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A Framework for Determining the Reliability of Nanoscale Metallic
Oxide Semiconductor (MOS) Devices

Wilkistar Otieno

ABSTRACT

An increase in worldwide investments during the past several decades has pro-

pelled scientific breakthroughs in nanoscience and technology research to new and

exciting levels. To ensure that these discoveries lead to commercially viable prod-

ucts, it is important to address some of the fundamental engineering and scientific

challenges related to nanodevices. Due to the centrality of reliability to product

integrity, nanoreliability requires critical analysis and understanding to ensure long-

term sustainability of nanodevices and systems. In this study, we construct a relia-

bility framework for nanoscale dielectric films used in Metallic Oxide Semiconductor

(MOS) devices. The successful fabrication and incorporation of metallic oxides in

MOS devices was a major milestone in the electronics industry. However, with the

progressive scaling of transistors, the dielectric dimension has progressively decreased

to about 2nm. This reduction has had severe reliability implications and challenges

including: short channeling effects and leakage currents due to quantum-mechanical

tunneling which leads to increased power dissipation and eventually temperature re-

lated gate degradation.

We develop a framework to characterize and model reliability of recently devel-

oped gate dielectrics of Si-MOS devices. We accomplish this through the following
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research steps: (i) the identification of the failure mechanisms of Si-based high-k gates

(stress, material, environmental), (ii) developing a 3-D failure simulation as a way to

acquire simulated failure data, (iii) the identification of the dielectric failure prob-

ability structure using both kernel estimation and nonparametric Bayesian schemes

so as to establish the life profile of high-k gate dielectric. The goal is to eventually

develop the appropriate failure extrapolation model to relate the reliability at the test

conditions to the reliability at normal use conditions.

This study provides modeling and analytical clarity regarding the inherent failure

characteristics and hence the reliability of metal/high-k gate stacks of Si-based sub-

strates. In addition, this research will assist manufacturers to optimally characterize,

predict and manage the reliability of metal high-k gate substrates. The proposed

reliability framework could be extended to other thin film devices and eventually to

other nanomaterials and devices.
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CHAPTER 1

INTRODUCTION

1.1 Nanoreliability

Nanoreliability is the probabilistic measure of the ability of a nanoscale mate-

rial, device or systems to maintain its intended functionality at predetermined use

environmental conditions and time. The physical, chemical, thermal, electrical and

biological properties of materials differ significantly at the nanoscale level. Thus such

properties should be considered in characterizing failure and reliability. Today, nano-

structured materials and devices serve critical roles in newly developed products. As

a consequence, there are unprecedented levels of integration of emerging nanomate-

rials, devices and technologies, all of which pose severe challenges for the testing,

reliability, and metrology requirements needed to support such development [4].

Advances in reliability research and development have, in the past, enhanced

product quality and performance. The gains in this context occurred largely through

the identification of the failure mechanisms and the translation of this information

into remedies that impact design, manufacturing, and intervention regimens. With

the paradigm shift from conventional material and manufacturing processes to nano-

materials and nanomanufacturing, it is imperative that new tools and techniques be

implemented that are specifically aligned with the realities of nanodevices. Relia-

bility analysis typically involves testing, measurement, modeling, and prediction of

the various aspects of a product’s life cycle with the ultimate goal of establishing
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survivability and performability requirements. In the context of nano scale, there are

several challenges that confront reliability researchers more so than traditional sys-

tems, such as the identification of the underlying physics of failure mechanisms, the

development of appropriate testing methods and instrumentation at the nanoscale

level to acquire failure data, characterization of material and device failure, and the

development of reliability models that incorporate the physics of failure, to enhance

operability requirements. The major thrust of nanoreliability is anchored around

several overarching themes, such as massive parallelism of components to overcome

device failures, performability, and the life cycle of those devices.

The ultimate goal of nanoreliability is to determine the availability of nanodevices

and nanomaterials under normal use conditions. Elsayed [5] identifies three reliability

inference procedures (and models), namely: (i) physics-experiment-based models, (ii)

physics-statistics-based models, and (iii) statistics-based models . In this study, we

incorporate these model categories into the reliability framework of CMOS high-k

thin dielectric films as follows:

1. The physics-experimental models involve the use of failure test experiments to

estimate failure times. These tests involve applying different stresses that affect

the performance of the nanomaterial or device. Traditionally, failure data is

obtained by assessing the performance of a product throughout its life. Life

data analysis involves the use of times-to-failure data obtained under normal

operating conditions to quantify the life profile of the product or device. How-

ever, in many instances such life data is very difficult, if not impossible to obtain

especially when the products are designed to operate without failure for sev-

eral years. Given this difficulty, methods and approaches have been developed

to accelerate device failure. Such accelerated failure tests (ALTs) involve over

stressing the devices by exposing them to severe conditions than those experi-

2



enced under normal conditions. We discuss the concept of accelerated testing

in chapter 2 of this dissertation.

2. The physics-statistics-based models relate known chemistry and physics of fail-

ure principles and the ensuing failure rate. These models are used to theo-

retically estimate failure rates and therefore failure times. In this study, the

failure-physics and failure-rate relationships of high-k thin films are presented

in chapter 2. We use this relationship to develop a theoretical 3-dimensional

failure simulation model for high-k dielectric thin films in chapter 4.

3. The statistics-based models are generally used when the relationship between

failure times and the applied stresses is unknown, and difficult to derive from

the known physics or chemistry-based failure principles. In this case, the devices

are tested, and the resulting failure times are used to estimate the underlying

probability structure that describes the life characteristics of the device such as

the failure density function, failure rate, the cumulative failure and the relia-

bility functions. Both parametric and nonparametric statistical procedures are

used to estimate these life characteristic measures. In this research, we specif-

ically apply nonparametric and parametric methodologies to make reliability

inference as detailed in chapters 5 and 6 respectively.

Overall, the accuracy of the inference procedure applied has profound effects on the

reliability estimates. In this dissertation we develop a framework to characterize and

model the reliability of dielectric thin films, and validate the models in the framework

using real data obtained from Luo et al. [6].

3



1.2 Transistor Operation

Transistors are semiconductor devices that are used in most electronic devices, and

mainly function as signal amplifiers or as solid-state-switching components. There are

three main chronological classifications of transistors as shown in figure 1.1. They

include: (i) Bipolar Transistors (BTs) which are considered current driven and have

a relatively low input impedance, (ii) Field effect Transistors (FETs), also known

as voltage driven devices and have a high input impedance, and (iii) Insulated Gate

Transistors Insulated Effect Transistors (IGBTs), which is the newest and is a hybrid

combining the BTs and the FETs. FETs are further classified into: (a) Junction

Field Effect Transistors and (b) Metallic Oxide Semiconductor Field Effect Transistors

(MOSFET) [7].

  

Transistors  

Bipolar  Transistors  
(BTs)  

Field  Effect  Transistors  
(FETs)  

Insulated  Gate  Bipolar  
Transistors  (IGBTs)  

Metallic  Oxide  Semiconductor  FETs  
(MOSFETs)  

Junction  FETs  (JFETs)  

Figure 1.1. Transistor classification

Figures 1.2 a and b are cross sectional views of an n-channel MOSFET, which has

highly doped n+ source and drain terminals. The gate terminal, the drain and the

source interconnections are metallic or made of highly doped polysilicon. The insu-

lator is generally made of a dielectric material, traditionally SiO2, and the substrate

is made of a lightly p doped semiconductor.
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Figure 1.2. nMOSFET in the OFF-state (fig a) and ON-state (fig b)

The operation of the MOSFET is induced by modulating the charge concentration

in the MOS capacitor (the area defined by the gate terminal, the dielectric film and

the substrate). For the nMOSFET 1.2 a, when the applied gate voltage (VG) is

positive and higher than the threshold voltage VTH , an electric field is induced over

the insulator which attracts negative charges (electrons) at the insulator/substrate

interface. The electron concentration increases with an increase in the gate bias until

the electrons form an inversion conducting channel between the source and the drain

(see figure 1.2 b). When the bias is reduced, the inversion layer is cut-off, and a

small amount sub threshold current may leak through from the source to the drain.

The opposite process occurs in the case of a pMOSFET, in that, when VG is less

than VTH , holes are attracted to the insulator-substrate interface. When the bias is

reduced further, the hole concentration increases in the interface therefore forming a

conduction channel. Shrinkage of transistor dimensions has had several implications

in the structure and functionality of the transistor within semiconductor devices, some

of which will be discussed in the subsequent sections.
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1.3 Scaling Trend in Transistor Technology

In the paper, Cramming more Components onto Integrated Circuits (IC), Moore

noted that the objective of miniaturization is to include as many electronic compo-

nents as possible in the smallest space possible and with the least weight implications

as possible [8]. He postulated that the number of transistors on an IC would double

every two years [8]. As shown in figure 1.3 transistor trend in recent years, as recorded

by Intel, support Moore’s prediction, as we have progressed from 10000 transistors

on a chip in 1975 to over 1 billion transistors on the same chip size in 2008.

Figure 1.3. Moore’s law: Intel micro-processor realization and projection

Moore’s predictions have been made possible by miniaturization of transistors

used in ICs. Today semiconductor industries can manufacture logic devices that

incorporate up to 40 million transistors into a single circuit [9]. According to the Intel

Developer Forum [9], Intel has had a progressive reduction in the size of computer

processors as shown in table 1.1, in the process recording thousands of millions of

electronic components on a chip-also known as Very Large Scale Integration (VLSI).
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Table 1.1. Progress of Intel’s processor features

It is evident from table 1.1 that the electronic industry has embraced the era

of nanotechnology and is manufacturing millions of electronic components at a phe-

nomenal scale [9]. The key productivity features that have been exhibited in the

semiconductor industry include decreasing unit cost of production and the increasing

clocking (switching) frequency of nano-electronic components as shown in figure 1.4

and 1.5 [2].

Figure 1.4. Trend of the average selling price of per bit of DRAM [2]

7



Figure 1.5. Clock (switching) speeds of microprocessors with time [2]

The scaling trend and inexpensive nano electronic components are giving rise to

relatively inexpensive yet extraordinarily powerful integrated circuits and electronic

devices [10], and this has been the driving force behind the successes in the electronic

industry.

1.3.1 Effect of SiO2-Based Transistor Scaling and its Limitations

The increase in the number of transistors on a chip has been made possible by

the progressive reduction (scaling) of transistor dimensions among which is the di-

electric thickness. The successful fabrication and incorporation of metallic oxides in

transistors was a major milestone and significant achievement in the electronics in-

dustry, and the use of Silicon dioxide as the choice dielectric certainly encouraged

continuous scaling. Amorphous SiO2 can easily be thermally grown on Si substrate

(wafers) with precise control of its thickness [1]. SiO2 naturally forms a stable oxide
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interface with the Si substrate and this results in very low intrinsic interfacial defect

density. Houssa [1] indicates that even the few defects that may form are efficiently

passivated through post-metalization annealing processes (see Deen et al. [11] for a

detailed study of post-deposition annealing processes). In addition, SiO2 forms an

interface with a large barrier height of approximately 3 eV and it also has an inher-

ent large band-gap, approximately 9 eV in magnitude, which offers excellent electrical

isolation properties [12]. A large band-gap and wide barrier height means that the

energy band offsets between the conduction and the valence bands is large, therefore

the breakdown field is also large (to the order of 13 MV/cm). Such a high breakdown

field is indicative of the amount of input voltage that the dielectric can withstand

before breakdown [1]. Due to its superior electrical and mechanical properties SiO2

was used as the gate dielectric in MOSFET fabrication for decades until the thickness

was scaled down to 1.5 nm, beyond which reliability challenges arose.

From an electrical point of view, the MOS structure behaves like a parallel plate

capacitor, consisting of a dielectric material sandwiched between the gate and the

substrate electrode. Figure 1.6 shows a schematic representation of the MOS struc-

ture. When VG is applied to the gate electrode, charges accumulate on the metallic

gate electrode as shown in figure 1.7, and are compensated for by opposite charges

in the substrate interface region. In a MOS transistor, these compensating charges

are responsible for forming the channel that connects the source to the drain as was

discussed earlier.

The capacitance (C), of the MOS capacitor is given by:

C =
εrε0A

tdiel
(1.1)

9



Figure 1.6. A schematic representation of a MOS structure

Figure 1.7. Charge distribution in the MOS dielectric

where εr is the relative static permittivity (also known as the dielectric constant), A

is the active area of the capacitor, tdiel is the dielectric thickness, and ε0 is the vacuum

permittivity.

Evidently from equation 1.1, reducing the insulator (dielectric) thickness increases

the capacitance of the insulator, and consequently increases the transistor drain cur-

rent, thereby improving the transistor speed/performance. Within the past decade,

the dielectric thickness has steadily decreased from a range of 1.3 to 1.6 nm in 2001,

to a current (2010) value of 0.6 to 1.1 nm [1]. This reduction has had severe reliability

implications and challenges such as short channeling effects, leakage currents either

due to quantum-mechanical tunneling, or as a result of conduction paths formed by

stress-induced defects within the dielectric film [13], [14] and [15].
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1.3.2 SiO2 Gate Scaling Challenges

1. Sub threshold leakage current:

One of most stringent limitations toward further miniaturization of dielectric

films concerns the leakage current that flows through the MOS stack. When the

dielectric film thickness is decreased typically beyond 3nm, charge carriers are

able to flow through the film by a quantum mechanical tunneling mechanism.

Houssa et al. [1] indicate that the tunneling probability increases exponentially

with decreasing dielectric thickness. This leakage may occur during the off-state

also known as the depletion stage. Leakage current during the depletion stage

results in increased dissipated power, which is proportional to the product of

the leakage current and the supply voltage. Increased power dissipation results

in temperature associated transistor degradation [1].

2. Dielectric reliability:

Another issue related to dielectric scaling concerns reliability aspects. During

MOSFET operation, an electric field is induced within the transistor channel

region, which activates charge carriers to flow from the source to the drain ter-

minals. As the carriers traverse the channel, they release some charged species

which penetrate the dielectric causing defects within the dielectric bulk and in-

terface (more details will be given in chapter 4). When a critical defect density

is reached, defects align to form a conduction path through which electrons flow

from the substrate to the gate electrode. This electric short leads to a dielectric

breakdown phenomenon that compromises gate reliability.

3. Doping Fluctuations:

The amount of dopant atoms in the channel region reduces with transistor

scaling. This reduction, coupled with the random nature of dopant distribution
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within the channel results in significant variations in the sub-threshold voltage.

For instance, a gate measuring 100 nm in length by 400 nm in width on average

has 1000 dopant atoms in its depletion region [16]. When the gate length is

reduced to 25 nm, the number of dopant atoms reduces to approximately 120,

and this greatly varies the threshold voltage from one device to another. To

abate this, retrograde doped channels have been developed, which consist of a

low followed by a high doping profile of the semiconductor substrate [16].

1.4 Why High-k Dielectric Films?

1.4.1 Propositions for Extending MOSFET Technology: Alternative Gate

Dielectrics

From equation 1.1, a reduction in dielectric thickness results in increased MOS

capacitance and eventually reduced device delays. Currently, the dielectric thickness

ranges between 1 to 1.5 nm and it is foreseen that by 2016, this thickness will reach a

record 0.4 to 0.5 nm [1]. This leads to increase in leakage currents and hence increased

dissipated power and heat within the dielectric region. SiO2 films of about 1.5 nm

in thickness exhibit approximately 1 A/cm2 of current density at an input voltage

of 1 V [1]. Since current leakage density increases exponentially with decreasing

dielectric thickness, a 1.0 nm thick oxide is expected to exhibit up to 100 A/cm2 of

current density at the same input gate voltage [1]. Keeping this in mind, SiO2 would

only be scaled down to 0.8 nm for high performance applications [1]. From equation

1.1, the alternative way of increasing MOS capacitance is by increasing the dielectric

constant εr, which is achievable when alternative dielectric films are used to replace

SiO2. These alternative dielectric materials also known as high-k materials, have

relatively higher permittivity εr than SiO2.
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Even though the first field effect semiconductor devices containing zirconium (Zr)

and hafnium (Hf)-based oxynitride gate dielectrics were patented in 2000, the first

commercial high-k MOSFETs were successfully built by Intel corporation in 2003

[17]. Other candidate dielectric materials that have been studied include derivatives

of Zr and Hf alloys with interfacial SiO2 and Al2O3 films. The dielectric constant of

ZrO2 and HfO2 are in the range of 17 − 25, compared to that of SiO2 which varies

between 3 to 5. High-k materials exhibit slightly higher conduction band energy levels

of 1.4 to 1.5 eV compared to SiO2 whose conduction band energy level is about 1 ev

[1]. Lower conduction band energy levels are desired to ensure low current leakage.

Intel realized that the introduction of the high-k material reduces the gate leakage by

100-fold [17].

By using these high-k dielectric materials, thicker layers of dielectric films can be

used to achieve the same capacitance while at the same time reducing the leakage

current, which consequently increases dielectric reliability. The equivalent dielectric

thickness is defined as the thickness of SiO2 layer that would be required to achieve the

same capacitance density as the alternative high-k dielectric [1]. From equation 1.1,

assuming that the capacitance C, and the cross sectional area A, are held constant,

the equivalent SiO2 thickness EOT = teq is obtained as follows:

teq
εr,SiO2

=
thigh−k
εr,high−k

(1.2)

where εr,SiO2 and εr,high−k are the relative dielectric constants of SiO2 and high-k

material respectively, and teq and thigh−k are the equivalent SiO2 and high-k dielectric

thickness respectively.
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Table 1.2 is a summary of some of the current dielectric materials, indicating their

dielectric constants, band gaps Eg eV, conduction band energy levels Ec eV, stability

on silicon substrate, and their crystallographic structures.

Table 1.2. Summary of dielectric materials [1]

When Zr or Hf-based dielectrics are deposited on the Si substrate, a thin interfacial

layer of low-k SiO2 or SiMxOy film is formed, (M stands for Zr or Hf). This interfacial

layer, whose properties are represented by the subscript low-k, forms either during
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deposition or post-deposition annealing process. As a result, the capacitance of the

gate stack, Ctotal is expressed as:

1

Ctotal
=

1

Clow−k
+

1

Chigh−k
(1.3)

The equivalent oxide thickness is therefore:

teq =

(
εr,SiO2

εr,high−k

)
tlow−k +

(
εr,SiO2

εr,high−k

)
(1.4)

This additional interfacial film in effect increases the actual dielectric layer. For

instance, from equation 1.4 a gate stack formed by 0.7 nm of SiO2 interfacial layer

and 5.1 nm of ZrO2 layer results in an equivalent oxide thickness (EOT) of 1.7 nm, as

opposed to 1 nm EOT without the interfacial layer. The slight increase in the EOT

due to the interfacial layer is therefore not desired, and several research publications

have addressed technologies that reduce the formation of the low-k interfacial layer.

Most of these research papers have considered varied passivation processes [18], [19],

[20] and [21].

Generally, any suitable alternative high-k material should fulfill the following re-

quirements [1]:

1. Good thermal stability in contact with Si substrate to prevent the formation of

an unstable interfacial oxide and silicide layers.

2. Low density of intrinsic defects at the Si/dielectric interface and within the

dielectric bulk, to ensure high carrier mobility in the conduction channel and

low instances of dielectric breakdown.
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3. Sufficiently large energy band gap to provide high energy barriers at the sub-

strate/dielectric interface and gate(metal)/dielectric interface, thus reducing

leakage currents due to electron tunneling.

4. Material compatibility with other CMOS processing and packaging thermal

requirements.

1.4.2 Performance Related Challenges in the Introduction of High-k Di-

electric Material

High-k materials, which are not readily compatible with silicon substrates form

undesirable defects within the dielectric/Si interface. During the deposition process,

high-k monolayer nucleation on the H-terminated substrate (after the last HF-dipping

during deposition), is often inhibited, resulting in non-uniform and discontinuous

films which create sites for trapping charges. In addition to process induced defect,

trapped charges are usually generated as a result of applied stresses. For instance,

in negative biased pMOSFETs, when the applied gate voltage VG < 0V , charges are

trapped within the dielectric bulk and at the interface. This phenomenon is known

as Negative Bias Temperature Instability (NBTI) [22]. These defect sites increase

threshold voltage, reduce channel carrier mobility, and induce parasitic capacitance

at the interface leading to overall performance degradation. NBTI currently is among

the leading causes for reduced MOSFET performance and therefore poses challenges

in Very Large Scale Integrated (VLSI) circuit applications, and more specifically, high

temperature applications.

Another mechanism through which defects are introduced in the Si/high-k inter-

face is known as hot carrier injection (HCI). Damage caused by HCI results from car-

rier heating in the high electric field region near the drain side of the MOSFET. This
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heating results in impact ionization and subsequent dielectric degradation. Similar

to NBTI, HCI traps shift device metrics such as the threshold voltage, and therefore

reduces overall device performance. Historically, HCI is mostly significant in nMOS-

FET because electrons, which are the charge carriers on n-doped semiconductors,

exhibit higher mobility due to lower effective mass compared to holes in p-doped

semiconductors.

In this work, we are concerned with the defect generation phenomenon, and its

implication on the performance of the gate dielectric film. In chapter 2, we discuss

the background of dielectric performance and breakdown classifications. In chapter 3,

we present the research questions and motivation for studying dielectric performance,

and the need to develop a reliability framework for nanomaterials, using the dielectric

films as an example. We will discuss the physics behind dielectric failure, and develop

the 3-dimensional model to simulate dielectric failure in chapter 4. Chapters 5 and 6,

consist of nonparametric and parametric approaches for dielectric reliability inference.

The results of this study are summarized in chapter 7 followed by suggestions for

future research in chapter 8.
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CHAPTER 2

DIELECTRIC PERFORMANCE, FAILURE (BREAKDOWN) AND
TESTS

2.1 Dielectric Performance and Electrical Characterization

Dielectrics are insulating materials by definition [12]. However, charge carriers

are still able to tunnel through a dielectric media’s conduction band. The mobility

of charge carriers is approximately of the same order as that in semiconductors, so

that sufficient current can be conducted if enough charge carriers are injected into

the dielectric media [12]. Generally, due to the difficulty of populating charge carriers

within their very low conduction bands, the resulting current is usually very low

in magnitude [1]. Therefore any phenomenon that might lead to increased carrier

injection into the dielectric film affects its performance.

The performance of a gate dielectric is defined as its ability to act sufficiently as

an insulator between the source and the drain at specified operating conditions [6].

Typically, the reliability specification for a gate dielectric is described as; less than

0.01% of gates of size 0.1 cm2 are allowed to fail in 10 years under 1 MV/cm electric

fields and 1 VG gate voltage [6], [23]. Figure 2.1 is a schematic presentation of the

cross section of a MOSFET device.

Dielectric performance highly depends on wafer quality, process integrity and ap-

plication conditions. As such, causes of dielectric failure are broadly categorized into

two classes [24]: (i) intrinsic failure mechanisms, are material related, and they are

associated with stress-induced defects and dislocations within the dielectric bulk and
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Figure 2.1. Schematic representation of a MOSFET

in the dielectric/substrate interface [24]. (ii) Extrinsic failure mechanisms are entirely

process-induced, and due to defects within the dielectric bulk and in the interface that

are formed during the deposition, post deposition and packaging processes [24]. Some

failure mechanisms are dominant in certain operations and environments while others

are prevalent across a broader range of environments. For instance, some failures may

be prevalent during certain test regimens and less prevalent during normal use con-

ditions [24]. Overall, experts agree that stress-induced intrinsic failures are typically

dominant [3], [14], [25], [26] and [27].

2.1.1 Gate Dielectric Breakdown

When voltage is applied to a capacitor, the dielectric goes through several degrada-

tion processes including charge carrier injection and a multistage dielectric breakdown

as a result of stress-induced defect generation [13], [28]. Sune et al. [3] define gate

breakdown as the increase in gate leakage current beyond the allowable amount. Typ-

ically, the maximum tolerable standby leakage is about 1 A/cm2 for a power supply

of 1 V in CMOS logic chips, which is also the maximum tolerable leakage current

for most logic applications [14]. The most common carrier injection mechanism is
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quantum mechanical tunneling through energy barriers formed by the discontinuity

between the substrate and the dielectric conduction bands. Unlike other injection pro-

cesses such as hot carrier injection or avalanche injection, tunneling does not involve

carrier injection over the energy barrier. For this reason, carrier tunneling through

the barrier is considered negligible, especially for dielectric thickness beyond 7 nm.

See Wu et al. [12] for more information on carrier tunneling.

The multistage defect-driven breakdown follows the following sequence: (i) ini-

tially, defects are generated at a rate that gradually increases with time, (ii) when

enough defects align to form a conduction path that bridges dielectric thickness, the

dielectric breaks down and the current leaks through it, causing an abrupt increase

in the gate current, and (iii) whether the dielectric becomes completely conductive

or remains quasi-insulating depends on the surrounding stress levels (electric field)

[23] [29]. The leakage current leads to increased stand-by power dissipation within

the dielectric thereby decreasing gate performance. Dielectric breakdown effects are

particularly of concern in memory cells where gate leakage can result in the com-

plete loss of stored data [28]. The critical density of defects that is enough to trigger

breakdown varies with dielectric material and thickness. In this study, we will use

a dielectric failure simulation model to address the relationship between the critical

defect density and dielectric thickness.

2.1.2 Soft versus Hard Breakdown

Dielectric failure is a time and stress dependent degenerative stochastic event

that can either be soft (soft breakdown) or hard (hard breakdown). Soft breakdown

(SBD) is defined as current leakage that does not exceed the predetermined level,

and therefore causes slight damage to the dielectric. SBD is usually reversed by a

reduction in the electric field across the gate. This non-destructive breakdown effect is
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manifested in both thin and thick dielectric films. On the other hand, hard breakdown

(HBD) is destructive, irreversible and results in a sudden loss of dielectric insulation.

These two modes of failure are used as indicators for dielectric failure. The conditions

favoring each mode depend on the dielectric thickness, the magnitude of the stored

energy in the capacitor, system impedance, and the extent of local damage caused by

defect generation [24].

From a statistical point of view, these two modes of failure pose a challenge in

the analysis of dielectric failure data. These challenges include: (i) whether to treat

the modes of failure as separate competing events resulting in two separate failure

distributions, (ii) assume that they are equally distributed and therefore merge the

data irrespective of the failure mode, and (iii) whether to think of the SBD as an initial

(reversible) stage of dielectric failure which eventually leads to a sudden (irreversible)

HBD with time [14]. Sune et al. [3] found a solution to these challenges by studying

the degradation paths followed by samples of dielectric films. Their findings are

represented graphically in figure 2.2.

Figure 2.2. A schematic representation of the occurrence of a SBD that eventually
becomes a HBD path during the breakdown process [3]
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Their results show that there is a chance that SBD might leads to HBD and the

corresponding probability that a defect build-up becomes a leakage pathway and tran-

sitions from SBD to HBD depends on whether a certain energy dissipation threshold

has been reached. The amount of dissipated energy also determines the SBD-HBD

prevalence ratio [14].

2.2 Dielectric Failure Tests

Electrical characterization tests and techniques that are required to ensure qual-

ity and improved performance of high-k materials in MOS devices have been studied

extensively [1], [6], [10], [15], [30]. The results of these tests strongly depend on the

sample fabrication procedures and recipes, test apparatus, test stress levels, stress

time, the choice of failure indicators, and the range and resolution of the measuring

instruments [31]. In this section, we will discuss the testing procedure, failure indi-

cators and the impact of testing at elevated stress levels. However, tests were not

conducted in our research facility for this study.

Dielectric reliability is defined as the probability that the dielectric will sufficiently

perform as an insulator in a MOS device for the intended length of time, and at

the intended operation conditions. Assessing reliability often involves making the

dielectric fail by applying irreversible destructive electrical tests [12]. These tests can

be done in series by stressing one sample after another, or in parallel, by stressing

several samples simultaneously [12].

Necessary failure accelerators for dielectric films include voltage or current and

temperature. However, major breakdown acceleration is driven by voltage or current

across the dielectric film. For this reason, electrical characterization techniques that

are used as means to assess dielectric reliability through breakdown detection include

the amount of voltage it takes to induce dielectric breakdown, Vbd, the amount of

22



electric field that results in a breakdown Ebd, and the charge build-up that triggers

dielectric breakdown, Qbd [6]. These three electrical characteristics are candidate

failure indicators, which can be monitored in an experimental setting to determine the

time to breakdown tbd. Elevating the test temperature decreases the activation energy

thus reducing the time to failure. Typically, commercial burn-in test temperatures

range between 1300C to 1500C, while the specified maximum operating temperatures

range from 700C to 1250C [12], [32].

In practice, several decisions are made to scientifically design optimal accelerated

failure test plans. These decisions include: (i) the type of stress to be used for

instance, voltage, current, humidity and temperature, or a combination of multiple

stresses, (ii) the number of test stress levels, (iii) the number of samples to be tested

at each stress level, (iv) the inspection frequency, (v) the failure indicators and (vi)

the stress loading strategy [33].

Typically, the stress level applied to the samples can be constant or varying (cycli-

cally, randomly or continuously increasing) over time. The choice of the loading

strategy depends on how the device is normally loaded in service [34]. There are

mainly five stress loading strategies pertaining to dielectric stress tests namely, Con-

stant Voltage Stress (CVS) test, the Ramped Voltage Stress (RVS) test, the Constant

Current Test (CCS), the Constant Current Stress (CCS), and the Ramped Current

Stress (RCS) [34]. More detailed discussions about the design of accelerated failure

test plans as well as a rich reference of related texts are provided in [33], [35], [36],

[37], [38], [39], [40], [41] and [42].

During constant stress procedures, the samples are exposed to a constant voltage

or current loads. Such constant test strategies are mostly preferred because they

closely represent normal use conditions, that is, most devices are assumed to experi-

ence constant stresses in service [34]. In ramped stress loading the samples are exposed
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to continuously increasing voltage and current levels until they fail. While samples

take shorter times to fail in ramped tests than in constant stress loading, ramped

stress levels may trigger cumulative failure modes that do not occur in service.

Detection of dielectric breakdown by monitoring the current leakage and gate volt-

age shifts is mostly achieved through capacitance-voltage (CV) or current-voltage (IV)

characteristic curves, which can be investigated using the Mercury-Probe-Technique

[1]. Houssa presents a detailed discussion of the mercury-probe technique which is

represented schematically in figure 2.3 [1]. The mercury probe device is a test struc-

ture that replicates the behavior of the dielectric in an actual MOS device. Instead

of fabricating detailed MOS devices such as transistors, the mercury-probe technique

offers a simple, quicker method for testing the dielectric films in a Metallic-Oxide-

Semiconductor structure [43]. In figure 2.3 the MOS structure is made of a mercury

gate electrode, a high-k dielectric film, a silicon (Si) or germanium (Ge) semicon-

ductor substrate and a back ohmic contact which can be made of aluminum. To

ensure characterization results that are devoid of fabrication errors, prior research

is required in deciding optimal deposition parameters, choosing the appropriate de-

position techniques and the post-deposition annealing processes required to remove

process-induced (extrinsic) defects [1].

2.2.1 Accelerated Degradation Tests

Traditional reliability analysis involves the use of life data obtained from tests

carried out under normal operating conditions. In many instances, such life data is

very difficult, if not impossible to obtain especially when the products are designed

to operate without failure for several years [33]. For instance, transistors are often

expected to last for up to 10 to 20 years without failure consequently, very few failure

data points would be available (if tested under normal operating conditions) to actu-
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Figure 2.3. Schematic representation of a High-k MOS Capacitor (MOSCAP) struc-
ture for mercury probe measurements

ally reflect the life profile of its components, including the dielectric film. It is thus a

significant challenge to obtain sufficient data to estimate the underlying probability

structure of such highly reliable materials under normal operating conditions.

Given this difficulty, and the inescapable need to observe product failures in order

to better understand their failure modes and underlying life characteristics, a variety

of approaches have been devised to induce product failure more quickly than would

occur under normal use conditions. The methods and procedures that are used to

accelerate failure occurrences are known as accelerated life tests (ALT) [34]. In gen-

eral, accelerated life tests (ALT’s) involve over stressing the product by exposing it to

severe conditions than those experienced in normal conditions. These severe stresses

accelerate product failure occurrences for the purpose of quantifying the life charac-

teristics of the product at normal use conditions [35]. Often, lower accelerated test

conditions closest to the normal use conditions are used to minimize dielectric film

reliability projection errors [43].
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Dielectric failure is never sudden but rather its insulation ability gradually de-

grades until it reaches a critical value, usually a percentage of the initial performance

level at time t = 0. As a result, an alternative approach to assessing dielectric re-

liability is monitoring the degradation of its characteristics of interest such as its

performance which is indicated by the progressive increase. This approach is known

as Accelerated Degradation Testing (ADT). Accelerated Degradation Tests ADTs

measure product performance to determine the point at which performance degrada-

tion sets in, thus leading to product failure [34].

The concept of reliability analysis using data from accelerated tests is based on the

following premises and assumptions [43]: (i) A component operating under elevated

stress levels will exhibit the same mode of failure, as at normal use conditions [34]. In

other words, the shape of the underlying failure distribution does not change, but the

location of the distribution may change from one stress level to another. (ii) The vari-

ations inherent in the resulting test data are due to the random statistical fabrications

and test process variations. This assumption can carefully be met by appropriately

designing the test experiments, ensuring quality and repeatable fabrication and using

well calibrated test equipment. (iii) The samples stressed are representative of the

population. (iv) Each sample fails independently. (v) It is possible to represent the

discrete failure events with continuous functions.

In this study, we will assume that in the ALT and ADT (both referred to as

Accelerated Failure Tests (AFT)) models, the applied stresses (covariates) act multi-

plicatively on the failure times (linear AFT models) [44]. Also, we will assume that

the applied stresses are within the acceptable region of true-acceleration [5].

Tobias and Trindale [45] state that true acceleration takes place when every failure

time and every distribution percentile at the test condition is proportional to the

projected results at the operating condition by a similar proportionality constant,
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thereby resulting in a linear acceleration. When true acceleration occurs, the resultant

reliability inference measures such as the time to failure t(.), the probability failure

distribution f(.), the cumulative failure distribution F(.) and the failure rate h(.) at

use conditions relate to the corresponding reliability measures at test conditions as

follows:

tuse = µttest

Fuse(t) = Ftest

(
t

µ

)

fuse(t) =

(
1

µ

)
ftest

(
t

µ

)

huse(t) =

(
1

µ

)
htest

(
t

µ

)

where the subscripts use and test describe the operating and the test conditions and

µ represent the proportionality constant also known as the acceleration factor.
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CHAPTER 3

RESEARCH MOTIVATION AND RESEARCH QUESTIONS

3.1 Why Nanoreliability?

Nanotechnology has revolutionalized virtually all industrial sectors through the

introduction of new materials, design methods, fabrication, control, and measure-

ments at the atomic level. To date, nanotechnology has resulted in the creation of

high-performance materials and devices for mechanical, electrical, thermal, magnetic,

and chemical applications. In addition, introduction of nano-bio-technology has had

profound effects in pharmaceuticals and targeted drug delivery, which have enabled

the eradication of illnesses through subcellular control and disease diagnostics [46].

The impact of nanotechnology has also been extended to the electronic industry

where faster microprocessors are being developed and applied to advance supercom-

puting. In sustainable developments, nanotechnology has resulted in new methods

of water reclamation, energy transformation and storage, and innovative agricultural

systems [46]. Currently, the National Science Foundation envisions that nanotechnol-

ogy has the potential to be a trillion dollar industry by 2015, as indicated in table 3.1.

Figure 3.1 shows NSF’s vision for the potential spending in nanotechnology by geo-

graphical region [47].

The National Academy of Engineering (NAE) and NSF recently proposed several

21st century science and engineering grand challenges among which is the advance-

ment of tools of scientific discovery including nanotechnology. This study will con-
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Table 3.1. Potential percentage value of nanotechnology per sector in 2015

Figure 3.1. Development of nanotechnology markets worldwide by regions (NSF 2015
forecast)
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tribute to the grand challenges by providing an understanding of the inherent failure

modes and hence the reliability of metal/high-k gate stacks of Si-based substrates.

The successful fabrication and incorporation of metallic oxides in transistors was

a major milestone and significant achievement in the electronics industry. With the

increasing scaling of transistors, the gate dielectric film’s thickness is predicted to

progressively decrease to a record atomic size thickness. The failure of such thin gate

dielectrics is based on quantum interaction of charge carriers, inherent film defects,

and the applied stresses such as the electric field and the voltage across the films. The

major driver in the reduction of transistor dimensions has been the need to increase

gate capacitance and thereby increase current flow and device performance. How-

ever, the reduction in the transistor dimensions and more specifically gate dielectric

thickness to about 2 nm has had severe reliability implications and challenges includ-

ing leakage currents due to quantum-mechanical tunneling and conduction pathways

formed by intrinsic defects, leading to increased power dissipation which causes tem-

perature and time related dielectric degradation.

3.2 Nanoreliability Framework

In this study, we develop a framework for nanoreliability that incorporates meth-

ods of simulation and experiment to consistently describe dielectric failure with the

aim of predicting their life characteristics, using appropriate statistical methods. Fig-

ure 3.2 shows a general reliability framework which can be extended and appropriately

modified to study the reliability of not only other nanofilms but also to other nano-

materials and devices.
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Figure 3.2. A general reliability framework

3.3 Statement of the Problem and Research Questions

In this study, we implement the reliability framework in addressing the following

challenges, that will deepen the understanding of dielectric failure.

1. Is there a relationship between defect generation and dielectric thickness?

Thickness reduction of SiO2 dielectric films as CMOS technology advances has

reached its limits due to leakage currents as a result of electron tunneling and

stress-induced defects. This limitation, necessitates the introduction of alterna-

tive high-k dielectric films as replacements for SiO2, with the aim of allowing

for thicker films and at the same time improving gate performance. By using a

thicker film, direct tunneling of electrons is expected to be eliminated and the

critical defect density required to trigger current leakage is expected to increase.

Since the critical defect density is proportional to dielectric thickness, we ex-

pect that the Mean Time to Failure (MTTF) will increase in increasing film
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thickness. While this conclusion may be intuitive, a question arises regarding

the actual relationship between the film thickness and the time to dielectric

breakdown. We propose to address this question by developing a dielectric sim-

ulation model whose results will give clarity to the actual relationship between

defect generation, time to dielectric breakdown and dielectric thickness.

2. What is the profile of the dielectric failure density function?

Statistical analysis of failure data is very central to the study of material or

device reliability and it concerns the analysis of the behavior of the material

or device with time, especially during its useful life. Reliability engineers are

typically concerned with the failure rate of a device. For instance, it is generally

agreed that most electronic devices and systems exhibit failure rate behaviors

that are divided into three stages, namely: (i) an initially decreasing early life

failure rate also known as the burn-in period, (ii) a constant or useful life failure

rate, and (iii) an increasing wear-out portion, also called the aging period [48].

With the development of nanomaterials and devices, questions about the form

of their failure rate have arisen. In this study, we will seek to understand the

structures of the hazard function, the failure density function and the corre-

sponding reliability function of dielectric films. The structure of these functions

provide important insight into the nature of the life characteristics of the device.

3. How do we project reliability at test conditions to normal use conditions?

The question regarding the appropriate extrapolation model arises when the

failure data used in reliability analysis is acquired from experiments carried

out under accelerated conditions [49]. As mentioned in chapter 2, accelerated

degradation tests are useful for materials and devices that are designed to op-

erate without failure for several years. In this case, the materials and devices
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are tested by exposing them to severe stress conditions than they would expe-

rience under normal operating conditions. Since the aim of failure acceleration

is to obtain enough data to quantify the life characteristics of the materials at

normal use conditions, the question then is what extrapolation model would be

appropriate to relate reliability inference at test conditions to those under nor-

mal operating conditions? In this study we will derive the extrapolation model

from the physical failure model, which relates failure time to stress levels.

33



CHAPTER 4

SIMULATION OF DIELECTRIC BREAKDOWN

4.1 Modes of Dielectric Breakdown

In this chapter, we first present the two main dielectric failure mechanisms: elec-

tron quantum tunneling and stress-induced defect generation. Later we present the

3D failure model to simulate dielectric failure due to stress-induced defects, which is

the focus of this work.

4.2 Current Leakage Due to Quantum Tunneling

In thin dielectric films, electrons can tunnel through the dielectric by the quantum

tunneling mechanism, which involves the movement of electrons through a trape-

zoidal barrier caused by an energy band shift as represented in figure 4.1. Using

the Wentzel-Kramers-Brillouni (WKB) approach, the tunneling probability Pε expo-

nentially increases as the dielectric thickness decreases, as seen from the following

expression [1]:

Pε = exp
[−2i

h

∫ x2

x1

√
2m(ε− U(x)) dx

]
(4.1)

where (x2 − x1) is the tunneling distance. The amount of tunneling current is deter-

mined by calculating the tunneling current density Jtunnel flowing through the high-k

dielectric region using the following expression:

Jtunnel =
(moxmhk)

1
2kBT

2π2h3

∫ ∞
EF

P (E, V ) ln

[
1 + exp[(EF − E)/kBT ]

1 + exp[(EF − E − qVG)/kBT ]

]
dE (4.2)
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Figure 4.1. A schematic energy band diagram of the MOS structure where Φ is the
energy barrier height at the dielectric/substrate interface, Vox is the potential drop
across dielectric film and VG is the applied gate voltage [1]

where mox and mhk are the electron tunnel effective mass in the interfacial oxide and

bulk high-k layers respectively, and P (E, V ) is the electron tunneling probability.

To avoid electron tunneling, the barrier band or band offset should be over 1 eV

for both conduction and valence bands [1]. Even though SiO2 has a wider band gap

than almost all high-k dielectrics as was shown in table 1.2, the high-k band gaps

are aligned with the Si substrate in such a way that their conduction band offset are

smaller than the valence band offset. It turns out that this differential band offset

limits current leakage in high-k films [1]. In this study we will only consider dielectric

failure as a result of stress-induced defect generation.

4.3 Stress-Induced Defect Generation: Physical Models

Even though dielectric failure is quite complex, it is widely accepted that dielectric

degradation occurs mainly as a result of stress-induced defect generation within the

dielectric bulk and at the interface regions [32]. These defects include neutral elec-

tron traps, hole traps, and interface states [27]. The random nature of the breakdown
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process and its dependence on atomic structure, temperature, stress and dielectric

thickness has led to the concepts of multi-modal failure distributions. These distri-

butions are linked to the intrinsic and extrinsic failure modes described earlier.

Extrinsic failures are caused by defects formed during the fabrication and pack-

aging processes, whereas intrinsic failures are caused by stress-induced defects also

referred to as charge traps within a would-be perfect dielectric film. As technologies

mature, many electronic fabrication and packaging companies are registering high

quality yields, which means that process-induced extrinsic failures are progressively

being reduced [50]. This leaves out the intrinsic stress-induced defects as the main

cause of defect breakdown [27]. Currently, there are two physical models that explain

stress-induced generation of defects, namely the electron-energy dissipation model

and the thermo-chemical degradation model.

4.3.1 Electron-Energy Dissipation Model (1/E model)

The energy dissipation model, also known as the Anode-Hole injection (AHI)

model suggests that as charge carriers channel from the source to the drain during

the inversion (ON) state, they release some energy upon collision with the anode

material through the process of impact ionization [51]. The energy that is released

is enough to break the hydrogen bonds at the dielectric/substrate interface, and

therefore causes hydrogen ion release at the anode region. The released hydrogen

ions penetrate the dielectric causing lattice mismatch, and therefore inducing defect

sites where charges are trapped. Figure 4.2 illustrates the release of hydrogen ions

which penetrates the dielectric film. The AHI model assumes that the damage in

the dielectric is proportional to the hole fluence (density) and that the lifetime of

the gate dielectric is determined by the time before the hole fluence Qp reaches some

critical value [27]. Even though it is difficult to measure hole fluence, the density
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Figure 4.2. Generation of a Pb trapped charge defect after impact ionization [1]

can be approximated by measuring the electron energy lost during impact, especially

because the concentration of holes can be equated to the number of broken bridging

oxygen bonds [1]. The hole fluence Qp is expressed as follows:

Qp ∝ JRt (4.3)

where J ∝ e−B/Ediel and R ∝ e−H/Ediel . Therefore equation 4.3 becomes:

Qp ∝ e
− (B+H)

Ediel t (4.4)

In equations 4.3 and 4.3, J and R denote the hole-generation coefficient and the

current density respectively, and t is the stress test duration. B and H are process

constants in MV/cm and Ediel is the electric field across the dielectric. According to

the AHI model, the rate of dielectric breakdown τbd is proportional to the hole fluence

Qp, and is modeled as follows [52]:

τbd α exp−
[
B +H

Ediel

]
(4.5)
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Equation 4.5 was modified to incorporate the effect of defect growth also referred

to as the effective dielectric thinning, as an important parameter in the breakdown

model. The modified anode-hole injection model is given as [52]:

τbd α exp−
[

(B +H)(Xdiel −∆Xdiel)

Ediel

]
(4.6)

where (Xdiel−∆Xdiel) is the resultant dielectric thickness due to the effective thinning

caused by increased defect dimension (∆Xdiel).

4.3.2 The Thermo-Chemical Model (E-model)

The thermo-chemical model suggests that defects are generated as a result of a

thermo-chemical reaction that is driven by the applied electric field and the stress

time. The electric field within the dielectric causes thermal weakening or stretch-

ing of the bridging oxygen bonds thereby lowering the activation energy required to

break the bonds. The broken bonds generate voids that eventually trap charges thus

creating defects in the dielectric bulk and at the interface as shown in figure 4.3.

Figure 4.3. Generation of a Pb charged defect by the thermal-chemical process [1]
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This model is based upon the Arrhenius model which is typically used to express

the rate τ , of most thermo-chemical reactions as a function of the reaction parameters.

When applied to dielectric failure, the Arrhenius breakdown formula indicates that

the rate of defect formation τbd is exponentially related to the applied electric field

Ediel as follows [27]:

τbd α exp−
[
∆H

kbT
− γEdiel

]
(4.7)

where: ∆H is the activation energy in eV, kb is the Boltzmann constant in eV/K, γ

is the material dependent field acceleration parameter in cm/MV, T is the absolute

temperature in Kelvin and Ediel is the dielectric electric field in MV/cm [52].

There is debate among researchers concerning the acceptability of the two physical

failure models [27], [53], [54]. For instance, the anode-hole model has been criticized

for having some limitations. According to McPherson et al. [52], the AHI model

defies the concept of thermal diffusion which states that all material degrades even

in the absence of an electric field. Thermal diffusion occurs when increased opera-

tion temperatures cause impurities to diffuse into the dielectric/substrate interface,

causing a change in the structure of the depletion channel, hence reducing transistor

performance. Following suggestions by McPherson [52], the breakdown simulation in

this study will specifically involve the thermo-chemical model.

Regardless of the use of the either model, researchers agree that dielectric break-

down is triggered when sufficient traps build up inside the dielectric, causing local

conduction pathways that lead to current leakage [15]. All the models are capable

of accommodating the sub-linear trap generation dependence on electron density, if

the traps are proportional to the number of broken bonds [3]. The number of broken

bonds can be determined from the defect density. McPherson et al. suggest that

thick film breakdown is explained by the 1/E-model , particularly at higher fields.
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On the other hand, thin film breakdown is suggested to follow the E-model especially

under lower electric field level [27]. Much effort has been devoted to determine the

temperature and field acceleration factors especially when the failure tests are carried

out in elevated temperatures and electric field in order to obtain a substantial amount

of failure data [55].

4.3.3 Defects Identification and Quantification

The dielectric could be considered perfect in the absence of broken-bonds, voids,

and impurities. Gibson and Dong in Houssa et al. [1] suggest the presence of voids

of 1 nm in diameter in hf-based high-k films. The number and distribution of such

voids depend on the stress duration, the applied electric field and test ambient condi-

tions. Stemans and Afanas in Houssa et al. [1] developed a complementary approach

for atomic defect identification and quantification using the electron spin resonance

(ESR) method.

ESR spectroscopy is a technique for studying chemical species that have one or

more unpaired electrons, by applying a magnetic field to the samples containing the

charged species. Currently, most commercially available high-k-on-Si stacks either

use HfO2 or ZrO2 as the high-k material in their pure or silicate forms [1]. Previous

research has shown that the defects present in Si/SiO2 stacks are in the paramagnetic

Pb-type charge centers and they also appear to be the most prevalent defect type in

Si/high-k stacks [1].

Current advanced ESR spectrometers can detect up to 1x1013cm−2 defects at low

temperatures within acceptable signal averaging times [1]. As an example, Houssa

et al. studied Si/SiOx/ZrO2 and Si/Al2O3/ZrO2 stacks prepared on low-doped

one-side (100) Si wafers. Uniform stoichometric layers of Al2O3 and SiO2 ( 0.5 to

3nm) followed by ZrO2 and HfO2 (5 to 20 nm) were deposited in an atomic layer
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deposition (ALD) reactor. Samples of 2 by 9 mm2 were tested using ESR and their

results showed that spin densities of 5.9± 0.3x1012cm−2 and 1.5± 0.2x1012cm−2 were

recorded for the Si/SiOx/ZrO2 and Si/Al2O3/ZrO2 stacks respectively. We faced

challenges as we sought to acquire spacial defect measurements, so we will not report

any actual spacial defect distribution and density. Instead we will proceed to describe

the 3D simulation model in the next section.

4.4 Defect-Based 3D Breakdown Simulation Model

From the thermo-chemical model presented in section 4.3.2, the rate of defect

generation increases exponentially with increasing electric fields. Since the rate of

defect generation is inversely proportional to the time to defect generation, the time

to dielectric breakdown can be inferred to exponentially decrease with increasing elec-

tric field. Also, Cheung [32] indicates that the breakdown probability depends on the

gate dimensions and so does the defect density at breakdown. So far, several attempts

have been made to simulate dielectric failure. Degraeve et al. [26], [56] and Stathis et

al. [57] presented the first 2D percolation models, which they used to successfully ex-

plain the scaling of breakdown distribution with gate area. These percolation models

involve a random generation of spherical defects within the simulation model, with

the aim of getting the defect density at the point of dielectric breakdown in order to

statistically determined the parameters of the underlying failure distribution. Subse-

quently, other researchers extended the 2D model to a 3D model, where the defects

were generated following a Poisson distribution [3], [14], [25], [53] and [58].

In these 3D models, failure occurs when a critical number of defect density in

the dielectric volume is reached. These existing dielectric failure models share the

assumption that the underlying failure distribution is known to be Weibull, and this

assumption stems from the premise that dielectric failure follows the weakest link
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argument. The weakest link argument was introduced by Waloddi Weibull [59], [60],

and suggests that: (i) failure occurs following the presence of the first instance of

a critical amount of flaws, in our case, conduction paths, and (ii) the defects are

uniformly distributed throughout the dielectric layer [61].

In this study, we adopt the 3D simulation model presented by Sune et al. [3] and

use it to simulate dielectric failure and thereby generate simulated dielectric failure

time data. Two key differences between our work and that presented by Sune et al.

are: (i) While Sune et al. equate the rate of breakdown τbd presented in equation

4.5 to the rate at which a conduction pathway is formed, we equate τbd to the rate

at which one defect is formed. This contribution will be clarified in the simulation

model. (ii) While the Weibull distribution is most fitting for failure phenomena

that are described by the weakest link argument, making assumptions regarding the

distribution underlying the failure data might lead to misleading reliability inference.

This contribution will be discussed in detail in chapter 5 and 6 of this study.

4.4.1 3D Breakdown Simulation Model Details

Assume that the dielectric film which consists of a cross sectional area Adiel is

segmented into several a0 cubic lattice cells as shown in figure 4.4 [53], [62]. Break-

down is triggered when the number of defects Nt, is high enough to form a critical

number of conduction paths that traverse the dielectric thickness. The conduction

path is assumed to be formed when the number of defects in a column of cells as seen

in figure 4.5 reaches or exceeds the threshold value nbd expressed by [63]:

nbd =
tdiel
a0

(4.8)
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where tdiel is the dielectric thickness and a0 is the cubic cell dimension. Though

the conduction path may not always be vertical, nbd is the least number of defects

required to form a conduction path.

Figure 4.4. Division of the dielectric in a lattice of 3D cells with lattice constant of a3
0

Figure 4.5. Point defect generation forming a conduction path

Figure 4.6. Point defects are insufficient to form a conduction path
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According to the weakest link theory, the dielectric film breaks down if the number

of defects in at least one the columns reaches or exceeds nbd, and is therefore enough

to form a conduction path. There has been questions as to whether the formation

of one filament is enough to trigger a hard breakdown. To this effect, we adopt

the suggestion by McPherson et al., that while the three dielectric failure modes,

namely soft breakdown, stress-induced leakage currents (SILC) and hard breakdown

are related and occur at different times. They are also cumulative, which means that

soft and SILC breakdown, progressively lead to hard breakdown [52]. McPherson

also suggests that while the dielectric might still be functional under soft and SILC

breakdown modes, severe degradation is still taking place within the dielectric with

time [52]. To this effect, we set the simulation to indicate dielectric failure when five

or more conduction paths are formed.

In this study, we consider defect generation to be field-driven an to follow a ho-

mogeneous Poisson process [14]. We also present a quantitative relationship between

defect generation and dielectric time to breakdown. In this failure simulation model,

two variables which capture the possibility of breakdown change with area scaling are

nbd and a0, in which case nbd varies with dielectric thickness.

Let the total number of defects at breakdown be Nt. The defect density, Ndiel in

defects/nm3 is given by:

Ndiel =
Nt

Adieltdiel
(4.9)

and the fraction of defective cells, λ in the simulation is given by:

λ =
Nta

3
0

Adieltdiel
(4.10)

where a0 is the cubic size, Adiel is the cross sectional area of the entire dielectric and

tdiel is the dielectric thickness.
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Let the probability that a cell will have a defect be estimated by the fraction of

defective cells is λ as follows:

Fcell(λ) = λ (4.11)

The cumulative failure probability of the column is given by:

Fcol(λ) = (Fcellλ)nbd = λnbd (4.12)

Using the 3D cell model and following the weakest link theory, the thin film will fail

whenever a conduction path forms in any of the columns. Therefore, the probability

that the dielectric will be functional (insulating) is given by the probability that all

the columns in the simulation are insulating, meaning that none has a conduction

path. Therefore the reliability of the dielectric is expressed as:

Rdiel(λ) = (1− Fcol(λ))Ncol = (1− λnbd) (4.13)

Here, Ncol = Adiel
a20

is the number of columns in the 3D model.

So far, equations 4.11 to 4.13 relate the dielectric reliability to the probability

of generating one defect λ. However, the aim of this simulation model is to derive

simulated failure times tbd from the rate of defect generation. Using the appropri-

ate defect density measurement techniques such as Electron Spin Resonance (ESR)

spectroscopy, the time tbd, that it takes to generate the critical number of defects Nt,

for breakdown to occur can be monitored in real time, and used to calculate the rate

at which defects are generated which will be denoted by ν in defects per seconds.

With this rate, and assuming that defect generation follows a homogeneous Poisson

process, the probability that a column of the 3D model will not fail Rcol is given by

the probability of generating less than nbd defects in the column as follows:
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Rcol =
nbd−1∑
k−1

νke−ν

k!
(4.14)

Let the number of columns in a dielectric be given by Ncol. Following the weakest

link approach, the failure probability of the dielectric is equal to the probability that

one or more columns will fail [63], [64], [65], [66]. Alternatively, the reliability of the

dielectric Rdiel can be determined from equation 4.14 as the probability that none of

the columns will fail as follows:

Rdiel = [Rcol]
Ncol (4.15)

Rdiel =

nbd−1∑
k−1

νkeν

k!

Ncol (4.16)

4.4.1.1 3D Simulation Model Assumptions

The following assumptions were used in setting up the failure simulation model:

1. A defect is spherical with diameter d=1 nm [3], [66].

2. One defect fills a cubic cell as seen in figure 4.7.

Figure 4.7. 3D representation showing some defective cells
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3. Each cell has 6, 18 or 26-degrees of communication with neighboring cells, that

is, 6, 18 or 26-nearest neighbor cells.

4. Defects are introduced into the simulation model following a homogeneous Pois-

son process.

5. Cells have equal probability of being filled by defects. This implies that atomic

bonds within the dielectric bulk and at the interface regions have equal proba-

bility of being broken [1].

6. Two defects cannot occupy the same cell, which means that once a cell is occu-

pied by a defect it cannot be occupied by another defect.

7. The dielectric 3D representation is declared defective when at least five conduc-

tion paths are found from the top (gate electrode) to the bottom (semiconductor

substrate). A compassion is later made between the results obtained when the

required number of conduction paths is greater than one.

4.4.1.2 3D Simulation Model Pseudocode

The following is the pseudocode of the steps that were followed in setting up the

failure simulation model:

1. Represent a defect-free dielectric by a 3D array of size L by W by H, where (L,

W and H) represent the number of cells in the x,y and z directions, equivalent

to the dielectric volume A nm2 by tdiel nm (see figure 4.8). For this simulation,

L=45 nm represents the gate channel, W=90 nm represents the gate width, and

H=tdiel represents the dielectric thickness.

2. Randomly introduce defects according to a Poisson distribution with a mean

value of λ.
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Figure 4.8. 3D simulation size

3. Introduce the defects into the array uniformly. Figure 4.9 indicates a 2D repre-

sentation of defect filled cells represented by 1s.

Figure 4.9. 2D representation showing defect filled cells as 1s, and defect-free cells as
0s

4. Find clusters of communicating cells as shown in 2D in figure 4.10.

5. Search for a conduction path by searching for individual clusters that bridges

the 3D array.

6. Declare the 3D array (simulated dielectric) failed (conducting) when the critical

number of conduction paths are found [62], [63], [64]. We include simulations

for at least five conduction paths to address concerns that a single conduction

path may not necessarily cause failure.
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Figure 4.10. 2D representation showing clusters of communicating cells

7. If the simulation array has not failed, declare the array functional (insulating)

repeat the simulation steps (starting from step 2).

Figure 4.11 is a 2D representation of an insulating array, and figure 4.12 is a 2D

representation of a failed array.

Figure 4.11. 2D representation showing an insulating array
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Figure 4.12. 2D representation showing a failed (conducting) array
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4.5 Simulation Results

In the simulation model, we assume a constant cross sectional area of 45 by 90

nm2 as shown in figure 4.8 with the thickness varying from 1 to 5 nm. At each thick-

ness, 1000 replicates are carried out, each replicate representing a dielectric sample.

The defect diameter which is equal to the cubic cell dimension, a0 is fixed at 1nm

[3]. Figure 4.13 graphically shows the relationship between the critical defect density

at breakdown and the dielectric thickness when 6-degrees of communication (face-

oriented), 18-degrees, and 26-degrees of communication (face and edge-oriented) are

considered. The figure shows an increasing, non-linear relationship between the crit-

ical defect density and dielectric thickness. This is an indication that it takes more

defects to form as many conductive paths in thick films than in thin films, for a fixed

dielectric cross sectional area.

To validate our simulation results, the breakdown defect densities at given dielec-

tric thickness were compared to the analytical model proposed by Sune et al. [67],

which relates defect density at breakdown to the simulated dielectric thickness as

follows:

Nbd =
tdiel
a3

0

exp

[
− 1

β
ln

(
Adiel
a2

0

)]
(4.17)

where β is the Weibull shape parameter is approximated by:

β =
α(tint + tdiel)

a0

(4.18)

The interface oxide thickness, tint in equation 4.18 is assumed to be 0.37 nm and α

is a proportionality constant given as 0.38 in [62], [64]. The defect density from the
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Figure 4.13. Critical defects densities for 1, 2, 3, 4 & 5 nm dielectric thickness

analytical model is shown in figure 4.13 and the plots show that the defect density

based on 26 degrees-of-communication (DOC) is closest to the analytical model.

We further analyzed the effect of the number of critical paths and mean number

defect (the average number of defects introduced in the simulation model) generated

at each iteration on the critical defect density for each simulated thickness. The plots

in Figure 4.14 show that the critical defect density when the critical number of paths

is at least five is closest to the analytical model. The figure also shows the critical

defect density when the mean number of defects introduced at each iteration was

decreased from 10 (line plot 3) to 1 (line plot 4) are quite similar. From the physics

of material point of view, this probably means that the effect of increasing the rate of

defect generation is less in thin dielectrics ∼1 to 5 nm. Unfortunately, this claim can
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only be validated experimentally by spatially monitoring actual defect generation in

a variety of dielectric thickness.

Figure 4.14. Effect of the critical number of paths on critical defect density

4.5.1 3D Simulation Model Extension to the Breakdown Time of the

Dielectric

The aim of the 3D simulation is to relate the critical defect density to the break-

down time. To do so, we use the empirical defect generation time model proposed by

Tous et al., which describes the relationship between time to dielectric breakdown,

tbd and the defect density, Ndiel as follows [64], [65]:

Ndiel = ξt
1
α (4.19)
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where α is a constant, which in our simulation is maintained at 0.38 for all dielec-

tric thickness. ξ is the defect generation efficiency defined as the number of defects

generated for every charge carrier that is injected into the dielectric. ξ is therefore a

function of the breakdown charge, Qbd and it is expressed as [64], [65], [67]:

ξ =
q(tdiel)

a3
0Qbd

exp

[
− 1

β
ln(Ncol)

]
(4.20)

In equation 4.20, q is the absolute value of the charge carried by an electron and

it is approximately equal to 1.602 × 1019 Coulombs. In their study, Sune et al.

report constant values of ξ at different gate voltages as follows: (i) log(ξ) = −20 for

VG = 2.3V , (ii) log(ξ) = −13 for VG = 3.8V , and (iii) log(ξ) = −8 for VG = 5V [65],

[67]. We used these values of ξ to generate simulated failure times corresponding to

2.3 V, 3.8V and 5V. Figures 4.15, 4.16 and 4.17 are box plots that graphically show

the variability of the failure times for each simulated dielectric thickness (1 to 5 nm),

when the gate voltage is assumed to be 2.3V, 3.8V and 5V respectively.

The figures show that the variability of the simulated failure data is consistent at

each dielectric thickness and for each voltage level. Also, the simulated breakdown

times increase with increasing gate voltage, which is in agreement with the assumption

of the Arrhenius acceleration model.

4.6 Conclusion

In this chapter, we presented a 3D dielectric failure simulation model, in which

the simulated dielectric film was represented by a 3D array. The length and width of

the array correspond to the simulated gate dimensions, and the thickness correspond

to the simulated dielectric thickness in nm. In the simulation, defects are randomly

introduced into the simulated dielectric film and a search algorithm is used to monitor
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Figure 4.15. Simulation failure times at 2.3 V

formation of conductive paths. A conductive path is defined as a cluster of commu-

nicating cells which traverse the thickness of the dielectric. We varied the search

algorithm by considering 6, 18 and 26-nearest neighbor cells, and also by defining

breakdown as the point when at least five conductive paths are formed. For valida-

tion, we compared our results with an analytical dielectric failure model proposed

by Sune et al. [67] that relates the critical defect density at breakdown with the

simulated dielectric thickness. We also used a power law function that relates critical

defect density at breakdown to the stress time to generate dielectric failure times.

Based on the simulation results we can conclude that:

1. The critical defect density increases with dielectric thickness.

2. It would appear that the path formation that uses 26-nearest neighbor cells

most closely approximates the actual dielectric failure process.
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Figure 4.16. Simulation failure times at 3.8 V

Figure 4.17. Simulation failure times at 5V
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3. The mean number of defects introduced at each iteration largely affects the

critical defect density. For instance remarkably high defect densities ranging

from 0.015 to 0.05 defects/nm3 were realized when the mean number of defects

introduced into the model was fixed at 100 for the 1 nm and 5 nm simulated

dielectric thickness respectively. This range is high, compared to the range of

0.00007 to 0.004 when the mean number of defects was fixed at 1.

4. The variability of failure times is consistent at each simulated dielectric thick-

ness. This is an indication that the simulation is quite robust in predicting the

relationship of failure times to dielectric thickness.

5. The failure times increase with increasing thickness and gate voltage.
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CHAPTER 5

NONPARAMETRIC ESTIMATION OF FAILURE TIME
DISTRIBUTION: USING KERNEL DENSITY METHODOLOGY

In this chapter, we discuss the use of kernel density approach to construct the

probability density structure of actual dielectric failure data, as well as the choice of

important parameters, which include the kernel and the optimal bandwidth.

5.1 Background

Consider a continuous random variable X whose distribution follows a probability

density function f(x). The probability density of a given random variable X is the

probability that its value belongs to a measurable region B of real numbers. Thus,

P (X ∈ B) =
∫
B
f(x) dx (5.1)

if B = [a, b] then we get:

P (a ≤ X ≥ b) =
∫ b

a
f(x) dx (5.2)

To determine the density function f(x), n independent outcomes X1, X2, · · · , Xn

of X are used to construct the estimate f̂(x). Density estimation methods such as

histograms, kernel, and wavelet techniques are important in applied and theoretical

statistics because they provide data analysts with a graphical view of the shape of

the distribution [68].
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Let x1, x2, · · · , xn be independent and identically distributed (IID) random sample

of the random variable X taken from the population Ω, where n is the sample size.

The question is to determine the probability distribution functions of X based upon

the observed values. The two main estimation approaches include: parametric and

nonparametric methods. In parametric methods, it is assumed that the forms of

the distributions are known, and corresponding unknown distribution parameters are

estimated using the observations. Statistical inference techniques such as goodness-

of-fit tests are used to determine if the underlying distribution belongs to a known

classical distribution.

In reliability analysis, some of the common distributions include the exponential,

Weibull, gamma and log-normal distributions, in which case we need only to estimate

the associated parameters [69]. The drawback of parametric analysis is that the

limited number of known distributions and parameters do not necessarily fit all of

the function densities encountered in practice. In addition, most common distribution

densities are unimodal, whereas most practical distributions are multi-modal. The use

of a wrong probability distribution function leads to misleading inference conclusions.

In those situations where there are no known underlying structures for the data,

nonparametric approaches are most useful. In nonparametric density estimation

schemes, rather than restrict the possible forms of the underlying probability struc-

ture, we only need to impose some mild assumptions such as smoothness of the

underlying probability structure. Therefore, nonparametric estimation approaches

are robust to varied data structures and are able to uncover structural data features

that typical parametric methods cannot reveal. Some nonparametric distribution

estimation techniques include kernel estimates, orthonormal series approximations,

maximum penalized likelihood estimates, smoothing splines, and wavelet estimates

[68].
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Kernel estimation is an unsupervised learning approach [70], and is based upon the

Naive Density Estimate (NDE) which similar to the histogram, estimates the proba-

bility density at a point x by the proportion of samples that fall within a neighborhood

of x defined by x− h
2
, x+ h

2
limits. Given n IID observations x1, x2, · · · , xn ∈ X, the

NDE is expressed as:

f̂(x) = lim
h→0

(2h)−1P (x− h

2
< X < x+

h

2
) (5.3)

The NDE f̂(x) is determined by choosing a small h such that:

f̂(x) =
xi ∈ N
nh

∀i ∈ [1, 2, · · · , n] (5.4)

where N is a small neighborhood around x defined by (x− h
2
, x+ h

2
).

Let ω(x) be a weight factor at point x. The NDE at x can be re-written as:

f̂(x) =
1

n

n∑
i=1

1

h
ω
(
x−Xi

h

)
(5.5)

Similar to histograms, NDEs are not satisfactory for density estimation because

they suffer from jumps at every Xi ± h
2
∀i = 1, 2, · · · , n points and therefore they

result in unsmoothened density structures [71]. Such rugged densities are not only

undesirable but they also may not relay the desired density structure. Several kernels

which will be enumerated later in this study, have been constructed and applied to

obtain smoothed curves. When a kernel is applied to the NDE, the kernel, signified

by K(.) replaces the weight parameter ω(.) in equation 5.5.

To describe a kernel, let x1, x2, · · · , xn be IID random observations such that

xi ∈ X ∨ i = 1, 2, · · · , n, having the pdf f(x). The kernel estimate of f(x) is defined
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by:

f̂n(x) =
1

nh

n∑
i=1

K(
x− xi
h

) (5.6)

where K is the kernel and h is the bandwidth or the smoothing parameter. The

kernel estimator is constructed by centering a scaled kernel at each observation, then

the value of the kernel at each sample point x is given by the mean of the n kernel

ordinates at the point x. The kernel therefore spreads out each peak by giving varying

weights to all data points, proportional to their distance from the peak [71]. In this

study we will only consider kernels which satisfy the following functional conditions

[72]:

∫ ∞
−∞

K(u) du = 1
∫ ∞
−∞

uK(u) du = 0
∫ ∞
−∞

u2K(u) du ≥ 0 (5.7)

These kernel functions include [73]:

1. Box or uniform kernel: K(u) = 1
2
I[−1,+1](u)

2. Triangular kernel: K(u) = (u+ 1)I[−1,0](u) + (1− u)I[0,+1](u)

3. Quadratic or Epanechnikov kernel: K(u) = 3
4
(1− u2)I[−1,+1](u)

4. Biweight kernel: K(u) = 15
16

(1− u2)2I[−1,+1](u)

5. Triweight kernel: K(u) = 35
32

(1− u2)3I[−1,+1](u)

6. Gaussian kernel: K(u) = 1√
2π
exp−u2

2

7. Cosine kernel: K(u) = π
4
cos(π

2
u)I[−1,+1]

In examining the list of the common kernels, it can be observed that all except

the Gaussian kernel are bound between [−1, 1]. This implies that when estimating
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the density function at a point (x) using the other kernels, appropriate data trans-

formation is needed to ensure that:

| x−Xi

h
|≤ 1 (5.8)

The cumulative distribution function F (x), is obtained from the probability distribu-

tion function f(x), using the following relationship:

F (x) =
∫
∀x∈X

f(x) dx

The cdf is then calculated from equation 5.6 as follows:

F̂n(x) =
1

nh

n∑
i=1

∫ ∞
−∞

K(
x−Xi

h
) dx (5.9)

It can be seen from equations 5.6 and 5.9 that the bandwidth, h controls the

neighborhood that should be considered in the estimation procedure, and the choice of

Kernel determines the performance of the kernel estimate. The next section discusses

the rationale for the choice of the kernel function.

5.2 Choice of Kernel Estimate: Kernel Fitness Measure

The performance of a Kernel estimate requires the specification of some appro-

priate error criteria that globally measures how far the estimate is from the actual

density function [74]. Rather than estimate the function f at single points, it is

desirable to estimate f over its existing range. One such criterion is the Integrated
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Squared Error (ISE) given by:

ISE[f̂n(x;h)] =
∫ ∞
−∞

[f̂n(x;h)− f(x)]2 dx (5.10)

However, when the approximation is needed for several sets of data, it is appropriate

to use the Mean Integrated Squared Error, MISE as follows:

MISE[f̂n(.;h)] = E[ISE[f̂n(.;h)]] = E
∫ ∞
−∞

[f̂n(x;h)− f(x)]2 dx (5.11)

When the order of integration is changed, we get:

MISE[f̂n(.;h)] =
∫ ∞
−∞

E[f̂n(x;h)− f(x)]2 dx =
∫ ∞
−∞

MSE[f̂n(x;h)] dx (5.12)

5.3 Determination of Mean Square Error (MSE) of a Kernel Density

Estimator

Let us replace f̂n(.;h) with θ̂ and f(x) with θ for the purpose of describing the

Mean Square Error, and use E(.) to signify the expected value. From statistical

principles [75],

V ariance(θ̂) =
1

n

∑
∀i∈n

(θ̂ − θ)2

which simplifies to:

V ariance(θ̂) = E ˆ(θ)
2
− 2θE(θ̂) + θ2

Also,

Bias2(θ̂) = [E(θ̂)− θ]2

is simplified as:

Bias2(θ̂) = [E(θ̂)]2 − 2θE(θ̂)− θ2
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The MSE of an estimate θ̂ is given by:

MSE(θ̂) = E( ˆ(θ)− θ)2

which simplifies to:

MSE(θ̂) = E ˆ(θ)
2
− 2(θ)2E(θ̂) + E(θ)2

Since E(θ̂) = θ and E(θ) = E(θ)2 = 0, the variance and the square of the bias sums

up to:

V ariance(θ̂) +Bias2(θ̂) = E(θ̂)2 − 2θ2

Therefore,

MSE(θ̂) = V ariance(θ̂) +Bias2(θ̂)

Likewise, using the density estimate notation f̂n(.;h),

MSE[f̂n(x;h)] = V ar[f̂n(x;h)] +Bias2[f̂n(x;h)] (5.13)

where

Bias[f̂n(x;h)] = E[f̂n(x;h)]− f(x) (5.14)

5.3.1 Asymptotic MSE Approximation

The following assumptions are made to construct the large sample approximations

of the variance and bias terms in the MSE as derived by Wand and Jones [72].

1. The density f is such that its second derivative f ′′ is continuous, integrable and

ultimately monotone.
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2. The bandwidth h = hn is a determined sequence of non-negative numbers, such

that: limn→∞ h = 0 and limn→∞ nh =∞.

3. The kernel is a bounded probability function whose fourth moment exists.

From equation 5.6, the Ef̂(x, h) can be calculated as follows:

E[f̂(x, h)] = E

[
1

nh

n∑
i=1

K(
x−Xi

h
)

]
= E[K(x−Xi)] (5.15)

Let xi be replaced by y for ease of illustration, such that:

E[f̂(x, h)] = E[K(x− y)]

=
∫
Kh(x− y)f(y) dy

Let (x− y)/h be z. Following this transformation:

Ef̂(x, h) =
∫ ∞
−∞

Kh(z)f(x− zh) dz (5.16)

According to Taylor’s theorem which states that when n ≥ 0 is an integer and

f is a function which is n times differentiable on the closed interval [a, x] and n + 1

times differentiable on the open interval (a, x), the Taylor’s series expansion of f(x)

is given by:

f(a− x) =

{
f(a) + f ′(a)(x− a) +

f ′′(a)(x− a)2

2!
+ · · ·+ f ′′(a)(x− a)n

n!
+Rn(x)

}
(5.17)
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The last term is the error term which gets smaller at x nears a [72]. Using the

following conditions,

∫ ∞
−∞

K(z) dz = 1,
∫ ∞
−∞

zK(z) dz = 0, and
∫ ∞
−∞

z2K(z) dz <∞ (5.18)

and the asymptotic assumptions in section 5.3.1, the Taylor’s series expansion of the

expectation term f(x− zh) about x is:

f(x− zh) =

{
f(x) + f ′(x)(−zh) +

f ′′(x)(zh)2

2!
− f ′′(x)(zh)3

3!
+ o(h2)

}
(5.19)

Substituting equation 5.19 in 5.16 we get:

E[f̂n(x;h)] = f(x) +
1

2
h2f ′′(x)µ2(k) + o(h2) (5.20)

Note that the Taylor expansion about x is terminated at the fourth moment

following the asymptotic MSE convergence assumption number 3. Also, the second

and the fourth terms disappear following the second condition in equation 5.18. The

bias now becomes [76]:

Bias =
1

2
h2f ′′(x)µ2(k) + o(h2) (5.21)

where an = o(bn) means that limn→∞ an is of order (bn) iff limn→∞ |anbn | = 0, and µ2

represents
∫∞
−∞ z

2K(z) dz [77].

Similarly,

V ar[f̂n(x;h)] = V ar

[
1

nh

n∑
i=1

K(
x−Xi

h
)

]
(5.22)
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Using the variable transformation that was done for the expectation (see equation

5.16),

V ar[f̂(x, h)] = (nh)−1
∫ ∞
−∞

K(z)2f(x− zh) dz − n−1[Ef̂(x, h)]2 (5.23)

= (nh)−1
∫ ∞
−∞

K(z)2f(x) + o(1) dz − (n)−1f(x) + o(1)2

= (nh)−1
∫ ∞
−∞

K(z)2 dzf(x) + o(nh)−1

Therefore if we let R(K) =
∫∞
−∞K(z)2 dz we have:

V ar[f̂(x, h)] = (nh)−1R(K)f(x) + o(nh)−1 (5.24)

The bias, equation 5.21 is of order o(h2), which means that the function estimate

is asymptotically unbiased whereas the variance, equation 5.24 is of order (nh)−1 and

therefore it converges to zero asymptotically [72]. From the bias 5.21 and variance

5.24 expressions we get:

MSE[f̂n(x;h)] = (nh)−1R(K)f(x) +
1

4
h4µ2(K)2f ′′(x)2 + o(nh)−1 + h4 (5.25)

Thus the Asymptotic Mean Integrated Square Error (AMISE) is given by:

AMISE[f̂n(.;h)] = lim
n→∞

∫ ∞
−∞

MSE[f̂n(x;h)] (5.26)

= (nh)−1R(k) +
1

4
h4µ2(k)2R(f ′′) (5.27)
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where R(f ′′) =
∫∞
−∞ f

′′(x)2 dx. The optimal choice of bandwidth h can be found by

equating the partial derivative of AMISE with respect to h to zero. Thus,

hopt = [
R(k)

µ2(k)2R(f ′′)n
]
1
5 (5.28)

and the corresponding AMISE is:

AMISEhopt =
5

4
[
√
µ2(k)R(k)]

4
5R(f ′′)

1
5n−

4
5 (5.29)

The optimal kernel function is found by minimizing the AMISE [69], [78]. Con-

sidering the common kernels, the Epanechnikov kernel is the most optimal and the

performance (inefficiency) of the other common kernels relative to the Epanechnikov

kernel is given in table 5.1 [72], [79].

Table 5.1. Relative inefficiencies of common kernels

Kernel Inefficiency
Epanechnikov (quadratic) 1.000

Biweight 1.0061
Triangular 1.0135

Gaussian (normal) 1.0513
Box (Uniform) 1.0758

Since the inefficiencies are relatively similar, other factors such as the ease of

computation and known properties of the estimate play significant roles in the choice

of a kernel. In this work, we will use the Gaussian kernel based on the suggestion

of Miladinovic and Tsokos. They proposed that the Gaussian Kernel is more robust

as indicated by small changes in its AMISE value with increased sample size. See

Miladinovic and Tsokos [80] for a detailed discussion of the stability of the Gaussian

Kernel.
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5.4 Bandwidth Selection

As it was mentioned in section 5.1, the choice of the smoothing parameter h

dictates the degree of smoothing. With insufficient smoothing, meaning a narrow

bandwidth h, the resulting density structure is exceedingly rough and contains spu-

rious features that are perhaps artifacts of the sampling process. Conversely, with

excessive smoothing, meaning a wide bandwidth, important features of the underly-

ing structure are smoothed away [81]. From equations 5.21 and 5.24, we see that the

choice of h introduces a tradeoff between the bias and the variance of the estimate. A

smaller h results in a smaller bias and a larger variance and vice versa. Equation 5.28

indicates that the optimal value of h depends on the underlying distribution, which

is often unknown. Therefore, in this study we explore data-specific optimum choice

of h.

Several approaches to bandwidth selection have been explored over the years.

They are broadly categorized as: (i) first-generation approaches (proposed before

1990), which include the rule of thumb method [71], least squares cross-validation

[82], and biased cross-validation [83]. (ii) second-generation (proposed after 1990)

which exhibit superior performance than the first generation, and consists of the

solve-the-equation plug-in approach [84] and smooth bootstrap method [85]. Marron

et al. compared the performance of the two categories of bandwidth choice method-

ologies using three validation procedures, namely using real data, simulated data,

and asymptotic analysis [81]. Their research indicated that the second category of

methods outperformed the first over the three validation procedures. Silverman [71]

proposed a constant optimal bandwidth by replacing the unknown term, R(x) in hopt

by an estimate based on the kernel function used (see equation 5.28). For instance,

for the Gaussian kernel,
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ĥ0 = 1.06×min

(
σ̂,

R̂

1.34
n0.5

)

where σ̂ is the sample standard deviation and R̂ is the sample interquartile range.

Liu et al. [69] applied Silverman’s idea to have a natural bandwidth candidate h1,

then visually proposed an arbitrary integer l which is the number of data partitions.

They then created a vector of band widths hi such that hi = ih1
l

for i = 1, 2, · · · , l.

All the bandwidths were tried on the Gaussian kernel and the optimal one was chosen

using visual judgment.

Shimazaki and Shinomoto [86] suggested a method for selecting a constant optimal

bandwidth by minimizing the MISE between the estimated and the underlying rates of

action potentials in brain activity. In this paper, we extend their approach to develop

a variable bandwidth using the Gaussian kernel so as to estimate the underlying pdf

using univariate dielectric failure data.

5.5 Variable Optimal Bandwidth Selection

Variable bandwidths are a good alternative for density estimation especially when

differential spatial smoothing is desired. Since the bias is directly proportional to the

bandwidth, varied smoothing will allow for possible reduction of bias in the highly

peaked regions and a corresponding reduction in variance in the flat regions. This

flexibility enables local fitting of polynomials so that they can adapt to spatially non

homogeneous curves [78].
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We propose to determine the variable bandwidth by minimizing a cost function

which is derived from the MISE. As shown earlier, the MISE is expressed as:

MISE[f̂n(.;h)] =
∫ ∞
−∞

E[f̂n(x;h)− f(x)]2 dx =
∫ ∞
−∞

MSE[f̂n(x;h)] dx (5.30)

The integrand in equation 5.30 can be decomposed into three terms as follows:

MISE[f̂n(.;h)] =
∫ ∞
−∞

E[f̂n(x;h)]2 − 2E[f̂n(x;h)f(x)] + [f(x)]2 dx (5.31)

Since the last term of the integrand does not depend on the chosen kernel, we can

eliminate it from the MISE expression and set the cost function, Cn(h) to:

Cn(h) =
∫ ∞
−∞

E[f̂n(x;h)]2 dx− 2
∫ ∞
−∞

f(x)E[f̂n(x;h)] dx (5.32)

Bowman [82] shows that the Least Square Cross-Validation (LSCV) estimate of MISE

is given by:

LSCV (h) = n−1
n∑
i=1

∫ ∞
−∞

[f̂n(x;h)]2 dx− 2n−1
n∑
i=1

f̂n,−i(Xi;h) + 2n−1
n∑
i=1

f(xi) (5.33)

where

f̂n,−i(Xi;h) =
1

n− 1

n∑
j 6=i

K
(
x−Xi

h

)

Therefore, removing the last term from the LSCV equation and replacing f̂n(x;h)

with the kernel function, the cost function becomes:

Cn(h) = n−1
n∑
i=1

∫ ∞
−∞

[k(x− xi)k(x− xj) dx− 2n−1
∑
i 6=j

k(xi − xj)] (5.34)
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Any symmetrical kernel function including the Gaussian kernel is invariant to the

exchange of xi and xj when computing kh(xi − xj). In addition, the covariance in

equation 5.34 is symmetrical with respect to i and j. Thus we obtain:

∑
i 6=j

kh(xi − xj) = 2
∑
i<j

kh(xi − xj) (5.35)

Substituting equation 5.35 in 5.34 we get:

Cn(h) = n−1
n∑
i=1

∫ ∞
−∞

[k(x− xi)k(x− xj) dx− 4n−1
∑
i<j

k(xi − xj)] (5.36)

In order to remove the necessity for integration in equation 5.36, the Gaussian kernel

is denoted as:

N(x, h2) = (2π)
−1
2 h−1exp

−x2

2h2
(5.37)

and whose integration can be carried out analytically is used. This reduces equation

5.36 to

Cn(h) =
1

n− 1
N(0, h2) +

n− 2

n(n− 2)2

∑
i<j

N(xi − xj, 2h2)− 2

n(n− 1)

∑
i<j

N(xi − xj, h2)

(5.38)

Equation 5.38 is further simplified and the resultant cost function becomes:

2
√
πn2Ĉn(h) =

n

h
+

2

h

∑
i<j

exp
−(xi−xj)

2

4h2 − 2exp
−(xi−xj)

2

2h2 (5.39)

5.5.1 Optimum Bandwidth Selection Methodology

In this section, we will present two methods, namely: (i) the procedure to obtain

a constant bandwidth, proposed by Shimazaki et al. [86], and (ii) our procedure for

obtaining a variable bandwidth, as shown in figure 5.1.
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Figure 5.1. Procedure for bandwidth optimization

5.5.1.1 Constant Bin Width Selection Procedure

The following procedure was adopted from Shimazaki et al. [86] to determine the

choice of an optimal constant bandwidth.

1. Arrange the failure data in an ascending order x(1), x(2), · · · , x(n).

2. Develop log-spaced default intervals hj ranging from min(x(i+1) − xi) for i =

1, 2, · · · , n, to the entire data range (xmax − xmin). Where j = 1, 2, · · · , H.
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3. For each interval,calculate the corresponding cost function C(hj) and choose

the optimal bandwidth, hopt = argminC(h).

4. Fit a KDE using the constant hopt.

5.5.1.2 Variable Bandwidth Selection Procedure

We propose the following procedure to determine the choice of a variable band-

width.

1. Arrange the failure data in an ascending order x(1), x(2), · · · , x(n).

2. Find the optimal number of bins H for the usual data histogram using Scott’s

choice [87] or Freedman-Diaconis’ choice criteria [88].

3. Divide the failure data or its log transform into H equispaced quantiles ∆j such

that each quantile contains at least two data points, where j = 1, 2, · · · , H.

4. For each quantile do the following: Define the initial default bandwidth vec-

tor for each interval by developing log-spaced bandwidths hk ranging from

min (x(i+1) − xi) to the entire data range xmax − xmin for ∨x ∈ ∆j.

5. For each bandwidth size in the default vector, calculate the corresponding cost

function and choose the variable bandwidth as hopt,∆i
= argmin(C(h)∆i

).

6. Fit a bounded KDE to determine the estimated density function in each interval

f̂x,∆i.

7. Augment the f̂x,∆i values over all ∆i intervals, and plot the resultant pdf

against the failure times.
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5.6 Numerical Results

We used high-k/Si stack MOSCAP device failure data obtained from Luo et al.

[6] to construct KDEs using Gaussian kernel, and compared the resultant KDEs

using constant bandwidths versus variable bandwidths for three univariate failure

data obtained at 8.1, 7.9 and 7.7 MV/cm electric field levels. The results of the

constant and variable bandwidths for the dielectric failure data at each stress level

are summarized in table 5.2. Figure 5.2 shows the difference in the estimated density

structure when the constant and variable bandwidth were used.

Table 5.2. KDE constant and variable bandwidth for failure data at different stress
levels

Stress 
level 

Constant 
Bandwidth 

Variable Piece-wise Constant Bandwidth 

Bandwidth (sec) 1st Quartile 2nd Quartile 3rd Quartile 4th Quartile 
8.1 MV/cm 80 8.7 99.7 343.8 562.8 
7.9 MV/cm 123 66.4 247.0 737.0 749.6 
7.7 MV/cm 298 152.1 184.6 2652.0 2074.0 
 

It can be seen from figure 5.2 that the variable bandwidth is very sensitive to

peaks within the failure data, because it tends to select narrow optimal bandwidths

in sections of the data with most points, and wide optimal bandwidths in areas with

sparse points. This result is also associated with the multiple peaks on the left side of

the density estimate plots of figure 5.2. However, despite peak sensitivity, the general

form of the functions from the constant bandwidth matched the variable bandwidth

kernel estimates.
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Figure 5.2. KDE with constant (right) and variable (left) bandwidth for failure data
at 8.1 MV/cm electric field stress level

5.7 Reliability Inference and Numerical Results

The reliability function R̂n(x) is calculated from the cumulative failure density

function F̂n(x) from equation 5.9 as follows:

R̂n(x) = 1− F̂n(x) (5.40)

Therefore the reliability estimate is defined by:

R̂n(x) = 1− 1

nh∗

n∑
i=1

∫ x

−∞
K(

x−Xi

h∗
) dx (5.41)

where h∗ is the optimal variable bandwidth obtained in table 5.2.

In this study, we estimated cumulative density function F̂ (t) and the reliability

function R̂(t) using the variable optimal bandwidths for data at each stress level, as

illustrated in figure 5.3. As expected, figures 5.3 and all the other reliability and

cdf density estimates included in Appendix A are typical reliability and cdf functions
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Figure 5.3. Reliability and cdf estimates at 8.1 MV/cm electric field stress level

which indicate an initial highly increasing failure probability followed by near-constant

failure probability.

5.8 Conclusion

Kernel density estimation methods are useful for reliability inference, especially

for failure phenomena whose data do not conform to traditional probability distribu-

tions. In this work, we have discussed nonparametric function estimation using the

kernel approach. We have shown that based on the criteria of minimizing the Mean

Integrated Squared Error (MISE), the efficiencies of the commonly used symmetric

kernels are relatively the same. For this reason, the most important performance

measure of kernel estimates is the choice of the bandwidth.

We develop a cost minimization algorithm for selecting a vector of optimal variable

bandwidths, optimized at each failure data sub-interval. In addition, we compare the

performance of (fixed) constant bandwidth versus variable bandwidth in estimating

failure density. Unlike fixed bandwidths, variable bandwidths are flexible and are

optimized according to the data in the following way: each data point within a
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sub-interval contributes to the optimal bandwidth within that interval, and these

bandwidths are variably selected for each sub-interval.

We believe that this approach renders the resultant density structure fit for the

failure data. We tested the variable bandwidth selection algorithm against accelerated

failure data for different CMOS devices: (i) that have a high permittivity (high-

k) dielectric film and (ii) silicon carbide thin films. We believe that the need for

reliability inference for nanomaterials is a pertinent research field especially with the

current aggressive development of newer nanomaterials and nanodevices progresses.

This study provides a framework for constructing realistic failure characterization and

nanoreliability inference tools.
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CHAPTER 6

BAYESIAN INFERENCE

6.1 Background

Unlike classical statistical approaches that make inference from observations alone,

Bayesian approaches provide enrichment to statistical inference by formalizing the

process of learning from historical information to update the most optimal estimates

of the parameters of a stochastic process [89], such as the location, shape and the scale

parameters. This is made possible by the provision of a framework to sequentially

update the parameter estimates given extra acquired information [90]. Common

classical inference techniques include maximum likelihood, least square error method,

and method of moments.

The Bayesian methodology starts with a prior distribution, G(θ) of the unknown

random variable θ in the sample space Θ. Let X be a random variable that has a

probability structure that depends on θ. Let X1, · · · , Xn denote a random sample from

the distribution of X and let T denote a statistic which is a function of X1, · · · , Xn.

Then the conditional probability density function of T for every θ ⊂ Θ is given by

f(t|θ) and is known as the likelihood function. The conditional pdf of θ given T is

the posterior distribution is given by:

p(θ|T ) =
f(t|θ)G(θ)∫

∀θ f(t|θ)G(θ) dθ
(6.1)
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6.2 Choice of Likelihood Function

Given the high-k dielectric failure data, goodness-of-fit tests were performed to

determine the most appropriate likelihood function. Given that the random variable

of interest is time to failure, which is nonnegative and continuous, candidate likelihood

functions for failure data must be defined in the [0,∞] range [44]. With this in mind,

Weibull, log-normal, gamma, extreme value and normal distributions were fitted to

the data using the maximum likelihood estimation (MLE) methodology. The MLE

approach determines the unbiased and efficient estimates of the given set of parameter

Θ, by maximizing the likelihood function L(Θ), or its logarithm, ln(L(Θ)). For

observed data t, the likelihood function, L(Θ) = f(t|Θ), considered as a function of Θ

[91] [92]. For the MLE method, the decision criterion is to choose the distribution that

results in the highest log-likelihood fitness measure. Table 6.1 shows the summary of

the log-likelihood values.

Table 6.1. Log-likelihood values for different distributions at given stress levels

Distributions 8.1 MV/cm 7.9 MV/cm 7.7 MV/cm 7.5 MV/cm 7.3 MV/cm 7.1 MV/cm
Weibull -222.28 -231.79 -281.75 -305.69 -303.43 -323.33
Log-normal -222.96 -233.66 -283.42 -308.53 -305.23 -323.70
Gamma -222.49 -231.54 -281.84 -305.61 -303.69 -323.77
Extreme value -261.29 -265.61 -319.67 -329.59 -348.63 -365.96
Normal -252.84 -259.83 -310.67 -321.98 -335.97 -354.33

From table 6.1,it is seen that the Weibull, log-normal and gamma distributions

have higher log-likelihoods than the extreme value and normal distributions for all

stress levels. More goodness-of-fit analyses were carried out to provide better discrimi-

nation among the Weibull, log-normal and gamma distributions using the Kolmogorov-

Smirnov (K-S) tests. The K-S test is a distribution-free curve fitting approach that

applies to continuous distributions, and has been shown to provide superior esti-

mates of error in curve fitting models [44]. By using the K-S test, we were able to
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demonstrate marked differences in the fitness of the distributions. Table 6.2 contains

a summary of the resulting p-values and the K-S statistic corresponding to each of

the distribution. These results show that the Weibull distribution has the higher

p-value, an indication of its fitness superiority over the log-normal and the gamma

distribution.

Table 6.2. Results of K-S goodness-of-fit tests for Weibull, log-normal and gamma
distributions

Electric field (in MV/cm)
Weibull fit 8.1 7.9 7.7 7.5 7.3 7.1

Scale parameter 336.57 741.531 1301.709 2807.52 2451.662 3354.396
Shape Parameter 0.615 0.583 0.667 0.87 0.654 0.683
Log-likelihood -222.287 -231.795 -281.759 -305.692 -303.436 -323.336
K-S test statistics 0.212 0.166 0.176 0.117 0.117 0.114
K-S test p-value 0.569 0.76 0.621 0.962 0.962 0.967

Log-normal fit
Location parameter 4.889 5.597 6.303 7.262 6.925 7.294
Shape Parameter 1.963 2.201 1.874 1.504 1.91 1.732
Log-likelihood -222.962 -233.665 -283.429 -308.538 -305.23 -323.706
K-S test statistics 0.187 0.2 0.147 0.147 0.176 0.2
K-S test p-value 0.58 0.537 0.825 0.825 0.621 0.441

Gamma fit
Scale parameter 977.293 2418.089 3115.647 3765.605 6195.653 7630.584
Shape Parameter 0.493 0.456 0.548 0.797 0.533 0.572
Log-likelihood -222.495 -231.544 -281.849 -305.613 -303.693 -323.775
K-S test statistics 0.225 0.2 0.205 0.147 0.205 0.185
K-S test p-value 0.35 0.537 0.422 0.825 0.422 0.599

Based on the goodness-of-fit tests results, we will construct the Bayesian infer-

ence framework using the Weibull distribution function. However, before presenting

this framework, we describe the physical meaning of the properties of the Weibull

distribution in the context of dielectric breakdown.
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6.3 Two-Parameter Weibull Distribution in the Context of Dielectric

Breakdown

Defect-based dielectric failure is triggered when stress-induced defects are intro-

duced into the dielectric. The reason for using the Weibull distribution follows from

the assumptions that: (i) failure occurs whenever a critical amount of defects is

reached, enough to form conductive paths that bridge the dielectric bulk, and (ii) the

defects are uniformly distributed throughout the dielectric layer [61].

The 2-parameter Weibull distribution is expressed as follows [93]:

f(ti|θ, β) =
β

θ

(
ti
θ

)β−1

exp−
(
ti
θ

)β
(6.2)

where θ > 0 is the scale parameter, β > 0 is the shape parameter and ti > 0

∀i = 1, 2, · · · , n, are the failure times. In reference to Bayesian analysis, the Weibull

failure distribution in equation 6.2 is used to develop the likelihood function given

by:

L(θ, β) =

(
β

θ

)n n∏
i=1

(
ti
θ

)β−1

exp

(
−
∑n
i=1 ti
θ

)β
(6.3)

Henceforth, we will refer to the 2-parameter Weibull distribution as the Weibull

distribution. In equation 6.2, the Weibull distribution is characterized by the scale

parameter, θ and the shape parameter, β.

6.3.1 Weibull Shape Parameter

The shape parameter β, is defined in the (0,∞) range and it is dimensionless.

With reference to dielectric failure process, we assume the shape parameter β is
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proportional to the dielectric thickness, tdiel as expressed by:

β = ς
(
tdiel
a0

)
(6.4)

where a0 is the simulation cubic lattice constant, equal to the defect diameter and

the proportionality constant, ς, is assumed to be approximately 0.38 [63], [62]. Table

6.3, presents a summary of the maximum likelihood β estimates of the simulated

failure times for a given dielectric thickness. These results are in agreement with

equation 6.4, and they show that β increases with an increase in dielectric thickness.

Physically, this means that the dielectric failure rate increases with time, and the

higher the value of β the faster the rate of failure increases with time.

Table 6.3. Shape parameter estimates of simulated failure time data

Simulated tdiel 1 nm 2 nm 3 nm 4 nm 5 nm
β 0.85 1.201 1.62 2.08 2.50

6.3.2 Weibull Scale Parameter

The scale parameter θ consists of real values in the (0,∞) range and is the time

at which the probability of failure for the device is 63.2% [93]. For this reason it is

referred to as the product characteristic life. In the next section, we will discuss the

physical failure model using the Arrhenius degradation model proposed by Nelson

[34] and its relationship to the Weibull scale parameter θ.

6.3.2.1 Arrhenius-Weibull Model

The Arrhenius-Weibull model is a physical-statistical model that combines the

Weibull life description with the Arrhenius dependence of dielectric life on the stress
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conditions, which, in our case, is the amount of electric field applied to the dielectric

El [34]. The use of this model requires the following assumptions: (i) at any stress

level, the product life, indicated by the failure times, has a Weibull distribution and

equivalently, the natural logarithm of the failure times follows the extreme value

distribution, (ii) the Weibull shape parameter is constant at all stress levels, and (iii)

the natural logarithm of the dielectric’s characteristic life is a linear function of the

stress level [34].

Based on the Arrhenius failure acceleration model, the high-k dielectric breakdown

is assumed to be a thermo-chemical process, such that the rate of dielectric failure

is expressed as a function of the activation energy or the enthalpy of activation ∆H

(measured in eV), test temperature, T (measured in Kelvin, K), Boltzmann constant,

k (measured in eV per Kelvin, i.e., eV/K), applied electric field El (measured in

MV/cm), and the field acceleration parameter γ (measured in cm/MV) [52] as follows:

τbd ∝ exp−
[
∆H

kT
− γEl

]
(6.5)

Nelson et al. indicate that the motivation for the Arrhenius rate law stems from

the fact that failure occurs after a critical amount of reaction or degradation [34].

Therefore,

(critical amount of degradation) = (rate of degradation) × (time of failure)

and equivalently,

(time of failure) = (critical amount of degradation)/(rate of degradation)

We will assume that the dielectric degradation process meets the requirements of the

Arrhenius rate law, in which case we will assume that the life of the dielectric, tbd is
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inversely proportional to the reaction rate, τbd in equation 6.5 as follows [5], [34]:

tbd ∝ exp
[
∆H

kT
− γEl

]
(6.6)

If the first term in the exponent is replaced by a constant, (it is dimensionless and

hence a constant) and assuming that the estimation error is multiplicative, then we

can linearize equation 6.6 as follows:

ln(tbd) = α− γEl + δl (6.7)

where δl is the estimation error. Since the life characteristic θ (63.2th) percentile,

represents a specific time on the time axis, it is reasonable to assume that it follows

the same relationship as time in equation 6.7, thus:

ln(θ) = α− γEl + δl (6.8)

Equation 6.13 will be useful later in the chapter, for developing the Bayesian model.

6.3.3 Weibull Plot

A quick and simple way to test if the unknown distribution underlying failure

data is in fact the Weibull distribution is by constructing the Weibull plot, which is

a graph of ( 1
1−F̂ (t(i))

) versus time to failure on a log-log scale paper [48]. Here, F̂ (t(i))

is the empirical cumulative distribution function (ECDF) estimate determined using

the median-rank statistics. If the dielectric failure distribution is indeed Weibull,

the resultant Weibull plot should be a straight line, whose slope is equivalent to the

Weibull shape parameter, and the dielectric characteristic life can be interpolated

from the graph as the 63.2% failure time.
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Figure 6.1, shows the Weibull plots of the simulated failure data for 1, 2, 3, 4 & 5

nm thickness. The dielectric characteristic time is determined by drawing a horizontal

line from the 63.2 percentile mark (on the y-axis), to meet the population line, then

drawing a vertical line from this intersection to the x-axis. The points at which the

vertical line cuts the x-axis is the approximate dielectric characteristic life for a given

thickness.

Figure 6.1 indicates that the dielectric characteristic life θ, increases with dielectric

thickness. This is because for a constant stress level, thinner dielectric films will tend

to breakdown faster than thicker films. Also, the figure shows that the slope, which is

the Weibull shape parameter, β, increases with increasing dielectric thickness as we

proposed in equation 6.4. Overall, figure 6.1 shows that it takes longer to realize the

characteristic life for thick dielectrics. However, thick films exhibit increasing failure

rates than thin films.

The performance of the simulation is sensitive to the number of defects that are

introduced in the model at each iteration. In our simulation, we initially released a

random number of defects following a Poisson distribution, with a mean of 100 defects

at each iteration, for all the simulated thickness. The resultant failure times from this

initial simulation with 1000 replicates for each thickness, (each replicate symbolizing

a dielectric sample), produced the Weibull plot in figure 6.2. The population lines

that correspond to 1,2, and 3 nm thickness are not straight, and the misalignment,

is attributed to the introduction of a large number of defects (a mean of 100 at each

iteration). Given this problem we reduced the mean number of defect to 10 at each

iteration, in the subsequent simulations. This resulted in a better Weibull plot as

shown in figure 6.1.

Figure 6.3 is the Weibull plot of real dielectric failure data obtained from Luo et al.

[6]. They developed Al/high-k/Si capacitor structures using 60 nm Hf-based dielectric
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Figure 6.1. Weibull plot of simulated failure data for 1, 2, 3, 4 & 5 nm dielectric thick-
ness with 26 degrees of communication

layers (this translates to approximately 2.19 nm Si02 equivalent oxide thickness).

These samples were stressed at 8.1, 7.9, 7.7, 7.5, 7.3 and 7.1 MV/cm electric field

levels.

Figure 6.3 is in agreement with the Arrhenius-Weibull model, because increased

stress levels decrease the dielectric failure times and hence the dielectric characteristic

life. Ideally, the slopes of these plots should be equal, signifying that the shape

parameter is constant at all stress levels, and that increased stresses do not induce

different failure modes. However, most experts argue that in reality, failure modes

and mechanism get altered at higher stress levels [34]. For instance, while the Weibull

plots in figure 6.3, that correspond to the data acquired at 8.1, 7.9 and 7.3 MV/cm

tend to be parallel, those that correspond to data from 7.7, 7.5 and 7.1 MV/cm

intersect, indicating that either a different failure mode was triggered at these stress
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Figure 6.2. Weibull plot of simulated failure data for 1, 2, 3, 4 & 5 nm dielectric thick-
ness with increased defect generation

levels, or there were erroneous data points following variation in the fabrication and

testing processes. In this study, we will assume, that the shape parameter β, remains

constant at all stress levels, and that increasing the test stress level at constant

dielectric thickness, does not significantly alter the dielectric failure mode [34]

Although the Weibull parameters the shape, β and characteristic life, θ can be

estimated directly from the Weibull plots, these estimates depend on graphical inter-

polation and are therefore subjective. In addition, Weibull plots often require large

data sets to make meaningful statistical inference [94]. However, most life tests have

small data sets due to the small number of failures during the specified test cycle.

Given this challenge, the Bayesian approach offers an alternative solution.
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Figure 6.3. Weibull plot of actual dielectric failure data from accelerated degradation
tests

6.4 Choice of Prior Distributions

One of the predicaments in implementing the Bayesian framework is the identifi-

cation, selection and justification of a prior [95]. Savchuk and Tsokos summarize the

criteria for the choice of prior to be based on two premises namely the information

criterion, and noninformative criterion [96]. Typically, informative priors are spec-

ified based on historical information regarding the underlying stochastic process or

from expert opinion. Depending on the nature of the prior parameters, whether dis-

crete or continuous, an assumption is made about the nature of the family of known

distributions to which the prior belongs. Such priors are referred to as informative

priors. A special case occurs when the class of distribution is strategically chosen, so

that the convolution of the prior distribution with the likelihood function results in a
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posterior distribution from the same family of distribution as the prior. Such priors

are said to be natural conjugates and often result in posterior functions that either

have known probability structures or whose form can easily be estimated [92]. The

drawback of using such priors is that there might not be a valid class of distribution

functions suitable for a given set of data.

Noninformative priors provide alternative priors in cases where there is no a priori

information regarding the unknown parameters or when there is no valid candidate

structures for the prior distributions [90]. These vague priors, as their names indi-

cate, give equal weights to all admissible values of the unknown parameters. For

instance, the noninformative prior may be bounded, such as π(θ) ∼ uniform (a, b), or

unbounded, such as π(θ) ∼ uniform (−∞,∞) and π(lnθ) ∼ uniform (0,∞). While

the uniform prior is possibly the simplest form of a vague prior that represents the

ignorance regarding the values and variability of the unknown parameter, Carlin et

al. note that the uniform prior is not invariant to transformations that occur in

re-parameterized models [97].

A special kind of a noninformative prior is the Jeffrey’s prior defined by [98]:

π(θ) ∝ [I(θ)]
1
2 (6.9)

where I(θ) is the expected Fisher information of the probability distribution function,

given by:

I(θ) = −Et|θ
[
∂2

∂θ2
logf(t|θ)

]
(6.10)

In the case of Jeffrey’s prior, the choice of the sample determines the choice of prior

through the expected value Et|θ. While the Jeffrey’s prior is invariant to model re-

parameterizations and variable transformations, it induces posterior computational

complexities [92].
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In this study, the proposed Bayesian model utilizes the two-parameter Weibull

likelihood function with noninformative priors. When the Weibull parameters, θ and

β are both assumed unknown, a prior should be placed on (θ, β). As mentioned earlier,

it is generally desirable that the joint prior should belong to a family of distributions

that has a closed form, such that if the prior is conjugate, the resultant posterior will

have a tractable form [99]. A number of experts argue that it is extremely difficult

to find a family of continuous joint prior distributions consisting of both parameters,

that is closed under sampling, in order to ensure that the ensuing convolution results

in a legitimate posterior distribution [95], [100]. Given this difficulty, we propose

the bounded uniform prior, given that there is limited information regarding the

underlying structure of the unknown parameters θ, the characteristic life, and β, the

Weibull shape parameter. As such, there is little justification to choose a specific

prior with known distribution. In our case, the only subjective information that is

possible is perhaps the range of values that the parameters can assume.

Normally in Bayesian inference problems, the specification of the prior is impor-

tant since it influences the posterior by providing the initial parameter estimates upon

which the likelihood is conditioned [101]. The parameters of the likelihood function

are determined by the probability structure of the prior distribution. Specifically,

when there is strong a priori belief regarding the values of elicited parameter esti-

mates, then the chosen prior distribution strongly influences the likelihood function.

However, in case of considerable uncertainty regarding the prior parameter estimates

such as in our situation, a vague prior, with minimal influence on the likelihood and

eventually the posterior distributions is used. We therefore opted to use the bounded

uniform prior, which gives equal probabilities to all the parameter values within the

admissible parameter space.
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From equation 6.11, the posterior distribution when the bounded uniform prior is

used is as follows:

p(Θ|t) =
f(t|Θ)G(Θ)∫

∀Θ f(t|Θ)G(Θ) dΘ
(6.11)

where G(Θ) is a bivariate uniform prior distribution and Θ is a vector of θ and β.

6.5 Hierarchical Bayesian Implementation

In this study, we will develop a hierarchical Bayesian model, which provides a way

to incorporate subjective structural information about the unknown parameters in the

likelihood function, in our case, the characteristic life, θ and the shape parameter, β.

In equation 6.13, the Arrhenius-Weibull model is used to describe the relationship

between the dielectric characteristics life θ and the stress level, E as follows:

ln(θ) = α− γE + δ (6.12)

where α = ∆H
kT

, and ∆H is the activation energy or the enthalpy of activation (mea-

sured in eV), T is the test temperature, (measured in Kelvin, K), and k is the Boltz-

mann constant, (measured in eV per Kelvin, i.e., eV/K).

In the hierarchical Bayesian framework, α, γ, and δ are referred to as the hy-

perparameters, and their estimates influence θ estimates. The hyperparameters are

sampled from their corresponding prior distributions referred to as the hyperpriors,

π(α), π(γ), and π(δ), in the lowest stage of the hierarchy (see figure 6.4). The pri-

ors of the unknown parameters θ and β are estimated from these hyperparameters

in the intermediate stage as shown in figure 6.4. The parameter estimates are then

conditioned on the data to form the likelihood function in the highest stage of the

hierarchy.
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Figure 6.4. Graphical representation of the 3-stage hierarchical Bayesian framework

In equation 6.12, α depends on ∆H, k, and T . ∆H and k are constants for different

dielectric materials. The test temperature, T should ideally be constant. However,

variation usually occurs as a result of environmental conditions and calibration errors.

In this analysis, we examine two temperature scenarios and the corresponding α

values, namely: (i) constant temperature and α is constant at all stress levels and,

(ii) varying temperature and α from one stress level to the other.

In equation 6.12, γ is the acceleration factor which determines the magnitude

of the decrease in dielectric characteristic life θ, when the stress level is increased

by one unit [34]. When γ is unknown, then it can be estimated by one of two

methods: (i) the slope of the log-linear model in equation 6.12, or (ii) the ratio of

dielectric characteristic life estimate at normal use conditions (using field data) and

the characteristic life at stress condition (using data from accelerated failure tests)

[34]. We will estimate the acceleration factor γ based on two conditions: when γ is

constant at all stress levels, and when γ varies from one stress level to the other. The

estimation error is assumed to be multiplicative.
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Based on the foregoing discussion, we now construct two characteristic life models

from equation 6.12 as follows [6]:

• Model I: When the dielectric characteristic life, θl, is different at every stress

level, and the failure parameter α and the acceleration factor γ are constant at

all stress levels as follows:

ln(θl) = α− γEl + δl (6.13)

• Model II: When the characteristics life, θl, is different at every stress level, and

both the failure parameter αl and the acceleration factor γl differ at each stress

level as follows:

ln(θl) = αl − γlEl + δl (6.14)

where (.)l denotes the lth stress level.

The following notations are used to describe the implementation of the hierarchical

Bayesian model.

• El: the lth stress level (electric field) in MV/cm, for l = 1, · · · ,m

• tlk: the kth failure time at the lth stress level for k = 1, · · · , n

• tl: the lth vector of nk failure times, for the nk units at the lth stress level

• T : the complete (n by m) matrix of all failure times tlk for l = 1, · · · ,m and

k = 1, · · · , n

• β: the shape parameter of the Weibull lifetime distribution, assumed equal at

all stress levels

• θl: the scale parameter of the Weibull lifetime distribution under stress level l
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• α: model I acceleration regression intercept

• γ: model I acceleration regression slope

• αl: model II acceleration regression intercept at the lth stress level

• γl: model II acceleration regression slope at the lth stress level

• δl: the acceleration model error term at the lth stress level

The hierarchical Bayesian model is implemented in stages. At the lowest level

the hyperpriors, π(α), π(γ) and π(δ) are specified. In the intermediate level, the

unknown parameters (θ and β) are estimated from the hyperparameters, and at the

highest level, the likelihood of the dielectric failure time conditioned on the estimated

parameters is determined.

The hierarchical Bayesian models I and II are expressed as follows:

Model I

f(tlk|θl, β) ∼ Weibull(θl, β)

ln(θl|α, γ, δl) ∼ α− γEl + δl

β|a, b ∼ πβ(a, b)

α|c, d ∼ πα(c, d) (6.15)

γ|e, f ∼ πγ(e, f)

δl|σ2 ∼ Normal(0, σ2)

95



Model II

f(tlk|θl, βl) ∼ Weibull(θl, βl)

ln(θl|αl, γl, δl) ∼ αl − γlEl + δl

βl|a, b ∼ πβl(a, b) (6.16)

αl|cl, dl ∼ παl(cl, dl)

γl|el, fl ∼ πγl(el, fl)

δl|σ2 ∼ Normal(0, σ2)

6.5.1 Limits of the Parameters and Hyperparameters

Hierarchical Bayesian models enable us to use a priori subjective information to

set limits to the bounded uniform prios as follows:

1. Shape parameter:

The shape parameter β, is non-negative, and it determines the nature of the

failure rate. We opt for π(β) ∼ uniform(0.0, 4.0).

2. Estimation error:

The estimation error δ, which is assumed multiplicative is elicited a standard

normal, thus: π(δ) ∼ normal(0.0, σ2).

3. Characteristic life:

The dielectric characteristic life α, is a dimensionless parameter and is expressed

as: α = ∆H
kT

. The activation energy ∆H, is described as the amount of energy

needed for a chemical reaction to take place. We will not get into the details

of the contribution of atomic electronegativity towards the strength of covalent

bonds in the dielectric bonds and the resultant bond weakening due to the
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applied electric field. Instead, we will assume that for single-bonds of interest,

the activation energy values range from ∼ 0.1 eV to ∼ 0.9 eV (for standard

very-large-scale-integration (VLSI) gate-oxide processing [52], [102]. T is the

test temperature which in our work will be assumed to range between 125 to

250 Kelvin [27], [103], and k is the Boltzmann constant which relates the energy

at the atomic level with temperature at the bulk level [27]. This constant is given

as 8.6173415×10−5 eV/K for application in semiconductor physics calculations

[103]. These specifications result in α values ranging between ∼ 4 and ∼ 20

[103]. For implementation purposes, we extend the range of α from 1 to 50,

that is π(α) ∼ uniform(1, 50).

4. Acceleration factor:

The non-negative acceleration factor, γ will vary from 0.1 to 10, that is π(γ) ∼

uniform (0.1, 10) [52].

In summary, our model uses the following hyperprior distributions.

π(β) ∼ Uniform(0.0, 4.0)

π(α) ∼ Uniform(1, 50)

π(γ) ∼ Uniform(0.1, 10)

π(δ) ∼ Normal(0.0, 0.00001)

6.6 Posterior Computation

Given a vector of k unknown parameters θ1, · · · , θk, the full or complete conditional

distribution for each parameter is described by:

P (θi|θj 6=i, T ) for i, j ∈ m
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For instance in our case, model I has the following unknown parameters: β, α, γ, and

δl. In our implementation, we use an iterative mechanism that samples from the full

conditional probability functions of each parameter, given the updated values of all

the other parameters as follows [6]:

f(β|T, α, γ,∆l) ∝ π(β)
m∏
l=1

nl∏
k=1

f(tlk|β, α, γ, δl) (6.17)

f(α|T, β, γ,∆l) ∝ π(α)
m∏
l=1

nl∏
k=1

f(tlk|β, α, γ, δl) (6.18)

f(γ|T, β, α,∆l) ∝ π(γ)
m∏
l=1

nl∏
k=1

f(tlk|β, α, γ, δl) (6.19)

f(δl|T, β, γ,∆−l) ∝ π(δl)
nl∏
k=1

f(tlk|β, α, γ, δl) (6.20)

where

∆−l = δ1, · · · , δl−1, δl+1, · · · , δm

and

f(tlk|β, α, γ, δl) =
β

θ

(
tl,k
θ

)β−1

exp

(
−tl,k
θ

β
)

(6.21)

where

θ = exp(α + γEl + δl)

6.6.1 MCMC Simulation

The convolution between the prior and the likelihood functions in order to obtain

the posterior function cannot be determined in closed form due to its complexity.

Therefore we used the MCMC approach as a means to obtain the posterior estimates.

The simulations were implemented using the OpenBUGS programming language.

OpenBUGS is a freely available statistical software, and it is an advancement to the
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precursor software-WinBUGS, which stands for Windows Bayesian inference Using

Gibbs Sampling [97]. The BUGS program implements Gibbs sampling approach,

which is one of the famous Markov Chain Monte Carlo (MCMC) methods for solving

intractable Bayesian problems. MCMC approaches are used to solve multiple integra-

tion required to obtain the marginal densities needed for Bayesian calculations. The

objective of the MCMC methods is to create an ergodic Markov chain whose limiting

or stationary distribution closely approximates the posterior distribution [104]. Gen-

erally, MCMC methods are implemented using two fundamental sampling algorithms

namely the Metropolis-Hastings (M-H) and Gibbs sampling techniques [105]. More

detailed discussions about MCMC sampling techniques as well as a rich reference of

related texts are provided in [97], [104] and [106].

In OpenBUGS, an unknown random variable is called a node and its full con-

ditional distribution is the probability density function conditioned on the updated

values of all other stochastic nodes, that is, all other unknown parameters in the

model [6]. For a given node, the full conditional density is proportional to the prod-

uct of its prior density, and the likelihood function conditioned on the updated status

of the all other nodes as shown in equations 6.18 to 6.20 [107]. WinBUGS does not

necessarily require explicit evaluation of multiple integrals of the full conditional den-

sity functions. Instead, the computation is solved by continuously sampling from each

posterior, until after a large number of iterations, the resulting k-tuple converges in

distribution to a draw from the posterior distribution [97].

When sampling, the Gibbs sampler in the OpenBUGS software first attempts to

recognize if the parameter samples are to be drawn from a conjugate prior. If con-

jugacy is fulfilled, the samples are drawn via direct sampling methodology using the

prior distribution. If the prior is not conjugate, WinBUGS does the sampling nu-

merically through the rejection sampling technique [97]. The most common rejection
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sampling techniques are the Metropolis algorithm, adaptive rejection sampling (ARS)

algorithm and slice sampling. The choice depends on the parameter descriptions. For

instance, ARS is used when the parameter distribution is log-concave, slice sampling

is employed when the support of the prior is bounded, while Metropolis algorithm

is used when the support is unbounded [97], [108]. In our implementation, we let

OpenBUGS run with the default sampling procedure appropriate for the prior dis-

tributions, which were: (i) interval slice sampling for α, β and γ and (ii) adaptive

Metropolis-Hastings sampler for δ.

OpenBUGS also allows for simultaneous execution of multiple chains. A chain is

described as a set of sampling initial values that the modeler defines, corresponding

to each unknown parameter or node. While the ergodic nature of the Markov chain

in the MCMC simulation ensures that the posterior solution is invariant to the initial

points, the initial values affect convergence speed [109]. Such parallel chains are

useful for model convergence diagnosis [110]. We implemented all simulations with

two chains as a way to monitor the convergence.

The credibility of MCMC posterior results depends on model convergence. Basi-

cally, model convergence ensures that the iterative simulations reach an equilibrium

state of the Markov Chain. Therefore, when the Markov chain induced by the MCMC

algorithm fails to converge, the resulting posterior estimates will either be biased or

unreliable [108]. OpenBUGS provides convergence diagnostics using trace plot, which

are graphs of the updated posterior estimates at each iteration. In this work, conver-

gence was determined by monitoring the trace plots, and this enabled us to decide

on the simulation burn-in period. Figure 6.5 contains sample trace plots of β, γ and

δ, and each shows the plots of parameter values at each iteration, for two separate

chains (represented by the red and blue lines) at steady state. Based on the trial
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simulations, we implemented 100, 000 iterations with 20, 000 burn-in iterations for

model I and II.

Figure 6.5. Trace plots indicating convergence

Figure 6.6 and 6.7 are schematic presentation of the hierarchical nature of models

I and II respectively.
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Figure 6.6. Schematic presentation of model I hierarchical Bayesian model

Figure 6.7. Schematic presentation of model II hierarchical Bayesian model
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6.7 MCMC Simulation Results

When the samples are generated by an MCMC algorithm, the factors that in-

fluence the quality of point estimators include sampling error, estimation bias and

systematic bias [108]. Sampling error, referred to as Monte Carlo (MC) error in

MCMC arises from the difference between the posterior samples and the actual un-

derlying distribution. In this work we used the MC errors to compare model I results

against model II. The OpenBUGS results also give the 5 and 95 percentile limits of

each parameter estimate. The best estimates should result in posterior estimates with

the least standard deviation and least MC error.

The MCMC simulation results for models I and II are summarized in tables 6.4

and 6.5 respectively. In model I, we assume that the Weibull shape parameter, β

and the Arrhenius-Weibull model parameters, α and γ are constant across all stress

levels. In model II, we assume that β, α and γ different at each stress level. The

following prior distributions were used for both models:

π(β) ∼ Uniform(0.0, 4.0)

π(α) ∼ Uniform(1, 50)

π(γ) ∼ Uniform(0.1, 10)

π(δ) ∼ Normal(0.0, 0.00001)

6.7.1 Comparison of Hierarchical Bayesian Model I and II

The Weibull shape parameter β from Model I is 0.641 as seen in table 6.4. Model

II gave several posterior mean values for β which are quite similar at a glance as seen

in table 6.5. The β value at the 4th stress level is quite removed from the rest, possibly
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Table 6.4. Posterior results:Bayesian hierarchical model I

Node mean st dev MC error 5% median 95%

alpha 24.66 11.67 0.489 2.485 25.520 45.230

beta 0.641 0.037 0.001 0.615 0.684 0.760

delta[1] 15.420 8.947 0.481 4.289 18.740 26.100
delta[2] 13.730 8.494 0.457 2.960 16.680 23.810
delta[3] 12.270 8.038 0.432 1.828 15.130 21.820
delta[4] 10.690 7.579 0.408 0.617 13.260 19.690
delta[5] 9.572 7.132 0.383 -0.220 11.830 18.100
delta[6] 8.245 6.681 0.359 -1.233 10.370 16.230

gamma 2.452 2.399 0.129 1.595 2.571 7.187

log theta[1] 5.903 0.266 0.003 5.394 5.898 6.438
log theta[2] 6.737 0.278 0.004 6.204 6.731 7.297
log theta[3] 7.202 0.257 0.004 6.71 7.197 7.721
log theta[4] 7.837 0.262 0.004 7.346 7.83 8.374
log theta[5] 7.837 0.260 0.004 7.332 7.835 8.358
log theta[6] 8.134 0.260 0.004 7.643 8.128 8.662

theta[1] 379.4 104.9 1.492 220.2 364.5 625.2
theta[2] 877.0 254.5 3.828 494.6 837.8 1476.0
theta[3] 1388.0 368.9 5.981 820.5 1335.0 2256.0
theta[4] 2624.0 720.5 11.22 1550.0 2515.0 4334.0
theta[5] 2621.0 704.7 10.89 1529.0 2527.0 4262.0
theta[6] 3529.0 956.8 15.23 2086.0 3388.0 5780.0

due to an outlier in the failure data at the 4th stress level. The mean posterior of β

from model II, which is the average value of the estimates at 5 stress levels (excluding

β[4] is 0.640.

As indicated previously in section 6.3.3, β, the Weibull slope, is an indicator of

a change in the failure mechanisms, and hence failure rate at varied stress levels.

That is, a constant shape parameter across the stress levels indicates that there is no

change in the failure mode as the stress level is increased and vice versa. Based on

the estimates of β from the posterior results of model I and II, we conclude that there

was no significant change in the failure mechanism of the dielectric at higher stress
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Table 6.5. Posterior results:Bayesian hierarchical model II

Node mean st dev MC error 5% median 95%

alpha[1] 24.76 14.13 0.589 1.654 18.88 47.87
alpha[2] 22.56 12.03 0.500 1.923 20.69 43.2
alpha[3] 23.6 13.98 0.583 1.995 22.02 48.61
alpha[4] 25.59 12.56 0.523 4.969 30.18 49.34
alpha[5] 22.45 11.9 0.495 6.354 32.21 49.29
alpha[6] 25.08 12.81 0.534 2.539 27.48 48.38

beta[1] 0.641 0.086 9.85E-04 0.464 0.651 0.803
beta[2] 0.620 0.087 0.001 0.434 0.590 0.779
beta[3] 0.656 0.090 0.001 0.507 0.673 0.865
beta[4] 0.882† 0.119 0.002 0.660 0.878 1.13
beta[5] 0.643 0.088 0.002 0.501 0.659 0.844
beta[6] 0.632 0.090 0.002 0.524 0.69 0.878

delta[1] 3.918 8.139 0.341 -9.342 6.35 15.91
delta[2] -0.656 5.321 0.223 -7.047 -2.35 11.21
delta[3] 9.569 16.73 0.702 -11.34 18.58 34.93
delta[4] 4.862 5.465 0.229 -3.346 3.136 15.11
delta[5] -7.459 5.284 0.221 -16.79 -7.642 0.892
delta[6] 7.239 6.617 0.277 -1.456 5.394 24.47

gamma[1] 2.499 2.149 0.089 0.353 2.057 6.085
gamma[2] 2.121 1.56 0.064 0.566 2.972 6.039
gamma[3] 2.541 2.52 0.105 0.599 2.096 7.397
gamma[4] 2.265 1.684 0.070 1.798 2.808 7.583
gamma[5] 2.399 1.635 0.068 0.700 2.024 7.816
gamma[6] 2.429 1.741 0.072 1.992 2.667 8.728

log theta[1] 5.903 0.271 0.001 5.387 5.898 6.448
log theta[2] 6.734 0.278 0.001 6.205 6.728 7.299
log theta[3] 7.196 0.259 0.001 6.703 7.190 7.721
log theta[4] 7.845 0.259 0.001 7.353 7.839 8.372
log theta[5] 7.841 0.261 0.001 7.345 7.837 8.369
log theta[6] 8.128 0.256 0.001 7.639 8.122 8.648

theta[1] 379.9 106.9 0.481 218.6 364.3 631.6
theta[2] 874.2 254.1 1.056 495.2 835.1 1479.0
theta[3] 1380.0 370.6 1.568 815.1 1326.0 2255.0
theta[4] 2641.0 710.3 2.887 1561.0 2536.0 4323.0
theta[5] 2633.0 713.8 2.993 1548.0 2533.0 4313.0
theta[6] 3504.0 930.5 3.931 2077.0 3369.0 5696.0

levels. Also, results from model I and II show that the dielectric failure parameters

α and γ are consistent across the stress levels. Following these results we assumed
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that β, α and γ are constant across stress levels, and analyzed the sensitivity of the

Bayesian hierarchical approach using model I.

6.8 Sensitivity Analysis

Possible sources of uncertainty in Bayesian models include the choice of the like-

lihood and prior functions, and the number of tiers in the hierarchical model [107].

Therefore the most appropriate method to check for model robustness is to carry out

sensitivity analysis to determine whether the posterior estimates remain unchanged

after slight perturbations in the prior and likelihood functions [97]. If the parameters

remain the same, then the posterior is considered robust to a variety of data from the

same problem domain.

In this work, posterior sensitivity was implemented by considering the different

combinations of the prior distribution as shown table 6.6 for model I only. In this

table, the base prior is the initial combination of prior distributions that was used

to produce the results in tables 6.4 and 6.5. The results of the base prior are then

compared to results from five other prior distribution combinations in table 6.7. The

notation is such that alpha[1] denotes the posterior estimate of α using prior combi-

nation 1, and logtheta[11] denotes the posterior estimate of ln (θ) at stress level [1]

using prior combination [1].

Table 6.6. Table of priors for sensitivity analysis

Priors π(α) π(γ) π(β) π(δ)

Base (1) uniform (1,50) uniform(0.1,10) uniform(0,4) normal(0,0.000001)

2 uniform (1,100) uniform(0.1,10) uniform(0,4) normal(0,0.000001)

3 normal (50,1/100) normal(5,1/10) uniform(0,4) normal(0,0.000001)

4 normal (50,1/100) uniform(0.1,10) uniform(0,4) normal(0,0.000001)

5 uniform (1,50) normal(5,1/10) uniform(0,4) normal(0,0.000001)

6 uniform (10,40) uniform(1,5) uniform(0,4) normal(0,0.000001)
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The idea behind this sensitivity analysis is to determine the robustness of our

hierarchical Bayesian model, by demonstrating the consistency of the posterior es-

timates of the Weibull shape parameter β, the dielectric characteristic life θ, and

the failure parameters α and γ. Based on the results in table 6.7, all the posterior

estimates maintain consistent values at all prior combinations. α and γ estimates for

prior combinations 1 and 2 exhibit relatively higher standard deviations than those

obtained with prior combinations 3,4, 5 and 6. This indicates that one should be

careful in defining the limits of assigned uniform priors. Otherwise the low MC errors

for β and ln (θ) estimates indicate that the Bayesian model is robust to the assigned

prior distributions.

Figures 6.8, 6.9, 6.10 and 6.11 show the posterior kernel densities for ln (θ), β,

α and γ respectively. Both ln (θ) and β posterior kernels are similar at all prior

combinations (1 to 6) as seen in figures 6.8 and 6.9. This indicates that the posterior

estimates for the shape and characteristic life parameters are invariant to changes in

the prior distributions. Though posterior estimates of α and γ remained constant

(see table 6.7), figures 6.10 and 6.11 show some variability, which we attribute to the

different boundaries that were set for their prior distributions.
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Figure 6.8. ln (θ) posterior kernel density
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Table 6.7. Sensitivity analysis

Node mean st dev MC error 5% median 95% Prior

alpha[1] 24.66 11.67 4.90E-01 2.49 25.52 45.23 uniform (1,50)
alpha[2] 24.53 11.12 5.97E-01 10.45 27.31 44.88 normal (50,1/100)
alpha[3] 23.97 0.27 1.27E-02 22.44 23.99 24.45 normal (50,1/100)
alpha[4] 22.79 1.22 6.09E-02 19.78 22.78 24.57 normal (50,1/100)
alpha[5] 24.53 4.10 2.05E-01 11.87 14.76 26.09 uniform (1,50)
alpha[6] 22.54 8.56 4.06E-01 10.23 20.04 36.70 uniform (10,40)

beta[1] 0.68 0.04 6.15E-04 0.61 0.68 0.76 uniform(0,4)
beta[2] 0.69 0.04 1.01E-03 0.61 0.68 0.76 uniform(0,4)
beta[3] 0.68 0.04 1.55E-03 0.61 0.68 0.76 uniform(0,4)
beta[4] 0.68 0.04 9.47E-04 0.61 0.68 0.76 uniform(0,4)
beta[5] 0.69 0.04 8.64E-04 0.61 0.68 0.76 uniform(0,4)
beta[6] 0.69 0.04 7.91E-04 0.61 0.68 0.76 uniform(0,4)

gamma[1] 2.32 1.60 6.71E-02 1.27 3.92 7.09 uniform(0.1,10)
gamma[2] 2.46 2.40 1.29E-01 2.60 6.57 9.19 uniform(0.1,10)
gamma[3] 2.24 0.25 1.24E-02 1.37 3.00 3.20 normal(5,1/10)
gamma[4] 2.93 0.85 4.27E-02 2.48 4.98 6.00 uniform(0.1,10)
gamma[5] 2.37 0.28 9.11E-03 3.05 3.33 3.73 normal(5,1/10)
gamma[6] 2.60 0.95 4.49E-02 2.11 3.60 4.96 uniform(1,5)

log theta[11] 5.90 0.27 3.87E-03 5.39 5.90 6.438
log theta[21] 5.90 0.27 3.98E-03 5.38 5.90 6.439
log theta[31] 5.91 0.27 5.01E-03 5.40 5.91 6.448
log theta[41] 5.90 0.27 5.42E-03 5.37 5.89 6.44
log theta[51] 5.90 0.27 4.11E-03 5.39 5.89 6.44
log theta[61] 5.91 0.27 4.72E-03 5.39 5.90 6.45

log theta[12] 6.74 0.28 4.18E-03 6.20 6.73 7.30
log theta[22] 6.74 0.28 4.32E-03 6.21 6.73 7.31
log theta[32] 6.75 0.27 5.00E-03 6.23 6.74 7.30
log theta[42] 6.74 0.28 5.17E-03 6.20 6.73 7.30
log theta[52] 6.74 0.28 4.46E-03 6.21 6.73 7.29
log theta[62] 6.73 0.28 4.96E-03 6.20 6.72 7.29

log theta[13] 7.20 0.26 4.13E-03 6.71 7.20 7.72
log theta[23] 7.19 0.26 4.28E-03 6.69 7.19 7.72
log theta[33] 7.20 0.26 4.94E-03 6.71 7.20 7.74
log theta[43] 7.20 0.25 4.87E-03 6.73 7.19 7.71
log theta[53] 7.20 0.26 3.99E-03 6.70 7.19 7.721
log theta[63] 7.20 0.26 4.71E-03 6.71 7.19 7.71

log theta[14] 7.84 0.26 4.12E-03 7.35 7.83 8.37
log theta[24] 7.85 0.26 4.24E-03 7.36 7.84 8.39
log theta[34] 7.85 0.26 4.49E-03 7.36 7.84 8.37
log theta[44] 7.85 0.26 5.28E-03 7.37 7.84 8.38
log theta[54] 7.85 0.26 3.91E-03 7.36 7.84 8.37
log theta[64] 7.84 0.26 4.86E-03 7.35 7.83 8.374

log theta[15] 7.84 0.26 4.10E-03 7.33 7.84 8.36
log theta[25] 7.84 0.26 4.11E-03 7.34 7.83 8.36
log theta[35] 7.85 0.26 4.58E-03 7.36 7.85 8.38
log theta[45] 7.84 0.26 5.03E-03 7.33 7.84 8.35
log theta[55] 7.84 0.26 4.00E-03 7.33 7.83 8.36
log theta[65] 7.84 0.26 4.80E-03 7.35 7.84 8.37

log theta[16] 8.13 0.26 4.18E-03 7.64 8.13 8.662
log theta[26] 8.13 0.26 4.27E-03 7.64 8.12 8.64
log theta[36] 8.13 0.25 4.36E-03 7.65 8.13 8.64
log theta[46] 8.13 0.26 5.27E-03 7.63 8.12 8.65
log theta[56] 8.12 0.26 4.23E-03 7.64 8.11 8.65
log theta[66] 8.13 0.26 4.65E-03 7.64 8.12 8.65
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Figure 6.9. β posterior kernel density

110



Figure 6.10. α posterior kernel density
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Figure 6.11. γ posterior kernel density
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6.9 Reliability Inference

The third objective of this dissertation as enumerated in chapter 3, is to make

reliability inference at the accelerated test levels followed by reliability projections at

operating conditions. To do so, the estimates of the dielectric characteristics life, and

the Weibull shape parameter from the hierarchical Bayesian approach using model

I and prior combination 1 of table 6.6 are compared to the corresponding estimates

obtained using classical maximum likelihood procedure and least square estimation

procedure based on median-rank regression.

6.9.1 Weibull Maximum Likelihood Estimates (MLE)

Given the failure data T = tlk for l = 1, 2, · · · ,m and k = 1, 2, · · · , nl, the Maxi-

mum Likelihood Estimates of the shape parameters, βl, and the dielectric character-

istic life, θl at each stress level El were determined using MATLAB, resulting in a

vector of θMLE and βMLE at each stress level.

6.9.2 Weibull Least Square Error (LSE) Estimates

The Weibull LSE estimates were determined using the median-rank approach.

In this method, the Weibull empirical cumulative distribution function (ECDF) is

used to estimate the Weibull cumulative distribution function (CDF). The Weibull

cumulative distribution function (CDF) is expressed as:

F (t) = 1− exp
(
tlk
θl

)βl
(6.22)
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When the CDF, F (tlk) is replaced by the ECDF, F̂ (tlk), and double natural logarithm

taken on both side of equation 6.22, we get:

ln

(
ln

(
1

1− F̂ (tlk)

))
= βl ln(tlk)− βl ln(θl) (6.23)

Based on equation 6.23, the Weibull LSE estimation procedure is as follows:

1. Rank the failure times data in increasing order, tl(1) , · · · , tl(nl) for l = 1, · · · ,m.

2. Determine the Weibull ECDF using the median rank estimation procedure as

follows:

F (tlk) =
k − 0.3

n+ 0.4
k = 1, · · · , n l = 1, · · · ,m (6.24)

where n is the sample size and k is the rank.

3. Compute the response variable y such that:

y = ln

(
ln

(
1

1− F (tlk)

))
(6.25)

4. Regress y in equation 6.25 against ln(tlk) using the following model:

y = al(ln tlk) + bl (6.26)

Relating equations 6.23 and 6.26, the Weibull shape parameter in equation 6.2 is

equivalent to the regression slope of equation 6.23. The dielectric characteristic

life is determined from the regression intercept and slope of equation 6.26 as

follows:

βl ln(θl) = bl =⇒ ln(θl) = − bl
βl

(6.27)
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The results of LSE is also a vector of size m, whose elements are θLSE and βLSE

at each stress level.

Tables 6.8 and 6.9 show a summary of the characteristic life θ, and shape param-

eter β at each of the stress levels El, for each estimation procedure (Bayes, MLE and

LSE).

Table 6.8. Dielectric characteristics life estimates (seconds)

Stress Methodology Mean Estimate 5% limit 95% limit

8.1 Hierarchical Bayes 3.07E+02 2.94E+02 8.44E+02

MLE 4.66E+02 1.56E+02 5.59E+02

LSE 5.05E+02 4.43E+02 5.51E+02

7.9 Hierarchical Bayes 4.80E+02 4.54E+02 1.29E+03

MLE 7.32E+02 2.52E+02 8.75E+02

LSE 7.92E+02 6.96E+02 8.62E+02

7.7 Hierarchical Bayes 7.49E+02 7.02E+02 1.98E+03

MLE 1.15E+03 4.05E+02 1.37E+03

LSE 1.24E+03 1.09E+03 1.35E+03

7.5 Hierarchical Bayes 1.17E+03 1.09E+03 3.04E+03

MLE 1.81E+03 6.52E+02 2.14E+03

LSE 1.95E+03 1.72E+03 2.11E+03

7.3 Hierarchical Bayes 1.83E+03 1.68E+03 4.66E+03

MLE 2.84E+03 1.05E+03 3.35E+03

LSE 3.06E+03 2.70E+03 3.30E+03

7.1 Hierarchical Bayes 2.86E+03 2.60E+03 7.15E+03

MLE 4.46E+03 1.69E+03 5.25E+03

LSE 4.79E+03 4.25E+03 5.17E+03
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Table 6.9. Weibull shape parameter estimates

Stress Methodology Mean Estimate 5% limit 95% limit

8.1 Hierarchical Bayes 0.624 0.464 0.803

MLE 0.599 0.553 0.645

LSE 0.599 0.553 0.645

7.9 Hierarchical Bayes 0.594 0.435 0.779

MLE 0.583 0.437 0.778

LSE 0.537 0.504 0.570

7.7 Hierarchical Bayes 0.676 0.507 0.865

MLE 0.667 0.511 0.871

LSE 0.633 0.596 0.671

7.5 Hierarchical Bayes 0.882 0.661 1.130

MLE 0.871 0.666 1.139

LSE 0.790 0.744 0.836

7.3 Hierarchical Bayes 0.663 0.501 0.845

MLE 0.655 0.503 0.853

LSE 0.625 0.597 0.653

7.1 Hierarchical Bayes 0.693 0.524 0.878

MLE 0.683 0.527 0.884

LSE 0.686 0.645 0.727

6.9.3 Extrapolating Dielectric Characteristic Life from Accelerated Level

to Normal Use Condition

Based on the Arrhenius-Weibull failure model, (see section 6.3.2.1) the linearized

relationship between the dielectric characteristic life and the stress level is given by:

ln(θl) = c+ d(El) (6.28)

The following linearized extrapolation models were developed using the estimates

in table 6.8:

ln( ̂θBayes) = 23.65− 2.156(El) (6.29)
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ln( ̂θMLE) = 24.45− 2.261(El) (6.30)

ln( ̂θLSE) = 24.40− 2.250(El) (6.31)

6.9.4 Mean Time to Failure (MTTF) Extrapolation

One of the measures of reliability is the Mean Time To Failure (MTTF), defined as

the expected time to failure for non-repairable system, or the expected time between

two consecutive failures for repairable systems [48]. Generally, given a vector of failure

times, T = {t1, · · · , tn}, the MTTF estimate is given by:

̂MFFT =
∫ ∞

0
tf(t) dt (6.32)

For the Weibull distribution, the MTTF estimate is given by [48]:

̂MFFT = θ̂
1

β̂
Γ

(
1

β̂

)
= θ̂Γ

(
1 +

1

β̂

)
(6.33)

where θ̂ and β̂ are the Weibull shape and characteristic life parameter estimates.

In this section, a comparison is made between the MTTF values resulting from the

Bayesian model, the MLE and LSE estimation methods. Since the main objective is

to extrapolate the MTTF from test conditions to normal use conditions, we use equa-

tions 6.34 to 6.36 (derived from equations 6.29 to 6.31) to compute the characteristic

life estimates θl at stress levels that represent normal use conditions, approximately

ranging from 2 MV/cm to 6 MV/cm [27].

̂θ(Bayes) = exp(23.97− 2.239El) (6.34)

̂θ(MLE) = exp(24.45− 2.26El) (6.35)

̂θ(LSE) = exp(24.45− 2.25El) (6.36)
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The Weibull shape parameter β for Bayes, MLE and LSE are averaged over all the

β estimates at 8.1, 7.9, 7.7, 7.3, and 7.1 MV/cm stress levels. The value of β at 7.5

MV/cm stress level is remarkably high, perhaps due to an outlier in the failure data,

and hence it is excluded from the averaging procedure. The corresponding mean β

estimates are ̂βBayes = 0.65, ̂βMLE = 0.64, and β̂LSE = 0.62. These β estimates,

together with θ estimates are used to calculate the MTTF values at the accelerated

conditions. The results are summarized in table 6.10.

Table 6.10. Comparison of MTTF estimates

Stress level MTTF (in seconds)

(MV/cm) Bayes MLE LSE

7.1 3.91E+03 6.20E+03 6.91E+03

7.3 2.50E+03 3.95E+03 4.42E+03

7.5 1.60E+03 2.52E+03 2.82E+03

7.7 1.02E+03 1.60E+03 1.79E+03

7.9 6.56E+02 1.02E+03 1.14E+03

8.1 4.19E+02 6.48E+02 7.29E+02

Table 6.11 and 6.12 show the Bayes, MLE and LSE 95% confidence interval of

the extrapolated MTTF at 6 and 2 MV/cm. These confidence limits are also shown

graphically in figure 6.12.

Table 6.11. Extrapolated MTTF 95% confidence interval at 6 MV/cm

MTTF estimate (hours) 5% limit 95% limit

Bayes 1.26E+01 1.65E+01 2.30E+01

MLE 2.07E+01 1.24E+01 1.92E+01

LSE 2.29E+01 2.23E+01 2.31E+01
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Table 6.12. Extrapolated MTTF 95% confidence interval at 2 MV/cm

MTTF estimate (hours) 5% limit 95% limit

Bayes 1.16E+05 9.41E+04 1.18E+05

MLE 1.69E+05 1.50E+05 1.75E+05

LSE 1.85E+05 1.80E+05 1.88E+05

Figure 6.12. Graph of extrapolated MTTF
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To make reliability inference from the extrapolated MTTF values, we assume that

the Arrhenius-Weibull model is valid at low stress levels, representing normal use con-

ditions. In figure 6.12, Bayes, MLE and LSE MTTF plots indicate that the mean

time to failure decreases exponentially with increasing stress levels, and these results

agree with the Arrhenius acceleration model. Though LSE and MLE give tighter

95% confidence interval than the Bayes approach, the MLE and LSE estimates are

much higher, and thus optimistic than the Bayes approach. This difference is prob-

ably due to the small size of failure data that was used. MLE and LSE procedures

are mostly advocated for because of their simplicity and asymptotic distribution op-

timality properties which is realized when there is plenty of data [111]. However,

in situations when data is inadequate, which is typical of accelerated life tests, the

Bayesian technique performs better.

120



CHAPTER 7

RESULTS AND MAJOR CONTRIBUTIONS

In this work, we develop a framework to study and analyze the behavior, proper-

ties, and failure mechanisms of nanoscale dielectric thin films. The framework includes

a 3D simulation of the failure of dielectric thin films with the aim of understanding

their failure characteristics. Both parametric and nonparametric techniques are then

used to conduct reliability inference analyses of the dielectric film.

In this chapter specifically, we provide a summary of the results of our work. In

addition, we discuss the major contributions of this research with a focus on the

following three areas, namely: (i) use of simulation to characterize the dielectric

failure process, (ii) failure density estimation using the kernel density approach, and

(iii) reliability inference using Bayesian methodology.

7.1 3D Simulation Model

The 3D failure simulation model presented in chapter 4 includes a search algorithm

that identifies the critical number of defects at breakdown, Nbd, as a function of the

size of defects and the dielectric thickness. In the simulation, the cells are randomly

occupied by defects, which is accomplished by switching of the occupied cells from

a non defective to a defective state. Breakdown occurs when a collection of defects

form conductive paths that bridge the dielectric layer. We use an empirical power

function which relates the critical defect density at breakdown to the stress time as

proposed by [62], [64], and [66], to determine realistic failure times.
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The results in figure 4.14 show that defect densities ranging from 0.0001 to 0.0040

defects/nm3 were realized when the mean number of defects introduced into the model

was fixed at 1 for the 1 nm and 5 nm simulated dielectric thickness respectively. A

similar range, (0.0003 to 0.0046 defects/nm3) resulted when the average number of

defects introduced was increased to 10. However, the range remarkably increased,

(0.025 to 0.0534 defects/nm3) when the number of defects introduced at each simula-

tion was further increased to 100. In addition, figures 4.15 to 4.17 show a consistent

increase in dielectric breakdown time with increasing thickness.

Based on our results, we can draw the following conclusions:

1. The critical defect density and breakdown time increase with dielectric thick-

ness, and the relationship between the critical defect density and dielectric thick-

ness is possibly a power function.

2. The simulation is sensitive to the definition of cell communication, and it ap-

pears that among all choices, the path formation that uses 26-nearest neighbor

cells most closely approximates the actual dielectric failure process.

3. The mean number of defects introduced at each iteration largely affects the

critical defect density.

4. The variability of failure times is about the same at each dielectric thickness

level. This is an indication that our simulation model is quite robust in predict-

ing the relationship between the time to failure and dielectric thickness.

We compared our model results with those from the analytical model proposed

by Sune et al. [67] that relates critical defect density to dielectric thickness. Our

results (see figure 4.14) are in agreement with the analytical model, particularly with

26 degrees-of-communication (26-nearest neighbor cells), and with an average of 10
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defects being introduced into the model at each iteration. Based on the Weibull plots

(see figure 6.1) we can deduce that: (i) the dielectric characteristic life (the time at

which the probability of failure for the device is 63.2%, assuming a Weibull underlying

probability distribution) increases with dielectric thickness, and (ii) the rate of failure,

(which is dependent on the Weibull slope or shape parameter) increases with time.

With respect to the dielectric films, this means that it takes longer for failures to

occur in thick films than in thin ones.

7.2 Kernel Density Estimation

In chapter 5, we used the kernel density approach to construct the probability

density structure of actual dielectric failure data. To select a suitable variable band-

width for the data, we optimized a cost function derived from the Mean Integrated

Square Error (MISE). The results (see figures 5.2, 5.3, and Appendix A), show that

the overall density structures using data-specific variable bandwidths and constant

bandwidths were quite similar. However, variable bandwidths provide more detailed

information of the underlying probability structure that govern the dielectric failure

process. One drawback of the variable bandwidth is its sensitivity to the number

of data points at each estimation interval. Consequently, it appears that a variable

bandwidth would perform better with large data sets because it provides enough data

points for effective smoothing at each interval within the data range.

7.3 Bayesian Inference

The Bayesian inference framework was constructed from the bounded uniform

prior distribution, and the two-parameter Weibull likelihood function. Using the

Arrhenius-Weibull relationship, we developed two models that relate the dielectric
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characteristic life θ, the stress level (El), the acceleration factor γ, and the material

and temperature related parameter α. In the first model (Model I, see chapter 6)

α and γ are assumed constant at all stress levels, but in the second model (Model

II) α and γ are assumed to differ at each stress levels. The optimal estimates of α

and γ are used to update the estimates of the unknown parameters of the posterior

distribution.

The results in tables 6.4 and 6.5 show that for stress levels (electric field) ranging

from 8.1 to 7.1 MV/cm, the dielectric characteristic life, θ ranges from 380 to 3530

seconds respectively for both models. The Weibull shape parameter, β for model I is

0.641, and the average is 0.638 for model II. The material related failure parameter

α, is 24.66 for model I and the average is 24.00 in model II. The acceleration factor,

γ is 2.452 cm/MV for model I and the average is 2.375 cm/MV in model II.

Based on the simulation results we can conclude that:

1. The material and temperature related constant α, and the acceleration factor

γ, remain constant across the stress levels, and this means that model I is a

sufficient representation of the dielectric failure process.

2. The dielectric characteristic life, θ consistently increases with increasing stress

levels, for both model I and II, meaning that failure occurs faster at accelerated

stress levels. Specifically, the 95% confidence interval of characteristic life of a

2 nm thick high-k dielectric at accelerated stress levels, ∼ 8.1 Mv/cm is 294 to

844 seconds, and the corresponding confidence interval at normal use condition,

∼ 2 MV/cm is 1.75× 108 to 3.85× 108 seconds.

3. The Weibull shape parameter β, for a fixed dielectric thickness remains constant

across the stress level and this physically means that an increase in the stress

levels does not induce a different failure mechanism.
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To perform reliability inference at normal use conditions using the accelerated

data, we construct a log-linear extrapolation model to determine the dielectric char-

acteristic life θ, and hence the Mean Time to Failure (MTTF) at normal use con-

dition. Based on the MTTF analysis, the Bayesian approach results in the smallest

mean time to failure in comparison to the MLE and LSE approaches. However, the

MLE and LSE produce narrower 95% confidence intervals. Typically, the MLE and

LSE estimation techniques have better asymptotic properties and therefore perform

better when the available data is large. When there is insufficient data such as, in

our case, the Bayesian estimation approach performs better. Moreover, by using the

Bayesian method, we are able to incorporate subjective dielectric failure information

to model the characteristic life parameter, which is not possible with the MLE and

LSE techniques.

7.4 Contributions

The major contributions of this research are on three fronts, namely: (i) the use of

simulation to characterize the dielectric failure process, (ii) failure density estimation

using Kernel density approach, (iii) reliability inference using Bayesian methodology.

1. Failure Simulation:

Our contribution is in the development of an algorithm for a 3D simulation

of dielectric failure which is available for users. Most of the dielectric failure

simulations in the literature consider 3D models with dielectric films ≥ 10nm

and assume that dielectric breakdown is triggered by the formation of the first

conductive path that bridges the dielectric thickness [26], [57], [53]. In our re-

search however, we consider much smaller thickness, that is, dielectric thickness

ranging from 1 to 5 nm. We also conducted a sensitivity analysis of the critical
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defect density and the failure times on the mean number of defects introduced at

each simulation trial. In addition, we studied the effect of the number of critical

conductive paths on the critical defect density as well as the failure times. The

analysis of the failure times shows that the algorithm generates failure times

that have consistent variability at all dielectric thickness levels.

2. Nonparametric Failure Density Estimation:

We develop a nonparametric methodology to estimate the dielectric failure den-

sity structure using the kernel approach with a variable bandwidth. While this

technique has been used to successfully determine the underlying density struc-

tures for decades, our contribution in this regard is in the development of an

optimal variable bandwidth based on a cost minimization algorithm using the

Mean Integrated Square Error (MISE) for a given set of data. Previously, re-

searchers have used the MISE to select a constant global bandwidth for an entire

data range. Our findings show that when compared to a constant bandwidth,

the variable bandwidth is sensitive to peaks within the data, and provides ap-

propriate smoothing that ensures that details within the data structure are not

masked.

3. Bayesian Reliability Inference:

Our contribution here is in the development of an integrated hierarchical Bayes

model for dielectric reliability inference. Hierarchical Bayesian models have suc-

cessfully been used for survival inference in public health and related research.

We extend this application to dielectric failure analysis by proposing 3-stage

model that incorporates the Arrhenius-Weibull relationship. Previous statisti-

cal models have used either classical parametric or nonparametric methods to

model dielectric failure. In our case, we incorporate physics-of-failure models
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to estimate failure parameters using the Hierarchical Bayesian methodology.

The parameters, which include the dielectric characteristic life, the failure rate

and the acceleration factor, are all necessary to predict the life of a dielectric

thin film. The proposed framework can be adopted to determine the reliability

inference of other nanomaterials and devices, possibly by replacing the failure

distribution and physics-of-failure models with those related to the device of

interest.

127



CHAPTER 8

SUGGESTIONS FOR FUTURE RESEARCH

The overarching goal of this work is to develop a framework for the reliability of

nanoscale dielectric films. In pursuit of this goal, we have tried to provide model-

ing and analytical clarity regarding the inherent failure characteristics and hence the

reliability of high-k gate dielectrics. The ultimate objective is to extend this frame-

work to other nanoscale materials and devices so as to optimally characterize, predict

and manage their reliability. Such an effort requires an interdisciplinary approach in

order to understand both the physical relationships as well as the probabilistic and

statistical complexities that underlie device and material behavior. While we have

attempted to provide some clarity to some of these issues, several vexing questions

still remain.

8.1 Dielectric Failure Simulation

We made several assumptions in the construction of the 3D simulation of dielectric

failure. First, we assumed that the defects are spherical and that each defect fills up

one cubic lattice in the simulation. An important question is to what extent does

the change in the defect shape and dimension affect the critical defect density values?

Also, what is the impact of overlapping defects (defects that span more than one

cell) on the results of the simulation experiment and specifically the defect path

formation? There is still controversy regarding not just the shape of the defect, but

also the dimension and orientation of defects within the dielectric bulk and interfacial
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region. A better understanding of these issues would make for better simulation and

hence more realistic results of the dielectric failure.

Secondly, we assume that a breakdown occurs when the cluster of defects form

five or more conductive paths that bridge the dielectric thickness. Previously, experts

have modeled dielectric failure to occur when the first path is formed. Based on

our findings the critical defect density when five or more paths are formed closely

approximates actual dielectric failure behavior. Recently, experts have noted that

not all defects equally contribute to path formation, and not all paths are available

for electron transfer [63]. Therefore, the question of path efficiency requires special

attention, more so, to draw a distinction between hard and soft dielectric failures.

8.2 Nonparametric Density Estimation

Nonparametric density estimation methods are useful for reliability inference, es-

pecially for failure phenomena whose data do not conform to traditional probability

distributions. In this study, we use the Gaussian kernel to develop a Mean Integrated

Squared Error (MISE) minimization algorithm for selecting a vector of optimal vari-

able bandwidths for a given data. Our findings show that variable bandwidths from

the AMISE-based cost minimization approach perform better with large data. Given

that Bayesian approaches are useful in the case of small data samples, attempts should

be made to determine Bayesian optimized variable bandwidths.

8.3 Bayesian Reliability Inference

In this study, we develop a 3-stage hierarchical Bayesian model to estimates dielec-

tric failure parameters, using the two-parameter Weibull likelihood function. We also

use a noninformative prior, given the uncertainty regarding the unknown parameter.
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Though Bayesian approaches are useful when the data sample is small, the poste-

rior structure is largely affected by the prior distribution. Therefore, more attention

should be given to the choice of the prior that would possibly lead to a posterior

distribution whose structure can be evaluated in closed form.
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Appendix A Graphical Results: Nonparametric Normal Kernel Probabil-
ity Density Estimates

The following are graphical results of normal kernel probability density esti-

mates using actual dielectric [6] at the following dielectric failure test stress levels:

8.1, 7.9, 7.7, 7.5, 7.3 and 7.1 MV/cm. The comparison is made between densities esti-

mated using a constant bandwidth (figures to the left) and variable bandwidth (figures

to the right).

Figure A.1. Normal kernel probability density estimates with constant (right) and
variable (left) bandwidth for failure data at 8.1 MV/cm electric field stress level

141



Appendix A (Continued)

Figure A.2. Normal kernel probability density estimates with constant (right) and
variable (left) bandwidth for failure data at 7.9 MV/cm electric field stress level

Figure A.3. Normal kernel probability density estimates with constant (right) and
variable (left) bandwidth for failure data at 7.7 MV/cm electric field stress level
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Appendix A (Continued)

Figure A.4. Normal kernel probability density estimates with constant (right) and
variable (left) bandwidth for failure data at 7.7 MV/cm electric field stress level

Figure A.5. Normal kernel probability density estimates with constant (right) and
variable (left) bandwidth for failure data at 7.7 MV/cm electric field stress level
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Appendix A (Continued)

The following are graphical results of Gaussian kernel reliability (figures to the

left) and cumulative probability (figures to the right) density estimates using actual

dielectric failure data [6] at each dielectric failure test stress levels: 8.1, 7.9, 7.7, 7.5

and 7.3 MV/cm.

Figure A.6. Reliability (left) and cdf (right) estimates at 8.1 MV/cm electric field
stress level
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Appendix A (Continued)

Figure A.7. Reliability (left) and cdf (right) estimates at 7.9 MV/cm electric field
stress level

Figure A.8. Reliability (left) and cdf (right) estimates at 7.7 MV/cm electric field
stress level
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Appendix A (Continued)

Figure A.9. Reliability (left) and cdf (right) estimates at 7.5 MV/cm electric field
stress level

Figure A.10. Reliability (left) and cdf (right) estimates at 7.3 MV/cm electric field
stress level
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Appendix A (Continued)

Figure A.11. Reliability (left) and cdf (right) estimates at 7.1 MV/cm electric field
stress level
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