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ABSTRACT 

 
Dominique Smith 
Spatial and Temporal Variations in Water Quality Along an Urban Stretch of the 
Chattahoochee River and Proctor Creek in Atlanta, Georgia, 2014 
(Under the direction of Dr. Lisa Casanova, Faculty Member) 
 

Urban development and increased impervious surfaces have contributed to 

pollution loading in the Chattahoochee River and Proctor Creek, major urban waterways 

and receiving waters for Atlanta stormwater and wastewater effluent.  

 

The purpose of this study was to investigate spatial and temporal variation in E. 

coli and bacteriophage MS2 and relationships with Dissolved Oxygen, turbidity, rainfall, 

and riverflow; and to determine if wastewater effluent discharge points in the river 

influence bacterial levels. During a five-month period, water samples were collected at 

fifteen sample sites and two outfall sites in the Chattahoochee River, and five Proctor 

Creek sites. No significant spatial variation in mean E. coli concentration was found for 

the Chattahoochee and concentrations of bacteria were not significantly different 

upstream and downstream of wastewater effluent outfalls.  However, there was 

significant temporal variation in mean E. coli concentrations for the Chattahoochee River 

(p < 0.0001) and Proctor Creek.  

 

These findings indicate that E. coli and MS2 are commonly present in the river 

across wide spatial and time scales, possibly due to nonpoint source pollution. 

 
Index Words: E. coli, MS2, Dissolved Oxygen, Turbidity, Chattahoochee River, Proctor 

Creek 
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CHAPTER I 

 
INTRODUCTION 

 
1.1 Background 

 

 The Chattahoochee River is an integral facet of the state of Georgia and City of Atlanta, 

as it is the most utilized surface water source for drinking water of the state, providing more than 

seventy percent of Metro-Atlanta’s water needs (EPD, 1997). The 434-mile long river flows 

through Georgia, metropolitan Atlanta, and Alabama before terminating in Florida’s Lake 

Seminole (EPD, 1997). In addition to being a surface water source, the Chattahoochee River also 

assimilates a large amount of metro Atlanta’s municipal wastewater discharge (EPD, 1997). 

Proctor Creek, another urban surface water, is a tributary of the Chattahoochee River located in 

western Atlanta. Small streams at the Atlanta University Center converge to form Proctor Creek 

and it then flows through the English Avenue, Vine City, Mozley Park, West Highlands and 

Bankhead neighborhoods (DWM, 2015). Proctor Creek, stretching northwest for nine miles, is 

the only major watershed located entirely within the Atlanta city limits before being deposited 

into the Chattahoochee River south of the Interstate 285 Bridge, near Whittier Mill Village 

(DWM, 2015). Proctor Creek water quality is important as it receives water from multiple 

stormwater outfalls (EPA, 2003). Therefore, Atlanta’s reliance on the Chattahoochee River and 

Proctor Creek necessitates monitoring and maintaining the integrity of these surface waters. 

 The city of Atlanta has experienced steady population growth with a population burst 

beginning in 1990 (ARC, 2013). The 10-county Atlanta region added approximately 40,100 

people between April 1, 2012 and April 1, 2013, averaging an annual growth of 37,283 since 

2010 (ARC, 2013). With the influx in residents, the amount of sanitary sewage in the system 

increased correspondingly. However, Atlanta’s sewer system was built in the 1880s and has 
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issues with cracked and leaking pipes that were not built to handle the increase in volume from 

the city’s sanitary sewage (Clean Water Atlanta, 2010). The population increase has resulted in a 

built environment that is replacing green space with impervious surfaces to accommodate the 

new inhabitants, thus producing a tremendous increase in the amount of storm water runoff, of 

which the system was not intended to accommodate. Consequentially, the sanitary sewer system 

becomes overwrought, leading to sanitary sewer overflow (SSO) events, during which a mixture 

of groundwater, untreated sewage, and stormwater overflow from pipes and manholes, many of 

which are located within close proximity to streams and creeks (Clean Water Atlanta, 2010; 

Perkins, 2014).       

 Due to the aforementioned reasons, such as sewer overflows, inadequate collection 

capacity, and high bacterial levels in waterways, the city of Atlanta was sued for violating the 

Clean Water Act in 1995 (EPA, 1999). In response several state and federal laws, such as the 

Federal Clean Water Act, Safe Drinking Water Act, and the State Water Quality Control Act 

were instated to protect the Chattahoochee River’s water quality by defining and monitoring 

definitive water quality standards for the health of the public (EPD, 1997). One of the outcomes 

of this case was the creation of the Consent Decree, which had the objective of improving the 

cities four Water Reclamation Centers (WRCs) in order to comply with state regulations and 

legislative mandates set by the aforementioned laws. Specifically, the Consent Decree was 

intended to improve the water quality in the receiving waters downstream, such as the 

Chattahoochee, by improving the water quality of the effluent discharged from the WRCs (Clean 

Water Atlanta, 2010).  

  To address the issues caused by SSO the Environmental Protection Agency (EPA), the 

Environmental Protection Division of the State of Georgia (EPD), and the City of Atlanta 
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negotiated a settlement entitled the First Amended Consent Decree (FACD). Approved in 2003, 

the FACD evaluated and improved measures to eliminate SSOs and upgrade WRCs to ultimately 

eliminate groundwater and stormwater entering the system entirely. Building on current city 

programs, FACD intensifies review of building permit applications that propose adding new 

flows into the sewer system, uses closed-circuit television to inspect and assess the condition of 

sewers, and manages plans to operate the collection system more efficiently (Clean Water 

Atlanta, 2010). The FACD established plans to increase the city’s total separation area from 85% 

to 90%, to eliminate two Combined Sewer facilities, and construct a deep rock tunnel storage 

and treatment system. The system captures and stores combined stormwater and sewage flow for 

conveyance to two new Combined Sewer Overflow (CSO) treatment facilities before discharge 

into the Chattahoochee. Successful implementation should reduce more than sixty annual CSO 

events at six existing facilities to an average of four annually at four remaining facilities (Clean 

Water Atlanta, 2010). All remaining overflows will be screened, disinfected, and dechlorinated 

according to water quality standards before discharged into the Chattahoochee River.   

 Proctor Creek has also experienced water quality degradation, resulting in the City of 

Atlanta and other organizations stepping in to address the creek’s issues. Decades ago, the creek 

used to serve the community as a place to play, fish, and was even used as a baptismal pool; 

however, years of illegal dumping, pollution, and erosion have resulted in high bacteria levels in 

Proctor Creek (Wheatley, 2013). In fact, the creek is among 11 streams added to the EPA’s 

federal program, Urban Waters Federal Partnership, which intends to restore waterways in urban 

areas. In 2013, thirteen federal agencies began collaboration to promote more efficient and 

effective uses of federal resources by improved coordination and targeting of federal investments 

(EPA, 2013). Another component of the partnership is to engage and serve the community in 
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which the waterway is located by building on local efforts and leadership. The Urban Waters 

Federal Partnership joined the Chattahoochee Riverkeeper and West Atlanta Watershed Alliance 

to aid the locally based organizations in expanding their programs such as, the Neighborhood 

Water Watch program, water conservation initiatives, and creek clean-ups in some of the poorest 

and most polluted areas of the watershed (EPA, 2013). Many eyes are on Proctor Creek, 

expecting advances in improved water quality for the creek so monitoring of the waterway is 

critical. 

 Implementation of the federal and state laws previously mentioned are improving the 

health of the Chattahoochee and surrounding tributaries. The water quality of the Chattahoochee 

River basin is currently considered to be generally good since wastewater discharges have been 

strictly controlled (AJC, 2014; EPD, 1997). Nevertheless determining the current factors 

influencing water quality is critical. Much advancement have been made to reverse the effects of 

point source pollution affecting the Chattahoochee River, but today nonpoint source pollution is 

the leading contributor of contaminant loading. Although Metro-Atlanta may seem well 

developed, the loss of green space is still occurring at drastic rates, in fact, it was reported that 

Atlanta losses 500 acres of open space to development each week (Conservation Fund, 2015). As 

the city continues to grow and the amount of impervious surface increases, more stormwater 

runoff will make its way into key Atlanta watersheds during rain events.  

 The runoff that accumulates during rain events can transport bacterial contaminants to 

watersheds. Past studies examining the variations in microbial water quality have focused on 

wet, rainy seasons to determine the amounts of contaminants in waterways are related to the high 

rainfall (Huang, et al., 2011, Boyacioglu, 2010). Previous studies have found water quality 

degradation can be attributed to recent flood events that cause stormwater runoff, dissolution, 
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and resuspension of deposits, significantly increasing pollutant load (Maane-Messai et al., 2010). 

Summer 2014 was fairly dry compared to the previous summer, which experienced a record-

breaking amount of rainfall, making 2013 the fifth wettest year on record with a total rainfall of 

66.02 inches (Perkins, 2014). The National Weather Service Forecast Office calculated the 

summer (May-September) rain score for 2013 to be 36.8, more than fifteen points over the thirty-

year average rainfall score for Atlanta. Summer 2014 was scored below the average thirty-year 

average at 18.54 (NOAA, 2015). These stark differences in climate will shed light on links in 

water quality and below average rainfall score.    

 

1.2  Purpose of the Study 
 

Fecal-coliform bacteria is a type of microbial bacteria that exists in the intestines of warm-

blooded animals and if found in a body of water, often indicates fecal contamination. 

Escherichia coli, a type of fecal-coliform bacteria, is an indicator of microbial pollution in water 

sources but using E. coli as the sole fecal indicator bacteria (FIB) in water quality monitoring 

may not detect viral contamination sufficiently. Therefore a bacteriophage linked to wastewater 

samples called MS2 can reflect the impact of urbanization on surface water samples (Cole, Long, 

& Sobsey, 2003). Secondly, E. coli and MS2 spatial variation along rivers and creeks is 

beneficial in determining sources of fecal pollution. Also, temporal variations are often a result 

of changes in climate; such are rain events, temperature, and river flow. Furthermore, temporal 

variations can also be indirectly affected by increased recreational activities and wastewater 

effluent discharges. Lastly, although they have been recently identified as waterways of interest 

by local, state, and federal entities, few investigations have been published concerning the water 

quality of the Chattahoochee River and Proctor Creek. 



	  

	   16	  

 
1.3 Research Questions 

 The specific research questions to be analyzed in this study are as follows:  

• Are there spatial and temporal variations in E. coli concentrations along the 

Chattahoochee River and the Proctor Creek sample sites?  

• Are the concentrations of E. coli correlated with dissolved oxygen (DO), turbidity, and 

riverflow?  

• Are the concentrations of E. coli correlated with the presence of MS2?  

• Does the discharge of effluent from the Camp Creek Outfall and the Douglas County 

Outfall into the Chattahoochee River affect the concentrations of E. coli downstream? 
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CHAPTER II 
 

REVIEW OF THE LITERATURE 
 
 
2.1 Spatiotemporal Variation from Urbanization and Pollution 
 
 
Urban Environment 
 
 

The surface water of a given area is the lifeblood of the community. For this reason 

various studies have been conducted to determine the specific ways humans affect the quality of 

water in urban areas and to identify significant trends that will allow researchers to predict the 

concentration of certain contaminants. The natural resource is often collected from ground and 

surface water, treated through various filtration methods (either via private and public wells, 

municipal water treatment plants, and bottling factories) and supplied to the public, but the 

process water undergoes to reach the consumer does not solely affect those on the receiving end 

of the drinkable water course. At every step, environmental and natural processes are altered to 

support the development of the human community, especially so in urban areas where numbers 

of human density are increasing exponentially (Oiste, 2014).  

 Many studies focus on the effects of urbanization on the quality of water resulting in 

combined sewer overflows (CSOs), non-point and point pollution, runoff, discharges and a 

number of additional factors that alter the composition of water bodies (Oiste, 2014; Heisler et 

al., 2010; Peters, 2009). According to Boyacioglu and Boyacioglu, rivers are the most vulnerable 

water bodies due to their easy accessibility for domestic, industrial, and agricultural discharges 

like the aforementioned factors in deficient water quality (2010). In urban areas in particular, 

where many people inhabit a small space, finding the culprits of pollution is all the more 

difficult. The Hau City River and Mekong River basin are examples of two well-known rivers 
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that are frequently used for commercial and recreational purposes (such as fishing, 

transportation, swimming, and bathing), which makes adequate water quality critical to the 

health of the public and the ecosystem but also difficult to enforce due to the high population 

density surrounding the Vietnamese cities (Ozaki et al, 2014).  

A recent study in Atlanta, Georgia focuses on the effects urbanization has on the water 

quality of streams in the metropolitan area, finding that urban development has the ability to 

change the natural flow and pathways of water bodies (Peters, 2009). This is evident in the ways 

that cities in the U.S. have traditionally been built. A recent study analyzing 20 different cities, 

conducted by Nowak and Greenfield, reports that urban tree cover (the proportion of area, when 

viewed from above, occupied by tree crowns) is reducing by an average of 0.27 percent annually 

while impervious surfaces are increasing at an average rate of 0.31 percent a year (Nowak & 

Greenfield, 2012; Nowak et al, 1996). This research provides evidence of the phenomenon that is 

apparent to city dwellers: cement is replacing green space in many parts of the world and denser 

population often results in a decline in natural environments. Conversely, industrial development 

can improve the quality of life for many, as it provides convenience in transportation, increased 

employment opportunities, and access to resources that are not as easily accessed in rural 

communities (Sallis, 2009). Yet, along with all the benefits humans receive from residing in 

cities, the human presence can also pose a great threat to the natural balance. Increased 

impervious surfaces (artificial structures covered by impenetrable materials such as asphalt, 

concrete, brick, and stone) swell local temperatures and urban heat islands (phenomenon in 

which cities are generally warmer than nearby rural areas), consequently affecting building 

energy use, human comfort and health, ozone production, and most significantly urban 
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hydrology (US EPA, 1983; Heisler and Brazel, 2010; US EPA, 2015; National Research 

Council, 2008; Nowak and Greenfield, 2012).    

 The article by Perkins (2014) refers to the Brion et al. study that determined areas of 

urban activity were more likely to recover F+ phages during rainfall events compared to 

agricultural sites (Brion, Meschke, & Sobsey, 2002). The studies in this area point to the 

relationship between urbanization and an increase in contaminant concentrations, with a stronger 

correlation occurring after a rain event. This may be attributable to the amount of impervious 

surface that does not allow water to seep into the ground and be filtered throughout layers of soil. 

Instead of percolating through earth to become groundwater, precipitation becomes runoff that 

flows down the watershed to the lowest point, creating streams and creeks, which flow into 

rivers.  However, since the water path flows throughout a city, it can pick up sediment, oil from 

roads, bacteria, and a host of other substances that will be deposited into the surface water it 

travels to. A tidal creek study supports this idea with the findings that concentrations of indicator 

microorganisms were the highest in more developed watersheds while fecal coliform 

concentrations were significantly lower in forested creeks compared to urban and suburban 

creeks (DiDonato et al., 2009). 

  

Spatiotemporal Variation 
  
 The changes in contaminant concentration, although seemingly arbitrary, have been 

found by research to follow certain trends based on the location and time the water sample was 

collected. A study on coastal water quality in Macau, China found significant variations in 

spatiotemporal water quality in the 22 monitoring sites near overflow manholes and sewer pipes 

(Huang et al. 2011). Group B, which consisted of sites in western Macau peninsula, not near 
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open coastal water, had poorer water quality compared to Group A. The researchers attributed 

this difference to domestic wastewater from untreated or overflow sewer pipes, which were a 

major source of pollution in the Group B monitoring sites.  

Monitoring sites during different periods of time can render information about water 

quality trends. From previous research, seasonal changes greatly influences the temperature of 

water bodies, which in turn changes the make up of key water quality parameters (Keery et al., 

2007). When identifying variations in temporal concentrations of Macau, a significant pattern 

was found when the months June, July, August, and September were clustered together 

categorically as the wet months and the rest of the year clustered as the dry season. Had Huang et 

al. empirically divided the data into groups based on seasons spring (March-May), summer 

(June-September), autumn (October-December), and winter (January-February) a grouping 

mistake would have been made since the Macau peninsula does not align with the traditional 

four seasons. This study supports the importance of knowing the weather patterns of a given 

location to approach analysis of temporal changes. Temporal variations were the focus of another 

study in India, specifically along the Gomti River (Singh et al., 2004). The major Ganga River 

tributary was monitored at eight sites selected in regions of various pollution levels ranging from 

low, moderate, to high for five years (1994-1998). The Gomti River was tested for twenty-four 

parameters and in the five years of testing in the eight locations, 17,790 observations were 

captured. Using multivariate techniques to analyze the data, researchers found that all twenty-

four parameters are significantly correlated with the season, except for BOD, K, NH4-N, and 

TKN. Temperature exhibited the highest correlation coefficient (Spearman’s R=0.71) with the 

season. The researchers suggested that the parameters not correlated with the season indicated 

contributions of anthropogenic sources. 
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Collecting samples from various locations throughout a water body can expose potential 

pollution sources, providing evidence for the necessity of remediation process initiation, by 

identifying spaces where the body of water is compromised. From 1993-2002 the 470 km Han 

River in the Korean Peninsula was monitored in twenty-six different stations and tested for eight 

parameters (water temperature, pH, dissolved oxygen, biochemical oxygen demand, chemical 

oxygen demand, suspended solid, total nitrogen and total phosphorus) (Chang, 2005). More than 

23 million people utilized the river for drinking, navigation, irrigation, and recreation but water 

quality had been on a gradual decline since the 1960s according to the Ministry of 

Environmental Republic of Korea (2003). To discover what was causing contaminated fish with 

deformed bones in the lower part of the main river, researchers examined water quality 

measurements and found that quality of water declined dramatically in the middle section of the 

Han River where inputs from polluted tributaries are received. All the water quality 

measurements declined between the Main River Station three (M3) and Main River Station six 

(M6), which were located downstream. The scattering of sites along various sections of the river 

allowed the researchers to discover the trends in given parameters leading them to recognize the 

tributaries as the source of a large amount of river pollution downstream. The spatial variation 

examination also brought Chang to detect the combined sewer systems as another pollution 

source for the river and its tributaries. Since a majority of Seoul’s sewage systems are combined 

sewer systems (88%) that collect and treat rain and waste water together without separating 

them, during a rain event, environmental contamination of untreated wastewater overflows 

occur. Although Atlanta has had mostly separated sewer systems for over a decade, overflows 

are still common as many sewer pipes are aged, resulting in frequent clogs and sewage pipe 

manhole bursts (Clean Water Atlanta, 2013).  
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2.2 Weather-Related Events and Stormwater Runoff 

 Both combined sewer systems and separate sewer systems are known for their tendency 

to overflow during rain events, discharging volumes of wastewater and surface water into 

watersheds (Lee and Bang, 2000, Balmforth, 1990, Lee et al. 1996). However, combined sewer 

overflows (CSO) are more commonly held responsible for the deterioration of receiving waters, 

as more pollutants are likely to flow into the watersheds of the area CSSs are serving. Suarez and 

Puertas clarified the differences between the types of wet weather pollutant sources, stating CSO 

discharges consist of a mixture of industrial wastewater, urban surface runoff, domestic 

wastewater and sewer deposits that are discharged into receiving waters. While discharges from 

separated systems are mainly composed of urban surface runoff (Suarez and Puertas, 2004). 

From this comparison, the reason combined sewer systems receive the blame for a majority of 

weather related pollution of waterways is clear, and possibly warranted.  

Combined sewer systems can spew the waste separated systems discharge in addition to 

waste from a host of other sources; however, surface runoff is not harmless, especially the runoff 

accumulated in urban areas. Nonpoint pollution is identified as one of the major causes of poor 

quality of receiving waters. But researchers Lee and Bang discovered which type of land use area 

caused the worst pollution drainage, their study correlated high density residential communities 

with higher levels of biochemical oxygen demand (BOD5), chemical oxygen demand (COD), 

suspended solids (SS), total Kjeldahl nitrogen (TKN), nitrate–nitrogen (NO3–N), 

orthophosphorus (PO4–P), total phosphorus (TP), n-Hexane extracts, lead (Pb) and iron (Fe) 

(2000). To give an idea of the amounts of certain contaminants are coming from run off, in 2005, 
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Chang stated that 70% of total suspended solids and 80% of total phosphorus input are 

attributable to nonpoint pollution (Choi et al., 1994, Kim and Choi, 1996).  

Since urban surface runoff, CSOs, and SSOs are all dependent on the amount of rainfall, 

weather pattern trends are important for researchers to monitor as previous research supports the 

suggestion that more rainfall will result in more contaminated runoff into watersheds whether 

that area is serviced by a CSS or SSS.  The Santa Monica Bay beach water is so affected by 

rainfall induced urban runoff that county health departments typically issue warnings for the 

public to avoid recreational water contact for 3 days post storm event, when levels returned 

below state water quality standards; however, bacterial concentrations generally remained 

elevated for five days following a storm (Ackerman and Weisberg, 2003). Data from 20 

Southern California sites over a five-year span demonstrates all storms larger than 6 mm 

increased the ocean bacterial concentration in the county and only storms with less than 2.5 mm 

rainfall had no observable rainfall effect on the fecal coliform concentration of the beaches.  

Another study observing the effects rainfall has on runoff events and tributaries determined that 

the bacteriological parameters (colony, Escherichia coli, coliform, fecal streptococcal, and 

Clostridium perfringens counts) investigated increased considerably during extreme runoff 

events (Kistemann et al., 2002). The research asserts that regular samples (samples taken during 

periods of low or no rainfall) are inadequate for representing the microbial contamination of 

watercourse systems and water surveillance procedures must include extreme runoff 

circumstances to generalize the actual quality of the water way.  Conversely, a recent study on 

the Chattahoochee River and Utoy Creek during the particularly rainy summer of 2013 did not 

find significant correlations between rainfall and E. coli, although the highest accumulated 

precipitation day of the season occurred during the sampling months; yet, the researcher found a 
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positive correlation between MS2 and turbidity, rainfall the day of sampling and rainfall the day 

before sampling (Perkins 2013).  

There is conflicting research on the importance of rainfall to the quality of watersheds but 

this may be attributable to the various sources of pollution. If the main contributor of water 

contamination is from point source effluent dumping directly into a water body, then the amount 

of rainfall will be unrelated to the concentration of pollutants. Research conducted during a dry 

season in Argentina found that since the river flow was continuously lower than 10 m3 water 

quality during the dry season (May to November) had the worst water quality (Pesce and 

Wunderlin, 2000; Dasso, 1998). The researchers found that urban non-point pollution created a 

rise in TIN (total inorganic nitrogen concentration), while the city sewage discharge diluted the 

nitrate nitrogen but in turn raised the ammonia nitrogen, leading to DO consumption 

downstream. From the previous research indicating that wet seasons correlate with poorer water 

quality, the Pesce and Perkins studies are seemingly remarkable, but the characteristics of the 

areas being studied are key to determining the trends for that region; not all research is 

generalizable.  

This information supports the seminal research that points to nonpoint pollution and 

urban surface runoff as being a main contributor to the decline in urban water bodies (Boehm et 

al., 2002; Lipp et al., 2001). Therefore, routine monitoring of the waterways in question is 

critical to determining what factors are influencing water quality degradation. Certain indices are 

key indicators of certain types of pollution. E. coli typically denotes the presence of fecal 

contamination, turbidity indicates the amount of suspended solids in a liquid, and high 

conductivity points to certain quantities of heavy metals. The parameters measured can detect 

key contaminants (Mosneag, et al. 2014). 
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2.3 Fecal Indicators 

 Since testing for all disease-causing bacteria in water is costly, water quality researchers 

have identified primary indicator bacteria that denote when fecal bacteria is present. According 

to recent research, Escherichia coli (E. coli) and Enterococci are most reliable for predicting 

disease-causing bacteria presence (Gregory and Frick, 2000). The US EPA recommends using E. 

coli and Enterococci for consistent monitoring programs due to their ability to show that fecal 

contamination has occurred. Initially, the Department of the Interior recommended that fecal 

coliform bacteria replace total coliform bacteria as the indicator of ambient water quality but 

subsequently, research conducted by the US EPA showed the relationship between swimming-

associated gastroenteritis and indicator bacteria density at beaches. Thus recommending 

Escherichia coli bacteria as the preferred indicator bacteria for identifying fecal contamination in 

ambient freshwater (US Department of the Interior & US Geological Survey, 2012, Department 

of the Interior, 1968, U.S. Environmental Protection Agency, 1986).    

 Another indicator of water pollution is turbidity and although turbidity does not have a 

health-based guideline, the World Health Organization (2006) recommends that it should be 

below 0.1 NTU for adequate disinfection (Mosneag, et al. 2014). Since turbidity is thought to 

carry certain nutrients that produce biological activity and provides surface area to transport 

microorganisms throughout water systems, its ability to degrade a waterway has been explored 

by several studies. A study by McCoy and Olson found that turbidity counts were higher in 

surface water samples in the spring months and attributed this variability to heavy rain influence 

and the melting of snow packs on surface waters (McCoy and Olson, 1985). Another study by 

Bengraine and Marhaba (2003) also examined the relationship turbidity has on spatiotemporal 
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variations of water quality and found similar results concerning turbidity counts. The researchers 

found that organoleptic parameters (turbidity, UV254, and color) increased about 12% in the 

spring and, parallel to the McCoy and Olson study, asserted that the variation is linked to the 

land washing process due to snow melt and heavy rain. These studies offer a differing snapshot 

of spring weather patterns when compared to the type of climate during the 2014 water-sampling 

period for this study. Rainfall was measured by the occurrence of a rain event the day of or day 

before a sampling round; however, there was no observed rain occurrence during the five-month 

period of Chattahoochee River sampling. This study will contribute to the water quality canon by 

identifying the variations that occur during a non-rainy season.   

 Another barometer of the ecological health of a body of water is dissolved oxygen (DO) 

since it is a critical parameter for fish protection, as fish cannot survive a DO content of <3 mg/L 

(Novotny, 2002). The temperature of a waterway is controlled directly by the ambient air 

temperature and indirectly influenced by vegetation; DO is controlled by these factors (Chang, 

2005). Sanchez et al. accounted for vegetation influences in the measuring of oxygen deficit 

variation, the average photosynthesis rate and the average respiration rate (Sanchez et al., 2007).  

The authors found that DO and dissolved oxygen deficit (difference between the amount of 

dissolved oxygen in water and the saturation concentration at the temperature of the water mass 

sampled) can be utilized to predict the water quality index of watersheds. An article by Cox 

states that the variability of DO in rivers is caused by many factors, one of which being the 

introduction of dissolved oxygen from other sources, such as tributaries (Cox, 2003). Since the 

Chattahoochee River has several tributaries along the sampling route, according to Cox, a high 

amount of DO would be probable. However, DO depletion can also arise due to the oxidation of 

organic material, which is also referred to as the biochemical oxygen demand (BOD). Cox’s 
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study found that BOD is added to water bodies through local runoff, which also occurs at a high 

rate on the Chattahoochee, possibly resulting in lower DO outcomes. Since the river in question 

has many elements examined in various, but differing, research, this study will offer a 

multivariate investigation of a unique body of water.     

A coliphage, a bacteriovirus that attacks coliform, is typically present wherever coliform 

bacteria exists, which makes it a potential indicator of fecal contamination. Recent studies have 

focused on bacterioviruses serving as indicators of pollution, but not many have addressed the 

part MS2 may play in fecal contamination identification (Rosario et al., 2009; Mehle, et al., 

2014; Fong and Lipp, 2005). In a pollution remediation study, researchers found that 

bacteriophages (investigated bacteriophage 0X174, bacteriophage MS2, and bacteriophage B40-

8) were more resistant than fecal coliforms and enterococci. Though, F-specific RNA 

bacteriophages were not as opposed to removal and inactivation of fecal coliform bacteria 

processes in the summer, due to changes in water temperature, pH, and sunlight irradiation 

(Duran, et al., 2002). While the previously mentioned studies speak on the importance human-

based viruses have on assessing waterborne enteric disease, the study by Fong and Lipp (2005) 

suggest including other host-specific viruses in the investigation of water quality. Stating that a 

multispecies viral analysis would aid in determining the sources of pollution that effect humans 

and animals.    
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CHAPTER III 
 

METHODS 
 
 
3.1 River and Creek Sample Site Description  
 

Fifteen locations were designated as water sample collection sites along fourteen-miles of 

the Chattahoochee River with each collection site approximately one mile apart.  

Map 1: Chattahoochee River Sample Sites 

 

Both the Camp Creek and Douglas County wastewater treatment plants have effluent outfalls 

along the fourteen-mile stretch in which the sample collection sites were located. The Camp 

Creek Outfall is positioned between sites three and four and the Douglas County Outfall is 

between sites eleven and twelve.  
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Proctor Creek, a sixteen square mile watershed located in primarily residential and highly 

urbanized areas, flows directly into the Chattahoochee River Basin. The creek was sampled at 

five sites along a five-mile long stretch. The first sampling site (Burbank) is located the furthest 

downstream and each of the following sites flow upstream, with sampling site five (Northwest) 

being the closest to the Chattahoochee River. 

Map 2: Proctor Creek Sample Site 

 

The approximate distance from the last sample site of Proctor Creek to the first sample site of the 

Chattahoochee River is 11.91 miles. 
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Map 3: Chattahoochee River and Proctor Creek Sample Sites 

 

 

3.2 Sample Collection 

3.2.1 Chattahoochee River  

The Chattahoochee River was sampled on 5/12/14, 6/19/14, 7/10/14, 8/5/2014, and 

9/11/14 by boat. Using the grab sample method, one liter of river water was collected in 

sterilized bottles at each of the water sample sites and at the two water treatment outfall sites. 

Effluent was collected directly from the outfall pipeline at the Camp Creek Outfall if the 

wastewater plant was releasing effluent at the time of sample collection. Douglas County Outfall 

samples were not collected directly from the pipeline but within close proximity if the outfall 

was unreachable by boat. In addition to water samples, the date, time, geographic location 
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(latitude and longitude), dissolved oxygen (DO), and pH were recorded at each sample site on 

each sampling round. All liter bottles containing samples were stored in coolers filled with ice to 

preserve the samples while being transported from the Chattahoochee River to the Georgia State 

University (GSU) School of Public Health (SPH) lab. Samples remained in coolers on ice until 

processed, which was no longer than six hours. Turbidity was measured in the SPH laboratory 

using a Hach Turbidimeter (Hach, Loveland, CO). 

 

3.2.2 Proctor Creek 

 Chattahoochee Riverkeeper Neighborhood Water Watchers sampled Proctor Creek on 

5/8/14, 5/15/14, 6/17/14, 6/19/14, 6/24/14, 7/7/14, 7/10/14, 7/17/14, 8/7/14, 8/14/14, and 

9/11/14. Using the grab sample method, water was collected in sterile Whirl Pack bags at each 

site and stored on ice until delivered at the CRK laboratory. The Chattahoochee Riverkeeper 

recorded E. coli concentrations (MPN/100mL) using the Quanti-Tray IDEXX method, turbidity, 

rainfall, fluorometry, and conductivity. All data was collected by CRK and shared for this 

research project.    

 

 

3.3 Detection of Escherichia coli by Membrane Filtration 

Materials: 

Sidearm flasks, magnetic filter funnels, 0.45-micron filters, 100% ethanol, forceps, bunson 

burner, 50 mL and 1 mL pipettes, 60x15mm plates containing BioRad Rapid E. coli 2 agar 

(thawed and not older than 2 weeks) (Bio-Rad, Marnes, La Coquette, France), and an incubator 

set to 35o C. 
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Methods:  

Negative controls were processed prior to filtration of each sample. Forceps were placed into 

100% ethanol and sterilized in a flame before placing the filter film on a magnetic filter funnel. 

Each liter bottle from the 15 sample sites and 2 outfall sites were retrieved from the cooler and 

sample water was poured over the filtration filter using a sterilized pipette. Dilutions at 50 mL 

and 10 mL of the sample water were completed for all samples. The first two sample rounds 

(5/12/14 and 6/19/14) also had dilutions at 1 mL. Before placing the filter on the plate, the funnel 

was rinsed with deionized (DI) water. The steps above were repeated for all samples, where each 

sample site had its own filter funnel, negative control, two dilutions at 10 mL and two dilutions 

at 50 mL (the second and fifth sample round had one dilution at each volume). After each 

dilution, each filter was rinsed with DI water to ensure entire sample was filtered. Once the 

samples were filtered, the plates were put in an incubator at 35o C for 18-24 hours. After 

incubation, the plates were placed on a light box to count E. coli colonies. Colony counts were 

expressed as CFU/100mL. 

 

3.4 Detection of MS2 by Spot Plate Enrichment Assay 

Water Samples were processed according to the EPA’s Method 1601: Male-specific (f+) and 

Somatic Coliphage in Water Two-step Enrichment Procedure (EPA, 2001). Samples were scored 

for presence/absence of MS2. 
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3.5 Data Sources 

 Riverflow data was obtained from the USGS website (USGS site 02336490 

Chattahoochee River at GA 280) (USGS, 2014).  

 Dissolved Oxygen was determined at each Chattahoochee River sample site by a trained 

staff member of the CRK. Turbidity was determined in the GSU SPH lab while the samples were 

processed using a Hach turbidimeter. 

 

3.6 Statistical Analyses  

All original data was organized and stored in Microsoft Excel 2008. Prior to statistical 

analyses, Microsoft Excel 2010 was also used to convert all E. coli data into CFU/100ml and a 

logarithmic transformation was used to ensure normality of the data. Graphs were created using 

GraphPad Prism version 5. Statistical Analyses of the data was performed with GraphPad Prism 

as well. For all statistical analyses, the level of significance was reported as p < .05.  
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CHAPTER IV 

 
RESULTS 

4.1 Chattahoochee River 
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Figure 1: Spatial Variation of E. coli among Chattahoochee Water Samples 

 
 

 
 

  As show in Table 1 and Figure 1, the mean E. coli concentrations across sites for 

all sampling dates were similar, mean E. coli levels were approximately 2 log10 CFU/100 mL 

across sites (p=2.53). There is a slight decrease in the E. coli concentrations at the outfall sites 

(approximately 1.25 log10 CFU/100). There was a statistically significant difference in the mean 

E. coli concentrations between sample sites with the highest and lowest mean values (p=0.0291 

between sites 14 and 5; Table 3a).    

 

 
P"Value*

Lowest Highest

Between4site4144(lowest)4and4site454(highest) 1.57 1.93 0.0291
Between4sample4dates47/10/144(lowest)4and46/19/144(highest) 1.42 1.82 0.0058

SpaGal4ANOVA 0.253
Temporal4ANOVA <0.0001
*4t"test4with4level4of4significance4reported4as4p<.05
**4E.#coli4concentraGons4in4104log4CFU/100mL

"0.67834to4"0.04751
"0.52794to4"0.1054

Table43a:4DeterminaGon4of4staGsGcal4significance4between4samples4with4the4highest4and4lowest4mean4values4of4E.#coli#among4water4samples4from4the4
ChaXahoochee4River,4Atlanta,4Georgia,42014.

Mean4Values 95%4Confidence4Interval4of4
the4Mean4Difference

Mean4concentraGons4of#E.#coli**
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Figure 2: Temporal variation of E. coli among Chattahoochee Water Samples 
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As shown in Table 2 and Figure 2, there is a variation found among E. coli concentrations 

across sample dates for all sample sites. A one-way ANOVA found the Temporal Variation of E. 

coli counts across all sampling dates to be statistically significant (p<0.0001), with the lowest 

mean E. coli concentration found on 7/10/14 (1.42 log10 CFU/100mL) and the highest mean E. 

coli concentration found on 6/19/14 (1.82 log10 CFU/100mL). Paired samples t-test determined 

that the differences in mean E. coli concentrations between these two sample dates were 

statistically significant (p = 0.0058; Table 3a). 

 

E.#coli!by#date*
Range Minimum Maximum Mean

5/12/14 1.19 1.00 2.19 1.73
6/19/14 1.92 0.30 2.22 1.82
7/10/14 1.17 0.48 1.65 1.42
8/5/14 2.11 0.00 2.11 1.77

9/11/14 1.81 0.30 2.11 1.79

Turbidity#by#date**
5/12/14 4.20 4.29 8.49 7.29
6/19/14 10.60 0.00 10.60 5.45
7/10/14 4.20 1.11 5.31 2.90
8/5/14 5.74 0.23 5.97 2.19

9/11/14 5.89 1.03 6.92 3.50

Dissolved#Oxygen#by#date***
5/12/14 8.60 0.00 8.60 7.09
6/19/14 0.77 7.43 8.20 7.72
7/10/14 1.06 7.08 8.14 7.49
8/5/14 7.80 0.00 7.80 7.01

9/11/14 7.60 0.00 7.60 6.29

*!All!E.!coli!concentra@ons!are!presented!as!log!10!CFU/100mL
**!DO!values!are!presented!as!mg/L
***!Turbidity!values!are!presented!as!NTU

Table!2:!Univariate!analysis!of!selected!water!quality!variables!sampled!from!the!ChaTahoochee!River!by!
date,!Atlanta,!Georgia,!2014.
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Figure 3: Spatial Variation of Dissolved Oxygen among Chattahoochee Water Samples 
 

 
 

 
 
As shown in Table 1 and Figure 3, there is a variation found among DO values across 

sites for all sampling dates (p<0.0001). There was also a statistically significant difference in 

mean DO values between sample site 13 and site 1 (p=0.0165; Table 3b). 

 

 
 

 
 

P-Value*

Lowest Highest

Between site 13 (lowest) and site 1 (highest) 7.17 7.88 0.0165
Between sample dates 9/11/14 (lowest) and 6/19/14 (highest) 6.29 7.72 <0.0001

Spatial ANOVA 0.0775
Temporal ANOVA <0.0001
* t-test with level of significance reported as p<.05
** DO values in mg/L

95% Confidence Interval of 
the Mean Difference

-1.245 to -0.1672
-0.7531 to -0.3869

Mean Values

Table 3b: Determination of statistical significance between samples with the highest and lowest mean values of DO among water samples from the 
Chattahoochee River, Atlanta, Georgia, 2014. 

Mean values for DO**
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Figure 4: Temporal Variation of Dissolved Oxygen among Chattahoochee Water Samples 
 
 

 
 
 
 

As shown in Table 2 and Figure 4, there is a variation found among DO values across 

sample dates for all sample sites. A one-way ANOVA found the temporal variation of dissolved 

oxygen across all sampling dates to be statistically significant (p<0.0001), with the lowest mean 

DO values found on 9/11/19 (6.29 mg/L) and the highest mean DO value found on 6/19/14 (7.72 

mg/L). Paired samples t-test determined that the differences in mean DO values between these 

two sample dates were statistically significant (p<0.0001, Table 3b). 
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Figure 5: Spatial Variation of Turbidity among Chattahoochee Water Samples 
 

 
 
 

 As shown in Table 1 and Figure 5, the mean turbidity values across sites for all sampling 

dates were similar. Further analysis showed that there were no statistical significant differences 

in mean turbidity values between sample sites with the highest and lowest mean turbidity values 

(p=0.2031; Table 3c). 

 

 
 

 
 
 
 

P-Value*

Lowest Highest

Between site 13 (lowest) and site 10 (highest) 3 5.65 0.2031
Between sample dates 8/5/14 (lowest) and 5/12/14 (highest) 2.19 7.29 <0.0001

Spatial AVONA 0.9147
Temporal ANOVA <0.0001
* t-test with level of significance reported as p<.05
** Turbidity values in NTU

Mean values for Turbidity**
-7.042 to 1.754
-5.930 to -4.276

95% Confidence Interval of 
the Mean Difference

Mean Values

Table 3c: Determination of statistical significance between samples with the highest and lowest mean values of turbidity among water samples from the 
Chattahoochee River, Atlanta, Georgia, 2014.
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Figure 6: Temporal Variation of Turbidity among Chattahoochee Water Samples 

 

 
  

As shown in Table 2 and Figure 6, there is a variation found among turbidity values 

across sample dates for all sample sites, with the lowest mean turbidity value found 8/5/14 (2.19 

NTU) and the highest mean turbidity value found on 5/12/14 (7.29 NTU). Paired sample t-tests 

determined that the differences in mean turbidity values between these two sample dates were 

statistically significant (p<0.0001; Table 3c). A one-way ANOVA determined that the 

differences between the mean turbidity values between all sample dates were statistically 

significant (p<0.0001). 
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As shown in Table 4a, E. coli concentrations from the Chattahoochee water samples were 

not significantly correlated with dissolved oxygen at any of the sampling sites. Noticeably, DO 

increases at site 4 and site 13, which are both downstream from outfalls. 

 
 
 

 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 

E.coli and DO
Site 1
Site 2
Site 3
Site 4 
Site 5
Site 6
Site 7
Site 8
Site 9 
Site 10
Site 11
Site 12
Site 13
Site 14
Site 15
*Pearson's correlation coefficient with level of significance reported as p < .05

Table 4a: Analysis of Pearson's correlations between E. coli and Dissolved Oxygen sampled from the Chattahoochee 
River, Atlanta, Georgia, 2013.

P-Value*
0.33
0.11
0.74
1.00
0.93
0.71
0.98
0.12
0.48
0.97
0.29
0.12
0.98
0.80
0.79

*Pearson's correlation coefficient with level of significance reported as p < .05

Table 4a: Analysis of Pearson's correlations between E. coli and Dissolved Oxygen sampled from the Chattahoochee 
River, Atlanta, Georgia, 2013.

E. coli and Turbidity
Site 1
Site 2
Site 3
Site 4 
Site 5
Site 6
Site 7
Site 8
Site 9 
Site 10
Site 11
Site 12
Site 13
Site 14
Site 15
* Pearson's correlation coefficient with level of significance reported as p < .05

Table 4b: Analysis of Pearson's correlation between E. coli and Turbidity sampled from the Chattahoochee River, Atlanta, 
Georgia, 2014.

Pearson's R P-Value*
0.12 0.85
-0.72 0.17
-0.11 0.86
0.05 0.93
0.78 0.12
0.67 0.22
0.68 0.25
0.11 0.86
0.76 0.14
0.74 0.15
0.61 0.27
-0.50 0.39
-0.05 0.94
0.17 0.78
0.16 0.80

* Pearson's correlation coefficient with level of significance reported as p < .05

Table 4b: Analysis of Pearson's correlation between E. coli and Turbidity sampled from the Chattahoochee River, Atlanta, 
Georgia, 2014.
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Figure 7: Analysis of Riverflow sampled from the Chattahoochee River, Atlanta, Georgia, 2014. 

 

 
 

 Riverflow was recorded three days before water samples were collected from the 

Chattahoochee. As shown in Table 4c and Figure 7, there is a temporal variation in the riverflow 

of the Chattahoochee River. A one-way ANOVA found the temporal variation of riverflow 

across all sampling dates to be statistically significant (p<0.0001), with the highest mean 

riverflow found between 5/9/14 and 5/12/14 and the lowest mean riverflow found between 

7/7/14 and 7/10/14. Paired samples t-test determined that the differences in mean riverflow 

between these two sample dates were statistically significant (p<0.0001, Table 4c). The dates 

with the lowest mean riverflow (7/7/14-7/10/14) occurred before the lowest mean E. coli 

concentration was collected on 7/10/14.  

 

 

P"Value*

Lowest Highest

Between4sample4dates47/7"7/104(lowest)4and45/9"5/124(highest) 1161.922 2577.03 <0.0001

Temporal4ANOVA <0.0001
*4t"test4with4level4of4significance4reported4as4p<.05

**4Riverflow4values4in4P3/min

"15734to4"1257

Table44c:4DeterminaUon4of4staUsUcal4significance4between4riverflow4samples4among4water4samples4from4the4ChaWahoochee4
River,4Atlanta,4Georgia,42014.4

Mean4Values 95%4Confidence4
Interval4of4the4Mean4

Mean4Riverflow**
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Figure	  8:	  MS2	  Presence	  among	  all	  samples	  sampled	  from	  the	  Chattahoochee	  River	  
	  
	  
	  

 
 

 

 

 

 

 

 

Figure 8 and Table 5 indicate that across all sampling dates, most water samples had MS2 

present. Table 5 shows the mean concentrations of E. coli were similar for sites across all sample 

dates, regardless of the presence or absence of MS2, an ANOVA determined no statistically 

significant difference (p=0.2691). As shown in Table 4d, there is a statistically significant 

difference in mean E. coli concentrations in the presence or absence of MS2 of all sample sites 

between the date with the lowest E. coli concentration (7/10/14) and the date with the highest 

(6/19/14).  

Absent MS2 between sample dates 7/10/14 (lowest) and 6/19/14 (highest)
Present MS2 between sample dates 7/10/14 (lowest) and 6/19/14 (highest)

* Pearson's correlation coefficient with level of significance reported as p<.05

Table 4d: Analysis of t-test correlations between E. coli and MS2  sampled from the Chattahoochee River, Atlanta, Georgia, 2014. 

Mean values for E. coli and MS2

P-Value*

Lowest Highest

Absent MS2 between sample dates 7/10/14 (lowest) and 6/19/14 (highest) 1.33 1.81 0.0482
Present MS2 between sample dates 7/10/14 (lowest) and 6/19/14 (highest) 1.48 1.81 0.0129

* Pearson's correlation coefficient with level of significance reported as p<.05

0.004177 to 0.9478
0.1033 to 0.7013

Table 4d: Analysis of t-test correlations between E. coli and MS2  sampled from the Chattahoochee River, Atlanta, Georgia, 2014. 

Mean Values 95% Confidence Interval of 
the Mean Difference
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MS2 Present MS2 Absent MS2 Ratio

Mean E.coli and MS2
Site 1 1.80 1.97 4/5
Site 2 1.83 1.67 3/5
Site 3 1.83 2.03 4/5
Camp Creek Outfall 0.15 0.86 2/5
Site 4 1.79 2.11 4/5
Site 5 2.03 1.55 4/5
Site 6 1.85 1.89 3/5
Site 7 1.87 1.86 3/5
Site 8 1.86 1.86 3/5
Site 9 1.90 0.00 5/5
Site 10 1.84 1.99 4/5
Site 11 1.91 1.70 3/5
Douglas County Outfall 1.68 1.38 2/5
Site 12 1.64 1.58 4/5
Site 13 1.65 1.75 4/5
Site 14 1.57 0.00 5/5
Site 15 1.69 1.65 3/4

Mean E.coli and MS2 concentrations by date
5/12/14 1.81 1.49 13/15
6/19/14 1.88 1.81 3/15
7/10/14 1.48 1.33 10/14
8/5/14 1.77 0.00 15/15

9/11/14 1.79 0.00 15/15

Mean Values

Table 5: Mean E. coli concentrations based on the presence or absence of 
MS2 among water samples from the Chattahoochee River, Atlanta, Georgia, 
2014.
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As shown in Table 6, mean concentrations of E. coli were similar for sites upstream and 

downstream from the Camp Creek Outfall. However, differences in the mean E. coli levels were 

found between the upstream and downstream sample sites of the Douglas County Outfall. Sites 

9, 10, and 11 were compared to sites 12, 13, and 14 and statistically significant differences in the 

mean E. coli concentrations were found (p =0.01).  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Upstream Downstream
Mean Concentrations of E. coli at Camp Creek Outfall**

1.87 1.86 0.93
1.82 1.89 0.43
1.82 1.89 0.41

Mean Concentrations of E. coli at Douglas County Outfall***
1.88 1.63 0.19
1.87 1.67 0.10
1.88 1.63 0.01

* t-test with level of significance reported as p < .05
** Comparison of sites 3 and 4; sites 2/3 and 4/5; and sites 1/2/3 and 4/5/6
*** Comparison of sites 11 and 12; 10/11 and 12/13; and sites 9/10/11 and 12/13/14

Upstream/Downstream by 3 sites

-0.3382 to 0.3117
-0.1238 to 0.2802
-0.08892 to 0.2139

P-value*

Upstream/Downstream by 2 sites
Upstream/Downstream by 1 site

Mean Values 95% Confidence interval of 
the Mean Difference

Table 6: Determination of spatial variation of mean E. coli concentrations upstream and downstream the Camp Creek Outfall and Douglas County Outfall 
among water samples from the Chattahoochee River, Atlanta, Georgia, 2014.

Upstream/Downstream by 1 site
Upstream/Downstream by 2 sites
Upstream/Downstream by 3 sites

-0.6673 to 0.1589
-0.4.617 to 0.04474
-0.4348 to 0.06220
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4.2 Proctor Creek  
 

 
 
 

 
 
 
 
 

 
 

 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Range Minimum Maximum Mean
Site 1 0.40 2.63 3.03 2.76
Site 2 1.43 3.47 4.91 4.11
Site 3 0.55 2.19 2.74 2.46
Site 4 1.55 2.00 3.55 2.55
Site 5 1.61 2.18 3.79 2.79

Range Minimum Maximum Mean
Site 1 16.10 2.90 19.00 8.42
Site 2 36.45 1.75 38.20 10.23
Site 3 1.39 1.46 2.85 2.08
Site 4 11.48 2.12 13.60 5.33
Site 5 21.84 1.56 23.40 6.48

* All E. coli concentrations in water are presented as log 10 MPN/100mL
** Turbidity values are presented as NTU

Table 7: Univariate analysis of selected water quality varibles from the Proctor Creek by site, Atlanta, 
Georgia, 2014.

E. coli by site*

Turbidity by site**
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Figure 9: Spatial Variation of E. coli among the Proctor Creek Water Samples 
 

 

From Table 8 and Figure 9, there is a visible trend in the mean E. coli concentrations for 

each site, with a statistically significant difference between the lowest mean E. coli concentration 

at site 3 and the highest mean E. coli concentration found at site 1 (p= 0.0008). An ANOVA 

determined that the spatial variation of E. coli is significant as well (p= 0.0003).  

 

 
 

 

 
 
 
 

 
 

P-Value*

Lowest Highest

Between site 3 (lowest) and site 2 (highest) 2.46 4.11 0.0008
Between sample dates September (lowest) and May (highest) 2.69 3.22 0.25

Spatial ANOVA 0.0003
Temporal ANOVA 0.3599
* t-test with level of significance reported as p<.05
** E. coli concentrations in 10 log MPN/100mL

Mean Values 95% Confidence Interval of 
the Mean Difference

-2.370 to -0.9197
-1.387 to 0.4129

Table 8: Determination of statistical significance between samples with the highest and lowest mean concentrations of E. coli among water samples from 
the Proctor Creek, Atlanta, Georgia, 2014.

Mean concentrations of E. coli in water**
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Figure 10: Temporal Variation of E. coli among Proctor Creek Water Samples 
 

 
 
 

 As shown in Figure 10 and Table 9, there seems to be a temporal variation among the E. 

coli concentration in water across sample dates, with the highest mean E. coli concentration in 

June (7.57 log10 MPN/100mL) and the lowest in July (2.32 log10 MPN/100mL), but possibly due 

to the small sample size no statistically significant temporal variation was observed (p= 0.3599).   
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Range Minimum Maximum Mean
E.coli in water by date*

5/8/14 1.12 2.50 3.62 2.92
5/15/14 0.24 3.55 3.79 3.67
6/17/14 0.00 2.86 2.86 2.86
6/19/14 0.53 2.50 3.03 2.70
6/24/14 0.00 4.91 4.91 4.91

7/7/14 0.00 3.47 3.47 3.47
7/10/14 0.46 2.18 2.63 2.40
7/17/14 0.05 2.69 2.74 2.72

8/7/14 0.78 2.00 2.78 2.32
8/14/14 2.25 2.50 4.75 3.62
9/11/14 1.59 2.19 3.78 2.73

Turbidity by date**
5/8/14 17.25 1.75 19.00 7.57

5/15/14 9.80 13.60 23.40 18.50
6/17/14 0.00 2.23 2.23 2.23
6/19/14 0.97 2.66 3.63 3.05
6/24/14 0.00 38.20 38.20 38.20

7/7/14 0.00 2.01 2.01 2.01
7/10/14 6.08 1.56 7.64 4.60
7/17/14 3.05 2.03 5.08 3.56

8/7/14 7.47 1.46 8.93 4.20
8/14/14 3.49 3.13 6.62 4.88
9/11/14 1.09 2.10 3.19 2.58

* E. coli concentrations are presented as log 10 MPN/100mL 
**Turbidity values are presented as NTU

Table 9: Univariate analyses of selected water quality variables sampled from the Proctor Creek 
by date, Atlanta, Georgia, 2014.
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Figure 11: Spatial Variation of Turbidity among Proctor Creek Water Samples   

 
 Based on Figure 11 and Table 10, the mean turbidity values across sites for all sampling 

dates were similar. Further analysis determined there were no statistically significant differences 

in mean turbidity values between sample sites (p= 0.45; Table 10). 

 

 
 

 

 
 

 
 

 

P-Value*

Lowest Highest

Between site 3 (lowest) and site 2 (highest) 2.08 10.23 0.289
Between sample dates September (lowest) and May (highest) 2.58 11.94 0.4538

Spatial ANOVA 0.6682
Temporal ANOVA 0.3145

* t-test with level of significance reported as p<.05
** Turidity values are presented in NTU

-27.19 to 14.69

Table 10: Determination of statistical significance between samples with the highest and lowest mean values of turbidity among water samples from the 
Proctor Creek, Atlanta, Georgia, 2014.

Mean Values 95% Confidence Interval of 
the Mean Difference

-24.41 to 8.107
Mean concentrations of turbidity in water**
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Figure 12: Temporal Variation of Turbidity among Proctor Creek Water Samples 
 
 

 
 

 Analysis of data illustrated in Figure 12 shows a trend in mean turbidity values with the 

highest turbidity values occurring in May and decreasing throughout the sampling period. 

Further analysis determined there was no statistically significant temporal variation in turbidity 

values between sample dates (p=0.45).  

  

 

 

 

 

As shown in Table 11, E. coli in water was positively correlated with turbidity at site 5 (p=0.03) 

of Proctor Creek. 

 
 



	  

	   53	  

CHAPTER	  V	  
	  

DISCUSSION	  
	  

5.1	  Major	  Findings	  

	   This	  study	  found	  significant	  temporal	  variation	  in	  mean	  E.	  coli	  concentrations	  

among	  Chattahoochee	  water	  samples	  between	  dates	  7/10/14	  and	  6/19/14.	  Mean	  E.	  coli	  

counts	  and	  mean	  Dissolved	  Oxygen	  values	  were	  found	  to	  demonstrate	  variance	  across	  

sample	  dates	  for	  all	  sample	  sites.	  The	  USEPA	  criteria	  for	  DO	  in	  recreational	  water	  are	  a	  

maintained	  daily	  average	  of	  6.0	  mg/L	  and	  no	  less	  than	  5.0	  mg/L	  (EPA,	  2012).	  Dissolved	  

Oxygen	  is	  important	  to	  the	  health	  of	  the	  Chattahoochee	  River	  as	  it	  is	  a	  critical	  necessity	  for	  

the	  living	  organisms	  such	  as	  fish,	  turtles,	  and	  other	  aquatic	  life	  inhabiting	  the	  River.	  

Changes	  in	  oxygen	  concentration	  can	  affect	  certain	  species	  reliant	  on	  oxygen-‐rich	  water,	  

disrupting	  the	  food	  chain.	  Dissolved	  Oxygen	  has	  been	  proven	  as	  a	  useful	  indicator	  for	  water	  

pollution	  and	  the	  effects	  of	  urbanization	  as	  clearing	  land	  and	  development	  may	  send	  excess	  

organic	  matter	  into	  streams,	  which	  uses	  up	  oxygen	  to	  decompose	  it	  (USU,	  2015).	  	  

	  In	  this	  study,	  the	  mean	  DO	  values	  decreased	  steadily	  every	  month	  with	  the	  highest	  

mean	  value	  of	  DO	  occurring	  in	  June	  and	  the	  lowest	  in	  September.	  The	  seasonal	  decrease	  in	  

DO	  found	  in	  this	  study	  is	  concurrent	  with	  findings	  from	  Breitburg,	  et	  al.	  that	  determined	  

bottom	  waters	  of	  the	  Patuxent	  River	  are	  below	  50%	  DO	  saturations	  during	  the	  summer	  

(2003).	  This	  decrease	  may	  have	  been	  a	  result	  of	  increased	  temperature	  throughout	  the	  

summer	  months.	  Increased	  development	  can	  reduce	  the	  amount	  of	  shaded	  areas	  around	  

surface	  water	  resulting	  in	  temperature	  increases	  and	  DO	  concentration	  reduction	  since	  

warmer	  water	  holds	  less	  DO	  than	  colder	  (USU,	  2015).	  	  Although,	  the	  relation	  DO	  

concentration	  has	  with	  E.	  coli	  counts	  in	  this	  study	  does	  not	  align	  with	  the	  Cheng	  et	  al.	  and	  
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Karn	  &	  Harada	  study,	  which	  stated	  that	  positive	  increases	  in	  DO	  promotes	  the	  decay	  of	  E.	  

coli	  and	  found	  trends	  between	  increased	  total	  coliforms	  and	  decreases	  in	  DO	  (Cheng	  et	  al.,	  

2013;	  Karn	  &	  Harada,	  2001).	  However,	  Cheng	  et	  al.	  investigated	  wetlands	  consisting	  of	  

various	  ponds	  where	  sediment	  and	  suspended	  solids	  have	  the	  ability	  to	  settle	  while	  this	  

study	  focuses	  on	  a	  flowing	  river,	  which	  may	  contribute	  to	  the	  varying	  results	  (2013).	  Karn	  

&	  Harada	  investigated	  surface	  waters,	  Bagmati	  and	  Buriganga,	  rivers	  highly	  polluted	  by	  

unregulated	  sewage	  outfalls;	  their	  results	  indicated	  a	  relationship	  between	  raw	  sewage	  and	  

low	  DO	  concentrations.	  Since	  the	  two	  water	  treatment	  plant	  outfalls	  on	  the	  Chattahoochee	  

River	  have	  been	  proven	  to	  have	  low	  counts	  of	  E.	  coli	  colonies,	  the	  same	  results	  cannot	  be	  

expected	  in	  this	  study.	  For	  this	  reason,	  DO	  decrease	  may	  be	  influenced	  by	  seasonal	  changes	  

rather	  than	  bacterial	  increases.	  

Temporal	  variation	  was	  also	  found	  between	  turbidity	  values	  across	  sample	  dates	  for	  

all	  sample	  sites;	  the	  difference	  between	  dates	  that	  the	  lowest	  and	  highest	  mean	  turbidity	  

values	  found	  were	  also	  found	  to	  be	  significant.	  Low	  river	  flow	  usually	  relates	  to	  low	  

turbidity	  (less	  than	  10	  NTU)	  since	  increased	  riverflow	  often	  results	  in	  turning	  up	  sediment	  

and	  other	  sediment	  that	  result	  in	  turbid	  water	  (USGS,	  2014).	  This	  supports	  the	  data	  found	  

in	  the	  Chattahoochee	  River,	  as	  dates	  of	  recorded	  low	  riverflow	  (7/7/14-‐7/10/14	  and	  

8/2/14-‐8/5/14)	  were	  also	  dates	  low	  turbidity	  of	  the	  water	  samples	  was	  also	  recorded	  

(7/10/14	  and	  8/5/14).	  A	  number	  of	  studies	  have	  shown	  a	  strong	  relationship	  between	  

indicator	  bacteria	  and	  turbidity	  measurements	  (McSwain,	  1977;	  Christensen,	  2001;	  

Rasmussen	  and	  Ziegler,	  2003).	  Due	  to	  findings	  such	  as	  Fries	  et	  al.	  (2006)	  and	  Krometis	  et	  

al.	  (2007),	  which	  reported	  that	  34-‐42	  percent	  of	  E.	  coli	  in	  surface	  water	  samples	  were	  

attached	  to	  particles,	  a	  Pearson’s	  correlation	  was	  conducted	  to	  determine	  if	  the	  two	  
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parameters	  were	  related.	  Mean	  E.	  coli	  counts	  and	  turbidity	  values	  were	  not	  significantly	  

correlated	  at	  any	  sampling	  sites.	  Gregory	  and	  Frick	  (2000)	  stated	  that	  fecal	  coliform	  

bacteria	  densities	  in	  the	  Chattahoochee	  River	  are	  highest	  after	  rainstorm	  events	  when	  the	  

river	  is	  turbid,	  so	  the	  lack	  of	  many	  rain	  events	  during	  the	  sampling	  period	  may	  have	  

contributed	  to	  the	  low	  turbidity	  concentrations.	  	  

	   E.	  coli	  concentrations	  across	  sites	  for	  all	  sampling	  dates	  were	  similar,	  but	  the	  

sampling	  sites	  at	  the	  Camp	  Creek	  Outfall	  and	  Douglas	  County	  Outfall	  were	  lower	  than	  other	  

sites.	  Before	  the	  FACD	  passed	  in	  2003	  water	  treatment	  effluent	  was	  reported	  to	  degrade	  

the	  Chattahoochee	  River	  water	  quality	  downstream	  but	  currently,	  the	  mean	  E.	  coli	  

concentration	  near	  the	  outfalls	  are	  lower	  than	  other	  sites.	  (Clean	  Water	  Atlanta,	  2010).	  No	  

significant	  spatial	  variation	  of	  mean	  E.	  coli	  concentration	  upstream	  and	  downstream	  of	  the	  

Camp	  Creek	  Outfall	  was	  recorded,	  in	  fact,	  the	  lack	  of	  significant	  increases	  in	  E.	  coli	  

concentrations	  downstream	  of	  the	  effluent	  discharge	  points	  to	  the	  First	  Amended	  Consent	  

Decree	  (FACD)	  accomplishing	  effluent	  goals	  (Clean	  Water	  Act,	  2010;	  EPD,	  1997).	  	  The	  

Douglas	  County	  Outfall	  did,	  however,	  incur	  upstream/downstream	  variations	  of	  mean	  E.	  

coli	  concentrations	  by	  three	  sites,	  indicating	  that	  the	  water	  discharged	  from	  that	  outfall	  

may	  need	  additional	  treatment	  to	  ensure	  it	  does	  not	  impair	  the	  river’s	  water	  quality	  

downstream.	  	  

	   Differences	  between	  E.	  coli	  means	  and	  MS2	  presence	  and	  absence	  were	  found	  

between	  the	  sample	  date	  with	  the	  lowest	  E.	  coli	  concentration	  (7/10/14)	  and	  the	  date	  with	  

the	  highest	  (6/19/14).	  The	  bacteriophage	  MS2	  is	  a	  potential	  indicator	  of	  the	  presence	  of	  

human	  viruses	  in	  water,	  meaning	  that	  there	  may	  be	  human	  pathogens	  in	  the	  

Chattahoochee	  River.	  Yet	  ANOVA	  found	  that	  the	  mean	  concentrations	  of	  E.	  coli	  were	  similar	  
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for	  sites	  across	  all	  sample	  dates,	  regardless	  of	  the	  presence	  or	  absence	  of	  MS2.	  This	  is	  

consistent	  with	  a	  study	  conduct	  by	  Luther	  and	  other	  that	  found	  FRNA	  coliphages	  were	  

present	  in	  significant	  concentrations	  although	  fecal	  bacteria	  was	  low,	  suggesting	  that	  fecal	  

indicator	  bacteria	  may	  not	  detect	  viral	  contamination	  sufficiently	  (Luther	  &	  Fujioka,	  2004).	  

	   Similar	  to	  the	  temporal	  trends	  of	  the	  Chattahoochee	  River,	  Proctor	  Creek	  

experienced	  higher	  levels	  of	  E.	  coli	  concentrations	  and	  turbidity	  levels	  in	  the	  early	  months	  

of	  sampling,	  which	  decreased	  through	  September.	  Consistent	  with	  recent	  studies,	  such	  as	  

the	  Chang	  et	  al.	  research	  concluding	  that	  tributaries	  influence	  the	  water	  quality	  of	  main	  

streams	  and	  rivers	  downstream	  (Chang,	  2005).	  No	  statistically	  significant	  spatial	  or	  

temporal	  variations	  in	  turbidity	  values	  were	  found	  in	  any	  of	  the	  sample	  sites	  or	  dates	  of	  the	  

Proctor	  Creek	  but	  there	  was	  significant	  spatial	  variation	  with	  extremely	  high	  spikes	  in	  

mean	  E.	  coli	  concentrations	  at	  Site	  2	  located	  on	  Joseph	  E.	  Boone.	  Trends	  in	  the	  

concentrations	  of	  key	  variables	  (turbidity	  and	  E.	  coli)	  were	  observed	  but	  due	  to	  the	  small	  

sample	  size,	  no	  significant	  results	  were	  produced.	  	  

	   Since	  the	  Chattahoochee	  River	  is	  a	  designated	  recreational	  water	  source	  and	  Proctor	  

Creek	  was	  previously	  used	  as	  a	  location	  for	  recreational	  activities,	  it	  is	  important	  to	  

determine	  how	  the	  studied	  waterways	  compare	  to	  the	  state	  of	  Georgia’s	  recreational	  water	  

quality	  standards.	  EPA	  water	  quality	  standards	  for	  E.	  coli	  in	  recreational	  water	  are	  

categorized	  by	  recreational	  use	  and	  human	  contact.	  In	  waterways	  were	  people	  come	  into	  

full-‐body	  contact	  (FBC)	  with	  the	  water;	  the	  single	  sample	  maximum	  of	  E.	  coli	  should	  not	  

exceed	  235	  CFU/100	  mL.	  If	  only	  partial	  body	  contact	  is	  occurring,	  then	  no	  more	  than	  575	  

CFU/100	  mL	  of	  E.	  coli	  should	  be	  present.	  The	  Chattahoochee	  River	  did	  not	  exceed	  this	  EPA	  

standard	  at	  any	  of	  the	  sampling	  sites,	  with	  the	  highest	  count	  of	  E.	  coli	  occurring	  on	  6/19/14	  
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at	  site	  six	  (165.57	  CFU/100mL).	  However,	  Proctor	  Creek	  exceeded	  the	  water	  quality	  

standard	  at	  nearly	  every	  site	  on	  every	  sampling	  date.	  The	  highest	  count	  occurred	  on	  

6/24/14	  at	  the	  Simpson/Boone	  site	  (80,735	  MPN/100	  mL)	  with	  the	  average	  E.	  coli	  count	  

for	  sites	  over	  all	  sampling	  dates	  being	  6678.8	  MPN/100	  mL;	  only	  four	  water	  samples	  met	  

the	  Georgia	  State	  water	  quality	  standard	  over	  11	  sampling	  dates.	  

	  

5.2	  Importance	  of	  Study	  
	  
	   The	  health	  of	  the	  Chattahoochee	  River	  and	  Proctor	  Creek	  are	  of	  great	  significance	  to	  

the	  city	  of	  Atlanta,	  due	  to	  the	  public	  dependence	  on	  both	  waterways.	  Since	  the	  

Chattahoochee	  River	  is	  the	  main	  source	  of	  drinking	  water	  for	  the	  state	  of	  Georgia,	  routine	  

monitoring	  and	  maintenance	  is	  required	  to	  ensure	  health	  of	  the	  consumers.	  In	  order	  to	  

maintain	  the	  integrity	  of	  the	  watershed,	  the	  federal	  government	  has	  instated	  regulation	  to	  

protect	  both	  the	  river’s	  and	  Proctor	  Creek’s	  water	  quality	  by	  defining	  and	  monitoring	  

definitive	  water	  quality	  standards.	  The	  population	  growth	  in	  metro	  Atlanta	  has	  

exacerbated	  the	  stress	  the	  sewer	  systems	  were	  under	  to	  accommodate	  the	  sanitary	  sewage	  

and	  stormwater	  runoff	  from	  impervious	  surfaces.	  In	  fact,	  before	  stricter	  water	  quality	  

guidelines	  were	  instituted,	  sanitary	  sewer	  overflow	  (SSO)	  events	  were	  quite	  common.	  Due	  

to	  these	  malfunctions,	  the	  city	  of	  Atlanta	  made	  additional	  changes	  to	  guarantee	  adequate	  

treatment	  of	  wastewater	  effluent	  discharged	  into	  the	  Chattahoochee	  River.	  Previous	  

studies	  have	  focused	  on	  point	  source	  pollution	  as	  the	  cause	  of	  water	  quality	  degradation;	  

however	  currently,	  nonpoint	  sources	  are	  influencing	  the	  health	  of	  the	  urban	  waterways	  in	  

Atlanta,	  which	  this	  study	  will	  examine.	  This	  research	  is	  significant,	  as	  few	  investigations	  

have	  been	  published	  regarding	  the	  water	  quality	  of	  the	  Chattahoochee	  and	  Proctor	  Creek.	  	  	  	  
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5.3	  Strengths	  and	  Limitations	  

Strengths	  

	   To	  date,	  there	  are	  no	  studies	  investigating	  the	  current	  water	  quality,	  spatiotemporal	  

variation	  of	  E.	  coli	  and	  MS2,	  or	  the	  correlation	  between	  microbial	  and	  pathogenic	  indicators	  

with	  certain	  water	  quality	  parameters	  (DO,	  riverflow,	  turbidity)	  of	  the	  Chattahoochee	  and	  

Proctor	  Creek.	  

	  

Limitations	  

	   Firstly,	  this	  research	  is	  comprised	  of	  a	  small	  sample	  size	  of	  five	  sampling	  dates	  from	  

May	  to	  September	  for	  the	  Chattahoochee	  River	  samples	  and	  eleven	  for	  Proctor	  Creek.	  Since	  

all	  data	  from	  Proctor	  Creek	  was	  received	  from	  the	  Chattahoochee	  Riverkeeper	  database,	  

not	  all	  samples	  were	  collected	  consistently	  so	  the	  sampling	  dates	  were	  clustered	  by	  month	  

opposed	  to	  by	  date.	  	  

	  

5.4	  Future	  Research	  	  

	   Since	  these	  waterways	  must	  stay	  within	  federal	  and	  state	  standards,	  continuous	  

monitoring	  should	  continue	  but	  additional	  sites	  and	  sampling	  dates	  will	  improve	  the	  

amount	  of	  statistically	  significant	  results.	  Future	  research	  should	  also	  investigate	  the	  

sources	  of	  contamination,	  not	  only	  from	  point	  sources	  but	  also	  by	  collecting	  stormwater	  

runoff	  from	  various	  points	  to	  determine	  where	  nonpoint	  source	  pollution	  may	  be	  in	  higher	  

concentrations.	  	   
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