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CHAPTER I 

INTRODUCTION 

Diabetes 

Diabetes is a metabolic disorder characterized by abnormal blood glucose levels. 

For people with type I diabetes, the pancreas cannot provide enough insulin to convert 

glucose into energy.
1
 For people with type II diabetes, insulin is produced but the body 

cannot use it properly. The World Health Organization (WHO) estimates 347 million 

people worldwide had some form of diabetes in 2012.
2
 

According to the American Diabetes Association (ADA), poor control of blood 

glucose concentrations contributes to heart disease, high blood pressure, blindness, 

kidney failure and other chronic medical disorders.
3
 Studies have shown that tight 

glycemic control can reduce the onset of these complications, thus improving the quality 

of life and extending the life expectancy for people with type I diabetes for up to eight 

years.
4
 Tight glycemic control demands frequent blood glucose measurements coupled 

with a sophisticated insulin delivery algorithm. 

Conventionally, individual glucose measurements are achieved by drawing a drop 

of blood and applying it to a glucose test strip within a glucose meter. This test-strip 

approach is invasive, painful, expensive and inconvenient.
5
 Spectroscopic methods 

promise painless measurements that can be continuous, thereby providing an attractive 

means to track glucose, decrease complications, and improve the quality of life for people 

with diabetes.
6
 

Several approaches are proposed for noninvasive glucose sensing, such as 

near-infrared (NIR) spectroscopy,
7
 Raman scattering spectroscopy,

8,9
 glucose diffusion 

analysis
10

 and photo-acoustic spectroscopy.
11

 The idea of these noninvasive methods is to 

transmit light through human skin, and collect a spectrum.
12,13

 The spectrum is analyzed 

to provide the concentration of glucose. In NIR spectroscopy, glucose concentrations are 
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monitored by transmittance spectroscopy over the combination region of the near infrared 

spectrum (2.0 to 2.5 μm).
14

 However, there are several factors that affect measurement 

accuracy, including different levels of fat and proteins within the skin matrix, 

environmental changes and long-term stability of the instrumentation. Raman 

spectroscopy measures inelastic light scattered molecules within the tissue matrix. 

Studies have shown that glucose concentrations are well correlated with Raman scatter 

intensities within various samples, such as blood, serum and water.
15,16,17,18,19

 

Noninvasive Raman measurements are complicated by fluorescence background signals 

in tissue samples and instability of the excitation laser.
19

 

Near-Infrared Spectroscopy 

The NIR region of the electromagnetic spectrum is associated with combination 

and overtone vibrations of C-H, O-H and N-H bonds.
20

 The full range of the NIR 

spectrum spans over 12800-4000 cm
-1

 wavenumbers or 780-2500 nm wavelengths. 

Absorption of NIR radiation follows the Beer-Lambert law, presented in Equation I-1, 

 

      (
 

  
)                                                Equation I-1 

 

where A is the absorbance of a sample, I and I0 are the intensities of the transmitted and 

incident radiation, respectively,   denotes the absorptivity at a certain wavelength, b 

represents the optical path length, and c is the concentration of the sample. 

Absorptivities for NIR absorption bonds can be one to three orders of magnitudes 

weaker than those in the mid-infrared region. Although lower absorptivities correspond to 

lower sensitivities, they also permit measurements in thicker samples, thereby permitting 

noninvasive measurements without sample preparation. In addition, NIR radiation is low 

energy and nondestructive to the sample. A principal drawback of NIR spectroscopy is 

the fact that NIR absorption bands are broad and overlapping, which demands 
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multivariate methods of analysis for data processing. For the work described here, the 

spectral region of interest is 5000 to 4000 cm
-1

. This spectral range corresponds to an 

absorption minimum between two large water absorption bands centered at 5200 and 

3600 cm
-1

.
21

 

A Fourier transform (FT) instrument is used to collect the NIR spectra for the 

work described in this thesis. The centerpiece of an FT spectrometer is the Michelson 

interferometer,
22

 which is shown schematically in Figure I-1. A beam splitter separates 

the incident radiation into two paths with nearly equal power, one path is reflected and 

the other is transmitted. The two beams then recombine at the beam splitter after 

reflection by fixed and moving mirrors. Depending on the position of the moving mirror, 

the optical path length difference of the two beams creates an interference pattern 

recorded as an interferogram. The fast Fourier transform (FFT) algorithm is applied to 

convert the time-domain interferogram into a frequency-domain single-beam spectrum.
23

 

An FT spectrometer has several advantages over dispersive systems.
24

 In the FT 

configuration, radiation at all frequencies reaches the detector simultaneously, thus 

decreasing the acquisition time. More scans can be collected in the same time period 

which enhances the measurement signal-to-noise ratio (SNR). In addition, the absence of 

a slit enables high radiant powers at the detector, which also increases the SNR. A HeNe 

laser is used as the internal frequency standard to provide excellent frequency precision 

(<±0.01 cm
-1

) and excellent signal averaging. 

Raman Scattering Spectroscopy 

Raman scattering is a type of inelastic scattering in which the wavelength of the 

scattered photons is different than the wavelength of the incident light. The difference 

corresponds to vibrational modes within molecules responsible for the scattering. The 

basic mechanism of Raman scattering is shown in Figure I-2.  

At room temperature, most molecules are in the ground electronic state.  
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Absorption of a photon whose energy does not fit any energy level within the molecule 

can excite the molecule to a virtual state. The energy of the virtual state is determined by 

the energy of the excitation photon. The excited molecule then relaxes back to the ground 

state. If the emitted radiation has the same energy as the excitation radiation, this is called 

Rayleigh scattering. The excited molecule can also relax back to a vibrational state within 

the ground electronic state. If the energy of the emitted photon is less than the excitation 

photon, this is called Stokes scattering. If the energy of the emitted photon is higher than 

the excitation photon, this is called anti-Stokes scattering. The probability for the 

occurrence of the anti-Stokes scattering is much lower than that of the Stokes scattering 

because the fraction of molecules in a higher vibrational energy level is small at room 

temperature.  

For the case where the incident radiation has a frequency of νex,the electric field 

vector E of this radiation is expressed by Equation I-2 below:
25

 

 

                                                             Equation I-2 

 

where    is the amplitude of the incident radiation wave. When the electric field 

interacts with an electron cloud of a molecular vibrational bond, it induces a dipole 

moment   in the bond and the dipole moment can be described by Equation I-3: 

 

                                                           Equation I-3 

 

where   is the polarizability of the bond and describes the deformability of the bond in 

an electric field. Equation I-4 specifies the dipole moment of Raman active mode within 

a molecule: 

 

                  
  

 
  (

  

  
)    [           ]    

  

 
  (

  

  
)    [           ]           Equation I-4 
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where    is the polarizability of the bond at the equilibrium internuclear distance,    is 

the maximum internuclear separation relative to the equilibrium position, and r is the 

internuclear separation at any instant. The first term in Equation I-4 represents Rayleigh 

scattering at the excitation frequency    , the second term corresponds to the Stokes 

scattering at the frequency       , and the third term represents the anti-Stokes 

scattering at the frequency       .  

A change of polarizability is required for Raman scattering to take place. In 

contrast, a change of dipole moment is required for absorption of infrared frequencies. In 

infrared absorption, only radiation of the same frequency as the molecular vibration 

interacts with the molecule and promotes it to an excited vibrational state. In Raman 

scattering, the molecule is promoted and reemits the radiation and returns to a different 

vibrational level.  

Raman scattering spectroscopy is typically used for structure determination. 

Quantitative analysis with Raman spectroscopy has also been described in the 

literature.
26,27

 Equation I-5 below relates the intensity of Raman scattered light       to 

various parameters: 

 

      
    

         
           

  (   
   

  ⁄
)
 [     

        
   ]                    Equation I-5 

 

where c is the speed of light, h is the Plank’s constant,    denotes the excitation intensity, 

N is the number of scattering molecules,   represents the molecular vibrational 

frequency in Hertz,    is the laser excitation frequency in Hertz,   is the reduced mass 

of the vibrating atoms, k is the Boltzmann constant, T is the absolute temperature,   
  is 

the mean value invariant of the polarizability tensor, and   
  is the anisotropy invariant 

of the polarizability tensor. Equation I-5 shows that the intensity of Raman scattered light 

is proportional to the number of molecules N, which defines the concentration 

dependency assuming a constant volume of sample is probed in the measurement. The 
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correlation between Raman intensity and concentration of analyte is the basis for 

quantitative analysis using Raman spectroscopy.
28,29

 

Both Raman spectroscopy and NIR spectroscopy are related to the vibrational 

modes of the molecules, however, due to different mechanisms, some vibrational modes 

in one molecule are Raman active while some vibrational modes are IR active, and some 

vibrational modes are both Raman and IR active. This provides complementary features 

between Raman and NIR measurements. 

Partial Least-Square (PLS) Regression 

Absorption features at NIR frequencies are broad, weak and highly overlapping, 

thereby requiring multivariate analysis methods for quantitative analysis.
30,31

 Multivariate 

calibration techniques help to extract information for an analyte of interest from within a 

complex spectral matrix. In calibration, the relationship between spectral variances and 

changes in the concentration of the target analyte is established. The multivariate 

algorithms used in this dissertation are partial least squares (PLS) regression and net 

analyte signal (NAS) analysis.  

The PLS regression method decomposes the spectral and the concentration 

variances into loadings and scores and correlates the spectral variance with the 

concentration variance.
32

 PLS is a powerful and reliable tool to analyze spectral data 

because it extracts latent variables by taking into account covariance of both the spectral 

and concentration matrices.
33,34

  

The PLS algorithm works as follows:  

The first loading weight    is calculated according to Equation I-6, 

 

   
   

‖   ‖
                                                    Equation I-6 

 

where R is the n×p spectral matrix, and c is the n×1 vector of analyte concentration. 
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The first score    is calculated by Equation I-7, 

 

                                                           Equation I-7 

 

The first spectral loading is calculated by Equation I-8, 

 

      
    

                                                    Equation I-8 

 

and the corresponding first concentration loading is calculated by Equation I-9, 

 

      
    

    
                                                 Equation I-9 

 

Before the second latent variable is calculated, both the spectral matrix and concentration 

vectors must be recalculated by Equations I-10 and I-11: 

 

        
                                                  Equation I-10 

 

                                                          Equation I-11 

 

The algorithm is repeated with the new R and c values to get another set of w, t, p, q and 

the process is repeated for the number of specified factors. After all the desired factors, or 

latent variables, are calculated, the regression coefficient b is calculated as follows: 

 

                                                         Equation I-12 

 

where W is a p×k matrix with k weighting factors (   to   ), P is a p×k matrix with 

k spectral loadings (   to   ), and q is the concentration loading vector. Concentration 

predictions can then be calculated by: 

 

 ̂                                                          Equation I-13 

 

To evaluate the performance of the calibration model, the standard error of 

calibration (SEC) and the standard error of prediction (SEP) are calculated as shown 
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below: 
35,36

 

 

    √
∑     ̂  

 

      
                                              Equation I-14 

 

    √
∑     ̂   

  
                                              Equation I-15 

 

where    and    are the known concentrations of the analyte in the calibration and 

prediction data sets, respectively, and  ̂  and  ̂  are the concentration predictions from 

the calibration model for the calibration and prediction data sets, respectively.    and 

   are the number of spectra in the calibration and prediction data sets, respectively, and 

k is the number of latent variables used in the PLS model. 

Net Analyte Signal (NAS) 

Net analyte signal (NAS) is defined as the part of a sample spectrum that is 

orthogonal to the spectra of all other components in the sample, and is, therefore, the 

unique spectral signature for the analyte of interest. The NAS method was originally 

proposed by Lorber in 1986.
37,38

 Figure I-2 is a representation of the NAS vector that is 

orthogonal to the background. The NAS vector can be computed by the following 

equation:  

 

              
                                            Equation I-16 

 

where I is the identity matrix,     is the background matrix containing all sources of 

variance except the target analyte,    
  represents the pseudo inverse of    ,    is the 

pure component spectrum of the target analyte.  

The background matrix should include spectral variance associated with the blank 

and spectral features of the chemical components within the sample matrix. The spectral 

variance of the background spectra can be characterized by a principal component 
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analysis (PCA).
38

 In this method, a selected number of principal components (PCs) is 

used to represent the background spectral variance while removing noise. The NAS is 

computed by projecting the pure component spectrum onto the first PC. The remaining 

orthogonal spectrum is then projected onto the second PC and this process continues for 

all PCs. The equation of the projection onto the k
th
 PC is shown below: 

 

  
     

     

  
    

                                               Equation I-17 

 

where   
  is the remaining orthogonal spectrum and    is the k

th
 PC. The final   

  after 

projecting onto each PC is termed the NAS.  

The NAS calibration coefficient can be calculated by the following equation: 

 

  
   

‖   ‖                                                    Equation I-18 

 

where   is the calibration vector of the analyte of interest, NAS represents the NAS 

vector in the sample matrix and ‖   ‖ denotes the magnitude of the NAS vector.  

Selectivity is defined as the ability to quantify the analyte of interest accurately 

within the sample matrix. Selectivity in a NAS calibration model can be expressed as the 

ratio between the norm of the      vector and the norm of the pure analyte spectrum 

  , as shown in the equation below:
37,38

 

 

    
‖    ‖

‖  ‖
                                                  Equation I-19 

 

Sensitivity is defined as the slope of the calibration curve, which describes the 

change of the magnitude in signal with the change of concentration. In an NAS 

calibration model, the sensitivity can be calculated by Equation I-20:
37,38

 

 

    
‖    ‖

  
                                                 Equation I-20 
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The SNR of the NAS model is defined as the ratio of the magnitude of the NAS 

vector to the noise. The noise is calculated as the standard deviation of the magnitude of 

the background spectral projection onto the NAS vector. The SNR in an NAS model can 

be expressed as: 

 

(
 

 
)
   

 
‖   ‖

    
                                                Equation I-21 

 

where      is the noise along the NAS vector. 

Overview of Thesis 

Both NIR absorption spectroscopy and Raman scattering spectroscopy have the 

potential to provide noninvasive measurements of blood glucose levels in vivo to get 

frequent glucose readings and thereby enhance glycemic control. Real spectral data were 

analyzed and compared for NIR and Raman separately. The results show good prediction 

abilities for NIR and Raman individually.
21,39

 The objective of this research is to compare 

the prediction performance of the PLS and NAS models based on NIR spectra, Raman 

spectra and the combination of NIR and Raman spectra for glucose, urea and lactate. The 

primary research question can be formulated as follows: Can analytical performance be 

improved by using a combination of NIR and Raman spectra? 

In Chapter II, real NIR and Raman spectral data were used to evaluate whether 

combining the two techniques improves the prediction ability of the PLS model. The 

described research indicates that the SNR of these two spectral data sets are different, and 

adding low SNR spectra lessens the analytical performance of the PLS model. In Chapter 

III, simulated NIR and Raman spectral data are used to illustrate how concatenation of 

NIR and Raman spectra with the same NAS length and SNR improves prediction ability 

of PLS models for glucose, urea and lactate. 
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Figure I-1. Schematic diagram of a Michelson interferometer. 
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Figure I-2. Schematic diagram of Rayleigh scattering and Raman scattering. 
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Figure I-3. Schematic diagram of NAS model. 

 

 

 



14 
 

CHAPTER II 

COMPARISON AND COMBINATION OF NEAR-INFRARED AND 

RAMAN SPECTRA FOR PLS AND NAS QUANTITATION OF 

GLUCOSE, UREA AND LACTATE USING REAL DATA 

Introduction 

As discussed in Chapter I, tight glycemic control for people with type I or type II 

diabetes is known to delay the onset of complication caused by chronic hyper-glycemia.
4
 

Noninvasive spectroscopic measurements of glucose in people with diabetes is one 

strategy being pursued to enable the frequent monitoring necessary to achieve tight 

control.
40,11

 Near infrared absorption spectroscopy and Raman scattering spectroscopy are 

the most promising methods reported to date for such noninvasive measurements.
8
 

The objective of the research described in this chapter is to explore the analytical 

benefits of combining information derived from both NIR and Raman spectra for the 

purpose of measuring glucose. To the extent the information embedded within the NIR 

and Raman spectra is complementary, the hypothesis is that combining NIR and Raman 

spectra will provide improved multivariate calibration models for measuring the 

concentration of glucose.
41

 

Although NIR spectroscopy and Raman spectroscopy are both associated with 

molecular vibrations, significant differences are noteworthy in terms of their 

complementary nature. First, NIR absorptions are associated with combinations and 

overtones of fundamental vibration modes associated with C-H, N-H and O-H bonds.
20

 

Raman spectroscopy, on the other hand, provides spectral features associated with 

fundamental vibrational modes for a wider range of molecular bonding.
42

 In the work 

presented here, the NIR information is collected over the 4000-5000 cm
-1

 spectral range 

corresponding to combinations of stretching and bending vibrations. The Raman spectra 

are collected over the 700-1700 cm
-1

 spectral range, corresponding to fundamental modes 
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associated with C-H, C-O, C-C, and C-N molecular bonds.
42

  

In addition, NIR spectroscopy measures absorption of electromagnetic (EM) 

radiation while Raman spectroscopy is based on scattering of EM radiation. The different 

selection rules for these two phenomena, changing dipole moment for NIR and changing 

polarizability for Raman, provide additional complementary information. Other 

differences include sensitivity to water and sensitivity to surfaces and interfaces. The 

complementary nature of these differences might serve as the basis for improving 

analytical performance. 

The analytical utility of combining NIR and Raman spectra is evaluated here by 

concatenating NIR and Raman spectral data collected from a set of 60 samples. 

Multivariate PLS and NAS calibration models are generated from these concatenated 

NIR-Raman spectra and the performance of these models are compared to analogous 

models based on NIR and Raman spectra alone. 

Experimental Section 

The spectral data used in this study were collected previously and details are 

provided elsewhere.
21,39

 Briefly, 60 samples were prepared with randomized 

concentrations of glucose, urea and lactate over the 1-30 mM concentration range. 

Solutions were prepared in a pH 6.86 phosphate buffer. Nine pure component NIR and 

Raman spectra were available for each component with concentrations ranging from 3 to 

27 mM with a 3 mM increment. 

NIR spectra were collected with a Nicolet 670 Nexus Fourier transform 

spectrometer (Nicolet Analytical Instruments, Madison, WI) equipped with a 20 watt 

tungsten-halogen lamp, a calcium fluoride beam splitter and a cryogenically cooled InSb 

detector. A K-band interference filter was set before the sample to restrict the spectral 

range to 4000-5000 cm
-1

. Samples were placed in a water-jacketed thermostatted cell to 

maintain the temperature at 37 ± 0.1 °C. Raman spectra were collected with a Mark II 
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holographic fiber-coupled probe head attached to a Hololab 5000R modular research 

Raman spectrograph (Model HoloSpec f/1.8i, Kaiser Optical System, Inc.) with a 785 nm 

excitation laser. For the Raman spectra, samples were placed in a 10 mm thick quartz 

cuvette and the collected spectral region was 100-3450 cm
-1

. No temperature control was 

used for the sample and the lab temperature averaged 22.0 ± 0.3 °C during data 

collection. 

For both the NIR and Raman data sets, raw spectra were collected in triplicate for 

each sample and buffer spectra were collected after every fifth sample. The most recently 

collected NIR buffer spectra were used as the reference for absorbance calculations and 

the mean of the Raman buffer spectra was used for background subtraction for each 

sample Raman spectrum. All data processing was performed using MATLAB (Math 

Works, Inc., Natick, MA). 

Results and Discussion 

The NIR absorbance spectra were calculated by taking the negative base-10 

logarithm of the ratio of a sample single-beam spectrum and the single-beam spectrum of 

the corresponding phosphate buffer solution. Example absorption spectra are provided in 

Figure II-1 for the 27 mM pure component solutions of glucose, urea, and lactate. These 

NIR spectra reveal absorption bands centered at 4300, 4400 and 4700 cm
-1

 for glucose 

which correspond to the combination vibration of C-H and O-H bonds.
35

 The absorption 

bands centered at 4575 and 4650 cm
-1

 for urea correspond to the combination vibrations 

of N-H bonds.
35

 The absorption bands centered at 4350, 4450 and 4800 cm
-1

 for lactate 

correspond to combination vibrations for C-H and O-H bonds.
35

 These absorption bands 

overlap to some extent. Negative absorbance values are created by a combination of 

slight variations in the spectrometer between sample and buffer spectra as well as water 

displacement effects over frequencies where the absorptivity of water is greater than that 

of the solutes.
43
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The Raman spectra were calculated by subtracting the corresponding averaged 

buffer spectra from each sample spectrum and examples are presented in the lower panel 

of Figure II-1 for the 27 mM pure component solutions of glucose, urea, and lactate. In 

comparison to the NIR spectra, features in the Raman spectra are narrower with less 

overlap. Glucose bands centered at 880, 1072, 1128 and 1370 cm
-1

 correspond to C-C 

stretching, C-O stretching, C-O-H bending and CH2 wagging, respectively.
44,45

 Urea 

bands centered at 1003 and 1160 cm
-1

 correspond to N-C-N stretching and NH2 rocking, 

respectively.
46,47

 Lactate bands centered at 855, 930, 1040, 1420 and 1455 cm
-1

 

correspond to C-COO
-
 stretching, CH3 rocking , C-CH3 stretching, COO

-
 stretching and 

CH3 deformation, respectively.
48,49

 

Spectral Quality 

Analysis of spectral ratio noise was used to compare spectral quality across the 

two fundamentally different types of spectra: NIR absorption spectroscopy measured 

from 4000-5000 cm
-1

 (2000-2500 nm) and Raman scattering spectroscopy measured with 

an excitation wavelength of 785 nm. In both cases, each raw single-beam spectrum 

collected for a sample was ratioed to the other two spectra collected for that sample. The 

root-mean-square (RMS) noise was calculated across each 100 cm
-1

 segment of the 

resulting ratioed spectra. The RMS noise is computed relative to a second order 

polynomial fit of the ratioed spectral data for each 100 cm
-1

 segment.  

Figure II-2 presents a set of representative ratioed spectra across the full spectral 

ranges for both the NIR and Raman data sets and the measured RMS noise levels for each 

100 cm
-1

 segment are summarized in Table II-1. For the NIR spectra, the ratioed spectra 

show how the RMS noise varies across the spectral range in accordance with the 

transmission properties of water. The lowest RMS noise levels correspond to frequencies 

where the water absorption is lowest (4400-4600 cm
-1

), thereby providing highest radiant 

powers at the detector and, correspondingly, the highest SNR. For the Raman spectra, the 
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Table II-1. RMS noise level of ratioed spectra for NIR and Raman spectra. 

Raman Spectral Range 

(cm
-1

) 

Raman Noise Level 

(AU) 

NIR spectral Range 

(cm
-1

) 

NIR Noise Level (AU) 

700-800 1.72×10
-3

 4200-4300 9.46×10
-5

 

800-900 1.84×10
-3

 4300-4400 1.57×10
-5

 

900-1000 2.02×10
-3

 4400-4500 7.21×10
-6

 

1000-1100 2.30×10
-3

 4500-4600 7.65×10
-6

 

1100-1200 2.67×10
-3

 4600-4700 1.10×10
-5

 

1200-1300 2.85×10
-3

 4700-4800 3.04×10
-5

 

1300-1400 2.95×10
-3

   

1400-1500 3.33×10
-3

   

1500-1600 3.58×10
-3

   

1600-1700 3.45×10
-3
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ratioed spectra reveal less structure and are characterized by increasing RMS noise levels 

from low to high frequencies. Compared to the NIR ratioed spectra, RMS noise levels for 

the Raman spectra are greater in magnitude but more constant across the spectral range. 

Figure II-3 shows the distribution of RMS noise levels determined for each 

sample in the two data sets. In both cases, the noise levels are uniformly distributed 

across the samples with no significant shifts or systematic variations in the RMS noise.  

The consistency in RMS noise levels across samples implies reproducibility in the 

instrumental and environmental conditions during the data collection periods. The 

average (± standard deviation) for the NIR and Raman data sets are (7.21 ± 3.51) ×10
-6

 

and (1.72 ± 0.82) ×10
-3

 AU, respectively.  

Analysis of the 100% lines was also used for the spectral quality of the NIR 

spectra. Each raw single-beam spectrum collected for a sample was ratioed to the other 

two spectra collected for that sample. The base-10 logarithm was computed and the 

root-mean-square (RMS) noise was calculated across each 100 cm
-1

 segment of the 

resulting 100% line. The RMS noise is computed relative to a second order polynomial 

fit of the 100% line data for each 100 cm
-1

 segment. Figure II-4 presents a set of 

representative 100% lines across the full NIR spectral range and the measured RMS noise 

levels for each 100 cm
-1

 segment are summarized in Table II-2. The results of the 100% 

lines are consistent with the results of the ratioed spectra. The lowest RMS noise levels 

correspond to where the water absorption is lowest. The average (± standard deviation) 

for the NIR 100% lines data set is 3.13 ± 1.52 µAU. 

Individual PLS Calibration Models 

Separate PLS calibration models were built for each analyte with an optimized 

spectral range and number of latent variables or factors used in the model. The optimal 

spectral range and number of latent variables were determined by a grid search with a 10 

cm
-1

 step and a window size ranging from 100 cm
-1

 to the full spectral range in 
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Table II-2. RMS noise level of 100% lines for NIR spectra. 

NIR Spectral Range 

(cm
-1

) 

4200-4300 4300-4400 4400-4500 4500-4600 4600-4700 4700-4800 

NIR Noise Level 

(µAU) 

41.1 6.85 3.13 3.32 4.79 13.2 
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increments of 10 cm
-1

 for both the NIR and Raman spectra with the lowest significant 

leave-one-out cross validation standard error of prediction (CVSEP). Figure II-5 shows 

the relationship between the number of factors and CVSEP. Standard error of calibration 

(SEC) and standard error of prediction (SEP) values were computed to quantify the 

performance of each model and the results are summarized in Table II-3.  

For both the NIR and Raman models, the optimal spectral ranges for glucose, urea 

and lactate include the major spectral bands for each component. The SEC and SEP 

values summarized in Table II-3 indicate that NIR models for glucose, urea and lactate 

are smaller than the corresponding Raman models. Lower SEC and SEP values for the 

NIR models are consistent with lower RMS noise levels for the NIR data compared to the 

Raman data. For the NIR models, SEC and SEP values for glucose are higher than those 

for urea and lactate, which is an indication that the sensitivity over the combination 

spectral range is lowest for glucose. 

Concentration correlation plots are presented in Figures II-6, II-7 and II-8 for both 

the NIR and Raman calibration models for glucose, urea and lactate, respectively. These 

plots show good calibration and prediction performance for these PLS models with 

predicted values closely distributed along the ideal correlation line.  

Table II-4 summarizes results for the NIR and Raman PLS models computed over 

the full spectral ranges. For the NIR models, SEC and SEP values are much higher for the 

whole spectral range compared to the optimized range. For the Raman models, SEC and 

SEP values are similar to those for the optimized ranges. Optimized ranges for the NIR 

models are narrow compared to the whole range and represents an attempt to include the 

vital analytical absorption features while excluding noise. Optimized ranges for the 

Raman models are similar to the whole range, which is consistent with the fact that 

spectral quality is relatively constant across the spectrum as determined from the RMS 

noise levels detailed above. Both the optimized ranges for NIR spectra and Raman 

spectra are mainly discussed later. 
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Table II-3. Results for PLS calibration models computed over optimized spectral ranges 
for Raman and NIR spectra. 

 Optimized Range (cm
-1

) Number of Factors SEC (mM) SEP (mM) 

 Raman NIR Raman NIR Raman NIR Raman NIR 

Glucose 800-1500 4270-4440 5 5 0.36 0.26 0.54 0.27 

Lactate 700-1550 4290-4500 5 5 0.53 0.11 0.46 0.10 

Urea 900-1500 4500-4660 5 5 0.28 0.13 0.32 0.14 

 

 

 

Table II-4. Results for PLS calibration models computed over the full spectral ranges for 
Raman and NIR spectra. 

 Whole Range (cm
-1

) Number of Factors SEC (mM) SEP (mM) 

 Raman NIR Raman NIR Raman NIR Raman NIR 

Glucose 700-1700 4200-4800 5 5 0.37 0.94 0.44 0.54 

Lactate 700-1700 4200-4800 5 5 0.35 1.71 0.45 1.49 

Urea 700-1700 4200-4800 5 5 0.26 1.23 0.34 0.75 
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Combined PLS Calibration Models 

To judge the benefits of combining the NIR and Raman spectral data, PLS 

calibration models were generated by concatenating the NIR and Raman spectra for each 

sample. The analysis focused on results from the optimized spectral ranges. 

Concatenation was accomplished by placing Raman intensity values along with 

the corresponding wavenumber values into consecutive column matrices and adding the 

NIR spectral values (signal and wavenumber) to follow the Raman values in the same 

matrix. The original point spacing for the Raman data was 0.3 cm
-1

, and the point spacing 

for the NIR data was 1.9 cm
-1

. To get similar point spacings for the two sets of spectra, 

the point spacing for the Raman spectra was changed to 2.1 cm
-1

 by taking every seventh 

data point from the original Raman data.  

Results for the PLS models described above for the Raman data set were based on 

Raman spectra with a 0.3 cm
-1

 point spacing. The impact of modifying the point spacing 

from 0.3 to 2.1 cm
-1

 was tested by recomputing the PLS models for the full and optimized 

spectral ranges. The PLS models were built individually for Raman spectra with point 

spacings of 0.3 cm
-1

 and 2.1 cm
-1

, and the SEC and SEP values for both data sets are 

identical, indicating no significant difference created in the modeling with this change in 

spectral point spacing. 

Several different data transformations were used in attempts to match the NIR 

absorbance values with the Raman scattering values. The raw NIR absorption spectra 

have absorbance values on the order of 10
-4

 absorbance units. In contrast, the background 

subtracted Raman spectra have intensity values on the order of 10
1
 in arbitrary units. The 

follow transformations were investigated: 

1) Raman + Raw NIR; 

2) Raman + (7×10
5×Raw NIR); 

3) Normalized Raman + Normalized NIR; 

4) Raman + NIR single-beam spectra; 
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5) Raman + (100×NIR single-beam spectra); 

6) log (Raman sample / Raman blank) + NIR; and 

7) log (Raman sample / Raman blank) + (10×NIR). 

Raman spectra correspond to spectra after subtracting the background spectra as 

described above for the models summarized in Tables II-3 and II-4 and Figures II-6, II-7 

and II-8. For the normalized Raman and NIR spectra, all values within a given spectrum 

were divided by the maximum value. For each transformation-concatenation method, 

PLS calibration models were generated over the full spectral ranges (4200-4800 cm
-1

 for 

NIR and 700-1700 cm
-1

 for Raman) and the optimized spectral ranges as determined 

from the individual Raman and NIR spectral analysis and tabulated in Tables II-14 and 

II-15. Figures II-9, II-10, II-11, II-12 and II-13 are examples of transformed concatenated 

spectra. 

The first experiment generated PLS calibration models from sample spectra 

corresponding to the straight concatenation of the unmodified Raman and NIR spectral 

data. Results from this initial work are summarized in Table II-14 for the full spectral 

range and Table II-15 for the optimized range. SEC and SEP values for each analyte are 

similar to those obtained for PLS models based on the Raman spectra alone. Focusing on 

models based on the optimized spectral ranges denoted in Table II -5, SEC and SEP 

values for PLS models based on concatenated raw spectra are 0.36 and 0.54 mM for 

glucose, 0.53 and 0.46 mM for lactate and 0.28 and 0.32 mM for urea, respectively. Table 

II-5 summarizes SEC and SEP values for the individual models based on NIR and Raman 

alone (taken from Table II-3) and the concatenated models (taken from Table II-15).   

The values in Table II-5 indicate that results from the concatenated models are 

identical to those from the Raman alone models. As indicated in Figure II-9, the 

magnitude of the raw Raman single is many orders of magnitude greater than that for the 

raw NIR spectra, raising the possibility that the combined model is dominated by the 

spectral variance associated with the Raman spectra. In this case, analyte information 
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Table II-5. PLS model results based on optimized spectral ranges with raw NIR and raw 
Raman spectra alone and concatenated raw Raman and raw NIR spectra. 

 
NIR Alone Raman Alone 

Raw Raman + Raw 

NIR 

Analyte 
SEC, 

(mM) 

SEP, 

(mM) 

SEC, 

(mM) 

SEP, 

(mM) 

SEC, 

(mM) 

SEP, 

(mM) 

Glucose 0.26 0.27 0.36 0.54 0.36 0.54 

Lactate 0.11 0.10 0.53 0.46 0.53 0.46 

Urea 0.13 0.14 0.28 0.32 0.28 0.32 
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embedded within the NIR spectra will be ignored and will not contribute to the resulting 

PLS model. 

Before concatenation, the NIR spectra were amplified to better match the 

magnitude of the spectral signals. For this amplification, the raw NIR spectra were 

multiplied by a factor of 7×10
5
. As shown in Figure II-10, the amplification puts the 

NIR and Raman spectra on the same magnitude. The PLS model based on concatenating 

raw Raman and 7×10
5
 × raw NIR spectra resulted in the SEC and SEP values listed in 

Tables II-14 and II-15 for the full and optimized spectral ranges, respectively. Slight 

improvements are indicated compared to models generated from concatenating raw 

spectra of both types. Table II-6 summarizes the standard errors for the NIR and Raman 

alone models and the concatenated model based on raw Raman and amplified NIR 

spectra. From this tabulation of the SEC and SEP values, it is clear that the standard 

errors are reduced slightly compared to the raw Raman model, but are above those 

provided by the NIR alone models. 

Another method to equalize the magnitude of the two spectral signals is to normalize 

the data relative to the maximum value within the data set (transformation method 3 

specified above). In this case, all spectral values within each data set were normalized 

relative to the maximum signal of the spectra collected for the sixty samples. As 

illustrated in Figure II-11, this normalization process puts the two spectral types on the 

same order of magnitude. Results from the corresponding PLS models are presented in 

Tables II-14 and II-15. Focusing on models generated over the optimized spectral ranges, 

SEC and SEP values are essentially the same for glucose and urea and slightly improved 

for lactate, for the normalization method compared to the previous two transformation 

methods. All SEC and SEP values, however, are higher than the corresponding values 

obtained when using raw NIR spectra alone, as shown in Table II-7. 

The remaining transformation methods were implemented as ways to put the 

spectral data into the same units. As noted above, the NIR data are in absorbance units 
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Table II-6. PLS model results based on optimized spectral ranges with raw NIR and raw 
Raman spectra alone and concatenated raw Raman and 7×10

5
 amplified raw 

NIR spectra. 

 
NIR Alone Raman Alone 

Raw Raman + 7×10
5
 

NIR 

Analyte 
SEC, 

(mM) 

SEP, 

(mM) 

SEC, 

(mM) 

SEP, 

(mM) 

SEC, 

(mM) 

SEP, 

(mM) 

Glucose 0.26 0.27 0.36 0.54 0.32 0.43 

Lactate 0.11 0.10 0.53 0.46 0.40 0.41 

Urea 0.13 0.14 0.28 0.32 0.25 0.24 

 

 

 

Table II-7. PLS model results based on optimized spectral ranges with raw NIR and raw 
Raman spectra alone and concatenated normalized Raman and normalized 
NIR spectra. 

 
NIR Alone Raman Alone 

Normalized Raman + 

Normalized NIR 

Analyte 
SEC, 

(mM) 

SEP, 

(mM) 

SEC, 

(mM) 

SEP, 

(mM) 

SEC, 

(mM) 

SEP, 

(mM) 

Glucose 0.26 0.27 0.36 0.54 0.34 0.49 

Lactate 0.11 0.10 0.53 0.46 0.35 0.27 

Urea 0.13 0.14 0.28 0.32 0.26 0.28 
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and the Raman data are in intensity units. Previous work has demonstrated the ability to 

create functioning PLS calibration models from analysis of single-beam NIR spectra.
14

  

To see if the single-beam NIR spectra have an adverse effect on the quantitation 

from single-beam NIR spectra, PLS calibration models were compared where the input 

for one corresponded to the NIR absorbance spectra and the input for the other was the 

single-beam NIR spectra. Results from these models are summarized in Table II-8 and 

the resulting SEC and SEP values are similar. These findings imply no adverse impact on 

analytical measurements when using the single-beam NIR spectra. 

For this reason, transformation method 4 explored the utility of using the Raman 

spectra and single-beam NIR spectra for of the sixty samples. As illustrated in Figure 

II-12, this concatenation process results in the Raman signal being several orders of 

magnitude larger than the NIR single-beam signal. Results from the corresponding PLS 

models are presented in Tables II-14 and II-15. Focusing on models generated over the 

optimized spectral ranges, SEC and SEP values are essentially the same for glucose, 

lactate and urea with the individual Raman model. All SEC and SEP values, however, are 

higher than the corresponding values obtained when using raw NIR spectra alone, as 

shown in Table II-9. 

Noticing the magnitude of the NIR single-beam spectra is much lower than the 

Raman spectra, the transformation method 5 amplifies the NIR single-beam spectra by a 

multiplication factor of 100 before combining with the Raman spectra. As shown in 

Figure II-12, this amplification process puts the two types of spectra on the same order of 

magnitude. Results from the corresponding PLS models are presented in Tables II-14 and 

II-15. Focusing on models generated over the optimized spectral ranges, SEC and SEP 

values are similar for glucose, lactate and urea. All SEC and SEP values, however, are 

higher than the corresponding values obtained when using single-beam NIR spectra alone, 

as shown in Table II-10. 

The other way to get the spectra into the same units is to use a log-ratio 
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Table II-8. PLS model results based on optimized spectral ranges with NIR absorbance 
spectra and NIR single-beam spectra. 

 NIR Absorbance NIR Single-beam 

Analyte SEC, (mM) SEP, (mM) SEC, (mM) SEP, (mM) 

Glucose 0.26 0.27 0.34 0.30 

Lactate 0.11 0.10 0.14 0.16 

Urea 0.13 0.14 0.13 0.12 

 

 

 

Table II-9. PLS model results based on optimized spectral ranges with single-beam NIR 
and raw Raman spectra alone and concatenated Raman and single-beam NIR 
spectra. 

 
NIR single-beam Alone Raman Alone 

Raw Raman + 

single-beam NIR 

Analyte 
SEC, 

(mM) 

SEP, 

(mM) 

SEC, 

(mM) 

SEP, 

(mM) 

SEC, 

(mM) 

SEP, 

(mM) 

Glucose 0.34 0.30 0.36 0.54 0.36 0.54 

Lactate 0.14 0.16 0.53 0.46 0.53 0.46 

Urea 0.13 0.12 0.28 0.32 0.28 0.32 

 

  



30 
 

transformation of the Raman spectra, as indicated for the sixth and seventh 

transformations listed above. Inspection of the log-ratio Raman spectra reveals that the 

location and shape of the analyte peaks are essentially the same as those without the 

log-ratio treatment. Representative spectra are shown in Figure II-13. To see if the 

log-ratio transformation has an adverse effect on the quantitation from these Raman 

spectra, PLS calibration models were compared where the input for one corresponded to 

the raw (background subtracted) Raman spectra and the input for the other was the 

log-ratio transformed Raman spectra. Results from these models are summarized in Table 

II-11 and the resulting SEC and SEP values are similar. These findings imply no adverse 

impact on analytical measurements when implementing the log-ratio transformation with 

the Raman spectra. 

Table II-12 compares results from PLS models for the Raman and NIR spectra 

alone along with the model using the sixth transformation where both the Raman and 

NIR spectra are concatenated in absorbance units. For the model from concatenated 

log-ratio spectra, the SEC and SEP values for the combination model are a little higher 

than the individual Raman model. This is due to the magnitude of the NIR spectra which 

is much lower than that of the transformed Raman spectra. The combined model is 

dominated by the Raman spectra with logarithm treatment. The addition of the NIR 

spectra with a low magnitude is like adding noise to the Raman spectra. This causes the 

higher SEC and SEP values of the combination model than the individual model. 

As before, an attempt was made to bring the two data sets to the same order of 

magnitude. In this case, the NIR spectra were multiplied by a factor of 10. The 

corresponding PLS model results are presented in Table II-13. Small improvements are 

indicated compared to models generated from concatenating raw NIR spectra and 

log-ratio transformed Raman spectra. From this tabulation of the SEC and SEP values, it 

is clear that the standard errors are reduced slightly for lactate compared to the raw 

Raman model, and are similar to the log-transformed Raman model for glucose and urea, 
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Table II-10. PLS model results based on optimized spectral ranges with single-beam NIR 
and raw Raman spectra alone and concatenated Raman and 100×single-beam 
NIR spectra. 

 
NIR single-beam Alone Raman Alone 

Raw Raman + 

100×single-beam NIR 

Analyte 
SEC, 

(mM) 

SEP, 

(mM) 

SEC, 

(mM) 

SEP, 

(mM) 

SEC, 

(mM) 

SEP, 

(mM) 

Glucose 0.34 0.30 0.36 0.54 0.34 0.54 

Lactate 0.14 0.16 0.53 0.46 0.48 0.58 

Urea 0.13 0.12 0.28 0.32 0.29 0.32 

 

 

 

Table II-11. PLS model results based on optimized spectral ranges with raw Raman 
spectra and log-ratio Raman spectra. 

 Raman Log Raman  

Analyte SEC, (mM) SEP, (mM) SEC, (mM) SEP, (mM) 

Glucose 0.36 0.54 0.37 0.45 

Lactate 0.53 0.46 0.37 0.34 

Urea 0.28 0.32 0.26 0.28 
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Table II-12. PLS model results based on optimized spectral ranges with raw NIR and 
log-ratio Raman spectra alone and concatenated log-ratio Raman and NIR 
spectra. 

 NIR Alone Log Raman Alone Log Raman + NIR 

Analyte 
SEC, 

(mM) 

SEP, 

(mM) 

SEC, 

(mM) 

SEP, 

(mM) 

SEC, 

(mM) 

SEP, 

(mM) 

Glucose 0.26 0.27 0.37 0.45 0.38 0.47 

Lactate 0.11 0.10 0.37 0.34 0.40 0.44 

Urea 0.13 0.14 0.26 0.28 0.30 0.33 

 

 

 

Table II-13. PLS model results based on optimized spectral ranges with raw NIR and 
log-ratio Raman spectra alone and concatenated log-ratio Raman and 10 × 
NIR spectra. 

 NIR Alone Log Raman Alone Log Raman + 10 × NIR 

Analyte 
SEC, 

(mM) 

SEP, 

(mM) 

SEC, 

(mM) 

SEP, 

(mM) 

SEC, 

(mM) 

SEP, 

(mM) 

Glucose 0.26 0.27 0.37 0.45 0.36 0.52 

Lactate 0.11 0.10 0.37 0.34 0.36 0.26 

Urea 0.13 0.14 0.26 0.28 0.28 0.34 
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but are above those provided by the NIR alone models. 

Tables II-14 and II-15 summarize model results for glucose, lactate and urea for 

the different transformation methods when using the full and optimized spectral ranges, 

respectively. Among the different transformation methods, the best combined PLS model 

results are indicated for models based on raw Raman spectra combined with NIR 

absorbance spectra multiplied by a factor of 7 × 10
5
. The corresponding concentration 

correlation plots are presented in Figure II-14. These plots show very good calibration 

and prediction ability of the combined PLS models with prediction values closely 

distributed along the ideal correlation line. However, from the SEC and SEP values of 

these models based on concatenated NIR-Raman spectra are only slightly better than 

those found for the Raman alone models and worse compared to the SEC and SEP values 

obtained for the NIR alone models. 

Net Analyte Signal 

Net analyte signal (NAS) is the orthogonal part of a spectrum relative to all other 

sources of spectral variance within a data set. For analytical purposes, the NAS is the 

unique portion of the analyte spectrum that can be used for selective quantitative 

measurements. In the case where a PLS calibration model is based on spectral features 

associated with the analyte of interest, the regression vector for the PLS model should be 

similar in structure compared to the corresponding NAS calibration vector generated for 

the same analyte in the same sample matrix. Figures II-15, II-16 and II-17 present 

superimposed NAS and PLS calibration vectors computed from Raman and NIR spectra 

for glucose, urea and lactate, respectively. For each analyte, the NAS and PLS vectors are 

similar, which indicates that information in the PLS model originates from the targeted 

analyte as opposed to spurious correlations within the spectral data set.
39

  

The NAS calibration vector can be analyzed further to provide a measurement of 

the multivariate signal-to-noise ratio (SNR). In this analysis, the concentration 
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Table II-14. PLS model results for concatenated Raman and NIR spectra over full spectra ranges. 

Transformation Analyte 

Glucose Lactate Urea 

Rank SEC SEP Rank SEC SEP Rank SEC SEP 

Raman + Raw NIR 5 0.37 0.44 5 0.35 0.45 5 0.26 0.34 

Raman + (7×10
5×Raw NIR) 7 0.63 0.46 7 0.85 0.78 7 0.57 0.53 

Normalized Raman + Normalized NIR 7 0.54 0.49 7 0.75 0.85 7 0.71 0.68 

Raman + NIR single-beam spectra 6 0.37 0.44 6 0.35 0.45 6 0.26 0.34 

Raman + (100×NIR single-beam spectra) 6 0.37 0.43 6 0.45 0.53 6 0.27 0.33 

log (Raman sample / Raman blank) + NIR 6 0.37 0.46 6 0.48 0.52 6 0.29 0.29 

log (Raman sample / Raman blank) + (10×NIR) 7 0.46 0.50 7 0.57 0.73 7 0.68 0.70 
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Table II-15. PLS model results for concatenated Raman and NIR spectra over optimized spectral ranges. 

Transformation Analyte 

Glucose Lactate Urea 

Rank SEC SEP Rank SEC SEP Rank SEC SEP 

Raman + Raw NIR 5 0.36 0.54 5 0.53 0.46 5 0.28 0.32 

Raman + (7×10
5×Raw NIR) 7 0.32 0.43 7 0.40 0.41 7 0.25 0.24 

Normalized Raman + Normalized NIR 7 0.34 0.49 7 0.35 0.27 7 0.26 0.28 

Raman + NIR single-beam spectra 6 0.36 0.54 6 0.53 0.46 6 0.28 0.32 

Raman + (100×NIR single-beam spectra) 6 0.34 0.54 6 0.48 0.58 6 0.29 0.32 

log (Raman sample / Raman blank) + NIR 6 0.38 0.47 6 0.40 0.44 6 0.30 0.33 

log (Raman sample / Raman blank) + (10×NIR) 7 0.36 0.52 7 0.36 0.26 7 0.28 0.34 
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normalized length of the NAS vector represents the sensitivity of the measurement for the 

analyte. A measure of the noise can be obtained by projecting a set of blank spectra onto 

the NAS vector and computing the standard deviation of these projections. The ratio of 

the concentration normalized length of the NAS vector and the standard deviation of 

blank projections is analogous to a typical SNR calculation. Table II-16 lists the length of 

the concentration normalized NAS vector, noise, NAS-SNR along with the corresponding 

SEP values obtained from the PLS calibration models for glucose, urea and lactate. As 

expected, the NAS vector length is much larger for the Raman models compared to NIR 

models based on the magnitude and selectivity of the Raman emission bands. 

Correspondingly, the NAS noise for the Raman models is also much higher. The 

NAS-SNR for the Raman spectra is lower, however compared to the NIR model. The 

corresponding SEP values of the NIR spectra are lower than those of the Raman spectra, 

which is consistent with the rationalization that higher NAS-SNRs provide lower SEP 

values.  

Similarly, Table II-17 summarizes NAS analysis values for Raman and NIR 

models computed over the full spectral ranges. For both types of spectra, NAS-SNR 

values decrease when the full range is considered, but the decrease is significantly more 

pronounced for the NIR data, especially for urea and lactate. Correspondingly, SEP 

values are worse as the NAS-SNR values decrease. The relationship between the 

NAS-SNR and these SEP values is shown in Figure II-19. 

Table II-15 summarizes results for the best model based on concatenated spectra 

where Raman spectra are combined with multiplied NIR absorption spectra 

(multiplication factor = 7×10
5
). A NAS vector analysis for this combined model was 

performed and the results are listed in Table II-18 and the resulting PLS regression 

vectors are presented in Figure II-18 for each analyte. Because more spectral information 

is included, the concentration normalized length of the corresponding NAS regression 

vectors is larger than that for either of the Raman or NIR models individually. The NAS 



37 
 

Table II-16. NAS calibration models for NIR spectra and Raman spectra for the 
optimized spectral range. 

 NIR Models Raman Models 

 NAS Length 

NAS 

Noise 

NAS 

SNR 

SEP 

(mM) NAS Length 

NAS  

Noise 

NAS 

SNR 

SEP 

(mM) 

Glucose  6.07×10
-5
 8.01×10

-6
 7.58 0.27 152.21 25.65 5.93 0.54 

Lactate 1.34×10
-4
 7.07×10

-6
 18.95 0.10 128.32 35.08 3.65 0.46 

Urea 6.62×10
-5
 4.39×10

-6
 15.06 0.14 222.76 32.16 6.92 0.32 

 

 

 

Table II-17. NAS calibration models for NIR spectra and Raman spectra for the whole 
spectral range. 

 NIR Models Raman Models 

 NAS Length 

NAS 

Noise 

NAS 

SNR 

SEP 

(mM) NAS Length 

NAS  

Noise 

NAS 

SNR 

SEP  

(mM) 

Glucose 3.81×10
-4

 7.79×10
-5

 4.88 0.54 177.66 33.30 5.33 0.44 

Lactate 2.83×10
-4

 1.38×10
-4

 2.04 1.49 134.71 38.64 3.48 0.45 

Urea 9.61×10
-4

 2.59×10
-4

 3.70 0.75 240.30 41.05 5.85 0.34 

 

 

 

Table II-18. NAS calibration models for concatenated Raman spectra and NIR spectra 
with a multiplication factor of 7×10

5
. 

 NAS Length NAS Noise NAS SNR SEP (mM) 

Glucose  173.51 25.88 6.70 0.43 

Lactate 192.43 39.68 4.84 0.41 

Urea 252.03 27.64 9.11 0.24 
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noise is similar to that of the Raman models. As a result, the NAS-SNR is higher than 

that of the Raman spectra but lower than that of the NIR spectra. 

As noted above for the individual Raman and NIR models, the SEP is inversely 

related to the NAS-SNR. The green points plotted in Figure II-19 show this relationship 

for models based on concatenated spectra for each analyte. These points follow the same 

trend as those for the individual models. 

Conclusions 

The experimental results presented in this chapter demonstrate that the individual 

Raman spectra and NIR spectra can build valid PLS and NAS calibration models for 

glucose, urea and lactate in ternary mixtures. Several different strategies are evaluated for 

concatenating the Raman and NIR spectral data in order to assess the analytical utility of 

building multivariate calibration models based on combined Raman-NIR spectra. The 

best concatenation model was the second one which has the raw NIR spectra and the 

Raman spectra with amplification factor of 7×10
5
. The SEC and SEP values of the 

combined spectra model fall in between the individual NIR model and individual Raman 

model.  

The NAS SNR was examined for the two techniques separately and together. The 

SEP values have a decrease trend with the increase NAS-SNR. The SNR of combined 

model falls in between the SNR of the individual NIR model and individual Raman 

model. The lower the noise, the better prediction ability is the PLS model. Adding low 

NAS-SNR spectra to high NAS-SNR spectra reduces the prediction ability of the 

combined calibration model because of the additional noise. 
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Figure II-1. NIR absorbance spectra (top) and Raman spectra (bottom) for individual 27 
mM solutions of glucose (red), lactate (blue), and urea (green). 
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Figure II-2. Examples of ratioed spectra of NIR spectra (top) and Raman spectra 
(bottom). 
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Figure II-3. Distribution of RMS noise on raioed spectra for NIR spectra (top) with a 
spectral range 4400-4500 cm-1and Raman spectra (bottom) with a spectral 
range 700-800 cm-1, showing values for the ratio of the first and second (red 
circles), second and third (blue squares), first and third (green stars) and the 
mean of the three (black circles) for each triplicate measurement. 
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Figure II-4. Examples of 100% lines of NIR spectra (top) and distribution of RMS noise 
on 100% lines for NIR spectra (bottom) with a spectral range 4400-4500 cm-1, 
showing values for the ratio of the first and second (red circles), second and 
third (blue squares), first and third (green stars) and the mean of the three 
(black circles) for each triplicate measurement. 
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Figure II-5. Relationship between number of PLS factors and CVSEP for each individual 
analyte in both NIR spectra and Raman spectra. 
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Figure II-6. Concentration correlation plots for glucose PLS calibration models from NIR 
spectra (top) and Raman spectra (bottom). Calibration data are represented by 
blue circles, and prediction data are represented by red circles. The black solid 
line is the ideal correlation. 
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Figure II-7. Concentration correlation plots for lactate PLS calibration models from NIR 
spectra (top) and Raman spectra (bottom). Calibration data are represented by 
blue circles, and prediction data are represented by red circles. The black solid 
line is the ideal correlation. 
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Figure II-8. Concentration correlation plots for urea PLS calibration models from NIR 
spectra (top) and Raman spectra (bottom). Calibration data are represented by 
blue circles, and prediction data are represented by red circles. The black solid 
line is the ideal correlation. 
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Figure II-9. Concatenated Raman and NIR spectra for the full spectral range (top) and 
optimized spectral range (bottom) for glucose using Transformation 1. 
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Figure II-10. Concatenated Raman and NIR spectra for the full spectral range (top) and 
optimized spectral range (bottom) for glucose using Transformation 2. 
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Figure II-11. Concatenated Raman and NIR spectra for the full spectral range (top) and 
optimized spectral range (bottom) for glucose using Transformation 3. 

 

 

0 100 200 300 400 500 600 700 800
-2

-1.5

-1

-0.5

0

0.5

1

1.5

Data Points

In
te

n
s
it
y
 (

A
U

) 
o

r 
A

b
s
o

rb
a

n
c
e

 (
A

U
)

0 50 100 150 200 250 300 350 400
-1.5

-1

-0.5

0

0.5

1

Data Points

In
te

n
s
it
y
 (

A
U

) 
o

r 
A

b
s
o

rb
a

n
c
e

 (
A

U
)



50 
 

 

Figure II-12. Concatenated Raman and NIR spectra for optimized spectral range for 
glucose using Transformation 4 (top) and Transformation 5 (bottom). 
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Figure II-13. Concatenated Raman and NIR spectra for optimized spectral range for 
glucose using Transformation 6 (top) and Transformation 7(bottom). 
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Figure II-14. Concentration correlation plots for combined Raman and NIR spectra PLS 
calibration models for glucose (top), lactate (middle) and urea (bottom). 
Calibration data are represented by blue circles, and prediction data are 
represented by red circles. The black solid line is the ideal correlation. 
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Figure II-15. Comparison of PLS (red) and NAS (blue) calibration vectors for glucose 
from NIR spectra (top) and Raman spectra (bottom). 
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Figure II-16. Comparison of PLS (red) and NAS (blue) calibration vectors for lactate 
from NIR spectra (top) and Raman spectra (bottom). 

 

 

4300 4320 4340 4360 4380 4400 4420 4440 4460 4480 4500
-1500

-1000

-500

0

500

1000

1500

Wavenumber (cm
-1

)

R
e

g
re

s
s
io

n
 C

o
e

ff
ic

ie
n

t 
(m

M
/A

U
)

700 800 900 1000 1100 1200 1300 1400 1500
-0.5

0

0.5

1

1.5

2

2.5
x 10

-3

Wavenumber (cm
-1

)

R
e

g
re

s
s
io

n
 C

o
e

ff
ic

ie
n

t 
(m

M
/I
n

t.
)



55 
 

 

Figure II-17. Comparison of PLS (red) and NAS (blue) calibration vectors for urea from 
NIR spectra (top) and Raman spectra (bottom). 
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Figure II-18. PLS calibration vectors for combined Raman spectra (blue) and NIR spectra 
(red) for glucose (top), lactate (middle) and urea (bottom) in Transformation 
2. 
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Figure II-19. Relationship between NAS-SNR and SEP values where blue dots 
correspond to values determined from individual NIR spectra, red dots 
correspond to models generated from individual Raman spectra and green dots 
are derived from models from concatenated NIR and Raman models with 
Transformation 2. 
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CHAPTER III 

COMPARISON AND COMBINATION OF SIMULATED 

NEAR-INFRARED AND RAMAN SPECTRA FOR PLS AND NAS 

QUANTITATION OF GLUCOSE, UREA AND LACTATE 

Introduction 

In Chapter II, Raman and NIR spectra collected in the laboratory for a set of sixty 

ternary mixtures were used to assess the utility of combining these types of spectral data 

to improve the prediction ability of PLS calibration models for the measurements of 

glucose, urea, and lactate. Results indicate that improvement can be realized compared to 

individual PLS models generated from Raman spectra alone, but the predication ability of 

the combined Raman-NIR models is inferior to models based on NIR spectra alone. 

Analysis of the multivariate SNR provides some insight into the cause of these findings. 

A fundamental relationship is described between the NAS-SNR and the SEP of the 

resulting calibration models. Furthermore, analysis of the NAS-SNR from the 

experimental Raman and NIR spectra indicates that combining spectra of high SNR (NIR 

spectra in Chapter II) with spectra of low SNR (Raman spectra in Chapter II) will 

produce models that are inferior to those generated by the high SNR spectra alone.   

In this chapter, Raman spectra and NIR spectra are simulated as a means to verify 

and expand the findings reported in Chapter II. The ability to control noise levels within 

the simulated spectra provides a valuable tool to examine the impact of noise on the final 

calibration models. 

Experimental Section 

Molar absorptivity values for glucose, urea and lactate were taken from 

Amerov.
35

 Absorbance values were computed according to Equation III-1 which takes 

into account absorptions by the analyte and water. As described in detail elsewhere, the 

effect of water displacement within the optical volume of the measurement is relevant 
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owing to the non-zero absorption properties of water.
35

 All NIR spectra were created 

assuming an optical path length of 1 mm and a point spacing of 1.9 cm
-1

. Simulated 

absorbance spectra for 1 mM concentrations of pure solutions of glucose, urea and lactate 

are presented in Figure III-1.   

 

        ∑        ∑                                           Equation III-1 

 

Simulated Raman spectra were generated from the pure component Raman 

spectra described in the previous chapter. Pure emission spectra for glucose, urea, and 

lactate were generated by subtracting averaged buffer spectra from averaged spectra 

collected for the 27 mM pure solutions of each analyte, respectively. The baseline was 

further corrected to zero by subtracting a first polynomial fitted baseline function 

computed over the 700-1700 cm
-1

 spectral range. Noise was removed from the resulting 

spectral baseline by assigning zero for wavenumber values where no emission bands 

were evident. Point spacing for the simulated Raman spectra was set to 2 cm
-1

. The 

resulting pure component spectrum for each analyte was divided by 27 to normalize to 1 

mM and this concentration normalized spectrum was used to simulate mixtures assuming 

a linear relationship between emission intensity and molar concentration. The final 

concentration normalized pure component simulated Raman spectra for glucose, urea and 

lactate are presented in Figure III-1.  

Noise was generated as Gaussian distributed random numbers with the MATLAB 

function ‘randn’ with a distribution centered at zero. Magnitude of the noise was adjusted 

by multiply these random numbers with an appropriate factor. The noise was added to the 

simulated spectra to form spectra with a given level of noise.  

For simulated Raman and NIR spectra, the ternary mixture spectra were generated 

with the same concentrations of glucose, urea and lactate represented in the sixty 

mixtures described in Chapter II. For the NIR simulated spectra, a multiplication factor of 
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7.6×10
5
 was applied. This multiplication factor is similar to the value used in 

Transformation 2 described in Chapter II and corresponds to the value required to match 

the lengths of the concentration normalized NAS calibration vectors for the Raman and 

NIR spectral data. Two levels of spectral noise were investigated. Initially, a noise level 

of ± 150 arbitrary units was used to match the relative noise levels observed in the Raman 

spectra described in Chapter II. Subsequently, the impact of noise was evaluated by 

doubling the noise level to ± 300. Examples of simulated NIR and Raman spectra with ± 

150 noise levels for 27 mM pure component solutions of glucose, lactate and urea are 

presented in Figure III-2. NAS-based multivariate parameters of NAS vector length, 

NAS-noise, and NAS-SNR are listed below in Tables III-1 and III-2 for each analyte and 

for each noise level. 

Results and Discussion 

PLS models for the simulated Raman and NIR spectra were built as described in 

Chapter II. Results for the individual PLS models based on simulated Raman and NIR 

spectra at the two noise levels are tabulated in Table III-3. The optimized ranges are the 

same as the optimized ranges reported in Chapter II.  

The number of factors is 3 for each of the PLS model reported in Table III-3 and 

the SEC and SEP values are similar for models based on Raman spectra and NIR spectra 

when the same noise level is used for each. As expected, doubling the noise level 

increases the standard errors by a factor of two. Both PLS and NAS calibration vectors 

are presented in Figures III-3, III-4 and III-5 for the individual analytes. The NAS and 

PLS regression vectors are similar in structure and magnitude, as expected when the PLS 

models originate from the target analyte. 

PLS models were established for combined Raman and NIR spectra, in an 

analogous fashion to that described in Chapter II and the results are presented in Table 

III-4. Again, the spectral ranges used for the concatenated spectra are the optimized  
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Table III-1. NAS calibration parameters for simulated NIR and Raman spectra over the 
optimized spectral ranges with a noise level of ± 150. 

 NIR Models Raman Models 

 NAS Length 

NAS 

Noise 

NAS 

SNR 

SEP 

(mM) NAS Length 

NAS  

Noise 

NAS 

SNR 

SEP  

(mM) 

Glucose 192.34 32.37 5.94 0.27 191.97 31.24 6.14 0.19 

Lactate 189.15 39.35 4.80 0.30 155.90 33.53 4.64 0.31 

Urea 292.69 41.53 7.04 0.25 233.89 34.17 6.84 0.18 

 

 

 

Table III-2. NAS calibration parameters for simulated NIR and Raman spectra over the 
optimized spectral ranges with noise levels of ±300. 

 NIR Models Raman Models 

 NAS Length 

NAS 

Noise 

NAS 

SNR 

SEP 

(mM) NAS Length 

NAS  

Noise 

NAS 

SNR 

SEP  

(mM) 

Glucose 192.46 88.48 2.17 0.57 193.15 65.95 2.92 0.51 

Lactate 193.44 96.45 2.00 0.62 160.74 70.92 2.26 0.56 

Urea 327.26 90.61 3.61 0.39 239.25 76.44 3.12 0.47 
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Table III-3. Results from individual PLS calibration models based on simulated Raman 
and NIR spectra. 

 Noise level Rank SEC (mM) SEP (mM) 

  Raman NIR Raman NIR Raman NIR 

Glucose ±150 3 3 0.24 0.26 0.19 0.27 

 ±300 3 3 0.52 0.52 0.51 0.57 

Lactate ±150 3 3 0.32 0.29 0.31 0.30 

 ±300 3 3 0.66 0.57 0.56 0.62 

Urea ±150 3 3 0.20 0.16 0.18 0.25 

 ±300 3 3 0.41 0.25 0.47 0.39 

 

 

 

Table III-4. Results of PLS calibration models based on concatenated simulated Raman 
and NIR spectra. 

Methods
a
 Glucose Lactate Urea 

Rank SEC SEP Rank SEC SEP Rank SEC SEP 

(1) 3 0.15 0.13 3 0.21 0.20 3 0.09 0.08 

(2) 3 0.30 0.36 3 0.42 0.43 3 0.20 0.25 

(3) 3 0.25 0.23 3 0.37 0.37 3 0.16 0.15 

(4) 3 0.23 0.27 3 0.31 0.27 3 0.15 0.19 
a
 (1) Raman and NIR spectra with noise levels of ± 150, (2) Raman and NIR spectra with 

noise levels of ± 300, (3) Raman spectra with noise levels of ± 150 and NIR spectra with 

noise level of ± 300, and (4) Raman spectra with noise levels of ± 300 and NIR spectra 

with noise levels of ± 150. 
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ranges for Raman and NIR spectra described in Chapter II. Four different combinations 

of the Raman and NIR spectra are indicated in Table III-4 where: 1) the combined Raman 

and NIR spectra have noise levels of ± 150; 2) the Raman and NIR spectra have noise 

levels of ± 300; 3) the Raman spectra have a noise level of ± 150 and the NIR spectra 

have a noise level of ± 300; and 4) and the Raman spectra have a noise level of ± 300 and 

the NIR spectra have a noise level of ± 150. 

When the Raman and NIR spectra have the same noise of ±150, the SEC and SEP 

values in the combined model are lower than the corresponding SEC and SEP values in 

the individual models with the same noise level. The SEC and SEP in these models are 

dictated by the magnitude of the spectral noise. This finding indicates that if the SNR of 

the Raman spectra and NIR spectra are at the same level, concatenating individual spectra 

improves the prediction ability of the multivariate models relative to models based on 

individual Raman or NIR spectra.  

For the method combining Raman and NIR spectra with the same noise level of ± 

300, the SEC and SEP values in the concatenated model are lower than the corresponding 

SEC and SEP values in the individual model with the same noise level. This result further 

indicates that if the SNR of the Raman spectra and NIR spectra are at the same level, the 

prediction ability of the combined Raman and NIR model is better than the individual 

Raman or NIR model. PLS regression vectors from concatenated models are presented in 

Figure III-6 for each analyte. Because of the multiplication factor of 7.6 × 10
5
 applied to 

the NIR spectra, magnitudes of the Raman and NIR portions of the total regression vector 

are the same. The concentration correlation plots for the concatenated Raman and NIR 

PLS models with noise levels of ± 150 for each of component are presented in Figure 

III-7. These plots show good calibration and prediction ability of the PLS models with 

prediction values closely distributed along the ideal unity line. 

When the noise level for the Raman spectra is lower (± 150 compared to ± 300 for 

the NIR spectra) or when the noise level for the NIR spectra is lower (± 150 compared to 
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± 300 for the Raman spectra), the model performance is between the two extremes. As 

indicated in Table III-4, SEC and SEP values are between the cases where the noise is ± 

150 and ± 300 for both spectral types within the modeled data set. This finding implies 

that adding low SNR spectra to high SNR spectra has an adverse effect on the prediction 

ability of the combined model and is consistent with the findings determined in Chapter 

II. 

Table III-5 summarizes the NAS vector length, NAS noise and NAS-SNR and the 

corresponding SEP values from the PLS models of the four different combined models. 

The NAS-SNR is plotted relative to the SEP in Figure III-8. As was found in Chapter II, 

a decreasing trend is observed for SEP with an increase in NAS-SNR. For the combined 

Raman-NIR models with different noise levels, the SEC and SEP values are higher or 

similar with the individual PLS model with the lower SEC and SEP values but lower than 

the individual PLS model with high SEC and SEP. 

Conclusions 

Models generated from simulated spectra show that the prediction ability of the 

PLS model improves when the NAS-SNR of the two spectra are similar. This finding 

means that both the magnitude of the NAS vector length and the noise level should be 

similar for the combined data sets. If there is a significant difference in the NAS vector 

magnitude, the model would be dominated by the spectra with higher magnitude. The 

SEC and SEP values fall between the individual models if the two spectra have different 

NAS-SNR values. This finding indicates that adding low NAS-SNR spectra to high 

NAS-SNR spectra will make the prediction ability of the combined model worse than 

that generated by the high NAS-SNR spectral data. Under conditions of constant noise, 

higher NAS magnitudes correspond to greater sensitivity and improved analytical 

measurements. Likewise, for constant sensitivity (NAS magnitude) lower NAS-noise 

provides superior response. 
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Table III-5. NAS calibration parameters for concatenated simulated NIR and Raman 
spectra for the optimized spectral range with different noise levels. 

Methods
a
 Analyte NAS length NAS noise NAS SNR SEP 

(1) Glucose 329.09 33.60 9.79 0.13 

 Lactate 250.08 31.74 7.87 0.20 

 Urea 459.51 35.99 12.76 0.08 

(2) Glucose 337.13 73.77 4.57 0.36 

 Lactate 255.84 76.04 3.36 0.43 

 Urea 459.22 84.21 5.45 0.25 

(3) Glucose 332.07 55.16 6.02 0.23 

 Lactate 251.09 56.29 4.46 0.37 

 Urea 458.29 52.25 8.77 0.15 

(4) Glucose 330.78 62.52 5.29 0.27 

 Lactate 257.64 47.97 5.37 0.27 

 Urea 457.69 57.86 7.91 0.19 
a
  (1) Raman and NIR spectra with noise levels of ± 150, (2) Raman and NIR spectra 

with noise levels of ± 300, (3) Raman spectra with noise levels of ± 150 and NIR spectra 

with noise level of ± 300, and (4) Raman spectra with noise levels of ± 300 and NIR 

spectra with noise levels of ± 150. 
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Figure III-1. Simulated pure component NIR absorbance spectra (top) and Raman spectra 
(bottom) normalized to 1mM for glucose (red), lactate (blue), and urea 
(green). 
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Figure III-2. Simulated pure component NIR absorbance spectra (top) and Raman spectra 
(bottom) with noise levels of ± 150 for 27 mM concentrations of glucose (red), 
lactate (blue), and urea (green) with noise. 
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Figure III-3. Comparison of PLS (red) and NAS (blue) calibration vectors for glucose 
from NIR spectra (top) and Raman spectra (bottom). 
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Figure III-4. Comparison of PLS (red) and NAS (blue) calibration vectors for lactate 
from NIR spectra (top) and Raman spectra (bottom). 
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Figure III-5. Comparison of PLS (red) and NAS (blue) calibration vectors for urea from 
NIR spectra (top) and Raman spectra (bottom). 

 

 

4500 4520 4540 4560 4580 4600 4620 4640 4660
-8

-6

-4

-2

0

2

4

6

8

10
x 10

-4

Wavenumber(cm
-1

)

R
e

g
re

s
s
io

n
 C

o
e

ff
ic

ie
n

t 
(m

M
/A

U
)

900 1000 1100 1200 1300 1400 1500
-2

0

2

4

6

8

10

12

14

16

18
x 10

-4

Wavenumber(cm
-1

)

R
e

g
re

s
s
io

n
 C

o
e

ff
ic

ie
n

t(
m

M
/I
n

t.
)



71 
 

 

Figure III-6. PLS calibration vectors for combined Raman spectra and NIR spectra for 
glucose (top), lactate (middle) and urea (bottom). 
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Figure III-7. Concentration correlation plots for combined Raman and NIR spectra PLS 
calibration models for glucose (top), lactate (middle) and urea (bottom). 
Calibration data are represented by blue circles, and prediction data are 
represented by red circles. The black solid line is the ideal correlation. 
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Figure III-8. Relationship between NAS-SNR and SEP for simulated individual NIR 
models (blue), simulated individual Raman spectra (red) and simulated 
concatenated Raman-NIR models (green). 
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CHAPTER IV 

FUTURE WORK 

The research in this thesis focuses on combining NIR and Raman spectra in an 

attempt to improve the prediction ability of resulting PLS calibration models for the 

measurement of glucose in aqueous solution. The results presented in Chapter II illustrate 

that PLS calibration models can be improved, but only when the combined spectra 

provide an improvement in the overall SNR of the analyte specific multivariate 

calibration vector. For the spectral data presented in Chapter II, the NIR spectral data has 

a higher NAS-SNR compared to the Raman spectral data. In this case, combining the 

Raman and NIR data sets results in SEC and SEP values in between those produced from 

models generated from the individual Raman and NIR data sets alone. The simulated data 

presented in Chapter III suggest that combining NIR and Raman spectra with the same 

NAS-SNR can improve the prediction ability of the corresponding PLS model. The 

relationship between the NAS-SNR and SEP of PLS calibration models is defined in both 

Chapters II and III for both actual experimental data and simulated data.   

The sample matrix for the experiments performed in this thesis consisted of three 

components (glucose, urea, and lactate) in an aqueous solvent. The generality of the 

conclusions noted above must be verified in other, more complex matrices, such as whole 

blood. Because the sample matrix was fairly simple for the work described in Chapters II 

and III, the SEC and SEP values for the PLS models are low. By exploring more complex 

matrices, more challenging PLS models will be required, and the benefits of combining 

spectral data types might be accentuated.  

Strategies for combining the two techniques can be expanded further and the 

benefits of searching for optimized spectral ranges within the combined NIR and Raman 

spectra might prove useful. In addition, the underlying problem for the real spectra data 

presented in Chapter II was the NAS-SNR of the Raman spectra is lower than that for the 
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NIR spectra. Improvements can be made to reduce the noise level of the Raman 

spectroscopy. 

The ultimate goal is to obtain noninvasive measurements of glucose in human 

subjects. If the combination of Raman and NIR spectra is to be realized for this 

application, the spectral characteristics of human skin must be established. Recently, the 

characterization of rat and human skin has been reported for NIR spectroscopy.
13

 These 

same types of skin characterization experiments must be performed with Raman 

spectroscopy and the resulting NAS-SNR values compared. As indicated in this thesis, 

the NAS-SNR must be comparable to realize any benefits from combining these spectral 

types for noninvasive glucose measurements. For subcutaneous Raman measurements, 

the impact of auto-fluorescence from skin and blood on the NAS-NSR for glucose must 

be established. Alternatively, ultrafiltration probes can be used to filter out larger 

molecules in blood, thereby simplifying Raman spectra, improving NAS-SNR, and 

enabling the use of portable Raman instrumentation.
50
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