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Abstract

In case of a pandemic influenza outbreak, non-pharmaceutical interventions will

likely be the only containment measure at the early stages of the pandemic when vaccines

are not available. NPIs also offer an option for decreasing the probability of creating anti-

viral resistant viruses product of a mass prophylaxis campaign. In countries where there are

not enough resources for vaccines and antivirals, NPIs may be the only mitigation actions

available.

NPIs have been increasingly used in preparedness plans. We can see recommenda-

tions and guidelines regarding the use of NPIs in countries, health departments and univer-

sities. Also, researchers all around the world have study the impact of NPI’s in pandemic

influenza outbreaks, most of them using simulation as their modeling tool.

Our review of the aforementioned plans and literature shows that there is a lack of

consensus in how to implement these interventions. They vary widely in the choice of key

parameters such as intervention initiation threshold, duration and compliance. We believe

that the lack of uniformity in NPI mitigation strategies arise from the uncertainty in the

virus epidemiology and the current lack of scientific knowledge about the complex interac-

tions between virus epidemiology with social behavioral factors and mitigation actions.

In this dissertation we addressed this problem by modeling pandemic influenza out-

breaks using an agent-based simulation approach. The model incorporates detailed popu-

lation demographics and dynamics, variety of mixing groups and their contact processes,

infection transmission process, and non-pharmaceutical interventions. Using a statistical

experimental design approach we examine the influence of characteristic parameters of virus

epidemiology, social behavior, and non-pharmaceutical interventions on various measures of

pandemic impact such as total number of infections, deaths and contacts. The experimental

design approach also yields the knowledge of the extent of interactions among the above

parameters. Using this knowledge we develop effective NPI strategies and demonstrate the

xii



efficacy of these strategies on large-scale simulated outbreaks involving three different sce-

narios of virus transmissibility. The results show that significant improvements in the NPI

based pandemic mitigation approaches can be attained by the strategies derived from our

methodology.
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1 Introduction

Influenza pandemics have occurred an average of three times every century since

the 1500’s. The most infamous been that of 1918 which infected about 50% of the U.S.

population. There is an ominous expectation that a severe pandemic could occur and infect

between 20 to 47 million persons in the U.S. alone. Such a scenario is more devastating

than the one occurred during the H1N1 2009 epidemic (”swine flu”). In the absence of any

control measures it has been estimated that it could cause around 200,000 deaths, 700,000

hospitalizations, 42 million outpatient visits, and an economic impact ranging between $71.3

and $166.5 billion in the U.S. [1]. A pandemic of such proportions worries public health

officials. An emergency crisis like this would last much longer than most other emergency

events and resources such as supplies of vaccines, antiviral drugs, healthcare providers,

hospital beds and medical supplies would be limited.

An influenza virus can change significantly through random mutation. After a virus

mutates, the immune system fails to recognize it. Virus mutation creates the threat of a

highly pathogenic virus for which there is little or no pre-existing immunity in humans [2].

An influenza virus is named after its hemagglutinin (H) and neuraminidase (N) proteins.

These proteins are the ones that allow the virus to invade a cell and reproduce, and also

exit the cell and infect others. Inside an influenza virus there are 8 RNA segments, which

can shift and mutate into new viruses.

The virus from the 1918 ”Spanish Flu” most probably came from waterfowl and at

some point entered human and pigs. Pigs are like the melting pots for influenza viruses

since they can be infected by avian and human strains. In 1957, the re-assortment of an

H2N2 avian virus and an H1N1 human virus resulted in the H2N2 influenza virus which

had 3 new genetic segments from avian influenza and 5 RNA segments from 1918. Later

on 1968, the H3 avian virus and the H2N2 human virus reasserted themselves creating the

H3N2 Hong Kong Influenza which contained 2 genetic segments from avian influenza, one
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from the H2N2 human virus and five from 1918’s influenza virus. The 2009 H1N1 pandemic

strain is a reassortment of avian, human, and swine influenza viruses.

Currently there are many flu viruses lurking around the world with the potential

to mutate. The most notorious one being the avian influenza or bird flu H5N1. This virus

is generally found in birds and in recent years there have been cases of human infections.

But it could mutate and allow human to human infections, such a mutation could start a

deadly worldwide pandemic. First cases occurred in Hong Kong in 1997 and human cases

have since been reported in Asia, Africa, Europe, Indonesia, Vietnam, the Pacific and the

near East. As of May 2nd 2012, WHO has reported 603 confirmed cases and 356 of those

have died.

Pandemic containment refers to keeping the number of new infections under control

or within limits. In case of a pandemic that would be keeping the reproduction number R0

under one or the infection attack rate (IAR) under 10%. Pandemic mitigation refers to the

actions needed to reduce the severity, seriousness and painfulness caused by such a public

health emergency. Pandemic containment and mitigation is of outmost importance because

the flu virus spreads quickly. There are two ways a flu virus can enter the body, that is direct

or indirect contamination. Direct contamination occurs when an infected person can directly

pass the virus to an uninfected person (by coughing or sneezing). Indirect contamination

occurs when an uninfected person touches a surface that has been contaminated by an

infected person. Flu symptoms include fever, cough, sore throat, runny or stuffy nose,

muscle or body aches, headaches, fatigue and vomiting and diarrhea. These symptoms can

be so intense that it could limit a person of going to work, school or just run with their every

day lives. Enough people missing work and school would pose a threat to our infrastructure

and could seriously affect our quality of life. There is also the cost to society by the loss of

education and business continuity.

Known approaches for pandemic mitigation and/or containment utilize both phar-

maceutical interventions (PHIs) and non-pharmaceutical interventions (NPIs). PHIs in-

clude vaccines and antiviral drugs. NPIs include among other measures social distancing,

quarantine, isolation, school and workplace closure, and travel restrictions.
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The most effective mitigation measure is vaccination. However, there are certain

challenges and limitations with the use of vaccinations at the early, critical stages of a

pandemic. The major challenge arises from our inability to predict which virus strain will

be the responsible for the next influenza pandemic. With the emergence of a new virus

subtype, many limitations with the use of vaccines arises. Among the limitations include

vaccine development, its production and distribution in a timely manner. For example,

during the 2009 H1N1 outbreak, the development, production and distribution of a vaccine

took nine months [3, 4].

Antivirals can be an effective containment and treatment measure. However, it

would require a substantial level of stockpile for an effective antiviral campaign. Such a

strategy can be infeasible due to prohibiting production and storage costs [5, 6, 7, 8]. Also,

the use of a large-scale antiviral-based prophylaxis strategy can result in some strains of

influenza becoming antiviral resistant while maintaining infectiousness [9, 10, 11]. Antiviral

resistant virus are a threat since antivirals are the only means for treating influenza.

NPIs though often with certain delays, have the advantage of being available at the

early phases of a pandemic. That early availability allows for reducing pressure on health

services providers allowing them time to procure, distribute, and administer vaccines and

antivirals [12]. NPIs will also likely be the only effective containment measure in developing

countries that lack adequate resources for effective vaccination/antiviral campaigns [13].

Some of the NPIs (e.g., social distancing) have already been incorporated by many

countries in their national pandemic preparedness plans [14, 15, 16, 17, 18]. Other major

organizations that have also included NPIs in their preparedness plans are the World Health

Organization (WHO) [19] and the Centers for Disease Control and Prevention (CDC) [17].

However, our review of the above plans and guidelines reveals that there is no consistent

NPI strategy of when and how to implement these interventions. The plans and guidelines

vary in their definitions of declaration thresholds, implementation stages, target population,

and implementation logistics.

Some of the recent papers on simulation-based models for pandemic influenza mit-

igation, have examined various non-pharmaceutical intervention strategies. Our review of

3



these papers found differences in the assumptions regarding some of the key model param-

eters, such as intervention initiation, duration of the intervention phases, composition of

risk groups, compliance levels, and other NPI related parameters (e.g., partial/full school

closure, community contact rate increase during school closure [20]. The study by Aledort

concludes that there is a general lack of scientific evidence and expert opinion regarding the

use of NPIs during a pandemic [8]. We believe that the lack of consensus on the effectiveness

of NPIs can be attributed to the differences in the underlying considerations of the existing

simulation models that were used to examine NPIs. The differences include the composition

of mixing groups, disease natural history, contact and infection transmission processes, and

virus severity.

Effectiveness of NPIs have also been studied extensively in the literature. Different

studies adopt different modeling approaches. There exist a number of mathematical mod-

els that examine the effectiveness of NPIs [21, 22, 23, 24, 25, 26]. However, mathematical

approaches can not consider demographic and geographic features, they can not accom-

modate the process of individual to individual transmission and their daily schedules, and

they are not capable of tracking infection spread, hence making it difficult to estimate basic

reproduction number (R0) and infection attack rates (IAR). Simulation-based models on

the other hand, can consider demographic and geographic features of the region as well as

individual health and family status, and daily schedules. Simulation models can also ac-

count for specific individual interactions and resulting infection spread, and can incorporate

detailed infection-transmission processes and thus yields better estimates of R0 and IAR.

Some of the recent papers on simulation-based models for pandemic influenza miti-

gation, have examined various non-pharmaceutical intervention strategies. In our literature

review of these papers we also found a lack of consistency in the assumptions regarding some

of the key model parameters, such as intervention initiation, duration of the intervention

phases, composition of risk groups, compliance levels, and other NPI related parameters

[27]. The study by Aledort concludes that there is a general lack of scientific evidence and

expert opinion regarding the use of NPIs during a pandemic [8].
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We believe that the lack of consensus on the effectiveness of NPIs can be attributed

to the uncertainty on the virus epidemiology, and the complex interactions between virus

epidemiology, social behavioral factors and mitigation actions. Developing good NPI strate-

gies would require a better understanding of the science of the above interactions.

This dissertation have the following aiming, to establish the underlying relation-

ships between the characterizing parameters of virus epidemiology, social behavior and

non-pharmaceutical interventions. Use those results to develop guidelines for the design of

effective NPI strategies and demonstrate the efficacy of such guidelines on large simulated

outbreaks.

Chapter 2 presents a discussion on the current literature on the development and use

of NPIs on simulated outbreaks. A detailed problem description along with the research

objectives are presented in Chapter 3 and Chapter 4. Chapter 5 describes our methods

and Chapter 6 presents our experimental study. A discussion along with conclusions are

presented in Chapter 7.
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2 Literature Review

In this section we present a comprehensive review and analysis of the prevailing types

of NPIs found in the literature including case isolation, individual/household quarantine,

school and workplace closure, and travel restrictions. We compile available model-based

evidence on the effectiveness of these strategies, and examine how the choice of modeling

assumptions and key NPI parameter values impact intervention effectiveness. We also

discuss the effectiveness of NPIs when used in combination with PHIs.

2.1 Methods

This review considers only simulation-based models, which provide the most granu-

lar description of contact and infection transmission processes and social-behavioral consid-

erations. There exist in the literature a number of mathematical models that also examine

the effectiveness of NPIs [21, 22, 23, 24, 25, 26]. These papers are not included in our

review.

We selected 203 articles from Pubmed published between 2005 through 2010 using

the following keywords: simulation, quarantine, isolation, non-pharmaceutical interventions,

travel restrictions, and social distancing. Paper abstracts were first examined to see if

they met the selection criteria: simulation models, pandemic influenza, and NPI based

mitigation. This reduced the number of articles to eighteen, which reduced to fifteen when

the contents were further scrutinized to ensure that they included a description of the

types of NPIs and their characterizing parameters. Four additional papers were added after

reviewing the references for the selected fifteen articles, which brought the total number of

reviewed papers to nineteen.
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Selected papers were examined using the following key questions. What were the

mitigation objectives? What types of NPIs were used? Were NPIs used in combination

with PHIs? Which key parameters were used in defining the NPI strategies and the impact

measures? Are the results and recommendations from different papers consistent?

2.2 Results

In this section we discuss how different modeling assumptions and parameter values

guiding the disease natural history, contact processes, and infection transmission processes

influence the effectiveness of NPIs. It may be noted that the number of assumptions and

parameters involved in highly granular simulation based models are quite large. Mostly in-

dependent and disparate studies that are reviewed here consider a wide range of assumptions

and parameter values and examine them on a variety of outbreak regions, transmissibility,

severity, and NPIs. As a result, this paper contains a qualitative review and discussion.

Studies cited in different parts of the paper are not meant to be exhaustive, but as a guide

to the reader.

Table 1 summarizes the modeling assumptions regarding disease natural history and

contact and infection processes that are made in the review papers. For each one of these

assumptions, the key defining parameter values are tabulated. This table is intended to give

a summary of each simulation model discussed in this review paper. For example, the model

by Carrat et.al. [28] (see row 1 of Table 1) has the following features, 30% of the cases are

asymptomatic; latent and incubation period are of same length; considers all major mixing

groups, namely, households, schools, workplaces, and community; contact probabilities are

dependent on age; mixing groups’ contact probabilities are not affected when NPIs are in

effect; infection process depends on both susceptible and infected individual’s age, vacci-

nation and antiviral status, as well as the infected individual’s infectiousness status; virus

severity is not considered in determining the infection probability.
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Table 1: Summary of modeling assumptions for natural history, contact processes and
infection transmission processes
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2.2.1 Disease Natural History [DNH]

A schematic of an influenza DNH model is shown in Figure 1. In many of the

models reviewed, the incubation period is considered to outlast latency by a period T

during which an individual is infectious but asymptomatic (see column 3 of Table 1). Un-

der/overestimation of T can result in an increase/decrease in the prevalence of symptomatic

cases at any given time during an outbreak [6, 7, 29, 30]. Most of the models also assume

that up to 50% of individuals remain asymptomatic after completion of the incubation

period (see column 2 of Table 1). Also, under/overestimation of the percentage of asymp-

tomatic cases can lead to over/underestimation of the prevalence of symptomatic. Since in

most of the reviewed models, the triggering thresholds of NPIs are based on the number

(cumulative, prevalence or new incidences) of symptomatic cases, it’s under/overestimation

will lead to inaccurate assessment of NPI performance.

Figure 1: Schematic of an influenza disease natural history model. Figure depicts the
schematic of pandemic influenza disease natural history. Once infected, an individual

simultaneously enters the periods of latency and incubation. When incubation period is
over, the individual may stay asymptomatic or become symptomatic. Both asymptomatic

and symptomatic individuals will be infectious for a period of time before recovering or
dying

2.2.2 Contact Processes [CP]

Key elements of CP models are composition of mixing groups and contact rates/pro-

babilities. Most of the reviewed models considered four basic mixing groups: households
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[H], schools [S], workplaces [W], and community [C] [6, 7, 12, 29, 30, 31] (see column 4 of

Table 1). By ignoring any of these basic mixing groups, a model can misjudge NPI effective-

ness since the CP in these basic groups are highly correlated. For example, closing of schools

increase household and community contact rates [12, 31], which, if not considered, would

underestimate the number of infections and thus overestimate NPI effectiveness. Moreover,

partitioning of the population by mixing groups offers higher flexibility of how NPIs are

implemented. An example could be considering each classroom as a separate mixing group

instead of the whole school as one. This allows the implementation of partial school closure

in addition to full closure [3]. The values of contact rates/probabilities also affect NPI effec-

tiveness assessed by the models. Contact rates/probabilities vary among the mixing groups

and also within the groups depending on age, health status, and other factors (see columns

5, 6, and 7 of Table 1). For example, contact rate is generally considered to be higher in

schools than in workplaces [30, 32, 20]. If contact rates/probabilities are assigned lower than

desired values, then the infections would be underestimated resulting in overestimation of

NPI effectiveness and vice versa. Finally, the values of contact rates/probabilities used by

a model should be supported by well-designed surveys and reputable data sources.

2.2.3 Infection Transmission Processes [ITP]

Infection probabilities along with the contact processes dictate ITP. Models that are

reviewed in this paper obtain infection probabilities considering population heterogeneity

(e.g., age and immunity), susceptibility and infection status of individuals, and virus trans-

missibility (see columns 8, 9, and 10 of Table 1). Consideration of population heterogeneity

requires highly granular simulation-based models. An individual’s infection susceptibility

is affected by age [12, 31, 32, 20, 33] and status of vaccine/antiviral treatment [5, 6, 34, 35].

Not adjusting infection probabilities for age and vaccination/antiviral status can result in

under/overestimation of the levels of infections, leading to incorrect estimates of NPI effec-

tiveness. For example, if children are more susceptible to infection, not accounting for that

would underestimate the impact of school closure. Past pandemics have shown that differ-

ent age groups have different susceptibility to influenza viruses [7]. It has also been shown
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that vaccine and antivirals decrease susceptibility in all age groups [7]. It is well known

that viral shedding of an infected individual is influenced by the individual’s time varying

profile of infectiousness. This depends on immunity status and virus transmissibility and is

often modeled by a lognormal distribution [5, 32].

Figure 2: True time dependent profile of infectiousness. Figure depicts a schematic of a
true time dependent profile of infectiousness along with a constant profile of infectiousness
that is often assumed for model simplicity. The constant profile either underestimates or
overestimates viral shedding depending on the time epoch during an infectious period.

Immunization and virus transmissibility can alter the profile. Area of the shaded region
indicates the total amount of viral shedding during a contact.

Consideration of a constant profile of infectiousness or not adjusting the time varying

profile for the characteristics of an infected individual and virus transmissibility can lead

to under/overestimation of infection transmission (see Figure 2 for a schematic of different

profiles and their impact on infection probability). Other factors affecting the infection
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probability are the day and the duration of contact between infected and susceptible. As

shown in Figure 2, the area under the profile of infectiousness curve for the day and duration

of contact determine the level of viral exposure dictating the infection probability [5, 35].

Even though the virus characteristics will not be known prior to or at the beginning of an

outbreak, simulation models should study different ”what-if” scenarios when assessing the

effectiveness of NPIs and making recommendations.

2.3 Common NPIs

Our review shows that studies in the literature vary significantly in how NPIs are

defined and modeled. In this section we summarize the definitions of the commonly used

NPIs, the assumptions regarding their key parameters, and discuss their possible impact on

performance. The papers that examine simultaneous application of multiple NPIs (layered)

and combination of NPIs with PHIs are reviewed separately at the end of this section.

2.3.1 Quarantine Based NPIs

Case isolation [CI] refers to confining symptomatic individuals to their households

away from other mixing groups [5, 7, 36, 37] or to a location other than home [6]. The effec-

tiveness of CI depends on a number of parameters including initiation threshold, intervention

duration, and compliance. Table 2 presents, for each model, a summary of definitions of

NPIs discussed in this section, their defining parameters, and their performance as assessed

by the models. When initiation threshold increases, CI effectiveness decreases and vice

versa. As for the duration of CI, the reviewed papers consider it to be one of the following:

the duration of the infectiousness phase [12], the duration of the disease period [6, 34], or

the duration of the pandemic [30, 31, 20, 38]. None of the models examine the sensitivity of

duration on effectiveness. Most of the reviewed models assume high compliance levels for

CI. Blendon et al. [39] conducted a survey to determine the percentage of the population

that was willing to stay at home for 7-10 days if infected with 94% responding affirmatively.

However, this study was hypothetic and other studies have shown that in real life situations,

conformance to NPIs will not be as optimistic.
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Table 2: Summary of definition, parameters, and impact for case isolation, individual
quarantine, household quarantine, and social distancing
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Table 2 (Continued)
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Table 2 (Continued)

For example, in the study by Luliano et al. [40] only 35− 89% would stay at home

while ill and in Johnson et al. [41] 87% of ill children visited a place outside of home while ill

during the A/H1N1 pandemic of 2009. In general, compliance can be significantly affected

by a variety of demographical, economic, and social behavioral factors. To address this

uncertainty, analyses of sensitivity of the compliance rate were performed [36, 37, 38], and

it was shown how CI effectiveness decreased as compliance decreased.
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We also observed from our review that for low virus transmissibility scenarios, CI

alone could reduce IAR and the number of infected cases. However, with increased trans-

missibility, CI is less effective. In most of the models, CI alone did not contain the pandemic

(i.e., did not reduce IAR below 10% [12, 34]). The only study that claimed containment by

using CI alone was by Kelso et al. [12]. Their success was likely due to the facts that CI was

implemented immediately following the detection of one infected case, a low transmissibility

virus was considered along with a high compliance rate (90− 100%).

Using CI, Ferguson et al. [35, 5] achieved a reduction of IAR from 34% to 27%,

while Kelso et al. [12] achieved a reduction from 32.5% to 7%. This difference in NPI

effectiveness is due to the differences in modeling assumptions as well as the choice of key

NPI implementation parameters. Ferguson et al. assumed 50% of asymptomatics while

Kelso et al. assumed 20% asymptomatics for those younger than18 years and 32% for those

older than 18 years. As discussed earlier, underestimation of asymptomatic cases can lead to

overestimation of symptomatic cases, which can improve NPI performance. For example,

initiation thresholds in both studies are a function of the number of symptomatic cases.

Ferguson et al. uses one day after becoming symptomatic as an initiation threshold, while

Kelso et al. implements CI immediately after introduction of the first case. CI effectiveness

is obviously guided by the rule ”sooner implemented the better.” Other difference observed

in the above models is the difference in the value of T (difference between the latency and

incubation period). In Ferguson et al. both latency and incubation period are the same

length and T is therefore zero. In Kelso et al., T is considered to be one day.

Contact process also varies in the above models. When a person is in case isolation,

it would be expected for the contact probabilities in other mixing groups to be zero while

increasing at home. Ferguson et al. increases contact probabilities in other mixing groups

while Kelso et al. keeps them constant. Not increasing the contact probabilities at home

would underestimate the number of infections in the household leading to overestimations of

NPI performance (as in Kelso et.al.). Definitions and assumptions of the key implementation

parameters of CI also differ in the above models. In Ferguson et al. a person in isolation

reduces contacts while in Kelso et al. the person is withdrawn to household. Allowing

16



the infected to have contact while in isolation is clearly a major factor in the difference in

results among the above models. One possible reason why CI alone was not able to contain

pandemic outbreaks in most models is that CI targeted only the symptomatic individuals,

leaving the asymptomatic individuals to continue the spread.

Other quarantine measures that also target asymptomatic individuals include con-

tact tracing [6], quarantine zones [35], and household quarantine [HQ]. We limit our dis-

cussion to HQ, which is most prevalent in the papers that we have reviewed. HQ involves

restriction of movement of household members of an infected case. Some of the models

considered a complete restriction of movement [6, 7, 34], while the rest assumed a partial

restriction [5, 36, 37]. The duration of HQ intervention among the selected papers vary

significantly from seven days [34] to fourteen days [5]. In other models, HQ lasted either

until the pandemic slowed to the point where no more than three new cases were diagnosed

in seven consecutive days [37] or until the pandemic ended [7]. Most of the papers imple-

mented HQ immediately after the detection of an infected case while some considered a one

day delay [5, 6, 34]. As in the case of CI, compliance is an important determinant on the

effectiveness of HQ. The study by Blendon et al. [39] showed that 85% of the population is

willing to stay home for 7-10 days if a member of the household is diagnosed with pandemic

influenza. Again, this survey is hypothetical and recent studies regarding A/H1N1 outbreak

of 2009 have shown that conformance will be dependent on the population’s perception of

severity [40]. The models reviewed in this paper considered compliance ranging from 50%

to 90%. As compliance weakened so did the HQ effectiveness.

The diverging nature of the reported values of HQ effectiveness can be attributed

to a rather wide range of parameter values used in defining HQ. Davey et al. [37] reported

a reduction in IAR from 28% to 21.8% using household quarantine with 60% compliance.

Longini et al. [7] with 70% compliance for HQ achieved a reduction from 211 cases per 1000

to 0.17 cases per 1000. The primary between the above models is in the value of the param-

eter for asymptomatic cases (50% for Davey et al., 33% for Longini et al.). However, some

of the key assumptions that we believe have contributed to the difference in results are as

follows: Davey et al. reduced non-household contacts while doubling household contacts; in
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Longini et al., movements of the infected cases and a certain percentage of the symptomatic

cases were restricted to their households. As non-household contacts were not allowed, we

believe that Longini et al. achieved better results applying household quarantine. Dura-

tion of HQ should be a major contributor to the difference in IAR reduction. Davey et

al. implemented household quarantine for 10 days, whereas Longini et al. implemented

HQ for the duration of the pandemic. Larger duration in Longini et al. produced better

performance, as it is well known that when NPIs are relaxed, new pandemic waves start

to emerge increasing IAR [42]. So even when HQ was implemented with a 14 day delay,

stringent application of HQ resulted in a sharper reduction of IAR in Longini et al. when

compared to Davey et al.

Social distancing (SD) generally refers to the modes of reduction of contacts of

individuals in all mixing groups other than household [30, 31, 37]. Examples of means of SD

include cancelation of public mass gatherings (concerts, churches) and wide dissemination

of pandemic related news. Results summarized in Table 2, show that the effectiveness of SD

depends greatly on the transmissibility of the virus. We noted that SD alone was not able to

achieve pandemic containment in all of the studies except in Davey et al. [36, 37], in which

contacts were reduced by 90% for low and medium transmissibility scenarios. Comparing

results from German et al. [30] and Glass et al. [31] we observe the significance of the values

of initiation thresholds on NPI effectiveness. Though both models are quite similar in their

modeling assumptions apart from assumptions (except for percentage of asymptomatics:

33% in Germann et al. and 50% in Glass et al.). Germann et al. achieved a small reduction

in IAR (e.g., 53.7% to 50.3%) while Glass et al. achieved a relatively high reduction (e.g.,

51% to 39.2%.) We note that Germann et al. initiated intervention 7 days after pandemic

alert while Glass et al. had a threshold of 10 new cases which was met within a short time

after the outbreak. We believe that early initiation in Glass et al. made SD more effective

in reducing IAR.
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2.3.2 Closure Based NPIs

School closure (SC) involves closing of schools, school related activities, and childcare

programs. SC, while reducing contacts in the aforementioned mixing groups, increases

household contacts [5, 12, 37] and community contacts [34]. The extent of SC can vary

widely from a nationwide closure [30] to partial closure of all schools in a region, individual

schools, or one or more classes within a school [3]. The reported performances of SC also

vary significantly due to differences in significant assumptions regarding closure initiation

threshold and duration, and students’ contact behavior during a closure (i.e., whether the

students remain strictly at home or continue to make contacts in the community).

Some of the reviewed papers showed outbreak containment via SC alone [30, 32, 28,

37, 43], concluding that SC effectively reduces IAR. However, SC results in a significant

loss of productivity since many working adults stay home with the children [28]. Other

conclusions about SC include the following: SC could be an ideal strategy except for the

long length of closure necessary [37]; SC is highly effective for low transmissibility scenarios

and when attack rates are higher in children than adults [30, 32, 20]; SC is effective in

reducing peak attack rates and slowing the spread of the pandemic even when the overall

IAR is not significantly reduced [5, 44, 45]; SC could be a successful strategy only if children

are kept at home and not allowed to contact others in the community [31].

Table 3 shows a summary of results for school closure and workplace closure (dis-

cussed later) from the selected papers. Definitions of closures along with the assumptions

regarding the key parameters guiding the closure policies are also presented in Table 3. The

results show that there is little consensus among the conclusions arrived at by the studies

on the level of effectiveness of SC during a pandemic influenza. However, in general, SC is

shown to be an effective measure to reduce peak attack rate and to delay time of occurrence

of the peaks [5, 30, 20, 44], which can reduce stress on the health care delivery system.

For example, Germann et al. [30] achieved a reduction in IAR from 48.5% to 37.9%,

whereas Davey and Glass [36] achieved a reduction from 49.6% to 2% (containment).
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Table 3: Summary of definitions, parameters, and impact for school closure and
workplace closure
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Table 3 (Continued)

The key differences between the above models are as follows. Germann et al. as-

sumes 33% asymptomatic while Davey and Glass assume 50%. A higher number of asymp-

tomatic generally translate to a later intervention initiation and lower reduction in IAR.

Davey and Glass still achieved a better SC performance. One possible reason for this is that

Germann et al. defined SC as a nationwide closure of schools with other contacts remaining

unchanged, while Davey and Glass reduced school contacts, doubled household contacts

and considered that an adult stayed home. This clearly shows that for SC to be effective,

children must be confined to home and not allowed to make contacts in the community.
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The initiation threshold appears to be another key reason behind the difference in SC per-

formance in the above studies. Germann et al. initiated SC seven days after pandemic

alert, and Davey and Glass started the intervention after threshold reached 10 new infected

cases. In both studies the duration of intervention was reasonably long. For Davey and

Glass maintained SC until pandemic slowed to the point when only 0-3 newly diagnosed

cases occurred in 7 days. Germann et al. kept SC in place for the duration of the pandemic.

In recent studies on the effect of SC (conducted during the A/H1N1 pandemic outbreak)

[42], it was shown that R (reproduction number) increased when school closure was lifted

and before summer vacation started. SC is an effective measure when implemented early,

but when removed, can result in new waves of infection unless PHIs are introduced.

Workplace closure (WC) eliminates contacts at workplaces but increases household

and community contacts [5]. In some of the reviewed papers, WC considers workplace non-

attendance with reduced contact rates as workers have the option to stay home [12, 31, 20].

In general, WC is shown to be less effective than SC [12, 31, 20]. In the reviewed

papers, WC by itself didn’t cause a significant reduction in IAR. Glass et al. [31] had a

reduction in IAR from 51% to 48% while Kelso et al. [12] from 32.5% to 24%. These

reductions are lower compared to those achieved by SC. Clearly the children make more

contacts at schools than adults at work. Hence, independent of modeling and parameter

assumptions, WC by itself wasn’t shown to be very effective.

When WC was used in conjunction with SC, better results were reported in com-

parison to either of the interventions alone [20]. The study by Carrat et al. [43] achieved

containment by applying school and workplace closure to a pandemic with a base IAR of

46.8% and reducing it to 1.1%. The study by Ferguson et al. [5], achieved some reduction

of IAR, but didn’t achieve containment, as the base IAR of 34% was reduced to 31% IAR.

There could be multiple reasons why Ferguson et al. did not achieve a considerable

IAR reduction as in Carrat et al. Ferguson et al. assumed a 50% asymptomatics (30% in

Carrat et al.) leading to increased delay in WC initiation. Unlike in Carrat et al., Ferguson

et al. increased household contact rates as they eliminated school and workplace contacts. In

Ferguson et al., institutions were closed one day after the first case is detected, which is much
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sooner than Carrat et al. strategy of reaching 0.5% infected in the population. However,

they used much shorter closure duration of three weeks, which is likely to have caused new

spikes in infection after each WC completion and resulting higher IAR. Our conjecture is

that the benefits of shorter initiation threshold in Ferguson et al. were outweighed by the

shorter duration of WC. Lack of IAR reduction in Ferguson et al. should also have been

impacted by the consideration of a relatively low (50%) WC compliance as compared to the

100% compliance considered in Carrat et al.

When considering WC, it is important to seek a balance between pandemic contain-

ment and the total cost of this intervention. The cost of SC and WC should account for

lost productivity, lost educational opportunities, and the cost of business continuity.

2.3.3 Travel Restriction Based NPI

Among the reviewed papers, travel restriction (TR) is the least explored NPI. Table 4

shows a summary of the TR implementations [5, 30, 44] and the corresponding results. The

study in [5] used border control and area quarantine, where border control attempts to

reduce the number of infected individuals entering the country, and area quarantine is the

reduction of travel between the affected and unaffected zones. TR was modeled as the

reduction of travel to as little as 10% of the normal number of trips made by an individual

in [30]. The model in [44] considered elimination of travel via train lines. None of the above

studies achieved a significant outcome. In order for TR to be effective in reducing IAR, it

must be implemented prior to the introduction of infected cases into the community, which

could be difficult to accomplish in practice. However, TR has been shown to be effective in

delaying the spread, which gives time for PHIs to be developed and deployed.

2.3.4 Layered NPIs: Combinations of NPIs and PHIs

A number of the reviewed papers show that layered NPI strategies, in which multiple

NPIs are applied together, performed better than one intervention at a time in reducing the

infection attack rate, the total number of infections, and the peak attack rate (for a sum-

mary see Table 5). Layered strategies also help to delay the occurrence of pandemic peaks.
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Table 4: Summary of definitions, parameters and impact for travel restrictions

However, some of the reviewed studies were not successful in containing pandemic influenza

with a layered strategy (add references). It was shown by the studies that achieved contain-

ment (add references) that for a multi-layered approach to work, it has to be implemented

early in the pandemic and with high compliance levels.

This is often problematic as early implementation, higher compliance, and a possible

extended duration of interventions may result in public disapproval and a high societal cost.

NPIs were also studied in combination with PHIs in some of the selected papers.

Studies that achieved containment implemented NPIs together with PHIs such as vaccina-

tion, antiviral treatment, and antiviral prophylaxis [3, 7, 30, 32, 37, 38, 44, 46]. In general,

based on the papers reviewed, it can be concluded that the best strategy to mitigate pan-

demic influenza outbreaks is to combine NPIs with PHIs. But even this combination of

interventions may not be sufficient for containment for high transmissibility viruses.
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Table 5: Summary of definitions, parameters, and impact of using layered NPIs and
combinations of PHIs and NPIs*
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Table 5 (Continued)
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2.4 Conclusions

Employing NPIs at the earlier stages of a pandemic can reduce and delay the pan-

demic peak, thus allowing time to develop and distribute PHIs, which are costly and unlikely

to be available at the beginning of a pandemic. NPIs are of particular significance for un-

derdeveloped countries that lack resources for developing or acquiring a supply of vaccines

and antivirals.

Many countries in their preparedness plans have incorporated NPIs, but the inter-

ventions vary significantly in their key implementation parameters. These variabilities can

be attributed to the cultural and social differences in how NPIs are perceived and complied

with, methods of implementation, and the capacities of the nations to absorb the economic

impact of the interventions. The inconsistencies among the plans are also due to the lack of

a cohesive scientific approach to model and assess NPIs. Models vary widely in part because

of the complexities of multi-scale societal structures, human behavior, and uncertainty of

virus epidemiology. Other variations arise from modeling methods, assumptions, defini-

tions, parameter values, test-beds, and choice of impact measures. This paper highlights

the above disparity by providing a systematic review of a segment of the NPI literature

that uses simulation as their underlying model.

To analyze the commonly used NPIs, we grouped them in four categories: quar-

antine, closure, travel restrictions, and combinations. Quarantine based NPIs include case

isolation, household quarantine, and social distancing. These perform better at lower trans-

missibilities, when implemented early, and for high compliance rates. However, there are

many economic and social limitations of implementing quarantine based NPIs. For exam-

ple, even though enforcement of these interventions for a prolonged time improves IAR

reduction, it may result in loss of individual freedom and income. Hence, quarantine based

NPIs must consider a wide range of compliance levels, ability for quarantined individuals

to acquire food and medicine, and the limit for the loss of income that individuals/families

can sustain.

Closure based NPIs include closing of schools and workplaces. The models of school

closure vary from ’selected classrooms’ to ’all classrooms’, a ’cluster of schools’ to ’all schools’
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in a region, and nationwide closure. The models also vary in the choice of initiation thresh-

old and closure duration. Literature shows that school closure is highly effective for low

transmissibility scenarios and when attack rates are higher in children than adults. School

closure was shown to consistently reduce peak attack rates and delay pandemic spread. It

also impacts workplaces, since working adults may have to stay home to supervise children.

A prolonged school closure may also have a significant impact on the academic progress of

the students. Hence, a prolonged school closure must have associated measures to alleviate

loss of productivity, loss of income, and academic disruption.

Literature considers both full and partial workplace closure. This intervention by

itself does not significantly reduce pandemic impact. However, workplace closure used in

combination with school closure achieved better results than either measure alone. A pro-

longed closure of workplaces could adversely impact society by impairing supply of basic

goods and services and inflicting a high cost of lost productivity and wages. Hence, work-

place closure must be supported by plans to ensure business and service continuity.

Travel restrictions include border control, area quarantine, reduced public trans-

portation, and reduced personal travel. None of these were found to yield a significant

reduction in the IAR, but they did help to delay pandemic spread. Travel restrictions were

shown to be effective only when they are implemented prior to the introduction of infected

cases into a community. This poses a challenge for public health officials as convincing

the public to accept travel restrictions may be difficult. Moreover, travel restrictions are

ineffective in preventing travels of those who are either asymptomatic or are in their latent

phases of infection.

A layered NPI strategy refers to a combination of various simultaneous interventions.

Except for some high transmissibility scenarios, layered NPIs were shown to be successful

in containing pandemic outbreaks. Some studies considered combining layered NPI with

PHI, which produced better results than using layered NPI only.

There have been many recent studies on NPI effectiveness during the 2009 H1N1

pandemic [42]. In Mexico, SC was shown to reduce transmission in 29 − 31%, and it was

shown that R increased when school suspension was resumed. A decrease in R from 2.2
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to 1 coincided with the suspension of educational activities and other social distancing

measures (closure of movie theaters and restaurants and cancellation of public gatherings).

These findings support the effectiveness of early mitigation efforts and also the importance

of school cycles in the transmission of pandemic influenza. These results were also shown

during the A/H1N1 pandemic in Hong Kong where a 25% reduction in transmission was

achieved following the closure of schools. A 13− 40% reduction in R was seen in Belgium,

Great Britain and the Netherlands during holiday period [42].

The study by Hatchett et al. [47] analyzed the impact of NPIs during the 1918

pandemic. From this study it was shown that outcomes of NPI effectiveness were correlated

with the quality and timing of intervention. For example, Philadelphia reported cases on

September 17 but didn’t implement any NPIs until October 3. St. Louis reported cases

on October 5 and implemented NPIs on October 7. Philadelphia had a peak death rate

of 257/100,000 compared to St. Louis peak death rate of 31/100,000. This study also

shows that implementation of layered NPIs resulted in lower peak death rates, across cities.

Implementation of three or fewer NPIs had a peak weekly death rate of 146/100,000, whereas

cities that implemented four or more NPIs had a peak weekly death rate of 65/100,000.

Early school, church or theater closure as well as early bans on public gatherings were also

associated with lower peak excess death rates. This study also showed the importance of

duration of intervention, no city experienced second waves while its main battery of NPIs

were in place, second waves occurred only after the relaxation of interventions.

Even though there are many differences in modeling assumptions, implementation

parameters, and the resulting recommendations of the papers that are reviewed here, the

following general conclusions can be of benefit to the public health officials.

• NPI effectiveness is directly correlated with time of implementation. Pandemic

preparedness is important in order to minimize deployment delay and maximi-

ze effectiveness.

• When planning for NPI implementation, duration of interventions should be

kept as long as necessary. It has been shown that when the interventions are

relaxed, new pandemic waves emerge.
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• NPIs should be layered. We noted from this review that layered NPIs have a

better effectiveness than any one intervention by itself.

• School closure may be the most effective of NPIs. When planning for SC,

extra measures should be taken to ensure children don’t continue to increase

their contacts in the community.

A notable omission that we have observed in the reviewed literature is the use of

cost to society as a measure of performance. Clearly, there is a need for further research to

develop a unified approach to design, implement, and assess performance of NPIs.
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3 Problem Description and Research Objectives

Non-pharmaceutical interventions are increasingly being used in national pandemic

preparedness plans. Many countries are already incorporating the use of NPIs in their

pandemic influenza preparedness guidelines. Some of these countries include Australia,

China, Japan, Canada, Mexico and the U.S. among others. All of these plans can be found

in the United Nations Office for the Coordination of Humanitarian Affairs (OCHA) website

[18]. All of these countries recognize the importance of non-pharmaceutical interventions

during a pandemic influenza outbreak. The threat of a pandemic influenza outbreak is not

only of national concern, in the U.S., the health departments in every state have their own

preparedness plans, with their own recommendations and guidelines. Many universities

have also developed their pandemic preparedness plans comprising NPIs [48, 49, 50]. Also,

non-pharmaceutical interventions can be found in the World Health Organization (WHO)

community measures [19] and in the Centers for Disease Control and Prevention (CDC)

guidelines [17].

As discussed in our literature review [27], NPIs are also being studied by researchers

around the world. But available research approaches and the resulting guidelines offer widely

varying recommendations for the choice of critical NPI design parameters. Some of these

parameters include thresholds for pandemic declaration and intervention initiation, and

duration and target population for each intervention.

For example, major agencies like WHO and CDC adopt different andemic declara-

tion thresholds. WHO uses a six-phased approach. Phases 1-3 compromise mostly animal

infections and few human infections, and it correlates with preparedness. Phase 4 entails a

sustained human to human transmission and Phase 5 and 6 a widespread human infection.

It is evident that response is needed during phases 4 to 6 on the WHO scale. CDC on the

other hand, divides the pandemic into categories based on the case fatality ratio (CFR),

and give recommendations based on these categories.
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As regards school closure, CDC only recommends less than four weeks of closure

when pandemic is in a category 2-3 and less than 12 weeks for categories 4-5. Many

researchers on the other hand, recommend to start school closure right away and sometimes

for indefinite periods of time. A lack of uniformity in the recommendations examined above

can be attributed to the uncertainty in the virus epidemiology and the current lack of

scientific knowledge about the complex interactions between virus epidemiology with social

behavioral factors and mitigation actions.

At the early stages of a pandemic, virus epidemiology parameters such as repro-

duction number (R0), infection attack rates (IAR) and case fatality ratios (CFR) will be

largely unknown.

Figure 3 shows a set of selected parameters concerning virus epidemiology, social

behavior and NPIs which are likely to have significant interactions.

Figure 3: Interacting parameters affecting pandemic outbreaks

This dissertation has the following three objectives:

• To establish the underlying relationships between the characterizing parameters

of virus epidemiology, social behavior and non-pharmaceutical interventions.

• To develop guidelines for design of effective NPI strategies using the results

from the first objective.

• To demonstrate the efficacy of NPI guidelines developed in the second objective

on large-scale simulated outbreaks involving millions of people in urban areas.
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4 Methodology

Our methodology is driven by a simulation-based model, an earlier version of which

was presented in Uribe et al. [29]. The simulation is capable of modeling millions of indi-

viduals and track their daily schedules. The simulation model incorporates the population

dynamics, disease natural history, contact and infection transmission processes and mitiga-

tion actions. A schematic of the simulation is given in Figure 4. The major components of

the simulation model are described next.

Figure 4: Simulation schematic representation

4.1 Simulation Model

The simulation model begins by creating mixing groups and individuals. Individuals

are created based on demographic data with a set of attributes. Adults and children have

the following common attributes: age, gender, household, health condition (poor, moderate,

good), and disease status. Adults in addition have parenthood and workplace as attributes,

and children have school.

Mixing groups include households which are characterized by the number of adults

and children. Other mixing groups considered in our simulation are workplaces which
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include office, factories, stores, educational institutions and restaurants. We also consider

after work places such as grocery stores, restaurants, entertainment centers and churches.

Daily schedules are assigned to each individual based on their attributes. These

schedules are hourly time discrete weekday and weekend schedules. Table 6 shows the

schedules for unemployed and employed adults during the week, weekday schedule for chil-

dren and the weekend schedule which is the same for all individuals.

Table 6: Schedules

Employed adult Unemployed adult Children weekday Weekend schedule

weekday schedule weekday schedule schedule for all individuals

0 - 8hr: home 0 - 8hr: home 0 - 8hr: home 0 - 16hr: home

8 - 17hr: work 8 - 19hr: errands 8 - 15hr: school 17 - 19hr: errands

17 - 19hr: errands 19 - 24hr: home 15 - 17hr: after school 19 - 24hr: home

19 - 24hr: home 17 - 24hr: home

As the schedule progresses through the hours of the day, the simulation model

traces each individuals movement among the mixing groups and track their contacts. The

pandemic is triggered by introducing one or more infected cases into the region. After a

contact is made between a susceptible and an infected, the susceptible becomes infected

with a certain probability as determined by the infection transmission process.

4.2 Disease Natural History

As shown in Figure5, when a susceptible individual becomes infected, s/he enters

the latency and incubation period simultaneously. Infectiousness starts at the end of the

latency period and symptoms show at the end of the incubation period. It is important

to note that some individuals will remain asymptomatic. For example, in our numerical

study 33% of those infected remain asymptomatic. After the infectiousness period is over,

an individual either recovers or dies with a certain probability. We assume that recovered

individuals will develop immunity and can not be susceptible again.
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Figure 5: Influenza disease natural history

4.3 Contact Process

Every individual is assigned an hourly schedule which dictates the mixing group

the individual is part of at a certain point in time during a day. At every hour, the

population in each mixing group is compromise of susceptible and infected individuals. The

simulation tracks how many individuals are infected and susceptible in each mixing group,

and determines the number of contacts using the contact probabilities given in Germann

et al. [30]. Contact probabilities are based on age and mixing group. For example, an

infected child contacting a susceptible child in a household will have a different contact

probability than an infected adult contacting a susceptible adult in a workplace. The

infection transmission process, described next, determines which contacts will result in

infections.

4.4 Infection Transmission Process

When an individual j becomes infected, s/he enters into the latency period. At the

end of latency, the period of infectiousness begins which changes over time. We assume that

the profile of infectiousness follows a lognormal distribution function f(t, δ, γ), where t de-

notes the elapsed time of the infectiousness period in hours and δ and γ are the distribution

parameters [5].
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Figure 6 shows an example of the time varying profile of infectiousness, which is

given by the following function:

f(t, δ, γ) =
1

tγ
√

2Π
(e

−(ln t−δ)2

2γ2 ), t > 0. (1)

As shown in Figure 6, we use a truncated (at t=10 days) version of the lognormal

function as it is assumed that infectiousness does not last more than 10 days. The idea

of a time varying profile of infectiousness is that an infected individual will shed greater

amounts of virus particles during the beginning of its infectiousness period and the quantity

of virus particles shed will diminish as the individual progresses through the infectiousness

period.

Figure 6: Time varying profile of infectiousness

We assume that the total amount of virus shed by an infected individual is guided by

a calibrated parameter ρ. The value of ρ varies with the virus transmissibility scenario. At

hour t, the jth infected individual is in its tthj hour of infection and the amount of viral shed

that is ingested by a susceptible contact until hour tj + 1 is given by V Sj(t). It is assumed

that the amount of viral shed is divided equally among the total number of susceptible

contacts nj at any hour. Then we have that

V Sj(t) =

∫ tj+1

tj

ρ · fj(u, δ, γ)

nj + 1
du, (2)

where nj + 1 indicates that the jth infected individual will also ingest a share of the viral

shed.
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Figure 7: Viral load accumulated by a susceptible. Example of viral load accumulated by
a susceptible individual that has been contacted by three infected individuals

A susceptible individual i may have contacts with mt ≥ 1 infected individuals during

any hour t, where each infected individual is at a different stage of infectiousness. During

any contact period beginning at time t and ending at t+ 1, the susceptible individual i will

accumulate a viral load equal to the sum of the ingested virus from each one of its infected

contacts. We obtain the viral load of susceptible i during hour t and t+ 1 as

V Li(t) =
mt∑
j=1

V Sj(t). (3)

Figure 7 presents a graphical example of a susceptible individual i that has been

contacted by three different infected (j = 1, 2, 3) during the period of time starting at t

and ending at t + 1. Note that the y axis in the figure denotes total amount of viral shed

by the infected individuals (ρ · fj(t, δ, γ)). We assume virus epidemiology of an outbreak

dictates the value of ρ, and the profile distribution parameters δ and γ. For any outbreak,

these parameters are assumed to be identical for all infected individuals. At time t, the

corresponding elapsed period of infectiousness are t1,t2, and t3, respectively, for the three

infected. Infected number one will shed a total amount of virus given by the area ABCD.
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Similarly, for infected two and three the total amount of viral shed will be given by

the areas ABEF and ABGH, respectively. The sum of the above three areas represents the

total amount of viral shed by the three infected.

The proportion of this total amount that will be ingested by susceptible i depends

on the number of other susceptible contacts of these three infected during the hour being

considered.

A susceptible individual i that does not get infected during hour t (time from t to

t + 1) keeps accumulating viral load through the hours of a day until infection. The total

viral load accumulation for susceptible i until time t of the day is given by V LAi(t) as

follows

V LAi(t) =
t∑

u=1

V Li(u). (4)

For susceptible contacts not infected by the end of the day, we assume that the value

for the total viral load accumulation V LAi becomes zero at the start of the following day.

We liken the infection process to the Poisson failure process of a machine containing

thousands of parts. Just as failure of a subset of parts can cause machine malfunction, virus

invasion of some of the cells in the human body can cause infection.

Define T as the time required for a susceptible individual i with total accumulated

viral load V LAi to get infected. We assume that T is exponentially distributed with a rate

of λi = V LAi. The assumption as shown in Figure 8 is that a susceptible individual i with

a certain amount of V LA in his system for a long period of time will eventually get infected,

and that the probability of getting infected increases as the value of V LA increases.

Then, the probability that a susceptible individual i will get infected during time t

to t+ 1 is

Pi(T ≤ 1) = [1− e−V LAi(t)·1] · α, (5)

where α is an age based factor [5] and is shown in Table 7. Note that our methodology

somewhat overestimates the infection probability as the rate V LAi(t) keeps increasing dur-

ing the hour. The value of the rate used in Equation 5 is the maximum value at the end of

the hour.
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Figure 8: Exponential distribution for time to get infected T for a susceptible i at hours 1,
2 and 3 with rates V LAi(1) < V LAi(2) < V LAi(3)

Table 7: Age based factor for infection probabilities

Age lower bound Age upper bound Scale factor

0 5 1.5
6 12 1.14
13 17 1.63
18 24 1.76
25 44 1
45 64 0.52
65 100 1.44

4.5 Non-pharmaceutical Interventions

In our simulation we consider four different non-pharmaceutical intervention strate-

gies. These interventions are case isolation, household quarantine, school closure, and work-

place closure. In this section we discuss each one of them by providing their definitions, key

implementation parameters, and how they are modeled in the simulation.

4.5.1 Case Isolation

In our simulation, case isolation refers to confining symptomatic individuals into

their household. Those infected cases that have been diagnosed by a doctor are expected
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to obey isolation, when in effect, with a certain compliance probability. The compliance

probability its assumed to depends on the extent of illness and work status.

Using expert opinion (from doctors) we divided the period of infectiousness in three

phases. The length of the phases (days) and the probability that the sick person would

want to stay home and not continue with his/her regular schedule are shown in Figure 9.

The probability of an infected individual obeying isolation also depends on his/her

work status [51]. An unemployed individual has a higher probability of obeying than an

employed. Therefore, case isolation compliance probability is obtained as the product of the

probability that the individual is too sick to continue with his/her regular schedule AND

the probability that the individual will obey the isolation recommendation.

Figure 9: Infectiousness profile. Infectiousness profile divided in phases with its respective
staying at home probabilities

If an individual complies with isolation then s/he stays at home all day. If the

individual does not comply with isolation then s/he follows regular schedule. If the individ-

ual is employed, does not comply with isolation, and his/her workplace is closed, then the

individual is considered to stay at home and s/he spends five hours out of home for errands.
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Children are assumed to comply with isolation with a 100% probability. A child

younger than 13 years of age is assumed to be supervised by an adult when isolated at

home. If an adult is already at home, that adult takes care of the child. However, if there

are no adults in the household, then the simulation randomly selects an adult member of

the household to provide supervision.

In the simulation model we use three parameters to characterize case isolation, which

are initiation threshold, intervention duration, and isolation compliance.

4.5.2 Household Quarantine

In the simulation model, household quarantine is the restriction of movement of

household members of an infected case. Is important to note that the said infected case is

one who has been diagnosed by a doctor and who is in compliance with isolation. Household

quarantine compliance probabilities for uninfected household members are adopted from

the literature [51], which depends on the individual’s employment status. If a quarantined

household have members that are 13 years or younger, they stay at home with a 100%

probability under adult supervision.

If an individual is not infected, is part of a quarantined household, and s/he complies

with the measure, then the daily schedule changes to stay at home without any errands. If

an individual does not comply with the intervention and his/her workplace or school (for

those older than 13 years) is not closed, then that individual continues with the regular

assigned schedule. If an individuals workplace/school is closed, then s/he is assigned a new

schedule for staying home with five hours of errands.

We parameterized household quarantine in our simulation model using intervention

initiation threshold, duration, and quarantine compliance.

4.5.3 School Closure

We model a partial school closure approach. We divide the school into smaller

mixing consisting of individual classrooms. Children belonging to these smaller mixing

groups (classrooms)are considered to remain in it all the time except during the lunch hour
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when they interact with other classrooms members. In our model a school closes when one

or more classrooms are closed. A classroom is closed when a threshold of new infected in

the classroom is reached.

When a school is closed, students comply with closure and stay at home with a

100% probability. If the student is younger than 13 years old s/he stays at home with an

adult.

Our partial school closure approach considers three key implementation parameters

which are the number of new infected cases to close a class, the number of classes to close

a school, and closure duration. Note that when a school opens after its closure duration

could close again if thresholds are met by new infections.

4.5.4 Workplace Closure

Workplace closure is modeled after school closure. We divide the workplaces into

smaller mixing groups comprising individual departments. An individual only contacts

those in his/her department except during lunch break. A department is closed after a

threshold of new infected cases is reached, similarly, the workplace closes after a certain

percentage of the departments has closed.

If an individual’s workplace is closed, and s/he is neither subjected to isolation/

household quarantine nor supervising a child as discussed earlier, then that individual fol-

lows the stay at home schedule with five hours of errands. However, if the individual is

subject to isolation or household quarantine, then the rules of these interventions apply.

Our workplace closure approach considers three key implementation parameters

which are threshold of new infected cases to close a department, the percentage of closed

departments to close the entire workplace and closure duration. Note that when a workplace

opens after its closure duration could close again if thresholds are met by new infections.

4.6 Experimental Approach for Design of NPI Strategies

We use an experimental approach for the design of NPI strategies. In particular we

used the tools of statistical design of experiments and regression analysis. Using the results
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obtained from the experiment we examined the significance of the impact of all parameters

(as shown earlier in Figure 3) and their interactions on the measures of performance of the

NPI strategies. The performance measures that can be used in this experimental approach

include total number of infected, total number of deaths, total number of contacts, total

cost, among others.

4.6.1 Factorial Design

Factorial designs allow study of the effect of two or more factors and their interac-

tions on a measure of performance. The effect is defined as the change in response produced

by a change in the level of the factor [52].

A full factorial design can grow in size quickly depending on the number of factors

and may not always be feasible. In such cases, fractional factorial designs can be used,

where a subset or a fraction of the full factorial design is used.

In our numerical study, we use fractional factorial designs to reduce the computa-

tional time required to examined a large number of factors. Since we were not interested in

three-way or higher level of interactions, we used fractional factorial designs in which main

effects and two-way interactions were not confounded.

In this section we describe the basics of a factorial design for two level and three

level experiments. We also discuss how to derive regression equations using information from

the factorial analysis and obtain optimal design parameters by optimizing the regression

equations.

4.6.2 Two-Level Experiments

Suppose you have two factors A and B. Each factor have two levels as shown in

Table 8. The value of A at the high level is A+, and at the low level is A−. Similarly for

factor B, the value of B at the high level is B+, and at the low level is B−. The effect of

changing factor A is given by A+B− − A−B− and the effect of changing factor B is given

by A−B+ −A−B−.
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Table 8: Low and high level values for a two factor factorial design

Factor Low level High Level

A A− A+

B B− B+

Let yij be the response when factor A is at the ith level and factor B is at the jth

level. Table 9 shows a general arrangement for the two-factor factorial design with only one

replicate. In this table, both row and column treatment factors are of equal interest. In

particular, we want to test the following hypotheses: the equality of row treatment effects,

the equality of column treatment effects and determining wether row and column treatment

interact. These hypotheses can be tested using a two-factor analysis of variance.

Table 9: General arrangement for two-factor factorial design

Factor B

Factor A 1 2

1 y11 y12

2 y21 y22

Table 10 presents a general Analysis of Variance (ANOVA) table for the two-factor

factorial design. Here, a is the total number of levels of factor A and b is the total number

of levels for factor B, with n replicates. Where the sum of squares SST , SSA, SSB SSAB

SSE computation is shown in Equations 6 through 11.

SST =
a∑

i=1

b∑
j=1

n∑
k=1

y2ijk −
y2...
abn

(6)

SSA =
1

bn

a∑
i=1

y2i.. −
y2...
abn

(7)

SSB =
1

an

b∑
j=1

y2.j. −
y2...
abn

(8)
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To obtain SSAB is better to do so in two stages. First, compute the sum of squares

between the ab cell totals (sum of squares due to subtotals):

SSSubtotals =
1

n

a∑
i=1

b∑
j=1

y2ij. −
y2...
abn

, (9)

then compute SSAB as

SSAB = SSSubtotals − SSA − SSB. (10)

Finally SSE is computed by substraction as

SSE = SST − SSAB − SSA − SSB. (11)

Using the P-values for the test statistics, significance of the different factors can be

determined. Graphs of the average responses at each treatment combination also helps with

experiment interpretation.

Table 10: The analysis of variance table for the two-factor factorial

Source SS Degrees of Freedom Mean Square F0

A treatments SSA a− 1 MSA = SSA
a−1 F0 = MSA

MSE

B treatments SSB b− 1 MSB = SSB
b−1 F0 = MSB

MSE

Interaction SSAB (a− 1)(b− 1) MSAB = SSAB
(a−1)(b−1) F0 = MSAB

MSE

Error SSE ab(n− 1) MSE = SSE
ab(n−1)

Total SST abn− 1

Before adopting any conclusions from the aforementioned analysis of variance, model

adequacy should be checked. The most used tool is residual analysis. The residuals for the

two-factor factorial design we have been discussing so far are

eijk = yijk − ŷijk, (12)

where ŷijk is the fitted value and is the average of the observations of the ijth cell. Resid-

uals should follow a normal distribution and the expected value of the residuals should be

approximately zero.
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To estimate the parameters of the model as shown in Equation 13 we use least

squares. This is the model that we later optimize to get the optimal parameter values and

design an effective NPI strategy.

y = β0 + βAxA + βBxB + ε (13)

For information in how to vary this model to a 2k factorial and 2k fractional factorial

design please refer to Montgomery [52].

4.6.3 Three-Level Experiments

We had the intuition that many of the NPI parameters were not linear. For this, we

designed a three-level experiment. A 3k design, have 3k treatment combinations with 3k−1

degrees of freedom. The sum of squares can be determined for k main factor effects each

with two degrees of freedom, k2 two-factor interactions, each with four degrees of freedom,

etc., and one k-factor interaction with 2k degrees of freedom. All these sum of squares and

interactions are computed by the methods discussed in the previous section for factorial

designs.

In a three level design, any h-factor interaction has 2h−1 orthogonal two-degrees-

of-freedom components. For example the interaction AB has two components. One is

AB and the other is AB2. This partitioning is very useful when you don’t have enough

degrees-of-freedom for your analysis. Each of the components in the interaction AB has

two degrees-of-freedom, and the values of the components can be calculated as follows

AB = xA + xB(mod3), (14)

and

AB2 = xA + 2xB(mod3), (15)

where xA and xB are the values of the factors A and B, which are 0, 1 or 2.

In the experiments we are not calculating purely the interaction between A and

B, but by calculating one of the two components (less degrees of freedom) you can get

conclusions about if the interaction is significant or not. We also use interaction plots.
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For the regression equations, if factors A and B are quantitative (in our experiments

all factors are quantitative), instead of decomposing the effect into linear and quadratic

components a regression analysis on the original scale of the factors (0, 1, and 2) can

be performed. Using xA and xB as the values for the factors, then x2A can be used for

the quadratic effect and xAxB for the interaction effect. The regression equation for this

example would be

y = β0 + βAxA + βBxB + betaA2x2A + βBx
2
B + βABxAB. (16)

We estimate the regression model using the traditional least squares regression mod-

els with the coded variables. After that, the optimization is performed and the optimal

factors in the actual scale are calculated by interpolation.

4.7 Derivation of Optimal NPI Parameters from Regression Equations

For the optimization of the regression equations derived from the two and three level

fractional factorial experiments, we use Microsoft Excel Solver. Solver uses the simplex

method with bounds on the variables, and the branch and bound method for linear and

integer problems. This method was implemented by John Watson and Dan Fylstra, of

Frontline Systems, Inc [53].
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5 Experimental Design

5.1 Test-bed

For our simulated outbreaks we use demographic data from Hillsborough County,

Florida. The population is approximately 1.1 million. Tables 11 and 12 show the distribu-

tion of adult and children by age for the Hillsborough County as given by the U.S. Census

Bureau for the 2010 census.

Table 11: Distribution of adult population by age given by the U.S. census bureau 2010

Age group Adult population distribution by age

23-29 0.16
30-64 0.67
65-88 0.17

Households are created by using the distribution of the population by household type

also from the census of 2010. Table 13 shows the distribution of population by households

for Hillsborough County.

Table 12: Distribution of children population by age given by the U.S. census bureau 2010

Age group Children population by age

0-5 0.24
6-9 0.23

10-14 0.25
15-17 0.13
18-22 0.15
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Table 13: Distribution of regional population by households given by the U.S. census
bureau 2010

Number of adults Number of children Population by household type

1 0 0.28
1 1 0.04
2 0 0.31
1 2 0.04
2 1 0.13
1 3 0.01
2 2 0.13
1 4 0.01
2 3 0.06

After individuals are created, then all mixing groups are created. Table 16 shows

the composition of mixing groups in Hillsborough County as given by the census of 2010.

Contact probabilities are based on Germann et.al [30] and are dependant on age

and mixing group. Table 17 list all the contact rates used in our simulation.

Table 14: Mortality probability for different age groups

Age group Mortality probability

0-19 0.007

20-64 0.069

65 + 0.162

Table 15: Values for calibration factor depending on transmissibility scenario

Scenario ρ

Low 1000

Medium 5000

High 24000

The disease natural history values for each one of the infection phases were taken as

follows: a latent period of 29 hours, an incubation period of 46 hours, and an infectiousness
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period ranging between 29 and 127 hours [54]. After an infected individual ends their

infectiousness disease phase, s/he either recovers or dies with a certain probability that

depends on age and is shown on Table 14. These probabilities are based on literature [1].

Table 16: Composition of mixing groups

MG type Description Distribution

0 Household 0.066

1 Factory 0.058

2 Office 0.302

3 Pre-school 0.005

4 Elementary school 0.010

5 Middle school 0.203

6 High school 0.097

7 College 0.106

8 Afterschool center 0.007

9 Grocery store 0.026

10 Restaurant 0.087

11 Entertainment center 0.032

12 Church 0.001

As for our infection transmission process, the value of the parameters for the log-

normal distribution are δ = −0.72 and γ = 1.8 days [5]. We model three different scenarios,

a low, medium, and high transmissibility scenarios. These scenarios are given by our cal-

ibrated factor ρ. This factor is calibrated to give scenarios with an IAR of 33% for a low

transmissibility scenario, and 50% and 67% for medium and high, respectively. We based

these scenarios in our literature review. Table 15 shows the values of ρ used to create

different pandemic influenza outbreaks.
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Table 17: Hourly contact rates by age and mixing group

MG Infected age Infected age Susceptible age Susceptible age Contact
type lower bound upper bound lower bound upper bound probability

0 0 18 0 18 0.074
0 0 18 19 99 0.029
0 19 99 0 18 0.029
0 19 99 19 99 0.042
1 19 99 19 99 0.005
2 19 99 19 99 0.005
3 0 4 0 4 0.035
4 5 18 5 18 0.004
5 5 18 5 18 0.003
6 5 18 5 18 0.003
7 19 22 19 22 0.003
8 5 18 5 18 0.004
9 0 99 65 99 0.00007
9 0 99 19 64 0.00005
9 0 99 5 18 0.00002
9 0 99 0 4 0.00001
10 0 99 65 99 0.00007
10 0 99 19 64 0.00005
10 0 99 5 18 0.00002
10 0 99 0 4 0.00001
11 0 99 65 99 0.00007
11 0 99 19 64 0.00005
11 0 99 5 18 0.00002
11 0 99 0 4 0.00001
12 0 99 65 99 0.00007
12 0 99 19 64 0.00005
12 0 99 5 18 0.00002
12 0 99 0 4 0.00001
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5.2 Factors

For our two level design we use 16 different factors. From our analysis we selected

the significant ones for the three level experiment. In this section we discuss the 16 factors

used in our experiment.

Table 18 present a summary of all the factors, the variable name we assigned to

them in our experiments, and the units of each one of them.

Table 18: Summary of factors with their variables and units

Factors Acronym Measurement Units

Global threshold GT Number of infected cases

Deployment delay GD Days

Case isolation threshold ID Days

Case isolation duration IP Days

Case isolation compliance
for workers ICW Percentage

Case isolation compliance
for non-workers ICNW Percentage

Household quarantine
threshold HD Days

Household quarantine
duration HP Days

Household quarantine
compliance workers HCW Percentage

Household quarantine
compliance non-workers HCNW Percentage

Cases to close a class in a school CMS Number of infected cases

Classes to close MS Number of closed
a school mixing groups in a school

School closure duration PMS Days

Cases to close a CMW Number of infected
department in a workplace cases

Departments to close MW Percentage of closed
a workplace mixing groups in a workplace

Workplace closure duration PMW Days

5.2.1 Global Threshold

Global threshold functions as the pandemic flag. It is the number of cases needed

for public health officials to declare that the pandemic influenza outbreak has arrived to
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a region. It is assumed that a pandemic has been declared elsewhere but public health

officials in the studied region wait until this number of cases is reached before deploying

interventions.

5.2.2 Deployment Delay

Deployment delay is the time needed for interventions to be deployed. Once a

pandemic is declared, it is assumed that some time will be needed for interventions to be

fully in place.

5.2.3 Case Isolation Threshold

The case isolation threshold is, for an individual that has been diagnosed, when

should that infected individual start isolation. For example, should s/he starts immediately

upon being diagnosed or a day after.

5.2.4 Case Isolation Duration

Pandemic influenza disease natural history may last between 5 and 10 days. The

purpose of isolation is to prevent an infected individual from contacting others while in-

fectious. It is examined how the duration of case isolation affects the effectiveness of the

intervention.

5.2.5 Case Isolation Compliance

Case isolation compliance is different for workers and non-workers. Workers com-

pliance tends to be lower since it is harder for workers to miss work and have the risk of

losing their jobs and/or wages. We divide this factor into two: compliance for workers and

compliance for non-workers.

5.2.6 Household Quarantine Threshold

As with the case isolation threshold. We examine when a household should be

quarantined. Right after a member of has been diagnosed or after some time.
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5.2.7 Household Quarantine Duration

As with case isolation we take into consideration the disease natural history of

influenza when assigning values to the levels of this factor. The purpose of household

quarantine is to prevent and infected individual and members of his/her household to make

contacts while infectious (or suspected of being infectious). We examine how the duration

of household quarantine affects the effectiveness of the intervention.

5.2.8 Household Quarantine Compliance

Household quarantine compliance values (just like with case isolation) are different

for workers and non-workers. Therefore, this factor is actually divided into two, which

are, household quarantine compliance for workers and household quarantine compliance for

non-workers.

5.2.9 School Closure

As discussed in Chapter 4 Section 4.5.3, school closure have three different factors.

These factors are the number of cases to close a class, the number of classes to close a

school and school closure duration.

5.2.10 Workplace Closure

As discussed in Chapter 4 Section 4.5.4, workplace closure have three different fac-

tors. These factors are the number of cases to close a department, the percentage of depart-

ments to close a workplace and workplace closure duration.

5.3 Fractional Factorial Two-Level Experiment

We use a 216−7 two-level factorial design. This yields a total of 512 experiments.

We ran 5 replicates for each one of the experiments. A replicate in our simulation model

is achieved by changing the value of the seed. In total, for the two level experiment we

ran 2,560 simulations. Each simulation takes an average of 15 minutes to run. In this

experiment, all main factors and all two-way interactions are not confounded.
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Table 19: Two-level experiment

Factor Low level High level

GT 10 50
GD 3 7
ID 0 1
IP 7 10

ICW 0.53 0.75
ICNW 0.57 0.84

HD 0 1
HP 7 10

HCW 0.53 0.75
HCNW 0.57 0.84
CMS 1 3
MS 1 3

PMS 21 42
CMW 3 5
MW 0.3 0.5

PMW 7 14

Table 19 presents all factors with their low and high levels. We did this experiment

for three different scenarios, low, medium and high.

5.4 Fractional Factorial Three-Level Experiment

From the two-level design analysis, we found the significant factors for each one of

the scenarios. Based on this information, we then conducted a three-level experiment. We

also ran 5 seeds for each one of the scenarios. Table 20 presents all the factors considered

with their real values and the coded values.

For the low, only seven of those factors presented in Table 20 were significant. The

experiment is then a 37−3
IV with 81 runs per experiment. The factors considered for the low

transmissibility scenario were GD, ID, CMS, MS, PMS, CMW, and PMW.

With this design we can estimate all main factor effects and the following factors

related to two-way interactions: (GD)(ID)2, (GD)(CMS)2, (GD)(PMW )2, (ID)(MS)2,

(ID)(PMW ), (CMS)(MS), (CMS)(PMW )2, (MS)(PMW ), (PMS)(PMW )2, (CMW )

(PMW ),(GD)(CMW ), (ID)(PMS),(CMS)(PMS), (MS)(CMW ), and (PMS)(CMW ).
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Table 20: Three-level experiment

Uncoded Value Coded Value
Factor Low Medium High Low Medium High

GT 10 30 50 0 1 2
GD 3 5 7 0 1 2
ID 0 1 2 0 1 2

CMS 1 2 3 0 1 2
MS 1 2 3 0 1 2

PMS 21 30 42 0 1 2
CMW 3 4 5 0 1 2
PMW 7 10 14 0 1 2

Therefore with this experiment we can derive some information about the fol-

lowing interactions: (GD)(ID), (GD)(CMS), (GD)(PMW ), (ID)(MS), (ID)(PMW ),

(CMS)(MS), (CMS)(PMW ), (MS)(PMW ), (PMS)(PMW ), (CMW )(PMW ), (GD)

(CMW ), (ID)(PMS), (CMS)(PMS), (MS)(CMW ), and (PMS)(CMW ).

For the medium and high scenarios, only seven of those factors presented in Table

20 were significant, but different from the low transmissibility scenario. The experiment is

then a 37−3
IV with 81 runs per experiment. The factors considered for the medium and high

scenarios were GT, GD, ID, CMS, MS, PMS, and CMW.

With this design we can estimate all main factor effects and the following factors

related to two-way interactions: (GT (GD)2, (GT (ID)2, (GT )(CMW )2, (GD)(CMS)2,

(GD)(CMW ),(ID)(CMS), (ID)(CMW )2, (CMS)(CMW ), (MS)(CMW )2, (PMS)

(CMW ), (GT )(PMS), (GD)(MS), (ID)(MS), (CMS)(PMS), and (MS)(PMS).

Therefore with this experiment we can derive some information about the fol-

lowing interactions: (GT )(GD), (GT )(ID, (GT )(CMW ), (GD)(CMS), (GD)(CMW ),

(ID)(CMS), (ID)(CMW ), (CMS)(CMW ), (MS)(CMW ), (PMS)(CMW ), (GT )

(PMS), (GD)(MS), (ID)(MS), (CMS)(PMS), and (MS)(PMS).
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6 Results

In this chapter we present the results from our simulation experiment. First section

presents a brief overview of the results we get from our simulation. The second and third

sections present results from our two and three level experiments results for three different

transmissibility scenarios. For each of this scenarios we have derived optimal NPI strategies.

The last section presents a comparison between the optimal strategies derived from the two

and three-level experiment across all scenarios considered.

6.1 Simulation Results

At the end of a simulation, we can gather a number of performance measures. Table

21 show some of these results for baseline (no intervention) and for a non-optimal NPI

strategy. In addition to the results presented in Table 21, we can also get other performance

measures such as cost, visits to doctors, and total of mixing groups closed.

Baseline refers to no intervention. The NPI shown has a global threshold of 10

cases, a deployment delay of three days, a case isolation threshold of one day, a case iso-

lation duration of seven days, a case isolation compliance for workers of 53%, and a case

isolation compliance for non-workers of 83.6%. This strategy also has a household quar-

antine threshold of one day, a household quarantine duration of 7 days and a household

quarantine compliance of 53% and 83.6% for workers and non-workers respectively. Regard-

ing school closure parameters, this non-optimal NPI strategy closes classes after a threshold

of three new infected cases is reached in a class, closes schools after three classes have closed

for a duration of 21 days. Workplaces departments close after three new cases have been

diagnosed in the department, workplace closes after 30% of departments are closed for a

duration of 7 days.

As shown in Table 21, NPIs succesfuly reduce IAR and CFR as well as contacts,

infections and deaths for all scenarios. Even though they extend pandemic duration, it can
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Table 21: Simulation results for baseline (no intervention) and a non-optimal NPI strategy

Performance Measure Low Medium High
Baseline NPI Baseline NPI Baseline NPI

IAR 33.06% 20.62% 50.80% 36.91% 64.53% 46.08%
CFR 0.69% 0.37% 1.76% 1.10% 2.55% 1.60%
Pandemic Duration (Days) 135 350 93 350 83 271
Total Contacts 1,177,393 738,716 1,047,302 709,958 1,063,751 682,295
Contacts 0-19 yrs. 818,912 618,661 520,883 484,052 482,881 432,625
Contacts 20-64 yrs. 294,046 102,973 416,307 181,986 486,013 203,731
Contacts 65-99 yrs. 64,435 17,082 110,112 43,920 112,857 45,939
Contacts Households 238,684 344,169 236,850 361,050 234,411 336,832
Contacts MG Types 1-2 231,051 37,785 392,793 106,101 439,368 118,571
Contacts Schools 699,427 352,987 403,908 235,560 372,678 217,948
Contacts MG Types 9-12 8,231 3,775 13,751 7,247 17,294 8,944
Total Infections 335,071 208,959 514,844 374,132 654,051 467,026
Infections 0-19 yrs. 225,467 156,849 230,127 201,319 229,952 210,941
Infections 20-64 yrs. 91,959 43,135 228,753 137,328 344,381 206,455
Infections 65-99 yrs. 17,645 8,975 55,964 35,485 79,718 49,630
Infections Households 37,562 65,107 92,217 141,603 136,127 203,884
Infections MG Types 1-2 46,600 7,019 168,185 49,784 249,929 73,968
Infections Schools 249,304 136,043 247,838 178,982 256,796 183,242
Infections MG Types 9-12 1,605 790 6,604 3,763 11,199 5,932
Total Deaths 7,009 3,764 17,851 11,111 25,858 16,238
Deaths 0-19 yrs. 1,041 744 1,090 975 1,077 1,047
Deaths 20-64 yrs. 4,095 2,059 10,681 6,332 16,018 9,725
Deaths 65-99 yrs. 1,873 961 6,080 3,804 8,763 5,466

be expected vaccines will be available sometime during the pandemic and it would not be

extended for such a long period of time.

The majority of contacts are made by the age group 0-19 years, followed by adults 20-

64 years. Most of these contacts happen at schools and workplaces types 1-2. Consequently

the majority of infections happen at schools and workplaces. With school closure and

workplace closure strategies in place, the number of infections at households increases.

Figure 10 shows graphs for daily infected, deaths and contacts for a low, medium,

and high transmissibility scenario. In these graphs the blue line represents the baseline and

the green line the typical NPI strategy. As it can be observed from these graphs, the typical

NPI strategy looses effectiveness for a medium and a high transmissibility scenario. Using

these graphs we can also observe that NPIs can reduce peak attack rates and death rates.

When NPIs are lifted and then put in place again it causes new pandemic waves to emerge

as evident from the daily infections graphs.
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Figure 10: Daily infections, deaths and contacts for baseline and a non-optimal NPI
strategy for three transmissibility scenarios

59



Figure 10: (Continued)
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Figure 10: (Continued)
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Figure 10: (Continued)
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Figure 10: (Continued)

6.2 Two-Level Experiment Results

In this section we present the results for the two-level experiment for the three

transmissibility scenarios considered.

6.2.1 Low Transmissibility Scenario

The ANOVA table for the two-level design for the low transmissibility scenario is

shown in Table 22. The level of significance that we used to determine significant factors

was 0.01, which are the factors marked with two and three stars in the significance level

column. Table 23 shows the main effects factors that resulted to be significant. In this

table, the mean number of infected at low and high levels are also presented. Figure 11

shows this graphically.

As expected an increase in factors such as global threshold, number of cases to close

a class, number of classes to close a school, and number of cases to close a department,
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Table 22: ANOVA Table for the low transmissibility scenario two-level fractional factorial
experiment using total number of infected as the measure of performance
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results in an increase in mean number of infected. Similarly, an increase in school and

workplace closure duration results in a decrease in mean number of infected.

Table 23: Significant main effects observations using infected as the measure of
performance for the low transmissibility scenario for the two-level fractional factorial

experiment

Factor Low level High level Observation

GD 56,060.11 61,817.11 An increase in deployment delay from 3 to 7
days results in an increase of 0.57% in total
number of infected.

ID 66,215.46 51,661.76 An increase in case isolation threshold from
0 to 1 day results in a decrease of 1.44% in
total number of infected.

CMS 18,177.97 99,699.25 An increase in the number of cases to close a
class from 1 to 3 cases results in an increase
of 8.04% in total number of infected.

MS 49,288.14 68,589.08 An increase in the number of classes to close a
school from 1 to 3 classes results in an increase
of 1.90% in total number of infected.

PMS 77,931.92 39,945.29 An increase in school closure duration from
21 to 42 days results in a decrease of 3.75%
in total number of infected.

CMW 52,448.55 65,428.67 An increase in the number of cases to close
a department from 3 to 5 cases results in an
increase of 1.28% in total number of infected.

PMW 61,000.09 56,877.13 An increase in workplace closure duration
from 7 to 14 days results in a decrease of
0.41% in total number of infected.

The percentage in decreased number of infected is shown in Table 23. School closure

proves to be the most significant intervention, with a small increase in number of cases to

close a class, a large increase in total number of infected was observed. A small increase in

school closure duration, results in a large decrease in the total number of infected. Since

majority of contacts and infections happen in schools and among children, this result was

expected. A result that was not expected is the behavior of the case isolation threshold.

Isolating individuals one day after becoming symptomatic resulted in a decrease in the

total number of infected. Analyzing the behavior of individuals during NPIs as discussed

before, once NPIs are in place, the number of infections in household increases, making it

65



more effective to have an infected individual during its first day of infectiousness contacting

others at work or community instead of home where contact probabilities are higher. Table

24 shows the significant interactions for the low transmissibility scenario. In this table the

values of the mean infected at each point of the graph is presented along with the percentage

of increase or decrease in the total number of infected.

Figure 11: Main factor effects for the low transmissibility scenario for the two-level
fractional factorial experiment
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Figure 11: (Continued)
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Figure 11: (Continued)
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Figure 11: (Continued)
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Table 24: Significant interactions observations for the low transmissibility scenario for
the two-level fractional factorial experiment

Interaction Low, Low High, Low Low, High High, High

ID x CMS 19,752.47 16,603.47 11,2678.44 86,720.05
ID x PMS 87,886.86 67,976.99 44,544.05 35,346.53
ID x CMW 57,762.98 47,134.12 74,667.93 56,189.4
CMS x MS 11,993.5 86,582.77 24,362.44 112,815.72
CMS x PMS 23,125.62 132,738.23 13,230.33 66,660.26
CMS x CMW 16019.4 88,877.71 20,336.55 110,520.78
MS x PMS 73,137.96 82,725.89 25,438.32 54,452.27
PMS x CMW 65,395.32 39,501.79 90,468.53 403,88.8

Interaction Interpretation

ID x CMS When number of cases to close a school is one, an
increase in case isolation threshold from 0 to 1
day results in a decrease in total number of infected by 0.31%.
When number of cases to close a school is three, an
increase in case isolation threshold from 0 to 1 day
results in a decrease in total number of infected by 2.56%.

ID x PMS When school closure duration is 21 days, an increase
in case isolation threshold from 0 to 1 day results in a
decrease in total number of infected by 1.96%.
When school closure duration is 42 days, an increase
in case isolation threshold from 0 to 1 day results
in a decrease in total number of infected by 0.91%.

ID x CMW When cases to close a workplace is three, an increase
in case isolation threshold from 0 to 1 day results in
a decrease in total number of infected by 1.05%.
When cases to close a workplace is five, an increase
in case isolation threshold from 0 to 1 day results in
a decrease in total number of infected by 1.82%.

CMS x MS When total number of classes to close a school is one,
an increase in the number of cases to close a school from
1 to 3 cases results in an increase in total number of infected by 7.36%.
When total number of classes to close a school is 3, an
increase in the total number of cases to close a school from
1 to 3 cases results in an increase in total number of infected by 8.73%.

CMS x PMS When school closure duration is 21 days, an increase
in cases to close a class from 1 to 3 cases results in
an increase in total number of infected by 10.81%.
When school closure duration is 42 days, an increase in
cases to close a class from 1 to 3 cases results in an
increase in total number of infected by 5.27%.

CMS x CMW When classes to close a school is 3 classes, an increase
in cases to close a class from 1 to 3 cases results in
an increase in total number of infected by 7.19%.
When classes to close a school is 5 classes, an increase
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Table 24 (Continued)

in cases to close a class from 1 to 3 cases results in an
increase in total number of infected by 8.90%.

MS x PMS When school closure duration is 21 days, an increase in
number of classes to close a school from 1 to 3 classes
results in an increase in total number of infected by 0.95%.
When school closure duration is 42 days, an increase in
number of classes to close a school from 1 to 3 classes
results in an increase in total number of infected by 2.86%.

PMS x CMW When number of cases to close a workplace is 3 cases,
an increase in school closure duration from 21 to 42 days
results in a decrease in total number of infected by 2.55%.
When number of cases to close a workplace is 5 cases, an
increase in school closure duration from 21 to 42 days
results in a decrease in total number of infected by 4.94%.

Figure 12: Interaction effects for the low transmissibility scenario for the two-level
fractional factorial experiment
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Figure 12: (Continued)
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Figure 12: (Continued)
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Figure 12: (Continued)
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Figure 12: (Continued)

The most notable interaction results are ID x CMS, CMS x PMS, and MS x PMS.

As seen in Figure 12, case isolation threshold has a major impact when the number of

cases to close a classroom in a school is three as opposed to one. As discussed before,

when an individual is in its first day of infectiousness is better to not keep him at home

where contact probabilities are higher. When we wait too long to close a school, is better

(from these results,) to keep kids in school for that first day of infectiousness than at home.

Contacts at school are high, but the probability of contacting someone at home is higher.

Add to this that the infected individual is in its day where viral shedding is higher, and the

probability of infecting someone at home is greater than at school.

Figure 12 shows the interaction between the factors number of cases to close a class

and school closure duration. The number of cases to close a class has a big impact in total

number of infections independent of the duration of school closure. However, an increase in

classes to close a class from 1 to 3 when school closure duration is 21 days results in a 10.86%

increase in total number of infected, as opposed to 5.27% when school closure duration is

42 days. This shows that for small periods of school closure it is important to close classes
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immediately after observing one infected case in a class. However, as shown in Figure 12,

when having a longer period of school closure is better to close a school immediately after

one class has been closed. A stringent duration is more beneficial when schools are closed

immediately after closing a class. The number of classes to close a school is not of major

impact for short closure durations.

The regression analysis for the low transmissibility scenario two-level fractional fac-

torial experiment is shown in Table 26.

This model has an R-square value of 65.2%. The graph for residual analysis and

the normal probability plot for residuals is shown in Figure 13. Even including all the

factors in the low transmissibility model only increases the R-square value to 67.81%. Low

R-square value tells us that the linear regression is not enough to characterize variation in

total number of infected across changes in all factors considered. However, the optimization

of the regression equation still resulted in a policy that significantly improves performance

compare to baseline and the non-optimal NPI strategy. The optimal strategy is shown in

Table 25.

Figure 13: Residuals plot and normal probability plot for the regression analysis for the
low transmissibility scenario for the two-level fractional factorial experiment
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Figure 13: (Continued)

Table 25: Optimal NPI strategy for the low transmissibility scenario based on the
two-level fractional factorial experiment

Factor Optimal Value Factor Optimal Value Factor Optimal Value

GT 10 GD 7 ID 1
IP 10 ICW 0.75 ICNW 0.57
HD 1 HP 7 HCW 0.53

HCNW 0.84 CMS 1 MS 3
PMS 21 CMW 3 MW 0.3
PMW 7

As shown in Table 25 the optimal NPI strategy was able to achieve containment

with an IAR of 1.83%. For the low transmissibility scenario, an optimal NPI strategy can

also reduce the duration of pandemic. It also reduces infections, deaths, contacts, and CFR.

As shown in Figure 14, an optimal NPI strategy not only reduces IAR but peak

attack rates, thus reducing the pressure on hospitals and the health care system in general.

Figures 15 through 16 shows baseline vs. optimal NPI strategy daily deaths and contacts,

respectively.
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Table 26: Regression analysis for the low transmissibility scenario for the two-level
fractional factorial experiment
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Table 27: Performance measures for baseline vs. optimal NPI strategy for the low
transmissibility scenario based on the two-level fractional factorial experiment

Measure Baseline NPI Measure Baseline NPI
IAR 33.06% 1.83% Infections 0-19 yrs. 225,467 14,345
CFR 0.69% 0.03% Infections 20-64 yrs. 91,959 3,346
Pandemic Duration (Days) 135 75 Infections 65-99 yrs. 17,645 857
Total Contacts 1,177,393 71,771 Infections Households 37,562 7,470
Contacts 0-19 yrs. 818,912 62,920 Infect. MG Types(1-2) 46,600 535
Contacts 20-64 yrs. 294,046 7,160 Infect. Schools 249,304 10,458
Contacts 65-99 yrs. 64,435 1,691 Infect. MG Types(9-12) 1,605 85
Contacts Households 238,684 40,213 Total Deaths 7,009 303
Contacts MG Types(1-2) 231,051 3,185 Deaths 0-19 yrs. 1,041 67
Contacts Schools 699,427 28,013 Deaths 20-64 yrs. 4,095 156
Contacts MG Types(9-12) 8,231 360 Deaths 65-99 yrs. 1,873 80
Total Infections 335,071 18,548

Figure 14: Daily infections for baseline vs. optimal NPI strategy for the low
transmissibility scenario based on the two-level fractional factorial experiment
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Figure 15: Daily deaths for baseline vs. optimal NPI strategy for the low transmissibility
scenario based on the two-level fractional factorial experiment

Figure 16: Daily contacts for baseline vs. optimal NPI strategy for the low
transmissibility scenario based on the two-level fractional factorial experiment
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6.2.2 Medium Transmissibility Scenario

The ANOVA table for the two-level fractional factorial experiment for the medium

transmissibility scenario is shown in Table 28. The level of significance that we used to

determine significant factors was 0.01, which are the factors marked with two and three

stars in the significance level column. Table 29 shows the main effects factors that resulted

to be significant. In this table, the mean number of infected at low and high levels are also

presented. Figure 17 shows this graphically.

As shown in Figure 17, an increase in the factors global threshold, deployment delay,

number of cases to close a department in a workplace, number of classes to close a school,

and number of cases to close a classroom result in an increase in the total number of infected.

But an increase in the factors of school and workplace closure duration, reduces the total

number of infections. The percentage in decrease/increase number of infected is shown

in Table 29. In the medium transmissibility scenario we also noted that school closure is

perhaps the more significant intervention. With an increase in the number of cases to close

a class from one case to three cases, an increase of 15.42% is observed in the total number of

infected. Also, an increase from one to three classes to close a school resulted in an increase

of 5.35%. Increasing school closure duration from 21 to 42 days, decreased the total number

of infected by 5.56%. Workplace closure factors were significant, but the impact in total

number of infections is not as notable as with school closure. Even though we observed the

same behavior with case isolation threshold as in the low transmissibility scenario, isolating

individuals after one day of becoming symptomatic only resulted in a 0.61% reduction in

total number of infected.

Table 30 shows all significant interactions for medium transmissibility scenario for

the two-level fractional factorial experiment. Figure 18 show the graphs for these significant

interactions. The interaction of global threshold with deployment delay shows that for a

short deployment delay, an increase in the number of cases to declare pandemic does not

have a significant impact on total number of infections. However, as the deployment delay

increase to seven days, then an increase in global threshold from 10 to 50 cases results in

an increase of 6.10% in total number of infections.
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Table 28: ANOVA Table for medium transmissibility scenario two-level fractional factorial
experiment using total number of infected as measure of performance
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Table 29: Significant main effects observations using infected as the measure of
performance for the medium transmissibility scenario for the two-level fractional factorial

experiment

Factor Low level High level Observation

GT 259,959.6 291,117.2 An increase in the number of cases to declare
pandemic from 10 to 50 cases results in an increase
of 3.07% in total number of infected.

GD 259,887.4 291,189.3 An increase in deployment delay from 3 to 7
days results in an increase of 3.09% in
total number of infected.

ID 278,648.6 272,428.2 An increase in case isolation threshold from
0 to 1 day results in a decrease of 0.61%
in total number of infected.

CMS 197,414.6 353,662.2 An increase in the number of cases to close
a school from 1 to 3 cases results in an
increase of 15.42% in total number of infected.

MS 248,420.4 302,656.4 An increase in the number of classes to close
a school from 1 to 3 classes results in an
increase of 5.35% in total number of infected.

PMS 303,711.8 247,365 An increase in school closure duration from 21 to
42 days results in a decrease of 5.56% in
total number of infected.

CMW 262,192.5 288,884.3 An increase in the number of cases to close
a department from 3 to 5 cases results in an
increase of 2.63% in total number of infected.

PMW 277,893.4 273,183.4 An increase in workplace closure duration from
7 to 14 days results in a decrease of 0.46%
in total number of infected.

This particular result shows the importance of surveillance and preparedness. When

interventions are not prepared to be deployed soon after pandemic declaration in a region,

then pandemic declaration should happen with a minimal number of cases to ensure a better

NPI effectiveness. Table 30 shows all significant interactions for medium transmissibility

scenario for the two-level fractional factorial experiment. Figures 18 show the graphs for

these significant interactions.

The interaction of global threshold with deployment delay shows that for a short

deployment delay, an increase in the number of cases to declare pandemic does not have a

significant impact on total number of infections. However, as the deployment delay increase

to seven days, then an increase in global threshold from 10 to 50 cases results in an increase
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of 6.10% in total number of infections. This particular result shows the importance of

surveillance and preparedness. When interventions are not prepared to be deployed soon

after pandemic declaration in a region, then pandemic declaration should happen with a

minimal number of cases to ensure a better NPI effectiveness.

Figure 17: Main factor effects for the medium transmissibility scenario for the two-level
fractional factorial experiment
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Figure 17: (Continued)
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Figure 17: (Continued)
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Figure 17: (Continued)
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Table 30: Significant interactions observations for the medium transmissibility scenario
for the two-level fractional factorial experiment

Interaction Low, Low High, Low Low, High High, High

GT x GD 259,641.9 260,133 260,277.3 322,101.4
GT x CMS 169,456.9 225,372.2 350,462.2 356,862.2
GT x MS 227,135.7 269,705.1 292,783.5 312,529.3
GT x PMS 291,084.6 316,339 228,834.5 265,895.5
GD x HCNW 262,061.6 290,043.1 257,713.3 292,335.5
GD x CMS 168,656.3 226,172.8 351,118.6 356,205.8
GD x MS 227,271.5 269,569.3 292,503.3 312,809.4
GD x PMS 290,697.9 316,725.6 229,077 265,653
ID x CMS 198,449.7 196,379.5 358,847.4 348,477
PMW x HCW 280,010.6 271,999.1 275,776.2 274,367.6
CMS x MS 159,445.1 337,395.7 235,384 369,928.8
MS x PMS 279,473.8 327,949.8 217,367 277,363
PMS x CMW 298,008.2 226,376.8 309,415.4 268,353.2
PMS x PMW 304,002.9 251,783.9 303,420.7 242,946.1
CMS x CMW 187,461.1 336,923.9 207,368 370,400.5

Interaction Interpretation

GT x GD When deployment delay is three days, an increase in cases to declare
pandemic from 10 to 50 cases results in an increase in total number
of infected by 0.05%.
When deployment delay is seven days, an increase in cases to declare
pandemic from 10 to 50 cases results in an increase in total number
of infected by 6.10%.

GT x CMS When number of cases to close a class is one, an increase in cases
to declare pandemic from 10 to 50 cases results in an increase in
total number of infected by 5.52%.
When number of cases to close a class is three, an increase in cases
to declare pandemic from 10 to 50 cases results in an increase in
total number of infected by 0.63%.

GT x MS When number of classes to close a school is one, an increase in cases
to declare pandemic from 10 to 50 cases results in an increase in
total number of infected by 4.20%.
When number of classes to close a school is three, an increase in
cases to declare pandemic from 10 to 50 cases results in an increase
in total number of infected by 1.95%.

GT x PMS When school closure duration is 21 days, an increase in cases to
declare pandemic from 10 to 50 cases results in an increase in
total number of infected by 2.49%.
When school closure duration is 42 days, an increase in cases to
declare pandemic from 10 to 50 cases results in an increase in
total number of infected by 3.66%.

GD x HCNW When household quarantine compliance for non-workers is 57.5%,
an increase in deployment delay from 3 to 7 days results in an
increase in total number of infected by 2.76%.
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Table 30 (Continued)

When household quarantine compliance for non-workers is 83.6%, an
increase in deployment delay from 3 to 7 days results in an increase
in total number of infected by 3.42%.

GD x CMS When cases to close a class is 1, an increase in deployment delay
from 3 to 7 days results in an increase in total number of infected
by 5.67%.
When cases to close a class is 3, an increase in deployment delay
from 3 to 7 days results in an increase in total number of infected
by 0.5%.

GD x MS When number of classes to close a school is 1, an increase in
deployment delay from 3 to 7 days results in an increase in total
number of infected by 4.17%.
When number of classes to close a school is 3, an increase in
deployment delay from 3 to 7 days results in an increase in total
number of infected by 2%.

GD x PMS When school closure duration is 21 days, an increase in deployment
delay from 3 to 7 days results in an increase in total number of
infected by 2.57%.
When school closure duration is 42 days, an increase in deployment
delay from 3 to 7 days results in an increase in total number of
infected by 3.61%.

ID x MS When number of cases to close a school is one, an increase in
case isolation threshold from 0 to 1 day results in a decrease
in total number of infected by 0.20%.
When number of cases to close a school Is three,an increase in
case isolation threshold from 0 to 1 day results in a decrease
in total number of infected by 1.02%.

PMW x HCW When household quarantine compliance for workers is 53%, an
increase in workplace closure duration from 7 to 14 days results
in a decrease in total number of infected by 0.79%.
When household quarantine compliance for workers is 75.4%, an
increase in workplace closure duration from 7 to 14 days results
in a decrease in total number of infected by 0.14%.

CMS x MS When total number of classes to close a school is one, an increase
in the number of cases to close a school from 1 to 3 cases results
in an increase in total number of infected by 17.56%.
When total number of classes to close a school is 3, an increase
in the total number of cases to close a school from 1 to 3 cases
results in an increase in total number of infected by 13.27%.

MS x PMS When school closure duration is 21 days, an increase in number
of classes to close a school from 1 to 3 classes results in an
increase in total number of infected by 4.78%.
When school closure duration is 42 days, an increase in number
of classes to close a school from 1 to 3 classes results in an
increase in total number of infected by 5.92%.
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Table 30 (Continued)

PMS x CMW When number of cases to close a workplace is 3 cases, an increase
in school closure duration from 21 to 42 days results in a decrease
in total number of infected by 7.07%.
When number of cases to close a workplace is 5 cases, an increase
in school closure duration from 21 to 42 days results in a decrease
in total number of infected by 4.05%.

PMS x PMW When workplace closure duration is 7 days, an increase in school
closure duration from 21 to 42 days results in a decrease in total
number of infected by 5.15%.
When workplace closure duration is 14 days, an increase in school
closure duration from 21 to 42 days results in a decrease in total
number of infected by 5.97%.

(CMS)(CMW) When classes to close a school is 3 classes, an increase in cases
to close a class from 1 to 3 cases results in an increase in total
number of infected by 14.75%
When classes to close a school is 5 classes, an increase in cases
to close a class from 1 to 3 cases results in an increase in total
number of infected by 16.09%

Figure 18: Interaction effects for the medium transmissibility scenario for the two-level
fractional factorial experiment
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Figure 18: (Continued)
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Figure 18: (Continued)
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Figure 18: (Continued)
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Figure 18: (Continued)
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Figure 18: (Continued)
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Figure 18: (Continued)
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Figure 18: (Continued)
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Figure 19: Residuals plot and normal probability plot for the regression analysis for the
medium transmissibility scenario for the two-level fractional factorial experiment

Interactions like GT x CMS, GD x MS, GD x CMS, and GT x MS show that

for stringent school closure strategies, the most effectiveness is achieved when they start

immediately after closing one classroom. When starting closure later with more cases, then

an increase in global threshold and deployment delay results in a large increase in the total

number of infected.
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All these results helps us in understanding the underlying relationships among NPI

implementation parameters. It is important to note that is not one or two factors that

comprise an optimal strategy but is multiple factors that are embedded in the regression

analysis. The regression analysis for the medium transmissibility scenario two-level frac-

tional factorial experiment is shown in Table 31.

Table 31: Regression analysis for the medium transmissibility scenario for the two-level
fractional factorial experiment
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Table 32: Optimal NPI strategy for the medium transmissibility scenario based on the
two-level fractional factorial experiment

Factor Optimal Value Factor Optimal Value Factor Optimal Value

GT 10 GD 3 ID 1
IP 7 ICW 0.53 ICNW 0.84
HD 1 HP 7 HCW 0.75

HCNW 0.84 CMS 1 MS 1
PMS 42 CMW 3 MW 0.5
PMW 14

Table 33: Performance measures for baseline vs. optimal NPI strategy for medium
transmissibility scenario based on two-level fractional factorial experiment

Measure Baseline NPI Measure Baseline NPI
IAR 50.80% 3.42% Infections 0-19 yrs. 230,127 17,179
CFR 1.76% 0.11% Infections 20-64 yrs. 228,753 13,417
Pandemic Duration (Days) 93 84 Infections 65-99 yrs. 55,964 4,065
Total Contacts 1,047,302 67,823 Infections Households 92,217 17,977
Contacts 0-19 yrs. 520,883 40,110 Infect. MG Types(1-2) 168,185 7,588
Contacts 20-64 yrs. 416,307 20,765 Infect. Schools 247,838 8,670
Contacts 65-99 yrs. 110,112 6,948 Infect. MG Types(9-12) 6,604 426
Contacts Households 236,850 39,326 Total Deaths 17,851 1,158
Contacts MG Types(1-2) 392,793 16,587 Deaths 0-19 yrs. 1,090 67
Contacts Schools 403,908 11,134 Deaths 20-64 yrs. 10,681 71
Contacts MG Types(9-12) 13,751 776 Deaths 65-99 yrs. 6,080 656
Total Infections 514,844 34,661

This model has an R-square value of 91.44%. The graph for residual analysis and

the normal probability plot for residuals is shown in Figure 19. As opposed to the low

transmissibility scenario, for the medium transmissibility scenario this model does a better

job in characterizing the variation in total number of infected across changes in all factors

considered. The resulting optimal NPI strategy for a medium transmissibility scenario also

improves performance compared to baseline and the non-optimal NPI strategy. The optimal

strategy is shown in Table 32. As shown in Table 33 the optimal NPI strategy contains the

pandemic achieving an IAR of 3.42%. For this scenario, an optimal NPI strategy can also

reduce the duration of pandemic. It also reduces infections, deaths, contacts, and CFR.

As shown in Figures 20 through 22 an optimal NPI strategy for a medium transmissibility

scenario can reduce infections, deaths, and contacts as well as the peak number of infections,

deaths, and contacts. These figures also show that the opening and re-opening of schools

and workplaces results in 4 pandemic waves as opposed to one in the baseline.
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Figure 20: Daily infections for baseline vs. optimal NPI strategy for the medium
transmissibility scenario based on the two-level fractional factorial experiment

Figure 21: Daily deaths for baseline vs. optimal NPI strategy for the medium
transmissibility scenario based on the two-level fractional factorial experiment
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Figure 22: Daily contacts for baseline vs. optimal NPI strategy for the medium
transmissibility scenario based on the two-level fractional factorial experiment

6.2.3 High Transmissibility Scenario

The ANOVA table for the two-level fractional factorial experiment for the high

transmissibility scenario is shown in Table 34. The level of significance that we used to

determine significant factors was 0.01, which are the factors marked with two and three

stars in the significance level column. Table 35 shows the main effect factors that resulted

to be significant. In this table, the mean number of infected at low and high levels are also

presented. Figure 23 shows this graphically.
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Table 34: ANOVA table for the high transmissibility scenario for the two-level fractional
factorial experiment using total number of infected as the measure of performance
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Figure 23: Main factor effects for the high transmissibility scenario for the two-level
fractional factorial experiment
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Figure 23: (Continued)
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Figure 23: (Continued)
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Figure 23: (Continued)
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Figure 23: (Continued)

As shown in Figure 23, an increase in the factors global threshold, deployment delay,

number of cases to close a department in a workplace, percentage of departments closed

to close a workplace, number of classes to close a school, and number of cases to close a

classroom result in an increase in the total number of infected. But an increase in the

factors of school and workplace closure duration, reduces the total number of infections.

The percentage in decrease/increase number of infected is shown in Table 35. In the high

transmissibility scenario we also noted that school closure is perhaps the more significant

intervention. But the most significant factors of these intervention are the number of cases

to close a class. With an increase in the number of cases to close a class from one case to

three cases, an increase of 17.7% is observed in the total number of infected. An increase

in the number of classes to close a school from 1 to 3 classes results in an increase in the

total number of infected by 5%. For the high transmissibility scenario, workplace closure is

also a significant factor, an increase in the number of cases to close a department from 3 to

5 cases results in an increase in the total number of infected by 3.87%. This factor was not
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as significant for the low and medium transmissibility scenarios. Even though we observed

the same behavior with case isolation threshold as in the low and medium transmissibility

scenarios, isolating individuals after one day of becoming symptomatic only resulted in a

0.82% reduction in the total number of infected.

Table 35: Significant main effects observations using the number of infected as the
measure of performance for the high transmissibility scenario for the two-level fractional

factorial experiment

Factor Low level High level Observation

GT 380,431.4 410,133.1 An increase in the number of cases to declare
pandemic from 10 to 50 cases results in an increase
of 2.93% in total number of infected.

GD 380,938.5 409,626 An increase in deployment delay from 3 to 7 days
results in an increase of 2.83% in total number
of infected.

ID 399,428.3 391,136.2 An increase in case isolation threshold from
0 to 1 day results in a decrease of 0.82% in total
number of infected.

CMS 305,605.2 484,959.3 An increase in the number of cases to close
a school from 1 to 3 cases results in an increase of
17.70% in total number of infected.

MS 369,950.8 420,613.7 An increase in the number of classes to close
a school from 1 to 3 classes results in an increase
of 5% in total number of infected.

PMS 409,290.6 381,273.9 An increase in school closure duration from
21 to 42 days results in a decrease
of 2.76% in total number of infected.

CMW 375,644.5 414,919.9 An increase in the number of cases to close
a department from 3 to 5 cases results
in an increase of 3.87% in total number of infected.

MW 391,561.6 399,002.9 An increase in the percentage of departments
to close a workplace from 30% to 50% results in
an increase of 0.73% in total number of infected.

PMW 398,467.8 392,096.6 An increase in workplace closure duration from
7 to 14 days results in a decrease of 0.63% in
total number of infected.
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Table 36: Significant interactions observations for the high transmissibility scenario for
the two-level fractional factorial design

Interaction Low, Low High, Low Low, High High, High

GT x GD 381,745 380,132 379,117.8 440,134.2
GT x ID 385,870 412,986.6 374,992.7 407,279.6
GT x CMS 276,996.5 334,213.9 483,866.2 486,052.3
GT x MS 349,671.1 390,230.4 411,191.6 430,035.8
GT x PMS 396,103.7 422,477.4 364,759 397,788.8
GD x CMS 276,848 334,362.4 485,028.9 484,889.6
GD x MS 350,353.3 389,548.2 411,523.6 429,703.7
ID x CMS 308,203.8 303,006.6 490,652.8 479,265.7
ID x CMW 377,831.4 373,457.7 421,025.2 408,814.6
CMS x MS 254,676.1 485,225.4 356,534.2 484,693.1
CMS x PMS 324,886.3 493,694.8 286,324.1 476,223.7
CMS x CMW 287,832.9 463,456.2 323,377.5 506,462.4
CMS x MW 303,972.7 479,150.5 307,237.7 490,768.1
MS x PMS 387,480.4 431,100.7 352,421.2 410,126.7

Interaction Interpretation

GT x GD When deployment delay is three days, an increase in cases to
declare pandemic from 10 to 50 cases results in a
decrease in total number of infected by 0.16%.
When deployment delay is seven days, an increase in cases
to declare pandemic from 10 to 50 cases results in an
increase in total number of infected by 6.02%.

GT x ID When case isolation threshold is zero, an increase in cases
to declare pandemic from 10 to 50 cases results in an increase
in total number of infected by 2.68%.
When case isolation threshold is one, an increase in cases to
declare pandemic from 10 to 50 cases results in an increase in
total number of infected by 3.19%.

GT x CMS When number of cases to close a class is one, an increase in
cases to declare pandemic from 10 to 50 cases results in an
increase in total number of infected by 5.65%.
When number of cases to close a class is three, an increase
in cases to declare pandemic from 10 to 50 cases results in
an increase in total number of infected by 0.22%.

GT x MS When number of classes to close a school is one, an increase
in cases to declare pandemic from 10 to 50 cases results in an
increase in total number of infected by 4%.
When number of classes to close a school is three, an increase
in cases to declare pandemic from 10 to 50 cases results in an
increase in total number of infected by 1.86%.

GT x PMS When school closure duration is 21 days, an increase in cases
to declare pandemic from 10 to 50 cases results in an increase
in total number of infected by 2.60%.
When school closure duration is 42 days, an increase in cases
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Table 36 (Continued)

to declare pandemic from 10 to 50 cases results in an increase
in total number of infected by 3.26%.

GD x CMS When cases to close a class is 1, an increase in deployment
delay from 3 to 7 days results in an increase in total number
of infected by 5.67%.
When cases to close a class is 3, an increase in deployment
delay from 3 to 7 days results in a decrease in total number
of infected by 0.01%.

GD x MS When number of classes to close a school is 1, an increase in
deployment delay from 3 to 7 days results in an increase in
total number of infected by 3.87%.
When number of classes to close a school is 3, an increase in
deployment delay from 3 to 7 days results in an increase in
total number of infected by 1.79%.

ID x CMS When number of cases to close a school is one, an increase
in case isolation threshold from 0 to 1 day results in a
decrease in total number of infected by 0.51%.
When number of cases to close a school Is three,an increase
in case isolation threshold from 0 to 1 day results in a
decrease in total number of infected by 1.12%.

ID x CMW When number of cases to close a department is three, an
increase in case isolation threshold from 0 to 1 day results in a
decrease in total number of infected by 0.43%.
When number of cases to close a department is five, an increase
in case isolation threshold from 0 to 1 day results in a decrease
in total number of infected by 1.20%.

CMS x MS When total number of classes to close a school is one, an
increase in the number of cases to close a school from 1 to 3 cases
results in an increase in total number of infected by 22.75%.
When total number of classes to close a school is 3, an increase
in the total number of cases to close a school from 1 to 3 cases
results in an increase in total number of infected by 12.64%.

CMS x PMS When school closure duration is 21 days, an increase in cases to
close a class from 1 to 3 cases results in an increase in total
number of infected by 16.66%.
When school closure duration is 42 days, an increase in cases to
close a class from 1 to 3 cases results in an increase in total
number of infected by 18.74%.

CMS x CMW When classes to close a school is 3 classes, an increase in cases
to close a class from 1 to 3 cases results in an increase in total
number of infected by 17.33%.
When classes to close a school is 5 classes, an increase in cases
to close a class from 1 to 3 cases results in an increase in total
number of infected by 18.06%.

CMS x MW When percentage of departments to close a workplace is 30%, an
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increase in number of cases to close a class from 1 to 3 cases
results in an increase in total number of infected by 17.28%.
When percentage of department to close a workplace is 50%, an
increase in number of cases to close a class from 1 to 3 cases
results in an increase in total number of infected by 18.11%.

MS x PMS When school closure duration is 21 days, an increase in number
of classes to close a school from 1 to 3 classes results in an
increase in total number of infected by 4.30%.
When school closure duration is 42 days, an increase in number
of classes to close a school from 1 to 3 classes results in an
increase in total number of infected by 5.69%.

Table 36 shows all significant interactions for high transmissibility scenario for the

two-level fractional factorial experiment. Figure 24 show the graphs for these significant

interactions. As with the medium transmissibility scenario the interaction of global thresh-

old with deployment delay shows that for a short deployment delay, an increase in the

number of cases to declare pandemic does not have a significant impact on total number

of infections. However, as the deployment delay increases to seven days, then an increase

in global threshold from 10 to 50 cases results in an increase of 6.02% in total number of

infections. This particular result shows the importance of surveillance and preparedness.

When interventions are not prepared to be deployed soon after pandemic declaration in a

region, then pandemic declaration should happen with a minimal number of cases to ensure

a better NPI effectiveness.

Interactions like GT x CMS, GT x MS, GD x CMS, and GD x MS show that

for stringent school closure strategies, the most effectiveness is achieved when they start

immediately after closing one classroom. When starting closure later with more cases, then

an increase in global threshold and deployment delay results in a large increase in the total

number of infected. All these results helps us in understanding the underlying relationships

among NPI implementation parameters. It is important to note that is not one or two

factors that comprise an optimal strategy but is multiple factors that are embedded in the

regression analysis.
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Figure 24: Interaction effects for the high transmissibility scenario for the two-level
fractional factorial experiment
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Figure 24: (Continued)
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Figure 24: (Continued)
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Figure 24: (Continued)
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Figure 24: (Continued)
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Figure 24: (Continued)
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Figure 24: (Continued)
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The regression analysis for the high transmissibility scenario for the two-level frac-

tional factorial experiment is shown in Table 37.

Figure 25: Residuals plot and normal probability plot for the regression analysis of the
high transmissibility scenario for the two-level fractional factorial experiment
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Table 37: Regression analysis the for high transmissibility scenario for the two-level
fractional factorial experiment
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Table 38: Optimal NPI strategy for the high transmissibility scenario based on the
two-level fractional factorial experiment

Factor Optimal Value Factor Optimal Value Factor Optimal Value

GT 10 GD 3 ID 1
IP 7 ICW 0.75 ICNW 0.84
HD 1 HP 7 HCW 0.75

HCNW 0.57 CMS 1 MS 1
PMS 42 CMW 3 MW 0.3
PMW 14

This model has an R-square value of 95.08%. The graph for the residuals analysis

and the normal probability plot for residuals is shown in Figure 25. As with the medium

transmissibility scenario regression model, this model does a better job than the model

obtained for the medium transmissibility scenario in characterizing the variation in total

number of infected across changes in all the factors considered. The resulting optimal NPI

strategy for a high transmissibility scenario also improves performance compared to baseline

and the non-optimal NPI strategy. The optimal strategy is shown in Table 38.

As shown in Table 39, even though the optimal NPI strategy proves effective in

reducing infections, deaths and contacts it didn’t contain the pandemic. However, a signifi-

cant reduction from 64.53% to 16.97% IN IAR was achieved with the optimal NPI strategy.

Also, for a high transmissibility scenario, NPIs extend pandemic duration. It extended

the pandemic from 83 days for baseline to 350 days for the optimal NPI strategy. In such

an scenario, a combination of NPIs with PHIs may be the best combination for reducing

pandemic duration and further reducing IAR below 10%.
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Table 39: Performance measures for baseline vs. optimal NPI strategy for the high
transmissibility scenario based on the two-level fractional factorial experiment

Measure Baseline NPI Measure Baseline NPI
IAR 64.53% 16.97% Infections 0-19 yrs. 229,952 59,476
CFR 2.55% 0.67% Infections 20-64 yrs. 344,381 88,524

Pandemic Duration (Days) 83 350 Infections 65-99 yrs. 79,718 24,017
Total Contacts 1,063,751 254,011 Infections Households 136,127 86,210

Contacts 0-19 yrs. 482,881 95,796 Infect. MG Types(1-2) 249,929 62,104
Contacts 20-64 yrs. 468,013 122,215 Infect. Schools 256,796 20,891
Contacts 65-99 yrs. 112,857 36,000 Infect. MG Types(9-12) 11,199 2,812

Contacts Households 234,411 125,456 Total Deaths 25,858 6,837
Contacts MG Types(1-2) 439,368 100,155 Deaths 0-19 yrs. 1,077 294

Contacts Schools 372,678 24,311 Deaths 20-64 yrs. 16,018 4,061
Contacts MG Types(9-12) 17,294 4,089 Deaths 65-99 yrs. 8,763 2,482

Total Infections 654,051 172,017

As shown in Figures 26 through 28, even though an optimal NPI strategy could not

achieve containment, it can significantly reduce infections, deaths, and contacts as well as

the peak number of infections and deaths. These figures also show that the opening and

re-opening of schools and workplaces results in the emergence of new pandemic waves.

Figure 26: Daily infections for baseline vs. optimal NPI strategy for the high
transmissibility scenario based on the two-level fractional factorial experiment
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Figure 27: Daily deaths for baseline vs. optimal NPI strategy for the high transmissibility
scenario based on the two-level fractional factorial experiment

Figure 28: Daily contacts for baseline vs. optimal NPI strategy for the high
transmissibility scenario based on the two-level fractional factorial experiment
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6.3 Three-Level Experiment Results

In this section we present the results for the three-level experiment for the three

transmissibility scenarios considered.

6.3.1 Low Transmissibility Scenario

Table 40 shows the ANOVA table for the low transmissibility scenario for the three-

level fractional factorial experiment. Table 41 show the significant factors. Interactions are

discussed later on.

Table 40: ANOVA table for the low transmissibility scenario for the three-level fractional
factorial experiment using total number of infected as the measure of performance

As shown in Figure 29, most of these factors relationship with the response (total

number of infected) is not linear. In what follows we discuss each one of these factors.
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Table 41: Significant main effects and mean number of infected for the low, medium and
high levels for the low transmissibility scenario for the three-level fractional factorial

experiment

Factor Low level Medium level High level

GD 49,377.67 59,917.12 60,089.93

ID 62,256.9 42,475.24 64,652.58

CMS 15,142.99 58,958.73 95,283.01

MS 42,773.41 57,378.54 69,232.77

PMS 80,767.13 47,446.08 41,171.5

CMW 48,136.3 56,585.76 64,662.66

An increase in deployment delay from 3 to 5 days results in an increase by 1.04% in

total number of infections. An increase in deployment delay from 5 to 7 days results in an

increase by 0.02% in total number of infections.

Increasing deployment delay from 5 to 7 days does not have a significant impact on

total number of infected. However, a change in deployment delay from 3 to 5 days results

in an increase in the total number of infected. When considering to deploy interventions

between 3 and 5 days, releasing them at three days results in the least number of infections.

An increase in case isolation threshold from 0 to 1 day results in a decrease by 1.95%

in total number of infections. An increase in case isolation threshold from 1 to 2 days results

in an increase by 2.19% in total number of infections. As expected, increasing case isolation

threshold from one to two days, results in an increase in total number of infected and not in

a further decrease. When an individual is already in their second day in the infectiousness

profile, keeping the infected individual at home is better than letting the individual keep

contacting others at school, work, and/or community.

An increase in cases to close a classroom from 1 to 2 cases results in an increase

by 4.32% in total number of infections. An increase in cases to close a classroom from 2

to 3 cases, results in an increase by 3.58% in total number of infected. Cases to close a

classroom does appear to have more of a linear relationship with the response (total number

of infected). This parameter of school closure is one of the most significant parameters in

this study. Increasing one case to close a class, results in a significant linear increase in the

total number of infected.
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An increase in the number of classes to close a school from 1 to 2 classes, results in

an increase by 1.44% in total number of infections. An increase in the number of classes

to close a school from 2 to 3 classes, results in an increase by 1.17% in total number of

infections.

Just as with the number of cases to close a classroom, the number of classes to close

a school also have a linear relationship with the response. A small increase in one of the two

school closure thresholds result in a significant increase in the total number of infections.

An increase in school closure duration from 21 to 30 days, results in a decrease by

3.29% in total number of infections. An increase in school closure duration from 30 to 42

days, results in a decrease by 0.62% in total number of infections.

School closure duration impact is more notable between 21 and 30 days, as school

closure duration increase from 30 to 42 days is still decreases the total number of infected

but the percentage of decrease is only 0.62% versus 3.29% when closing between 21 and 30

days.

An increase in cases to close a workplace from 3 to 4 cases, results in an increase by

0.83% in total number of infections. An increase in cases to close a workplace from 4 to 5

cases, results in an increase by 0.80% in total number of infections.

Workplace closure reduces the total number of infections, but when compared to

school closure, the impact of this intervention is not as significant. The number of cases to

close a workplace also have a linear relationship with the response.

For the low transmissibility scenario, the significant interactions for the three-level

experiment are ID x MS, MS x PMW, and CMS x PMS. We now discuss each one of them

individually.

Table 42: Mean infected values for the interaction between case isolation threshold and
number of classes to close a school for low transmissibility scenario

ID ↓ \ MS → Low level Medium level High level

Low level 31,556.58 68,900.73 86,313.38
Medium level 33,455.56 39,537 54,433.18
High level 63,308.09 63,697.89 66,951.76
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Figure 29: Main factor effects for the low transmissibility scenario for the three-level
fractional factorial experiment
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Figure 29: (Continued)
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Figure 29: (Continued)
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Figure 30: Interaction between case isolation threshold and number of cases to close a
school for the low transmissibility scenario

Table 30 shows the mean infected values for the interaction between case isolation

threshold and number of classes to close a school for the three-level low transmissibility

scenario experiment. Figure 30 shows this interaction graphically. From this information

we can observe that when the number of classrooms to close a school is one, an increase

in case isolation threshold from 0 to 1, results in an increase by 0.19% in total number of

infections. And an increase in case isolation threshold from 1 to 2, results in an increase y

2.95% in total number of infections.

When the number of classrooms to close a school is two, an increase in case isolation

threshold from 0 to 1, results in a decrease by 2.90% in total number of infections. And

an increase in case isolation threshold from 1 to 2, results in an increase y 2.38% in total

number of infections.

When the number of classrooms to close a school is three, an increase in case isolation

threshold from 0 to 1, results in a decrease by 3.15% in total number of infections. And

an increase in case isolation threshold from 1 to 2, results in an increase y 1.24% in total

number of infections.
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From this interaction we can conclude that independent of the number of classes to

close a classroom the best strategy is to start isolation one day after the individual shows

symptoms. Put perhaps, the best is to close a school after one class has been closed and

start isolation immediately upon showing symptoms (combination that resulted in the least

number of infections).

Table 43: Mean infected values for the interaction between number of classes to close a
school and workplace closure duration for the low transmissibility scenario

MS ↓ \ PMW → Low level Medium level High level

Low level 45,309.71 40,585.11 42,425.40
Medium level 60,913.60 62,727.51 48,494.51
High level 76,517.02 57,105.84 74,075.44

Table 43 shows the mean infected values for the interaction between number of

classes to close a school and workplace closure duration for the three-level for the low

transmissibility scenario experiment. Figure 31 shows this interaction graphically. From

this information we can observe that when workplace closure duration is seven days, an

increase in the number of classes to close a school from 1 to 2 classes, results in an increase

by 1.54% in the total number of infections. And an increase in the number of classes to

close a school from 2 to 3 classes also results in an increase y 1.54% in the total number of

infections. This relationship is linear.

When workplace closure duration is 10 days, an increase in the number of classes

to close a school from 1 to 2 classes, results in an increase by 2.18% in the total number of

infections. And an increase in the number of classes to close a school from 2 to 3 classes

results in a decrease by 0.55% in the total number of infections.

When workplace closure duration is 14 days, an increase in the number of classes

to close a school from 1 to 2 classes, results in an increase by 0.60% in the total number of

infections. And an increase in the number of classes to close a school from 2 to 3 classes

results in an increase y 2.52% in the total number of infections.

This interaction shows that when workplace closure duration is 7 days, the rela-

tionship between an increase in the number of classes to close a school with the response

is linear. As workplace closure duration increases to 10 days, increasing the number of
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Figure 31: Interaction between number of classes to close a school and workplace closure
duration for the low transmissibility scenario

Table 44: Mean infected values for the interaction between number of cases to close a
classroom and school closure duration for the low transmissibility scenario

CMS ↓ \ PMS → Low level Medium level High level

Low level 21,150.69 12,127.38 12,150.89
Medium level 88,205.78 47,100.71 41,569.69
High level 132,944.93 83,110.16 69,793.93

classes to close a school from 1 to 3 classes also results in an increase in the total number

of infected. A major increase is observed when increasing the number of classes to close a

school from 2 to 3 classes. However, when workplace closure duration is 14 days, increasing

the number of classes to close a school results in a decrease and not an increase as with the

other cases.

Table 44 shows the mean infected values for the interaction between number of cases

to close a classroom and school closure duration for the three-level low transmissibility

scenario experiment. Figure 32 shows this interaction graphically. From this information

we can observe that when school closure duration is 21 days, an increase in the number

of cases to close a class from 1 to 2, results in an increase by 6.62% in total number of
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Figure 32: Interaction between number of cases to close a classroom and school closure
duration for the low transmissibility scenario

infections. And an increase in cases to close a class from 2 to 3, results in an increase by

4.41% in total number of infections.

When school closure duration is 30 days, an increase in the number of cases to close

a class from 1 to 2, results in an increase by 3.45% in total number of infections. And an

increase in cases to close a class from 2 to 3, results in an increase by 3.55% in total number

of infections.

When school closure duration is 42 days, an increase in the number of cases to close

a class from 1 to 2, results in an increase by 2.90% in total number of infections. And an

increase in cases to close a class from 2 to 3, results in an increase by 2.78% in total number

of infections.

When school closure duration is 21 and 30 days, an increase in the number of classes

to close a school, increases the number of infected linearly. However, when school closure

duration is 42 days, a major impact in total number of infected is observed when increasing

the number of cases to close a class from 1 to 2 cases. A change from 2 to 3 cases also

increases the number of infected, but the percentage increase is lower.
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The regression analysis for the low transmissibility scenario for the three-level frac-

tional factorial experiment is shown in Table 45.

Figure 33: Residuals plot and normal probability plot for the regression analysis of the
low transmissibility scenario for the three-level fractional factorial experiment
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Table 45: Regression analysis for the low transmissibility scenario for the two-level
fractional factorial experiment

This model has an R-square value of 59.96%. The analysis of residuals and normal

probability plot of residuals is shown in Figure 33. As with the two-level experiment, for low

transmissibility scenario, our model leaves a lot of the variability unaddressed. However, the

optimization of the resulting regression equation resulted in a significantly better strategy

than the typical NPI strategy shown before. In this scenario it also performed significantly

better than the two-level optimal strategy.

Table 46: Optimal NPI strategy for the low transmissibility scenario based on the
three-level fractional factorial experiment

Factor Optimal Value Factor Optimal Value Factor Optimal Value

GT 10 GD 3 ID 1
IP 10 ICW 0.75 ICNW 0.57
HD 1 HP 7 HCW 0.53

HCNW 0.84 CMS 1 MS 1
PMS 35 CMW 3 MW 0.3
PMW 7

The resulting optimal strategy is shown in Table 46 and the results comparing the

performance of this strategy with the baseline scenario is shown in Table 47. As shown

in this table, the optimal NPI strategy was successful in containing the epidemic. It also

reduced overall number of infections, contacts and deaths. Figures 34 through 36 shows
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this information graphically. From these graphs we can see that the optimal strategy not

only reduces significantly the total number of infected, but also peak attack rates and peak

death rates. For this optimal NPI strategy the pandemic duration was also reduced and no

new pandemic waves emerged.

Table 47: Performance measures for baseline vs. optimal NPI strategy for the low
transmissibility scenario based on the three-level fractional factorial experiment

Measure Baseline NPI Measure Baseline NPI
IAR 33.06% 0.55% Infections 0-19 yrs. 225,467 4,315
CFR 0.69% 0.01% Infections 20-64 yrs. 91,959 961

Pandemic Duration (Days) 135 76 Infections 65-99 yrs. 17,645 272
Total Contacts 1,177,393 21,440 Infections Households 37,562 2,292

Contacts 0-19 yrs. 818,912 19,066 Infect. MG Types(1-2) 46,600 153
Contacts 20-64 yrs. 294,046 1,887 Infect. Schools 249,304 3,080
Contacts 65-99 yrs. 64,435 487 Infect. MG Types(9-12) 1,605 23

Contacts Households 238,684 11,904 Total Deaths 7,009 99
Contacts MG Types(1-2) 231,051 891 Deaths 0-19 yrs. 1,041 17

Contacts Schools 699,427 8,544 Deaths 20-64 yrs. 4,095 54
Contacts MG Types(9-12) 8,231 101 Deaths 65-99 yrs. 1,873 28

Total Infections 335,071 5,548

Figure 34: Daily infections for baseline vs. optimal NPI strategy for the low
transmissibility scenario based on the three-level fractional factorial experiment
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Figure 35: Daily deaths for baseline vs. optimal NPI strategy for the low transmissibility
scenario based on the three-level fractional factorial experiment

Figure 36: Daily contacts for baseline vs. optimal NPI strategy for the low
transmissibility scenario based on the three-level fractional factorial experiment
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6.3.2 Medium Transmissibility Scenario

Table 48 shows the ANOVA table for the low transmissibility scenario for the three-

level fractional factorial experiment. Tables 49 show the significant factors. Interactions

are discussed later on.

Table 48: ANOVA table for the medium transmissibility scenario for the three-level
fractional factorial experiment using the total number of infected as the measure of

performance

As shown in Figure 37, most of these factors relationship with the response (total

number of infected) is not linear. In what follows we discuss each one of these factors.

An increase in global threshold from 10 to 30 cases, results in an increase by 0.20%

in the total number of infections. And an increase in global threshold from 30 to 50 cases,

results in an increase by 1.74% in the total number of infections.

Changing the number of cases to declare pandemic from 10 to 30 does not have a

significant increase impact in the total number of infected.
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Table 49: Significant main effects and mean number of infected for the low, medium and
high levels for the medium transmissibility scenario for the three-level fractional factorial

experiment

Factor Low level Medium level High level

GT 286,568.3 288,581 306,231.1

GD 284,562.7 286,635 310,182.8

ID 293,921.3 287,697.5 299,761.7

CMS 197,419.1 322,202.9 361,758.5

MS 261,636.1 300,783.5 318,960.9

PMS 319,240.2 308,578.7 253,561.6

CMW 275,220.8 300,397 305,762.7

However, when increasing the global threshold from 30 to 50, there is a more sig-

nificant increase in total number of infected compared to the increase of changing global

threshold from 10 to 30 cases.

An increase in deployment delay from 3 to 5 days results in an increase by 0.20% in

total number of infections. And an increase in deployment delay from 5 to 7 days, results

in an increase by 2.32% in total number of infections.

Increasing deployment delay from 5 to 7 days does not have a significant impact on

total number of infected. However, a change in deployment delay from 3 to 5 days results in

a major increase in the total number of infected. When considering to deploy interventions

between 3 and 5 days, releasing them at three days results in the least number of infections.

An increase in case isolation threshold from 0 to 1 day results in a decrease by 0.61%

in total number of infections. An increase in case isolation threshold from 1 to 2 days results

in an increase by 1.19% in total number of infections.

As expected, increasing case isolation threshold from one to two days results in an

increase in total number of infected and not in a further decrease. When an individual is

already in their second day in the infectiousness profile, keeping the infected individual at

home is better than letting the individual keep contacting others at school, work, and/or

community.

An increase in cases to close a classroom from 1 to 2 cases results in an increase by

12.31% in total number of infections. An increase in cases to close a classroom from 2 to 3,

results in an increase by 3.90% in total number of infected.
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The relationship between the number of cases to close a classroom and the response

in a medium transmissibility pandemic scenario is not longer linear. Increasing the number

of cases to close a class from 1 to 2, increases the total number of infections by 12.31%

which is a significant increase. As we keep increasing the number of cases from 2 to 3, we

can still see an increase in the response, but not as significant.

An increase in the number of classes to close a school from 1 to 2 classes, results in

an increase by 3.86% in total number of infections. An increase in the number of classes

to close a school from 2 to 3 classes, results in an increase by 1.79% in total number of

infections.

The relationship between number of classes to close a school and the response in a

medium transmissibility pandemic scenario is not longer linear. Increasing the number of

classes to close a school from 1 to 2, increases the total number of infections by 3.86% but

as we keep increasing the number of classes from 2 to 3, we can still see an increase in the

response, but not as significant.

An increase in school closure duration from 21 to 30 days, results in a decrease by

1.05% in total number of infections. An increase in school closure duration from 30 to 42

days, results in a decrease by 5.43% in total number of infections.

As opposed to the findings about this factor in the low transmissibility scenario,

school closure duration impact is more notable between 30 and 42 days, as school closure

duration increases from 10 to 30 days is still decreases the total number of infected but the

percentage of decrease is only 1.05% versus 5.43% when closing between 30 and 42 days.

An increase in cases to close a workplace from 3 to 4 cases, results in an increase by

2.48% in total number of infections. An increase in cases to close a workplace from 4 to 5

cases, results in an increase by 0.53% in total number of infections.

Workplace closure reduces the total number of infections, but when compared to

school closure, the impact of this intervention is not as significant. The number of cases to

close a workplace in a medium scenario does not longer shows a linear relationship with the

total number of infected. The percentage increase in the response is higher when increasing

the number of cases to close a department from 3 to 5 cases, and when increasing from 5
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Table 50: Mean infected values for the interaction between global threshold and global
delay for the medium transmissibility scenario

GT ↓ \ GD → Low level Medium level High level

Low level 287,394.8 283,262.4 289,047.8
Medium level 276,018.9 284,799 304,925
High level 290,274.4 291,843.5 336,575.5

Table 51: Mean infected values for the interaction between deployment delay and number
of classes to close a school for the medium transmissibility scenario

GD ↓ \ CMS → Low level Medium level High level

Low level 178,509.2 311,863.5 363,315.4
Medium level 187,242 317,016.8 355,646.1
High level 226,506 337,728.4 366,313.9

to 7 cases it is almost a straight horizontal line (no impact in the response).

For medium transmissibility scenario, the significant interactions for the three-level

experiment are GT x GD, GD x CMS, and PMS x CMW. We now discuss each one of them

individually.

Table 50 shows the mean infected values for the interaction between global threshold

and deployment delay for the three-level low transmissibility scenario experiment. Figure

38 shows this interaction graphically. From this information we can observe that when the

deployment delay is 3 days, an increase in global threshold from 10 to 30 cases, results in

a decrease by 1.12% in total number of infections. An increase in global threshold from 30

to 50 cases, results in an increase by 1.41% in total number of infections.

When the deployment delay is 5 days, an increase in global threshold from 10 to 30

cases, results in an increase by 0.15% in total number of infections. An increase in global

threshold from 30 to 50 cases, results in an increase by 0.70% in total number of infections.

When the deployment delay is 7 days, an increase in global threshold from 10 to 30

cases, results in an increase by 1.57% in total number of infections. An increase in global

threshold from 30 to 50 cases, results in an increase by 3.12% in total number of infections.

Table 51 shows the mean infected values for the interaction between deployment

delay and the number of cases to close a classroom for the three-level low transmissibility

scenario experiment. Figure 39 shows this interaction graphically. From this information we
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Figure 37: Main factor effects for the medium transmissibility scenario for the three-level
fractional factorial experiment
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Figure 37: (Continued)
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Figure 37: (Continued)

145



Figure 37: (Continued)

Figure 38: Interaction between global threshold and global delay for the medium
transmissibility scenario
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Figure 39: Interaction between deployment delay and number of classes to close a school
for the medium transmissibility scenario

can observe that when the number of cases to close a class is one, an increase in deployment

delay from 3 to 5 days results in an increase by 0.86% in the total number of infections.

And an increase in deployment delay from 5 to 7 days results in an increase by 3.87% in

the total number of infected.

When the number of cases to close a class is two, an increase in deployment delay

from 3 to 5 days results in an increase by 0.51% in the total number of infections. And an

increase in deployment delay from 5 to 7 days results in an increase by 2.04% in the total

number of infected.

When the number of cases to close a class is three, an increase in deployment delay

from 3 to 5 days results in a decrease by 0.76% in the total number of infections. And an

increase in deployment delay from 5 to 7 days results in an increase by 1.05% in the total

number of infected.
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Table 52: Mean infected values for the interaction between school closure duration and
cases to close a workplace for the medium transmissibility scenario

PMS ↓ \ CMW → Low level Medium level High level

Low level 312,382.5 320,974.7 324,363.4
Medium level 293,221.8 317,720.2 314,794.1
High level 220,058.1 262,496.1 278,130.6

Figure 40: Interaction between school closure duration and cases to close a workplace for
the medium transmissibility scenario

Table 52 shows the mean infected values for the interaction between school closure

duration and the number of cases to close a department in a workplace for the three-level

low transmissibility scenario experiment. Figure 40 shows this interaction graphically. From

this information we can observe that when cases to close a department in a workplace is 3,

an increase in school closure duration from 21 to 30 days results in a decrease by % in the

total number of infections. And an increase in school closure duration from 30 to 42 days

results in a decrease by % in the total number of infections.
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Figure 41: Residuals plot and normal probability plot for the regression analysis of the
medium transmissibility scenario for the three-level fractional factorial experiment
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When cases to close a department in a workplace is 4, an increase in school closure

duration from 21 to 30 days results in a decrease by % in the total number of infections.

And an increase in school closure duration from 30 to 42 days results in a decrease by %

in the total number of infections. When cases to close a department in a workplace is 5,

an increase in school closure duration from 21 to 30 days results in a decrease by % in the

total number of infections. And an increase in school closure duration from 30 to 42 days

results in a decrease by % in the total number of infections. The regression analysis for the

medium transmissibility scenario for the three-level fractional factorial experiment is shown

in Table 53.

This model has an R-square value of 89.29%. The regression analysis is shown in

Table 53 and the analysis of residuals and normal probability plot of residuals is shown in

Figure 41. The optimization of the resulting regression equation resulted in a significantly

better strategy than the typical NPI strategy shown before. The strategy resulting from

the three-level experiment performs better than the strategy resulting from the two-level

experiment. However the difference between the two is not as notable as with the low

transmissibility scenario.

The resulting optimal strategy is shown in Table 54 and the results comparing the

performance of this strategy with the baseline scenario is shown in Table 54. As shown

in this table, the optimal NPI strategy was successful in containing the pandemic. It also

reduced overall number of infections, contacts and deaths. Figures 42 through 44 shows

this information graphically. From these graphs we can see that the optimal strategy not

only reduces significantly the total number of infected, but also peak attack rates and peak

death rates. For this optimal NPI strategy the pandemic duration was also reduced and no

new pandemic waves emerged.
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Table 53: Regression analysis for the medium transmissibility scenario for the three-level
fractional factorial experiment

Table 54: Optimal NPI strategy for the medium transmissibility scenario based on the
three-level fractional factorial experiment

Factor Optimal Value Factor Optimal Value Factor Optimal Value

GT 32 GD 3 ID 1
IP 7 ICW 0.53 ICNW 0.84
HD 1 HP 7 HCW 0.75

HCNW 0.84 CMS 1 MS 1
PMS 42 CMW 3 MW 0.5
PMW 14
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Table 55: Performance measures for baseline vs. optimal NPI strategy for the medium
transmissibility scenario based on the three-level fractional factorial experiment

Measure Baseline NPI Measure Baseline NPI
IAR 50.80% 3.07% Infections 0-19 yrs. 230,127 15,219
CFR 1.76% 0.10% Infections 20-64 yrs. 228,753 12,275

Pandemic Duration (Days) 93 60 Infections 65-99 yrs. 55,964 3,615
Total Contacts 1,047,302 60,964 Infections Households 92,217 16,339

Contacts 0-19 yrs. 520,883 35,465 Infect. MG Types(1-2) 168,185 6,848
Contacts 20-64 yrs. 416,307 19,255 Infect. Schools 247,838 7,573
Contacts 65-99 yrs. 110,112 6,244 Infect. MG Types(9-12) 6,604 349

Contacts Households 236,850 35,176 Total Deaths 17,851 992
Contacts MG Types(1-2) 392,793 15,118 Deaths 0-19 yrs. 1,090 79

Contacts Schools 403908 9,999 Deaths 20-64 yrs. 10,681 498
Contacts MG Types(9-12) 13,751 671 Deaths 65-99 yrs. 6,080 415

Total Infections 514,844 31,109

Figure 42: Daily infections for baseline vs. optimal NPI strategy for the medium
transmissibility scenario based on the three-level fractional factorial experiment

152



Figure 43: Daily deaths for baseline vs. optimal NPI strategy for the medium
transmissibility scenario based on the three-level fractional factorial experiment

Figure 44: Daily contacts for baseline vs. optimal NPI strategy for the medium
transmissibility scenario based on the three-level fractional factorial experiment
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6.3.3 High Transmissibility Scenario

Table 56 shows the ANOVA table for the high transmissibility scenario for the three-

level fractional factorial experiment. Table 57 show the significant factors. Interactions are

discussed later on.

Table 56: ANOVA Table for the high transmissibility scenario for the three-level fractional
factorial experiment using total number of infected as measure of performance

As shown in Figure 45, most of these factor’s relationship with the response (total

number of infected) is not linear. In what follows we discuss each one of these factors.

An increase in global threshold from 10 to 30 cases, results in an increase by 0.56%

in the total number of infections. And an increase in global threshold from 30 to 50 cases,

results in an increase by 1.54% in the total number of infections. Changing the number

of cases to declare pandemic from 10 to 30 does not have a significant increase impact in
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Table 57: Significant main effects and mean number of infected for the low, medium and
high levels for the high transmissibility scenario for the three-level fractional factorial

experiment

Factor Low level Medium level High level

GT 406,313.3 412,010.1 427,621.8

GD 407,716.1 410,859.9 427,369.3

ID 419,191.3 406,277.4 420,476.5

CMS 301,269.1 454,169.7 490,506.5

MS 378,309.2 425,147.9 442,488.2

PMS 429,185.2 423,690.1 393,070

CMW 394,368.1 416,737 434,840.2

the total number of infected. However, when increasing the global threshold from 30 to 50,

there is a more significant increase in total number of infected compared to the increase of

changing global threshold from 10 to 30 cases.

An increase in deployment delay from 3 to 5 days results in an increase by 0.31% in

total number of infections. And an increase in deployment delay from 5 to 7 days, results in

an increase by 1.63% in total number of infections. Increasing deployment delay from 3 to

5 days does not have a significant impact on total number of infected. However, a change

in deployment delay from 5 to 7 days results in a major increase in the total number of

infected. When considering to deploy interventions between 5 and 7 days, releasing them

at five days results in the least number of infections.

An increase in case isolation threshold from 0 to 1 day results in a decrease by 1.27%

in total number of infections. An increase in case isolation threshold from 1 to 2 days results

in an increase by 1.40% in total number of infections. As expected, increasing case isolation

threshold from one to two days results in an increase in total number of infected and not in

a further decrease. When an individual is already in their second day in the infectiousness

profile, keeping the infected individual at home is better than letting the individual keep

contacting others at school, work, and/or community.

An increase in cases to close a classroom from 1 to 2 cases results in an increase by

15.09% in total number of infections. An increase in cases to close a classroom from 2 to 3

cases, results in an increase by 3.59% in total number of infected.
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The relationship between the number of cases to close a classroom and the response

in a high transmissibility pandemic scenario is not longer linear. Increasing the number of

cases to close a class from 1 to 2, increases the total number of infections by 15.09% which

is a significant increase. As we keep increasing the number of cases from 2 to 3, we can still

see an increase in the response, but not as significant.

An increase in the number of classes to close a school from 1 to 2 classes, results in

an increase by 4.62% in total number of infections. An increase in the number of classes

to close a school from 2 to 3 classes, results in an increase by 1.71% in total number of

infections.

The relationship between number of classes to close a school and the response in

a high transmissibility pandemic scenario is not longer linear. Increasing the number of

classes to close a school from 1 to 2, increases the total number of infections by 4.62% but

as we keep increasing the number of classes from 2 to 3, we can still see an increase in the

response, but with a lower percentage increase.

An increase in school closure duration from 21 to 30 days, results in a decrease by

0.54% in total number of infections. An increase in school closure duration from 30 to 42

days, results in a decrease by 3.02% in total number of infections.

As opposed to the findings about this factor in the low transmissibility scenario,

school closure duration impact is more notable between 30 and 42 days, as school closure

duration increases from 10 to 30 days is still decreases the total number of infected but the

percentage of decrease is only 0.54% versus 3.02% when closing between 30 and 42 days.

An increase in cases to close a workplace from 3 to 4 cases, results in an increase

by 2.21% in total number of infections. An increase in cases to close a workplace from 4

to 5 cases, results in an increase by 1.79% in total number of infections. Workplace closure

reduces the total number of infections, but when compared to school closure, the impact of

this intervention is not as significant. The number of cases to close a workplace in a high

scenario does not longer shows a linear relationship with the total number of infected. But

the difference in slope between both sections of the graph is small.
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Figure 45: Main factor effects for the high transmissibility scenario for the three-level
fractional factorial experiment
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Figure 45: (Continued)
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Figure 45: (Continued)
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Figure 45: (Continued)

Table 58 shows the mean infected values for the interaction between global threshold

and deployment delay for the three-level high transmissibility scenario experiment. Figure

46 shows this interaction graphically. From this information we can observe that when the

deployment delay is 3 days, an increase in global threshold from 10 to 30 cases, results in

a decrease by 0.57% in total number of infections. An increase in global threshold from 30

to 50 cases, results in an increase by 0.17% in total number of infections.

Table 58: Mean infected values for the interaction between global threshold and global
delay for the high transmissibility scenario

GT ↓ \ GD → Low level Medium level High level

Low level 410,984.9 403,713.1 404,242
Medium level 405,226.3 407,061.5 423,742.6
High level 406,937 421,805 454,123.5

When the deployment delay is 5 days, an increase in global threshold from 10 to 30

cases, results in an increase by 0.33% in total number of infections. An increase in global

threshold from 30 to 50 cases, results in an increase by 1.45% in total number of infections.
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When the deployment delay is 7 days, an increase in global threshold from 10 to 30

cases, results in an increase by 1.92% in total number of infections. An increase in global

threshold from 30 to 50 cases, results in an increase by 3% in total number of infections.

Figure 46: Interaction between global threshold and global delay for the high
transmissibility scenario

Table 59: Mean infected values for the interaction between deployment delay and number
of classes to close a school for the high transmissibility scenario

GD ↓ \ CMS → Low level Medium level High level

Low level 283690.2 449729.4 489728.6
Medium level 289868 452268.7 490442.9
High level 490442.9 460511.1 491348

Table 59 shows the mean infected values for the interaction between deployment

delay and the number of cases to close a classroom for the three-level high transmissibility

scenario experiment. Figure 47 shows this interaction graphically. We can observe that

when the number of cases to close a class is one, an increase in deployment delay from 3

to 5 days results in an increase by 0.61% in the total of infections. And an increase in

deployment delay from 5 to 7 days results in an increase by 3.98% in the total number of

infected.
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Figure 47: Interaction between deployment delay and number of classes to close a school
for the high transmissibility scenario

When the number of cases to close a class is two, an increase in deployment delay

from 3 to 5 days results in an increase by 0.25% in the total number of infections. And an

increase in deployment delay from 5 to 7 days results in an increase by 0.81% in the total

number of infected.

When the number of cases to close a class is three, an increase in deployment delay

from 3 to 5 days results in a decrease by 0.07% in the total number of infections. And an

increase in deployment delay from 5 to 7 days results in an increase by 0.09% in the total

number of infected.

Table 60: Mean infected values for the interaction between the number of cases to close a
classroom and school closure duration for the high transmissibility scenario

CMS ↓ \ PMS → Low level Medium level High level

Low level 323,216.9 321,756.7 258,833.6
Medium level 465,211.7 455,118.2 442,179.2
High level 499,127 494,195.2 478,197.2

Table 60 shows the mean infected values for the interaction between the number of

cases to close a classroom and school closure duration for the three-level high transmissibility
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Figure 48: Interaction between the number of cases to close a classroom and school
closure duration for the high transmissibility scenario

scenario experiment. Figure 48 shows this interaction graphically. From this information

we can observe that when school closure duration is 21 days, an increase in the number of

cases to close a classroom from 1 to 2 cases, results in an increase by 14.01% in the total

number of infections. And an increase in the number of cases to close a classroom from 2

to 3 cases, results in an increase by 3.35% in the total number of infections.

When school closure duration is 30 days, an increase in the number of cases to close

a classroom from 1 to 2 cases, results in an increase by 13.16% in the total number of

infections. And an increase in the number of cases to close a classroom from 2 to 3 cases,

results in an increase by 3.86% in the total number of infections.

When school closure duration is 42 days, an increase in the number of cases to close

a classroom from 1 to 2 cases, results in an increase by 18.09% in the total number of

infections. And an increase in the number of cases to close a classroom from 2 to 3 cases,

results in an increase by 3.55% in the total number of infections.

The regression analysis for the high transmissibility scenario three-level fractional

factorial experiment is shown in Table 61.
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Figure 49: Residuals plot and normal probability plot for regression analysis of the high
transmissibility scenario for the three-level fractional factorial experiment
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Table 61: Regression analysis for the high transmissibility scenario for the three-level
fractional factorial experiment

This model has an R-square value of 88.82%. The regression analysis is shown in

Table 61 and the analysis of residuals and normal probability plot of residuals is shown in

Figure 49. The optimization of the resulting regression equation resulted in a significantly

better strategy than the typical NPI strategy shown before. The strategy resulting from

the three-level experiment performs better than the strategy resulting from the two-level

experiment. However the difference between the two is not as notable as with the low

transmissibility scenario.

Table 62: Optimal NPI strategy for the high transmissibility scenario based on the
three-level fractional factorial experiment

Factor Optimal Value Factor Optimal Value Factor Optimal Value

GT 50 GD 3 ID 1
IP 7 ICW 0.75 ICNW 0.84
HD 1 HP 7 HCW 0.75

HCNW 0.57 CMS 1 MS 1
PMS 42 CMW 3 MW 0.3
PMW 14
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Table 63: Performance measures for baseline vs. optimal NPI strategy for the high
transmissibility scenario based on the three-level fractional factorial experiment

Measure Baseline NPI Measure Baseline NPI
IAR 64.53% 16.42% Infections 0-19 yrs. 229,952 57,012
CFR 2.55% 0.67% Infections 20-64 yrs. 344,381 86,064

Pandemic Duration (Days) 83 350 Infections 65-99 yrs. 79,718 23,390
Total Contacts 1,063,751 245,796 Infections Households 136,127 83,511

Contacts 0-19 yrs. 482,881 91,155 Infect. MG Types(1-2) 249,929 60,733
Contacts 20-64 yrs. 468,013 119,228 Infect. Schools 256,796 19,518
Contacts 65-99 yrs. 112,857 35,413 Infect. MG Types(9-12) 11,199 2,704

Contacts Households 234,411 121,651 Total Deaths 25,858 6,770
Contacts MG Types(1-2) 439,368 97,770 Deaths 0-19 yrs. 1,077 256

Contacts Schools 372,678 22,454 Deaths 20-64 yrs. 16,018 3,957
Contacts MG Types(9-12) 17,294 3,921 Deaths 65-99 yrs. 8,763 2,557

Total Infections 654,051 166,466

The resulting optimal strategy is shown in Table 63 and the results comparing

the performance of this strategy with the baseline scenario is shown in Table 63. In the

high transmissibility scenario, containment of pandemic was not achieved, also it extends

pandemic duration significantly. However, the optimal NPI strategy reduced overall number

of infections, contacts and deaths. Figures 50 through 52 shows this information graphically.

From these graphs we can see that the optimal strategy not only reduces significantly the

total number of infected, but also peak attack rates and peak death rates. However, as

opposed to what was observed in the low and medium transmissibility scenarios, the optimal

NPI strategy resulting from the three-level experiment for the high transmissibility scenario

results in the emergence of new pandemic waves.
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Figure 50: Daily infections for baseline vs. optimal NPI strategy for the high
transmissibility scenario based on the three-level fractional factorial experiment

Figure 51: Daily deaths for baseline vs. optimal NPI strategy for the high transmissibility
scenario based on the three-level fractional factorial experiment
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Figure 52: Daily contacts for baseline vs. optimal NPI strategy for the high
transmissibility scenario based on the three-level fractional factorial experiment

6.4 Comparison Between Optimal Strategies and Scenarios

In this section we compare the results from the optimal strategies resulting from

the two and three-level experiment and across scenarios. Table 64 shows the optimal imple-

mentation parameter values for the low, medium and high transmissibility scenarios. This

table helps to visualize the changes in parameter values depending on the transmissibility

scenario. For example, compliance values for workers during case isolation seem to not be

as important in a medium scenario as it is for the low and high scenarios. Similarly, case

isolation compliance for non-workers optimal value is low for the low scenario and high for

the medium and high scenarios. Another example is school closure duration, optimal values

of duration for the medium and high scenarios is 42 days, however in a low transmissibility

scenario, a closure of 35 days is optimal. Also, school closure in general is more relaxed for

the low transmissibility scenario, we can see the same results for workplace closure in the

low and medium transmissibility scenarios. However, in a high transmissibility scenario, a

stringent school and workplace closure policy is what resulted optimal.
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Table 64: Comparison of the two-level and the three-level optimal strategies across
transmissibility scenarios

Table 65 shows in one place all results from baseline, non-optimal NPI, optimal NPI

from the two-level experiment, and optimal NPI from the three-level experiment. As seen

in this table, NPIs in general reduce IAR, CFR, total number of contacts, total number of

infections and total number of deaths. However, the resulting strategies from our model,

performed significantly better than a non-optimal NPI strategy and a scenario with no

intervention. For the low transmissibility scenario, containment was achieved with the

optimal 2-level and 3-level strategy. Additionally, the optimal 3-level strategy performed

significantly better than the optimal 2-level strategy.

For the medium transmissibility scenario containment was also achieved with both

2-level and 3-level optimal strategies. However, the difference from both strategies is small

compared to that observed in the low transmissibility scenario. As observed in the low

transmissibility scenario, both strategies were capable of further reducing total number of

contacts, infections and deaths.

For the high transmissibility scenario, containment was not achieved and the dif-

ference in performance between the optimal 2-level and 3-level strategies was small. But

even though for a high transmissibility scenario containment was not achieved by using

NPIs alone, it was successful in reducing overall number of contacts, infections and deaths.
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The optimal strategy also extends the pandemic, giving enough time for vaccines to be

developed, produced and distributed.

Figure 53 shows the graphs for the optimal 2-level and 3-level experiment for the low,

medium and high transmissibility scenarios. These figures show clearly that both optimal

strategies were able to reduce peak attack rates and deaths for all scenarios considered.

However, the optimal 2-level strategy resulted in the emergence of new pandemic waves in

all scenarios considered. The optimal 3-level strategy takes care of this for the low and

medium scenario, new waves are observed only for the high transmissibility scenario.

Figure 53: Daily infections, deaths and contacts for baseline and optimal two and
three-level NPI strategies for three transmissibility scenarios
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Figure 53: (Continued)
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Figure 53: (Continued)
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Figure 53: (Continued)
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Figure 53: (Continued)

174



Figure 53: (Continued)
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Figure 53: (Continued)
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Figure 53: (Continued)
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Figure 53: (Continued)
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Figure 53: (Continued)
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Table 65: Comparison of two-level and three-level optimal strategies across transmissibility scenarios for different performance
measures
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7 Conclusions

In this dissertation we model pandemic influenza outbreaks using an agent-based

simulation approach. The model incorporates detailed population demographics and dy-

namics, variety of mixing groups and their contact processes, infection transmission process,

and non-pharmaceutical interventions. Using a statistical experimental design approach we

examine the influence of characteristic parameters of virus epidemiology, social behavior,

and non-pharmaceutical interventions on various measures of pandemic impact such as total

number of infections, deaths and contacts. The experimental design approach also yields

the knowledge of the extent of interactions among the above parameters. Using this knowl-

edge we develop effective NPI strategies and demonstrate the efficacy of these strategies

on large-scale simulated outbreaks involving three different scenarios of virus transmissibil-

ity. The results show that significant improvements in the NPI based pandemic mitigation

approaches can be attained by the strategies derived from our methodology.

Our methodology, to the best of our knowledge, is the first to study several NPI

parameters at the same time. All other studies focuses on analyzing one factor at a time and

do not investigate the effect of various factors on NPI effectiveness. Also, no other study

presents an optimal approach for the use of NPIs during a pandemic influenza outbreak.

Key contributions of this dissertation includes a new approach on the infection

transmission process which depends on a time varying profile of infectiousness and viral

accumulation as a mean of infection. Also, we use an experimental design approach to ex-

amine the influence of significant NPI factors and their interactions. Using that knowledge

we derive optimal NPI strategies and were able to demonstrate the efficacy of those strate-

gies on a variety of outbreak scenarios that have enriched our knowledge on how different

factors behave differently on different situations. This research has also opened many more

questions that will require further study.
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As it is already known from previous studies, NPIs can reduce infection attack

rates, case fatality ratio, and the overall number of infections, contacts and deaths. Some

of the key findings from our optimal design approach for effective NPI strategies are now

summarized for each one of the virus transmissibility scenarios considered. For the low

virus transmissibility scenario, our optimal NPI strategy was able to achieve pandemic

containment (IAR <10%) reducing IAR from 33.06% to 0.55%. Moreover, a reduction in

pandemic duration from 135 days to 76 days was achieved, and it did not results in the

emergence of new pandemic waves.

For the medium virus transmissibility scenario, our optimal NPI strategy was also

able to achieve pandemic containment reducing IAR from 50.80% to 3.07%. It also reduced

pandemic duration from 93 days to 60 days. The optimal NPI strategy derived for the

medium virus transmissibility scenario did not result in the emergence of new pandemic

waves.

However, our optimal NPI strategy for the high virus transmissibility scenario was

not able to achieve containment. But a significant reduction in the IAR was observed. It

reduced an IAR of 64.53% to 16.42%. This strategy was also successful in reducing overall

number of infections, contacts and deaths. In this scenario, the NPI strategy extended

the pandemic from 83 days to 350 days and it resulted in the emergence of new pandemic

waves throughout this period of time. This extension gives time for the development,

production, and distribution of vaccines. But in conclusion, for a high transmissibility

scenario a combination of NPIs with PHIs will be necessary for containment.

This work have some limitations that guide our future work. Our simulation model

for a single region, does not include mass transportation such as trains, buses, and airplane

flights. Consequently we did not study the effect of travel restrictions, which is a very im-

portant non-pharmaceutical intervention strategy. Also, we did not consider people arriving

or leaving the city, which may have a big impact on the contact and infection transmission

processes.

Our contact process can also be improved. We assume that if an individual contacts

m other individuals in a period of time of an hour, the time will be divided equally among
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the contacts. We do not take into consideration that those contacts may be simultaneous

or may last more than 1/m minutes with each one of the contacts made.

The infection transmission process has several strong assumptions. Even though

the profile of infectiousness vary with time and virus transmissibility scenario, it is constant

among the population. It does not depend on age and/or health status. Adding a population

characteristics dependant profile of infectiousness is important, since the amount of viral

shedding also depends on the age of the individuals and their health (weak, moderate,

good).

Viral accumulation is assumed to be depleted completely during the night and starts

at zero the next day for individuals that did not get infected during that particular day.

An immunity driven reduction in the level of accumulation in the body that comprehends

simultaneous accumulation and depletion of virus due to the immunity system would be

more realistic.

Even though our work shed some new knowledge on the influence of characteristic

parameters of virus epidemiology, social behavior, and non-pharmaceutical interventions on

various measures of pandemic impact, and the behavior and extent of interactions among

the above parameters, we can’t really explain why these behaviors were observed. That

was the purpose of conducting a statistical design of experiments. Since the underlying

physics of these interactions are unknown, our results shed some knowledge in how these

different parameters behave, and some of them were even contrary to our beliefs. Even

if we try to rationalize individual behaviors, these are not of huge value in developing a

complex comprehensive strategy. Designs of experiments takes care of that, is not one

or two factors but multiple factors that comprise the strategy in the regression analysis.

Further experimentation is needed to further explore the behavior of these factors and their

impact on different measures of performance.

Our three-level experiment was highly fractional and it should be expanded. As a

result, we could not examine all two-way interactions, and the model is very limited as it

only includes a few of these. Expanding this experiment will allow us to examine higher

level of interactions and consequently development of better strategies. Also, the values of
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the optimal strategies are given by a range. Further experimentation could be conducted

with an expanded range of parameter values.

We did not study several important non-pharmaceutical strategies. Because of the

limitation that our simulation does not include mass transportation, we did not study the

effect of travel restrictions. Also, the only behavioral factor included in our study was

compliance. We don’t have other changes in human behavior during a pandemic. Some of

these changes in behavior include the use of masks, hand sanitizer and personal hygiene.

It is expected that such a change in behavior would have an impact on NPI effectiveness.

Other social distancing strategies like closing of mass gathering events are also part of our

future work.
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