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Abstract 

Objectives 

Prenatal alcohol exposure can lead to fetal alcohol spectrum disorders (FASD), which include a 

broad range of cognitive, growth, behavior, and physical abnormalities.  Early detection of the 

teratogenic effects of prenatal alcohol exposure is necessary to identify early interventions. The 

aim of this study is to identify the effects of prenatal alcohol exposure on growth and infant 

development, to determine if ultrasound imaging can be used as an early identification tool, and 

to determine if maternal folate supplementation can mitigate the detrimental effects on growth 

and infant development.  

Methods 

A prospective cohort study and randomized trial from 2008 to 2014 conducted in two sites of 

Western Ukraine was analyzed.  A sample of pregnant women who reported moderate-to-heavy 

alcohol consumption during pregnancy, and a sample reporting little-to-no alcohol use during 

pregnancy participated in a comprehensive maternal interview and screening process.  Women 

were further randomized into micronutrient supplementation groups.  Standard ultrasound 

examinations during pregnancy including study specific brain growth measurements, along with 

blood and urine samples were obtained during follow-up visits.  A biometric screening was 

conducted at birth, along with Bayley Scales of Infant Development-II Mental Development 

Index (MDI) and Psychomotor Development Index (PDI) assessments at 6 and 12 months of age. 

Results 

Estimated fetal weight (EFW), abdominal circumference (AC), biparietal diameter (BPD), 

transverse cerebellar diameter (TCD), occipitofrontal diameter (OFD), caval-calvarial distance 

(CCD), and orbital diameter (OD) were significantly reduced by alcohol exposure at third 

trimester ultrasound (p<0.05).  Birth weight, length and head circumference as well as Bayley 

MDI and PDI scores at 6 and 12 months of age were significantly reduced by alcohol exposure 

(p<0.05).  Generalized linear modeling was used to examine the relationship between outcomes 

significantly associated with alcohol exposure and multivitamin supplementation (MVM), 

absolute ounces of alcohol per day at conception (AA/day), and serum folate concentration.  

MVM was significantly associated with increased EFW at third trimester (X
2

(7)=18.044, 

p=0.012), AC at third trimester (X
2

(5)=17.955, p=0.003), and birth weight (X
2

(6)=75.058, 

p<0.001).  Serum folate concentration during third trimester was significantly associated with 

increased Bayley MDI scores at 6 months of age (X
2

(11)=63.051, p<0.001).   

 Conclusions 

Significant reductions in fetal growth measurements during third trimester ultrasound suggest 

that the effects of prenatal alcohol exposure may be detectable in late pregnancy.  Significant 

associations between multivitamin supplementation and specific growth measurements suggest 

that micronutrient supplementation during pregnancy, including high doses of folate, may be an 

early intervention to reduce the harmful effects of prenatal alcohol exposure.  Further studies are 

needed to identify the specific micronutrients producing these effects, and to assess the 

appropriate level of these micronutrients necessary to provide the greatest benefit without 

exceeding the safe limit.   
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INTRODUCTION 

1.1 Background 

Fetal Alcohol Syndrome (FAS) is the most severe form of a group of disorders known as 

Fetal Alcohol Spectrum Disorders (FASDs).  The disorder was first recognized in 1973 by Jones 

and colleagues and remains one of the leading causes of developmental disabilities worldwide.
1,2

 

Alcohol passes to the fetus through the blood stream, and currently there is no known safe level 

of alcohol use during pregnancy.
3 

 The estimated prevalence of FAS in the United States ranges 

from 0.2 to 1.5 infants for every 1,000 live births.  The full range of FASD’s are estimated to 

affect as many as 2% to 5% of the population in the United States and Western European 

Countries.
4
   FAS is characterized by four broad areas of clinical features including abnormal 

facial features (smooth philtrum, short palpebral fissures, and thin upper lip), growth retardation, 

central nervous system dysfunction, and alcohol use during pregnancy.
5
  The developmental 

outcomes can range from mild cognitive deficits to severe impairment, and can result in severe 

problems in memory, executive function, and adaptive behavior.
5,6,7,8,9 

  

1.2 Nutrition and FASD’s 

Proper maternal nutrition is necessary for optimal fetal growth.  Women with poor 

nutritional status during pregnancy can give birth to children with low birth weight, physical 

abnormalities, delayed cognitive development, and poor overall health.  Alcohol use during 

pregnancy can displace essential nutrients and deprive the developing fetus of the nutrition 

necessary for proper growth and development.
10

 Micronutrients such as vitamin A, DHA, zinc, 

calcium, folate, and choline serve a variety of roles in fetal development.  Animal models using 

micronutrient supplementation have shown beneficial results in prevention of fetal alcohol 

effects.  Human studies are needed to examine the association between micronutrient 
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supplementation and FASD outcomes.  Maternal supplementation with these micronutrients has 

been the focus of recent research as part of the Collaborative Initiative on Fetal Alcohol 

Spectrum Disorders (CIFASD) in Ukraine.
11

 The current project aims to examine the role of 

maternal nutrition on FASD outcomes.     

1.3 Alcohol Exposure and Growth 

Alcohol exposure can affect prenatal and postnatal growth including height, weight, head 

circumference, and brain growth.   The severity of growth restriction can vary with timing and 

quantity of exposure.  Heavy alcohol exposure and binge drinking have the greatest effect on 

preterm birth and growth restriction, with several studies showing a dose-response relationship 

between alcohol consumption and preterm birth, small birth size, and low birth weight.
12,13-15

  

The timing of alcohol exposure necessary to produce effects is widely debated, with studies 

showing a significant association between heavy alcohol exposure in second trimester and small 

birth size, and no association between alcohol exposure in first trimester and birth size.
14

  

Alcohol exposure affects overall head circumference as well as individual structures in a variety 

of regions of the brain.  These regions include the cerebellum, the corpus callosum, the basal 

ganglia, and the frontal cortex.
16

 Imaging techniques such as magnetic resonance imaging (MRI) 

have shown significant reductions in brain size and shape, reductions in frontal lobe and basal 

ganglia size, and reduction in cerebellar volume with prenatal alcohol exposure.
17 

Ultrasound 

technology could be used as an early predictor of the effects of prenatal alcohol exposure on the 

brain.  Few studies examine this effect and show conflicting results with one study showing no 

association between alcohol exposure and ultrasound measures of brain growth, and others 

showing a significant association between ultrasound measures of frontal lobe size in utero in 

alcohol exposed groups.
18,19,20
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1.4 Alcohol Exposure and Development 

The impact of fetal alcohol exposure includes growth restriction, diminished cognitive 

ability, physical malformations, and behavior abnormalities and extends throughout the lifetime 

of an individual.  Many neurological and behavioral abnormalities can result from prenatal 

alcohol exposure including intellectual performance, attention, learning and memory, language, 

executive functioning, fine and gross motor skills, social skills, and adaptive behavior.
17,21 

 

Children with FASD’s are at an increased risk for seizure disorders, cerebral palsy, and visual-

motor deficits.
5
 These abnormalities result in poor educational outcomes, communication 

deficits, and poor reasoning and judgment.  There is no cure for FASD’s, however, educational 

and environmental interventions can improve development.  Treatment options include 

medications for some symptoms, behavior and education therapy, parent training, and special 

education and social services.
2
   

1.4 Purpose of Study 

The teratogenic effects of alcohol on physical features, growth, cognition, behavior, and 

infant outcomes have been studied extensively since first discovered in 1973 by Jones and 

colleagues.
1
 The consequences of prenatal alcohol exposure are well known, and extend into 

adulthood.  Early diagnosis of FASD’s is necessary to ensure proper educational interventions 

and prevent adverse outcomes later in life.
22

 Imaging techniques such as magnetic resonance 

imaging (MRI) and prenatal ultrasounds have shown promise in detecting brain structure 

abnormalities that may result from alcohol exposure.  The effect of prenatal alcohol exposure on 

cognition and postnatal growth restriction can cause lasting effects.  Folate has demonstrated the 

ability to mitigate the effects of prenatal alcohol exposure on development.  The purpose of this 

study is to identify the effects of prenatal alcohol exposure on prenatal and postnatal growth and 
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infant development using ultrasound imaging. The results have implications for whether 

ultrasound can be used as an early identification tool for prenatal alcohol effects, and whether if 

maternal folate supplementation can mitigate the detrimental effects of prenatal alcohol exposure 

on growth and infant development.  
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REVIEW OF THE LITERATURE 

2.1 Prevalence and Characteristics of FASD’s 

 The prevalence of FASD’s is difficult to determine due to the complex nature of the 

diagnosis.  Centers for Disease Control and Prevention (CDC) studies using medical records 

have estimated the prevalence of FAS to range from 0.2 to 1.5 infants for every 1,000 live 

births.
23

 Another CDC study has estimated approximately 0.3 out of every 1,000 children aged 7-

9 suffers from FAS.
24

 Additional studies estimate the full range of FASD’s to be as high as 20 to 

50 out of 1,000 school children in the United States and Western Europe.
25

  Studies have shown 

that approximately 7.6% of pregnant women in the U.S. report using alcohol during pregnancy 

and 1.4% of pregnant women report binge drinking in the past 30 days.
26,27

  However, the true 

prevalence of drinking during pregnancy is likely underreported due to the stigma associated 

with it.  Fetal alcohol syndrome is estimated to cost an individual approximately $2 million over 

their lifetime, and is estimated to cost the United States over $4 billion annually.
28

  

Globally, the issue is more complex due to limited resources, lack of surveillance and 

underreporting.  In South Africa the prevalence of FAS ranges from 40.5 to 46.4 out of every 

1,000 children aged 5-9 years according to one study conducted in a small community in the 

Western Cape.
29

 Additional studies in South Africa estimate the prevalence ranges from 19 to 

89.2 children out of every 1,000.
30,31

 In Australia one study indicated that approximately 60% of 

non-indigenous women reported drinking during pregnancy.
32

  A separate national survey 

indicated that approximately 20% of indigenous Australian women reported alcohol use during 

pregnancy.
33,34

  The prevalence of FASD’s are estimated to be 0.01 to 1.7 for every 1,000 live 

births in Australia, however these estimates likely underestimate the true prevalence due to lack 

of routine assessment and screening, and a lack of national diagnostic criteria.
33

  In Ukraine, 
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heavy episodic drinking is common among women with 92.7% of women reporting being ever-

drinkers in one study.  The same study indicated that 54.8% of ever drinking women reported 

drinking in the month around conception, and 46.3% continued to drink during pregnancy.
35

   

The characteristics of fetal alcohol syndrome include facial, growth, and central nervous 

system abnormalities when prenatally exposed to alcohol.  Facial dysmorphia includes three 

sentinel facial features including smooth philtrum, thin vermillion border, and small palpebral 

fissures.
5,7,8,9

 Facial dysmorphia must be present in all three sentinel features with palpebral 

fissure length at or below the 10
th

 percentile, adjusted for gestation, age, sex and race, and 

philtrum and upper vermillion ranked at a 4 or 5 on the Lip-Philtrum Guide.
5,9,36

  Growth 

retardation is determined by prenatal or postnatal height or weight at or below the 10
th

 percentile, 

adjusted for gestation, age, sex and race.
5,36,37,38,39

  Central nervous system abnormalities include 

structural abnormalities observed through imaging or head circumference at or below the 10
th

 

percentile adjusted for age and sex, neurological problems including soft neurological signs, and 

deficits in cognitive ability or performance.
5
  Additional diagnoses in the FASD spectrum 

include partial FAS (pFAS), characterized by at least two of the three criteria above in the 

presence of confirmed alcohol exposure, and Alcohol Related Neurodevelopmental Disorder 

(ARND), characterized by cognitive deficits when alcohol exposure is confirmed.
40

   

2.2 Prenatal Alcohol Exposure and Fetal Growth 

 Prenatal and postnatal growth deficiency was first recognized in patients with prenatal 

alcohol exposure in 1973 by Jones and colleagues.
1
  The primary growth parameters associated 

with fetal alcohol syndrome include height, weight, and head circumference.
5
  The severity of 

growth retardation varies by timing and quantity of alcohol exposure.  There are conflicting 

results on the effect of drinking low-to-moderate amounts of alcohol on fetal growth and preterm 
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birth.  A systematic review by Henderson, et al. found inconsistent evidence with some studies 

showing a protective effect on growth, and others showing a detrimental effect on growth.
41 

 A 

cohort study from Western Australia reported little difference in infant outcomes with low-to-

moderate drinking compared to those who did not drink during pregnancy.  Binge drinking and 

heavy drinking in this study were significantly associated with preterm birth and small for 

gestational age, however, this association was eliminated after controlling for smoking.
12

  

Studies have shown a significant trend toward low birth weight with increasing alcohol 

consumption.
13,14,15

 Binge drinking during second trimester was significantly associated with 

small birth size; however, no association was found with alcohol exposure during first 

trimester.
14

  Similar results were found in other studies with a dose-response relationship 

between alcohol consumption and preterm birth, small birth size and low birth weight.
15

   

 Head circumference is included in central nervous system abnormalities due to the effect 

on brain development and cognition.
5 

Alcohol exposure not only affects overall head 

circumference but leads to structural abnormalities in a variety of regions of the brain.  These 

regions include the cerebellum, the corpus callosum, the basal ganglia, and the frontal cortex.
16

 

Research using magnetic resonance imaging (MRI) has shown significant reductions in overall 

brain size and shape, reduction in frontal lobe size, reduction in cerebellar volume, agenesis of 

the corpus callosum, and reduction in size of the basal ganglia.
17

 The damage to the central 

nervous system is thought to be a result of the cytotoxicity and mutagenic nature of ethanol on 

cells.
21

   

 Ultrasound technology could be used as an early predictor of the effects of prenatal 

alcohol exposure on the brain.  Ultrasonography has been used as a tool to identify conditions 

such as Down’s syndrome and lethal trisomies.  Prenatal intracranial measurements, such as 
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frontothalamic distance and caval-calvarial distance have shown significant associations with 

fetal frontal lobe size in fetuses with these syndromes that appear normal on other measures.
42

 

Currently, few studies examine the potential benefit of using this technology to identify the 

effects of alcohol exposure on the developing fetus.   One study showed no association between 

alcohol exposure and head circumference and transcerebellar diameter in utero, however, the 

study did not assess the effect on the frontal cortex.
18

 Another study using similar intracranial 

measurements including frontal lobe measurements showed a significant relationship in the 

variance of frontal lobe size in utero among the alcohol exposed group.
19

  A pilot study from the 

Ukraine further studied this relationship and found significant differences in femur length, caval-

calvarial distance, and frontothalamic distance in alcohol exposed fetuses during second 

trimester ultrasound examinations.  Third trimester ultrasound examinations showed similar 

results for frontothalamic distance and showed a significant reduction in orbital diameter.
20

 

These results are similar to a mouse model showing brain malformations during critical periods 

for neural, ocular and craniofacial development.
43

 

2.3 Prenatal Alcohol Exposure and Infant Development 

 Prenatal alcohol exposure can result in a variety of structural, neurological and functional 

deficits.  The effect of alcohol exposure on the central nervous system has been studied 

extensively over the last 30 years, showing short term and long term cognitive outcomes.  

Neurological damage can include seizures, visual motor difficulties, and motor control issues.
5
   

Seizures have been observed in 3 to 21% of children with FASD’s, with binge drinking during 

early pregnancy resulting in a 3.15 fold increased risk of neonatal seizures.
44,45,46

 Cerebral palsy 

(CP) is an umbrella term for abnormal motor control, and studies have shown a relationship 

between heavy prenatal alcohol exposure and CP.
47,48 
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Neurological and behavioral abnormalities associated with heavy prenatal alcohol 

exposure include overall intellectual performance, attention, learning and memory, language, 

executive functioning, fine and gross motor skills, social skills, and adaptive behavior.
17,21 

 

Neuroimaging studies using magnetic resonance imaging (MRI) have been used to show the 

structural damage to the brain caused by prenatal alcohol exposure.  Numerous studies have used 

imaging to relate the structural damage to the brain with neurological and behavioral deficits in 

children with FAS.
49-53

 According to one study, children with FAS have a mean IQ score of 

approximately 74.
54 

 Additional studies indicate that the average IQ score is between 65 and 72, 

and scores can range from severe mental retardation to normal ranges.
55,56 

 Moderate-to-heavy 

prenatal alcohol exposure can impact learning and memory by reducing the ability to encode 

information rather than retrieve information.
57

   

Individuals with FASD’s also have poor receptive and expressive language skills, which 

may contribute to impaired interpersonal communication.
58 

Individuals with FAS have similar 

attention and activity problems to those with Attention Deficit/Hyperactivity Disorder (ADHD) 

and are often diagnosed with ADHD and prescribed stimulant medication.
59

 Alcohol exposure 

also contributes to adaptive behavior deficits, including daily living skills, socialization, and 

communication, which can be exacerbated by ADHD.
60

 There are distinct differences between 

the pattern of adaptive function deficits between individuals with FAS and those with ADHD, 

and the socialization and communication deficits tend to persist with age for individuals with 

FAS.
61

 Executive function, or higher-order cognitive processes, are significantly impaired in 

individuals with FAS.  Specific executive function deficits include decision making, 

organization, working memory, and set-shifting.
62

 Deficits in non-verbal executive functioning 

can predict poor adaptive behavior in children with both FAS and ADHD.
63
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2.4 Micronutrients and FASD’s 

 Maternal nutrition is required to produce healthy offspring, and pregnant women with 

poor nutritional status deliver children small for gestational age, with physical malformations, 

behavioral disorders, and delayed cognitive development. When nutritional status is 

compromised with alcohol, many essential nutrients are not absorbed, leading to poor 

development for the fetus.
10 

Ethanol alters the uptake of glucose, amino acids and other critical 

nutrients and alters pathways to regulate biochemical processes.
64

 Nutrients such as vitamin A, 

choline, DHA, zinc, and folic acid influence neuronal development in a variety of ways.
10

 

Vitamin A (retinol) is required for cell differentiation and growth, and must be converted 

to a usable form within the liver in order to be absorbed.
65

 Alcohol use during pregnancy can 

reduce the amount of vitamin A available for the fetus by competing for alcohol dehydrogenase, 

the rate-limiting step in retinol oxidation.
66

 Depletion of vitamin A results in reduced cellular 

control and cell signaling in fetal development, and impaired neuronal growth and 

differentiation.  Animal models have shown beneficial results with retinol supplementation 

during pregnancy; however, excess retinol intake can lead to fetal malformations.
65,67

 Therefore, 

vitamin A supplementation programs should be carefully designed. 

Choline and metabolites are required for cell structure integrity, cell signaling, and 

neurotransmission
 
by serving as the precursor to acetylcholine in the developing brain.

68 
Alcohol 

decreases the amount of choline available for these processes by competing for water in choline-

related reactions.
10

 During pregnancy, large amounts of choline are delivered to the fetus across 

the placenta and choline biosynthesis is enhanced. Alcohol exposure reduces the availability of 

methyltetrahydrofolate, the metabolically active form of folate for the human body, increasing 

the demand for choline.
69

 Choline is necessary for neural tube formation in utero, and choline 
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deficiency can affect stem cell proliferation and increase apoptosis in the brain.
70

 Alcohol creates 

an extra demand for choline during pregnancy which leads to choline deficiency and abnormal 

fetal development.
69

   

Choline supplementation during pregnancy has been studied in both animal and human 

studies.  Animal models using rats have demonstrated conflicting results with some showing 

mitigated spatial memory deficits and others showing no benefits in spatial learning deficits.
71,72

  

Additionally, animal models have shown reduced hyperactivity and behavior alterations.
72,73

  

Choline supplementation also prevented neuronal effects and reduced hypermethylation in the 

hippocampus and pre-frontal cortex of the brain.
74,75 

 An observational study examining the 

effects of choline in pregnancy demonstrated mild increases in child memory and nonverbal 

communication in 7 year old children.
76 

Limited human studies exist relating choline 

supplementation and alcohol exposure, however; the results of a phase 1 clinical trial indicate 

tolerable results with minimal adverse effects.
77

  

Zinc is involved in DNA and RNA stability, RNA polymerase activity, and serves as a 

cofactor in enzyme synthesis, such as superoxide dismutase responsible for preventing apoptosis 

in the brain.
10,78

 Zinc deficiency during pregnancy can produce fetal death, intrauterine growth 

restriction, and teratogenesis, as well as behavioral abnormalities postnatally.
79

 Alcohol 

consumption decreases the amount of zinc available through the placenta, which can result in 

increased embryonic oxidative stress leading to increased apoptosis, and oxidative damage to 

DNA, lipids and proteins.
80

 Animal models studying the relationship between ethanol exposure 

and zinc supplementation demonstrate conflicting results in reduction of physical abnormalities, 

mortality, Purkinje cell loss, and placental uptake.
78,81-83
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Folic Acid (folate) is an essential B vitamin that functions as a coenzyme in nucleic acid 

synthesis and amino acid metabolism.  Folate is also involved in many reactions including DNA 

methylation required for proper cell division.
84

 Folate is responsible for proper fetal growth and 

development and the demand increases during pregnancy.
85

 Animal and cell studies suggest that 

alcohol impairs folic acid transport across the placenta.
86

 Folate deficiency and alcohol 

consumption during pregnancy may also produce neural tube defects, congenital heart defects, 

and limb malformations.
85

 Studies have shown that folic acid may mitigate the effects of alcohol 

use during pregnancy by reducing the oxidative stress to the fetus.
87

 Chronic and heavy alcohol 

use is significantly associated with impaired folate transport, reduced folate in cord blood, and 

reduced cognitive function using Bayley Scales of Infant Development.
85 

One animal study of 

chronic ethanol exposure indicated no significant reduction in teratogenic effects such as growth 

restriction, brain weight, and hippocampus weight with folate supplementation.
88

 However, 

additional animal studies have shown significant reductions in intrauterine growth restriction, 

ethanol-induced cardiac defects, and increased placentation and embryogenesis with folate 

supplementation.
89,90

 Few human studies exist to analyze the mitigating effect of maternal folate 

supplementation on alcohol teratogenesis. 

2.5 The current study  

 The current study aims are (1) to examine the association between alcohol exposure and 

prenatal and postnatal growth and infant development outcomes, and (2) to examine the impact 

of maternal folate levels on the effects of prenatal alcohol exposure.  The impact of alcohol on 

prenatal growth measurements will be obtained through ultrasonography, and will have 

implications for whether the effects of prenatal alcohol exposure can be detected in utero.  The 

effect of micronutrient supplementation and maternal blood folate levels will also be assessed to 
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determine the impact of folate on fetal growth.  We hypothesize that increased levels of alcohol 

exposure will lead to a decrease in head circumference, fetal weight, abdominal circumference, 

femur length, biparietal diameter, and individual brain measurements during second and third 

trimester.  We also hypothesize that fetal growth measurements will be greater among mothers 

who take micronutrient supplementation, and that maternal folate levels in the normal and 

elevated range will relate to greater fetal growth measurements compared to mothers with folate 

in the deficient range.   

 The impact of prenatal alcohol exposure on postnatal growth outcomes including birth 

weight, birth length, birth head circumference, and palpebral fissure length will be assessed and 

compared among micronutrient supplementation groups.  We hypothesize that birth weight, 

length, and head circumference will be lower in the alcohol exposure group, and that 

micronutrient supplementation will relate to increases in these growth measurements.  The 

relationship between maternal folate levels during second and third trimester and birth growth 

outcomes will be also be assessed.  We hypothesize that maternal folate levels in the normal and 

elevated range will lead to greater birth growth measurements compared to those deficient in 

folate.   

 The impact of prenatal alcohol exposure on infant development outcomes including 

Bayley Scales of Infant Development-II Mental Development Index (MDI) and Psychomotor 

Development Index (PDI) will be assessed and compared among groups randomized to 

micronutrient supplementation.  We hypothesize that Bayley MDI and PDI scores will be lower 

in the alcohol exposure group compared to controls and micronutrient supplementation will lead 

to an increase in scores on these measures.  The relationship between maternal folate levels 

during second and third trimester and infant development outcomes will be also be assessed.  We 
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hypothesize that maternal folate levels in the normal and elevated range will lead to greater 

scores compared to those deficient in folate.   

3.1 Methods 

Study Design.   

A prospective cohort study with randomization of maternal nutritional supplements was 

conducted between 2007 and 2012 in two sites of Western Ukraine as part of the Collaborative 

Initiative on Fetal Alcohol Spectrum Disorders (CIFASD).
91

 The study protocol was approved 

by the institutional review board at Lviv Medical University in Ukraine and the institutional 

review board at the University of California, San Diego.  All study participants provided written 

informed consent.  The study recruited 370 women who drank moderate to heavy amounts of 

alcohol during pregnancy, and 322 women who did not drink alcohol during pregnancy.  

Subjects were identified for the alcohol exposure group based on quantity and frequency of 

alcohol consumption during pregnancy.  The women were further separated into micronutrient 

supplement intervention groups in which half of the women within each alcohol exposure group 

were assigned a daily multivitamin supplement (Theravit
®

), and half received standard prenatal 

care.   

At each of the two study sites in Ukraine, standard ultrasound examinations were 

performed throughout pregnancy.  Additional study specific brain growth and facial 

measurements were incorporated during second and third trimester of pregnancy to identify 

alcohol specific fetal growth anomalies.  Blood and urine samples were also taken from women 

during second and third trimester of pregnancy.  Micronutrient concentration including zinc, 

copper, calcium, magnesium, iron, vitamin B12, choline, folate, β-carotene, vitamin C, lycopene, 
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thiamin, lutein, vitamin D and retinol was assessed.  The blood samples were also tested for 

high-sensitivity C-reactive protein, total protein and triglycerides.   

After birth, information was collected on growth, physical features, and other 

developmental factors.  Growth information included birth weight, birth length, and birth head 

circumference.  Physical feature information including palpebral fissure length, philtrum, and 

upper lip measurements were obtained.  At six-months and twelve-months of age, children were 

invited to return to the study site for developmental assessment using Bayley Scales of Infant 

Development-II.
92 

Study participants 

Women were recruited during their first prenatal visit at two prenatal care facilities in 

Western Ukraine.  From 2007 to 2014, greater than 11,000 pregnant women were screened for 

alcohol use.  The screening instrument was administered by a nurse using a set of 17 questions 

on maternal demographics, tobacco and illicit drug use, medication use, and pregnancy history.  

For those reported as ever using alcohol an additional eight questions were included about 

quantity and frequency of alcohol use.
93

   All women who reported at least weekly binge-

drinking episodes in which 5 or more drinks were consumed, at least 5 episodes in which 3-4 

drinks were consumed, or at least 10 episodes of 1-2 drinks consumed in either the month of 

conception or the most recent month of pregnancy were invited to participate.  The comparison 

group was selected from the non-drinking women meeting screening criteria (no binge episodes 

and minimal or no alcohol use in the month around conception or the most recent month of 

pregnancy) at a 1:1 ratio.   
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After enrollment in the study, an in-person interview by the study nurse at each facility 

was conducted to obtain demographic information including education, occupation, maternal 

age, parity, gravidity, multivitamin use and tobacco use.  Socioeconomic status was calculated 

from education and occupation information using the Hollingshead Scale.
94

   

Measures  

 Independent variables in the analysis include alcohol exposure group identified during 

initial maternal interview as women reporting binge-drinking episodes or heavy alcohol 

consumption in either the month of conception or the most recent month of pregnancy, the 

comparison group was selected from women not meeting screening criteria.  Multivitamin 

supplementation group was randomly assigned at recruitment with half of each alcohol exposure 

group receiving a daily multivitamin supplement (Theravit
®
) and half receiving standard prenatal 

care.  Absolute ounces of alcohol per day at conception is determined from reported type and 

quantity of drinking during each week during the month around conception which is converted 

into absolute ounces of alcohol per week, then divided by seven days.  Serum folate 

concentration (ng/mL) is obtained by blood sample at two time points during pregnancy, 

typically during mid-second trimester and mid-third trimester.  Serum folate concentration 

during each trimester is then categorized into clinically significant blood folate levels with 

elevated blood folate equivalent to >20 ng/mL, normal blood folate equivalent to 6-20 ng/mL, 

and deficient blood folate equivalent to <6 ng/mL.    

 Dependent variables in the analysis include fetal growth, birth growth, and infant 

development outcomes.  Fetal growth measurements were obtained by ultrasound examination at 

initial prenatal visit and follow-up visits during second and third trimester of pregnancy.  

Standard prenatal growth outcomes obtained by ultrasound include head circumference (mm), 
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estimated fetal weight (g), femur length (mm), abdominal circumference (mm), and biparietal 

diameter (mm) measured as the distance between the two parietal eminences.  Additional study 

specific growth measurements were obtained by ultrasound including transverse cerebellar 

diameter (TCD) measured as the maximum diameter between cerebellar hemispheres, 

frontothalamic distance (FTD) measured as the distance between the inner surface of the frontal 

bone to the posterior thalamus, occipitofrontal diameter (OFD) measured as the distance between 

the occipital bone to the frontal bone, caval-calvarial distance (CCD) measured as the distance 

between the inner surface of the frontal bone and the posterior margin of the cavum septi 

pellucidum, and orbital diameter (OD) measurements.  Birth growth outcomes include birth 

weight (g), birth length (cm), birth occipitofrontal head circumference (cm), and palpebral 

fissure length (cm).  Infant development outcomes are measured at 6 and 12 months of age with 

Bayley Scales of Infant Development-II (BSID-II).  The BSID-II Mental Development Index 

(MDI) and Psychomotor Development Index (PDI) assessment measures mental, physical, 

emotional, and social development of children less than three years of age.  

 To address potential confounding, gestational age in weeks at initial maternal interview, 

at exam, or at birth was included in the analysis depending on the outcome of interest.  Child sex 

identified at birth was factored into the analysis along with socioeconomic status based on 

Hollingshead category ratings derived from education and occupation information with one 

being the highest and five being the lowest; Hollingshead categories four and five are considered 

below average socioeconomic status.  Subjects were recruited from two study sites in Ukraine, 

the Rivne Regional Medical Diagnostic Center and the Khmelnytsky Perinatal Center.  Testing 

site was factored into the analysis to control for differences in methods or populations between 

each site.  Maternal smoking status during pregnancy categorized as current smoker, past 
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smoker-quit during pregnancy, past smoker-quit pre-pregnancy, or never smoker was included to 

control for the effect of tobacco use on fetal growth.  Maternal age at interview, gravidity, and 

multivitamin use in early pregnancy were also factored into the analysis. 

  Data Analysis 

 Statistical analysis was performed using Statistical Package for the Social Sciences 

(SPSS) statistical software for windows version 22.0.  Maternal folate levels during second and 

third trimester among alcohol exposed and unexposed pregnancies by multivitamin 

supplementation group was assessed using chi-square tests.  Maternal demographic, nutritional, 

reproductive, and lifestyle characteristics were compared between alcohol exposed and 

unexposed pregnancies by second trimester blood folate levels using ANOVA for continuous 

variables and Chi-square tests for categorical variables.  Maternal demographic, nutritional, 

reproductive and lifestyle characteristics, were compared between alcohol exposed and 

unexposed pregnancies by multivitamin supplementation group using ANOVA for continuous 

variables and Chi-square tests for categorical variables.  Fetal growth outcomes were compared 

using ANCOVA, adjusting for gestational age at exam, among alcohol exposed and unexposed 

pregnancies by multivitamin supplementation group. The association between absolute ounces of 

alcohol per day at conception and fetal growth measurements adjusted for gestational age was 

assessed using simple linear regression.  Birth growth outcomes were compared using 

ANCOVA, adjusting for gestational age at birth, among alcohol exposed and unexposed subjects 

by multivitamin supplementation group.  Gestational age at birth, palpebral fissure length, and 

Bayley Scales of Infant Development at 6 and 12 months of age were analyzed using ANOVA to 

compare alcohol exposed and unexposed subjects and multivitamin supplementation group.  The 

association between absolute ounces of alcohol per day at conception and birth growth 
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measurements adjusted for gestational age, palpebral fissure length, and Bayley Scales of Infant 

Development-II were assessed using simple linear regression.  Variables significantly associated 

with alcohol exposure or absolute ounces of alcohol per day at conception were analyzed using 

generalized linear regression models to assess the impact of alcohol use, multivitamin 

supplementation, and blood folate levels on these outcomes. 

3.2 Results 

 A total of 754 women were recruited from 2008 to 2014, of these women a total of 691 

had live born children.  Among the 691 live infants, a total of 670 mothers had at least one blood 

folate sample, and at least one ultrasound performed.  The alcohol exposure groups consisted of 

306 women with confirmed alcohol use, 49 women with highly suspected alcohol use, and 315 

women with no alcohol use during pregnancy.  The women with highly suspected alcohol use 

were removed from the analysis due to the lack of reliable reporting of alcohol consumption.  

Alcohol use was considered highly suspected by the interview nurse if alcohol use was 

acknowledged but information about timing and quantity of use was not believed to be accurate.  

The first maternal interview was performed at a mean gestational age of 18.57 weeks.  Blood 

samples and ultrasound measurements were taken at interview date and follow-up visits during 

second and third trimester.   

Blood folate levels in alcohol-exposed and unexposed pregnancies by multivitamin 

supplementation group are reported in Table 1.  There was no significant difference between 

blood folate levels in alcohol exposed and unexposed pregnancies by multivitamin 

supplementation group during second trimester; however, blood folate levels were significantly 

different between alcohol exposure groups and multivitamin supplementation groups during third 

trimester (p=0.001).  The alcohol exposure group had a greater percentage of subjects in the 
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deficient range with 26.6% deficient in the MVM supplement group and 45.3% deficient in the 

no MVM supplement group.  Among the alcohol unexposed group, a greater percentage of 

subjects were in the elevated range with 38.4% elevated in the MVM group and 18.2% elevated 

in the no MVM group, and a greater percentage of subjects were in the normal range with 26.5% 

normal in the MVM group and 60.6% normal in the No MVM group. 

Table 1: Blood folate levels in alcohol-exposed and comparison pregnancies, assessed during second and 

third trimester by multivitamin supplementation group. 

Folate Levels Alcohol Exposed 

(n=170)* 

Alcohol Unexposed  

(n=170)* 

Statistic p-value 

 MVM 

Supplement 

(n=95) 

No MVM 

Supplement 

(n=75) 

MVM 

Supplement 

(n=97) 

No MVM 

Supplement 

(n=73) 

  

Second Trimester       

Elevated (>20 ng/mL) 20.0% 20.0% 35.1% 26.0% X
2

(2)<1 NS 

Normal (6-20 ng/mL) 51.6% 57.3% 56.7% 57.5%   

Deficient (<6 ng/mL) 28.4% 22.7% 8.2% 16.4%   

Third Trimester       

Elevated (>20 ng/mL) 25.0% 14.7% 38.4% 18.2% X
2

(2)=13.28 0.001 

Normal (6-20 ng/mL) 48.4% 40.0% 26.5% 60.6%   

Deficient (<6 ng/mL) 26.6% 45.3% 15.1% 21.2%   

* Sample size varies depending on missing values. 

MVM=Multivitamin Supplementation Group 

Maternal demographic, nutritional, health and reproductive characteristics are reported in 

Table 2, by alcohol exposure and blood folate level during second trimester.  Women who drank 

alcohol during pregnancy were more likely to be unmarried, have a greater number of prior 

pregnancies, and less likely to use multivitamins during the first maternal interview before 

enrollment in the study.  Multivitamin supplement use during early pregnancy was significantly 

associated with an increase in blood folate level during second trimester (p<0.001).  Gestational 

age at first maternal interview was significantly associated with both alcohol exposure group and 

blood folate levels (p<0.001), with later gestational age at maternal interview for the alcohol 

exposure group and later gestational age for the deficient and normal blood folate levels 

compared to the elevated group.  Gestational age at second trimester ultrasound was significantly 



21 

 

greater in the alcohol exposure group (p=0.011), but was not significantly associated with blood 

folate levels.   

Maternal demographic, nutritional, health and reproductive characteristics are reported in 

Table 3, according to alcohol exposure and multivitamin supplementation group.  Gestational 

age at maternal interview was significantly higher in the alcohol exposed group compared to 

unexposed and significantly lower in the multivitamin supplementation group compared to those 

receiving standard prenatal care (p<0.001).  Serum folate concentration during 3
rd

 trimester visit 

was significantly lower in the alcohol exposure group (p=0.008) and higher in the multivitamin 

supplementation group (p<0.001).  The number of prenatal visits was higher in the no 

supplement group (p=0.002) compared to the supplement group, but not associated with alcohol 

exposure.  The alcohol exposure group had higher number of previous pregnancies on average 

compared to the unexposed group (p=0.024).  

 Fetal growth outcomes, adjusted for gestational age at second trimester ultrasound, for 

alcohol exposed and unexposed pregnancies by multivitamin supplementation group are 

presented in Table 4.  Alcohol exposure was significantly associated with an increase in 

estimated fetal weight (R
2
=0.757, F(1,279)=5.67, p=0.018) at second trimester.  Multivitamin 

supplementation was significantly associated with a decrease in orbital diameter (R
2
=0.273, 

F(1,488)=4.43, p=0.036) at second trimester.  No significant interactions were found between 

alcohol exposure groups and multivitamin supplementation groups during second trimester. 

  Fetal growth outcomes, adjusted for gestational age at third trimester ultrasound, for 

alcohol exposed and unexposed pregnancies by multivitamin supplementation group are 

presented in Table 5.  Alcohol exposure group was significantly associated with a decrease in 

estimated fetal weight at third trimester (R
2
=0.655, F(1,491)=4.02, p=0.045), abdominal 
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circumference at third trimester (R
2
=0.690, F(1,493)=7.02, p=0.008), biparietal diameter at third 

trimester (R
2
=0.529, F(1,493)=7.33, p=0.007), transverse cerebellar diameter at third trimester 

(R
2
=0.552, F(1,399)=8.86,p=0.003), caval-calvarial distance at third trimester (R

2
=0.325, 

F(1,491)=5.46,p=0.020), and orbital diameter at third trimester (R
2
=0.158, F(1,485)=5.72,p=0.017).  

Multivitamin supplementation groups were not significantly associated with any third trimester 

growth outcomes.  No significant interactions were found between alcohol exposure groups and 

multivitamin supplementation groups during third trimester. 
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Table 2: Maternal demographic, nutritional, health and reproductive characteristics by alcohol exposure and blood folate level during second trimester. 

Characteristic Alcohol Exposed (n=170) Alcohol Unexposed (n=170) Statistic p-value 

 Elevated Folate  

>20 ng/mL 

(n=34) 

Normal Folate  

6-20 ng/mL 

(n=92) 

Deficient Folate 

<6 ng/mL 

(n=44) 

Elevated Folate 

>20 ng/mL 

(n=53) 

Normal Folate 

6-20 ng/mL 

(n=97) 

Deficient Folate 

<6 ng/mL 

(n=20) 

  

Unmarried 70.6% 76.1% 59.1% 5.7% 8.2% 10.0% X
2
(2)=8.49 0.014 

Low Socioeconomic Status* 32.4% 28.3% 40.9% 11.3% 19.6% 5.0% X
2
(2)=2.09 NS 

High School Graduate 94.1% 85.9% 95.5% 100% 95.9% 100% X
2
(2)=5.88 NS 

Multivitamin Use during pregnancy 97.1% 63.0% 43.2% 98.1% 75.3% 40.0% X
2

(2)=56.70 <0.001 

Unemployed in last 12 months 32.4% 37.0% 45.5% 43.4% 32.0% 30.0% X
2
(2)=1.07 NS 

Smoker         

Current  17.6% 23.9% 25.6% 0% 2.1% 0% X
2
(6)=7.19 NS 

Past, quit during pregnancy 29.4% 26.1% 30.2% 5.8% 2.1% 0%   

Past, quit pre-pregnancy 17.6% 12.0% 9.3% 9.6% 6.3% 0%   

Never 35.3% 38.0% 34.9% 84.6% 89.6% 100%   

Maternal age (years) 28.06 

(5.59) 

24.97 

(4.88) 

24.52 

(6.09) 

25.17 

(3.53) 

25.63 

(4.74) 

24.05 

(4.35) 

EtOH: F(1,619)<1 

FOL: F(2,337)=2.88 

NS 

NS 

GA at interview (weeks) 15.06 

(4.82) 

18.32 

(5.45) 

20.23 

(5.28) 

16.01 

(3.88) 

17.64 

(5.16) 

18.09 

(4.29) 

EtOH: F(1,619)=30.48 

FOL: F(2,337)=12.04 

<0.001 

<0.001 

GA at 2
nd

 trimester ultrasound 

(weeks) 

20.20 

(1.51) 

21.00 

(2.18) 

21.19 

(2.79) 

20.31 

(1.43) 

20.53 

(1.55) 

20.60 

(1.73) 

EtOH: F(1,503)=6.46 

FOL: F(2,304)=2.80 

0.011 

NS 

Serum folate 2
nd

 trimester (ng/mL) 38.78 

(14.54) 

11.07 

(3.98) 

4.37 

(1.13) 

32.20 

(13.24) 

12.01 

(4.13) 

4.47 

(1.04) 

EtOH: F(1,337)=3.32 

FOL: F(2,336)=357.62 

NS 

<0.001 

Number of prenatal visits 3.79 

(2.54) 

3.98 

(2.31) 

4.18 

(2.39) 

3.60 

(1.96) 

4.15 

(2.66) 

4.30 

(3.37) 

EtOH: F(1,612)<1 

FOL: F(2,337)=1.07 

NS 

NS 

Gravidity 2.44 

(1.62) 

1.99 

(1.29) 

1.86 

(1.59) 

1.85 

(0.84) 

2.00 

(1.37) 

1.40 

(0.60) 

EtOH: F(1,618)=5.12 

FOL: F(2,337)=1.51 

0.024 

NS 

Parity 0.59 

(0.89) 

0.60 

(0.93) 

0.59 

(0.90) 

0.66 

(1.34) 

0.69 

(1.20) 

0.35 

(0.59) 

EtOH: F(1,618)<1 

FOL: F(2,337)<1 

NS 

NS 

  Alcohol use peri-conception 
Oz EtOH/per day  0.715 

(0.637) 

0.596 

(0.498) 

0.554 

(0.408) 

0.005 

(0.028) 

0 0 EtOH: F(1,619)=354.21 

FOL: F(2,337)=1.03 

<0.001 

NS 

Oz EtOH/per drinking day  2.809 

(3.626) 

1.698 

(1.521) 

1.263 

(0.725) 

0.038 

(0.195) 

0 0 EtOH: F(1,619)=276.99 

FOL: F(2,337)<1 

<0.001 

NS 

  Alcohol use first trimester 
Oz EtOH/per day  0.080 

(0.209) 

0.060 

(0.122) 

0.088 

(0.154) 

0 0 0 EtOH: F(1,619)=23.73 

FOL: F(2,337)=1.92 

<0.001 

NS 

Oz EtOH/per drinking day  0.536 

(1.053) 

0.354 

(0.586) 

0.545 

(0.721) 

0.002 

(0.011) 

0 0 EtOH: F(1,619)=98.62 

FOL: F(2,337)=3.11 

<0.001 

0.046 

Values are % or mean (SD).  

GA=Gestational Age; Oz=absolute ounces; EtOH=alcohol exposure groups; FOL=Blood Folate (ng/mL) 

*Socioeconomic status is based on Hollingshead categories 1-5 derived from education and occupation information with 1 being the highest; Hollingshead categories 4 and 5 are 

considered below average socioeconomic status. 
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Table 3: Maternal demographic, nutritional, health and reproductive characteristics by alcohol exposure and multivitamin supplementation group. 

Characteristic Alcohol Exposed (n=306) Alcohol Unexposed (n=315) Statistic p-value 

 MVM supplement 

(n=143) 

No supplement 

(n=163) 

MVM supplement 

(n=159) 

No supplement 

(n=156) 

  

Unmarried 37.8% 35.0% 7.5% 12.8% X
2
(1)<1  NS 

Socioeconomic Status Below average* 39.2% 37.4% 17.6% 14.7% X
2
(1)<1 NS 

High School Graduate 80.4% 88.3% 98.1% 96.8% X
2
(1)=1.44 NS 

Multivitamin Use during pregnancy 54.9% 53.4% 76.7% 67.3% X
2
(1)=2.61 NS 

Unemployed in last 12 months 47.6% 52.1% 38.4% 36.5% X
2
(1)<1 NS 

Smoker       

Current  26.1% 24.5% 0.0% 2.6% X
2
(3)<1 NS 

Past, quit during pregnancy 30.3% 25.8% 3.2% 3.2%   

Past, quit pre-pregnancy 9.2% 11.0% 7.6% 4.5%   

Never 34.5% 38.7% 89.2% 89.6%   

Maternal age (years) 26.11 

(5.82) 

25.98 

(5.81) 

25.87  

(4.29) 

26.47 

(5.04) 

EtOH: F(1,619)<1 

MVM: F(1,619)<1 

NS 

NS 

GA at interview (weeks) 18.62 

(7.02) 

21.16 

(6.54) 

16.74  

(5.57) 

17.70 

(5.44) 

EtOH: F(1,619)=30.48 

MVM: F(1,619)=13.14 

<0.001 

<0.001 

Serum Folate 3
rd

 trimester (ng/mL)  

 

15.35 

(12.18) 

11.07 

(10.36) 

19.83 

(15.54) 

13.33 

(9.64) 

EtOH: F(1,289)=7.15 

MVM: F(1,289)=15.74 

0.008 

<0.001 

GA at 3
rd

 trimester ultrasound (weeks) 33.39 

(2.86) 

33.00 

(2.59) 

33.10 

(2.76) 

32.85 

(2.27) 

EtOH: F(1,494)<1 

MVM: F(1,494)=1.75 

NS 

NS 

Number of prenatal visits 3.46 

(2.43) 

4.24 

(2.35) 

3.71  

(2.53) 

4.19 

(2.83) 

EtOH: F(1,612)<1 

MVM: F(1,612)=9.25 

NS 

0.002 

Gravidity 2.43 

(1.87) 

2.12 

(1.46) 

2.04 

(1.19) 

1.96 

(1.24) 

EtOH: F(1,618)=5.12 

MVM: F(1,618)=2.32 

0.024 

NS 

Parity 0.87 

(1.31) 

0.64 

(0.93) 

0.65 

(0.83) 

0.77 

(1.28) 

EtOH: F(1,618)<1 

MVM: F(1,618)<1 

NS 

NS 

Alcohol use peri-conception 

Oz EtOH/per day  0.691 

(0.634) 

0.616 

(0.589) 

0 0 EtOH: F(1,619)=354.21 

MVM: F(1,619)<1 

<0.001 

NS 

Oz EtOH/per drinking day  1.861 

(2.213) 

1.861 

(1.708) 

0.021 

(0.134) 

0.021 

(0.138) 

EtOH: F(1,619)=276.99 

MVM: F(1,619)<1 

<0.001 

NS 

Alcohol use first trimester 

Oz EtOH/per day  0.137 

(0.347) 

0.241 

(0.901) 

0 0 EtOH: F(1,619)=23.73 

MVM: F(1,619)=2.10 

<0.001 

NS 

Oz EtOH/per drinking day  0.553 

(0.904) 

0.780 

(1.403) 

0 0 EtOH: F(1,619)=98.62 

MVM: F(1,619)=3.65 

<0.001 

NS 

Values are % or mean (SD).  

MVM=Multivitamin supplementation group; GA=Gestational Age; Oz=absolute ounces; EtOH=alcohol.  

*Socioeconomic status is based on Hollingshead categories 1-5 derived from education and occupation information with 1 being the highest; Hollingshead 

categories 4 and 5 are considered below average socioeconomic status. 
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Table 4: Fetal growth outcomes, adjusted for gestational age during second trimester ultrasound, for alcohol 

exposed and unexposed pregnancies by multivitamin supplementation group. 

Outcomes Alcohol Exposed (n=217) Alcohol Unexposed (n=288) Statistic p-value 

 MVM supplement 

(n=108) 

No supplement 

(n=109) 

MVM supplement 

(n=145) 

No supplement 

(n=143) 

  

GA at ultrasound  

(weeks) 

20.87 

(2.26) 

20.74 

(2.10) 

20.42 

(1.37) 

20.37 

(1.43) 

EtOH: F(1,504)=6.44 

MVM: F(1,504)<1 

E&M: F(1,504)<1 

0.011 

NS 

NS 

Head Circumference  

(mm) 

181.69 

(1.09) 

182.31 

(1.09) 

177.11 

(0.87) 

177.28 

(0.87) 

EtOH: F(1,504) <1 

MVM: F(1,504)<1 

E&M: F(1,504)<1 

NS 

NS 

NS 

Estimated Fetal  

Weight (g) 

393.53 

(9.76) 

402.20 

(10.15) 

344.26 

(6.83) 

351.41 

(7.06) 

EtOH: F(1,279)=5.67 

MVM: F(1,279)<1 

E&M: F(1,279)<1 

0.018 

NS 

NS 

Femur Length (mm) 33.56 

(0.27) 

33.87 

(0.27) 

32.68 

(0.23) 

32.92 

(0.23) 

EtOH: F(1,504)<1 

MVM: F(1,504)<1 

E&M: F(1,504)<1 

NS 

NS 

NS 

Abdominal  

Circumference (mm) 

157.66 

(1.06) 

158.80 

(1.06) 

153.22 

(0.83) 

153.02 

(0.83) 

EtOH: F(1,504)=2.26 

MVM: F(1,504)<1 

E&M: F(1,504)<1 

NS 

NS 

NS 

Biparietal Diameter 

(mm) 

49.28 

(0.33) 

49.66 

(0.33) 

48.15 

(0.26) 

47.98 

(0.26) 

EtOH: F(1,504)=1.38 

MVM: F(1,504)<1 

E&M: F(1,504)<1 

NS 

NS 

NS 

Transverse Cerebellar 

Diameter (mm) 

20.95 

(0.36) 

21.30 

(0.41) 

20.50 

(0.28) 

20.58 

(0.35) 

EtOH: F(1,115)=1.87 

MVM: F(1,115)<1 

E&M: F(1,504)<1 

NS 

NS 

NS 

Occipitofrontal  

Diameter (mm) 

63.55 

(0.41) 

63.95 

(0.41) 

62.08 

(0.33) 

62.55 

(0.34) 

EtOH: F(1,493)<1 

MVM: F(1,493)=1.38 

E&M: F(1,493)<1 

NS 

NS 

NS 

Caval-Calvarial  

Distance (mm) 

24.11 

(0.25) 

24.48 

(0.26) 

23.55 

(0.20) 

23.50 

(0.20) 

EtOH: F(1,489)=2.03 

MVM: F(1,489)<1 

E&M: F(1,489)<1 

NS 

NS 

NS 

Frontothalamic  

Distance (mm) 

38.09 

(0.47) 

38.08 

(0.48) 

37.41 

(0.37) 

36.63 

(0.38) 

EtOH: F(1,489)<1 

MVM: F(1,489)<1 

E&M: F(1,489)<1 

NS 

NS 

NS 

Orbital Diameter  

(mm) 

9.99 

(0.13) 

10.13 

(0.13) 

9.60 

(0.10) 

9.89 

(0.10) 

EtOH: F(1,488)=1.30 

MVM: F(1,488)=4.43 

E&M: F(1,488)<1 

NS 

0.036 

NS 

*Sample size may vary due to missing values 

Values are mean (SD) for univariate ANOVA, or mean (SE) for univariate ANCOVA.  

MVM=Multivitamin supplementation groups; GA=Gestational Age; EtOH=alcohol exposure groups; E&M=Interaction between alcohol 

exposure groups and multivitamin supplementation groups. 
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Table 5: Fetal growth outcomes, adjusted for gestational age during third trimester ultrasound, for alcohol exposed 

and unexposed pregnancies by multivitamin supplementation group. 

Outcomes Alcohol Exposed (n=229) Alcohol Unexposed (n=267) Statistic p-value 

 MVM supplement 

(n=114) 

No supplement 

(n=115) 

MVM supplement 

(n=138) 

No supplement 

(n=129) 

  

GA at ultrasound 

(weeks) 

33.39 

(2.86) 

33.00 

(2.59) 

33.10 

(2.76) 

32.85 

(2.27) 

EtOH: F(1,495) <1 

MVM: F(1,495)=1.85 

E&M: F(1,495)<1 

NS 

NS 

NS 

Head Circumference 

(mm) 

302.52 

(1.86) 

299.77 

(1.86) 

303.70 

(1.36) 

301.76 

(1.41) 

EtOH: F(1,493) =3.33 

MVM: F(1,493)=2.03 

E&M: F(1,493)<1 

0.069 

NS 

NS 

Estimated Fetal  

Weight (g) 

2113.24 

(35.12) 

2099.34 

(34.81) 

2141.19 

(21.49) 

2108.77 

(22.32) 

EtOH: F(1,491)=4.02 

MVM: F(1,491)<1 

E&M: F(1,491)<1 

0.045 

NS 

NS 

Femur Length (mm) 62.46 

(0.33) 

62.46 

(0.33) 

62.49 

(0.29) 

62.34 

(0.29) 

EtOH: F(1,493)=1.16 

MVM: F(1,493) <1 

E&M: F(1,493)<1 

NS 

NS 

NS 

Abdominal 

Circumference (mm) 

287.35 

(1.57) 

286.26 

(1.57) 

289.74 

(1.05) 

287.09 

(1.09) 

EtOH: F(1,493)=7.02 

MVM: F(1,493)=2.00 

E&M: F(1,493)<1 

0.008 

NS 

NS 

Biparietal Diameter 

(mm) 

82.78 

(0.45) 

83.47 

(0.45) 

83.81 

(0.33) 

83.76 

(0.34) 

EtOH: F(1,493)=7.33 

MVM: F(1,493) <1 

E&M: F(1,493)=1.12 

0.007 

NS 

NS 

Transverse Cerebellar 

Diameter (mm) 

40.46 

(0.32) 

40.85 

(0.34) 

40.86 

(0.25) 

41.02 

(0.26) 

EtOH: F(1,399)=8.86 

MVM: F(1,399)=1.02 

E&M: F(1,399)<1 

0.003 

NS 

NS 

Occipitofrontal 

Diameter (mm) 

105.67 

(0.51) 

104.84 

(0.51) 

105.25 

(0.48) 

105.08 

(0.50 

EtOH: F(1,487)=1.03 

MVM: F(1,487) <1 

E&M: F(1,487)<1 

NS 

NS 

NS 

Caval-Calvarial 

Distance (mm) 

38.07 

(0.37) 

38.49 

(0.37) 

38.99 

(0.31) 

38.72 

(0.32) 

EtOH: F(1,491)=5.46 

MVM: F(1,491) <1 

E&M: F(1,491)=1.08 

0.020 

NS 

NS 

Frontothalamic  

Distance (mm) 

59.20 

(0.54) 

60.03 

(0.54) 

59.26 

(0.50) 

59.58 

(0.52) 

EtOH: F(1,491) <1 

MVM: F(1,491)=1.22 

E&M: F(1,491)<1 

NS 

NS 

NS 

Orbital Diameter (mm) 15.31 

(0.15) 

15.67 

(0.15) 

15.77 

(0.16) 

15.82 

(0.17) 

EtOH: F(1,485)=5.72 

MVM: F(1,485)=1.71 

E&M: F(1,485)<1 

0.017 

NS 

NS 

*Sample size may vary due to missing values 

Values are mean (SD) for univariate ANOVA, or mean (SE) for univariate ANCOVA.  

MVM=Multivitamin supplementation groups; GA=Gestational Age; EtOH=alcohol exposure groups; E&M=Interaction between alcohol 

exposure groups and multivitamin supplementation groups. 
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 A simple linear regression analysis of the association between absolute ounces of alcohol per 

day at conception and second and third trimester fetal growth outcomes adjusted for gestational age 

are presented in Table 6.  Absolute ounces of alcohol per day at conception is not significantly 

associated with any second trimester fetal growth outcomes; however, there was a significant 

negative association between absolute ounces of alcohol per day and several third trimester fetal 

growth outcomes.  Significant regression equations predicting the effect of absolute ounces of 

alcohol per day on estimated fetal weight (EFW), abdominal circumference (AC), biparietal 

diameter (BPD), occipitofrontal diameter (OFD), and caval-calvarial distance (CCD) were found.  

Estimated fetal weight at third trimester was significantly associated with absolute ounces of alcohol 

per day (R
2
=0.655, F(2,489)=464.887, p<0.001), with a reduction in estimated fetal weight with 

increased alcohol consumption (β=-54.223, p=0.046).  Abdominal circumference at third trimester 

was significantly associated with absolute ounces of alcohol per day (R
2
=0.689, F(2,491)=544.372, 

p<0.001), with a reduction in abdominal circumference with increased alcohol consumption (β=-

3.078, p=0.010).  Biparietal diameter at third trimester was significantly associated with absolute 

ounces of alcohol per day (R
2
=0.532, F(2,491)=278.516, p<0.001), with a reduction in biparietal 

diameter with increased alcohol consumption (β=-1.131, p=0.002).  Occipitofrontal diameter at third 

trimester was significantly associated with absolute ounces of alcohol per day (R
2
=0.493, 

F(2,485)=235.510, p<0.001), with a reduction in occipitofrontal diameter with increased alcohol 

consumption (β=-1.169, p=0.010).  Caval-calvarial distance at third trimester was significantly 

associated with absolute ounces of alcohol per day (R
2
=0.326, F(2,489)=118.435, p<0.001), with a 

reduction in estimated fetal weight with increased alcohol consumption (β=-0.812, p=0.009). 
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Table 6: Simple linear regression analysis to evaluate the association of absolute ounces of alcohol per day at 

conception on second and third trimester fetal growth outcomes adjusted for gestational age. 

Outcomes Second Trimester  Third Trimester 

 β SE p-value β SE p-value 

Head Circumference (mm) 0.605 0.955 NS -2.828 1.472 NS 

Estimated Fetal Weight (g) 17.214 9.680 NS -54.223 27.044 0.046 

Femur Length (mm) -0.132 0.246 NS -0.466 0.279 NS 

Abdominal Circumference (mm) 0.216 0.921 NS -3.078 1.195 0.010 

Biparietal Diameter (mm) 0.016 0.284 NS -1.131 0.355 0.002 

Transverse Cerebellar Diameter (mm) -0.351 0.401 NS -0.470 0.265 NS 

Occipitofrontal Diameter (mm) 0.101 0.359 NS -1.169 0.454 0.010 

Caval-Calvarial Distance (mm) 0.052 0.218 NS -0.812 0.311 0.009 

Frontothalamic Distance (mm) -0.281 0.407 NS -0.833 0.475 NS 

Orbital Diameter (mm) 0.080 0.111 NS -0.231 0.142 NS 

Birth growth outcomes, adjusted for gestational age, and infant development outcomes for 

alcohol exposed and unexposed pregnancies by multivitamin supplementation group are presented in 

Table 7.  Alcohol exposure group was significantly associated with a decrease in gestational age at 

birth (R
2
=0.017, F(1,620)=10.32, p=0.001), a decrease in birth weight (R

2
=0.437, F(1,619)=17.56, 

p<0.001), a decrease in birth length (R
2
=0.437, F(1,619)=9.19, p=0.003), and a decrease in birth head 

circumference (R
2
=0.385, F(1,619)=6.41, p=0.012).  Multivitamin supplementation was not 

significantly associated with birth weight, birth length, or birth head circumference.  There were no 

significant interactions between alcohol exposure groups and multivitamin supplementation groups 

for birth growth outcomes.   

Alcohol exposure group was significantly associated with a decrease in Bayley Scales of 

Infant Development-II MDI scores at 6 months of age (R
2
=0.020, F(1,379)=7.69, p=0.006), a decrease 

in MDI scores at 12 months of age (R
2
=0.022, F(1,292)=7.74, p=0.006), and a decrease in PDI scores 

at 12 months of age (R
2
=0.035, F(1,292)=11.69, p=0.001).  Multivitamin supplementation was not 

significantly associated with Bayley Scales of Infant Development-II scores at 6 or 12 months.  

There was a significant interaction between alcohol exposure groups and multivitamin 

supplementation groups for MDI at 12 months of age (F(1,292)=5.60, p=0.019).  This interaction 

indicates that MDI at 12 months of age, among multivitamin supplementation groups, is 
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significantly different in each alcohol exposure group.  Post-hoc analysis, shown in Figure 1, 

indicates that mean MDI score at 12 months in the alcohol exposure group was higher in the 

multivitamin supplementation group; however, in the alcohol unexposed group, MDI at 12 months 

of age was lower in the multivitamin supplementation group.   

Figure 1:  Mean Mental Development Index (MDI) score at 12 months of age for multivitamin 

supplementation groups by alcohol exposure. 
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Table 7: Birth growth outcomes, adjusted for gestational age, and infant development outcomes for alcohol exposed and unexposed pregnancies by 

multivitamin supplementation group. 

Outcomes Alcohol Exposed (n=305) Alcohol Unexposed (n=315) Statistic p-value 

 MVM supplement 

(n=142) 

No supplement 

(n=163) 

MVM supplement 

(n=159) 

No supplement 

(n=156) 

  

Child Sex (% Male) 51.0% 50.3% 57.2% 51.9% X2(1)<1 NS 

GA at birth (weeks) 39.26 

(1.93) 

38.80 

(2.40) 

39.56 

(1.74) 

39.52 

(1.80) 

EtOH: F(1,620)=10.32 

MVM: F(1,619)=2.45 

E&M: F(1,619)<1 

0.001 

NS 

NS 

Birth Weight (g) 3136.42 

(39.54) 

3120.20 

(36.89) 

3379.88 

(32.05) 

3369.22 

(32.36) 

EtOH: F(1,619)=17.56 

MVM: F(1,619)<1 

E&M: F(1,619)<1 

<0.001 

NS 

NS 

Birth Length (cm) 50.65 

(0.23) 

50.70 

(0.21) 

51.86 

(0.17) 

51.81 

(0.17) 

EtOH: F(1,619)=9.19 

MVM: F(1,619)<1 

E&M: F(1,619)<1 

0.003 

NS 

NS 

Birth OFC (cm) 33.85 

(0.14) 

33.78 

(0.14) 

34.58 

(0.11) 

34.29 

(0.11) 

EtOH: F(1,619)=6.41 

MVM: F(1,619)=2.12 

E&M: F(1,619)<1 

0.012 

NS 

NS 

Palpebral Fissure Length (cm) 2.06 

(0.21) 

2.08 

(0.22) 

2.12 

(0.18) 

2.10 

(0.21) 

EtOH: F(1,316)=2.77 

MVM: F(1,316)<1 

E&M: F(1,316)<1 

NS 

NS 

NS 

Bayley Scales of Infant Development-II 

MDI (6 months) 89.18 

(11.00) 

87.83 

(10.03) 

91.54 

(6.31) 

90.56 

(8.18) 

EtOH: F(1,379)=7.69 

MVM: F(1,379)=1.60 

E&M: F(1,379)<1 

0.006 

NS 

NS 

PDI (6 months) 88.34 

(13.75) 

88.13 

(13.89) 

89.69 

(10.48) 

91.17 

(10.15) 

EtOH: F(1,378)=3.04 

MVM: F(1,378)<1 

E&M: F(1,378)<1 

NS 

NS 

NS 

MDI (12 months) 88.99 

(13.48) 

86.75 

(12.60) 

89.56 

(9.15) 

93.84 

(11.89) 

EtOH: F(1,292)=7.74 

MVM: F(1,292)<1 

E&M: F(1,292)=5.60 

0.006 

NS 

0.019 

PDI (12 months) 95.38 

(15.06) 

94.83 

(14.20) 

98.36 

(10.98) 

102.30 

(11.93) 

EtOH: F(1,292)=11.69 

MVM: F(1,292)<1 

E&M: F(1,292)=2.16 

0.001 

NS 

NS 

Values are %, mean (SD) for univariate ANOVA, or mean (SE) for univariate ANCOVA.  

MVM=Multivitamin supplementation groups; EtOH=alcohol exposure groups; E&M=Interaction between alcohol exposure groups and multivitamin supplementation groups; 

GA=Gestational Age; OFC=Occipitofrontal Head Circumference; MDI=Mental Development Index; PDI=Psychomotor Development Index
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A simple linear regression analysis of the association between absolute ounces of alcohol 

per day at conception and birth growth adjusted for gestational age, and infant development 

outcomes are presented in Table 8.  A significant negative association between absolute ounces 

of alcohol per day at conception and birth weight, length, and head circumference was found, as 

well as a significant negative association between absolute ounces of alcohol per day at 

conception and Bayley Scales of Infant Development-II MDI and PDI scores at 6 and 12 months 

of age.  Birth weight was significantly associated with absolute ounces of alcohol per day 

(R
2
=0.437, F(2,617)=239.196, p<0.001), with a reduction in birth weight with increased alcohol 

consumption (β=-136.78, p<0.001).  Birth length was significantly associated with absolute 

ounces of alcohol per day (R
2
=0.439, F(2,617)=241.108, p<0.001), with a reduction in birth length 

with increased alcohol consumption (β=-0.621, p=0.001).  Birth head circumference was 

significantly associated with absolute ounces of alcohol per day (R
2
=0.388, F(2,617)=195.563, 

p<0.001), with a reduction in birth head circumference with increased alcohol consumption (β=-

0.347, p=003).  MDI at 6 months of age was significantly associated with absolute ounces of 

alcohol per day (R
2
=0.069, F(1,378)=28.166, p<0.001), with a reduction in scores with increased 

alcohol consumption (β=-4.226, p<0.001).  PDI at 6 months of age was significantly associated 

with absolute ounces of alcohol per day (R
2
=0.028, F(1,377)=10.730, p=0.001), with a reduction in 

scores with increased alcohol consumption (β=-3.581, p=0.001).  MDI at 12 months of age was 

significantly associated with absolute ounces of alcohol per day (R
2
=0.052, F(1,291)=15.983, 

p<0.001), with a reduction in scores with increased alcohol consumption (β=-4.579, p<0.001).  

PDI at 12 months of age was significantly associated with absolute ounces of alcohol per day 

(R
2
=0.071, F(1,291)=22.384, p<0.001), with a reduction in scores with increased alcohol 

consumption (β=-5.964, p<0.001). 
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Table 8: Simple linear regression analysis to evaluate the association of absolute ounces of alcohol per 

day at conception on birth growth outcomes adjusted for gestational age and infant development 

outcomes. 

Outcomes β SE p-value 

Birth weight (g) -136.78 33.02 <0.001 

Birth length (cm) -0.621 0.184 0.001 

Birth head circumference (cm) -0.347 0.114 0.003 

Palpebral fissure length (cm) -0.027 0.023 NS 

Bayley Scales of Infant Development-II 

Mental Development Index (6 months) -4.226 0.726 <0.001 

Psychomotor Development Index (6 months) -3.581 1.093 0.001 

Mental Development Index (12 months) -4.579 1.145 <0.001 

Psychomotor Development Index (12 months) -5.964 1.261 <0.001 

Generalized linear regression models were used to evaluate the impact of alcohol use, 

multivitamin supplementation, and serum folate concentration on fetal and birth growth 

outcomes and Bayley Scales of Infant Development-II measures significantly associated with 

either alcohol exposure group or absolute ounces of alcohol per day at conception.  Using a 

factorial design, the interaction of these factors and their direct effects on outcomes was 

examined.  Covariates tested for inclusion in the model were gestational age, study site, SES, 

maternal age, child sex, maternal smoking, gravidity, number of prenatal visits, and multivitamin 

use in early pregnancy.   

For fetal growth outcomes at second trimester, estimated fetal weight and orbital 

diameter were analyzed separately.  For estimated fetal weight, the overall model was significant 

(X
2

(8)=203.863, p<0.001).  Only gestational age at interview, number of prenatal visits, and 

gestational age at exam contributed significant variances.  Alcohol exposure groups were 

included in the analysis due to the significant association indicated with ANOVA with estimated 

fetal weight at second trimester.  Alcohol exposure groups, multivitamin supplementation, and 

serum folate concentration were not significantly associated with estimated fetal weight at 

second trimester.   
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For fetal growth outcomes at third trimester, estimated fetal weight, abdominal 

circumference, biparietal diameter, transverse cerebellar diameter, occipitofrontal diameter, 

caval-calvarial distance, and orbital diameter were analyzed separately.  A generalized linear 

regression analysis to evaluate the impact of alcohol use, multivitamin supplementation, and 

serum folate concentration (ng/mL) on estimated fetal weight is presented in Table 9.   For 

estimated fetal weight at third trimester, gestational age adjusted percentiles were included in the 

analysis as response variable and absolute ounces of alcohol per day at conception was included 

in the analysis as predictor.  The overall model was significant (X
2

(7)=18.044, p=0.012), 

multivitamin supplementation group was significantly associated with an increase in estimated 

fetal weight percentile during third trimester (X
2

(1)=5.554, p=0.018), and absolute ounces of 

alcohol per day was significantly associated with a decrease in estimated fetal weight percentile 

(X
2

(1)=5.680, p=0.017).  Serum folate concentration at second and third trimester was not 

significantly associated with estimated fetal weight percentile.  A significant interaction between 

absolute ounces of alcohol per day at conception and serum folate concentration during 2
nd

 

trimester was found (X
2

(1)=4.468, p=0.035); however, the interaction was insignificant after 

reducing to the model to include the interaction and the main effects of absolute ounces of 

alcohol per day and serum folate concentration at second trimester (X
2

(1)=3.786, p=0.052).   

Post-hoc examination of the interaction indicate that absolute ounces of alcohol per day at 

conception is significantly associated with high levels of serum folate (X
2

(1)=8.123, p=0.004), 

but not significantly associated with low levels of serum folate.  The interaction is plotted in 

Figure 2; estimated fetal weight during 3
rd

 trimester tends to be higher at low levels of alcohol 

exposure and lower at high levels of alcohol exposure with high levels of serum folate, indicating 

that folate has a greater effect at low levels of alcohol exposure. 
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Table 9: Generalized Linear Regression Model for estimated fetal weight percentile at third 

trimester ultrasound (X
2

(7)=18.044, p=0.012). 

Variable β SE X
2 

p-value 

MVM Group
1 

10.588 4.235 5.554 0.018 

AA/Day at conception
 

-18.694 7.844 5.680 0.017 

Serum folate 2
nd

 trimester (ng/mL) -0.259 0.165 2.488 NS 

Serum folate 3
rd

 trimester (ng/mL) 0.260 0.187 1.932 NS 

AA/Day*Folate 2
nd

 trimester
2
 0.898 0.425 4.468 0.035 

AA/Day*Folate 3
rd

 trimester
3
 -0.155 0.461 0.113 NS 

SE=Standard Error; MVM=Multivitamin Supplementation Group; AA/Day at conception=absolute ounces of 

alcohol per day at conception 
1
 No MVM> MVM; 

2 AA/Day*Folate 2
nd

 trimester=Interaction between absolute ounces of alcohol per day at 

conception and serum folate concentration at 2
nd

 trimester; 
3
 AA/Day*Folate 3

rd
 trimester=Interaction between 

absolute ounces of alcohol per day at conception and serum folate concentration at 3
rd

 trimester    

 

Figure 2:  Regression lines for relationships between absolute ounces of alcohol per day at 

conception and estimated fetal weight percentile as moderated by serum folate concentration 

during 2
nd

 trimester. 

 

 
β=unstandardized regression coefficient; SD=Standard Deviation; EFW=Estimated Fetal Weight 
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circumference is presented in Table 10.   For abdominal circumference at third trimester, 

gestational age adjusted percentiles were included in the analysis as response variable and 

absolute ounces of alcohol per day at conception was included in the analysis as predictor.  The 

overall model was significant (X
2

(5)=17.955, p=0.003), multivitamin supplementation group was 

significantly associated with an increase in abdominal circumference percentile during third 

trimester (X
2

(1)=7.222, p=0.007).  Increased absolute ounces of alcohol per day resulted in a 

decrease in abdominal circumference percentile (X
2

(1)=5.489, p=0.019).  Serum folate 

concentration during second and third trimester was not significantly associated with abdominal 

circumference percentile during third trimester.  There were no significant interactions between 

absolute ounces of alcohol per day at conception and serum folate concentration during second 

and third trimester. 

Table 10: Generalized Linear Regression Model for abdominal circumference percentile at third 

trimester ultrasound (X
2

(5)=17.955, p=0.003). 

Variable Β SE X
2 

p-value 

MVM Group
1 

12.062 4.489 7.222 0.007 

AA/Day at conception
 

-9.072 3.872 5.489 0.019 

Serum folate 2
nd

 trimester (ng/mL) 0.018 0.128 0.021 NS 

Serum folate 3
rd

 trimester (ng/mL) -0.001 0.146 0.000 NS 
SE=Standard Error; MVM=Multivitamin Supplementation Group; AA/Day at conception=absolute ounces of 

alcohol per day at conception 
 1
No MVM> MVM.  

For biparietal diameter at third trimester, gestational age adjusted percentiles were 

included in the analysis as response variable and absolute ounces of alcohol per day at 

conception was included in the analysis as predictor.  The overall model was significant 

(X
2

(8)=33.533, p<0.001) with child sex, gestational age at exam, and gravidity contributing 

significant variance.  Multivitamin supplementation group, absolute ounces of alcohol per day, 

and serum folate concentration during second and third trimester were not significantly 
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associated with biparietal diameter percentile.  There were no significant interactions between 

absolute ounces of alcohol per day at conception and serum folate concentration during second 

and third trimester. 

For transverse cerebellar diameter at third trimester, alcohol exposure groups were 

included in the analysis as predictor.  The overall model was significant (X
2

(8)=185.781, 

p<0.001) with child sex, study site, and gestational age at exam contributing significant variance.  

Multivitamin supplementation group, alcohol exposure group, and serum folate concentration 

during second and third trimester were not significantly associated with transverse cerebellar 

diameter.  There were no significant interactions between alcohol exposure groups and serum 

folate concentration during second and third trimester. 

For occipitofrontal diameter at third trimester, absolute ounces of alcohol per day at 

conception were included in the analysis as predictor.  The overall model was significant 

(X
2

(6)=140.231, p<0.001) with gestational age at exam contributing significant variance.  

Multivitamin supplementation group, absolute ounces of alcohol per day at conception, and 

serum folate concentration during second and third trimester were not significantly associated 

with occipitofrontal diameter.  There were no significant interactions between absolute ounces of 

alcohol per day at conception and serum folate concentration during second and third trimester. 

For caval-calvarial distance at third trimester, absolute ounces of alcohol per day at 

conception were included in the analysis as predictor.  The overall model was significant 

(X
2

(8)=115.329, p<0.001) with maternal smoking, study site, and gestational age at exam 

contributing significant variance.  Multivitamin supplementation group, absolute ounces of 

alcohol per day at conception, and serum folate concentration during second and third trimester 
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were not significantly associated with caval-calvarial distance.  There were no significant 

interactions between absolute ounces of alcohol per day at conception and serum folate 

concentration during second and third trimester. 

For orbital diameter at third trimester, alcohol exposure groups were included in the 

analysis as predictor.  The overall model was significant (X
2

(6)=51.545, p<0.001) with 

gestational age at exam contributing significant variance.  Multivitamin supplementation group, 

absolute ounces of alcohol per day at conception, and serum folate concentration during second 

trimester and third were not significantly associated with orbital diameter.  There were no 

significant interactions between alcohol exposure groups and serum folate concentration during 

second and third trimester. 

For birth growth outcomes birth weight, length, and head circumference were analyzed 

separately.  Absolute ounces of alcohol per day at conception were included in the analysis as 

predictor.  A generalized linear regression analysis to evaluate the impact of alcohol use, 

multivitamin supplementation, and serum folate concentration (ng/mL) on birth weight is 

presented in Table 11.   For birth weight, the overall model was significant (X
2

(6)=75.058, 

p<0.001) with gestational age at birth contributing significant variance.  Multivitamin 

supplementation was associated with a significant increase in birth weight (X
2

(1)=5.073, 

p=0.024).  Absolute ounces of alcohol per day at conception and serum folate concentration 

during second and third trimester were not significantly associated with birth weight.  There 

were no significant interactions between absolute ounces of alcohol per day at conception and 

serum folate concentration during second and third trimester. 
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Table 11: Generalized Linear Regression Model for birth weight (X
2

(6)=75.058, p<0.001). 

Variable β SE X
2 

p-value 

Gestational age at birth 156.640 18.682 70.304 <0.001 

MVM Group
1 

190.446 84.552 5.073 0.024 

AA/Day at conception
 

-103.300 73.745 1.962 NS 

Serum folate 2
nd

 trimester (ng/mL) 1.421 2.460 0.333 NS 

Serum folate 3
rd

 trimester (ng/mL) -2.666 2.749 0.941 NS 
SE=Standard Error; MVM=Multivitamin Supplementation Group; AA/Day at conception=absolute ounces of 

alcohol per day at conception 
 1
No MVM> MVM. 

For birth length, the overall model was significant (X
2

(7)=77.845, p<0.001) with child sex 

and gestational age at birth contributing significant variances.  There were no significant effects 

of absolute ounces of alcohol per day at conception, multivitamin supplementation, or serum 

folate concentration on birth length.  There were no significant interactions between absolute 

ounces of alcohol per day at conception and serum folate concentration during second and third 

trimester. 

For birth head circumference, the final model was significant (X
2

(7)=65.460, p<0.001) 

with child sex and gestational age at birth significantly contributing to the outcome.  There were 

no significant effects of absolute ounces of alcohol per day at conception, multivitamin 

supplementation, or serum folate concentration on birth head circumference.  There were no 

significant interactions between absolute ounces of alcohol per day at conception and serum 

folate concentration during second and third trimester. 

For infant development outcomes only study site, child sex, SES, and gestational age at 

birth contributed significant variance.  Bayley Scales of Infant Development-II MDI scores at 6 

and 12 months and PDI scores at 12 months were analyzed separately.  A generalized linear 

regression analysis to evaluate the impact of alcohol use, multivitamin supplementation, and 

serum folate concentration (ng/mL) on Bayley Scales of Infant Development-II MDI at 6 months 
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of age is presented in Table 12.  For MDI at 6 months of age, the final model was significant 

(X
2

(11)=63.051, p<0.001) with gestational age at birth, study site, SES, and child sex contributing 

significant variance.   There were no significant effects of absolute ounces of alcohol per day at 

conception, multivitamin supplementation, or serum folate concentration during second trimester 

on MDI at 6 months of age.  Serum folate concentration during 3
rd

 trimester was significantly 

associated with an increase in Bayley Scales of Infant Development-II MDI scores at 6 months 

of age.  There were no significant interactions between absolute ounces of alcohol per day at 

conception and serum folate concentration during second and third trimester. 

Table 12: Generalized Linear Regression Model for Bayley Scales of Infant Development-II 

Mental Development Index (MDI) at 6 months of age (X
2

(11)=63.051, p<0.001). 

Variable β SE X
2 

p-value 

SES Category
1
 17.810 4.842 13.531 <0.001 

Study Site
2 

-5.692 1.511 14.196 <0.001 

Child Sex
3
 -3.850 1.373 7.862 0.005 

GA at birth 1.258 0.458 7.554 0.006 

MVM Group
4 

2.317 1.418 2.672 NS 

AA/Day at conception
 

-1.586 1.542 1.058 NS 

Serum folate 2
nd

 trimester (ng/mL) -0.070 0.049 2.043 NS 

Serum folate 3
rd

 trimester (ng/mL) 0.135 0.062 4.780 0.029 
SE=Standard Error; GA=Gestational Age; SES=Socioeconomic Status; MVM=Multivitamin Supplementation 

Group; AA/Day at conception=absolute ounces of alcohol per day at conception 
1 
Category 1=Highest SES through Category 5=Lowest SES; 

2 
Rivne>Khmelnytsky; 

3
 Female>Male; 

4 
No MVM> 

MVM 

A generalized linear regression analysis to evaluate the impact of alcohol use, 

multivitamin supplementation, and serum folate concentration (ng/mL) on Bayley Scales of 

Infant Development-II PDI at 6 months of age is presented in Table 13.  For PDI at 6 months of 

age, the final model was significant (X
2

(13)=45.637, p<0.001) with SES, study site, and 

gestational age at birth contributing significant variances.  There were no significant effects of 

absolute ounces of alcohol per day, multivitamin supplementation, or serum folate concentration.  

There was a significant interaction between absolute ounces of alcohol per day at conception and 
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serum folate concentration during third trimester (X
2

(1)=5.674, p=0.017).  The interaction 

remained significant after reducing the model to include the interaction and main effects of 

absolute ounces of alcohol per day and serum folate concentration at third trimester (X
2

(1)=4.460, 

p=0.035).  Post-hoc examination of the interaction indicate that absolute ounces of alcohol per 

day at conception is significantly associated with high levels of serum folate (X
2

(1)=3.939, 

p=0.047), but not significantly associated with low levels of serum folate.  The interaction is 

plotted in Figure 3; PDI scores at 6 months of age tend to be higher at low levels of alcohol 

exposure and lower at high levels of alcohol exposure with high levels of serum folate, indicating 

that folate has a greater effect at low levels of alcohol exposure.  

Table 13: Generalized Linear Regression Model for Bayley Scales of Infant Development-II 

Psychomotor Development Index (PDI) at 6 months of age (X
2

(13)=45.637, p<0.001). 

Variable β SE X
2 

p-value 

Study Site
1 

-8.853 2.360 14.076 <0.001 

SES Category
2 

22.170 7.682 8.329 0.004 

GA at birth 1.959 0.686 8.156 0.004 

MVM Group
3 

2.751 2.843 0.939 NS 

AA/Day at conception
 

-5.333 4.740 1.266 NS 

Serum folate 2
nd

 trimester (ng/mL) -0.109 0.099 1.223 NS 

Serum folate 3
rd

 trimester (ng/mL) -0.026 0.112 0.055 NS 

AA/Day*Folate 2
nd

 trimester
4
 -0.092 0.244 0.144 NS 

AA/Day*Folate 3
rd

 trimester
5
 0.637 0.267 5.674 0.017 

SE=Standard Error; GA=Gestational Age; SES=Socioeconomic Status; MVM=Multivitamin Supplementation 

Group; AA/Day at conception=absolute ounces of alcohol per day at conception 
1 
Rivne>Khmelnytsky; 

2 
Category 1=Highest SES through Category 5=Lowest SES; 

3
 No MVM> MVM;  

4 AA/Day*Folate 2
nd

 trimester=Interaction between absolute ounces of alcohol per day at conception and serum 

folate concentration at 2
nd

 trimester; 
5
 AA/Day*Folate 3

rd
 trimester=Interaction between absolute ounces of alcohol 

per day at conception and serum folate concentration at 3
rd

 trimester. 
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Figure 3:  Regression lines for relationships between absolute ounces of alcohol per day at 

conception and PDI scores at 6 months of age as moderated by serum folate concentration during 

3
rd

 trimester. 

   
β=unstandardized regression coefficient; SD=Standard Deviation; PDI=Psychomotor Development Index 

*p<0.05 

For MDI at 12 months of age, the final model was not significant (X
2

(4)=5.057, p=0.282) 

with no predictors or factors contributing significant variances.  For PDI at 12 months of age, the 

final model was not significant (X
2

(4)=1.758, p=0.780) with no predictors or factors contributing 

significant variances.  There were no significant effects of absolute ounces of alcohol per day at 

conception, multivitamin supplementation, or serum folate concentration on MDI or PDI at 12 

months of age.  There were no significant interactions between absolute ounces of alcohol per 

day at conception and serum folate concentration during second and third trimester. 

3.3 Discussion 

 The lifelong implications of prenatal alcohol exposure are widely studied, with adverse 

effects to physical development, cognition, and behavior.  The teratogenic effect of prenatal 

alcohol exposure on the brain can be extensive with a wide range of possible outcomes.  Fetal 

78

80

82

84

86

88

90

92

94

96

98

100

1 SD Below Mean 1 SD Above

P
D

I 
sc

o
re

s 
a

t 
6

 m
o

n
th

s 
o

f 
a

g
e 

Absolute ounces of alcohol per day 

High Serum

Folate

Low Serum

Folate

(β = 5.983) 

(β = -6.828)* 



42 

 

growth and brain size, obtained through ultrasound measurements, have not been widely studied 

in alcohol exposed pregnancies.  The impact of micronutrient supplementation and maternal 

folate levels on prenatal alcohol effects has been the focus of animal studies and should be 

analyzed in human studies to determine clinical significance.  This study examined the 

association between alcohol exposure and prenatal and postnatal growth, and infant development 

outcomes as well as the impact of micronutrient supplementation, specifically maternal folate 

levels, on the effects of prenatal alcohol exposure.   

The results from this study support previous research indicating increased risk of growth 

retardation and impaired neurodevelopment with moderate-to-heavy prenatal alcohol exposure.  

The dose and timing of exposure necessary to produce detrimental effects is not clearly 

understood, and the results of this study only lead to further questions.  Alcohol exposure in this 

sample led to prenatal and postnatal growth retardation, as well as impaired neurodevelopment at 

infancy.  Appropriate interventions are necessary to reduce the teratogenic effects of prenatal 

alcohol exposure.  The results of this study provide evidence for the potential benefit of 

multivitamin supplementation during pregnancy, as well as the benefit of high doses of folate 

during pregnancy.  We hypothesized that increased levels of alcohol exposure will lead to a 

decrease in head circumference, fetal weight, abdominal circumference, femur length, and 

individual brain measurements during second and third trimester ultrasounds.  We also 

hypothesized that fetal growth measurements will be greater in the micronutrient 

supplementation group and higher maternal folate levels will lead to greater fetal growth 

measurements.  We hypothesized that birth weight, length, and head circumference will be lower 

in the alcohol exposure group, that micronutrient supplementation will lead to an increase in 

these growth measurements, and that higher maternal folate levels will lead to greater birth 
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growth measurements.  We also hypothesized that Bayley Scales of Infant Development-II MDI 

and PDI scores will be lower in the alcohol exposure group compared to controls, that 

micronutrient supplementation will lead to an increase in scores on these measures, and that 

higher maternal folate levels will lead to greater scores.   

Micronutrient supplementation groups were assigned during initial maternal interview at 

an average of 18.57 weeks gestation.  Blood folate levels during second trimester among alcohol 

exposure groups adjusted for micronutrient supplementation group are not significantly different.  

However, there is a significant difference between blood folate levels in alcohol exposure and 

micronutrient supplementation groups during third trimester.  The lack of effect during second 

trimester is likely due to the fact that the second trimester blood samples were taken at 

approximately the same time as assignment into supplementation groups.  This indicates that 

micronutrient supplementation is having a positive effect on blood folate levels during third 

trimester.  The greater percentage of deficient blood folate levels in the alcohol exposure group 

among those receiving micronutrient supplementation supports previous research indicating 

reduced uptake of folate with alcohol use.
86 

 Absolute ounces of alcohol per day at conception in 

the alcohol exposure group were consistently in the moderate-to-heavy range.  This alcohol 

variable was found to be a greater predictor of outcomes compared to alcohol consumption 

patterns reported during the first trimester of pregnancy.  This finding is consistent with previous 

research indicating a greater willingness of women to report alcohol use prior to pregnancy 

recognition.
95

  

The results of this study indicate that a number of routine ultrasound measurements 

during third trimester of pregnancy may be markers for prenatal alcohol effects in moderate-to-

heavily exposed fetuses.  Estimated fetal weight, abdominal circumference, and biparietal 
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diameter are standard ultrasound measurements obtained during both second and third trimester 

of pregnancy.  Reduced estimated fetal weight during third trimester with increased alcohol 

exposure is consistent with previous findings of reduced birth weight with increased levels of 

alcohol exposure.  Additionally, abdominal circumference was reduced in third trimester 

ultrasound indicating a reduction in overall fetal growth with increased alcohol exposure.  

Smaller biparietal diameter during third trimester is consistent with a previous pilot study in 

Ukraine by Kfir et al, which demonstrated a significant reduction in biparietal diameter during 

third trimester ultrasound.
20

  Biparietal diameter measurements are used to calculate estimated 

fetal weight and gestational age along with head circumference, abdominal circumference and 

femur length.
96

  The use of biparietal diameter to estimate head size and brain volume is widely 

debated; however, previous MRI studies have shown an association between reductions in 

biparietal diameter and delayed cognitive development.
97,98

 The association between alcohol 

exposure and estimated fetal weight, abdominal circumference, and biparietal diameter is a 

potentially important finding due to the availability of these measurements in routine prenatal 

examinations.  With further study, these measurements could be used as markers for the adverse 

effects of prenatal alcohol exposure.   

Additional study specific brain and facial growth measurements including transverse 

cerebellar diameter, occipitofrontal diameter, caval-calvarial distance, and orbital diameter 

showed significant reduction with increased alcohol exposure during third trimester.  The effect 

of alcohol exposure on occipitofrontal diameter indicates an overall reduction in brain size, the 

reduction in caval-calvarial distance indicates a reduction in frontal lobe size, and the reduction 

in transverse cerebellar diameter indicates an effect on size of individual brain structures.
99

 This 

is an interesting finding due to the relationship between the frontal lobe of the brain and many of 



45 

 

the cognitive deficits seen in patients with FASD’s.  The effect of alcohol exposure on orbital 

diameter indicates a reduction in eye size during third trimester.  These effects should be further 

studied in a larger sample to determine the clinical significance of this finding, and the potential 

for including these measurements on routine ultrasound examinations. 

The effect of micronutrient supplementation on estimated fetal weight and abdominal 

circumference are also interesting findings.  In this study, the micronutrient supplementation 

group had larger estimated fetal weight and abdominal circumference compared to controls; this 

effect did not extend to biparietal diameter, which was not significantly affected by multivitamin 

supplementation.  There was a significant interaction between estimated fetal weight at third 

trimester, absolute ounces of alcohol per day at conception and serum folate concentration during 

2
nd

 trimester.  Estimated fetal weight tends to be higher at low levels of alcohol exposure and 

lower at high levels of alcohol exposure high levels of serum folate, indicating that folate has a 

greater effect at low levels of alcohol exposure.  This could be due to the impaired uptake of 

folate into the bloodstream and impaired transport of folate across the placenta with high levels 

of alcohol exposure.  Serum folate concentration did not significantly affect any of the fetal 

growth measurements.  There were no significant effects of micronutrient supplementation or 

folate levels on transverse cerebellar diameter, occipitofrontal diameter, caval-calvarial distance, 

and orbital diameter.  This could be a result of the lack of clinically recognized gestational-age 

adjusted growth norms for these measurements.  Gestational-age adjusted growth norms are 

available for standard ultrasound measurements including estimated fetal weight, abdominal 

circumference, femur length, biparietal diameter, and head circumference; there is also limited 

growth norm data for transverse cerebellar diameter, orbital diameter measurements, and 

frontothalamic distance from the 1980’s and early 1990’s.  For frontothalamic distance, the 
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reference values are for fetuses with Down syndrome between 15 and 21 weeks gestation.
100

 It is 

important to establish gestational-age adjusted growth norms for all fetal growth measurements 

in order to correct for rapid growth during second and third trimester.    

The results of this study support previous research indicating a relationship between 

moderate-to-heavy prenatal alcohol exposure, preterm birth, and small for gestational age.  

Alcohol exposure during pregnancy was significantly associated with lower gestational age at 

birth, smaller birth weight, shorter birth length, and smaller birth head circumference.  When 

adjusting for gestational age, micronutrient supplementation was significantly associated with an 

increase in birth weight.  This is similar to results in this study of estimated fetal weight during 

third trimester.  Birth length and head circumference were not significantly associated with 

micronutrient supplementation and serum folate concentration was not significantly associated 

any of these outcomes.  Additional research should be conducted to identify individual 

micronutrients to provide the greatest benefit to birth weight.   

In this study, alcohol exposure significantly decreased infant development scores at 6 

months and 12 months of age.  Serum folate concentration during 3
rd

 trimester was significantly 

associated with an increase in MDI scores at 6 months of age.  Micronutrient supplementation 

was not significantly associated with MDI or PDI scores at 6 months of age.  However, there was 

a significant interaction between PDI at 6 months of age, absolute ounces of alcohol per day at 

conception and serum folate concentration during third trimester, indicating that PDI scores at 6 

months of age at high levels of serum folate tend to be higher at low levels of alcohol exposure 

and lower at high levels of alcohol exposure.  High levels of folate had a greater positive effect 

on PDI at 3
rd

 trimester at low levels of alcohol exposure.  These findings support previous 

research indicating reduced uptake and transport across the placenta of folate with high levels of 
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alcohol exposure.  Micronutrient supplementation and serum folate concentration were not 

significantly associated with MDI and PDI scores at 12 months of age.   A significant interaction 

between MDI scores at 12 months of age, alcohol exposure groups, and micronutrient 

supplementation groups was also found.  The interaction indicated that MDI scores at 12 months 

of age were higher in the multivitamin supplementation group in the alcohol exposed group, but 

lower in the multivitamin supplementation group in the alcohol unexposed group.  These 

findings are consistent with a previous study with the CIFASD consortium in Ukraine which 

found significant reduction in Bayley MDI and PDI scores with increased alcohol exposure.  The 

study also found a significant increase in Bayley MDI scores with multivitamin 

supplementation.
101

 

Folate supplementation during pregnancy in alcohol exposed mice has been the focus of 

many studies; however, few human studies exist.  With further study, the use of maternal folate 

supplementation may have a beneficial effect in alcohol exposed pregnancies.  In addition to 

folate, other micronutrients should be studied to determine the possible benefit of micronutrient 

supplementation in alcohol exposed pregnancies. 

3.4 Limitations and implications 

 There are several limitations to this study.  The absolute amount of alcohol consumed 

throughout pregnancy in the alcohol exposure group is unknown, although the frequency and 

pattern of alcohol use during the month around conception and first trimester was collected 

during maternal interview. The use of maternal self-report of alcohol and tobacco use may not 

represent true consumption levels.  Additionally, maternal alcohol consumption during 

pregnancy may vary between trimesters, leading to inconsistent exposure patterns.  The use of 

absolute ounces of alcohol per day at conception may have provided a more accurate picture of 
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alcohol consumption patterns in the alcohol exposure group; however, it is not possible to know 

if this exposure pattern was consistent throughout pregnancy. There is no known safe level or 

timing for alcohol exposure during pregnancy, therefore, the use of moderate to heavy amounts 

of alcohol at any time point during pregnancy may produce teratogenic effects.   

The maternal characteristics of women who returned for follow-up ultrasound scans and 

blood samples may lead to bias in sampling.  The sample size varied for follow-up examinations, 

which may impact comparability of measurements assessed during second and third trimester.  

The lack of clinically accepted gestational-age adjusted percentiles for study specific fetal brain 

growth measurements may lead to errors in interpretation of the analysis.  Adjustment for 

gestational age is necessary to accurately compare the sample; however, there are few growth 

charts for fetal brain growth measurements available with little reliability.  The growth norm data 

for these ultrasound measurements that is available is outdated and in many cases does not 

account for rapid growth during third trimester.  In order to include these measurements in 

standard clinical practice, clinically accepted gestational-age and gender adjusted percentiles 

must be established. 

This study also has several strengths.  The relatively large sample size provides increased 

statistical power for comparison of alcohol exposed pregnancies and unexposed pregnancies.  

The prospective cohort design provides a temporal sequence between alcohol exposure and 

prenatal outcomes.  The standardized ultrasound measurements are routinely used in a clinical 

setting allowing for reproducibility, and translatability to clinical practice.   

One major implication of this study is that the findings could be used to develop a 

prenatal screening process for pregnancies with known alcohol exposure.  Further study is 
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needed to determine the reproducibility of these findings; however, the consistency of the results 

with a previous pilot study suggests that biparietal diameter may be a marker for prenatal alcohol 

effects.  The use of maternal micronutrient supplementation as a possible preventive measure for 

the lasting effects of prenatal alcohol exposure is also an important implication.  Additional 

studies should be conducted to identify specific micronutrients and the levels necessary to 

produce the greatest effect.  Early interventions are necessary to improve outcomes in children 

prenatally exposed to alcohol.  The results of this study provide evidence for the need for 

additional early intervention methods, including potential benefits to ultrasonography and 

micronutrient supplementation.   

3.5 Conclusion 

 The results of this study suggest that the effects of prenatal alcohol exposure may be 

detectable in late pregnancy; however, additional studies are needed to determine the reliability 

of these measures.  The data do not presently support adopting clinical standards for prenatal 

ultrasound measurements for early diagnosis of FASD’s.  Additional research into the biological 

mechanism by which alcohol inhibits brain growth is needed to fully understand which areas of 

the brain are most affected by alcohol exposure, and at which level of consumption does this 

effect occur.  The results also support previous research indicating moderate-to-heavy alcohol 

exposure leads to prenatal and postnatal growth restriction as well as impaired 

neurodevelopment.  The data suggest that micronutrient supplementation during pregnancy, 

including high doses of folate, may be an early intervention to reduce the harmful effects of 

prenatal alcohol exposure.  Further studies are needed to identify the specific micronutrients 

producing these effects, and assess the appropriate level of these micronutrients necessary to 

provide the greatest benefit without exceeding the safe limit.  Currently research is being 
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conducted with the CIFASD consortium to examine the effect of prenatal alcohol exposure on 

fetal growth, as well as the potential benefits of maternal micronutrient supplementation on 

FASD’s.   
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Appendix 1: Study sample characteristics. 

 

 

  

>11,000 women screened for alcohol use during first 

prenatal visit. 

Alcohol Exposed Group (N=370): 

At least weekly binge drinking, or 

heavy alcohol use around conception or 

1
st
 trimester 

Alcohol Unexposed Group (N=322): 

No binge drinking or minimal or no 

alcohol use around conception or 1
st
 

trimester 

Infants who died before birth were removed from the analysis. 

Alcohol Exposed Group 

(N=355) 

 

Alcohol Unexposed Group 

(N=315) 

 

Women with “highly suspected alcohol use” were removed from the analysis. 

Alcohol Exposed Group 

(N=306) 

 

Alcohol Unexposed Group 

(N=315) 

 

MVM supplement  

(N=143) 

 

No MVM supplement  

(N=163) 

 

MVM supplement  

(N=159) 

 

No MVM supplement  

(N=156) 
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Appendix 2:  Regression equations for fetal growth measurements at third trimester, birth 

growth measurements, and Bayley Scales of Infant Development-II. 

Predicted estimated fetal weight during third trimester is equal to -3378.466 + 

166.520(Gestational age at exam) – 54.223(absolute ounces of alcohol per day).  Estimated fetal 

weight increased 166.520 g for every week gestation, and decreased 54.223 grams for every 

absolute ounce of alcohol consumed (F(2,489)=464.887, p<0.001, R
2
 = 0.655). 

Predicted abdominal circumference during third trimester is equal to 17.769 + 

8.189(Gestational age at exam) – 3.078(absolute ounces of alcohol per day).  Abdominal 

circumference increased 8.189 millimeters for every week gestation, and decreased 3.078 

millimeters for every absolute ounce of alcohol consumed (F(2,491)=544.372, p<0.001, R
2
 = 

0.689).   

Predicted biparietal diameter during third trimester is equal to 26.749 + 1.726(Gestational 

age at exam) – 1.131(absolute ounces of alcohol per day).  Biparietal diameter increased 1.726 

millimeters for every week gestation, and decreased 1.131 millimeters for every absolute ounce 

of alcohol consumed (F(2,491)=278.516, p<0.001, R
2
 = 0.532).   

Predicted occipitofrontal diameter during third trimester is equal to 37.190 + 

2.067(Gestational age at exam) – 1.169(absolute ounces of alcohol per day).  Occipitofrontal 

diameter increased 2.067 millimeters for every week gestation, and decreased 1.169 millimeters 

for every absolute ounce of alcohol consumed (F(2,485)=235.510, p<0.001, R
2
 = 0.493).   

Predicted caval-calvarial distance during third trimester is equal to 6.388 + 

0.981(Gestational age at exam) – 0.812(absolute ounces of alcohol per day).  Caval-calvarial 

distance increased 0.981 millimeters for every week gestation, and decreased 0.812 millimeters 

for every absolute ounce of alcohol consumed (F(2,489)=118.435, p<0.001, R
2
 = 0.326). 

Predicted birth weight is equal to -3914.216 + 183.587(Gestational age at birth) – 

136.783(absolute ounces of alcohol per day).  Birth weight increased 183.587 grams for every 

week gestation, and decreased 136.783 grams for every absolute ounce of alcohol consumed 

(F(2,617)=239.196, p<0.001, R
2
 = 0.437). 

Predicted birth length is equal to 10.591 + 1.041(Gestational age at birth) – 

0.621(absolute ounces of alcohol per day).  Birth length increased 1.041centimeters for every 

week gestation, and decreased 0.621centimeters for every absolute ounce of alcohol consumed 

(F(2,617)=241.108, p<0.001, R
2
 = 0.439). 

Predicted birth head circumference is equal to 11.368 + 0.582(Gestational age at birth) – 

0.347(absolute ounces of alcohol per day).  Birth head circumference increased 0.582 

centimeters for every week gestation, and decreased 0.347 centimeters for every absolute ounce 

of alcohol consumed (F(2,617)=195.563, p<0.001, R
2
 = 0.388). 

Predicted MDI score at 6 months of age is equal to 91.208 – 4.226(absolute ounces of 

alcohol per day).  MDI score at 6 months of age decreased 4.226 points for every absolute ounce 

of alcohol consumed (F(1,378)=28.166, p<0.001, R
2
 = 0.069). 
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Predicted PDI score at 6 months of age is equal to 90.516 – 3.581 (absolute ounces of 

alcohol per day).  PDI score at 6 months of age decreased 3.581 points for every absolute ounce 

of alcohol consumed (F(1,377)=10.730, p=0.001, R
2
 = 0.028). 

Predicted MDI score at 12 months of age is equal to 91.311 – 4.579(absolute ounces of 

alcohol per day).  MDI score at 12 months of age decreased 4.579 points for every absolute 

ounce of alcohol consumed (F(1,291)=15.983, p<0.001, R
2
 = 0.052). 

Predicted PDI score at 12 months of age is equal to 99.760 – 5.964(absolute ounces of 

alcohol per day).  PDI score at 12 months of age decreased 5.964 points for every absolute ounce 

of alcohol consumed (F(1,291)=22.384, p<0.001, R
2
 = 0.071). 
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Appendix 3:  Post-hoc analysis of interactions 

Regression equation for PDI at 6 months of age with main effects and interaction: 

PDI6mo = 93.764 – 8.009 (AA/day) – 0.127 (Folate2) + 0.502 (AA/day*Folate2) 

Regression equation for PDI at 6 months of age with main effects and interaction (with centered 

variables): 

 PDI6mo = 91.705 – 0.423 (AA/day) + 0.034 (Folate2) + 0.502 (AA/day*Folate2) 

High Folate 3
rd

 trimester (with centered variables): 

PDI6mo = 91.265 – 6.828 (AA/day) + 0.034 (Folate2above) + 0.502 

(AA/day*Folate2above)    

Overall model: X
2

(3)=4.831, p=0.185.  AA/day: X
2

(1)=3.939, p=0.047. 

With 0 for Folate 2 above 1 SD: 

PDI6mo = 91.265 – 6.828 (AA/day)  

PDI6mo = 91.265 – 6.828 (0.859363) = 85.39726944 

PDI6mo = 91.265 – 6.828 (0.32221) = 89.0649501 

PDI6mo = 91.265 – 6.828 (-0.214943) = 92.7326308 

Low Folate 3
rd

 trimester (with centered variables): 

PDI6mo = 92.145 + 5.983 (AA/day) + 0.034 (Folate2below) + 0.502 

(AA/day*Folate2below)     

Overall model: X
2

(3)=4.831, p=0.185.  AA/day: X
2

(1)=1.921, p=0.166. 

With 0 for Folate 2 below 1 SD: 

PDI6mo = 92.145 + 5.983 (AA/day)  

PDI6mo = 92.145 + 5.983 (0.859363) = 97.2865688 

PDI6mo = 92.145 + 5.983 (0.32221) = 94.0727824 

PDI6mo = 92.145 + 5.983 (-0.214943) = 90.858996 

 

Regression equation for Estimated Fetal Weight at 3
rd

 trimester with main effects and 

interaction: 

EFW = 52.237 – 17.148 (AA/day) – 0.170 (Folate1) + 0.690 (AA/day*Folate1) 

Regression equation for Estimated Fetal Weight at 3
rd

 trimester with main effects and interaction 

(with centered variables): 

 EFW = 47.546 – 6.051 (AA/day) + 0.052 (Folate1) + 0.690 (AA/day*Folate1) 

High Folate 2
nd

 trimester (with centered variables): 

EFW = 46.841 – 15.429 (AA/day) + 0.052 (Folate1above) + 0.690 

(AA/day*Folate1above)    

Overall model: X
2

(3)=8.041, p=0.045.  AA/day: X
2

(1)=8.123, p=0.004. 

With 0 for Folate 1 above 1 SD: 

EFW = 46.841 – 15.429 (AA/day)  

EFW = 46.841 – 15.429 (0.859363) = 33.58188827 

EFW = 46.841 – 15.429 (0.32221) = 41.86962191 

EFW = 46.841 – 15.429 (-0.214943) = 50.15735555 

Low Folate 2
nd

 trimester (with centered variables): 

EFW = 48.252 + 3.326 (AA/day) + 0.052 (Folate1below) + 0.690 

(AA/day*Folate1below)     

Overall model: X
2

(3)=8.041, p=0.045.  AA/day: X
2

(1)=0.237, p=0.626. 

With 0 for Folate 1 below 1 SD: 

EFW = 48.252 + 3.326 (AA/day)  
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EFW = 48.252 + 3.326 (0.859363) = 51.44024134 

EFW = 48.252 + 3.326 (0.32221) = 49.32367046 

EFW = 48.252 + 3.326 (-0.214943) = 47.53709958 
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