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Abstract 
	
	

The Chattahoochee River is an essential surface water source as it provides over 70 

percent of Metro Atlanta’s drinking water, amounting to over 300 million gallons. In 

addition to serving as Metro Atlanta’s primary source of drinking water, the 

Chattahoochee River serves as a major point of discharge for industrial and municipal 

waste as well as urban runoff. 	

	

The primary goal of this study was to assess the presence of Pepper Mild Mottle Virus in 

the Chattahoochee River. During a five-month period in 2014, water samples were 

collected at fifteen sample sites and two outfall sites in the Chattahoochee River. 

PMMoV was tested for in 6 out of 17 samples. A one-way ANOVA analysis (p<0.05), of 

concentrations across sampling locations resulted in a p-value of 0.044. As a result, it can 

be determined that the location of the sampling sites does result in a statistically 

significant difference in the PMMoV values observed. Furthermore, a one-way ANOVA 

analysis (p<0.05), of concentrations across sampling dates resulted in a p-value of 0.063. 

Therefore, it is determined that the dates on which sampling took place did not result in a 

statistically significant difference in the PMMoV values observed across time.  

Furthermore, the MS2 virus was also detected in these samples. Through a paired t-test 

(p<0.05), between the sample concentrations with and without MS2 presence, it was 

determined that there was no statistical difference in concentration of PMMoV when 

MS2 is present since p=0.0740 	

	

The results indicate that PMMoV was present in the Chattahoochee River due to the 

detection of PMMoV in the samples collected. However, additional investigations, using 

a larger sample size, are needed to assess PMMoV as a viable indicator of fecal 

contamination of ambient surface waters and recreational waters.	

Index Words: PMMoV, Chattahoochee River, MS2	
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Chapter I 
INTRODUCTION 

 

1.1 Background 

The Chattahoochee River originates from the Blue Ridge Mountains of Georgia and 

flows southward into Florida, forming a natural border between Georgia and Alabama. 

The Chattahoochee River is the most heavily used water resource in Georgia (EPD, 

1997).Furthermore, the Chattahoochee River is an essential surface water source for the 

metro Atlanta area as it provides over 70 percent of the city's drinking water, amounting 

to over 300 million gallons (EPD, 1997). In addition to serving as Metro Atlanta's 

primary source of drinking water, the Chattahoochee River acts as a major point of 

discharge for industrial and municipal waste as well as urban runoff. Due to Metropolitan 

Atlanta's dependence on the Chattahoochee River as both a source of drinking water and 

a site for waste discharge, both monitoring and maintaining the integrity of the river's 

surface water is of vital importance.  

 

The city of Atlanta has undergone a steady rise in population beginning in the early 

1990s and continuing through the 2000s. Recently, The City of Atlanta has averaged an 

annual growth of approximately 37,283 new residents since 2010. This recent trend is 

slower than the growth the city of Atlanta experienced in the 1990s and early 2000s. 

Overall, the region averaged more than 77,000 new residents each year between 1990 and 
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2010. With a consistently increasing stream of new residents each year, the amount of 

sewage flowing into the city and surrounding areas sewage systems began to grow as 

well. Despite the increase in economic vitality as a result of the city's population growth, 

the need for environmental overhauls on the Atlanta sewage system has grown more 

urgent.  In the late 1880s, sanitary sewers were built for residents of the city but as 

expected have started to break and crack. An improved system was designed and installed 

to carry storm water and household waste. However, that system has degraded due to 

population growth. The sanitary sewer system becomes overburdened, leading to sanitary 

sewer overflow (SSO) events. During these events, a mixture of groundwater, untreated 

sewage, and stormwater overflow can find its way into streams and creeks through 

dilapidated pipes and manholes. (History, 2010; Perkins, 2014; and Smith, 2015). 

According to Clean Water Atlanta, in 1998 Atlanta entered into a Consent Decree. The 

consent decree included a directive to evaluate and implement short and long-term plans 

for eliminating water quality violations for the city of Atlanta. Currently, the City of 

Atlanta is under two consent decrees resulting from lawsuits against the City filed by 

several constituents including the Upper Chattahoochee Riverkeeper and later joined by 

EPA and EPD. Today the city is under a combined sewer overflow (CSO) remediation 

plan. (History, 2010) 

As a result of multiple issues including sewage overflows, bacterial pollution of the 

waterways, and inadequate collection capacity, the city of Atlanta was sued for violating 

the Clean Water Act in 1995 (EPA, 1999). In response to the violations, the Federal 
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Clean Water Act, Safe Drinking Water Act, and the State Water Quality Control Act 

were enforced to protect the Chattahoochee River's water quality. This policy 

implemented the defining and monitoring of definitive water quality standards for the 

health of the public (EPD, 1997). The City of Atlanta and the Federal Government agreed 

to a monetary settlement and to take corrective action to bring the sewer system into 

compliance with the Clean Water Act and the Georgia Water Quality Control Act. A 

Consent Decree created the objective of eliminating future water quality violations from 

sanitary sewer overflows. This Consent Decree encompassed improving the cities' Water 

Reclamation Centers (WRCs), investigating sewer pipe conditions, as well as ending 

water quality violations resulting from CSOs. Specifically, one of the primary goals of 

the Consent Decree was to improve the current water quality conditions in the receiving 

waters downstream of the city, mainly the Chattahoochee River, by improving the water 

quality of the effluent discharging from the WRCs located around the city (Overview, 

2010).  

 

"The First Amended Consent Decree (FACD) authorizes the review of building permit 

applications that propose adding new flows into the sewer system, utilizes technology 

such as closed-circuit televisions to inspect and monitor the condition of drains, and 

controls and revises plans to operate the collection system more efficiently" (Overview, 

2010). This program includes the division of the Greensferry and McDaniel CSO Basins 

and the Stockade Sub-basin (Custer CSO Basin). Dividing these basins will expand the 
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city's total separated area from 85% to about 90% while eliminating two CSO facilities.  

The FACD also calls for the construction of deep-rock tunnel storage and treatment 

systems that will capture and store combined stormwater. This stormwater will be treated 

at two CSO facilities, before being discharged into the Chattahoochee River.  The city of 

Atlanta hopes the number of overflows is reduced from 60+ per year to only 4 per year at 

the four facilities that will remain after the changes have been implemented. Any 

remaining overflows will be screened, disinfected, and dechlorinated before being 

discharged to a receiving stream. These changes should allow for the water quality 

standards to be met. 

 

The water quality of the Chattahoochee River varies from season to season, but currently, 

there is no National Park Service health advisory in effect. However, there are a few 

areas along the Chattahoochee that have been designated for monitoring or as a health 

advisory area, such as Chattahoochee River at Atlanta (Paces Ferry Rd) (Perlman., 2014). 

Consequently, the determination of what factors affect water quality, specifically in the 

Chattahoochee River, is vital to maintaining regulations and providing a clean 

environment. The previous management of the river placed great emphasis on point 

sources from municipal or industrial water pollution control facilities, but presently 

nonpoint sources of pollution through stormwater the Chattahoochee River (Smith, 

2015). The continued rise in the population of Atlanta and the subsequent development of 

the watershed may lead to more stormwater runoff and nonpoint source loading as more 
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impervious surfaces prevent rainfall from infiltrating the ground, resulting in increased 

stormwater runoff, flooding, and stream bank erosion. Due to the importance of the 

Chattahoochee River, effective methods for monitoring the quality of river water are 

needed.  

 

1.2 Purpose of the Study 

Pathogenic plant viruses have been responsible for the lack of crop production around the 

world. The pepper mild mottle virus (PMMoV) is a plant pathogenic virus that has been 

found worldwide and grows specifically on species of field grown bell, hot, and 

ornamental pepper species. Previous studies have investigated the PMMoV's viability as 

an indicator of fecal contamination (Rosario, et al., 2009). Presently, the current bacterial 

indicators used for water monitoring does not always necessarily correlate with the 

presence of pathogens. The primary objective of this investigation was to assess the 

presence of PMMoV, a potential indicator of possible human fecal pollution in the 

Chattahoochee River. Studies on the presence of PMMoV in surface waters, such as 

rivers, and also as a fecal indicator are limited as of now. In previous investigations, 

PMMoV's presence has been detected in other marine environments such as surface 

seawater ponds, water from irrigated farmlands and rivers (Rosario et. al., 2009) (Kuroda 

et al., 2015).  Environments, where PMMoV is found to be present, may indicate sources 

of pollution, such as wastewater discharges, in the Chattahoochee River, as well as reflect 

the impact of urbanization on the river and surface water. Although the Chattahoochee 
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River is a designated local, state, and federal waterway of interest, along with being a 

recreational waterway, no studies have been conducted to assess the presence of PMMoV 

and evaluate its contribution to the water quality of the Chattahoochee River and other 

surface waters.  

 

1.3 Research Questions: 

 

Are there any spatial or temporal variations in concentration of PMMoV along the 

Chattahoochee River? 

Is there any correlation between the presence of bacteriophage MS2 and PMMoV 

concentrations? 

Does the discharge of effluent from the Camp Creek Outfall and the Douglas County 

Outfall into the Chattahoochee River affect the concentration of PMMoV downstream? 
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Chapter II 

Review of Literature 
 

2.1 Urbanization 

The surface water of an area is essential to the life and vitality of its surrounding 

communities. Due to this fact, numerous studies have been conducted globally to 

examine the effects of urbanization on surface waters, and also to identify and develop 

trends that can be used in predicting contaminant concentration in that body of water. 

Water reaches human consumption through various pathways, usually beginning with 

collection from ground or surface water source, and then treated through several filtration 

methods at municipal treatment plants .After treatment, that water is supplied to the 

public for public consumption. 

 

Several Studies have investigated the effects of urbanization on the water quality in a 

municipality. These studies have shown that urbanization has resulted in above average 

fecal coliform levels, non-point and point pollution, runoff, discharges and several other 

factors that alter the composition of water bodies (Oiste, 2014; Peters, 2009, Smith, 2015) 

Rivers are essential for agricultural production for numerous countries and 

municipalities. Additionally, rivers are the most vulnerable bodies of water to 

contamination due to domestic, industrial, and agricultural discharges. (Boyacioglu, 

2010) Particularly in urban areas, it is quite difficult to monitor and to hold accountable 
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those who are responsible for making illegal discharges into the rivers. Without 

consistent monitoring, surface waters in high population density areas face a grim 

outlook. The Dianchi Lake Basin, located in Kunming City, China, is an area with a 

dense population and developed economy supported by an assortment of intensive human 

activities. With the predominantly high usage of water resources and minimal inflow of 

clean water, Dianchi Lake is presently facing a potential water crisis due to pollution. 

Several initiatives since 1986 focused on pollution control of the Dianchi Lake basin, 

however due to the heavy population burden and pollution loading these efforts have 

been unsuccessful. (Liu et al. 2015) 

 

A study in 2003 focused on the effects of urbanization on stream water quality in the 

Metro Atlanta area. (Peters, 2009) The study concluded that urban development can 

change the natural flow and pathways of water bodies. Urbanization due to economic and 

industrial growth increases the potential for several adverse outcomes such as 

environmental land insecurity, poor air & water quality, noise pollution, and waste 

disposal difficulties (Uttara et al, 2012). Water quality especially deteriorates due to 

eutrophication and pollution, subsequently resulting in a loss of biodiversity and biotic 

homogenization. Climatic change, itself is affected by urbanization as temperatures 

increase due to the lack of cooling because of the increased construction of impervious 

surfaces (Yu, S. 2012, Pauchard, 2006, Tayan and Toros, 1997, Uttara, 2015). Despite the 

potentially harmful results of urbanization and industrial growth, many in the local 
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population benefit from the increased industrial opportunities. Industrial development 

provides such benefits as  a potentially improved quality of life, transportation 

convenience through the building of highway infrastructure, new career opportunities, 

and access to resources that are not as easily attained by  those living in rural 

communities (Sallis, 2009) 

 

Urban stormwater systems that collect and convey runoff from impervious surfaces serve 

as a passageway for sewage originating from breaks in sanitary infrastructure. (Sauer, 

2011). Storm water flow from an impervious surface can result in several adverse 

outcomes such as stream & habitat degradation; low base flows and increased toxic 

loadings from several nonpoint sources. (Thurston, 2003). This issue is attributed to the 

amount of impervious surfaces that do not allow water to seep into the ground, 

subsequently being filtered throughout layers of soil. Instead of sifting through the earth 

to become groundwater, precipitation instead becomes runoff eventually flowing down 

the watershed to the lowest point, making its way into a river via streams and creeks. 

(Smith, 2015)  Contamination via the discharging of sewage into surface waters is a 

major human health concern. Additionally, proper protection of urban watersheds is even 

more vital as human population expands.  According to a study published in 2009 by 

DiDonato et al., microorganisms were sampled from creeks representing, forested, 

suburban, and urban watersheds for indicators of water quality. The investigators, found 

these microorganisms to have the highest concentrations in stream headwaters and more 
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developed watersheds. (DiDonato et al., 2009; Perkins, 2014). This result displays the 

strong correlation for increased contamination among urban watersheds in comparison to 

other bodies of water due to impervious surfaces characteristic of urban environments. 

Impervious surface coverage has been considered a quantifiable land-use indicator that 

correlates closely with polluted runoff. (Arnold & Gibbons, 1996) Furthermore, due to 

the results of the study, there is also the potential to forecast indicator concentrations 

under land use change scenarios. 

 

2.2 Weather Pattern Trends and Stormwater Runoff 

"There is widespread recognition of the degrading influence of urban stormwater runoff 

on stream ecosystems and of the need to mitigate these impacts using stormwater control 

measures." (Fletcher, 2014). According to Smith 2015, both combined sewer systems and 

separate sewer systems have a tendency to overflow during rain events resulting in large 

volumes of wastewater and storm water being discharged into the watersheds. (Lee and 

Bang, 2000, Balmforth, 1990, Lee et al. 1996, Smith 2015). CSOs are usually held 

responsible for the deterioration in water quality of receiving waters, as more pollutants 

are likely to enter the receiving waters from their discharge locations.  According to 

Suárez and Puertas, long-term poor quality in a watershed is due to the failed 

maintenance and control of the CSOs, especially during rain events. Rivers and lakes are 

highly affected by contaminants discharged into them as a result of CSOs, especially 

when they are not controlled. (Suárez and Puertas, 2005). Discharges from combined 
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sewer systems, are especially relevant due to them containing a mixture of contaminants 

such industrial wastewater, urban surface runoff, domestic wastewater and sewer 

deposits. Discharges from separate systems include mainly the runoff from urban 

surfaces, resulting in fewer pollutants (Suárez and Puertas 2005).  This finding explains 

why CSOs receive the majority of the blame for damaging water quality in receiving 

waters. 

Although CSOs receive a majority of the criticism for the deterioration in water quality 

because of the pollutant-filled discharges, storm runoff is also responsible for low 

standard water quality. Nonpoint source pollution is one of the causes of poor quality of 

receiving waters. Nonpoint pollution, originating primarily from agriculture and urban 

and industrial activity is a primary source of phosphorus and nitrogen to surface waters of 

the United States. (Carpenter, 1998). Urban non-point pollution can contain various 

pollutants from toxic chemicals stemming from motor vehicles to pesticides from lawn 

and gardens treatment tools. Furthermore, nonpoint pollution can also contain viruses, 

bacteria, and nutrients from pet waste, underperforming septic systems, and heavy 

metals. One study examined different sources of nonpoint pollution. These sources 

ranged from building siding and roofs; automobile brakes, tires, and oil leakage; to wet 

and dry atmospheric deposition. Atmospheric deposition is a major source of metals such 

as cadmium, copper, and lead (Davis, 2001).  The study found that building siding was 

the biggest contributor of metals ranking as the highest source of lead and zinc and the 

second largest for copper and cadmium. Atmospheric deposition had a major contributing 
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role in cadmium loading but was a minor factor in contributing cadmium and iron. 

Automobiles were also found to be a source of heavy metals to the environment. The 

study found that emissions from the wear of brakes contained copper while tire wear 

contributed zinc. Oil leakage from automobiles added a minor amount of all the four 

metals. (Davis, 2001). 

 

Both separate sewer overflows (SSOs) and CSOs are dependent on rainfall.  With this 

being said, the monitoring of local weather pattern trends is critical for the surveillance of 

a watershed. It can be assumed form previous research that more precipitation will result 

in more runoff, and thus more contamination in the watersheds. Rainfall events can 

results in CSOs that introduce multiple sewage-borne contaminants into the local aquatic 

environments, subsequently compromising the quality of that watershed and negatively 

impacting the public health of the local area. (Eriksson et. al., 2007; Rajal et al., 2007; 

and Gasperi et. al., 2008). A recent investigation found observed higher concentrations of 

various strains of viruses such as enteric adenoviruses and GII-noroviruses, due to the 

rainfall events (Hata et. al., 2014). Furthermore, the study found that concentrations of 

indicator microorganisms such as E. coli, TCs, and F-phages in the samples were higher 

during wet weather than during dry weather supporting the idea that rainfall events 

increase microorganism concentrations in watersheds. (Hata et. al., 2014). Fecal 

contamination was found to be more common during the wet season by another study. 

(Kostyle, 2015) This finding was applicable across several categories such as fecal 
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indicator bacteria, measurement methods, and population setting, Kostyla, 2015). A study 

of the Newport River Estuary yielded similar results. Despite seasonal variations, the data 

revealed a significant increase in fecal coliform concentrations after measured rainfall 

amounts of 2.54 cm (Coulliette & Noble, 2008). 

 Several studies have concluded that wastewater discharges are the most probable source 

of fecal contamination of surface waters. A study found that wastewater treatment plants 

with secondary treatment were an important source of potentially harmful bacteria such 

as E. coli, norovirus, Giardia and Cryptosporidium. The rainy season can cause 

comparably higher microbial loads in sewer overflows (Astrom et al., 2009) As 

aforementioned, discharges from sewer systems, specifically CSOs and SSOs during wet 

weather conditions, implicate high loads of indicator organisms and pathogens. Special 

emergency circumstances where untreated wastewater is discharged represent a 

significant pathogen source as well (Astrom et. al., 2009). Other variables such as flow 

intensity are a factor in relation to bacterial and pathogenic contamination. According to a 

study conducted by Bougeard et. al.,  the peaks where high of E. coli concentration 

occurred correlated with increases in river flow (Bougeard et al., 2011). Furthermore, 

McCarthy et al. also found that at two sample sites E. coli densities were highly 

correlated with the average flow intensity. (McCarthy et al., 2012). However, there have 

been studies that have contrasted these findings. For example, according to Chase et al., 

their investigation found that greater concentrations of fecal coliforms and E. coli were 

observed under no-flow conditions, and that there was actually a significant negative 
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correlation found between the flow rate and the levels of fecal coliforms in the water. 

Moreover, fecal concentrations were determined to be less under flowing conditions in 

comparison to fecal concentration levels under nonflowing conditions (Chase et. al., 

2012)  

Previously mentioned studies agree that nonpoint pollution and urban surface runoff are 

primary contributors to the decline in the water quality of urban water bodies. In a 

particular, study by Wang et. Al, 2015, findings indicated that 80% of the overall water 

pollution in the Nansi Lake Basin mainly came from nonpoint source pollution.. 

Agricultural fertilizers and pesticides both contribute more than 85% of the overall 

nonpoint source, coupled with livestock and aquaculture (Wang et. Al 2015). Routine and 

improved monitoring methods of the waterways are critical to determining what factors 

are influencing water quality degradation. The United States Clean Water Act does not 

directly regulate nonpoint source water pollution; however, it does provide mechanisms 

that urge states to address and correct nonpoint source water quality problems within 

their borders. States are being called on to legislate and enforce laws to limit pollution 

and maintain the water quality set forth by the Clean Water Act within their borders. 

Despite there being both shallow and in depth scientific knowledge available about the 

effects of nonpoint source pollution, willingness from both state and federal governments 

to address nonpoint source pollution has been rooted and connected instead to the 

cultural, economic, and political prominence of perceived nonpoint source pollution 

problems, especially in regards to agricultural components (Kundis et. al., 2015). 
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2.3 Fecal Contamination: 

Surface freshwater is a widely used source of drinking water for communities across the 

world. The majority of the world's drinking water uses surface water as drinking water as 

its source for the human population (Hörman et. al., 2004). Public health protection 

requires standards and regulations in the water quality of surface waters in the United 

States. These rules and regulations are enforced under the Clean Water Act.  The 

sampling and analysis of drinking water for the presence of indicator microorganisms is 

an essential process for determining the microbiological quality of local water sources 

and to the assessment of any possible threat to the public health of the community. 

Despite advances in medicine and the prevention of water-borne illnesses,  drinking 

water-related outbreaks are still occurring worldwide. Moreover, there is not a global 

standard method of testing drinking water for safety as different indicator 

microorganisms are being used worldwide as a tool for the microbiological examination 

of drinking water. The presence of indicator microorganisms (IMs) can imply possible 

fecal contamination of drinking water, which may contain harmful pathogens and reflect 

the overlying problem of water quality deterioration (Saxena, 2015). Indicator 

microorganisms are not considered to be pathogenic to humans (Verhille, 2013). The 

foundation for the protection of public health from waterborne diseases (WBDs) was 

based on this very principle (Saxena, 2015). The most widely used IMs are coliforms 
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(total coliforms (TCs)), fecal or thermotolerant coliforms, Escherichia coli, enterococci 

(fecal streptococci or intestinal enterococci) and bacteriophages. 

 

Sources of fecal contamination can vary from location to location. Fecal contamination is 

a serious concern for managers of water resources, due to the easy accessibility of 

pathogens from the urban environment entering watersheds through various pathways. 

For examples, some of the pathways include the discharge of inadequately treated sewage 

or wastewater effluent, storm water runoff, CSOs, and SSOs (Arnone, 2007). 

Furthermore, the processes implemented at wastewater treatment facilities to remediate 

wastewater are not entirely capable of eliminating the pathogenic organisms found in 

wastewater, allowing for the discharging of microorganisms to into the surface water. 

Additionally, the discharge of any domestic sewage can lead to the contamination of 

groundwater, causing public health concern. 

 

The Clean Water Act of 1972 contains certain requirements governing U.S. bodies of 

water, in hopes of maintaining chemical, physical, and biological integrity. A microbial 

water quality standard consists of a measure or some indicator of a bacterial indicator 

organism. However, developing a total maximum daily load (TMDL) for a 

supplementary indicator or pathogen is an additional also requirement if any impairment 

such as a water disease outbreak were to occur, This would be needed even after the 

water body is in compliance with the standard. This occurs because indicator organisms 
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do not reflect the presence of pathogen contamination with complete certainty (Arnone, 

2007),  

 

Historically, the presence of total coliforms and fecal coliforms such as E.coli, have been 

the indicator microorganisms used to assess water quality. The need for another indicator 

has driven recent research into the PMMoV as a viable fecal indicator. Presently, the 

bacterial indicators regularly used to detect fecal contamination, such as fecal coliforms 

and enterococci, often do not correlate with the presence of viruses and other pathogens 

associated with fecal matter (Rosario et. al., 2009). A research study was designed to 

assess the utility of the PMMoV as an indicator of fecal pollution in the coastal marine 

environment. The investigators used Quantitative PCR to determine the abundance of 

PMMoV in a variety of samples that included: raw sewage, treated wastewater, seawater 

exposed to wastewater, and fecal samples from various animals (Rosario et. al., 2009). 

The study's results indicated that PMMoV was present in all wastewater samples at high 

concentrations of raw sewage. The study's researchers concluded that PMMoV is a 

promising indicator of fecal pollution in marine environments (Rosario et. al., 2009). 

Another study tested the viability of the PMMoV as a fecal indicator in the Ruhr and 

Rhine rivers of Germany. In addition to testing PMMoV as a possible fecal indicator, the 

researchers assessed whether the human picobirnaviruses (hPBV) and Torque teno virus 

(TTV) were suitable indicators of fecal contamination in river water as well These 

viruses were of interest since they are detected at substantial levels in human fecal matter 
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(Hamza et. al., 2011). The procedure utilized quantitative PCR to determine the 

abundance of PMMoV, hPBV, and TTV and compared the results to the concentration of 

human adenoviruses (HAdV) and human polyomaviruses (HPyV). The investigation's 

results found that PMMOV was detected in all samples. The researchers concluded that 

PMMoV showed promising potential as an indicator of fecal pollution in surface waters 

similar to the Ruhr and Rhine Rivers. 
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CHAPTER III 
METHODS 

 
 

3.1 River Sample Site Description 
 
Fifteen locations were designated as water sample collection sites along fourteen-miles of 

the Chattahoochee River with each collection site approximately one mile apart. 

 
Map 1: Chattahoochee River Sample Sites 

 

 
 
 
 
Both the Camp Creek and Douglas County wastewater treatment plants have effluent 

outfalls along the fourteen-mile stretch in which the sample collection sites were located. 

The Camp Creek Outfall is positioned between sites Chatt 3 and Chatt 4 and the Douglas 

County Outfall is between sites Chatt 11 and Chatt 12 
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3.2 Sample Collection: Chattahoochee River 
 
The Chattahoochee River was sampled via boat on 5/12/14, 6/19/14, 7/10/14, 8/5/2014, 

and 9/11/14. Using the grab sample method, one liter of river water was collected in 

sterilized bottles at each of the water sample sites and at the two water treatment outfall 

sites. Only six of the sites where the samples were collected were tested for PMMoV. 

Furthermore, effluent was collected directly from the outfall pipeline at the Camp Creek 

Outfall only if the wastewater plant was releasing effluent at the time of sample 

collection. Douglas County Outfall samples were not collected directly from the pipeline 

but within close proximity if the outfall was unreachable by boat. In addition to water 

samples, the date, time, geographic location (latitude and longitude), dissolved oxygen 

(DO), and pH were recorded at each sample site on each sampling round. All liter bottles 

containing samples were stored in coolers filled with ice to preserve the samples while 

being transported from the Chattahoochee River to the Georgia State University (GSU) 

School of Public Health (SPH) lab. Samples remained in coolers on ice until processed, 

which was no longer than six hours. As previously mentioned, sampling and testing for 

PMMoV focused on the outfalls and the sites immediately upstream and downstream of 

these outfalls. Therefore, sample sites Chatt 3 and Chatt 4 and Chatt 11 and Chatt 12 and 

CC Out and DC Out were sampled for PMMoV. Each site was 1 mile upstream and 1 

mile downstream from the outfall. One-liter grab samples were stored at 4C and shipped 

overnight to the University of Arizona for Polymerase Chain Reaction (PCR) analysis for 

PMMoV. 
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3.3 Detection of PMMoV 
 
Detection of PMMoV was performed at the University of Arizona according to the 

method of Quantitative Polymerase Chain Reaction analysis using TaqMan-based qPCR 

assays for viruses were performed with a LightCycler® 480 Real-Time PCR Instrument 

II (Kitajima, 2014). 

 
3.4 Statistical Analyses 
 
All original data was organized and stored in Microsoft Excel 2008 prior to statistical 

Analyses. Graphs were created using GraphPad Prism version 5 & 6. Statistical Analyses 

of the data was performed with GraphPad Prism as well. These statistical analyses 

included paired-t-test as well as a one-way ANOVA to determine any statistically 

significant differences. For all statistical analyses, the level of significance was reported 

as p < 0.05. 
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CHAPTER IV 
RESULTS 

 

4.1 Chattahoochee River 

As shown in Table 1, the sampling results for the investigations varied across sampling 

sites and dates. A one-way ANOVA analysis (p<0.05), as shown in Table 2, of 

concentrations across sampling locations, resulted in a p-value of 0.044 This resulting p-

value (p=0.044) was not higher than the test value of p<0.05. As a result, it can be 

determined that the location of the sampling sites does result in a statistically significant 

difference in the PMMoV values observed. Furthermore, a one-way ANOVA analysis 

(p<0.05), of concentrations across sampling dates, led to a p-value of 0.063 (Table 3). 

The resulting p-value of 0.06313 was higher than the test value of p<0.05 therefore, 

indicating that the dates on which sampling took place did not result in a statistically 

significant difference in the PMMoV values observed across time.  

As Shown in Figure 1, the PMMoV concentrations were not similar across sample sites. 

Chatt #3 showed the lowest concentration of PMMoV of all the sites where PMMoV was 

determined to be present. CC Out (#16), which is an outfall located between Chatt #3 and 

Chatt #4, showed the highest concentration of PMMoV across all the sites where 

PMMoV was determined to be present.  Furthermore, DC out (#17), another outfall 

located between Chatt #11 and Chatt #12, however, did not show a similarly high 

concentration of PMMoV. This result could have occurred due to sampling method as 

DC outfall was harder to access. Samples were frequently taken from the water 
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surrounding the outfall and not directly from the outfall itself, possibly explaining the 

lower concentrations.  It is notable that PMMoV was found both upstream and 

downstream of each outfall. The average PMMoV concentration was higher downstream 

of the outfall than upstream.  

 
 
Table 1: PMMoV Sampling Results from the Chattahoochee River by Site and Date, 
Atlanta Georgia, 2013  
 

 Chatt 3 CC out Chatt 4 Chatt 11 DC out Chatt 12 

5/12/14 824000 98700000 71000 149000 632000 0* 

6/19/14 919000 81300000 1810000 1730000 2000000 1660000 

7/10/14 1430000 44500000 1810000 4750000 4260000 7660000 

8/5/14 86400 20600 35400 62000 53600 40500 

9/11/14 205000 205000 7470 37800 7470 33500 
*Concentration values in copies/L 
* Sample was non-detectable 
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Figure 1.  Chattahoochee River Sampling Results PMMoV Concentration vs. Site 
Location	
	
	
 
 
 
 

 
 
Table 2: One-Way ANOVA Analysis of selected Water quality variables from the 
Chattahoochee River by site Atlanta, Georgia, 2013 

	
	
 
 
 
 
 
 
 
 
 
 
 
 
 

* level of significance reported as p<.05 
*Concentration values in copies/L 
* Average concentrations per site	

1	
10	
100	
1000	
10000	
100000	
1000000	
10000000	
100000000	

Chatt	3	 CC	out	 Chatt	4	 Chatt	11	 DC	out	 Chatt	12	

Chattahoochee	River	Sampling	Rsults:	
PMMoV	Concentration	vs	Site	Location	

5/12/2014	 6/19/2014	 7/10/2014	 8/5/2014	 9/11/2014	

PMMoV Concentrations By Site 	
* P-

Value	
Chatt 3	 CC out	 Chatt 4	 Chatt 11	 DC out	 Chatt 12	 	

	
	

=0.0044	

824000	 98700000	 71000	 149000	 632000	 0	
919000	 81300000	 1810000	 1730000	 2000000	 1660000	

1430000	 44500000	 1810000	 4750000	 4260000	 7660000	
86400	 20600	 35400	 62000	 53600	 40500	

205000	 205000	 7470	 37800	 7470	 33500	
*692880 *44945120 *746774 *1345760 *1390614 *692880 	
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Table 3: One-Way ANOVA Analysis of selected Water quality variables from the 
Chattahoochee River by Date, Atlanta, Georgia, 2013	
	

	
PMMoV Concentrations By Date 	 *P-Value	

5/12/14	 6/19/14	 7/10/14	 8/5/14	 9/11/14	 	
	

	
=0.6313	

	

824000	 919000	 1430000	 86400	 205000	
98700000	 81300000	 44500000	 20600	 205000	

71000	 1810000	 1810000	 35400	 7470	
149000	 1730000	 4750000	 62000	 37800	
632000	 2000000	 4260000	 53600	 7470	

0	 1660000	 7660000	 40500	 33500	
* level of significance reported as p<.05 
*Concentration values in copies/L	
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Bacteriophage MS2 is a potential indicator of the presence of human viruses in water, As 

shown in Table 4, MS2 was found in 19 out of 30 sample collections from the 

aforementioned sites. No statistical significance could be drawn from just those results.  

However, via a paired t-test,(p<0.05), between the sample concentrations with and 

without MS2 presence, it was determined that there was no statistical difference in 

concentration of PMMoV when MS2 is present since p=0.0740.	

 
Table 4 MS2 Sampling Results for Chattahoochee River, Atlanta, Georgia 2014	
	

*Presence 
MS2 by Site	 5/12/14	 6/19/14	 7/10/14	 8/5/14	 9/11/14	 *P-Value	

Chatt #3	 +	 -	 +	 +	 +	 	
Chatt #4	 +	 -	 +	 +	 +	 P=0.740	
Chatt #11	 +	 -	 -	 +	 +	 	
Chatt#12	 +	 -	 +	 +	 +	 	
CC Out 
(#16)	

-	 -	 -	 +	 +	 	

DC Out 
(#17)	

-	 -	 -	 +	 +	 	

* t-test with level of significance reported as p<.05	
* +/- = Presence of MS2 in Sample for Site	
	
	
As previously mentioned, PMMoV concentrations varied across sampling sites  As 

displayed  in Table 5, through paired t-test (p<0.05) it was determined that there were no 

statistically significant differences between the concentrations of PMMoV found 

upstream (Chatt 3) the Camp Creek Outfall or downstream (Chatt 4) the Camp Creek 

Outfall.  Furthermore, as shown in Table 6 through paired t-test (p<0.05) it was 

determined that there were no statistically significant differences between the 

concentrations of PMMoV found upstream. Through paired t-test (Table 5) it was 
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determined that there were no statistically significant differences between the 

concentrations of PMMoV found upstream (Chatt 3) the Camp Creek Outfall or 

downstream (Chatt 4) the Camp Creek Outfall.  Furthermore, through paired t-test (Table 

6) it was determined that there were no statistically significant differences between the 

concentrations of PMMoV found upstream (Chatt 11) the Douglas County Outfall or 

downstream (Chatt 12) the Douglas County Outfall.	

Table 5. Paired T-Test Analysis of selected Water Quality Variables from the 
Chattahoochee River by site, Atlanta, GA, 2013	
	

PMMoV Concentrations By Site 	

Chatt 3	 CC Outfall	

	
	

Chatt 4	

*P-Value 	
(Chatt 3 vs. CC 

Out)	

*P-Value 	
(Chatt 4 vs. CC 

Out)	
824000.	 98,700,000	 71000	 	

	
= 0.0928	

	
	

=0.0931	
919000.	 81,300,000	 1810000	

1430000.	 44,500,000	 1810000	
86400.	 20600	 35400	

205000.	 205000	 747	
*t-test with level of significance reported as p<.05 
*Concentration values in copies/L	
 
Table 6. Paired T-Test Analysis of selected Water Quality Variables from the 
Chattahoochee River by site, Atlanta, GA, 2013	
	

PMMoV Concentrations By Site 	

Chatt 11	 DC Outfall	

	
	

Chatt 12	

*P-Value 	
(Chatt 11 vs. 

DC Out)	

*P-Value 	
(Chatt 12 vs. 

DC Out)	
149000.	 632000	 0	 	

	
= 0.7979	

	
	

=0.5443	
1730000.	 2000000	 1660000	
4750000.	 4260000	 7660000	

62000.	 53600	 40500	
37800.	 7470	 33500	

* t-test with level of significance reported as p<.05 
*Concentration values in copies/L	
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CHAPTER V 
DISCUSSION 

 

5.1 Importance of Study 

Due to Atlanta and its surrounding areas’ dependence on the Chattahoochee River, the 

importance of monitoring and maintaining the integrity of these surface waters is of high 

magnitude. With a steadily growing population, there will be more sanitary sewage in the 

system, eventually making its way to the Chattahoochee River. Previously the city of 

Atlanta had to overcome the poor water quality and install measures that protect the 

rivers water quality. Additional changes were made to ensure that wastewater was 

sufficiently appropriately discharged into the Chattahoochee River.  Methods of testing 

are required to maintain the proper water quality of the River, Accurate indicators of 

fecal pollution are needed to minimize public health risks associated with wastewater 

contamination in recreational waters like the Chattahoochee River. Unfortunately,  many 

times the bacterial indicators presently utilized to assess and monitor water quality do not 

necessarily correlate or accurately reflect the presence of pathogens. (Rosario, et al. 

2009).  The PMMoV is abundant in wastewater from the United States, suggesting its use 

an indicator of human fecal pollution (Rosario, et al. 2009). The advantage of using 

PMMoV instead of human enteric viruses to indicate fecal pollution is that the presence 

of PMMoV in wastewater is independent of active human infection. This is important 
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since other viral indicators depend on the degree of infection in the population and the 

release of the virus into the wastewater system at any given time (Rosario, et al. 2009). 

Therefore there can be some variability and inconsistency when using a human enteric 

virus.  There is a lack of published investigations on the use of the PMMoV as a viable 

indicator of fecal contamination in surface waters. This research also opens the 

opportunity for investigation into whether there is any correlation to the presence of MS2 

and PMMoV in surface waters. 

 

5.2 Major Findings 

The primary goal of this study was to assess the presence of PMMoV in the 

Chattahoochee River. The study found concentrations of the PMMoV in the samples 

taken from the Chattahoochee River between the dates 5/12/14 through 9/11/14. Overall, 

there were few similarities in concentrations found across sample dates. Camp Creek 

Outfall (CC Out), which is located upstream between Chatt #3 & Chatt #4., contained the 

highest concentration of the PMMoV of all the sampling points. However, in comparison, 

Douglas County Outfall (DC out), which is located between Chatt #11 and Chatt #12, did 

not have high concentrations of PMMoV detected. Additionally, there were several 

instances where the concentration found was higher upstream of the outfall than 

downstream of the outfall. This could possibly be due to various factors such as pollution 

and stormwater runoff. This investigation was the first to look for the presence of 

PMMoV in the Chattahoochee River, however there have been other studies as 
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previously mentioned conducted in other areas around the region and country.. Further 

investigation would be needed to explain the high concentration at this specific sampling 

point on all sample dates, relative to all the other sampling points.   

The findings in this investigation are consistent with those in previously published 

literature. In Germany, PMMoV has been positive in all the samples of river waters 

containing WWTP effluent (Hamza et. al., 2011). In Japan, PMMoV has been detected in 

76% of surface water samples used as drinking water sources (Haramoto et al., 2013).  In 

this study 97% of the samples that were tested for the presence of PMMoV were shown 

to be positive for  the presence of PMMoV. Additionally, the detection of PMMoV in all 

samples at the outfalls is consistent with the study conducted by Rosario et. al., (2009) in 

which samples exposed to wastewater or sewage was found to contain PMMoV. 

Although this investigation corresponds with previously published literature, there are 

several differences in this study that exist in comparison to the other studies conducted on 

PMMoV in surface waters. One of the more noticeable differences is the sample size 

taken in this study. For our investigation a small sample size was taken over 5 months. In 

comparison, the investigation by Rosario and others had multiples samples taken over a 

longer period of time. Another difference is that the samples in this investigation were 

taken from one source, the Chattahoochee River, while in the study conducted by Rosario 

and others included samples that were taken from several different sources (raw sewage, 

wastewater, and seawater). The presence of PMMoV upstream of the outfall does suggest 

there are other sources of contamination other than the outfall. These sources of 
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contamination could range from human recreational pollution to the antiquated sewer 

system used by the City of Atlanta for CSOs, which contaminate this waterway.  There 

could be other possible non-point sources of pollution. However, since PMMoV is found 

in fecal contamination, the CSOs may be the leading factor in finding PMMoV upstream 

of the outfalls.  PMMoV is considered very stable in the environment but more 

information on its persistence is needed, 

Furthermore, the results show that it cannot be concluded that there is specific correlation 

between the presence of MS2 and PMMoV in surface water. The results varied with there 

not being any statistical significance toward a correlation between MS2 and PMMoV. 

There are no other studies that investigate the presence of MS2 and PMMoV in surface 

waters with which to compare this investigation. Therefore, monitoring for MS2 presence 

may or may not indicate that PMMoV is present in surface waters, such as the 

Chattahoochee River.  This finding correlates with a study conducted by Luther et al., 

who concluded that monitoring for fecal indicator bacteria, such as MS2 may not 

adequately detect viral contamination (Luther & Fujioka, 2004). Additionally, seasonal 

variability was not examined in this study. However, since PMMoV is based on dietary 

behavior and is not dependent on active human infection, no large seasonal variations are 

expected. Before PMMoV can be used as a viable fecal indicator in other parts of the 

world with different dietary preferences, studies will need to determine the prevalence of 

PMMoV in sewage from each geographic region, as well as the baseline presence of 

PMMoV in local recreational waters (Rosario et. al., 2009). 
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5.3 Strengths and Limitations 

Strengths 

To date, there are no studies investigating the current water quality, the presence of 

PMMoV, and the correlation between the presence of MS2 and PMMoV in the 

Chattahoochee River. 

Limitations 

This research is comprised of a tiny sample size from the Chattahoochee River, making it 

difficult to make assumptions and apply them to a larger scale. PMMoV was only present 

in 6 of 17 samples taken from the Chattahoochee River from May to September. 

Sampling methods also varied due to several factors.  

 

5.4 Future Research 

The Chattahoochee River must comply with Federal and State standards for water 

quality. Continuous monitoring, as well as additional varied sampling across the state, 

will improve the amount of statistically significant results. Future investigations should 

investigate the sources of contamination both from point sources and collect stormwater 

runoff to assess where nonpoint pollution is higher in concentration. Future studies 

should also investigate the presence of PMMoV in a larger sample size taken along the 

Chattahoochee River and other ambient surface waters to assess its prevalence and 

eventual viability as a fecal indicator. 
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