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ABSTRACT 

 
PREDICTING ALZHEIMER DISEASE STATUS USING 

HIGH-DIMENSIONAL MRI DATA BASED ON LASSO 
CONSTRAINED GENERALIZED LINEAR MODELS 

 

BY 

ZAINAB SALAH 

MAY 22, 2017 

INTRODUCTION: Alzheimer’s disease is an irreversible brain disorder characterized by distortion of 
memory and other mental functions. Although, several psychometric tests are available for diagnosis of 
Alzheimer’s, there is a great concern about the validity of these tests at recognizing the early onset of the 
disease. Currently, brain magnetic resonance imaging is not commonly utilized in the diagnosis of 
Alzheimer’s, because researchers are still puzzled by the association of brain regions with the disease 
status and its progress. Moreover, MRI data tend to be of high dimensional nature requiring advanced 
statistical methods to accurately analyze them. In the past decade, the application of Least Absolute 
Shrinkage and Selection Operator (LASSO) has become increasingly popular in the analysis of high 
dimensional data. With LASSO, only a small number of the regression coefficients are believed to have a 
non-zero value, and therefore allowed to enter the model; other coefficients are while others are shrunk to 
zero.  

AIM: Determine the non-zero regression coefficients in models predicting patients’ classification 
(Normal, mild cognitive impairment (MCI), or Alzheimer’s) using both non-ordinal and ordinal LASSO.  

METHODS: Pre-processed high dimensional MRI data of the Alzheimer’s Disease Neuroimaging 
Initiative was analyzed. Predictors of the following model were differentiated: Alzheimer’s vs. normal, 
Alzheimer’s vs. normal and MCI, Alzheimer’s and MCI vs. Normal. Cross-validation followed by ordinal 
LASSO was executed on these same sets of models.  

RESULTS: Results were inconclusive. Two brain regions, frontal lobe and putamen, appeared more 
frequently in the models than any other region. Non-ordinal multinomial models performed better than 
ordinal multinomial models with higher accuracy, sensitivity, and specificity rates. It was determined that 
majority of the models were best suited to predict MCI status than the other two statues.  

DISCUSSION: In future research, the other stages of the disease, different statistical analysis methods, 
such as elastic net, and larger samples sizes should be explored when using brain MRI for Alzheimer’s 
disease classification.  
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1. INTRODUCTION 

1.1 CURRENT STATISTICS OF ALZHEIMER’S DISEASE:  

Alzheimer’s disease is the most common form of dementia among adults age 65 and 

above. It’s ranked the sixth leading cause of death in the United States, causing more deaths than 

both breast and prostate cancer combined [1]. According to Alzheimer’s Association and 

Alzheimer’s Disease International, over 5 million American [1] and around 47 million 

worldwide [2] seniors are diagnosed with Alzheimer’s or other forms of dementia. And while 

only 1 in every 10 seniors is believed to have some form of dementia in the United States, 1 in 

every three is thought to be terminal with either Alzheimer’s or dementia [1]. These statistics 

may appear startling, but they are expected to rise in the near future as the population of older 

adults is rapidly increasing. Dementia, including Alzheimer’s, has a severe impact on the 

nation’s health care system and worldwide economy. It is believed that the burden of these brain 

disorders will cost over quarter of trillion dollars for the United States alone [1].    

Alzheimer’s disease was first discovered by German psychiatrist Alois Alzheimer in the 

early 20th century and was named after him [3,4]. In his research, Alzheimer noticed distinctive 

plaques in the brain histology of deceased women. He discovered that this woman had died of an 

unknown mental illness after studying her for five years [4]. The main noted symptoms of the 

disease included loss of cognitive functioning, namely thinking, remembering, reasoning, and a 

loss of behavioral abilities, which hindered a person’s ability to accomplish activities of daily 

living [3]. Today, this irreversible disease is known to progress over time by destroying memory 

cells in the brain and results in memory decline, and notably deteriorated mental functioning. 

The current Alzheimer’s treatments are incapable of stopping the progress of this disease and 

continue to baffle healthcare providers and researchers. Current scholarship is dedicated to 



2 
 

designing treatment which will slow down the process of the disease in order to improve lives of 

all those severely impacted by the disease [1]. Now more than ever it is pivotal to understand the 

stages of this disease and develop clear scheme of how to predict and detect its prevalence as 

early as possible.  

1.2 STAGES OF THE DISEASE: 

In order to understand the disease one must first understand the physiology of the brain. 

Human brains start shrinking as they begin to age. In this aging process a human brain also 

begins to lose weight. In Alzheimer’s patients, an aging adult brain not only shrinks but also 

begins to develop knots. These knots are due to twisted protein fibers which release chemicals, 

damaging the nerve cells in the brain [5]. Although these chemicals alter the brain silently, they 

are lethal. Within a few years Alzheimer’s symptoms are evident. The disease progresses from 

mild to moderate to severe cognitive impairment [1]. Currently, there are no definite molecular 

pathways used to define these specific stages. There are no reliable biomarkers used to diagnose 

the early stages of this disease. Many factors have been hypothetically attributed to the onset of 

Alzheimer’s which include: age, genetics, dysfunctional immune system, and infectious disease 

[6]. Researchers are systematically attempting to validate these hypotheses by also examining the 

progression of the disease from normal to mild cognitive impairment to Alzheimer’s patients 

[1,2], with the hope of developing effective drugs and therapies to slow the progression of the 

disease.   

1.3 CLINICAL DIAGNOSIS:  

 Physicians depends the knowledge of family member’s when consulting a new patient 

regarding his/her overall health. Tests such as: memory retention, problem solving, counting, 

attention, and language tests are used, and immediately by blood and urine tests, and magnetic 
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resonance imaging (MRI) scans or positron emission tomography (PET) scans [3]. While the 

neurological tests are useful tools in distinguishing demented from non-demented seniors, they 

lack the ability to detect early signs of cognitive impairment or the current stage or progression 

of the disease. At times, these assessments may also fail to detect the problems the patient is 

experiencing and completely misdiagnose the main health issue [8]. At this time there are no 

known and standardized biomarkers used to detect the early signs of Alzheimer’s disease other 

than post-mortem brain histological examinations [2,3]. Therefore, conducting brain scans are 

only useful methods which should be used to rule out the possibility of other diseases, and not to 

diagnose Alzheimer’s disease. Current research focuses on diagnostic biomarkers based on brain 

regions, cerebrospinal fluid, and blood content [3,8].  

1.4 REGIONS OF INTEREST: 

Several researchers have conducted studies [9-10, 12-13, 17-19] using the ADNI 

database in hopes of finding regions of interest (ROI) in the brain which should be the most 

predictive of early onset dementia, while others researchers considered regions related to 

conversion from normal to mild cognitive impairment (MCI), normal to Alzheimer’s (AD), 

and/or MCI to AD. Other studies recruited volunteer participants of memory centers in Germany 

[11, 16] and in France [14]. The following ROI were cited in the above studies: left entorhinal 

cortex [10], left and/or right hippocampus [10,12,14,16,18, 19], parahippocampus [16], frontal 

lobe [11, 16, 18], temporal lobe [11, 16, 17, 18, 19], right inferior [12], parietal lobule [12, 14], 

anterior cingulate [12], amygdala [18, 15, 17], and occipital [14]. Other studies had contradictory 

finding regarding the association of frontal and parietal lobe with disease classification [13], 

there two regions were found be insignificant predictors of the disease classification.   
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Classification of MCI were best achieved by inclusion of amygdala and hippocampus in 

the model [13, 16, 17], while inclusion of ganglia and insula were insignificant for both MCI and 

AD [11]. Classification accuracy rates were reported from most of the above literatures, which 

ranged from 85% to 95%, with highest accuracy rate reported with grey matter region included. 

For MCI classification, accuracy rates were lower ranging from 70% to low 90’s%. 

Classification accuracy rates seemed to be lower for studies that used smaller sample sizes.  

No associations were found between Alzheimer’s disease with age or gender [10,11,20]. 

However, statistics of the disease suggests otherwise; women are twice as likely to be diagnosed 

with dementia when compared to the number of men diagnosed with dementia. A review of the 

current research suggests one explanation for women having higher likeligood of being 

diagnosed: it is believed than men are more ikely to die from competing causes, such as auto 

accidents, gun violence, etc., which women are less likely to encounter [21]. Studies have also 

suggested an insignificant association between the disease and other demographic parameters 

such as race, educational level, and economical factors [20]. Based on these findings from 

previous studies and the time constraint of this study, gender, age, and demographic factors were 

excluded from our study. 

1.5 ALZHEIMER’S DISEASE NEUROIMAGING INITIATIVE:  

 The data used for this study is from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI), which is comprised of images collected by scientists of both health and cognitively 

impaired adult brains to develop biomarkers for tracking disease progression. ADNI, which 

funded by the National Institute of Health, collects demographic, clinical, neuroimaging, genetic, 

as well as biospecimens data from volunteer participants [22]. Researchers from around the 

world may access the data upon registration. Seven clinics in the United States and Canada 
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currently contribute to these frequently updated data archive. The initiative consists of three 

cohorts of data participants: ADNI started in 2004 and followed participants for 5 years, ADNI-

GO started in 2009 and followed participants for two years, and ADNI2 started in 2011 with a 

follow-up period of 5 years. Recently, ADNI began its fourth phase called, ADNI3 which began 

in September of 2016 [22].  

2. A SUMMARY OF THE STATISTICAL METHOD 

2.1 ORDINARY LEAST SQUARE REGRESSION: 

In the basic regression, or ordinary least square (OLS) regression, a response variable is 

graphed against an explanatory variable, where the variability in the later explains the variability 

of the former. A linear curve is then fit through the data points. This linear curve quantitatively 

minimizes the sum of the square error and hence the nomenclature of Best Linear Unbiased 

Estimator (BLUE) [25, 28, 30].   

  .            
𝑚𝑚𝑚𝑚𝑚𝑚

𝛽𝛽
→  || �⃗�𝑦 - x𝛽𝛽 || 22                              (1) 

OLS performs well when the number of variables in the models (x’s) is small. However, as the 

number of variables increase, the possibility of correlation between these variables increases as 

well, which in turn upsurges the variance of the βs both drastically and erroneously 

[23,24,26,29]. Therefore, it seems plausible to introduce a constraining term to minimize how 

large a β can approach [24].  

2.2 REGULARIZATION AND PENALTY: 

There are several forms of regularization, such as forward and backward selection, best-

subset, ridge regression, and LASSO [24,25,27]. In forward selection, features are added one at a 

time and stop only when an overfitting is detected. In backward selection, features are 
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permanently removed one at a time so long as they are insignificant. However, a dropped feature 

at an earlier step could be significant when added to the final reduced model. Best-subset 

selection finds the set of variables that fits the data the best. There feature selection methods are 

optimal when the number of variables is small [24,26,29]. Ridge regression and LASSO 

regression are best suited for high dimensional data [23,24,30]. Both methods use a form of 

penalty to limit the number of variables entering the model.  

Many constraining or penalty terms have been researched, but perhaps the two most well 

know ones are the L1 and L2 norm, with L2 norm being more commonly used than L1 norm 

[25,28]. Both L1 and L2 serve the same purpose, which is to limit the size of the βs to control the 

erroneous variation caused by their correlation. Both the L1 and L2 end up constructing around 

the center of the origin. The main difference between the two is the geometric shape of the 

constraint. Typically, the L2 norm is circular and the L1 norm is square [25,28,29]. The square 

shape constraint of the L1 norm shrinks many βs to exactly zero, reducing the number of non-

zero coefficients [23,24,30]. This advantageous property of L1 norm is termed feature selection, 

because it allows the model to select only feature or variables that have true impact on the 

response [23,24,27]. LASSO developed by Tibshirani in 1996 utilizes L1 norm [23-30].  

2.3 LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR:  

In LASSO, the goal is to minimize the sum of the square error, but within a constraining 

limit.  

 
𝑚𝑚𝑚𝑚𝑚𝑚

𝛽𝛽
→  || �⃗�𝑦 - x𝛽𝛽 || 22  +  λ || 𝛽𝛽 || 11         (2) 

Where λ is the shrinkage estimator or the tuning parameter, which controls the strength of the 

constraint. It takes any value greater than zero (λ > 0). When λ is close to zero, equation (2) is 

equal to equation (1), or LASSO would produce similar parameter estimates as OLS. On the 
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other hand, when λ is large, then more parameter estimates approach a minimal value or zero and 

are therefore removed from the model [23,24,28-30]. In practice, several λs are used to calculate 

an array of parameters, and the right choice of λ should ultimately reduce the square error 

[23,26,29]. This however, does come at a price. The generated estimates are not unbiased but 

have reduced variance. Consequently, if the βs are all large relative to their variances, a small 

value of λ is selected, whereas if several β’s in the model are small, a large λ is preferred to pull 

these parameters close to zero [24,25,29].  

Similarly, a regularization term may also be added to a model with discrete outcome to 

avoid overfitting using the following model;   

 
𝑚𝑚𝑚𝑚𝑚𝑚

𝛽𝛽
→  – 2 ln 𝛽𝛽  +  λ || 𝛽𝛽 || 11         (3) 

Where if lambda is set too high an underfitting will occur, and if set too low, close to zero, the 

generated estimates will approximate the unpenalized logistic regression estimates.  

      3. METHODS 

3.1 DATA:  

            For this study, ADNI UA-MRI SPM VBM [22] imaging data, and ADNI DXSUM 

PDXCONV ADNIALL [22] diagnosis data were merged using the unique identifier variable 

(ID). Both datasets were accessed and downloaded on February 15, 2017 (permission granted in 

January 7, 2017). Only images for the 6-month follow-up visit were included. Unrelated MRI 

imaging variables, such as image quality and different diagnosis statuses and conversions, were 

excluded, and only participants with known clinical diagnosis were included. The Final dataset 

included 136 variables excluding the response variables (diagnosis), and 343 observations.  
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3.2 STATISTICAL MODELS: 

              For this study three disease classifications (diagnoses) were considered: normal 

(control), mild cognitive impairment (MCI), and clinically diagnosed with Alzheimer’s disease 

(AD). Initially, we only examined prediction models with binomial responses, which included 

only Alzheimer’s and the control individual. To check whether MCI’s MRIs were more to the 

control group or AD group, additional binomial models were fitted by either combining MCI 

with the control group or with the AD group. Following the binomial models, a multinomial 

model was fitted using the three disease classes as the dependent variable. Both ungrouped and 

grouped multinomial models were analyzed. The ungrouped models allowed different predictors 

with different response values, while grouped models were considered either all-in or all-out 

models. In other words, a predictor is either applicable for all three disease classifications or left 

out of the model entirely.  

To estimate the prediction, cross validation was carried out on these models. Finally, to 

account for the ordering characteristic of our dependent variable, the data was fitted in an ordinal 

multinomial logistic regression model. All models were induced with LASSO penalty.  

3.3 STATISTICAL PACKAGES: 

             Data were merged using SAS 9.3 software [31]. The same software was also used to 

generate the demographic statistics. The remaining statistical analysis were performed in R [32] 

using mainly two packages for non-ordinal and ordinal LASSO logistic regression, respectively. 

The first package was glmnet package [33] with glmnet () function for model fitting, predict () 

function for coefficient prediction, and cv.glmnet () for cross validation [34]. The second 

package was glmnetcr package [35] with glmnet.cr () function for ordinal logistic modeling 

fitting, and nonzero.glmnet.cr () for displaying non-zero coefficients [36].  
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 4. RESULTS AND DISCUSSION 

4.1 DATASET: 

In this study, the task was to predict the diagnosis status of individuals in the selected 

ADNI study dataset based on a spectrum of MRI data. A total of 343 individuals’ MRI were 

examined within a data matrix containing 174 total number variables. The number of covariates 

considered large rendering it a good candidate for LASSO regression model fitting technique. 

Lasso allows for penalized regression techniques that are flexible enough for high-dimensional 

data and can be applied directly without the need of dimension reduction [23-30]  

The dataset was examined and variables not related to MRI imaging, which included 

image quality parameters, several recoded diagnoses, recoded date of visits, and several subject 

identifications, were excluded. The final data set included 83 AD, 146 MCI, and 114 control 

individuals with total of 137 predictors (see Appendix A for detailed list of predictors). Number 

of predictors included in the models, subsequent to model convergence was 109 for the AD vs 

control. While number of predictors entered in the model, after model convergence, was 117 for 

the AD vs. MCI&normal, AD&MCI vs. normal, and the multinomial models. 

4.2 DEMOGRAPHICS:  

 The overall mean age of the participants in the sample was 72.1 (±6.7). Majority of the 

sample have college degrees. Males composed about 58% of the sample, and the rest were 

female seniors. Majority of the sample were married (74.3%). The rest were either widowed, 

divorced, never married, or with unknown marital statuses, 15%, 7%, 3.2%, and 1%, 

respectively. Majority of the participants were retired (84.0%), and only a small fraction of them 

were currently working (9.9%). Finally English was the primary language of the participants 

(98.3%). Detail demographic statistics appear in Table 1.  
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4.3 LASSO MODEL FITTING: 

The coefficients for the converged model predictors were plotted against two different 

scales: the fraction deviance explained, and the L1 norm for each set of comparison (Figure 1-4). 

In these plots, each curve represents a coefficient in the model. In these plots, each colored line 

summarizes the path of a different coefficient in the model [33-34]. Lambda is used as the 

regularization term, and thus as lambda decreased or approaches zero, the more coefficients enter 

the model, and the model approaches the OLS solution in which all coefficients are allowed in 

the model. Likewise, when lambda is allowed to increased, the regularization term is allowed to 

have a greater effect by allowing as few variables into the model, leaving more coefficients with 

a zero value. While variables that enter the model early on are considered the most predictive of 

the outcome of interest, the variables that enter the model later are less predictive. In other 

words, the predictors go into the model in the order of their magnitude of predictive effect. As 

predictors enter into the model, the slope of the coefficient path of their predictors already in the 

model is affected [33-34].  

The performance of LASSO algorithm was then analyzed by examining the specificity, 

sensitivity, and the accuracy rates of prediction using several lambda values. The results for the 

specificity, sensitivity, and accuracy rates are summarized in Figure 6. As the lambda values 

increased, the accuracy of the model simultaneously decreased. At smaller lambda values when 

no regularization term was added to the model and all predictors were in the model, the 

sensitivity was found to be zero, with specificity at its peak at 100%, with accuracy fluctuation 

between the models. As the lambda values increased, and on average all models’ accuracies rates 

decreased, some of the models did outperform others under different lambda values. For 

instance, while the accuracy rates for the binomial models were low 70% at λ10, the multinomial 
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models were barely over 50% at the same lambda size. Furthermore, the AD vs. control model 

outperformed all model at low lambda values.  

4.4 CROSS VALIDATION: 

 Cross validation is a useful technique that estimates prediction error of a model. In 

principle, once a model is fitted, it is trained on an external sample to determine the accuracy of 

the prediction. However, practically, cross-validation is accomplished by splitting the data into K 

sets, and a model is fitted using one of the sets and then trained on the rest. Hence, the 

nomenclature K-fold cross-validation [37]. For this study, 10-fold cross-validation was carried to 

choose the tuning parameter, λ, with the smallest prediction error. Figures 7-11 depict the cross-

validated error curves for binomial (AD vs. Control, AD&MCI vs. Control, AD vs. 

MCI&Control), multinomial, and grouped multinomial logistic regression models. All model 

generated similar lambda min, 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚, and lambda plus 1 standard error, 𝜆𝜆1𝑠𝑠𝑠𝑠, values, except for 

the multinomial model.  

4.5 MODEL COEFFICIENTS: 

 The multinomial model was the only model that the contained non-zero coefficients 

(Table 2). Non-zero coefficients for different lambda values were determined based on the 

different models (Table 3). The results suggested an unstable prediction error for all the models 

except for the Grouped-Multinomial models and possibly for the binomial AD&MCI vs. Control. 

When different lambda values were trained, the number of coefficients increased as the lambda 

value increased (Table 3). The results fluctuated with a high level of uncertainty. In certain brain 

regions there seemed to be an association with disease classification regardless of lambda values. 

For instance, putamen appeared in many of the models and in all lambda values. However, for 

the multinomial models, different brain regions appeared to be associated with different disease 
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classification. When the grouped multinomial logistic regression is applied, frontal lube and 

putamen appear to have the most effect on disease classification.  

 Based on the prediction error curves the following values of lambda seemed to generate 

the least mean prediction error: binomial model (AD&MCI vs. Control) s = 0.3-0.07, binomial 

model (AD vs. MCI&Control), s = 0.015-0.3, and grouped-multinomial s = 0.02. The lambda 

values were used to determine the coefficients most predictive of disease classification (Table 4). 

Disease classification seemed to be related to different brain regions depending on classification 

criteria. When AD is combined with MCI and compared to control individuals, frontal lobe and 

supplementary motor, and vermis regions are the best predictors. On the other hand, when AD is 

compared to the combined MCI and control individuals, many regions are included in the model 

which suggested ambiguity of this type of classification. This is also true when classification is 

done on grouped level multinomial.  

Frontal lobe was found to be one of the ROI in earlier studies of Alzheimer’s disease [3, 

16, 18], whereas the vermis, supplementary motor, or putamen region were not cited in previous 

literature as one of the ROI. Other cited ROI such as hippocampus [10, 2, 4, 6, 8,19] did not 

appear in any of the model as good predictor of disease classification. Amygdala [15,18, 9] was 

only good predictor in the grouped-multinomial model. Temporal lobe [10,16,17,18,19] 

predicted disease classification only at small tuning parameter values for the binomial AD vs. 

MCI&Control and grouped-multinomial models. Parietal lobe [12,14] also, only predicted at 

small lambda values, binomial AD&MCI vs. Control and grouped-multinomial models.  

4.6 ORDINAL LASSO 

 Dementia progresses though several stages of cognitive impairment before developing 

into late stage dementia or Alzheimer’s. For that reason, there is a natural ordering proper 
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disease classification using variables which start with the control followed by mild cognitive 

impairment to an official Alzheimer’s diagnosis among participants. Accordingly, this study 

sought to find a model that took into consideration the ordinal property of the response variable 

into account, and that is an ordinal LASSO logistic regression model.  

 Figures 12 and 13 depicts the coefficient entry path into the models by betas, lambda, and 

steps for backward and forward selection method, respectively [35-36]. Figure 14, 16, and 18 

presents the trends of the Bayesian Information Criterion (BIC) and Akaike Information 

Criterion (AIC) over steps, lambda, and betas for backward selection. Likewise, figures 15, 17, 

and 19 present the trends of both BIC and AIC over steps, lambda, and betas for forward 

selection. Based on these plots, models 2 through 6 were determined to be indifferent and have 

the lowest BIC and AIC values. Non-zero coefficients for the models used during these steps are 

seen in Table 5.  

 At step one, the empty model was fitted. In step two, two and four predictors entered the 

model in the backward and forward selection, respectively. Both supplementary motor and 

putamen regions of the brain were good predictors at this step. The backward selection gradually 

increased the number of predictors as the number of steps increased. In contrast to the forward 

selection, the models at step 4-6 remained stable with the same nine predictors. Moreover, 

certain brains regions were found to be consistently good predictors in both methods of selection. 

These regions included: supplementary motor, the putamen, the pallidum, the cerebral, and the 

vermis regions. These results are not in agreement with earlier studies and have not been 

previous cited as brain regions which are typically associated with the disease. However, these 

findings are congruent with the non-ordinal results presented earlier in this study.  
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 The different models’ sensitivity, specificity, and accuracy rates are displayed in Figure 

20. These rates demonstrate the underperformance of these models. While MCI were accurately 

predicted in all models, the models failed to predict both normal and AD classes. These rates 

only improved with the increased BIC and AIC levels. More specifically, the accuracy rates 

improved around the midpoint of BIC and AIC, or at step 25 and higher.  

5. LIMITATIONS AND DIRECTION FOR THE FUTURE 

          Although two studies [20,21] documented lack of association between demographic 

characteristics, several others found significant association between certain demographics and 

Alzheimer’s disease. Among demographics found to be related to the disease are age [38], 

gender [39], education [40], and race [41]. Although majority of these studies date back to 

1980s, 1990s, and early 2000, we believe the decision to exclude these factors from the current 

study limits the results and conclusion. 

            One of LASSO’s disadvantages is its inability to distinguish between correlated data. 

With brain MRI unfortunately, all of the brain regions are somehow correlated. LASSO just 

picks one over the other, indeed, we do not know which variable is chosen. Modeling with a 

different constraining penalty may ameliorate this problem. Elastic net is a regularization 

introduced to the model that uses a mix of L1 and L2 norms. It simultaneously shrinks the 

coefficients and accomplishes sparse selection. This method could possibly be a better method to 

answer the research question at hand.  

As a final note, in the era of fast growing technology, the acquisition of brains images is 

becoming readily available. At first glance, these images provide insight into the brain regions’ 

structure. These is images can further be scrutinized and transferred to pure data than can be 
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further analyzed. Having prior set models for disease classification can help health providers 

easily diagnose patients. It is therefore imperative to explore this field further.  
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APPENDIX A: LIST OF VARIABLES 

PRECENTL: Left Percentile  
PRECENTR: Right Percentile  
FRONTSUPL: Left Frontal Supplementary  
FRONTSUPR: Right Frontal Supplementary 
FRONTSORBL: Left Frontal sorbitol  
FRONTSORBR: Right Frontal sorbitol 
FRONTMIDL: Left Frontal Medial  
FRONTMIDR: Right Frontal Medial 
FRTMIDORBL: Left Frontal Medial Orbital 
FRTMIDORBR: Right Frontal Medial Orbital 
FRONTINOPL: Left Frontal Inferior Opercula 
FRONTINOPR: Right Frontal Inferior Opercula 
FRONTINTRL: Left Frontal Inferior  
FRONTINTRR: Right Frontal Inferior  
FRONTINOBL: Left Frontal Inferior Orbital  
FRONTINOBR: Right Frontal Inferior Orbital 
ROLANDOPL: Left Rolandic Operator 
ROLANDOPR: Right Rolandic Operator 
SUPMOTORL: Left Supplementary Motor 
SUPMOTORR: Right Supplementary Motor 
OLFACTL: left Olfactory 
OLFACTR: Right Olfactory 
FRONTSMEDL: Left Frontal Supplementary Medial 
FRONTSMEDR: Right Supplementary Medial 
FRTMEDORBL: Left Frontal Medial Orbital  
FRTMEDORBR: Right Frontal Medial Orbital 
RECTUSL: Left Rectus 
RECTUSR: Right Rectus 
INSULAL: Left Insula 
INSULAR: Right Insula 
CINGANTL: Left Cingulum Angular Bundle 
CINGANTR:  Right Cingulum Angular Bundle 
CINGMIDL: Left Cingulum Medial 
CINGMIDR: Right Cingulum Medial 
CINGPOSTL: Left Cingulum Posterior 
CINGPOSTR: Right Cingulum Posterior 
HIPPL: Left Hippocampus 
HIPPR: Right Hippocampus 
PARAHIPPL: Left Parahippocampus 
PARAHIPPR: Right Parahipocampus 
AMYGDL: Left Amygdala 
AMYGDR: Right Amygdala 
CALCARINEL: Left Calcarine 
CALCARINER: Right Calcarine 
CUNEUSL: Left Cuneus 
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CUNEUSR: Right Cuneus  
LINGUALL: Left Lingual 
LINGUALR: Right Lingual 
OCCSUPL: Left Supplementary Occipital 
OCCSUPR: Right Supplementary Occipital 
OCCMIDL: left Occipital Medial 
OCCMIDR: Right Occipital Medial 
OCCINFL: Left Occipital Inferior 
OCCINFR: Right Occipital Inferior 
FUSIFORML: Left Fusiform 
FUSIFORMR: Right Fusiform 
POSTCENTL: Left Posterior Central 
POSTCENTR: Right Posterior Central 
PARIETSUPL: Left Supplementary Parietal 
PARIETSURP: Right Supplementary Parietal 
PARIETINFL: Left Inferior Parietal 
PARIETINFR: Right Inferior Parietal 
SUPRAMARGL: Left Supplementary amygdala 
SUPRAMARGR: Right Supplementary amygdala 
ANGULARL: Left Angular 
ANGULARR: Right Angular 
PRECUNEUSL: Left PreCuneus 
PRECUNEUSR: Right PreCuneus 
PARCENTLBL: Left Paracentral Lobe 
PARCENTLBR: Right Paracentral Lobe 
CAUDATEL: Left Caudate 
CAUDATER: Right Caudate 
PUTAMENL: Left Putamen 
PUTAMENR: Right Putamen 
PALLIDUML: Left Pallidum 
PALLIDUMR: Right Pallidum  
THALAMUSL: Left Thalamus 
THALAMUSR: Right Thalamus 
HESCHLL: Left Heschel 
HESCHLR: Right Heschel 
TEMPSUPL: Left Supplementary Temporal 
TEMPSURP: Right Supplementary Temporal 
TEMPPLSUPL: Left Supplementary Temporal Plane 
TEMPPLSUPR: Right Supplementary Temporal Plane 
TEMPMIDL: Left Medial Temporal 
TEMPMIDR: Right Medial Temporal 
TEMPPLMIDL: Left Medial Temporal Plane 
TEMPPLMIDR: Right Medial Temporal Plane 
TEMPINFL: Left Inferior Temporal 
TEMPINFR: Right Inferior Temporal 
CEREBCR1L: Left Cerebral Cortex Region 1 
CEREBCR1R: Right Cerebral Cortex Region 1 
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CEREBCR2L: Left Cerebral Cortex Region 2 
CEREBCR2R: Right Cerebral Cortex Region 2 
CEREBCR3L: Left Cerebral Cortex Region 3 
CEREBCR3R: Right Cerebral Cortex Region 3 
CEREB45L: Left Cerebral Region 4-5 
CEREB45R: Right Cerebral Region 4-5 
CEREB6L: Left Cerebral Region 6 
CEREB6R: Right Cerebral Region 6 
CEREB7BL: Left Cerebral Blood 
CEREB7BR: Right Cerebral Blood 
CEREB8L: Left Cerebral Region 8 
CEREB8R: Right Cerebral Region 8 
CEREB9L: Left Cerebral Region 9 
CEREB9R: Right Cerebral Region 9 
CEREB10L: Left Cerebral Region 10 
CEREB10R: Right Cerebral Region 10 
VERMIS12: Vermis Region 1-2 
VERMIS3: Vermis Region 3 
VERMIS45: Vermis Region 4-5 
VERMIS6: Vermis Region 6 
VERMIS7: Vermis Region 7 
VERMIS8: Vermis Region 8 
VERMIS10: Vermis Region 10 
ETIV: Estimated Intracranial Volume 
DXCURREN: Current Diagnosis (1: Normal, 2: MCI, 3: AD) 
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APPENDIX B: TABLES 

Table 1: Descriptive Statistics of the Participants 

Characteristic  N(%) 
Age 75.10 (±6.72) 
Education 16 (14-18)) 
Male 208 (58.26) 
Right-Handed  323 (90.48) 
Marital Status 
     Married 
     Widowed 
     Divorced 
     Never Married 
     Unknown 

 
255 (74.34) 
52 (15.16) 
24 (7.0) 
11 (3.21) 
1 (0.29%) 

Retired 
     Yes 
     No 
     Missing 

 
288 (83.97) 
34(9.91) 
21 (6.12) 

Primary language 
    English 
    Spanish 
    Unknown 

 
337 (98.25) 
2 (0.58%) 
28 (0.82) 

Age: mean (±SD), Year of education: median (IQR)  
 

Table 2: Non-Zero Coefficients Cross-Validation Multinomial LASSO – AD&MCI vs. Control 

Control MCI AD 
Coefficient  Coefficient 

Estimates 
Coefficient  Coefficient 

Estimates 
Coefficient  Coefficient 

Estimates 
FRONTINOPR    
SUPMOTORL     
CUNEUSR      
PARIETSUPR    
PARIETINFL   
PUTAMENR      
HESCHLR       
TEMPPLMIDL    
TEMPINFL      
CEREBCR2L     
CEREBCR2R     
CEREB45L       
CEREB7BR       
CEREB10R     
VERMIS12      
VERMIS10     

4.4076812 
2.2581351 

-2.3267197 
0.1030343 
2.3798372 
2.9849488 

-0.2553623 
0.1252874 
3.8724262 
0.5981673 
2.2958389 
1.0101785 
0.2986538 

-0.4135493 
-1.7909975 
-0.3605663 

FRONTINOPL    
RECTUSL        
CINGMIDL       
CINGPOSTR     
AMYGDL        
CALCARINER     
OCCMIDR       
OCCINFL        
SUPRAMARGL    
THALAMUSL     
TEMPMIDL      
CEREB3L       
CEREB10L     

5.2001940 
4.4316612 
0.6565016 

-0.8786198 
-0.3010206 
1.7689149 

-2.7842050 
0.2076641 
1.2655111 

-0.2908878 
0.6243081 

-1.6049941 
-0.6472638 

FRONTSUPR     
FRONTMIDR     
FRTMIDORBR    
FRTMEDORBR    
OCCINFL      
POSTCENTR    
SUPRAMARGR   
PARCENTLBL   
PARCENTLBR   
THALAMUSL     
HESCHLR       
CEREB7BR     
CEREB10R      
VERMIS6       
ETIV         

1.2870474 
3.3329974 
1.6357613 
4.0945468 

-2.0094674 
-2.9393642 
-0.3856534 
-1.5763218 
-1.2712380 
0.6101122 
0.7034065 

-0.2797097 
0.5352596 
1.0312296 

-0.3119901 
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Table 3: Cross-Validation Coefficients Under Different Lambda Values.  

Class 
 

𝝀𝝀𝟏𝟏 𝝀𝝀𝟐𝟐 𝝀𝝀𝟓𝟓 𝝀𝝀𝟕𝟕 𝝀𝝀𝟏𝟏𝟏𝟏 

Binomial (AD 
vs. Control)  

None PARCENTLBR 
PUTAMENR 
 

SUPMOTORR 
FRTMEDORBR 
POSTCENTR 
PARCENTLBL 
PARCENTLBR 
PUTAMENR 
CEREB7BR 
VERMIS12 
 

SUPMOTORL 
FRTMEDORBR 
OCCINFL 
POSTCENTR 
PARCENTLBR 
PUTAMENR 
PALLIDUML 
CEREB7BR 
CEREB10R 
VERMIS12 
VERMIS6 
 

FRONTSURP 
FRTMIDORBR 
FRONTINOPR 
SUPMOTORL 
FRTMEDORBR 
OCCINFR 
POSTCENTR 
PARCENTLBL 
PARCENTLBR 
PUAMENR 
HESCHLR 
TEMPPLMIDL 
TEMPINFL 
CEREBCR2L 
CEREBCR2R 
CEREB7BR 
CEREB10R 
VERMIS45 
VERMIS6 
 

Binomial 
(AD&MCI vs. 
Control) 

None PUTAMENR 
 

SUPMOTORL 
PUTAMENR 
VERMIS12 

FRONTINOPL 
SUPMPTPRL 
RECTUSL 
PUTAMENR 
CEREBCR2R 
CEREB7BR 
VERMIS12 

FRONTINOPL 
FRONTINOPR 
SUPMOTORL 
RECTUSL 
CINGANTR 
CUNEUSR 
PARIETINFL 
PUTAMENR 
HESCHLR 
TEMPINFL 
CEREBCR2R 
CEREB7BR 
VERMIS12 
 

Binomial (AD 
vs. 
MCI&Control) 

None PARCENTLBL 
 

FRTMEDORBR 
POSTCENTR 
PARCENTLBL 
PARCENTLBR 
CEREB8R 
 

FRTMEDORBR 
OCCINFL 
POSTCENTR 
SUPRAMARGR 
PARCENTLBL 
PARCENTLBR 
CEREB7BR 
VERMIS12 
VERMIS6 
 

FRONTMIDR 
FRIMIDORBR 
FRTMEDORBR 
OCCINFR 
POSTCENTR 
SUPRAMARGR 
PARCENTLBL 
PARCENTLBR 
THALAMUSL 
HESCHLR 
TEMPSURL 
CEREB7BR 
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CEREB10R 
VERMIS12 
VERMIS6 
ETIV 

Multinomial 
(AD vs. MCI 
vs. Control) 
Control 
 
 
 
 
 
 
 
 
 
 
MCI 
 
 
 
 
 
 
AD 

 
 
 
None 
 
 
 
 
 
 
 
 
 
 
None 
 
 
 
 
 
 
None 
 
 

 
 
 
PUTAMENR 
 
 
 
 
 
 
 
 
 
 
FRONTINOPL 
 
 
 
 
 
  
None  
 

 
 
 
SUPMOTORL 
PUTAMENR 
CEREBCR2R 
 
 
 
 
 
 
 
 
FRONTINOPL  
 
 
 
 
 
 
FRTMEDORBR 
PARCNTLBL 
  
 
 

 
 
 
SUPMOTORL 
PUTAMENR 
CEREBCR2R 
CEREB5BR 
VERMIS12 

 
 
 
 
 

  
FRONTINOPL 
RECTUSL 
SUPRAMARGL 
CEREB3L 
 
 
  
FRTMEDORBR 
PARCENTLBL 
PARCENTLBR 
  
  
 
 
 
 

 
 
 
FRONTINOPR 
SUPMOTORL 
CUNEUSR 
PARIETINFL 
PUTAMENR 
TEMPINFL 
CEREBCR2R 
CEREBCR7R 
VERMIS12  
VERMIS10 
 
FRONTINOPL 
RECTUSR 
CALCARINER 
OCCMIDR 
SUPRAMARGR 
CEREB3R 
 
FRONTMIDR 
FRTMIDORBR 
FRTMEDORBR 
OCCINFL 
POSTCENTR 
PARCENTLBL 
PARCENTLBR 
THALAMUSL 
HESCHLR 
CEREB7BR 
CEREB10R 
VERMIS6 
 

Grouped-
Multinomial 
(AD vs. MCI 
vs. Control) 

 FRONTINOPL  
PUTAMENR 
 

FRONTINOPL 
SUPMOTORL 
FRTMEDORBR 
RECTUSL 
PARCENTLBL 
PUTAMENR 
CEREBCR2R 
CEREB7BR 
VERMIS12 
 

FRONTINOPL 
FRONTINOPR 
SUPMOTORL 
FRTMEDORBR 
RECTUSL 
SUPRAMARGL 
PARCENTLBL 
PARCENTLBR 
PUTAMENR 
CEREBCR2R 
CEREB3L 
CEREB7BR 

FRONTMIDR 
FRTMIDORBR 
FRONTINOPL 
FRONTINOPR 
SUPMOTORL 
FRTMEDORBR 
RECTUSL 
CALCARINER 
CUNEUSR 
OCCMIDR 
OCCINFL 
POSTCENTR 
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VERMIS12 
 

PARIETINFL 
SUPRAMARGL 
PARCENTLBL 
PARCENTLBR 
PUTAMENR 
THALAMUSL 
HESCHLR 
TEMPINFL 
CEREBCR2R 
CEREB3L 
CEREB45L 
CEREB7BR 
CEREB10R 
VERMIS12 
VERMIS6 
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Table 4: Predictor of Cross-Validated Models Based on Prediction Error Suggested Lambda 
Values.  

 

 

 

 

 

 

Class Penalty 
Value (s) 

Non-Zero Coefficients  

Binomial (AD&MCI vs. 
Control) 

s = 0.03 
 
 
s = 0.04 
 
s = 0.05  
 
 
s = 0.055  
 
s = 0.06  
 
s = 0.07 

FRONTINOPL, SUPMOTORL, RECTUSL, CUNEUSR, PARIETINFL, 
PUTALMENR, HESCHLR, CEREBCR2R, CEREB7BR, VERMIS12 

 
SUPMOTORL, PUTAMENR, VERMIS12 
 
FRONTINOPL, SUPMOTORL, FRTMEDORBR, RECTUSL, PARCENTLBL, 
PUTAMENR, CEREBCR2R, CEREB7BR, VERMIS12 
 
FRONTINOPL, SUPMOTORL, PARACENLBL, PUTAMENL, VERMIS12 
 
FRONTINOPL, SUPMOTORL, PARCENTLBL, PUTAMENR 
 
FRONTINOPL, PUTAMENR 
 

Binomial (AD vs. 
MCI&Control) 

s = 0.015 
 
 
 
 
 
s = 0.03  

FRONTSUPR, FRONTMIDR, FRTMIDORBR, FRONTINOPL, FRONTSMEDL, 
FRTMEDORBR, RECTUSL, OCCSUPR, OCCINFL, POSTCENTR, SUPRAMARGR, 
PARCENTLBL, PARCENTLBR, CAUDATEL, PALLIDUML, THALAMUSL, 
HESCHLR, TEMPSUPL, TEMPPLMIDL, CEREB3L, CEREB7BR, CEREB10R, 
VERMIS12, VERMIS6, VERMIS8, ETIV 
 
FRTMEDORBR, OCCINFL, POSTCENTR, SUPRAMARGR, PARCENTLBL, 
PARCENTLBR, CEREB7BR, VERMIS12, VERMIS6 
 

Grouped-Multinomial (AD 
vs. MCI vs. Control) 
 

s = 0.02 
 
 
 
 
 

FRONTSUPR, FRONTMIDR, FRTMIDORBR, FRONTINOPL, FRONTINOPR, 
FRONTINOBR, SUPMOTORL, FRTMEDORBR, RECUSL, CINGANTR, 
CINGMIDL, CINGPOSTR, AMYGDL, CALCARINER, CUNEUSR, OCCMIDR, 
OCCINFL, POSTCENTR, PARIETSUPR, PARITINFL, SUPRAMARGL, 
SUPRAMARGR, PARCENTLBL, PARCENTLBR, CAUDATEL, PUTAMENR, 
THALAMUSL, HESCHLR, TEMPSUPL, TEMPMIDL, TEMPPLMIDL, TEMPINFL, 
CEREBCR2L, CEREBCR2R, CEREB3L, CEREB3R, CEREB45L, CEREB6L, 
CEREB7BR, CEREB10L, CEREB10R, VERMIS12, VERMIS6, VERMIS8, 
VERMIS10, ETIV 
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Table 5: Non-Zero Coefficients for Backward and Forward Models. 

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 
Backward Models 

None SUPMOTORL 
PUTAMENR 

SUPMOTORL 
PUTAMENR 
VERMIS12 

SUPMOTORL 
PUTAMENR 
CEREB7BR 
VERMIS12 

SUPMOTORL 
FREMEDORBR 
PUTAMENR 
CEREB7BR 
VERMIS12 

SUPMOTORL 
FREMEDORBR 
PUTAMENR 
PALLIDUML 
CEREB7BR 
VERMIS12 
 

Forward Models 
None SUPMOTORL 

PARCENTLBL 
PARCENTLBR 
VERMIS12 

SUPMOTORL 
POSTCENR 
PARCENTLBL 
PARCENTLBR 
PUTAMENR 
PALLIDUML 
CEREB7BR 
VERMIS12 

SUPMOTORL 
FRTMEDORBR 
POSTCENR 
PARCENTLBL 
PARCENTLBR 
PUTAMENR 
PALLIDUML 
CEREB7BR 
VERMIS12 

SUPMOTORL 
FRTMEDORBR 
POSTCENR 
PARCENTLBL 
PARCENTLBR 
PUTAMENR 
PALLIDUML 
CEREB7BR 
VERMIS12 

SUPMOTORL 
FRTMEDORBR 
POSTCENR 
PARCENTLBL 
PARCENTLBR 
PUTAMENR 
PALLIDUML 
CEREB7BR 
VERMIS12 
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APPENDIX C: FIGURES 
Figure 1: Trace Plot of Coefficients Fit by Binomial LASSO – AD vs. Control (Left: Coefficients are 
plotted against the Fraction Deviance Explained; Right: coefficients are plotted against the L1 Norm) 

 

 

 

 

 

 

 

 

 

Figure 2: Trace Plot of Coefficients Fit by Binomial LASSO – AD and MCI vs. Control (Left: 
Coefficients are plotted against the Fraction Deviance Explained; Right: coefficients are plotted against 
the L1 Norm) 
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Figure 3: Trace Plot of Coefficients Fit by Binomial LASSO – AD vs. MCI and Control (Left: 
Coefficients are plotted against the Fraction Deviance Explained; Right: coefficients are plotted against 
the L1 Norm) 

 

 

 

 

 

 

 

 

 

 

Figure 4: Coefficients Fit by Multinomial LASSO – AD vs. MCI vs. Control (Left: Coefficients are 
plotted against the Fraction Deviance Explained; Right: coefficients are plotted against the L1 Norm) 
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Figure 5: Coefficients Fit by Grouped Multinomial LASSO – AD vs. MCI vs. Control (Left: Coefficients 
are plotted against the Fraction Deviance Explained; Right: coefficients are plotted against the L1 Norm) 

 

  

 

 

 

 

 

 

 

 

Figure 6: Specificity, Sensitivity, and Accuracy Rates of LASSO Fitted Model Prediction 
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Figure 7: Cross-Validation Error (& Mean Error – Left) Curve for Binomial LASSO – AD vs. 
Control (𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜆𝜆1𝑠𝑠𝑠𝑠 = 0.07003043 with zero coefficients) 

 

Figure 8: Cross-Validation Error (& Mean Error – Left) Curve for Binomial LASSO – 
AD&MCI vs. Control (𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜆𝜆1𝑠𝑠𝑠𝑠 = 0.05800169 with zero coefficients) 
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Figure 9: Cross-Validation Error (& Mean Error – Left) Curve for Binomial LASSO – AD vs. 
MCI&Control (𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜆𝜆1𝑠𝑠𝑠𝑠 = 0.0501518 with zero coefficients) 

 

Figure 10: Cross-Validation Error (& Mean Error – Left) Curve for Multinomial LASSO – AD 
vs MCI vs. Control (𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 0.01899294,  𝜆𝜆1𝑠𝑠𝑠𝑠 = 0.05800169, coefficients entering the model listed 
on Table 1) 
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Figure 11: Cross-Validation Error (& Mean Error – Left) Curve for Grouped Multinomial 
LASSO – AD vs MCI vs. Control (𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜆𝜆1𝑠𝑠𝑠𝑠 = 0.0715801 with no coefficients) 
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Figure 12: Ordinal LASSO Logistic Regression Coefficient Path by Betas (a) Lambda (b), and 
Steps (c) for Backward Model 
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Figure 13: Ordinal LASSO Logistic Regression Coefficient Path by Betas (a) Lambda (b), and 
Steps (c) for Forward Model 
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Figure 14: Ordinal LASSO Backward Model’s BIC (a), and AIC (a) by Steps. 
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Figure 15: Ordinal LASSO Forward Model’s BIC (a), and AIC (a) by Steps. 
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Figure 16: Ordinal LASSO Backward Model’s BIC (a), and AIC (a) by Lambda Values.  
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Figure 17: Ordinal LASSO Forward Model’s BIC (a), and AIC (a) by Lambda Values.  
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Figure 18: Ordinal LASSO Backward Model’s BIC (a), and AIC (a) by Beta  
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Figure 19: Ordinal LASSO Forward Model’s BIC (a), and AIC (a) by Beta  

(a) 
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Figure 20: Sensitivity, Specificity, and Accuracy Rates for Backward and Forward Ordinal 
Models by Steps.  

 

0

10

20

30

40

50

60

70

80

90

100

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Backward Model (Blues) Forward Model (Greens)


	Georgia State University
	ScholarWorks @ Georgia State University
	Summer 8-8-2017

	Predicting Alzheimer Disease Status Using High-Dimensional MRI Data Based on LASSO Constrained Generalized Linear Models
	Zainab Salah
	Recommended Citation


	Table of Contents
	1. Introduction:          1-4
	1.1 Current Statistics of Alzheimer’s Disease    1
	1.2 Stages of The Disease       2
	1.3 Clinical Diagnosis       2
	1.4 Regions of Interest       3
	1.5 Alzheimer’s Disease Neuroimaging Initiative    4
	2. A Summary of the Statistical Method       5-7
	2.1 Ordinary Least Square Regression     5
	2.2 Regularization        5
	2.3 Least Absolute Shrinkage And Selection Operator  6
	3.    Methods           7-8
	3.1 Data         7
	3.2 Statistical Models       8
	3.3 Statistical Packages       8
	4.    Results And Discussions:         9-12
	4.1 Datasets         9
	4.2 Demographics        9
	4.3 LASSO Model Fitting       10
	4.4 Cross Validation       11
	4.5 Model Coefficients       11
	4.6 Ordinal LASSO        12
	5.    Limitations and Future Direction      14-15
	6.    References           16-18
	7.    Appendix A (List of Variables)       19-21
	8.    Appendix B (List of Tables)       22-27
	9.    Appendix C (List of Figures)       28-41
	List of Tables
	List of Figures

