identified.   
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Treatment Assay Batch Mean (Prop) SD Min Max

1 0.364 0.772 -1 3.9

1a 0.759 0.916 -0.3 3.9

1b 0.148 0.576 -0.9 1.6

1c 0.040 0.470 -1 1

2 0.051 0.555 -1.3 1.2

1,2 0.259 0.719 -1.3 3.9

1 0.183 0.847 -3.9 2.1

1a 0.500 0.599 -3.9 2

1b -0.011 1.096 -0.3 1.7

1c -0.040 0.521 -3.9 2

2 0.743 0.795 -0.8 0.7

1,2 0.371 0.868 -1.1 2.1

1 14.043 1.344 11.5 17

1a 13.926 1.452 11.5 17

1b 14.222 1.273 12 16.5

1c 13.933 1.321 12 16

2 14.861 5.205 8 32

1,2 14.596 4.359 8 32

1 10.043 0.808 8 12

1a 9.963 0.678 9 11

1b 10.130 0.967 8 12

1c 10.033 0.743 9 11

2 44.528 144.731 16.5 1510.5

1,2 33.357 119.963 8 1510.5

1 2130.775 2948.452 15 14261.5

1a 3803.926 3633.210 264 14261.5

1b 1498.833 2010.737 88 6951

1c 256.600 518.827 31 2074.5

2 2610.583 4892.790 16 20240.5

1,2 2455.153 4357.395 16 20240.5

1 3300.848 2928.603 9 11155

1a 5329.148 2780.489 1796.5 11155

1b 2510.593 2444.532 118 9860

1c 1072.367 1320.358 119 5051.5

2 2674.847 4353.354 43 20419

1,2 2877.636 3952.303 43 20419

1 68.210 278.344 15 2298.5

1a 103.185 438.750 16 2298.5

1b 58.722 86.627 17 380

1c 22.333 8.983 15 43.5

1 32.717 74.498 9 574

1a 34.648 107.857 10 574

1b 38.963 51.439 9 265.5

1c 18.000 11.128 10 52.5

1 290084.058 347640.846 13600 1440000

1a 500740.741 434898.803 44000 1440000

1b 175518.519 217716.275 14200 920000

1c 117120.000 69087.307 13600 224000

1 20.319 2.501 16 31

1a 19.778 1.577 16 22.5

1b 21.148 3.379 17 31

1c 19.800 1.545 18 23

1 12.210 2.832 10 28

1a 11.370 0.674 10 13

1b 13.241 4.246 10 28

1c 11.867 1.043 10 14

1

1a

1b

1c (0.530)

(0.440)

(0.629)

(0.530)

IFNa

IFNb

IFNb

CD86

CD40

IFNa

WNV

ZikV

IFNa

IFNb

FFA

IFNa

IFNb

FFA 

(Proportion)

Untreated

RIG-I

Table 4.1. Summary Characteristics 
of Phenotypic Variables. CD86 and 
CD40 values are the mean of log2 
transformed median fluorescent 
intensities captured in CD11c+ 
population of bone marrow isolated 
cells measured using flow cytometry. 
Values were normalized to BL6 
controls. IFNα and IFNβ are the mean 
of median fluorescent intensities of 
cytokines measured by multiplex bead 
assay with background subtracted. 
Focus forming assay (FFA) values are 
the mean of the focus forming units 
per milliliter. FFA performed for ZikV 
viruses are reported as a proportion 
of assays with foci present.  
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Batch(es) Transformation Normalization Skew Tail Length Kurtosis Bland-Altman MeanSD QQ-Plot

None 3.140 1.930 4.510 1 1 1

Quantile 2.820 1.910 2.910 1 1 1

None 0.600 1.430 -1.830 1 1 2

Quantile 0.520 1.420 -1.890 1 1 2

None 0.600 1.430 -1.870 1 1 2

Quantile 0.520 1.420 -1.920 1 1 2

None 7.500 4.500 -2.070 1 1 1

Quantile 2.600 1.600 -2.070 1 1 2

None 7.500 4.500 -2.070 1 1 1

Quantile 2.570 1.740 -2.570 1 1 1

None 5.230 1.740 6.340 1 1 1

Quantile 4.920 1.750 6.760 1 1 1

Loess 5.070 1.730 6.400 1 1 1

RSN 6.370 1.780 6.050 1 1 1

None 0.470 1.280 -1.720 2 2 2

Quantile 0.430 1.250 -1.730 3 2 2

Loess 0.400 1.300 -1.700 2 2 2

RSN 0.730 1.220 -1.540 3 2 2

None 0.480 1.280 -1.820 2 2 2

Quantile 0.430 1.250 -1.820 3 2 2

Loess 0.430 1.290 -1.810 2 2 2

RSN 1.390 1.150 -1.800 2 2 2

None 7.180 8.350 -2.260 1 1 1

Quantile 7.110 3.310 -2.270 1 1 1

Loess 7.320 9.230 -2.260 1 1 1

RSN 7.310 2.020 -2.260 1 1 1

None 7.180 8.350 -2.260 1 1 1

Quantile 7.110 3.310 -2.270 1 1 1

Loess 7.320 9.230 -2.260 1 1 1

RSN 6.920 1.990 -2.260 1 1 1

None 3.970 2.080 6.890 1 1 1

Quantile 4.370 2.580 7.530 1 1 1

None 0.001 1.408 -1.804 2 2 2

Quantile 0.287 1.561 -1.744 2 2 3

None 0.001 1.408 -1.849 2 2 2

Quantile 0.290 1.560 -1.805 2 2 3

None 7.440 9.780 -2.070 1 1 1

Quantile 6.640 6.460 -2.070 1 1 2

None 7.440 9.780 -2.070 1 1 1

Quantile 1.940 1.930 -2.670 1 1 1

Log2

None

1

2

1,2

Weighted Box-Cox

Box-Cox

asinh

Log2

None

Weighted Box-Cox

Box-Cox

asinh

Log2

None

Weighted Box-Cox

Box-Cox

asinh

Table 4.2. Performance of Pre-Processing Strategies in IFNα. All methods were reported as 
described above. Highlighted cells are those considered to have promising performance as 
normalization approaches.  
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Batch(es) Transformation Normalization Skew Tail Length Kurtosis Bland-Altman MeanSD QQ-Plot

None 1.720 1.458 0.323 1 1 1

Quantile 1.892 1.825 0.179 1 1 1

None 1.034 1.486 -1.979 1 1 2

Quantile 0.175 1.691 -2.006 1 1 3

None 1.034 1.486 -1.992 1 1 2

Quantile 0.175 1.691 -2.016 1 1 3

None 6.263 3.669 -2.070 1 1 1

Quantile 4.562 3.810 -2.070 1 1 1

None 6.263 3.669 -2.070 1 1 1

Quantile 1.588 1.215 -6.000 1 1 1

None 4.522 1.957 6.827 1 2 1

Quantile 4.436 2.036 5.943 1 2 1

Loess 4.450 1.989 6.316 1 2 1

RSN 4.926 1.882 6.673 1 3 1

None 0.798 1.262 -1.987 2 1 2

Quantile 0.764 1.273 -1.988 3 1 2

Loess 0.779 1.274 -1.985 2 1 2

RSN 0.877 1.257 -1.883 3 1 2

None 0.798 1.262 -2.036 2 2 2

Quantile 0.764 1.273 -2.036 3 2 2

Loess 0.781 1.272 -2.035 2 2 2

RSN 1.210 1.219 -1.975 2 2 2

None 3.742 1.938 -2.267 1 1 1

Quantile 3.599 1.558 -2.267 1 1 1

Loess 3.742 1.938 -2.267 1 1 1

RSN 4.000 1.820 -2.267 1 1 1

None 3.742 1.938 -2.267 1 1 1

Quantile 3.599 1.558 -2.267 1 1 1

Loess 3.742 1.938 -2.267 1 1 1

RSN 3.952 1.759 -2.267 1 1 1

None 2.272 1.578 2.098 1 1 1

Quantile 3.651 2.061 2.585 1 1 1

None 0.581 1.392 -1.956 2 2 2

Quantile 0.547 1.406 -1.922 2 3 2

None 0.581 1.392 -1.973 2 1 2

Quantile 0.547 1.406 -1.946 3 1 2

None 5.925 2.254 -2.069 1 1 1

Quantile 4.003 2.575 -2.069 1 1 1

None 5.925 2.254 -2.069 1 3 1

Quantile 2.538 1.215 -3.000 1 3 1

asinh

Box-Cox

Weighted Box-Cox

None

asinh

Box-Cox

Weighted Box-Cox

None

Log2

1

2

1,2

Weighted Box-Cox

None

Log2

asinh

Box-Cox

Log2

Table 4.3. Performance of Pre-Processing Strategies in IFNβ. All methods were reported as 
described above. Highlighted cells are those considered to have promising performance as 
normalization approaches.  



32 
 

 

IFNβα 

Chromosome start stop strand Name Dbxref mgiName 

12 103310975 103317065 + Fam181a NCBI_Gene:100504156 
family with sequence similarity 

181, 
2c member A 

12 103321142 103356001 - Asb2 NCBI_Gene:65256 
ankyrin repeat and SOCS box-

containing 2 

12 103388682 103406350 + Otub2 NCBI_Gene:68149 
OTU domain, 2c ubiquitin 

aldehyde binding 2 

IFNβ 

Chromosome start stop strand Name Dbxref mgiName 

4 65124174 65357509 + Pappa NCBI_Gene:18491 
pregnancy-associated plasma 

protein A 

4 65380803 66404611 - Astn2 NCBI_Gene:56079 astrotactin 2 

4 65604986 65616238 + Trim32 NCBI_Gene:69807 tripartite motif-containing 32 

Table 4.4. QTL Results for Genes of Interest. Genes contained within highest significance loci of interest for log2 
transformed, quantile normalized cytokine data. Neither loci meet the 6.63 significance level cut off for LOD 
(IFNα, LOD = 6.12; IFNβ, LOD = 5.67)  
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Figure 4.1 Distributions of IFNβ and IFNα by Strain. Replicates of each strain are shown with ordering of strains 

by row or normalized cytokine response. Median fluorescent intensity reported had the background values 

subtracted. 2a-d and 2e-h were technical replicates within each group. All other replicates were biological.  
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Figure 4.2 QTL Analyses of Selected Method.  QTL analyses using both raw and normalized values were 

conducted. Founder effects were analyzed for both raw and normalized values for chromosomes which 

contained the loci with greatest LOD value in normalized analysis, Chromosomes 4 and 12 for IFNα and IFNβ 

respectively. 
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