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A Computational Kinematics and Evolutionary Approach to Model Molecular Flexibility 

for Bionanotechnology 

 

 

Athina N. Brintaki 

 

 

ABSTRACT 

 

 Modeling molecular structures is critical for understanding the principles that 

govern the behavior of molecules and for facilitating the exploration of potential 

pharmaceutical drugs and nanoscale designs.  Biological molecules are flexible bodies 

that can adopt many different shapes (or conformations) until they reach a stable 

molecular state that is usually described by the minimum internal energy.  A major 

challenge in modeling flexible molecules is the exponential explosion in computational 

complexity as the molecular size increases and many degrees of freedom are considered 

to represent the molecules’ flexibility.  This research work proposes a novel generic 

computational geometric approach called enhanced BioGeoFilter (g.eBGF) that 

geometrically interprets inter-atomic interactions to impose geometric constraints during 

molecular conformational search to reduce the time for identifying chemically-feasible 

conformations.  Two new methods called Kinematics-Based Differential Evolution (kDE) 

and Biological Differential Evolution (BioDE) are also introduced to direct the molecular 

conformational search towards low energy (stable) conformations.  The proposed kDE 

method kinematically describes a molecule’s deformation mechanism while it uses 

differential evolution to minimize the inta-molecular energy. On the other hand, the 

proposed BioDE utilizes our developed g.eBGF data structure as a surrogate 
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approximation model to reduce the number of exact evaluations and to speed the 

molecular conformational search.  This research work will be extremely useful in 

enabling the modeling of flexible molecules and in facilitating the exploration of 

nanoscale designs through the virtual assembly of molecules.  Our research work can also 

be used in areas such as molecular docking, protein folding, and nanoscale computer-

aided design where rapid collision detection scheme for highly deformable objects is 

essential. 
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Chapter 1 

Introduction 

 

The scope of this chapter is to introduce the motivation underneath this research 

work as well as the current molecular modeling challenges.  The proposed research 

objectives and contributions are also discussed followed by the dissertation outline. 

 

 

1.1  Motivation 

  

 Bionanotechnology is the new frontier in research and technology and is vital for 

the realization of biomedical and nanoscale products.  It consists of manipulating 

biological molecules to create structures or devices with new molecular arrangements.  

The control, manipulation, and assembly of molecules will enable the design of 

innovative materials, new pharmaceutical drugs, enhanced textiles, and precise nanoscale 

devices with new capabilities for diagnosis and treatment of diseases.  It is estimated that 

within the next 10 years, “at least half of the newly designed advanced materials and 

manufacturing processes will be build at the nanoscale” [NIST]. 

 To achieve bionanotechnology, it is crucial to enable real-time visualization of 

interactions between biological molecules during the design stage so that fully functional 

nanoscale products can be designed and evaluated prior to actual fabrication.  A main key 

for enabling the visualization of biological components is the understanding and effective 

modeling of molecules’ behavior.  Molecules are very flexible in nature and can adopt 

many molecular conformations (or shapes) while searching for a stable or low-energy 

molecular state.  The major challenge in modeling flexible molecules (or molecular 

conformations) lies on the exponential explosion in computational complexity as the 

molecular size increases and a large number of degrees of freedom (dof) are considered 



to represent the molecules’ flexibility.  For example, Figure 1.1 shows a small drug 

molecule (called a ligand) that can dock or assemble into a larger molecule (called a 

receptor) leading to the identification of pharmaceutical drugs and new molecular 

arrangements with specific capabilities.  Receptor molecules can consist of hundreds or 

thousands of atoms with hundreds or even thousands of degrees of freedom.  Therefore, 

modeling molecular conformations is a highly intensive computational task and remains 

the main challenge in molecular design. 

 

 
Figure 1.1: Receptor and ligand molecules used in drug design. 

 

 

1.2  Dissertation Objectives and Contributions 

 

 The proposed research aims to address the main molecular modeling challenge 

and current literature limitations for modeling flexible molecules and identifying stable 

conformations.  This research work presents a novel computational geometric and 

evolutionary inspired approach for the effective identification of chemically-feasible, 

low-energy molecular structures of any size, shape and topology.  

 The main expected research outcome is the design of novel algorithms to 

minimize molecular conformational search and to speed collision detection queries that 

will enable the visualization and virtual manipulation of flexible molecules for interactive 

molecular design.  The major objectives of this dissertation are: 

 
2 
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1. to develop a novel bounding volume data structure called BioGeoFilter (BGF) 

for the effective and real-time identification of feasible conformations for 

flexible drug-like or ligand molecules 

2. to develop a generic biologically-inspired data structure called generic 

enhanced BioGeoFilter (g.eBGF) methodology for simplifying the molecular 

representation regardless of type, size and shape. This methodology considers 

certain chemical factors that influence the molecular flexibility to effectively 

provide more realistic and chemically-feasible molecular conformations.  

3. to investigate and design a kinematics and evolutionary based direct search 

technique called kinematics differential evolution or kDE model that 

effectively searches for stable or low-energy molecular conformations with a 

good convergence performance.  

4. to design a novel direct search method called biological differential evolution 

(BioDE) that will utilize our proposed g.eBGF approach as a surrogate 

approximation model to speed the search towards alternative low-energy 

molecular conformations and to achieve a good convergence performance. 

 The proposed computational geometric and evolutionary based research work 

contributes to the molecular modeling and differential evolution literature through the 

design of a new geometric-based model for simplifying the molecular representation and 

two innovative evolutionary-based algorithms for directing the search towards low-

energy molecular conformations.  This hybrid approach will impact nanoscale design by 

speeding the modeling of flexible molecules and enabling the development of an 

indispensable computer-aided design tool for bionanotechnology.  The proposed research 

can be applied in areas such as molecular docking/ assembly and protein folding where a 

rapid collision detection scheme for highly deformable objects is essential. 

 This research has resulted in two journal papers [Brintaki and Lai-Yuen, 2008a, 

2009a], two submitted journal papers [Brintaki et.al. 2010a,d], five conference 

proceedings [Brintaki and Lai-Yuen 2008a,b, 2009b, 2010b,c], three papers in progress 

and several poster presentations. The research work has been partially supported by NSF, 

SME and USF grants. 
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1.3   Dissertation Outline 

 

 Chapter 2 discusses current research work in molecular modeling, geometric 

techniques and evolutionary approaches in molecular applications.   Chapter 3 describes 

our computational geometric interpretation of molecular inter-atomic interactions for 

addressing the molecular conformational search problem for highly deformable objects.  

Chapters 4, 5, and 6 present the development of three computational geometric models 

for the effective identification of feasible molecular conformations. The first model called 

BioGeoFilter or BGF, effectively identifies feasible conformations for small molecules in 

real-time as discussed in Chapter 4. The second model called enhanced BioGeoFilter or 

eBGF analyzes the structure of much larger molecules such as proteins to model them 

more effectively as discussed in Chapter 5.  Chapter 6 introduces the generic eBGF or 

g.eBGF model that incorporates chemically-based constraints that result in more realistic 

molecular conformations for molecules of different type, size, shape and topology.   

 Chapter 7 proposes two new energy minimization algorithms: the kinematics 

differential evolution or kDE and the biological differential evolution or BioDE methods.  

Both kDE and BioDE models utilize our previously developed differential evolution 

(DE) algorithm to direct the search towards low-energy molecular conformations. The 

main algorithmic difference between the kDE and BioDE models is that the latest utilizes 

the g.eBGF data structure as a surrogate approximation model to speed convergence. 

Chapter 8 provides a summary of the research methodologies presented and future 

research work. 
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Chapter 2 

Literature Review 

 

This chapter provides the background on previous work in the areas of molecular 

modeling, evolutionary algorithms and computational geometry techniques in molecular 

applications.  Previous work is analyzed and their limitations identified.  

 

 

2.1   Molecular Mechanics Models 

 

The molecular mechanics or force-field method uses Newtonian procedure to 

describe a molecular structure and its properties energetically as a function of its 

conformation.  Molecular mechanics approaches are widely used in molecular structure 

refinement, molecular dynamics (MD), Monte Carlo (MC), or molecular docking 

simulations. The molecular mechanics model considers atoms as spheres and bonds as 

springs that have the ability to move along different directions.  The mathematics of 

spring deformation is used to measure the ability of the bond to stretch, bend and twist.  

Dynamic-based simulation models such as molecular dynamics (MD) simulations 

[Leech 1996, Branner 2000, Renambot 2001, Tanfer 2004, Phillips 2005, Adckock 

2006,] and Monte Carlo (MC) methods [Liu 1999, Kima 2002] are commonly used to 

obtain information related with the time evolution of molecular conformations. These 

methods aim to determine molecular feasibility by calculating atoms’ position and hence 

their internal energy in small time steps. This results in a more accurate but slow progress 

towards the search of a feasible molecular conformation.  As the number of atoms within 

a molecular structure increases, the time to calculate the intra-molecular energy for 

determining a molecule’s feasibility (stability) increases significantly, making these 

methods unsuitable for interactive molecular design and assembly.   
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2.2   Evolutionary Algorithms (EAs) 

 

The choice of an appropriate optimization method is essential for directing the 

conformational search to identify the desired solution or the best potential molecular 

conformation. The optimization of molecular geometry was one of the very first 

applications of evolutionary algorithms (EAs) in chemistry.  EAs have shown good 

results in problems where other methods have struggled.  In addition, their governing 

principles are clearly understood, intuitively appealing and relatively easy to implement. 

In this section, we focus on EAs applications in chemical problems that require 

optimization such as molecular docking and molecular conformational search.  Detailed 

information on EAs is provided in Chapter 7.  

 

2.2.1 EAs in Molecular Docking 

 

Current literature in molecular docking demonstrates the effectiveness of 

Evolutionary Algorithms (EAs) for describing complex systems [Thomsen 2003, 2006] 

and for solving problems involving large search spaces, where traditional optimization 

techniques are less efficient [Yang 2001].  Genetic Algorithms (GAs) are presented as an 

effective local search method that behaves really well for median energy solutions 

[Westhead 1997, Jones 1997].  Additionally, Morris et al. compared the efficiency of 

Monte Carlo (MC) simulated annealing method against a classic GA and Lamarckian GA 

(LGA) for predicting the bound association of flexible ligands to macromolecule targets.  

Results showed that both LGA and GA are the most reliable, efficient and successful 

methods. However, many modifications have been proposed to improve the solution 

quality and to speed convergence.   

One of the best EAs for solving real-valued energy functions is Differential 

Evolution (DE) initially proposed by [Storn & Price 1995, 2005].  DE is a population 

based stochastic function minimizer that adds the weighted difference between two 

individual vectors to a third vector (donor). Currently DE has been implemented by 

[Yang 2001, Thomsen 2003, 2006] for investigating the docking of a flexible ligand to a 
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rigid receptor where their numerical results indicate the algorithms’ robustness and 

remarkable performance in terms of convergence speed.  

 

2.2.2  EAs in Molecular Conformational Search 

 

Wehrens presented a survey focused on the differences, strengths and weaknesses 

between EAs and other structure optimization methods such as distance geometry, eigen 

value decomposition, simulated annealing, Monte Carlo or molecular dynamics 

simulations [Wehrens 2000].  The main conclusion was that EAs are consistently among 

the best performing general search algorithms.  On the other hand, GAs are particularly 

useful for rapidly producing a family of low energy conformations but are less successful 

in fine-tuning these conformations towards the exact global optimum. 

Various evolutionary-based studies have been performed to study flexible ligand, 

flexible protein or polypeptide molecules conformational search.  Wawer et al. [Wawer 

2004] presented a real-coded (as opposed with the binary coding of the classic GAs) 

genetic algorithm to analyze the conformational behavior of Vitamin E (a small 

molecule).  Wang and Ersoy [Wang and Ersoy 2005] presented a Mixture Gaussian 

Optimization (MGO) algorithm as a continuous stochastic approach for flexible ligand 

conformational search.  The MGO method was compared against a systematic and a 

stochastic conformational search algorithm and it was concluded that the MGO algorithm 

can locate the global minimum faster as the molecular size increases. On the other hand, 

as the molecular size increases, the systematic search method became non-applicable 

whereas the stochastic was trapped in local minima. However, the MGO was tested for 

small molecular structures only and was not applied to large molecules such as proteins. 

Chong and Tremayne [Chong and Tremayne 2006] presented a new DE algorithm 

based on Cultural Evolution concepts called CDE to study the structure search for ligand 

molecules. The CDE algorithm was compared against a classic DE method and it was 

concluded that both methods succeeded to find the global minimum and the convergence 

performance of the CDE algorithm was 54% faster.  

 



Damsbo et al. [Damsbo 2004] presented the FOLDAWAY system, an 

evolutionary based approach for finding the low-energy conformations of polypeptides. 

The proposed model found large groups of low-energy structures within the expected 

low-energy globule that were not identified in previously developed MD simulations.  

Bitello and Lopes [Bitello and Lopes 2004] used a DE algorithm to solve the 

protein folding problem. Their approach was consistent in finding the global minimum 

for structures consisted up to 64 amino acids (relatively small protein size) and performed 

better compared with a classic GA.  

 

 
Figure 2.1: Molecular manipulation and assembly with haptics. 

 

 

2.3  Haptic Rendering Approaches 

  

In recent years, new methods have been investigated to facilitate molecular design 

and nanoscale engineering by providing real-time force feedback using haptic devices 

[Sherill, Baxter 1998, Nagata 2002, Grayson 2003, Lee 2004, Lai-Yuen 2006a,b, Morin 

2007]. Haptic devices are electromechanical devices that exert forces on users giving 

them the illusion of touching something in the virtual world.  These devices have been 

used to manipulate virtual molecules and to feel the forces as the molecules interact with 

each other providing an essential design and visualization tool as shown in Figure 2.1.  

However, current methods using haptics either model molecules as rigid bodies or are 
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limited to local molecular motions and short periods of simulation time.  Modeling 

molecules as rigid bodies can simplify the calculation of forces but does not represent the 

molecular interactions realistically.  To achieve a realistic molecular representation, it is 

necessary to model molecules as flexible bodies that attain different conformations while 

searching for a stable molecular state.  Incorporating real-time haptic force feedback into 

molecular design requires rapid update and modeling of molecular conformations for 

providing realistic and continuous visualization and sense of touch to the users.   

 

 

2.4   Computational Geometry 

 

 Recently, computational geometry has been successfully used in molecular design 

since important constraints influencing molecular behavior can have geometrical 

interpretation.  The representation of intra-molecular interactions through a 

computational geometric approach can allow the approximation of molecules’ behavior 

rapidly and efficiently for real-time molecular design.  From a geometric point of view, a 

molecular conformation can be considered feasible when there are no overlapping atoms 

or all possible atomic interactions are collision-free.  Collision detection (CD) is an 

essential problem in robotics, computational geometry, and computer graphics and is a 

major bottleneck in any interactive simulation.  A wide range of techniques have been 

proposed to deal with collision detection such as hierarchical representations, spatial 

partitioning, analytical methods, and geometric reasoning.  The algorithmic design 

depends on the representation of the model, the query types, and the simulated 

environment [Lin 1998]. 

 

2.4.1   Collision Detection in Molecular Conformational Search 

  

   Bounding volume hierarchies (BVH) are the most popular methods for capturing 

self-collision and collisions between objects [Teschner 2005].  The key idea is to use a 

hierarchical structure to describe the shape of an object at successive levels of detail.  The 



object of interest is enclosed by bounding volumes that can have various shapes such as 

spheres, axis-aligned bounding boxes (AABBs), and oriented bounding boxes (OBBs) 

[Lin 1998].  These bounding volumes become the tree leaves of the hierarchy that are 

enclosed by subsequent bounding volumes forming a hierarchical data structure. 

   For molecular structures, collision detection is a computationally expensive 

problem given the many degrees of freedom that a molecule can have.  Lotan et al. 

[Lotan 2002] used a kinematics chain model to represent proteins flexibility. In respect to 

the chain topology the authors built a BVH using object-oriented bounding boxes to 

detect overlapping atoms. They tested various proteins of different size and concluded an 

updated and testing computational time ranging in hundreds milliseconds. Their proposed 

approach requires performance for building the BVH and  computational 

complexity for the collision detection queries.  

)N(O )N(O 3/4

   Agarwal et al. [Agarwal 2004] used a BVH with the objects being modeled as 

spheres to detect collisions for deforming and moving necklaces (sequence of 

balls/beads). The authors built a balanced binary tree with spheres as bounding volumes 

to assist in the search for overlapping atoms within flexible protein molecules. They 

proposed two methods for computing the spheres: wrapped and layered hierarchy that 

provides an upper bound of  in 2D space or  in d-dimensional 

space for the collision detection plan. 

)NlogN(O )N(O d/32−

   Angulo et al. [Angulo 2005] proposed the BioCD algorithm for efficient self-

collision search and distance computations. The algorithm maintains two levels of 

bounding volume hierarchies (BVH). In the low level, it identifies the rigid groups of the 

articulated model and builds a hierarchy for each of them. In the upper level, it arranges 

the roots of the low level hierarchies. The authors tested various proteins with different 

size and they reached a collision detection time measured in tens of milliseconds with 

 performance and a  complexity for building the BVH.  )N(O )NlogN(O

   Redon et al. [Redon 2005] proposed an adaptive dynamic algorithm (ADA) for 

articulated bodies built upon “the divide-and-conquer algorithm” (DCA). An articulated 

body is the recursive link pair of articulated parts. The series of the assembly actions is 
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represented by a binary tree. Each node in the tree represents a sub-assembly motion.  

Morin and Redon [Morin 2007] utilized the ADA algorithm and proposed a force-

feedback algorithm for adaptive dynamic simulation of proteins. The authors used a 

multithreaded structure to couple the adaptive dynamic simulation loop from the 

computation of the force applied to the user (through the haptics) requiring a force 

feedback of  complexity. )N(logO

 

2.4.2  Geometric-Based Molecular Docking 

 

Current computational docking methods come from the areas of surface matching, 

object recognition and motion planning. Motion planning is a fundamental problem in 

robotics that consists of finding a valid sequence of configurations that moves an object 

from an initial position to a target point. Automatic motion planning is applicable not 

only to robotics, but also to virtual reality systems, computer-aided design and 

computational biology.  

Recently, researchers realized that both automatic motion planning and molecular 

docking problem relies upon the same basic principles.  A drug molecule can be 

considered like a robot with many degrees of freedom (dof) whose motion can be 

predicted by an automatic planner determining its ability to bind with a protein. The 

binding configuration should satisfy all the geometric, electrostatic and chemical 

constraints of the problem. A good binding site should also be reachable to the ligand 

from an outside location. Hence, the path to the binding site is highly important and 

motivates the use of motion planning in the molecular docking problem. These methods 

are known as probabilistic roadmap methods (PRMs) and are widely used in robotics, 

intelligent CAD systems and lately in computational biology. PRMs randomly construct a 

graph in C-space (configuration space), a roadmap, as it is called. The motion planning is 

then solved by connecting the start and goal configurations in the roadmap and searching 

for the feasible path on it [Bayazit 2003, Cortes 2003, 2005, 2007].  

A modification of the PRM framework is the rapidly- exploring random trees 

(RRT) for solving single-query problems without preprocessing the complete roadmap. 
11 
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These algorithms are well fitted for highly constrained problems [Cortes 2002, 2003, 

2005, 2007, La Valle 1999, 2000a,b].  A recently developed PRM variation to study 

molecular motions is the Stochastic Roadmap Simulation (SRS) [Bayazit 2000, Apaydin 

2002a, b, 2003, Chiang 2006]. A stochastic roadmap contains many Monte Carlo (MC) 

simulation paths at the same time. The SRS studied all the paths together in a closed form 

and resulted in significant computational time reduction. 

   Zhang and Kavraki [Zhang and Kavraki 2002] compared their proposed atom-

group-local-frame method with the simple rotations and Denavit-Hartenburg model 

[Hartenburg and Denavit 1955]. It was concluded that the atom-group-local-frame 

method not only eliminates all the disadvantages of the other two but also resulted in a 

lazy evaluation of atom positions and in computational time reduction.  This technique 

appears extremely useful in cases that deal with many conformations. Zhang et al. [Zhang 

2005] extended the atom-group-local-frame work by adding a geometric screening phase 

for identifying feasible molecular conformations.  

 

 

2.5   Current Literature Limitations 

 

Although remarkable advances in computational biology have been performed 

over the years, modeling molecular flexibility remains the main challenge in molecular 

design. Most of the above discussed methods do not address the modeling of molecules 

for real-time rendering or only allow a limited number of degrees of freedom to change.  

In addition, a more generic methodology is required that: 

1. is not limited to the topology of the molecules for self-collisions or collisions 

between them, 

2. evaluates arbitrary conformations independently of the previous query, 

3. is adaptive to the molecular structure by exploiting the fact that when limited 

degrees of freedom change some of the atomic distances remain constant,  

4. identifies molecular feasibility rapidly, efficiently and is evaluated in terms of 

both computational time and accuracy, 
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5. incorporates the chemical information that controls molecules’ flexibility into 

the molecular design to simplify and realistically represent the molecular 

interactions 

6. effectively directs the search towards low energy and chemically-feasible 

molecular conformations.  

   To address current literature limitations, this research work presents a new 

biologically-inspired geometric method for simplifying the representation of molecules of 

different type, size, shape and topology while considering certain chemical factors that 

influence molecules’ flexibility.  To direct the search towards low-energy molecular 

conformations, we propose the use of a new evolutionary based algorithm that will utilize 

the developed geometric method as a surrogate approximation model for reducing the 

algorithm’s convergence rate and finding the global minimum. The proposed work can 

facilitate interactive molecular modeling and nanoscale design. 
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Chapter 3 

A Geometric Interpretation of Molecular Mechanics 

 

This chapter introduces the basic molecular concepts and presents our proposed 

geometric interpretation of molecular mechanics.  A brief background on the various 

types of molecules and their basic functions is provided where molecules are categorized 

into ligands and receptors.  The central concepts on the internal molecular energy and our 

geometric interpretation of the molecular conformation mechanics are also explained in 

this chapter to provide the basis for our developed algorithms presented in Chapters 4, 5 

and 6.  

 

 

3.1   Background on Molecules 

 

A molecule is a sufficiently stable electrically neutral group of at least two atoms, 

in a definite arrangement, held together by very strong chemical bonds or covalent bonds. 

A covalent bond is a chemical bond where electrons are shared between atoms.  As 

shown in Figure 3.1, the size, shape and topology of a molecular structure varies 

according to its chemical characteristics and function.  These molecules are displayed 

using the VMD software [Humphrey 1999] as shown in Figure 3.1.  Geometrically, a 

molecule can be considered as a collection of atoms and bonds between each atom pair. 

Each atom can be represented as a sphere with van der Waals radius while chemical 

bonds can be represented as springs.  

 



(a) 1A5Z ligand                       (b) 1HVR ligand                                         (c) 1DO3 protein molecules, displayed with VMD software
 

Figure 3.1: Graphical representation of three different molecular structures. 

 

Molecules are essential to a variety of biological processes and activities of 

fundamental importance to life.  There are four basic types of molecules that are the 

major players in biological systems: carbohydrates, lipids, nucleic acids and proteins. 

Both carbohydrates and lipids are small molecules that are less complex compared with 

the nucleic acids and proteins.  Carbohydrates tend to be the least complicated molecular 

structures used as energy sources for cell processes.  Lipids are also fairly simple organic 

molecules that have several uses in living organisms such as acting as water barriers in 

cell membranes.  Lipids are also used for extra waterproofing or as insulation around 

nerves for long-term storage of energy in the form of fat, or used as heat insulation, as 

cushions, and as messenger molecules.  Nucleic acids and proteins are typically much 

larger complex molecules.  The primary role of the nucleic acids or DNA (one type of 

nucleic acid) is to store proteins’ main information.  Proteins are very important 

macromolecules in living organisms and perform many distinct functions.  The functions 

of a protein depend on its 3-dimensional shape, which can be virtually infinite in variety.  

Most proteins are enzymes performing biochemical functions such as bond-making and 

bond-breaking reactions.  Other proteins act as molecular motors or structural 

components by performing biophysical functions.   
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The understanding and modeling of the molecular functions and behaviors is very 

important in nanoscale design since many problems associated with the development of 

bionanotechnology require specifically-designed molecules.  For example, drug design 

and discovery relies increasingly on structured-based methods for improving efficiency.  

The main objective in drug design is to find or build molecules (ligands) that target 

proteins (receptors) crucial to the proliferation of microbes, cancer cells or viruses. This 

is a very long and expensive process called molecular docking that typically requires 

years of research, experimentation, and resources.  

A ligand or drug-like molecule is a small molecular structure that usually consists 

of at most 50 atoms as shown in Figure 3.1(a) and Figure 3.1(b).  A ligand molecule has a 

tendency to bind to large molecules called receptors that can lead to the identification of 

new pharmaceutical drugs and the creation of new molecular structures with specific 

capabilities for diagnosis and treatment of diseases.  

 

 
Figure 3.2:  Graphical representation of amino acids’ topology and link procedure 

through a covalent bond. 

 

 
Figure 3.3: Pattern of a protein’s backbone chain. 

 

As shown in Figure 3.1(c), a protein or a receptor molecule is a much larger 

molecular structure that consists of hundreds or even thousands of atoms.  Proteins are 

chains of smaller molecular entities called amino acids.  The amino acids consist of a 

central carbon atom, denoted as , connected to an amino group , a carboxyl aC 2NH
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groupCOOH , a single hydrogen atom H , and a side chain , specific for each amino 

acid, as shown in Figure 3.2(a).  There are 20 basic amino acids that serve as building 

blocks of proteins.  Amino acids differ from each other by their side chains, which also 

determine their chemical characteristics.  The amino acids may be linked to each other by 

the peptide bond (a covalent bond) between an amino group of one amino acid and a 

carboxyl group of another amino acid releasing a water molecule, as shown in Figure 

3.2(b).  These peptide bonds lead to a linear sequence of amino acids forming a 

polypeptide chain.  The backbone of the chain is formed by a peptide sequential pattern 

schematically shown in Figure 3.3.  Therefore, any protein can be considered as a 

polypeptide chain characterized by the amino acid sequence along the chain in order.  

R

 

 

3.2  Molecular Energy 

 

Molecules are very flexible in nature and can attain different conformations. A 

feasible molecular conformation indicates a stable molecular state that is usually 

described by the minimum intra-molecular energy.  This energy is a function composed 

of different energy factors that depict the interactions between bonded and non-bonded 

atoms.  The major energy contributors are the non-bonded van der Waals (VDW) 

potential and electrostatic forces.  A mathematical representation of the non-bonded 

molecular energy  is given by Eqn. 3.1:  nbE
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The first term in Eqn. 3.1 represents the VDW interaction that models the pair-

wise potential over all pairs of non-bonded atoms i, j.  and are the VDW repulsion 

and attraction parameters, respectively; and  is the distance between every exclusive 

non-bonded atom pair i and j.  The second term in Eqn. 3.1 represents the electrostatic 

forces between any non-bonded atom-pair.  The electrostatic contribution is modeled 

ijB ijA

ijr
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through a Coulomb potential where  represent the atomic charges,  the inter-

atomic distance, and k describes a molecular dielectric constant.   

ji qq , ijr

As the number of atoms within a molecular structure increases, the time to 

calculate the intra-molecular energy for determining a molecule’s feasibility (stability) 

increases significantly.  This makes the energy calculation method unsuitable for real-

time molecular design and assembly.  For this reason, alternative approaches for 

identifying feasible molecular conformations are needed.  Recently, computational 

geometry has been successfully used in molecular design since important constraints 

influencing molecular behavior can have geometrical interpretation.  The representation 

of intra-molecular interactions through a computational geometric approach can allow the 

approximation of molecules’ behavior rapidly and efficiently. Hence, this research work 

focuses on developing a new computational geometry approach to effectively identify 

feasible molecular conformations for molecular design and assembly.  

 

 

3.3   A Geometric Molecular Methodology from Molecular Mechanics 

 

The molecular mechanics or force-field method uses Newtonian procedure to 

describe a molecular structure and its properties energetically as a function of its 

conformation.  The internal forces experienced in the model structure are described using 

simple mathematics functions.  For example, Hooke’s law is commonly used to describe 

bonded interactions, whereas the unbounded atoms might be treated as inelastic hard 

spheres that interact according to the Lennard-Jones potential.  Based on these 

mathematical models, molecular dynamics simulations numerically solve Newton’s 

equation of motion to observe the structural motions with respect of time.  These 

simulations consider atoms as spheres and bonds as springs that have the ability to move 

along different directions.  The mathematics of spring deformation is used to measure the 

ability of the bond to stretch, bend and twist as shown in Figure 3.4.  
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Figure 3.4: Mechanical molecular model. 

 

As shown in Eqn. 3.1, the internal non-bonded energy is calculated based on the 

VDW potential and the electrostatic forces for every non-bonded atom pair within the 

molecular structure.  Both VDW and electrostatic forces are usually computed for atoms 

connected by no less than two atoms (non-bonded atoms in a 1, 4 relationship or further 

apart).  In the mechanical model, non-bonded atoms are those atoms linked by three or 

more chemical bonds as indicated by the blue-colored spheres in Figure 3.4.   

 
Figure 3.5: Example of a drug-like molecule as an articulated body. 

 

From a geometric point of view, a molecule can be modeled as an articulated 

body with at least six degrees of freedom (dof): three translational and three rotational.  

In addition, each chemical bond  within a molecular structure carries information 

related to the van der Waals radius . This information is linked to the bond length; the 

bond angle (the angle between bond  and ) and the set of torsion angles

ib

ir

ib 1−ib )2,0[ πθ ∈i . 

A torsion bond is the bond’s capability to rotate along its own axis. In most molecular 

studies, the bond length and angles are kept fixed since they do not contribute 
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significantly to the molecular shape.  Therefore, a molecular conformation is defined in 

this work as the changes in the angles of the torsion bonds iθ  as shown in Figure 3.5.   

From molecular mechanics, the VDW repulsion force between two non-bonded 

atoms increases exponentially as the distance between the atoms decreases.  The VDW 

attraction occurs at short range until the non-bonded atoms’ relative distance d is equal to 

their equilibrium distance ji rrd +=0  and fades away as the interacting atoms move 

apart.  A geometric interpretation of the VDW atomic interactions is given by Eqn. 3.2 

under which an overlapping atom-pair exists: 

1≤0

)(
,

ρ

ρ

<

+< jiatoms rrd
ji                                (3.2) 

Where represents the distance between the non-bonded atoms i and j;  are 

the VDW radii for the non-bonded atoms i and j, respectively; and 

jiatomsd
, ji rr ,

ρ  is a constant 

parameter that controls the impact of the VDW equilibrium distance on each non-bonded 

atomic interaction.  The electrostatic potential provides a smooth transition between the 

attraction and repulsion regimes.  The overall impact of the non-bonded atomic 

interactions can be geometrically interpreted by Eqn. 3.3: 

1≤<0

+)+(<,

ρ

rrrρd ijjiatoms ji                        (3.3) 

A stable molecular state can be represented by a feasible molecular conformation 

with low internal energy E.  In a force field, the VDW forces are the dominant energy 

contributors while the electrostatic interactions dominate the computational time 

[Sherrill].  Thus, identifying a molecular conformation with E lower or equal than the 

VDW interactions guarantees that E will be less than or equal to the total non-bonded 

energy : nbE
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Similarly, as shown in Eqn. 3.3, a molecular conformation is considered 

infeasible when overlapping atoms exist within the molecular structure.  Finding a pair-

wise atomic distance d that satisfies Eqn. 3.2 ensures that a self-collision occurs as it is 

demonstrated below:  
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Given that the VDW potential dominates the molecular interactions chemically 

and geometrically as demonstrated in Eqn. 3.6 and Eqn. 3.2, respectively, the intra-

molecular energy can be approximated by the VDW interactions only as follows: 
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  Given that the number of possible molecular conformations grows in proportion 

to the power of the number of torsion bonds, identifying feasible molecular 

conformations remains the main challenge in molecular design.  This research work 

presents a biologically-inspired geometric method that incorporates the above 

assumptions on atoms’ connectivity and chemical factors to rapidly identify chemically-

feasible molecular conformations.  Our approach aims to geometrically approximate the 

behavior of molecules of any size, shape, and topology efficiently while minimizing 

molecular conformational search and collision detection queries.  
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In the following three chapters, the development of three computational geometric 

molecular models for identifying molecules feasibility is discussed as shown in Figure 

3.6.  In Chapter 4, a biologically-inspired geometric method called BioGeoFilter (BGF) 

methodology is presented for modeling the behavior of drug-like molecules in real-time. 

The enhanced BioGeoFilter algorithm (eBGF) is presented in Chapter 5 to model the 

behavior of macromolecular structures such as protein molecules. Chapter 6 presents a 

generic computational geometric molecular approach (generic eBGF) for modeling the 

behavior of molecular structures of any size, shape and topology for real-time molecular 

design and assembly. 

 

BGF algorithm
for

drug-like molecules

eBGF algorithm
for

protein molecules

generic eBGF algorithm
for

any molecular structure

 
Figure 3.6: Three geometric molecular models developed in this research work. 
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Chapter 4 

BioGeoFilter (BGF) Methodology 

 

In this chapter, a new methodology called BioGeoFilter (BGF) is introduced to 

approximate drug-like molecules’ behavior in real-time subject to both chemical and 

geometric constraints.  The BGF approach consists of a two-layer hierarchical data 

structure that simplifies the molecular representation to effectively identify molecular 

self-collisions.  Experimental results show that the BGF approach significantly decreases 

the computational time for identifying feasible conformations.  This can facilitate the 

real-time modeling of molecular components to enable interactive molecular design and 

assembly.   

 

 

4.1   Overview of the Proposed BGF Model 

 

The proposed BGF model consists of a hierarchical structure that comprises two 

layers: a lower level and an upper level as shown in Figure 4.1. At the lower level, the 

molecule is modeled as an articulated body with the internal degrees of freedom 

representing the number of torsion bond angles.  At the upper level, a bounding volume 

hierarchy (BVH) is introduced to identify atoms within the molecule that are in collision.  

A new updating scheme for the BVH is presented to identify self-collisions during the 

update phase of the algorithm.  This significantly speeds the computational time so the 

proposed BGF methodology can be used for both real-time molecular modeling and for 

reducing the energy minimization time.  The following sections describe the two levels of 

the proposed BGF algorithm. 

 



 
Figure 4.1:  Overall structure of the proposed BioGeoFilter methodology. 

 

 

4.2  BGF: Lower Level Hierarchy 

 

As shown in Figure 4.2, a drug-like or ligand molecule is modeled as an 

articulated body, where an arbitrarily-selected atom acts as the base of the body.  A 

flexible molecule has at least six degrees of freedom (dof): three translational and three 

rotational.  In addition, each torsion bond angle )2,0[ πθ ∈i accounts for an additional 
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dof.  Hence, a molecular conformation is defined as the changes in the angles of the 

torsion bonds. 

 

1θ2θ3θ

 
Figure 4.2:  1STP ligand molecule divided into AtomGroups based on the location of the 

torsion bonds. 

 

To reduce the computational complexity of a molecular structure, atoms of a 

molecule are clustered into AtomGroups based on the approach by [Zhang and Kavraki 

2004].  Based on the location of the torsion bonds, atoms are clustered into AtomGroups.  

In other words, all the atoms within an AtomGroup are connected by rigid bonds while 

AtomGroups are connected by torsion bonds, as shown in Figure 4.2.  Therefore, the 

number of the AtomGroups required to represent molecules’ flexibility is equal to the 

number of the torsion angles plus one. 
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Figure 4.3: AtomGroups for a hypothetical small molecule. 



Once the AtomGroups are defined, one group is chosen as the root Atomgroup. 

The root Atomgroup is important since it represents the base of the molecular structure 

where the molecular motions will be projected. The lower hierarchical layer of the 

proposed BGF is a tree where each vertex represents an AtomGroup and each edge 

denotes a torsion bond as shown in Figure 4.3. 

 

 
Figure 4.4: Local Cartesian coordinate frame assigned to and . iGroup 1−iGroup

 

To speed the update of molecular conformations, each  is assigned a 

local Cartesian coordinate frame  and a relationship is generated between all the 

AtomGroups.  Since each AtomGroup contains atoms whose distance will not change 

when torsion changes occur, the distance between atoms in the same AtomGroup do not 

need to be checked for collision.  Only non-bonded atoms that correspond to different 

AtomGroups will be checked thus reducing the time to identify geometrically feasible 

conformations.  This significantly reduces the computational time and decreases 

calculation inaccuracies when updating atom positions during conformational changes.  

The clustering of atoms in groups will be used to form the upper level hierarchy of the 

proposed BioGeoFilter approach as described in following section. 

iAtomGroup

iF
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4.3 BGF: Upper Level Hierarchy 

 

4.3.1  Constructing the Hierarchy 

 

Once the different AtomGroups of the molecule have been built at the lower level 

hierarchy, the smallest enclosing sphere that contains all the atoms within each 

AtomGroup is calculated as shown in Figure 4.5.  The spheres (each containing an 

AtomGroup) are organized into a binary tree-like data structure that will serve to detect 

molecular self-collisions subject to both chemical and geometric constraints during 

conformational search. 

 
Figure 4.5: Schematic representation of the smallest enclosing sphere of spheres. 
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Figure 4.6: Proposed hierarchical structure for 1STP ligand molecule. 

 
27 

 



Figure 4.6 shows the proposed bounding volume hierarchy for the molecule 

previously shown in Figure 4.2.  At the bottom of the tree there are four spheres (called 

leaf nodes) representing the four AtomGroups for the 1STP ligand molecule.  For each 

pair of nodes, an intermediate node is created that encloses the two nodes.  This process 

continues in a bottom-up manner until all the spheres result into one single root sphere as 

shown by the number S7 in Figure 4.6. 

 

4.3.2  Molecular Geometric Constraints 

 

The VDW interactions are converted into geometric constraints to decrease the 

time to identify infeasible molecular conformations.  As discussed in Sections 3.2 and 

3.3, the VDW repulsion between two non-bonded atoms increases exponentially as the 

distance between the atoms decreases.  The VDW attraction occurs at short range until 

the non-bonded atoms’ relative distance d is equal to their equilibrium distance : 

.  Hence, based on these interactions, we introduce the first geometric constraint 

that no neighboring atoms or atoms within neighboring AtomGroups should be checked 

for self-collision.  

0d

0= dd

The distance between non-bonded atoms within a molecule can often become 

very short leading to large values in the non-bonded energy and forces.  For this reason, 

the VDW interaction for non-bonded atoms is modeled as a pair-wise potential over all 

pairs of atoms except 1-2 and 1-3 bonded atoms pairs based on the concept of [Dendzik 

2005].  Thus, the second geometric constraint consists of considering as non-bonded 

atoms the atoms linked by four or more chemical bonds.  Moreover, the detection of an 

actual self-collision between a non-bonded atom pair along with the algorithm’s 

selectivity mechanism depends on the constant ρ  of the equilibrium distance  where 

.  Therefore, the third geometric constraint is the constraint given by Eqn. 

3.2 that detects atoms self-collisions.  If Eqn. 3.2 is satisfied, then an actual self collision 

occurs between the non-bonded atoms i and j. 

0d

)+(=0 ji rrd
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By decreasing the ρ  value, the output set of feasible solutions obtained by the 

BGF algorithm increases as it is further analyzed in Section 4.4.  Therefore, based on the 

above geometric constraints, the BGF methodology rejects any molecular conformation 

that does not satisfy the geometric filtering as described in the following section.   

 

4.3.3  Updating the Hierarchy and Self-Collision Detection 

 

As new conformations are being searched through changes in the torsion bonds, 

the new position of the atoms needs to be calculated.  The new atom positions affect the 

location and radius of the spheres in the hierarchy so they need to be updated 

accordingly.  In this work, the spheres in the hierarchy are updated in a bottom-up 

manner and one level at a time.  Therefore, the tree nodes are updated from the leaf nodes 

to their parents and this process continues until the root node is reached and updated. 

During the update phase, a new updating algorithm is introduced so that if a self-

collision is detected, the algorithm will immediately stop and reject the conformation due 

to overlapping atoms (self-collision) as shown in Figure 4.1.  The algorithm first updates 

the leaf nodes (e.g., S1, S2, S3, and S4 in Figure 4.6).  One level at a time, the algorithm 

updates the spheres’ radius and centers based on the new atom locations.  Then, the 

parent nodes of the leaf nodes are tested for update.  If there is a collision between the 

children nodes, the algorithm returns that the conformation is infeasible and stops.  If no 

collision is detected, the process continues until the root node is reached and updated. 

 

 

4.4  Computer Implementation and Results 

 

The presented method and algorithms have been implemented on Intel Pentium 4 

with 2.7 GHz personal computers using Visual C++ programming language, the OpenGL 

and CGAL libraries [CGAL].  Four different molecules with different number of atoms 

and number of degrees of freedom were tested using the proposed BioGeoFilter 

methodology.  The molecules were obtained from the Protein Data Bank (PDB) [Berman 
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2000] with PDB IDs as follows: 1HVR, 1HTB, 1A5Z, and 1JBO.  Their corresponding 

number of atoms and degrees of freedom are indicated in Table 4.1 presented below.   
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Figure 4.7: Computational time comparison for four different ligand molecules. 

 

Figure 4.7 compares the performance of the proposed BGF algorithm and the 

energy calculation for the four different molecules with different pre-selected dof.  For 

each example molecule, random conformations were generated and tested for feasibility 

using both methods.  As shown in Figure 4.7, the proposed BGF methodology greatly 

reduces the computational time needed to identify feasible molecular conformations 

compared to the energy calculation approach.  This reduction in time is significant as 

multiple flexible molecules will need to be modeled in real-time at the same time for 

nanoscale assembly.  It can also be observed that as the dof increases, the time reduction 

percentage also increases.  The computational times for all the tested molecules satisfy 

the real-time haptic constraint and scale well as the number of degrees of freedom 

increases. 
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Various feasible conformations obtained from the BGF approach are shown in 

Figure 4.8(c) for the example molecule 1A5Z.  These conformations satisfy the geometric 

constraints of the BGF methodology and have been validated using the energy values 

obtained from the energy calculation method. 
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Figure 4.8:  Examples of random conformations for three ligand molecules. 

 

Table 4.1 shows the results in terms of computational time (milliseconds) and 

accuracy (number of feasible conformations identified) between the energy calculation 

approach (T_en, and F_en. columns) and BGF approach (T_BGF, and F_BGF columns).  

In the proposed methodology, the same molecular conformation is used for comparing 

the two methods. As shown in the percentage time reduction (T_red) in Table 4.1, the 

proposed algorithm can identify feasible conformations at least twice faster than the 

energy calculation method and with similar accuracy.  It can also be observed that as the 

dof increases, the time reduction percentage obtained from the BGF methodology also 

increases. 
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Table 4.1:  Statistical data for four different ligand molecules. 

# of 
Ligand  atoms  DOF p T_en. T_BGF F_en F_BGF T_red.

0.8 0.6 0.1 13/100 0/100 83%
0.7 0.5 0.2 14/100 6/100 60%
0.6 0.72 0.158 17/100 14/100 78%
0.8 0.586 0.218 18/100 18/100 63%
0.7 0.6 0.3 43/100 39/100 50%

1HVR 46 4 1 0.7 0.3 0/100 2/100 57%
0.8 0.7 0.4 69/100 43/100 43%
0.7 1.1 0.2 77/100 67/100 82%
0.6 0.6 0.1 85/100 78/100 83%

1A5Z 44

1HTB 44

1JBO 43

11

10

13  
 

Table 4.1 also shows the sensitivity analysis performed to study the impact of the 

different values for ρ  of the equilibrium distance on the results.  The entire range of ρ  

values, where , was tested for each molecule but only the most significant 1<0 ρ < ρ  

values are shown in the table for explanation purposes.  As shown in Table 4.1, it was 

found that by varying ρ  and depending on the size of the molecule, the selectivity of the 

BGF methodology can be adjusted.  As ρ  decreases, BGF accepts more molecular 

conformations as feasible, which leads to a relaxed filtering.  The main objective of the 

BGF methodology is to identify infeasible conformations while not rejecting any feasible 

conformations.  Hence, the selection of an appropriate ρ  value for each molecule 

depends on the molecule and the desired level of selectivity.  In Table 4.1, the grey 

colored rows denote the best ρ  values for each molecule in terms of selectivity and 

accuracy.  An analysis on the relationship between the ρ  value and the molecule’s size is 

addressed in Chapter 5.  

The sensitivity analysis was performed by relaxing the third geometric constraint 

( ρ  value) only.  The relaxation of the other geometric constraints was shown to increase 

the acceptance of unfeasible molecular conformations and computational time.  For this 

reason, the sensitivity analysis only focused on relaxing the third constraint while 

keeping other constraints fixed.      
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4.5  Conclusions 

 

    This chapter presents a new method called BioGeoFilter (BGF) for modeling and 

approximating the molecular behavior subject to geometric constraints in real-time.  BGF 

consists of a novel two-layer hierarchical structure that identifies self-collisions during 

the hierarchy’s updating phase.  The proposed methodology is presented as a filtering 

tool based on chemical and geometric concepts for effectively identifying feasible 

molecular conformations. Computer implementation and results demonstrate that the 

proposed BGF approach significantly decreases the computational time for identifying 

feasible ligand conformations to satisfy real-time update requirements.  The proposed 

BGF methodology can facilitate the real-time modeling and visualization of molecular 

components and enable the development of an essential interactive nanoscale computer-

aided design tool for bionanotechnology.  The following chapter presents the extended 

BGF algorithm for macromolecular structures. 
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Chapter 5 

Enhanced BioGeoFilter (eBGF) Molecular Model 

 

This chapter analyzes the structure of much larger molecules such as proteins to 

model them more effectively using an enhanced BGF (eBGF) model. The proposed 

eBGF approach addresses current limitations in protein modeling through a biologically-

inspired geometric filter for speeding self-collision detection queries.  The presented 

eBGF methodology can facilitate the modeling of flexible macromolecules for 

applications such as molecular docking, nanoscale assembly, and protein folding.   

 

 

5.1  Differences Between eBGF and BGF Models 

 

  The proposed enhanced BioGeoFilter (eBGF) algorithm is similar to the BGF 

approach presented in Chapter 4 in that they both build a hierarchical data structure that 

consists of two layers: a lower level and an upper level.  Both algorithms geometrically 

interpret the inter-atomic interactions to impose the geometric constraints that define a 

feasible molecular conformation.  However, given that a protein molecule can consist of 

hundreds or thousands of atoms with hundreds or even thousands degrees of freedom, 

the modeling of proteins requires: 1. a further AtomGroup subdivision of the protein’s 

backbone structure, 2. an independent updating of the BVH and collision detection 

functions, and 3. an additional geometric constraint for the collision detection queries.  

To effectively model protein molecules, the eBGF algorithm incorporates new 

algorithmic concepts.  The core differences between the eBGF and BGF models are:  

1. Given the particular structure of proteins, a new algorithm to divide the 

protein backbone into smaller groups is incorporated into the eBGF model to 

handle protein updating and collision detection more effectively.  
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2. The eBGF algorithm updates the BVH independently from the collision 

detection query compared to the combined updating and collision detection 

approach in the BGF model.  This resulted in a significantly faster model that 

is more suitable for large molecules such as proteins.   

3. To compensate with the not so tight fitting that results from the selection of 

spheres as bounding volumes, the eBGF algorithm incorporates an additional 

geometric constraint for the collision detection query.  

 

 

5.2   Proposed eBGF Overview 

 

Figure 5.1 shows the overview of the enhanced BioGeoFilter methodology that 

consists of two layers: the lower and upper hierarchical layers as indicated by the white 

colored boxes.  At the lower layer of the hierarchy, the eBGF algorithm starts with any 

molecular conformation. The dof of the molecular structure are defined to form atom 

groups following the concept presented in Chapter 4. A further simplification in 

molecular representation is proposed by splitting the backbone atom cluster into smaller 

groups of atoms as it is discussed in Section 5.3.  At the upper layer of the proposed 

approach, we build a BVH for the initial molecular conformation as it is described in 

Section 5.4.  New random molecular conformations are obtained by arbitrary changing 

the values for each degree of freedom.  For each candidate molecular conformation, the 

BVH is updated to incorporate the corresponding changes in the dof as it is presented in 

Section 5.4.3.  A collision detection scheme is then performed to identify the feasibility 

of each random molecular conformation as it is described in Section 5.4.4.  At the end of 

the eBGF algorithm, the intramolecular energy value for each random conformation is 

calculated for evaluating the proposed approach as it is discussed in Section 5.5.  The 

following sections describe in details each hierarchical layer of the proposed eBGF 

methodology. 
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Figure 5.1: Overview of the proposed eBGF approach. 

 

 

5.3  eBGF: Lower Layer Hierarchy 

 

Torsion changes can occur anywhere within a protein’s topology.  However, 

considering random torsions within a protein’s backbone can break its structure making it 

extremely difficult to evaluate whether the generated molecular conformation is 

chemically feasible.  Therefore, in this paper, torsions are assumed only between the 

central carbon atom of a protein’s backbone (CA) and a side chain atom (CB) or within 

the side chain atoms as shown in Figure 5.2.  Furthermore, given the increasing 

complexity by a protein’s size, torsions at the end of each side chain are neglected (i.e. 

the bond between CD and OE1 atoms in Figure 5.2(a) since they do not contribute 

significantly to the molecular conformation.  

 

36 
 



 

 
Figure 5.2: Graphical representation of the degrees of freedom of a protein. 

 

Once the torsion bonds of a protein are identified, the atoms are clustered into 

AtomGroups based on the approach proposed by [Zhang and Kavraki 2004] and 

analytically shown in Chapter 4.  However, the application of the AtomGroup concept in 

a protein molecule results in the generation of two different sized atom clusters: clusters 

of side chain atoms and a cluster of backbone atoms as shown in Figure 5.3(a).  The 

cluster of backbone atoms contains hundreds of atoms whereas the clusters of side chain 

atoms contain tens of atoms.  This large size difference in the atom clusters increases the 

time needed to determine if an actual molecular self-collision occurs.   

 

 
Figure 5.3: Graphical representation of the AtomGroup concept along with the proposed 

splitting procedure for a hypothetical protein segment. 
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To address this challenge, this research work proposes to split the backbone atom 

cluster into smaller AtomGroups based on a threshold defined by the maximum number 

of atoms allowed within each atom cluster.  By splitting the backbone cluster, a flexible 

AtomGroup (i.e. the green and pink sphere in Figure 5.3(b) is obtained along with a 

number of rigid AtomGroups (i.e. the six pink/dashed-line spheres shown in Figure 

5.3(b)).  This splitting procedure further simplifies the molecular representation by 

reducing the collision queries while eliminating the collision searches between the rigid 

groups.  Hence, the collision detection is now performed between similar sized flexible 

groups of atoms significantly reducing the computational time for identifying a 

molecule’s feasibility. 

The splitting of the backbone cluster into smaller groups of atoms significantly 

reduces the computational time for updating the atoms’ positions by eliminating the 

calculation of the relation matrices for the rigid groups of atoms.  As shown in Figure 

5.3(b), the relation matrix for the big green sphere (initial flexible AtomGroup) is the 

same as the relation matrix of the green and pink sphere (modified flexible AtomGroup) 

and as the relation matrices of the pink/dashed-line spheres (rigid AtomGroups). 

Therefore, instead of calculating relation matrices for all the seven new groups of atoms, 

we just calculate a single relation matrix for the modified flexible group as depicted by 

the specific protein segment shown in Figure 5.3.  The clustering of atoms into both rigid 

and flexible groups will be used to form the upper layer of the hierarchy of the proposed 

eBGF methodology as described in the following section. 

 

 

5.4  eBGF: Upper Layer Hierarchy 

 

At the upper level of the eBGF method, a bounding volume hierarchy (BVH) 

depicted as a balanced binary tree similar to the BGF model is introduced to identify 

atoms’ self-collisions. The main difference between the bounding volume hierarchies of 

the BGF and eBGF models is that the leaves in the BGF model only represent flexible 

group of atoms whereas the leaves of the eBGF model can represent both flexible and 



rigid atom clusters.  This impacts both the updating and collision detection time.  

Furthermore, an additional geometric constraint is proposed to compensate the not so 

tight fitting that results from the selection of spheres as bounding volumes.     

 

5.4.1  Constructing the BVH 

 

Once the different AtomGroups (both flexible and rigid) have been defined at the 

lower layer of the hierarchy, the smallest enclosing sphere that contains all the atoms 

within each AtomGroup is calculated as in [Fischer and Gartner 2003].  The spheres 

(each containing an AtomGroup) are organized into a binary tree-like data structure that 

will serve to detect molecular self-collisions subject to both chemical and geometric 

constraints during conformational search as it will be discussed in Section 5.4.4. 

 

 
Figure 5.4: Schematic representation of the rigid and flexible AtomGroups within a 

hypothetical protein segment and the accordance BVH. 

 

Figure 5.4(a) shows a hypothetical protein segment with its corresponding 

bounding volume hierarchy shown in Figure 5.4(b).  At the bottom of the tree are the 14 

spheres (called leaf nodes) representing the 14 AtomGroups of the molecule that includes 

flexible (green colored) and rigid (pink colored or dashed-lines).  For each pair of nodes, 

an intermediate node is created that encloses the two nodes. This process continues in a 

bottom-up manner until all the spheres result into one single root sphere as shown by the 
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purple colored sphere in Figure 5.4, which is the sphere that encloses the whole protein 

segment. 

The BVH is built only once at the beginning of the algorithm allowing a total 

construction time of  where )N(O
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            (5.1) 

 

5.4.2  Randomization 

 

As soon as the pre-selected dof have been defined for the specific protein 

molecule, a uniform generator is used to create random values for the torsion angles iθ , 

where . When random torsion changes occur, the new atom positions are 

updated based on the concept presented in Chapter 4 to obtain a new molecular 

conformation.  For each new random molecular state, the BVH is updated and the new 

molecular conformation is tested for self-collision. 

)2,0[i π∈θ

 

5.4.3   Updating the Hierarchy 

 

Every time the torsion bonds change, a new molecular conformation is generated. 

The new atom positions affect the location and radius of the spheres in the hierarchy so 

they need to be updated accordingly.  In this work, the spheres in the BVH are updated in 

a bottom-up manner and one level at a time. Therefore, the tree nodes are updated from 

the leaf nodes to their parents until the root node of the tree is reached and updated.  

As shown in Figure 5.4(b), the BVH is formed by both flexible (green colored) 

and rigid (pink colored) spheres.  It can be observed that the updating of the spheres 

around the rigid groups (pink colored spheres and their parents) can be neglected since 

the atom distances within and between the rigid groups remain unchanged.  This occurs 

when the atom cluster of the molecule’s backbone has been defined as the root 
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AtomGroup or else the base of the molecule’s body.  Omitting the update of the rigid 

nodes (k) results in a reduction of the computational time for updating the BVH and for 

identifying molecular feasibility. This contributes to a total updating time of )(
k
N

O  that 

never exceeds . )(NO

 

5.4.4  Self-Collision Detection 

 

The fundamental concept underneath the proposed collision detection algorithm is 

the geometric interpretation of the chemical information provided by the van der Waals 

(VDW) interaction as discussed in Chapter 3 and in Section 4.3.3.  The main difference 

lies in that the collision search presented in the eBGF model is handled independently 

from the BVH update procedure.  In other words, the BVH is updated first and then the 

tree is traversed down (in a top-bottom mode) to check for possible overlapping atoms. 

The geometric constraints used in this work to handle the collision detection 

queries are depicted by Eqn. 5.2. As shown by the first relation in Eqn. 5.2, an additional 

constraint is considered to search for overlapping spheres. 
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ij

                    (5.2) 

Where,  denotes the distance between the sphere objects i and j;  

represents the distance between the non-bonded atoms i and j; and  are constants 

that control the proposed algorithm’s selectivity mechanism.  

jisphered
, jiatomsd

,

1ρ 2ρ

The first constraint in Eqn. 5.2 (the additional constraint for the eBGF model) 

embodies a primary filtering while checking for possible collisions between two spherical 

objects.  If this constraint is satisfied, then a possible collision occurs between the sphere 

objects i and j.  The second constraint in Eqn. 5.2 ensures that an actual self-collision 

occurs by comparing pair-wise atomic distances.  The physical interpretation of the  

parameter is that it controls the not so tight object fitting that result from the selection of 

1ρ
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spheres as the type of bounding volumes.  The  parameter controls the algorithm’s 

selectivity or the number of feasible solutions generated.  By decreasing the value of  

selectivity parameter, the proposed eBGF algorithm accepts more solutions (molecular 

conformations) as feasible.  From a biological point of view,  handles the impact that 

the VDW equilibrium distance has on the results.  

2ρ

2ρ

2ρ

 

 
Figure 5.5: Graphical representation of the proposed collision detection algorithm. 

 

Figure 5.5 shows an intermediate and the worst case scenario of the proposed 

collision detection scheme for a protein segment.  During the tree traversal, each non-

constraint pair of nodes is checked for a possible collision using the first constraint in 

Eqn. 5.2, where the actual self-collision detection is performed between non-bonded atom 

pairs by using the second constraint in Eqn. 5.2.  A constrained node pair embodies any 

of the following properties: 

1. For self-collision queries, collision detection between the root of the tree 

against itself should be omitted. 

2. The collision search between rigid AtomGroups should be ignored since the 

atomic distances within and between these groups remain unchanged. 

3. Collision queries between bonded neighboring AtomGroups should also be 

eliminated since the atomic distances between these two groups do not change 

significantly. 
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4. Given that the impact of the VDW interaction increases as the pair-wise 

atomic distances decreases, the collision detection between any atom pair 

linked by three or less chemical bonds should be avoided as discussed in 

Section 3.3.  Therefore, non-bonded atoms are the atoms linked by four or 

more chemical bonds. 

Under these assumptions, if the root’s child nodes are collision free, then the 

specific molecular conformation is feasible and is accepted. Otherwise, the tree is 

traversed down to identify whether any atoms are actually in collision to reject the current 

molecular conformation. The computation collision detection time has )(log
k
N

O  

performance that never exceeds , where k is a constant that represents the 

number of constraint nodes (i.e. rigid AtomGroups) that are neglected in the proposed 

collision detection scheme.  Finally, each random molecular conformation is tested with 

both the proposed eBGF approach and the traditional energy calculation method using 

Eqn. 3.4.   

)(logNO

 

 
Figure 5.6: Two example macromolecules tested in this work. 
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5.5   Computer Implementation and Results  

 

The presented method and algorithms have been implemented on a dual 3 GHz 

CPU workstation using Visual C++ programming language, OpenGL and CGAL libraries 

[CGAL]. Two different protein molecules with different number of atoms, residues, and 

number of degrees of freedom have been tested using the proposed eBGF methodology 

as shown in Figure 5.6. The molecules were obtained from the Protein Data Bank (PDB) 

[Berman 2000] with PDB IDs as follows: 1STP and 1DO3 protein molecules. They are 

displayed using the VMD [Humphrey 1999]. 

 

Table 5.1: Performance analysis of the proposed eBGF algorithm for two proteins. 

 
 

Table 5.1 shows a representative list of the performance analysis for the proposed 

eBGF method applied to the two example macromolecules. The molecules have been 

tested for feasibility after random torsion changes have occurred. The same 

conformations for both molecules have been examined with both the energy 

(TimeEnergy, FeasibleEnergy, and TH columns) and eBGF (TimeBVHUpdate, 

TimeCollision, TimeRand, FeasibleCollision columns) approaches and compared in terms 

of computational time (in milliseconds) and accuracy (percentage of feasible 

conformations identified). Furthermore, different case scenarios regarding the number, 

arrangement and the location of the pre-selected dof have been tested for assessing their 
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impact on the proposed eBGF methodology (FreeResidues and DOF columns). Column 

FreeResidues indicates the allowed number of completely flexible residues and column 

DOF represents the total number of dof assumed. For example, in 1DO3 protein section 

at the bottom of Table 5.1: column-pair 35-36 (FreeResidues-DOF) indicates that 35 

completely flexible residues have been tested for the 1DO3 protein that results in a total 

of 36 dof; the pair 35-14 indicates that 14 dof were tested only between backbone and 

side chain atoms; and the pair 35-22 corresponds to torsions only within the side chains 

of the 35 flexible residues. Further discussion of the impact in molecular behavior by the 

pre-selected number of flexible residues and dof is performed below. In addition, 

different values for the algorithm’s selectivity control parameters ( , and  columns) 

have been tested and discussed below. 

1ρ 2ρ

 

 
Figure 5.7: Comparison of the average collision time by the proposed eBGF vs. the 

average energy calculation time for different sets of pre-selected flexible-residues/dof. 

 

Figure 5.7 compares the performance of the eBGF method against the energy 

calculation approach in terms of computational time needed to identify molecules’ 

feasibility for the two protein (1STP and 1DO3) examples.  As shown in Figure 5.7, the 

eBGF algorithm significantly reduces the computational time needed to identify feasible 

molecular conformations compared to the energy approach.  In fact, the time reduction is 

so enormous that two different scales were needed to schematically display the two 

methods in the same graph. The left scale for both figures denotes the time in 
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milliseconds (ms) required by the energy approach to determine the feasibility of a 

molecular conformation whereas the right scale denotes the computational time (in ms) 

for the proposed collision detection algorithm to identify molecular feasibility. For both 

molecules and in all tested sets of pre-selected flexible-residues/dof, the eBGF requires 

less than 1ms to output if the tested molecular conformation is feasible. This time 

reduction is noteworthy as multiple flexible molecules will need to be modeled in real-

time simultaneously for the molecular assembly or molecular docking problems. 
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Figure 5.8: Average total time comparison between the proposed eBGF algorithm and the 

energy calculation approach to output feasibility for 1STP and 1DO3 proteins in a 

logarithmic scale. 

 

46 
 

Similarly, Figure 5.8 compares the computational time performance for the two 

methods (eBGF vs. energy calculation) while considering the scenario that both protein 

molecules are completely flexible (the total number of residues forming each protein 

structure assumed to be completely flexible). Analytically, Figure 5.8 displays the total 

computational time (in ms) for the eBGF method (the collision detection time + BVH 

update time + update atoms’ position time) against the energy approach in a logarithmic 

scale. As it is shown in Figure 5.8, the proposed eBGF methodology is significantly 

faster than the energy calculation approach in identifying feasible molecular 

conformations. In addition, the eBGF algorithm scales very well as the protein size and 

problem’s complexity increases. 
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Figure 5.9: Schematic demonstration of the accuracy of the proposed eBGF 

methodology. 

 

Figure 5.9 measures the accuracy (percentage of feasible conformations 

identified) of our proposed method under different considerations regarding the allowed 

number of flexible residues within each protein structure.  For both protein examples, the 

two methods demonstrate similar accuracy.  In fact, the selectivity of the eBGF algorithm 

can be adjusted by varying the control parameters ( , and ).  In other words, by 

decreasing the values, the proposed algorithm can accept more molecular 

conformations as feasible leading to a relaxed filtering.  The physical interpretation of  

selectivity parameter is that it handles the not so tight object fitting resulted by the 

selection of spheres as the type of bounding volumes whereas the  selectivity 

parameter controls the impact that the VDW equilibrium distance has on the results as it 

has been analyzed in Section 5.3.4.  The main objective of the eBGF approach is to 

identify infeasible molecular conformations rapidly while not rejecting any feasible ones. 

Hence, the selection of appropriate values for each molecule depends on the 

molecule’s size along with the desired level of selectivity by the user.  It is also worth 

mentioning here that the molecules’ feasibility is traditionally measured using the energy 

calculation shown in Eqn. 3.4.  A conformation might be considered as feasible or not 

depending on the molecular internal energy value.  If a candidate conformation has 

negative internal energy, then it corresponds to a stable molecular state.  However, 

feasible molecular conformations exist while having positive intramolecular energy.  

1ρ 2ρ

ρ

1ρ

2ρ

ρ
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Therefore, a threshold (TH column in Table 5.1) has been selected based on the protein’s 

size to define the maximum energy value for which a molecular conformation is 

considered to be feasible.  

Moreover, as it is shown in Table 5.1 and Figure 5.9, there is a significant 

dependency among the pre-selected number of flexible residues and dof considered in 

each protein molecule and the output (percentage of feasible molecular conformations) 

derived by both (eBGF and energy) methods.  Computer implementation and results 

demonstrate that as the number of dof considered increases, the output set of feasible 

solutions obtained by the energy approach decreases; whereas the output set by the eBGF 

algorithm can be adjusted as it has been discussed previously.  In addition, when many 

dof are assumed between backbone atom and side chain atoms, the output set of feasible 

solutions by the energy calculation approach decreases.  Therefore, an additional direct 

search method is essential to identify arbitrarily low energy molecular conformations 

after they have been filtered by the proposed eBGF methodology. 

 

Table 5.2: Performance analysis of current approaches. 

Methods Build BVH 
Update 

BVH 

Collision 

Detection 

ChainTree 

[Lotan et.al. 2002] 

 

)(NO  

 

)(NO  

 

)( 3/4NO  

SpatialAdaptiveHierarchy 

[Angulo et.al. 2005] 

 

--- 

 

)log( NNO  

 

)(NO  

DeformingNecklaces 

[Aqarwal et.al. 2004] 

 

)log( NNO  

 

)log( NNO  

 

)( 3/4NO  

BGF model 

[Brintaki & Lai-Yuen 2008] 

 

--- 

 

)(NO  

 

)(log NO  

eBGF model 

[Brintaki & Lai-Yuen 2009] 
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Table 5.2 demonstrates the worst case scenarios in terms of computational 

complexity for eBGF and current methods in the literature. The proposed eBGF 

methodology requires  performance for building and updating the BVH and never 

exceeds  when searching for overlapping atoms.  Hence, the eBGF algorithm 

succeeds to keep the BVH complexity in the lower level ( ) while significantly 

reducing collision detection complexity from  toO . 

)(NO

)(logNO

)(NO

)(logN)(NO

 

 

5.6  Conclusions 

 

  This chapter presents the enhanced BioGeoFilter (eBGF) methodology for 

modeling the behavior of macromolecules such as proteins. The proposed approach is 

presented as a rapid filtering tool for the identification of molecules’ feasibility.  The 

eBGF algorithm has been tested against the traditional energy calculation approach in 

terms of computational time and accuracy under different cases.  Computer 

implementation and results demonstrate that the proposed eBGF algorithm significantly 

decreases the computational time for identifying feasible molecular conformations 

without sacrificing accuracy.  Therefore, the eBGF method facilitates the modeling of 

flexible macromolecules that can be used in molecular modeling, protein folding, and 

nanoscale design.   
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Chapter 6 

Generic Enhanced BioGeoFilter (g.eBGF) Model 

 

This chapter presents the generic enhanced BioGeoFilter (g.eBGF) algorithm for 

simplifying the representation of molecules of different type, size, shape and topology by 

considering certain chemical factors that influence molecules’ flexibility.  The 

incorporation of chemically-based constraints can provide more realistic molecular 

conformations that will significantly improve molecular modeling.  The proposed 

methodology can be used to enable the interactive modeling of molecules for molecular 

docking or assembly, and for protein folding applications.   

 

 

6.1   Differences Between eBGF and g.eBGF Models 

 

Both geometric methods rely upon the same basic algorithmic concepts for 

modeling molecules conformation mechanism during conformational search.  The main 

differences between the two methods are that the g.eBGF approach: 

1. incorporates certain chemically-based factors that 

a. control molecules flexibility for providing more realistic and chemically-

feasible molecular conformations 

b. further simplifies the molecular representation since they reduce the 

allowed number of degrees of freedom for the molecule.  

2. is a generic model applicable to molecules of different type, size, shape and 

topology. The g.eBGF methodology can effectively model molecular 

structures such as ligands and proteins with one or multiple chains. 

 

 



6.2  Ligand Modeling 

 

A ligand or drug-like molecule is a small molecular structure that usually consists 

of at most 50 atoms.  Ligand molecules may contain rings of atoms as graphically shown 

with [Humphrey 1999] molecular graphics software in Figure 6.1.  These rings are 

considered rigid during modeling as the location of the ring atoms does not change with 

respect to each other.  Therefore, torsion can be assumed everywhere within a ligand’s 

topology except within the rings and within double- and triple-bonded atoms, which 

correspond to stronger (not easily breakable) chemical bonds.  The proposed generic 

eBGF approach considers the above information for defining the chemically-feasible dof 

within a ligand molecule. 

 

 
Figure 6.1: Examples of ligand molecules. 

 

 

6.3  Protein Modeling 

 

A protein molecule may contain one chain (backbone) as shown by using the 

molecular graphics software [Humphrey 1999] in Figure 6.2(a) or multiple chains as 

shown in Figure 6.2(b).  Multiple chains are usually not connected by chemical bonds but 

by electrostatic forces that keep the chains close to each other.  In contrast to ligand 
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modeling, macromolecules such as proteins consist of hundreds or thousands of atoms 

with hundreds or even thousands dof.  A protein molecule can also be considered as a 

highly articulated body where an arbitrarily-selected atom or atom-group acts as the base 

of the body.  A protein that contains more than one chain can be viewed as multiple 

kinematics chains with hundreds or thousands of links and joints.  

 

 
Figure 6.2: VDW representation of two different protein molecule examples. 
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Figure 6.3: Graphical representation of the degrees of freedom of a protein. 

 

Torsion changes can occur everywhere within a protein’s topology, except within 

rings and double- and triple-bonded atoms.  However, random torsions within a protein’s 

backbone (chain) can break its structure making it extremely difficult to evaluate whether 

the generated molecular conformation is chemically feasible.  For this reason, similar 

with Section 5.3 for the generic eBGF model, torsions are assumed only between the 
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central carbon atom of a protein’s backbone (CA) and a side chain atom (CB) or within 

the side chain atoms as shown in Figure 6.3.  Furthermore, torsions at the end of each 

side chain are neglected (i.e. the bond between CD and OE1 atoms in Figure 6.3(a) since 

they do not contribute significantly to the molecular conformation.  

Some regions within a protein structure attain higher flexibility. These higher 

flexible regions are the remote protein’s portions or the amino acids (residues) located at 

the end of the chain.  The residues within the turns of a protein’s chain should also be 

considered as highly flexible molecular bodies since those have a tendency to move 

more.  These highly flexible regions are considered in the proposed g.eBGF model for 

determining the chemically-feasible dof that controls the molecular flexibility.  

 

  

6.4  Proposed g.eBGF Methodology 

 

6.4.1   Overview of the Proposed g.eBGF Model  

 

Figure 6.4 shows the overview of the proposed generic enhanced BioGeoFilter 

(g.eBGF) methodology that aims to effectively identify feasible conformations for 

molecular structures of different type, size, shape or topology while considering the 

underlying chemical information.  The g.eBGF approach similarly with the BGF and 

eBGF models consists of two layers as indicated by the two larger boxes in Figure 6.4.  

At the lower layer of the hierarchy, any molecular conformation can be input into the 

g.eBGF algorithm.  The pre-selected dof for a molecular structure are defined based on 

the concepts presented in Sections 6.2 and 6.3 to form the atom groups.  A further 

simplification in macromolecular representation is proposed by splitting the backbone 

atom cluster (or clusters) into smaller groups of atoms.  At the upper layer of the g.eBGF 

algorithm, the corresponding bounding volume hierarchy (BVH) of the initial molecular 

conformation is built.   New random molecular conformations are obtained by arbitrarily 

changing the values for each degree of freedom.  For each candidate molecular 

conformation, the BVH is updated and a collision detection scheme is performed to 



identify the feasibility of the molecular conformation.  At the end of the g.eBGF 

algorithm, the intramolecular energy value for each random conformation is calculated to 

evaluate the proposed approach.   

 

 
Figure 6.4: Overview of the proposed g.eBGF methodology. 

 

6.4.2  Chemically-Artificial Bonds for the g.eBGF Method 

 

When a protein molecule contains more than one chain as shown with the VMD 

molecular graphics software [Humphrey 1999] in (Figure 6.5(a)), an artificial rigid bond 

is introduced between the closest residue-pair of the chains by the proposed generic 

eBGF approach.  This artificial bond is used to simulate the electrostatic forces that keep 

the chains in contact and should be created in the least flexible region of the protein to 

avoid the risk of breaking its structure.  For example, the least flexible region in the 1NS1 

protein shown previously in Figure 6.5(a) is the area between the first helixes of the two 

chains as shown in Figure 6.5(b).  However, an artificial bond should not be placed 

54 
 



arbitrarily between any residue-pair within the 1st helices but between the closest possible 

residue-pair as shown by the circle in Figure 6.6.  Moreover, the selected residue pair 

should have the same polarity.  In other words, the closest residues that are both either 

hydrophobic, polar or ionized would be good candidates for placing an artificial rigid 

bond. 

 

 
Figure 6.5: Structure of the protein with PDB ID: 1NS1. 

 

 
Figure 6.6: Closest residue-pair between the first helices of the two 1NS1 protein’s 

chains. 
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6.4.3  Description of the g.eBGF Algorithm 

 

The proposed g.eBGF methodology for identifying feasible molecular 

conformations requires two input files: the atomic coordinate information and the atoms 

within the molecular topology that share a torsion bond.  The first input file is usually the 

PDB file obtained from the Protein Data Bank (PDB) [Berman 2000] and the second 

input file is the file that describes the pre-selected dof considered for each experiment.  

The VMD software [Humphrey 1999] is used to define atoms’ connectivity information 

for proteins and to construct the first input file (coordinate file).  If the protein contains 

multiple chains, an artificial bond is added as described in Section 6.4.2.  Finally, to 

create the file that contains the pre-selected dof, the concepts about the allowed number 

and location of the pre-selected dof (torsion angles) presented in Sections 6.2 and 6.3 (i.e. 

torsions are not allowed within the rings or double-bonded atoms, etc.) are incorporated 

for studying chemically-feasible random molecular conformations.  

Once the two required input files have been defined, groups of atoms are formed 

following the concept presented in Section 4.2 to create the lower layer of the proposed 

g.eBGF approach.  Based on the location of the torsion bonds, atoms are clustered into 

AtomGroups where all the atoms within an AtomGroup are connected by rigid bonds 

while AtomGroups are connected by torsion bonds. Figure 6.7(a), schematically 

represents the Atomgroups for a hypothetical protein segment consisted by two 

symmetric chains. As it is shown in Figure 6.7(a), since the two chains are symmetric, the 

defined Atomgroups for both chains are the same in terms of both number and atom 

clustering. 

If the tested molecular structure is a protein molecule, then an additional step 

within the g.eBGF algorithm is performed for splitting the backbone atom cluster (or 

clusters in the case of multiple chain proteins) into smaller AtomGroups.  The purpose of 

this additional step is to reduce the time needed to identify an actual molecular self-

collision while decreasing the computational time for updating the atoms’ positions as 

discussed in Section 5.3.  The size of these AtomGroups is based on a threshold defined 

by the maximum number of atoms allowed within each atom cluster.  By splitting a 



backbone cluster, a flexible AtomGroup (i.e. the green-pink sphere in Figure 6.7(b)) is 

obtained along with a number of rigid AtomGroups (i.e. the six pink spheres shown in 

Figure 6.7(b)) for each chain within a protein molecule.  The splitting of the backbone 

group eliminates collision detection within and between the rigid groups since the atomic 

distances remain unchanged between and within these groups.  Moreover, after splitting 

the backbone cluster, collision search is performed between similar sized flexible groups 

of atoms.   

 

 
Figure 6.7: Graphical representation of the AtomGroup concept along with the proposed 

splitting procedure for a hypothetical protein segment with two chains. 

 

At the upper hierarchical layer of the proposed g.eBGF method similarly with the 

eBGF model, a BVH depicted as a balanced binary tree is introduced to identify 

overlapping atoms. In respect the BVH the difference between the two models lays on the 

geometric representation of the preselected dof. Based on the location of the torsion bond 

angles (dof) within the molecule, groups of atoms are generated for both models. To 

construct the hierarchy a sphere is attached around each atom cluster. The spheres around 

each generated AtomGroup depict the leaves of the BVH for each method. As opposed to 

eBGF method the g.eBGF model defines the chemically-allowed torsion movements for 

each molecular structure.  These chemically-oriented factors influence both the number 

and location of the generated AtomGroups and hence, the size and location of the 
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generated spheres for the BVH. Therefore, even if the same protein molecule is tested 

with both models (eBGF and g.eBGF) the resulted spheres for each method will have 

different size and location in respect to the world coordinate frame. In view that the 

chemically-allowed torsion movements (dof) provide a more realistic representation for 

molecules deformation mechanism, the g.eBGF compared with the eBGF model provides 

a more realistic geometric representation of molecules flexibility. The BVH is built only 

once at the beginning of the algorithm allowing a total construction time of  where: )(NO
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              (6.1) 

Likewise with the eBGF model presented in Section 5.4.3, the BVH for the 

g.eBGF method is updated for each new molecular conformation as the torsion angles are 

randomly modified contributing to a total updating time of )(
k
N

O
 
that never 

exceeds . Where, k is the number of rigid nodes that remain unchanged.   )(NO

As soon as the BVH is updated, a collision detection algorithm is performed to 

search for overlaps between non-bonded atoms within the new molecular conformation.  

The collision detection queries follow the same concepts of the eBGF model as analyzed 

in Section 5.4.4, attaining a total )(log
k
N

O  performance that never exceeds . 

Where, k is a constant that represents the number of constraint nodes (i.e. rigid 

AtomGroups).     

)(logNO

 

   

6.5  Computer Implementation and Results 

 

The presented method and algorithms have been implemented on a dual 3.0 GHz 

CPU workstation using Visual C++ programming language, OpenGL and CGAL libraries 

[CGAL]. Different molecules with different number of atoms, chains, residues and dof 
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have been tested with the proposed g.eBGF algorithm.  The example molecules were 

obtained from the Protein Data Bank (PBD) [Berman 2000] with PDB IDs as follows: 

1STP, 1A5Z, 1HVR, 1HTB, and 1JBO ligand molecules, along with 1STP, 1DO3, and 

1NS1 protein molecules. 

 

Table 6.1: Performance analysis of the proposed g.eBGF methodology. 
Molecule Number Number Time Time  Time Time % Feasible TH % Feasible Flex Flex Flex TH
PDB Name Chains Atoms Energy BVHupdate Collision Rand by Energy Energy by Collision Helixes Turns Residues Split

1STP 16 0.183 0.1 0.0016 0.0082 100 100 3
1JBO 43 1.37 0.23 0.23 0.024 17 20 13
1HTB 44 1.38 0.21 0.014 0.025 52 52 10
1A5Z 44 1.72 0.23 0.016 0.024 56 55 11
1HVR 46 1.87 0.17 0.004 0.01 100 100 4

1STP 16 0.18 0.1 0.0027 0.0088 100 100 3
1JBO 43 1.58 0.24 0.018 0.024 9 10 13
1HTB 44 1.62 0.22 0.02 0.022 40 43 0.7 0.8 10
1A5Z 44 1.74 0.23 0.002 0.02 50 41 11
1HVR 46 1.42 0.17 0.004 0.018 100 100 4

233.16 1.5 0.21 0.32 85 90 10
220.96 0.74 0.73 0.3 80 90 15
222.45 0.64 0.88 0.31 90 90 20
224.15 1.38 0.12 0.33 80 90 10
218.9 0.67 0.19 0.31 70 70 15
219.56 0.57 0.2 0.28 70 70 20
214.35 1.33 0.28 0.31 4 5 10
230 0.89 0.71 0.31 2 6 15

225.02 0.76 0.95 0.31 3 4 20

1456.04 4.47 0.3 0.8 30 25 10
1515.64 2.76 1.09 0.79 27 30 15
1461.59 2.23 2.61 0.74 15 15 20
1479.41 4.3 0.07 0.83 6 3 10
1513 2.91 0.77 0.81 8 10 15

1491.05 2.42 2.77 0.8 4 2 20
1398.63 3.69 0.06 0.75 0 0 10
1511.75 3.34 0.065 0.85 0 0 15
1469.47 2.76 0.13 0.78 0 0 20

x100x

4218
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2 6 7
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30 58

2nd,3rd 34 98

x

4

0.6

x

1

1STP 1 903

100000 0.5
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0.6 0.7

x

 
 

Table 6.1 shows a representative list of the performance analysis for the proposed 

g.eBGF methodology on different example molecules.  For each molecule, sets of 

random torsion angles were randomly generated.  The same random molecular 

conformation was tested with both the g.eBGF (TimeBVHUpdate, TimeCollision, 

TimeRand, %FeasibleByCollision columns) and the energy (TimeEnergy, 

%FeasibleByEnergy, and TH Energy columns) approaches and evaluated in terms of 

computational time (in milliseconds) and accuracy (percentage of feasible conformations 

identified).  A molecular conformation can be considered as feasible based on the internal 

molecular energy value.  Therefore, a threshold (TH column in Table 6.1) has been 
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selected based on the molecules’ size to define the maximum energy value for which a 

molecular conformation is considered to be feasible with the energy approach. 

Different scenarios regarding the number, arrangement and the location of the 

pre-selected dof were studied for assessing their impact on the proposed g.eBGF 

algorithm.  Columns FlexHelixes, FlexTurns and FlexResidues denote the number of 

flexible helixes, residues and turns respectively, where column dof states the total number 

of chemically and geometrically feasible dof considered for each experiment.  In 

addition, different values for the algorithm’s selectivity parameters ( and ) have been 

tested for evaluating their impact on the g.eBGF results.  Table 6.1 shows the results for 

the ligand molecules using two different pair-values for the selectivity parameters (rho 

values) and for the protein molecules using one selectivity parameter pair.  A detailed 

analysis on the impact of the rho values on protein modeling can be found in our Chapter 

5.  Finally, three different values for the splitting threshold have been tested for each 

protein molecule as shown by the last column (TH Split) in Table 6.1. 

1ρ 2ρ
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Figure 6.8: Time comparison between the traditional energy calculation approach and the 

proposed g.eBGF methodology for ligand molecules. 
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Figure 6.9: Time comparison between the traditional energy calculation approach and the 

proposed g.eBGF methodology for protein molecules. 

 

Figure 6.8 and Figure 6.9 compares the performance of the proposed g.eBGF 

method (update atoms’ position time + update BVH time + collision detection time) 

against the energy calculation approach in terms of computational time required to 

identify the molecule’s feasibility.  Figure 6.8 and Figure 6.9 show the computational 

time performance for both methods as the number of dof increases for ligand and protein 

molecules, respectively.  Results show that the proposed approach significantly reduces 

the computational time compared to the energy approach for identifying the feasibility of 

a random molecular conformation.  It was observed that as the molecular size and 

problem’s complexity increases, the time benefit provided by the proposed g.eBGF 

method increases significantly.  Moreover, as shown in Figure 6.9, the time difference 

between the two methods is so significant that two different scales were needed for 

displaying both methods in the same graph.  The left scale in Figure 6.9 denotes the 

computational time (in ms) required by the energy calculation approach whereas the right 

scale denotes the computational time (in ms) for the proposed g.eBGF methodology. 

Figure 6.10 displays the computational time performance of the proposed g.eBGF 

methodology while considering the scenario that all the example molecules are 
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completely flexible.  The tested molecules are assumed to be fully flexible bodies by 

randomly varying the total allowed number of chemically-feasible dof as presented in 

Sections 6.2 and 6.3.  Results show that the proposed g.eBGF approach scales very well 

as the molecular size and problem’s complexity increase.  
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Figure 6.10: Computational time performance of the proposed g.eBGF approach for 

molecules of different size and dof. 

 

The impact of the splitting threshold selection value on the g.eBGF algorithm is 

shown in Figure 6.11.  As discussed in Section 6.4.3, the splitting threshold (TH Split 

column in Table 6.1) defines the maximum allowed number of atoms in each atom 

cluster.  As the splitting threshold value decreases, it can be observed from Figure 6.11 

that the following occur: 

• the computational time required to update the BVH increases, 

• the computational time for self-collision detection decreases, and 

• the overall computational time for the g.eBGF algorithm remains 

approximately the same.  
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Figure 6.11: Splitting threshold impact on the g.eBGF results for protein modeling. 

 

 
Figure 6.12: Accuracy comparison between the traditional energy calculation approach 

and the proposed g.eBGF method. 

 

Therefore, incorporating the splitting concept for the backbone atom clusters into 

the proposed algorithm speeds the identification of molecular feasibility while it does not 

affect the overall performance of the algorithm.  The best selection for a splitting 

threshold depends on the pre-selected set of dof.  A good splitting threshold is a value 

that allows the construction of similar sized groups of atoms while reducing the 
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computational time for self-collision.  In this work, it was found that a splitting threshold 

value of 15 atoms for each atom cluster provided similar-sized atom groups and the best 

results for self-collision detection time.   

Figure 6.12 demonstrates the accuracy (percentage of feasible molecular 

conformations identified) between the traditional energy method and the proposed 

g.eBGF methodology.  For the ligand molecules, two different pairs of the selectivity 

parameters are presented to show their impact on the results, whereas one selectivity pair 

is shown for the protein molecules.  As shown in Figure 6.12, both methods (g.eBGF and 

Energy) demonstrate similar accuracy for all tested molecules.  In fact, the selectivity of 

the g.eBGF algorithm can be adjusted by varying the control parameters ( , and ).  In 

other words, by decreasing the values, the proposed algorithm can accept more 

molecular conformations as feasible leading to a relaxed filtering.  It is important to 

select appropriate values based on the molecule’s size and the desired level of 

selectivity by the user to avoid rejecting molecular conformations that are feasible.      

1ρ 2ρ

ρ

ρ

As shown in Table 6.1 and Figure 6.12, there is a significant dependency between 

the pre-selected number of chemically-feasible dof considered in each molecule and the 

percentage of feasible molecular conformations from both the g.eBGF and energy 

methods.  Results demonstrate that as the number of dof increases, the output set of 

feasible solutions obtained by the energy approach decreases; whereas the output set by 

the g.eBGF algorithm can be adjusted as it has been discussed previously.  In addition, 

when a macromolecule is assumed to be a fully flexible body, the output set of feasible 

solutions by the energy calculation approach decreases and tends to approach zero.  

Therefore, an additional direct search method is necessary to identify low-energy 

molecular conformations after they have been filtered by the proposed g.eBGF 

methodology. 

Table 6.2 demonstrates the worst case scenarios in terms of computational 

complexity for g.eBGF and current methods in the literature.  The proposed g.eBGF 

methodology requires  performance for building and updating the BVH and never 

exceeds  when searching for overlapping atoms.  Hence, the g.eBGF algorithm 

)(NO

)(logNO

64 
 



succeeds to keep the BVH complexity in the lower level ( ) while significantly 

reducing collision detection complexity from  toO .  

)(NO

)(logN)(NO

 

Table 6.2: Computational complexity comparison. 

Methods Build BVH 
Update 

BVH 

Collision 

Detection 

ChainTree 

[Lotan et.al. 2002] 

  

)O  
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[Brintaki & Lai-Yuen 2008] 
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eBGF model 

[Brintaki & Lai-Yuen 2009] 
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[submitted to CAD journal 2009] 
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6.6  Conclusions 

 

This chapter presented a new generic molecular modeling tool called enhanced 

BioGeoFilter (g.eBGF) for effectively identifying chemically-feasible conformations for 

molecules of different type, size and topology.  The proposed g.eBGF methodology 

incorporates chemical factors that control molecules’ conformation into a bounding 

volume hierarchy to rapidly identify chemically-feasible molecular conformations.  The 

g.eBGF approach is presented as a filtering tool to rapidly identify molecular 
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conformations for speeding molecular conformational search and collision detection 

queries.  Computer implementation and results demonstrate that the g.eBGF methodology 

significantly decreases the computational time for identifying feasible molecular 

conformations while maintaining accuracy.  Therefore, the g.eBGF method can be used 

to facilitate the modeling of flexible molecular structures for applications such as 

molecular docking and assembly, and protein folding.   
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Chapter 7 

Identifying the Molecular Stability 

 

The scope of this chapter is to investigate the performance of evolutionary-based 

optimization methods on effectively searching for low-energy molecular conformations. 

Two novel differential evolution- based methods are presented. The first proposed 

method is a kinematics-based DE algorithm called kDE model that kinematically 

represents and simplifies the molecular representation to direct the conformational search 

towards stable solutions. The second approach, called Biological Differential Evolution 

(BioDE) is based on our previously developed differential evolution algorithm and our 

developed biologically-inspired geometric representation of molecules conformation 

mechanism. The BioDE algorithm utilizes the g.eBGF model as a surrogate 

approximation model to reduce the number of exact evaluations and to reduce the 

algorithm’s convergence rate.  Both proposed methodologies will be extremely useful in 

speeding the search for low-energy molecular conformations while enabling the modeling 

of flexible molecules for molecular design. 

 

 

7.1  Fundamentals of Evolutionary Algorithms (EAs) 

 

Evolutionary Algorithms (EA) simulates the natural selection process using a 

number (population) of individuals (candidate solutions to the problem) to evolve 

through certain procedures.  Similar to nature, each individual is represented as a 

chromosome – a string of numbers (bit strings, integers or floating point numbers) which 

contain the design variables for the optimization problem.  Each individual’s quality is 

represented by a fitness function tailored to the problem under consideration. 



Classic Genetic Algorithms (GAs) use binary coding for the representation of the 

genotype. However, floating point coding moves EAs closer to the problem space. This 

allows the operators to be more problem specific while providing a better physical 

representation of the space constraints.  

In general, EA starts by generating, randomly, the initial chromosome population 

with their genes (the design variables in the case of floating point coding) taking values 

inside the desired constrained space of each design variable. The lower and higher 

constraints of each gene may be chosen in a way that specific undesirable solutions may 

be avoided.  Although the shortening of the search space reduces the computation time, it 

may also lead to sub-optimal solutions due to the lower variability between the potential 

solutions. 

 
Figure 7.1: One-point crossover (recombination) operator. 

 

After the evaluation of each individual’s fitness function, operators are applied to 

the population, simulating the natural processes.  Applied operators include various forms 

of recombination, mutation and selection, which are used to provide the next generation 

of chromosomes.  The first classic operator applied to the selected chromosomes is the 

one-point crossover scheme. In this operator, two randomly selected chromosomes are 

divided in the same (random) position while the first part of the first one is connected to 

the second part of the second one and vice-versa as shown in Figure 7.1.  The crossover 

operator is used to provide information exchange between different potential solutions to 

the problem.  

 
Figure 7.2: Uniform mutation operator. 
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The second classic operator applied to the selected chromosomes is the uniform 

mutation scheme.  This asexual operator alters a randomly selected gene of a 

chromosome as shown in Figure 7.2.  The new gene takes its random value from the 

constrained space that is determined at the beginning of the process. The mutation 

operator is used to introduce some extra variability into the population. 

The resulting intermediate population is evaluated and a fitness function is 

assigned to each member of the population.  Using a selection procedure (different for 

each type of EA), the best individuals of the intermediate population (or the best 

individuals of the intermediate and the previous population) will form the next 

generation.  The process of a new generation evaluation and creation is successively 

repeated, resulting in individuals with higher values of fitness function. 

 

 

7.2   EAs Advantages, Limitations and How to Compensate 

 

Evolutionary algorithms are a class of search methods with remarkable balance 

between exploitation of the best solutions and exploration of the search space. They 

combine elements of directed and stochastic search and consequently, are more robust 

than directed search methods. The EAs are algorithms parallel by nature and may be 

easily tailored to the specific application of interest taking into account the special 

characteristics of the problem under consideration.  In addition, the EAs are easy to 

implement in problems with a relatively high number of constraints and design variables, 

as well as with many and contradictory objectives [Michalewicz 1999, Goldberg 1989, 

Holland 1992]. 

However, EAs main limitations are the convergence uncertainty and trapping into 

local minima. To compensate for the algorithm’s failure, the first step is to adjust the 

algorithm’s selective pressure, which is defined as the predominance of exploitation 

versus exploration.  By increasing the selective pressure, the algorithm’s convergence 

rate and the probability of trapping into local minima are enhanced. Therefore, a balance 

between exploration and exploitation is essential. The crossover and mutation operators 
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are responsible for exploring the solution space (exploration) while leading to an 

increasing variation of the population.  On the other hand, the selection process pushes 

the search into the region with the best fitness function values (exploitation) aiming to 

decrease the population variation. Thus, the balance between exploration and exploitation 

is given by the specific type of selection operator for the problem under consideration. 

Typically, high selective pressure requires high variation in the population to avoid any 

local minima traps. 

Another way to compensate for algorithm’s potential failure is to define 

“suitable” values for the control parameters of the EA. The control parameters for an 

evolutionary algorithm are the crossover and mutation probabilities. These probabilities 

remain constant during the search process while affecting the convergence behavior and 

algorithm’s robustness. The values for the crossover and mutation probabilities are 

strongly dependent on the objective function, the characteristics of the problem, and the 

population size. Usually, when an algorithm is mostly based on a crossover operator, it 

requires low selective pressure to avoid trapping into local minima solutions. 

Additionally, when a high mutation probability is applied, the algorithm entails a high 

selective pressure to compensate for failure. Based on these concepts, a trial and error 

testing for the EA’s control parameters will tune the algorithm’s robustness and 

convergence rate.  

An alternative approach is the use of a differential evolution (DE) algorithm since 

it has shown a better convergence performance compared with other EAs [Storn and 

Price 1995, 2005, Nikolos and Brintaki 2005a,b,c, 2007, Thomsen 2003, 2006].  

Incorporating the scheme presented by [Hui-Yuan 2003] for determining the donor 

scheme for the mutation operator accelerates the algorithm’s convergence rate, without 

sacrificing accuracy or the algorithm’s robustness.  In this scheme, the donor is randomly 

selected (with uniform distribution) from the region within the “hyper triangle” formed 

by the three members of the triplet.  With this scheme, the donor comprises the local 

information of all members of the triplet.  This provides a better starting-point for the 

mutation operation and results in a better distribution of the trial-vectors.  
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Besides using special operators, a substitute solution for compensating for the 

algorithm’s convergence failure and for decreasing the computational time is the 

utilization of surrogating models and approximations. Surrogate models are auxiliary 

simulations that are less accurate, but also less computationally costly than the expensive 

(exact model) simulations. Surrogate approximations are algebraic summaries obtained 

from previous runs of the expensive simulation [Torczon 1998, Giannakoglou 2002]. 

Such approximations are the various types of Artificial Neural Networks (ANN) 

[Giannakoglou 2002, Nikolos and Brintaki 2005b, 2007]. The basic concept of using an 

approximation method is to replace the costly exact evaluations with fast inexact 

approximations while maintaining the algorithm’s robustness. The surrogate model 

predictions replace exact and costly evaluations only for the less-promising individuals, 

while the more-promising ones are always exactly evaluated.  Our developed 

biologically-inspired geometric filter (generic eBGF method) presented in Chapter 6 can 

also set the base for a surrogate approximation model as it is analyzed in Section 7.4. 

 

 

7.3  Differential Evolution 

 

In this work, a Differential Evolution (DE) algorithm based on the concepts by 

[Storn and Price 1995, 2005], improved by [Hui-Yuan 2003] and presented in [Nikolos 

and Brintaki 2005a,b,c, 2007] is used to direct the search towards low energy molecular 

conformations. The DE algorithm is a simple evolutionary algorithm to implement and 

demonstrates better convergence performance compared with other EAs. Differential 

Evolution embodies a type of evolutionary strategy (ES) especially formed to deal with 

continuous optimization problems often encountered in engineering design.  

The classic DE algorithm evolves a fixed population size consisted by candidate 

problem solutions (population members or else chromosomes), randomly initialized. 

After initializing the population, an iterative process starts to direct the search towards 

better fitted population members. At each iteration (generation), a new population of 

candidate solutions is produced until a stopping condition is satisfied. At each generation, 



each element (member) of the population can be replaced with a new generated one. The 

new element is a linear combination between a randomly selected population member 

and a difference between two other randomly selected members. Below is the analytical 

description of the algorithm’s structure. 

Given an objective function as shown by Eqn. 7.1: 

RRXF paramn
objective →:)(                                              (7.1) 

the optimization goal is to minimize the objective function value by optimizing the values 

of its parameters (design variables) as shown as follows: 

RxxxxX jnparam
∈),,...,,( 21=                                         (7.2) 

where X denotes the vector composed of  objective function parameters (design 

variables). The design variables take values between the specific upper and lower 

bounds: 
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The DE algorithm implements real-number encoding for the design variables. 

Often, the only information available is the boundaries of the parameters. Hence, to 

obtain a starting point for the algorithm, we initialize the population by randomly 

assigning values to the design variables within their boundaries as given by Eqn. 7.4:  

parampop
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U
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where r is a uniformly distributed random value within the range [0, 1].  

DE’s mutation operator is based on a triplet of randomly selected individuals 

(different from each other). A new parameter vector is generated by adding the weighted 

difference vector between the two members of the triplet to the third one (the donor). In 

this way, a perturbed individual is generated. The perturbed individual and the initial 

population member are then subject to a crossover operation for generating the final 

candidate solution as shown as follow:  
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Where  is called the “donor”, G is the current generation, and k a random integer 

within [1, ], chosen once for all members of the population. The random number r 

is seeded for every gene of each chromosome. F and Cr are DE control parameters, 

which remain constant during the search process and affect the convergence behavior and 

robustness of the algorithm. Their values also depend on the objective function, the 

characteristics of the problem, and the population size. 
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The population for the next generation is selected between the current population 

and the final candidates. If each candidate vector is better fitted than the corresponding 

current one, the new vector replaces the vector with which it was compared. The DE 

selection scheme for a minimization problem is described as follow: 
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In this research work, the new improved scheme by [Hui-Yuan 2003] for 

determining the donor for the mutation operation is used to accelerate the convergence 

rate. In this scheme, the donor is randomly selected (with uniform distribution) from the 

region within the “hyper triangle”, formed by the three members of the triplet. With this 

scheme, the donor comprises the local information of all the members of the triplet, 

providing a better starting-point for the mutation operation that result in a better 

distribution of the trial-vectors. As it is reported in [Hui-Yuan 2003], the modified donor 

scheme accelerated the DE convergence rate, without sacrificing the solution precision or 

robustness of the DE algorithm. The random number generation (with uniform 

probability) is based on the algorithm presented in [Hui-Yuan 2003], which computes the 

remainder of divisions involving integers that are longer than 32 bits, using 32-bit 

(including the sign bit) words. The corresponding algorithm, using an initial seed, 

produces a new seed and a random number. In each different operation inside the DE 
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algorithm that requires a random number generation, a different sequence of random 
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e 

7.4  roposed kDE Model 

In this section, a novel kinematics and evolutionary inspired approach called 

kinema l 

.4.1  Overview of the Kinematics-Based Differential Evolution (kDE) Model 

Figure 7.3 shows the overview of the proposed kinematics-based differential 

evoluti -

 

e 

es a number 

numbers is produced, by using a different initial seed for each operation and a separat

storage of the corresponding produced seeds. By using specific initial seeds for each 

operation, it is ensured that the different sequences differ by 100,000 numbers. 

 

 

P

 

tics-based differential evolution (kDE) is proposed to model flexible biologica

molecules and to rapidly identify low-energy molecular conformations.  The proposed 

kDE model consists of two modules: the pre-computation and the DE-loop. The kDE 

model provides the global minimum region for molecular structures of different type, 

size, shape and topology.  This region consists of a number of alternative stable 

molecular conformations that attain the same low-energy value.   

 

7

 

on (kDE) model that consists of two modules: the pre-computation and the DE

loops.  During the pre-computation, a molecule is represented as a highly articulated 

body that can adopt different conformations.  As shown in Figure 7.3, the kDE model

starts with any random molecular conformation where the dof of the molecular structur

are defined to form groups of atoms.  During the DE-loop, our previously developed DE 

algorithm is incorporated to direct the search towards low-energy molecular 

conformations and to provide the global minimum region. This region includ

of alternative stable molecular conformations that attain the same low-energy value. 

 



 
Figure 7.3: Overview of the proposed kDE model. 

 

7.4.2  Pre-Computation Module 

 
During the pre-computation module, a geometric interpretation of the underlying 

chemical information is performed to represent the molecules’ flexibility mechanism as 

discussed in Section 3.3.   As a result, each molecular structure is represented as a highly 

articulated body able to deform and adopt different molecular conformations. A further 

simplification in the molecular representation is performed by applying the atom 

clustering approach presented in Section 4.2 to form groups of atoms based on the 

number and location of the torsion bonds. 

 

7.4.3  DE-Loop Module 
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Once the various atom clusters within each molecular structure are formed during 

the pre-calculation stage, the DE algorithm presented in Section 7.3 is incorporated into 

the kDE model.  The DE algorithm is used to direct the search towards low-energy 

molecular conformations.  As shown in Figure 7.3, two steps are required in the DE loop: 



formulate the chromosome structure and define the fitness function.  Each chromosome 

structure through the defined genotype represents a candidate solution to the problem 

under consideration, whereas the chromosome genes represent the design variables.  

Hence, to direct the search towards low-energy molecular conformations, the 

chromosome for the proposed kDE model should represent a candidate molecular 

conformation.  The simplest possible chromosome structure for describing a molecular 

conformation is to consider each gene to be a degree of freedom or in our case, a torsion 

bond angle  as shown in Figure 7.4. iθ

 

totalθ•••θθ 21  
Figure 7.4: Schematic representation of the chromosome structure used in this work. 

 

The fitness function (ff) plays the role of the evaluation criterion for each 

candidate solution. Choosing a “good” mathematical representation for the ff is very 

important and challenging since it directs the search towards the optimal solution or in 

our case, towards stable (low-energy) molecular conformations. A good mathematical 

representation for the fitness function is the use of the total intra-molecular energy.  As 

discussed in Section 3.2, the internal energy of a molecule is a function composed of 

different energy factors that depict the interactions between bonded and non-bonded 

atoms. However, the major energy contributors are the non-bonded van der Waals 

(VDW) potential and electrostatic forces.  Given that the VDW potential dominates the 

molecular interactions chemically and geometrically at short-range and the electrostatic 

forces dominate the computational time, the internal molecular energy can be 

approximated by the VDW interactions measurement as demonstrated in Section 3.3. 

Therefore, to evaluate the fitness of each candidate chromosome (molecular 

conformation), we propose the use of the VDW non-bonded atoms potential as shown by 

Eqn. 7.8: 
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is 

Where , and are the VDW repulsion and attraction parameters, respectively; and 

the distance between every exclusive non-bonded atom pair i and j.  

ijB ijA ijr  

 

7.4.4  Computer Implementation and Results 

 
The presented method and algorithms have been implemented on a dual 3.0 GHz 

CPU workstation using Visual C++, Visual Basic programming languages and OpenGL. 

Different molecules with different number of atoms, chains, residues and dof have been 

tested with the proposed kDE approach. The example molecules were obtained from the 

Protein Data Bank (PDB) [Berman 2000] with PDB IDs as follows: BTN, CYC, NAD, 

XK2 for ligand molecules and 1STP, 1DO3, 1NS1 for protein molecules. Figure 7.5 and 

Figure 7.6 show some of the tested molecules that are graphically displayed using the 

VMD package [Humphrey 1999].  

 

 
Figure 7.5: Ligand molecules tested with the kDE model. 

 

The kDE algorithm’s termination criterion for each experiment but the 1NS1 

protein was set to maxgen = 500 generations performed and popsize = 100 candidate 

molecular conformations (population members) considered in each generation. For the 

1NS1 protein, given the large number of dof considered in each experimental scenario, 

the maxgen was set to 600 generations and 300 population members used as popsize. 

Finally, the DE’s control parameters used in all experiments were F = 0.6 for the 

mutation parameter, and Cr = 0.45 for the crossover probability. 



 

 
Figure 7.6: Protein molecules tested with the kDE model. 

 

Tables 7 alysis for the 

roposed kDE approach on different ligand and protein molecules, respectively. As 

shown 

ach 

. The 

 analysis of the kDE algorithm on ligands. 

.1 and 7.2, show a representative list of the performance an

p

in Tables 7.1 and 7.2, the first columns indicate the PDB IDs for the tested 

molecules. The second column in both tables specifies the number of atoms within e

molecular structure and the third column shows the dof considered in each scenario

preselected dof for each experiment are the chemically-allowed dof to study chemically-

feasible molecular conformations.  

 

Table 7.1: Performance

Ligands Number Atoms DOF E_crystal E_kDE Conv.Gener. T_kDE
(kcal/mol) (kcal/mol) (ms)

BTN 16 3 ‐3.25 ‐3.59 85/500 2.57
CYC 43 13 ‐16.75 ‐17.93 209/500 2.1
NAD 44 11 ‐12.42 ‐13.68 125/500 2.18
XK2 46 4 ‐10.91 ‐11.35 117/500 2.34  
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Table 7.2: Performance analysis of the kDE algorithm on proteins. 

Proteins Number Atoms DOF E_crystal E_kDE Conv.Gener. T_kDE 
(s)

1STP 903 7 ‐554.78 ‐576.16 118/500 0.35
9 ‐876.37 189/500 2.55
22 ‐881.53 191/500 2.62
36 ‐879.38 211/500 2.58
42 ‐1127.49 170/600 2.3
58 ‐1128.061 172/600 2.27
98 ‐1126.076 138/600 2.25

1DO3 2466 ‐876.33

1NS1 2342 ‐1126.35

(kcal/mol) (kcal/mol)

 
 

To evaluate our proposed kDE molecular model, we compared our obtained 

results with the crystal structures published in the Protein Data Bank [Berman 2000]. 

Analyt re 

onding 

tion 

 generation is the generation 

where t

r, 

t 

ically, we calculated the van der Waals (VDW) energy for each crystal structu

(E_crystal) and compared it against the obtained VDW energy value by the kDE 

algorithm (E_kDE) accordingly. As shown in Tables 7.1 and 7.2, the kDE algorithm 

succeeded to converge in a smaller VDW energy value compared with the corresp

VDW energy of the crystal structure for all the performed experiments. This phenomenon 

occurs since all the incorporated energy terms (i.e., VDW potential or electrostatic 

forces) in a molecule’s internal energy are in fact an approximation of the potential 

energy and not the molecule’s free energy, which requires entropy calculations, among 

others. Therefore, the proposed kDE model managed to output a stable molecular 

conformation for all the tested molecules. This is very important given that most 

evolutionary algorithms suffer from local minima traps. 

The sixth column (Conv.Gener.) in Tables 7.1 and 7.2 indicates the genera

when the BioDE algorithm converged. This convergence

he fitness function of the worst population member equals with the fitness 

function of the best one, which is also the same as the obtained E_kDE value. Moreove

Figure 7.7 shows the convergence performance of the kDE algorithm over differen

tested ligand molecules. Similarly, Figure 7.8 demonstrates the convergence performance 

of the kDE model for 1STP, 1NS1 and 1DO3 protein molecules over a selection of 



experimental scenarios based on the dof considered. As shown in these figures, the kDE 

algorithm converges really fast. This is very important given that one of the main 

drawbacks in an evolutionary-based algorithm is the convergence uncertainty.  
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Figure 7.7: kDE’s convergence performance for ligands. 
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Figure 7.8: kDE’s convergence performance for proteins. 

 

The last column in Tables 7.1 and 7.2 indicate the average computational time 

(T_kDE) required by the kDE algorithm to evaluate each generation. T_kDE is given in 

milliseconds for the ligands and in seconds for the proteins. Considering the slowest 

experimental scenario depicted by the largest tested 1DO3 protein molecule, the required 

total computational time to output a stable conformation is T_kDE x Converge 

Generation x popsize = 2.68 s/generation x 200 generations x 100 members = 53600 s = 

893.333 min = 13.89 hours. Therefore, in less than a day, a stable molecular 

conformation for a large enough protein molecule can be obtained using our proposed 

methodology.  



Table 7.3: RMSD performance for the kDE algorithm.  

min_RMSD 2.09287 1.17923 1.4377 0.10494 0.15097 0.06455 0.28908 0.49195 0.94288
max_RMSD 2.40881 9.94754 2.17494 0.35987 0.23343 0.24466 0.31183 0.69252 1.25286

average_RMSD 2.26475 6.11804 1.82515 0.23722 0.1942 0.1698 0.30067 0.61111 1.09315
molecules CYC NAD XK2 1STP

dof 13 11 4 7 9 22 36 58 98
1DO3

kDE
1NS1

ProteinsLigands

 
 

At the end, the kDE algorithm outputs the final population of stable solutions or 

the obtained global minimum region for any tested ligands and protein molecules. This 

final population contains a large number of different molecular conformations for each 

tested molecule that attains the same low-energy value. However, to evaluate the 

structural feasibility of each obtained molecular solution, we have calculated their Root 

Mean Square Deviation (RMSD) in Angstroms from their corresponding crystal 

structure. Generally, lower RMSD values indicate closer resemblance between observed 

and predicted structures with RMSD values below or near 2.0  usually considered 

being sufficiently close.  

oA

As shown in Table 7.3, the kDE algorithm succeeded to identify stable structures 

with RMSD values in the range of 0.10 to 0.94 for any tested protein and in the range of 

1.18 to 2.09 for the tested ligands. This means that the results of the kDE method lie 

within the acceptable structural range of [0, 3) for all tested molecules. Therefore, the 

kDE approach outputs a large number of alternative stable molecular conformations that 

can be clustered based on their structures to identify those closest to their crystal 

structure.  

 

7.4.5  Conclusions 

 

This section presented a new kinematics-based differential evolution (kDE) model 

for effectively searching for low-energy molecular conformations.  The proposed model 

consists of two modules: the pre-computation and the DE-loop.  At the pre-computation 

module, a molecule is represented as a highly articulated body able to adopt different 
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molecular conformations.  At the DE-loop, a differential evolution algorithm is used as a 

direct search technique towards low-energy molecular conformations.  Computer 

implementation and results demonstrate that the proposed kDE approach rapidly and 

accurately finds low-energy (stable) molecular conformations for molecular structures of 

different size, shape and topology.  Results also show that the kDE algorithm attains a 

very good convergence performance while it outputs the global minimum region for any 

tested molecule. This region provides a number of alternative stable molecular solutions 

that have the same low internal energy value. As demonstrated the proposed kDE model 

outputs sufficient molecular conformations with RMSD values below or near 2.0 . 

The predicted molecular conformations can then be clustered based on their structure 

similarity to identify those closest to their crystal structure.  

oA

 

 

7.5  Proposed BioDE Approach 

 

This section presents a new algorithmic scheme called Biological Differential 

Evolution (BioDE) to minimize the molecular energy based on the differential evolution 

algorithm presented in Section 7.3 and the hierarchical data structure presented in 

Chapter 6. The proposed BioDE utilizes our previously developed data structure called 

g.eBGF, as a surrogate approximation model to reduce the number of exact evaluations, 

speed molecular conformational search, and reduce the algorithm’s convergence rate as 

discussed in this section.  

 

7.5.1  BioDE Overview 
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The proposed BioDE methodology is a novel, generic evolutionary and 

geometric-based direct search technique to identify molecules’ minimum internal energy. 

The BioDE algorithm aims to effectively identify stable conformations for any molecular 

structure regardless of type, size and shape while considering the underlying chemical 

information. The main algorithmic difference between the kDE and BioDE approaches is 



that the latest utilizes our previously developed g.eBGF data structure as a primary filter 

of molecules’ feasibility to speed convergence. 

 

 
Figure 7.9: Overview of the proposed BioDE approach. 

 

Figure 7.9 illustrates the overview of the proposed BioDE approach. As shown in 

Figure 7.9, the BioDE approach employs two modules: the pre-computation and the DE-

loop modules. At the pre-computation stage, a geometric interpretation of the inter-

atomic interactions is performed to set the constraints under which a molecular 

conformation is considered as feasible as discussed in Section 3.3. During this stage, our 

previously developed g.eBGF data structure is utilized as a primary filter for feasible 

molecular conformations. As shown in Figure 7.9, a molecular conformation (coordinate 

file) is input into the BioDE algorithm. The pre-selected dof (TorsionAtoms file) for a 

molecular structure are defined to form the atom groups. To further simplify the 

macromolecular representation, the backbone atom cluster(s) is split into smaller groups 

of atoms based on the concepts discussed in Section 5.3.  A bounding volume hierarchy 

(BVH) denoted as a balanced binary tree is constructed for the initial molecular 

conformation to capture the molecular shape at successive level of details and to assist in 
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the collision detection queries. The type of bounding volumes used in this work is 

spheres since spheres are invariant to rotations and simpler to implement. 

At the DE-loop module, the DE algorithm presented in Section 7.3 is used to 

direct the search towards low-energy minima or stable molecular conformations. For each 

candidate molecular conformation (population member) in each generation, the BVH is 

updated and a collision detection scheme is performed to determine the feasibility of the 

molecular conformation. The fundamental concept underneath the proposed collision 

detection algorithm is the geometric interpretation of the chemical information provided 

by the intra-molecular energy. If the collision detection queries output a feasible 

molecular conformation, then the fitness function for that conformation measures the van 

der Waals energy value; otherwise, a penalty function is computed to reject the specific 

unfit solution. This is an iterative process to provide better fitted individuals. As soon as 

the termination criterion denoted by the maximum allowed number of generations 

performed is satisfied, the BioDE algorithm outputs the final population of stable 

molecular conformations. This final population describes the global minimum region that 

provides a number of different molecular conformations that attain the same low-energy 

value and hence, provides alternative stable molecular solutions. 

 

7.5.2  Input Files 

 

The proposed BioDE methodology consists of two modules: the pre-computation 

and the DE-loop modules. Our proposed algorithm requires two input files for the pre-

computation module: the atomic coordinate information (coordinate file) and the atoms 

within the molecular topology that share a torsion bond (torsionAtoms file). In addition, 

the BioDE algorithm requires one input file for the DE-loop module, the chromosome 

file.  

The coordinate input file is usually the PDB file obtained from the Protein Data 

Bank (PDB) [Berman 2000]. The VMD software [Humphrey 1999] is used to define the 

atoms’ connectivity information for proteins and to construct the coordinate input file.   



The torsionAtoms input file is the file that describes the atoms that share a torsion bond 

and hence, depicts the number and the location of the pre-selected dof considered for 

each experiment. To create this file, the concepts about the allowed number and location 

of the pre-selected dof (torsion bond angles) presented in Section 6.2 and Section 6.3 are 

incorporated for studying chemically-feasible molecular conformations.  

Finally, the chromosome file denotes the required dof or design variables for 

representing a candidate molecular conformation. Similar to nature, each chromosome 

structure through the defined genotype embodies a candidate solution to the problem 

under consideration whereas the chromosome genes represent the design variables that 

take values within their constrained space. Hence, to direct the search towards low-

energy molecular conformations, the chromosome for the BioDE algorithm should 

represent a candidate molecular conformation with the genes accounting for the dof or 

the torsion bond angles  in the [0, 360) range. iθ

 

7.5.3  Pre-Computation Module 

 

During the pre-computation module, once the two input files (coordinate and 

torsionAtoms files) have been defined, groups of atoms are formed following the concept 

presented in Section 4.2 to simplify the molecular representation. If the tested molecular 

structure is a protein molecule, then an additional step within the BioDE algorithm is 

performed for splitting the backbone atom cluster (or clusters in the case of multiple 

chain proteins) into smaller AtomGroups as discussed in Section 5.3. As soon as the atom 

clusters both rigid and flexible have been defined, a bounding volume hierarchy (BVH) 

depicted as a balanced binary tree is introduced to capture the shape of the molecule at 

successive levels of detail and to facilitate the collision detection search for overlapping 

atoms. The BVH is built only once at the beginning of the algorithm during the pre-

computation stage. 
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7.5.4  DE-Loop Module 

 

At the beginning of the DE-loop module, similarly to the kDE model, the 

chromosome file is input to the BioDE algorithm to define a candidate molecular 

conformation as a function of the torsion bond angles iθ  as shown in Figure 7.4. The DE 

algorithm evolves a fixed population size (popsize) composed of candidate problem 

solutions (population members or chromosomes), randomly initialized. Consequently, 

each population member corresponds to a candidate molecular conformation. After 

initializing the population, an iterative process starts to direct the search towards better 

fitted population members or stable molecular solutions. At each generation (iteration), a 

new population of candidate solutions (conformations) is produced until a stopping 

criterion is satisfied. In this work, the termination criterion is the maximum allowed 

number of generations performed (maxgen). At each generation, each population member 

(candidate molecular conformation) can be replaced with a new generated one. The new 

member is a linear combination between a randomly selected member (the donor) and a 

difference between two other randomly selected members. Genetic operators (mutation, 

crossover, and selection) are applied to provide the next generation of better fitted 

candidate problem solutions (molecular conformations).  

For each candidate molecular conformation (population member) in each 

generation, the BVH is updated and a collision detection scheme is performed to 

determine the feasibility of the molecular conformation. The BVH is updated for each 

new molecular conformation as the torsion angles are randomly modified. As soon as the 

BVH is updated, the collision detection algorithm presented in Chapter 5 and Chapter 6, 

is performed to search for potential overlaps between non-bonded atoms within the tested 

molecular conformation.  

One of the major components in an evolutionary-based algorithm is to define an 

appropriate fitness function ff. The ff plays the role of the evaluation criterion for each 

candidate problem solution. Choosing a “good” mathematical representation for the ff is 

very important and challenging since it directs the search towards the optimal solution or 

in our case, towards stable molecular conformations. A good mathematical representation 
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for the ff is the use of the total intra-molecular energy. However, as discussed in Section 

3.2, this would result in a very slow progress towards the search for low-energy solutions. 

Therefore, we propose an alternative fitness function definition utilizing our developed 

g.eBGF data structure as an approximation model of molecules feasibility. In other 

words, if the collision detection algorithm outputs a feasible molecular conformation, 

then the fitness function for that conformation measures the van der Waals (VDW) 

energy value, else a penalty function is computed to reject the specific bad solution as 

shown by Eqn. 7.9: 
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Where, and  are the equilibrium distance and the relative inter-atomic distance 

for the kth colliding non-bonded pair of atoms i and j, and m is the total number of 

colliding atom pairs within the tested molecular conformation. As shown in Eqn. 7.9, the 

proposed penalty function is a distance function between the equilibrium and the relative 

inter-atomic distances for each overlapping atom pair within the molecular topology. The 

purpose of using this penalty function is to train the algorithm to avoid searching space 

regions mostly occupied by infeasible solutions. This training is defined as a function of 

“how” much infeasible these solutions are or alternatively how many overlapping atom 

pairs exist within the examined molecular conformation.  

kd ,0 kjid ,,

 

7.5.5  Computer Implementation and Results 

 

The presented method and algorithms have been implemented on a dual 3.0 GHz 

CPU workstation using Visual C++, Visual Basic programming languages, OpenGL and 

CGAL libraries [CGAL]. As shown in Figure 7.10 and Figure 7.11, different molecular 

structures with different number of atoms, chains, residues and dof are tested with the 

proposed BioDE approach. The example molecules were obtained from the Protein Data 
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Bank (PDB) [Berman 2000] with PDB IDs as follows: BTN, CYC, NAD, XK2 ligand 

molecules and 1STP, 1DO3, 1NS1 protein molecules. These molecules are the same ones 

used to evaluate the kDE method presented in Section 7.4. Using these molecules as the 

test-bed for the BioDE algorithm, a performance comparison between BioDE and kDE 

models is provided in the following Section 7.6.  

 

 
Figure 7.10: Ligand molecules tested with the BioDE model. 

 

 
Figure 7.11: Protein molecules tested with the BioDE model. 

 

The termination criterion for the BioDE algorithm was set to maxgen = 500 

generations performed and popsize = 100 candidate molecular conformations (population 

members) considered in each generation for each experiment except for the 1NS1 

protein. For the 1NS1 protein, given the large number of dof considered in each 

experimental scenario, the maxgen was set to 600 generations and 300 population 
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members used as popsize. Finally, the DE’s control parameters used in all experiments 

were F = 0.6 for the mutation parameter, and Cr = 0.45 for the crossover probability. 

Tables 7.4 and 7.5, show a representative list of the performance analysis for the 

proposed BioDE approach on different ligand and protein molecules, respectively. As 

shown in Tables 7.4 and 7.5, the first columns indicate the PDB IDs for the tested 

molecules. The second column on each table specifies the number of atoms within each 

molecular structure, whereas the third column denotes the dof considered in each 

scenario. The preselected dof for each experiment are the chemically-allowed dof for the 

molecules.   

 

Table 7.4: Performance analysis of the proposed BioDE algorithm on ligands. 

Ligands Number Atoms DOF E_crystal E_BioDE Conv.Gener. T_BioDE 
(kcal/mol) (kcal/mol) (ms)

BTN 16 3 ‐3.25 ‐3.59 87/500 1.86
CYC 43 13 ‐16.75 ‐17.93 132/500 2.07
NAD 44 11 ‐12.42 ‐13.68 162/500 2.31
XK2 46 4 ‐10.91 ‐11.35 117/500 2.36  

 

Table 7.5: Performance analysis of the BioDE algorithm on proteins. 

Proteins Number Atoms DOF E_crystal  E_BioDE Conv.Gener. T_BioDE 
(kcal/mol) (kcal/mol) (s)

1STP 903 7 ‐554.78 ‐576.16 187/500 0.34
9 ‐876.37 180/500 2.49
22 ‐881.53 188/500 2.49
36 ‐879.38 175/500 2.46
42 ‐1127.49 150/600 2.28
58 ‐1128.061 127/600 2.2
98 ‐1126.076 150/600 2.21

2342

‐876.33

‐1126.35

1DO3

1NS1

2466

 
 

To evaluate our proposed BioDE molecular model, we compared our results with 

the results for crystal structures published in the Protein Data Bank [Berman 2000]. 

Analytically, we calculated the van der Waals (VDW) energy for each crystal structure 

(E_crystal) and compared it against the VDW energy value obtained from the BioDE 

90 
 



algorithm (E_BioDE). As shown in Tables 7.4 and 7.5, the BioDE algorithm succeeded 

to converge in a smaller VDW energy value compared with the corresponding VDW 

energy for the crystal structure on all the performed experiments. This phenomenon 

occurs since when measuring a molecule’s internal energy all the incorporated energy 

terms (i.e. VDW or electrostatic forces) are in fact an approximation of the potential 

energy and not the molecule’s free energy, which among other requires entropy 

calculations. Therefore, the proposed BioDE algorithm succeeded to output a stable 

molecular conformation for all the tested molecules. This is very important given that 

most evolutionary algorithms suffer from local minima traps. 
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Figure 7.12: Convergence performance of the BioDE method for ligands. 

 



The sixth column (Conv.Gener.) in Tables 7.4 and 7.5 indicates the BioDE 

algorithm’s convergence generation. This convergence generation is the generation where 

the fitness function of the worst population member equals with the fitness function of 

the best individual, which is also the same as the E_BioDE value. Figure 7.12 shows the 

convergence performance of the BioDE algorithm over the different tested ligand 

molecules. Figure 7.13 demonstrates BioDE’s convergence performance for 1NS1, 1DO3 

and 1STP proteins, over different number of dof. As shown in these figures, the BioDE 

algorithm attains a very good convergence performance. This is very important given that 

one of the main drawbacks in an evolutionary-based algorithm is the convergence 

uncertainty.  
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Figure 7.13: Convergence performance of the BioDE method for proteins. 

 



The last column in Tables 7.4 and 7.5 indicates the average computational time 

(T_BioDE) required by the BioDE algorithm to evaluate each generation. The T_BioDE 

is given in milliseconds for the ligands and in seconds for the proteins.  

Similarly to the kDE model, at the end of the BioDE algorithm the final 

population of stable solutions is obtained. This final population contains a large number 

of different molecular conformations for each tested molecule that attains the same low-

energy value. To evaluate the structural feasibility of each obtained molecular solution, 

we have calculated their Root Mean Square Deviation (RMSD) in Angstroms from their 

corresponding crystal structure. Generally, lower RMSD values indicate closer 

resemblance between observed and predicted structures with RMSD values below or near 

2.0  usually considered being sufficiently close.  oA

 

Table 7.6: RMSD performance of the BioDE algorithm.  

min_RMSD 3.13168 1.17923 1.4377 0.08278 0.00335 0.29471 0.44538 0.48878 0.88915
max_RMSD 12.6164 10.0217 2.17394 0.50226 0.35859 0.51279 0.77254 0.6937 1.2621

average_RMSD 8.70862 6.21425 1.82367 0.33243 0.27351 0.40033 0.64655 0.60418 1.08408
molecules CYC NAD XK2 1STP

dof 13 11 4 7 9 22 36 58 98

Ligands

1DO3 1NS1
BioDE

Proteins

 
 

As shown in Table 7.6, the BioDE algorithm succeeded to identify stable 

structures with RMSD values in the range of 0.003 to 0.889 for any tested protein and 

with RMSD values of 1.17 and 1.43 for NAD and XK2 ligands, respectively. However, 

the result for CYC ligand is relatively higher. This means that the BioDE method lies 

within the acceptable structural range of [0, 3) for all tested molecules except for the 

CYC ligand.  

 

7.5.6  Conclusions 

 

Section 7.5 presented a novel generic computational geometric and evolutionary-

based molecular methodology called biologically-inspired differential evolution (BioDE) 
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approach for effectively identifying chemically-feasible and low-energy conformations 

for molecules of different type, size, shape and topology. The proposed BioDE approach 

employs a differential evolution algorithm to direct the search towards stable molecular 

conformations. It incorporates the underlying geometric interpretation of the inter-atomic 

interactions as a primary filter for feasible molecular conformations to reduce the number 

of exact evaluations performed and to speed the molecular conformational search. 

Computer implementation and results demonstrate that the proposed BioDE algorithm 

accurately and rapidly identifies low-energy molecular conformations for different 

molecular structures. The proposed BioDE approach attains a very good convergence 

performance while it outputs the global minimum region for the tested molecule. It also 

provides a set of alternative low-energy molecular conformations for researchers to test 

during molecular design. As demonstrated the BioDE algorithm outputs sufficient 

molecular conformations for all the tested proteins and most of the tested ligands. These 

predicted molecular conformations can then be clustered based on their structures to 

identify those closest to their crystal structure. 

 

 

7.6  Comparison Between the kDE and BioDE Approaches 

 

The main algorithmic difference between the BioDE and kDE approaches is that 

the BioDE algorithm utilizes the g.eBGF technique presented in Chapter 6, as a surrogate 

approximation model to speed convergence and to reject any unfeasible generated 

solution.  This is possible through a penalty function that is assigned to those individuals 

(population members or else conformations) that attain overlapping atoms within their 

generated topology. Therefore, the g.eBGF algorithm is used by the BioDE model as a 

primary filter of molecules’ feasibility. If a candidate molecular conformation passes this 

first filtering step (no overlapping atoms: penalty = 0), then the fitness function (ff) 

measures its VDW energy to define the individual’s feasibility level. Different to this 

algorithmic scheme, the kDE model is a much simpler methodology that calculates the 

VDW energy for all candidate molecular conformations to determine their fitness level.  



 As demonstrated in Section 7.4.4 and Section 7.5.5, both kDE and BioDE 

methods are effectively pushing the molecular conformational search towards the global 

minimum region occupied by a large number of alternative stable conformations. Both 

methods succeeded in identifying molecules’ stability for any type of molecular structure 

tested while attaining a very good convergence performance. However, given the 

algorithmic difference of the two approaches, the main question lies in which from the 

proposed direct search algorithms perform better.   

 

Table 7.7: Comparison between kDE and BioDE approaches. 

Proteins Number Atoms DOF BioDE_Conv.Gener. kDE_Conv.Gener. T_BioDE (s) T_kDE (s)
1STP 903 7 187/500 118/500 0.34 0.35

9 180/500 189/500 2.49 2.55
22 188/500 191/500 2.49 2.62
36 175/500 211/500 2.46 2.58
42 150/600 170/600 2.28 2.3
58 127/600 172/600 2.2 2.27
98 150/600 138/600 2.21 2.25

1DO3 2466

1NS1 2342

 
 

To evaluate and validate the kDE and BioDE models, we compared the obtained 

molecular structures (kDE and BioDE outputs) against their corresponding crystal 

structures published in PDB [Berman 2000]. Two different performance assessments 

were performed: an energy-oriented (lowest obtained VDW energy values) and a 

structural-based (RMSD) performed. To compare the BioDE algorithm against the kDE 

method, we have tested both methods using the same molecular structures and 

workstations. 

Computer implementation and results demonstrate that for ligand molecules both 

methods perform approximately the same. For protein molecules, there is no significant 

computational time improvement of using the BioDE approach for identifying the 

molecular feasibility as shown in Table 7.7. However, the BioDE provides a convergence 

enhancement over the kDE method for proteins. As shown in Table 7.7, the BioDE 

algorithm converged about 25% faster on over 70% of the experiments performed. 
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Therefore, the BioDE algorithm provides convergence enhancement while identifying 

alternative low-energy molecular conformations.  

In regards to the identified molecular structure, both the kDE and BioDE methods 

succeeded to converge in conformations close to the crystal structures for any tested 

flexible protein and for most of the examined flexible ligands. As shown in Tables 7.3 

and 7.6, the RMSD values obtained by the BioDE approach are much smaller compared 

with those obtained by the kDE model for all the tested proteins but 1DO3 protein with 

36 dof.  Regarding the predicted ligand structures, it appears that both models had the 

same performance for all the tested ligands but CYC ligand where the kDE model 

calculated a smaller RMSD value.  
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Chapter 8 

Conclusions, Discussion and Future Work 

 

The scope of this chapter is to provide a summary of the research methodologies 

presented to study the molecular flexibility and stability mechanism. The general 

conclusions, including encountered challenges and limitations, are also discussed here, 

followed by a description of future research work.  

 

 

8.1  Research Summary 

 

This research work presented three different molecular models: the g.eBGF, kDE 

and BioDE algorithms. Two computational geometric models (BGF and eBGF) were also 

implemented to assist in the development of the g.eBGF approach.  The g.eBGF 

algorithm is responsible for rapidly and accurately identifying the molecular feasibility 

whereas the kDE and BioDE algorithms direct the conformational search towards stable 

molecular conformations. All proposed algorithms rely upon the basic algorithmic 

concepts for kinematically representing the molecular structure. They also integrate 

concepts from robotics, evolutionary-oriented optimization, computational geometry and 

computational biology.  

The core algorithmic architecture of the BGF, eBGF and g.eBGF methods is a 

two layer hierarchical data structure that kinematically represents the molecular 

flexibility using a bounding volume hierarchy to assist in the collision detection. The 

BGF or BioGeoFilter approach effectively identifies the molecular feasibility for ligands  

(drug-like) molecules and performs really well in identifying the molecular feasibility 

rapidly and accurately. In addition, the BGF algorithm satisfies the haptic-rate 

requirement, enabling real-time ligand design. 
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The eBGF or enhanced BioGeoFilter algorithm presented in Chapter 5 is a 

significant enhancement of the BGF approach as it can model macromolecules such as 

proteins. The proposed eBGF method effectively studies the flexibility mechanism of 

proteins while addressesing current limitations in protein modeling. Therefore, the eBGF 

algorithm is presented as a rapid and accurate filtering tool of proteins’ feasibility, 

significantly facilitating protein modeling and design. 

The generic eBGF or g.eBGF approach discussed in Chapter 6 is a generic 

molecular modeling tool able to represent the flexibility mechanism of any molecule 

independently of type, size, shape and topology. The proposed g.eBGF model is the 

generic enhancement of the eBGF algorithm. The g.eBGF model considers some 

chemically-based constraints to provide more realistic and chemically-feasible molecular 

conformations compared with those of the eBGF. This is a significant improvement in 

computational-aided molecular design. 

The kDE and BioDE models presented in Chapter 7 direct the molecular 

conformational search towards low-energy (stable) solutions. To achieve this, both 

models employ our previously developed DE algorithm. The main algorithmic difference 

is that the BioDE algorithm utilizes the g.eBGF method as a surrogate approximation 

model to speed convergence. Both approaches effectively identify stable molecular 

conformations for any molecular structure independently of type, size, shape and 

topology. Both models also succeed in providing the global minimum region for any 

tested molecule while attaining a very good convergence performance. However, the 

BioDE algorithm slightly speeds the computational time for identifying stable protein 

solutions while significantly speeding the algorithm’s convergence rate in protein 

conformational search.  

To evaluate and validate our proposed research work, we have tested the BGF, 

eBGF and g.eBGF algorithms against the traditional energy calculation approach. All 

methods succeeded in significantly decreasing the computational time for identifying 

feasible molecular conformations without sacrificing accuracy.  

To evaluate and validate the kDE and BioDE models, we compared the obtained 

molecular structures (kDE and BioDE outputs) against the corresponding crystal 
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structures published in [Berman 2000]. Two different performance assessments were 

performed: an energy-oriented and a structural-based. Both methods succeeded to 

converge in a smaller VDW energy value compared with the VDW energy for the 

corresponding crystal structure, thus identifying the molecules’ stability state. The 

structures of the obtained molecular conformations were compared to the corresponding 

crystal structure using the Root Mean Square Deviation (RMSD).  Both methods 

managed to output molecular conformations close to the crystal structure for all the tested 

proteins and for most of the tested ligands while attaining a very good convergence 

performance.  

 

8.2  Future Research Work 

 

Studying the atomic-scale processes is an open research problem that requires 

many disciplines to collaborate for providing reliable results and enabling 

bionanotechnology applications. Our proposed research work facilitates the modeling of 

flexible molecules and the identification of stable or low-energy conformations. This 

work can be used in molecular docking, nanoscale assembly problems and towards the 

development of an indispensable computer-aided design tool for bionanotechnology.  To 

build a fully functional molecular system, many challenges need to be addressed and 

many different research pathways can be pursued. 

One of the fundamental principles of Industrial Systems Engineering is that the 

first step in a product/system development is the idea itself, followed by the design and 

production stages. It is also well known that any candidate product/system modifications 

are better performed during the design stage for the product/system to be cost-effective. 

Under these assumptions, future research work lies within the real-time visualization of 

the molecular interactions during the design stage so that fully functional bionanoscale 

products can be designed and evaluated prior to actual fabrication. In this research work, 

new methods have been investigated that provide real-time force feedback using haptic 

devices. These devices are currently used to manipulate virtual molecules and to feel the 

forces as the molecules interact with each other providing an essential design and 
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visualization tool. However, to achieve a realistic molecular representation, continuous 

visualization as well as sense of touch to the users, a rapid molecular tool is essential that 

satisfies the haptic-rate requirement. To achieve haptic-rate performance, the rapid update 

and modeling of molecular conformations are the main prerequisites.  

Focusing towards this objective, our research work presented the BGF algorithm 

for real-time ligand modeling that satisfies the haptic-rate requirement. Although the 

proposed eBGF and g.eBGF are fast molecular feasibility tools, they do not satisfy the 

haptic constraint. Further research work is required for speeding the identification of a 

protein’s flexibility mechanism to allow haptic interaction between macromolecules. As 

shown in Table 6.1, the bottleneck function of the proposed g.eBGF algorithm is the 

update of the bounding volume hierarchy. The GPU-oriented modeling technique seems a 

promising approach for speeding the BVH update and hence, to enable haptic interactions 

between flexible proteins or between a flexible ligand and a flexible protein. As soon as a 

molecular modeling system that satisfies the haptic constraint is developed, haptic 

devices can be utilized to study the real-time molecular docking and/or assembly 

problems.  

In addition, the main limitation of the proposed kDE and BioDE methods is that 

both methods require approximately one to three days outputting a stable molecular 

solution. Although these results are significantly faster than current literature, they are 

unsuitable for real-time haptic design.  To allow haptic molecular interactions in a virtual 

environment, further research work is required to speed the molecular conformational 

search. Parallel computing is a very promising approach towards this direction. In other 

words, instead of using the DE algorithm presented in Section 7.3, we could utilize 

parallel computing such as a parallel DE algorithm to direct the molecular conformational 

search. This is expected to enable the haptic manipulation of molecules in a virtual 

environment and facilitate bionanoscale design and engineering.  

An off-line improvement of the current research work is to target the molecular 

docking/assembly problem through a molecular path planning approach. Under this 

perspective, the BioDE or kDE algorithm can be enhanced by using a modified 

chromosome structure, which represents a candidate problem solution. Currently in the 
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kDE and BioDE models, the genes of the chromosome measure the torsion bond angles 

representing a candidate molecular conformation.  The chromosome for the molecular 

path planning operation will depict both the torsion bond angles and the way-points along 

the “optimum” trajectory”. This trajectory is the “optimum” path of a totally flexible 

ligand towards the cavity site of a total flexible protein.  The location of the cavity site 

will be assumed to be known and will define the last chromosome gene, signifying the 

molecular path planning target.  

Alternatively, an on-line molecular path-planning improvement can be envisioned 

by utilizing the aforementioned concepts about GPUs and/or parallel computing as well 

as haptic-rendering approaches. Using haptics to control a flexible ligand around a 

flexible protein with unknown binding site may lead to the identification of the protein’s 

binding site.  This may also provide strong insights for identifying feasible land-marks 

(coordinate points) along the molecules’ “optimum” trajectories. These land-marks may 

be used as path planning targets through the corresponding chromosome’s genes to speed 

the algorithm convergence.  

As mentioned above, studying the molecular flexibility is only a step closer to 

fully understand and model the molecular behavior. Molecules are very flexible bodies in 

nature that usually exist in a solvent environment. Further research is required to 

holistically model the molecular interactions in a solvent environment. Additionally, 

future research work lies in studying the protein folding problem for providing structural 

insights for artificial macromolecular design. To conclude, bionanoscale research is still 

at the early stages and all the possible research ideas, concepts and pathways can be 

limited only by the researcher’s vision and imagination. 
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