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Abstract

The reliability issue of the infrastructure systems has become one of the major concerns

of the system operators. This dissertation is a collection of four published and working pa-

pers that address the specific reliable design and operations problems from three different

application settings: transportation/telecommunications network, distribution network, and

power plant. In these four projects, key random factors like site disruption and uncertain

demand are explicitly considered and proper research tools including stochastic program-

ming, robust optimization, and variants of robust optimization are applied to formulate the

problems based on which the important and challenging modelling elements (nonlinear con-

gestion, disruption caused demand variation, etc.) can be introduced and studied. Besides,

for each of the optimization models, we also develop advanced solution algorithms that can

solve large-scale instances within a short amount of time and devise comprehensive numer-

ical experiments to derive insights. The modelling techniques and solution methods can be

easily extended to study reliability issues in other applications.
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1 Introduction

Infrastructure is the physical entity and the corresponding organizational structure that

integrate interconnected elements to provide and maintain the fundamental function in the

normal operations of a society or an enterprise (OnlineCompactOxfordEnglishDictionary,

2014). It includes a wide range of engineered assets. For a society, it could encompass trans-

portation systems, power generation and transmissions systems, communication systems, so

on and so forth. While for a company, it may refer to a supply chain of commodities or

services. Infrastructure systems exist in almost all aspects of social activities and are criti-

cal to ensure the smooth functioning of a society or an organization (Murray and Grubesic,

2007a). The importance of infrastructures is best demonstrated by its magnitude of use. For

example, over 645 millions of passengers were moved by the U.S. air transportation system

in 2014 (BureauofTransportationStatistics, 2014). The U.S. internet backbone reached data

volume of 48 million terabytes with advertisement revenue alone hits $31 billion in 2011

(MinnesotaInternetTrafficStudies (2014) and InteractiveAdvertisingBureau (2014)).

Given the universality and significance of infrastructure systems, the researches in this

area are prosperous both on general development policies and specific applications (Ostrom

et al. (1993), Martin and Rogers (1995), and Gil et al. (2012)). We mention that when it

comes to the quantitative studies of the infrastructures, optimization tools are often utilized

to obtain cost-effective designs and operations schedules (Frangopol and Liu (2007), Saranga

and Kumar (2006), and Amin (2003)).

Societal functions are highly dependent on the normal operations of infrastructures. How-

ever, in the real world, the functioning of an infrastructure is often disrupted by various sorts

of events including natural disasters, labor strikes, and equipment failures. Due to the in-

terdependent property of different infrastructure networks (Murray and Grubesic (2007a),

Pederson et al. (2006), and Dueñas-Osorio and Vemuru (2009)), a disruption can often neg-

atively influence the service in a extensive geographical area resulting in enormous economic
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losses. Take air transportation system for example, domestic flight delays were found to

cost the U.S. economy $31.2 billion in 2007, including direct costs to airlines and passengers,

lost demand, and forgone GDP (AirlinesforAmerica, 2014). Another more recent example

is the 2011 southwest blackout that left nearly 2.7 million customers in Arizona and Cal-

ifornia without power for up to 12 hours. It was caused by a 15 minute power system

disturbance and lead to cascading outages that resulted in a estimated cost of $100 million

(NorthAmericanElectricReliabilityCorporation (NERC) and Jergler (2014)).

Therefore, the reliability issue of infrastructure systems has become the major concern

of homeland security (OfficialWebsiteofDepartmentofHomelandSecurity, 2014) and one of

the most important research topics in the related literature, one may refer to Amin (2003),

Rinaldi et al. (2001), Moslehi and Kumar (2010), Murray and Grubesic (2007b), and Conrad

et al. (2006).

From the major findings in the field, we discovered three issues of the existing researches:

(i) While lots of studies focused on the diagnosis and assessment of the reliability and

vulnerability of infrastructures, the key factor of reliability is not considered in the design

stage for many types of infrastructures. For example, in an air transportation network, hub

airport disruptions can result in local or even complete malfunction of the whole network,

the operators usually rely on strategies like delaying, cancelling, or cancelling to mitigate

the negative effects of hub failures (Janic (2005) and Ball et al. (2006)). However the

effect of those measures are largely restricted by the initial design which did not consider

hub disruptions; (ii) For most of the proposed studies on reliable designs of infrastructure

systems, some newly developed formulation tools and solution methods are not applied and

hence some important insights have not been discovered by the current literature. In the

reliable design of distribution networks, for instance, the demand variation of a site due to

disruptions exists in the real applications (Ergun et al., 2010) and could drastically influence

the network configuration. But most models are based on stochastic programming (Cui

et al. (2010), Snyder and Daskin (2005), and Lim et al. (2009)) and the demand change

factor is difficult to be included because of the computational challenges it presents; (iii)

In some area like power systems, the conventional research tools to deal with the random
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factors like stochastic programming (Takriti et al. (1996), Papavasiliou and Oren (2013) and

Constantinescu et al. (2011)) and robust optimization (Bertsimas et al. (2013b), Xiong and

Jirutitijaroen (2012), and Zhao and Zeng (2012b)) need to be improved to better address

the modelling needs. The stochastic programming enumeration of all possible scenarios may

cause prohibitive computational burden while for the robust optimization, although only the

worst scenario is considered, may lead to over conservative solutions.

Motivated by the gap in the research, in this dissertation, we present four studies arising

from the key infrastructure systems in modern world (air transportation system, distribution

network, and power system). We successfully addressed the reliable design or operation issues

in these areas by utilizing novel modelling techniques and effective solution algorithms. Note

that since overcoming the random risk factors requires the good knowledge and understand-

ing of the infrastructure under study and the settings of these researches are significantly

different from each other, we separated them in four chapters with comprehensive literature

review and clear problem statement given to each of them respectively. Extensive numerical

experiment are also conducted to derive meaningful insights in every chapter. The rest of

the dissertation is organized as follows.

Chapter 2 solves a design problem of the hub-and-spoke air transportation network by

explicitly considering the single random hub failures in a compact stochastic programming

model. Different from the classical model, we introduce backup hub for each affected route

in the network under each disruption scenario so that the random hub failure can be ad-

dressed in the design stage. With Lagrangian relaxation and branch-and-bound applied

jointly, difficult cases are successfully solved to optimality. We also showcases the significant

improvement of service quality brought by our model.

Based on the work in Chapter 2, Chapter 3 extends the reliable design problem of the

hub-and-spoke network. The formulation is more close to the real world applications by

integrating highly challenging factors like multiple hub disruptions and hub congestions

in a two-stage robust optimization framework. The newly developed column-and-constraint

generation algorithm (Zeng and Zhao, 2013) and linearization techniques are presented which

demonstrated good computational performance in solving our cases.
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The modelling ability of two-stage robust optimization is further explored in Chapter 4

where it is used to address a reliable facility location problem. Similar to the formulations in

Chapter 1 and 2, in our reliable facility location network, the affected customers can be reas-

signed to other functional facilities when original ones are down due to random disruptions.

Challenging factors like demand change due to site disruptions and facility capacity, which

are widely neglected in the current literature, are introduced into our model. Through in-

depth computational experiments, we investigate the influence of those factors and compare

the solutions obtained by RO and SP to gain new insights on distribution network design.

In Chapter 5, we turn our attention to the area of power system operation reliability. A

novel modelling method that combines the advantages of SP and RO is proposed and applied

in solving a unit commitment problem subjects to uncertain demands. Multiple uncertainty

sets are introduced into the classical robust optimization. Based on our computational study,

we can see that it requires less information of random demand than stochastic programming

and is able to achieve less conservative solution (on-off schedule of generation units) than

RO.

Conclusion will be given in Chapter 6. We mention that the modelling techniques and

solution methods we developed, together with the insights we obtained from numerical exper-

iments, can be easily extended to solve other infrastructure design and operation problems.

The works presented in this dissertation have the potential to fill the gap in the existing

literature.

4



2 The Reliable Hub-and-spoke Design Problem: Models and Algorithms1

2.1 Background and Motivation

The hub-and-spoke system has been widely employed in various industrial applications,

such as transportation and telecommunications system designs. It is a fully interconnected

network with material/information flow between any two nodes being processed at a small

number of critical nodes (i.e., hubs) so that the operators can benefit from the economies

of scale by consolidating flows from and to spoke nodes and increasing the utilization of

equipment and staff at those critical nodes. Clearly,a hub-and-spoke network heavily relies

on hubs to make the whole system functional, and therefore it is vulnerable to any disruptions

and degradations of hubs. Traditional hub-and-spoke network design solves the problem of

hub location and allocations of spoke nodes to hubs, assuming network components work

properly. In practice, nevertheless, operators have to face various disruptions and apply

disruption management techniques to recover the system. Such an issue is most prominently

demonstrated in air transportation where severe weather, labor strikes, terrorism threats,

and runway incursions disrupt regular operations and make airports partially or completely

unavailable (Palpant et al. (2009) and Løve and Sørensen (2001)).

To deal with the vulnerability issue of the hub-and-spoke system, several mitigation

strategies have been proposed and implemented, such as delaying, canceling, and rerouting

in air transportation (Janic (2005) and Ball et al. (2006)) and network peering in telecommu-

nications systems (O’Kelly et al., 2006). However, most of mitigation strategies are reactive,

which are often costly to implement and inefficient, given that the initial network is de-

signed for perfect conditions. For example, it is observed in (Bratu and Barnhart, 2006)

that, although the disrupted passengers were only three percent of the total passengers, they

suffered 39 percent of the total passenger transportation delays with much lower customer

satisfaction. Clearly, the initial network design affects the selections of backup hubs and al-

1This chapter is under review for publication in Transportation Research Part B: Methodological
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Figure 2.1: Regular and Alternative Routes

ternative routes, which affects the cost of mitigation operations. Therefore, to achieve both

economic advantage and system reliability, the network design problem should consider both

the hub locations and regular route designs as well as the backup hubs and alternative route

designs under disruptions in a holistic modeling framework. Therefore, in this chapter, we

propose a reliable hub-and-spoke network design strategy by explicitly considering the hub

unavailability, i.e., backup hub and alternative route decisions will be considered in the de-

sign stage and related cost will be included in the objective function of the design problem.

With this strategy, we aim to develop a new type of optimization models to minimize the

operating cost considering both the normal situation, which is disruption free, and disrupted

situations where survived hubs serve as backup hubs for rerouting disrupted flights due to

unavailable hubs. As illustrated in Figure 2.1, where the solid line denotes a regular route

for the flight from Tampa to San Francisco and the dotted line denotes an alternative route

using Dallas as a backup hub if the Miami hub is unavailable. This strategy will not only

benefit airlines but also other industries who adopted hub-and-spoke distribution paradigm

with which they can build and operate their networks with both reliability and economic

advantages.

Compared to classical models, the introduction of backup hubs and alternative routes

drastically increases the complexity of the network design problem. As the choice of backup

6



hubs and alternative routes depends on the hubs in regular routes, a large number of non-

linear terms are introduced to capture the dependency. As a result, nonlinear mixed integer

formulations are constructed. Their structures are further investigated and solution meth-

ods developed. To the best of our knowledge, our study is the first analytical work on the

reliable hub-and-spoke design with consideration of backup hubs and alternative routes. The

developed algorithm is easy to implement and can solve practical instances in a reasonable

amount of time. Numerical study demonstrates that our reliable models can serve more

passengers under the disruption situations and sensitivity analysis shows that the resulting

designs are robust to hub unavailability.

The proposed reliable hub-and-spoke network design also yields a set of useful tools for

practitioners, such as airlines, to re-structure their networks or to identify strategic partners

to hedge against various disruptions and achieve better performance.

The rest of the chapter is organized as follows. In Section 2.2, literature review on

hub-and-spoke design is presented as well as recent research on reliable facility location

models. In Section 2.3, the reliable single allocation hub-and-spoke model is formulated

and the solution methods are elaborated. In Section 2.4, the study is extended to the

reliable multiple allocation model. Section 2.5 demonstrates computational performance of

the developed algorithms using the CAB data set from airline operations as the case study

and provides comparisons between our reliable hub-and-spoke design models and classical

models. In addition, system design and performance with proposed model are analyzed and

discussed, including sensitivity analysis and the demonstration of applying proposed model

to a recent airlines merger. Section 2.6 concludes this chapter with some discussions on

future research directions.

2.2 Literature Review

The hub-and-spoke design problem is conventionally called hub location problem (HLP),

which is concerned with locating hub facilities and allocating spoke nodes to hubs. There

are generally two basic structures: single allocation (SA) and multiple allocation (MA).

In SA hub-and-spoke model, all outbound/inbound flows of any node must travel directly

from/to a specific hub. In MA model, flows of a given node can go directly from/to different

7



hubs. When the number of hubs, denoted by p, is given, the problem is called the p-hub

median problem (HMP). In the remainder of this chapter, we use SA-HMP or MA-HMP to

denote the corresponding design problem. O’Kelly (1987) proposes the first mathematical

formulation for HMP and presented the first quantitative analysis on this type of network

structure using the Civil Aeronautics Board (CAB) data set. Since then, as hub-and-spoke

structures are of significant theoretical and practical values, a large number of studies have

been conducted on developing models with more practical features and on designing efficient

algorithms.

We first briefly describe a few important results on formulation and algorithm design.

Ernst and Krishnamoorthy (1996) and Ernst and Krishnamoorthy (1998a) formulate SA-

HMP and MA-HMP, respectively, based on the idea of “multicommodity flow”. Skorin-

Kapov et al. (1996) propose mixed integer formulations for both SA-HMP and MA-HMP that

yield tight linear relaxations. As for the customized algorithm development, Branch-and-

Bound process and Lagrangian relaxation have been widely used to obtain exact solutions

(Ernst and Krishnamoorthy (1998b) and Pirkul and Schilling (1998)). Different from the

p-hub median problem, the hub location problem with fixed costs treats the number of hubs

as a decision variable and seeks to minimize the transportation cost and the construction

cost where a fixed construction cost is associated with a decision of hub location. O’Kelly

(1992) and Campell (1994) study a few formulations of HLP with fixed costs. There are

also extensive literature in search of effective solution algorithms for these problems, see

Cunha and Silva (2007), Chen (2007), Cánovas et al. (2007), and Contreras et al. (2011a)

for examples. One may refer to Alumur and Kara (2008) and Campbell and O’Kelly (2012)

for a comprehensive review of modeling techniques and solution methods of HLP. In the

remainder of this chapter, unless we explicitly mention, the hub-and-spoke network design

problem indicates p-hub median problem.

Recent studies focused on extending classical SA and MA models by incorporating prac-

tical factors, such as hub congestion (Elhedhli and Wu, 2010; Grove and O’Kelly, 1986), hub

capacity (Contreras et al., 2012), nonlinear economies of scale (de Camargo et al., 2009a),

8



and dynamic/stochastic nature of demand and cost (Contreras et al. (2011b) and Contreras

et al. (2011c)).

Nearly all studies on HLP assumed that the chosen hubs would always operate function-

ally as planned. Nevertheless, in practice, hubs could fail due to different reasons. As the

typical cases in air transportation industry, adverse weather often significantly deteriorates

the availability of a hub airport and results in huge disruption costs. Similar situations

have been observed in facility-and-client based supply chain and logistics systems, where

facilities, same as hubs, play the central role and their locations are derived using facility

location models. Note that, different from hub-and-spoke design, there is no inter-facility

transportation in those systems. To deal with facility disruptions, a facility location model

with backup strategy, referred to as the reliable facility location model, was introduced by

Snyder and Daskin (2005). Since then, this type of research has received significant atten-

tion (Cui et al. (2010), Li and Ouyang (2010); Lim et al. (2009), Li (2011), and An et al.

(2014)). It is commonly observed that the resulting nonlinear optimization formulations are

computationally challenging. Hence, customized algorithms are needed for solving real-size

problems, among which Lagrangian relaxation methods and their Branch-and-Bound exten-

sions are the major solution strategies (Snyder and Daskin (2005), Li and Ouyang (2010),

Cui et al. (2010), Lim et al. (2009), and Li (2011)).

In contrast to reliable facility location problems that have attracted the attention of

many researchers, up to now, only several recent studies considered reliable hub-and-spoke

networks. In Kim and O’Kelly (2009), given that each arc or hub has a reliability (same as

availability in this chapter), they build SA and MA models to derive an optimal network

structure that maximizes the expected network flow, without considering backup hubs and

alternative routes. Kim (2008) proposes a p-hub protection model based on single allocation

structure with primary and secondary routes presented. The authors then utilized a heuristic

method (tabu search) to solve the real instances with up to 20 nodes. In Zeng et al. (2010),

reliable SA and MA models with consideration of hub unavailability and alternative routes

have been developed and a heuristic algorithm has been implemented. The authors observe

that, different from the reliable facility location model, reliable hub-and-spoke models are

9



much more complicated. Indeed, this type of problems have not been analytically investi-

gated with advanced solution methods to deal with real-size problems. Given that many

infrastructure systems, e.g., air transportation and telecommunications systems, adopt hub-

and-spoke structures where system reliability is of extremely high importance, we perform an

analytical study on reliable hub-and-spoke models and develop efficient algorithms to solve

practical instances. A framework of model evaluation under correlated hub disruptions will

also be proposed. The study fills in the gap in existing literature and advances the research

in reliable hub-and-spoke network design.

2.3 Reliable Single Allocation Hub-and-spoke Model

We are aware that multiple allocation hub-and-spoke model is widely applied instead of

single allocation model in air transportation industry. Although we apply aviation case stud-

ies later in our study, for the sake of completeness, we study the formulation and solution

algorithms for both reliable single and multiple allocation models in Section 3 and 4. There

are two major assumptions in our study. First, we focus on solving the problem with single

disruptions. We are aware that under some circumstances, multiple disruptions and even

massive disruptions could occur. For example, the volcano ash crisis in Europe in 2010 and

2011 caused the closure of many major airports in that region and Sandy hurricane in 2013

made all three commercial airports in New York area malfunctioned for days. Nevertheless,

in airline industry, one carrier often strategically locates its hubs far from each other in its

hub-and-spoke network. On one hand, it helps the carrier to fully take advantage of the

discounted inter-hub transportation. On the other hand, it can prevent the carrier from

being affected by multiple simultaneous hub failures due to the same cause. As an example,

during the Grisvötn volcano eruption in Iceland in 2011, two neighboring airports, i.e., Air-

port Hamburg (HAM) and Airport Bremen (BRE) in Germany (BBC, 2011a,b), had to be

closed. Although HAM and BRE serve as hubs for 19 legacy airlines and low cost carriers,

the majority of airlines (17 out of 19) operate just one of the two airports as their hubs

(Flylowcostairlines.com (2012) and Mygermancity.com (2012)). Under single disruption and

normal condition, our model can provide an optimal routing strategy while when multiple

disruptions occur, airline companies can take ”principle of proximity” and assign disrupted
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routes to closest functional hubs. We demonstrate, in later section, that the optimized solu-

tions from single disruption model provides better network set-up under multiple disruption

scenarios compared to the outcomes from classical model. We will continue tackle the multi-

ple disruption problem in out future study. Second, we assume that for routes going through

two hubs, the alternative route is still required to go through the unaffected hub airport.

The main reason for doing so is to alleviate the possible impacts of rerouting at tactical

operational level to the maintenance scheduling. Certain maintenance requirements have to

be followed in airline industry. Type A maintenance check is required every 500-800 flight

hours and needs 20-50 man-hours. It can be done overnight at an airport gate or hangar.

For other types of checks (B, C, and D), the man-hours needed are much longer and many

of them have to be performed at hubs, which usually act the role of maintenance bases.

Furthermore, MA structure is adopted in designing alternative routes, regardless of the SA

or MA structure used for determining regular routes.

2.3.1 Reliable SA Model: Definition and Formulation

In a single allocation problem, every node is assigned to a single hub and all the inbound

and outbound flows of this node are routed through that hub. Let N = {0,1, ..., ∣N − 1∣} be

the set of nodes and H ⊆ N be the set of candidate hub locations for this reliable hub-and-

spoke design model, i.e., R-SAHMP. We assume that H = N throughout this chapter. Then,

a node i ∈ N , is with qi ∈ [0,1] to represent its disruption probability. We denote a flow

by its source (i) and destination (j) nodes, i.e., an i − j flow. A route of i − j flow can be

represented by a 4-tuple (i, k,m, j), where k and m represent the first and the second hubs

on the route. Unit transportation cost between a pair of nodes i and j is cij and the traffic

volume between them is wij. A discount factor of economies of scale, 0 < α < 1, is applied to

the inter-hub links. So, for i−j flow taking the route (i, k,m, j), the cost of transporting one

unit flow is Fikmj = cik + αckm + cmj. Decision variables in R-SAHMP include hub location

and allocation variable Y, route variable X and backup hub variables U and V.

Yik =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, i is assigned to hub k,

0, otherwise;
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Xikmj =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, i − j flow is routed through hubs k and m,

0, otherwise;

Uijn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, hub n is the backup hub for the first hub in the route of

i − j flow,

0, otherwise;

Vijn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, hub n is the backup hub for the second hub in the route

of i − j flow,

0, otherwise.

In our formulation, wij is used to denote the traffic volume between nodes i and j, which

is the transportable flow with both i and j functional. In other words, if one of these two

nodes fails, there will be no traffic between them. We recognize that for air transportation,

in practice wij might not be constant given that passengers might migrate from a disrupted

airport to another airport nearby to complete their critical travel plans. Nevertheless, mod-

eling such migration requires additional information that varies from airport to airport and

causes our models intractable in the designing stage. More important, to keep models general

for different hub-and-spoke networks where the migration phenomenon may not occur, we

assume that wij is a constant. We also adopt a convention in many literature (e.g., O’Kelly

et al. (1996), Pirkul and Schilling (1998), and Sohn and Park (1998)) that wij = wji. Given

this symmetric structure, in this study we design the network only considering flow from i

to j with j > i. Note that this assumption also indicates that the first backup hub for route

(i, k,m, j) will be the second one for route (j,m, k, i). Next, we present R-SAHMP that

generalizes and extends the classical SA hub-and-spoke model developed by Skorin-Kapov

et al. (1996).

min ∑
i∈N

∑
k∈H/{i}

∑
m∈H

∑
j∈N/{m}

j>i

Fikmjwij(1 − qk − qkm)Xikmj

+∑
i∈N

∑
j∈N
j>i

( ∑
m∈H/{j}

Fiimjwij(1 − qim)Xiimj
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+ ∑
k∈H/{i}

Fikjjwij(1 − qjk)Xikjj + FiijjwijXiijj)

+ρ(∑
i∈N

∑
k∈H

∑
m∈H/{k}

∑
j∈N
j>i

∑
n∈H

(FinmjwijqkXikmjUijn + FiknjwijqmXikmjVijn)

+∑
i∈N

∑
k∈H

∑
j∈N
j>i

∑
n∈H

FinnjwijqkXikkjUijn) (2.1)

s.t.

∑
m∈H

Xikmj = Yik ∀i, j > i, k (2.2)

∑
k∈H

Xikmj = Yjm ∀i, j > i,m (2.3)

∑
k∈H

Yik = 1 ∀i (2.4)

∑
k∈H

Ykk = p (2.5)

Uijk + ∑
m∈H

Xikmj ≤ Ykk ∀i, j > i, k (2.6)

∑
k∈H

Uijk = 1 − ∑
m∈H

Xiimj − ∑
m∈H

Xijmj ∀i, j > i (2.7)

Vijm + ∑
k∈H

Xikmj ≤ Ymm ∀i, j > i,m (2.8)

∑
m∈H

Vijm = 1 − ∑
k∈H

Xikjj − ∑
k∈H

Xikij ∀i, j > i (2.9)

Xikmj ∈ {0,1} ∀i, j > i, k,m; Yik ∈ {0,1} ∀i, k; Uijk, Vijk ∈ {0,1} ∀i, j > i, k. (2.10)

In the R-SAHMP, the objective function is the expected transportation cost considering

both the regular and the disrupted situations. Specifically, the first term represents the

regular transportation cost for traffic flows with both source and destination at spoke nodes.

The probability of regular transportation, given the assumption that in a hub-and-spoke

network at most one hub will fail under disruption situation, is computed as 1 − qk − qkm,

where qkm is 0 if k = m and qm otherwise. By introducing qkm in this way, one formula can

capture both cases, i.e., the route is operable with the probability 1− qk − qm if two hubs are

different and reduces to 1− qk when hubs k and m are identical. The second term represents
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the regular transportation cost for traffic flows with source or destination at a hub node. The

third term in the objective function is the cost of disruption mitigation by diverting flows

to alternative routes, which is penalized by a coefficient ρ (ρ > 1) to represent the impact of

disruption to the overall cost in this transportation network (Welman et al. (2010)).

Constraints (2.2)-(2.5) are classical constraints for the SA p-median problem (Skorin-

Kapov et al., 1996). Constraints (2.6) and (2.8) ensure that regular hubs and backup hubs

can only be the nodes chosen to be hubs and the regular hubs and the backup hubs must

be different. Constraints (2.7) and (2.9) are used to ensure that backup routes are selected

for all disrupted flows, except the cases where either the source or the destination node of a

flow is a hub.

Existing studies have approved that traditional SA hub-and-spoke model is NP-hard. The

proposed R-SAHMP problem can be reduced to the traditional one if all nodes are always

reliable, so it is also an NP-hard problem. Not only the entire problem is NP-hard, even

when all hubs are fixed, the allocation and routing problem in R-SAHMP is still NP-hard

(Sohn and Park (2000)). Nevertheless, once all hubs and spoke node allocations are fixed, the

design for regular and alternative routes is polynomially solvable. Note that R-SAHMP is an

integer quadratic program as its objective function has multiple terms that involve products

of two binary variables. Thus, we used the standard linearization method to convert it

into a linear model. We also adopted a recent linearization strategy (Chaovalitwongse et al.

(2004), Sherali and Smith (2007), and He et al. (2012)) to derive a more compact linear

reformulation of R-SAHMP. The linearized formulations of the above two methods and

computational results are presented in the Appendix A and Section 2.5, respectively.

2.3.2 Lagrangian Relaxation and Branch-and-Bound

Existing professional mixed integer programming solvers can be applied to seek solutions

of the linearized formulas of R-SAHMP. However, due to the large number of variables

and constraints in the model, it takes excessive running times (see computational results

presented in Section 2.5). Hence, a Lagrangian relaxation (LR) algorithm is developed

after exploring the structure of R-SAHMP. Compared with other algorithms or commercial

solvers, the Lagrangian relaxation algorithm often yields high-quality approximate or optimal
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solutions with much less computational time (Contreras et al., 2011b; Pirkul and Schilling,

1998). Actually, the proposed Lagrangian relaxation technique is able to directly deal with

the nonlinear R-SAHMP without linearizing the formulation. Furthermore, variable fixing

and Branch-and-Bound methods are implemented to identify an optimal solution if the

Lagrangian relaxation algorithm fails to obtain it.

2.3.2.1 Lagrangian Lower Bound

For R-SAHMP, we dualize the constraints (2.2), (2.3), (2.4), (2.6), and (2.8) with δijk,1,

δijm,2, βi, γijk,1 ≥ 0, and γijm,2 ≥ 0 as their Lagrangian multipliers, respectively. As a result,

we obtain the following relaxation:

f(δ1,δ2,β,γ1,γ2) =

min ∑
i∈N

∑
k∈H

C̄ikYik −∑
i∈N

βi

+∑
i∈N

∑
k∈H/{i}

∑
m∈H

∑
j∈N/{m}

j>i

(Fikmjwij(1 − qk − qkm) + δijk,1 + γijk,1 + δijm,2 + γijm,2)Xikmj

+∑
i∈N

∑
j∈N
j>i

∑
m∈H/{j}

(Fiimjwij(1 − qim) + δiji,1 + γiji,1 + δijm,2 + γijm,2)Xiimj

+∑
i∈N

∑
j∈N
j>i

∑
k∈H/{i}

(Fikjjwij(1 − qjk) + δijk,1 + γijk,1 + δijj,2 + γijj,2)Xikjj

+∑
i∈N

∑
j∈N
j>i

(Fiijjwij + δiji,1 + γiji,1 + δijj,2 + γijj,2)Xiijj

+∑
i∈N

∑
k∈H

∑
m∈H/{k}

∑
j∈N
j>i

∑
n∈H

ρFinmjwijqkXikmjUijn +∑
i∈N

∑
j∈N
j>i

∑
k∈H

γijk,1Uijk

+∑
i∈N

∑
k∈H

∑
m∈H/{k}

∑
j∈N
j>i

∑
n∈H

ρFiknjwijqmXikmjVijn +∑
i∈N

∑
j∈N
j>i

∑
m∈H

γijm,2Vijm

+∑
i∈N

∑
k∈H

∑
j∈N
j>i

∑
n∈H

ρFinnjwijqkXikkjUijn (2.11)
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s.t.

Contraints (2.5), (2.7), (2.9), (2.10)

Yik ≤ Ykk ∀i, k (2.12)

where

C̄ik =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βi −∑
j∈N
j>i

δijk,1 −∑
j∈N
j>i

δjik,2, if i ≠ k;

βk −∑
i∈N
i>k

δkik,1 −∑
i∈N
i<k

δikk,2 −∑
i∈N
∑
j∈N
j>i

(γijk,1 + γijk,2), otherwise.

Note that (2.12) is implied in R-SAHMP and can be derived from (2.2) and (2.6).

Since X and Y variables are not linked any more in the relaxed formulation, the problem

can be decomposed into two independent subproblems (SAsub-1 and SAsub-2). An opti-

mal solution to the relaxed problem can be obtained by solving the two subproblems and

combining their optimal solutions. The form of SAsub-1 is given below.

min {∑
i∈N

∑
k∈H

C̄ikYik −∑
i∈N

βi ∶ ∑
k∈H

Ykk = p, Yik ≤ Ykk ∀i, k, Yik ∈ {0,1} ∀i, k.}

SAsub-1 contains only the allocation variable Y and is solved by a procedure as follows.

Note that it can be completed within O(∣N∣2).

(i) For i, k (i ≠ k), set Yik = 1 if C̄ik < 0 and Yik = 0 otherwise. Compute Sk = ∑i∈N C̄ikYik,

for each k.

(ii) Sort Sk’s in ascending order, choose p of the nodes with smaller Sk, and set the cor-

responding Ykk = 1 and set the remaining Ykk’s to 0. Calculate the optimal value of

SAsub-1 by ∑k∈H SkYkk −∑i∈N βi.

(iii) For i, k (i ≠ k), set Yik to 0 if Ykk = 0.
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The SAsub-2 is provided below.

min ∑
i∈N

∑
k∈H/{i}

∑
m∈H

∑
j∈N/{m}

j>i

(Fikmjwij(1 − qk − qkm) + δijk,1 + γijk,1 + δijm,2 + γijm,2)Xikmj

+∑
i∈N

∑
j∈N
j>i

∑
m∈H/{j}

(Fiimjwij(1 − qim) + δiji,1 + γiji,1 + δijm,2 + γijm,2)Xiimj

+∑
i∈N

∑
j∈N
j>i

∑
k∈H/{i}

(Fikjjwij(1 − qjk) + δijk,1 + γijk,1 + δijj,2 + γijj,2)Xikjj

+∑
i∈N

∑
j∈N
j>i

(Fiijjwij + δiji,1 + γiji,1 + δijj,2 + γijj,2)Xiijj

+∑
i∈N

∑
k∈H

∑
m∈H/{k}

∑
j∈N
j>i

∑
n∈H

ρFinmjwijqkXikmjUijn +∑
i∈N

∑
j∈N
j>i

∑
k∈H

γijk,1Uijk

+∑
i∈N

∑
k∈H

∑
m∈H/{k}

∑
j∈N
j>i

∑
n∈H

ρFiknjwijqmXikmjVijn +∑
i∈N

∑
j∈N
j>i

∑
m∈H

γijm,2Vijm

+∑
i∈N

∑
k∈H

∑
j∈N
j>i

∑
n∈H

ρFinnjwijqkXikkjUijn (2.13)

s.t.

Constraints (2.7), (2.9)

∑
k∈H

∑
m∈H

Xikmj = 1 ∀i, j > i (2.14)

Uijk + ∑
m∈H

Xikmj ≤ 1 ∀i, j > i, k (2.15)

Vijm + ∑
k∈H

Xikmj ≤ 1 ∀i, j > i,m (2.16)

Xikmj ∈ {0,1} ∀i, j > i, k,m;Uijk, Vijk ∈ {0,1} ∀i, j > i, k, (2.17)

SAsub-2 includes the regular route variable X and the backup hub variables U and V.

Constraints (2.14), (2.15) and (2.16) are redundant in the original model. Nevertheless,

including them in SAsub-2 yields solutions that are more likely to be feasible to the original

problem and therefore strengthens the lower bound obtained from Lagrangian relaxation.

Note that the constraints in (2.14) require that each i − j flow has to go through one or two
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nodes to reach its destination; constraints in (2.15) and (2.16) ensure that for each i− j flow,

the first/second node in its backup route must be different from the first/second node of its

regular route. Note that, if a regular route is a single-hub route, so is its alternative route.

Furthermore, in SAsub-2, an optimal solution for one i− j flow, i.e., a set of X∗
ikmj, U

∗
ijn, and

V ∗
ijn, is independent of those of others. So, it is sufficient to consider each individual i − j

flow with the corresponding cost function from (2.13) and constraints from SAsub-2.

Although the cost function is nonlinear, every feasible solution has a clear combinatorial

structure. As shown in Figure 2.2(a), if i−j flow takes (i, k,m, j) as its regular route satisfying

i ≠ k and j ≠m, a cost of Fikmjwij(1− qk − qkm)+ δijk,1 + γijk,1 + δijm,2 + γijm,2 will be incurred;

if this flow takes nu (nv, respectively) as the backup hub for k (m, respectively), a cost of

ρFinmjwijqk + γijnu,1 (ρFiknjwijVijnqm + γijnv ,2, respectively) will be incurred additionally. A

similar situation on transportation cost can be observed in Figure 2.2(b) when the i− j flow

selects a single-hub regular route. Such observations motivate us to develop the following

enumeration procedure to identify an optimal solution to the i − j flow.

(i) For one pair of (k,m), i.e., a given regular route, obtain its best alternative route (or

best backup hubs) by computing all possible backup hubs that are different from k

and m and selecting the alternative routes (or a single alternative route if k =m) with

the least transportation cost. Compute the total transportation costs from both the

regular route and the alternative routes.

(ii) Repeat Step 1 for all (k,m) pairs and identify the pair that provides the least total

transportation cost. Denote that pair by (k∗,m∗) and its corresponding best backup

hubs by n∗u and n∗v .

(iii) Obtain an optimal solution to i− j flow by setting Xikmj = 1 if k = k∗ and m =m∗, and

otherwise to zero; setting Uijn = 1 if n = n∗u, and otherwise to zero; setting Vijn = 1 if

n = n∗v , and otherwise to zero.

The computational complexity of this procedure for one i−j flow is O(∣N∣4) and therefore

SAsub-2 can be solved within O(∣N∣6).
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(a) A Two-hub Route (i ≠ k, j ≠ m) and Its
Alternative Routes

(b) A Single-hub Route (k ≠ i, j) and Its Al-
ternative Route

Figure 2.2: Transportation Cost of Solutions to SAsub-2

2.3.2.2 Upper Bound and Multiplier Updating

To obtain a feasible solution as well as an upper bound, we apply a procedure similar to

the one in Pirkul and Schilling (1998) that exploits the solution of SAsub-1. Specifically, for

each node i ∈ N, its allocation will be retained if (2.4) is not violated. For the node with

allocation infeasible to (2.4), given that hubs are already fixed after solving SAsub-1, we

select the lowest cost allocation. After determining Y variables, the regular route for each

i − j flow is determined and its alternative routes can also be obtained by evaluating hubs

not in the regular route and selecting the best ones.

We apply the classical subgradient algorithm described in Fisher (2004) to iteratively

update the Lagrangian multipliers and to search for the best lower bound. Parameters such

as step-size multiplier and maximum number of iterations are usually set up while applying

the algorithm. The values of such parameters for the experimental study are described in

Section 2.5.1.

2.3.2.3 Variable Fixing

Variable fixing is an approach that uses both primal information from a feasible solution

and dual information from Lagrangian multipliers to fix some variables in Lagrangian solution

procedure. It has been proven to be effective in reducing search space and computation time(

Snyder and Daskin (2005) and Contreras et al. (2011b)).

Assume that we have the current best upper bound UB, (δ1,δ2,β,γ1,γ2) are the cur-

rent Lagrangian multipliers, and (Y∗,X∗) is the corresponding optimal solution to the La-
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grangian relaxed problem. Let f(δ1,δ2,β,γ1,γ2∣C) be the optimal objective function value

for (δ1,δ2,β,γ1,γ2) under some condition C. Then, we have the following results.

Proposition 1 When UB is strictly greater than LB,

(i) if Y ∗
kk = 1 and f(δ1,δ2,β,γ1,γ2∣Ykk = 0) > UB for some k, Ykk = 1 in any optimal

solution; (ii) if Y ∗
kk = 0 and f(δ1,δ2,β,γ1,γ2∣Ykk = 1) > UB for some k, we have Ykk = 0 in

any optimal solution.

Proof. We provide the proof for (i). Results in (ii) can be proven using similar arguments.

Note that f(δ1,δ2,β,γ1,γ2∣Ykk = 0) is a lower bound to R-SAHMP with a spoke node

located in k for the given Lagrangian multipliers (δ1,δ2,β,γ1,γ2). So, if

f(δ1,δ2,β,γ1,γ2∣Ykk = 0) > UB,

any solution to R-SAHMP with a spoke node in k will generate more cost than the current

best feasible solution. Therefore, we have Ykk = 1 in any optimal solution to R-SAHMP.

We mention that although more variable fixing rules can be developed, such as rules for

the case of Y ∗
ik = 0, they will either be time-consuming to implement or have less impact on

the Lagrangian relaxation. So, we only perform variable fixing procedure on Y ∗
kk variable for

each k with the best multipliers ever found once the Lagrangian procedure is terminated.

2.3.2.4 Branch-and-Bound Strategies

If the subgradient method reaches the maximum number of iterations and the gap is

still larger than the tolerance, the Lagrangian relaxation algorithm discussed in the previous

section will be embedded in a Branch-and-Bound framework to further reduce the gap.

The Branch-and-Bound technique with Lagrangian relaxation has been implemented in

reliable facility location models (Cui et al. (2010), Snyder and Daskin (2005), and Li and

Ouyang (2011)). The results imply that branching on facility location variables is sufficient

for determining an optimal network structure (Cui et al. (2010), Snyder and Daskin (2005),

and Li and Ouyang (2011)). However, this is not the case for R-SAHMP. Note that for a
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classical single allocation hub-and-spoke model, given fixed hubs, the remaining problem on

spoke node allocation has been proven to be NP-hard. Thus, a more sophisticated two-stage

Branch-and-Bound framework is developed and implemented in a width-first manner.

The first stage Branch-and-Bound is similar to that used for reliable facility location mod-

els in Snyder and Daskin (2005), where branching is made for Ykk (hub location) variables.

At each Branch-and-Bound node, the hub location variable Yk∗k∗ selected for branching is the

unfixed open hub with the greatest assigned flow (without considering alternative routes),

i.e.,

k∗ = arg max
k∈N

{∑
i∈N
∑
j∈N
j>i

∑
m∈H

wijXikmj +∑
i∈N
∑
j∈N
j>i

∑
m∈H/{k}

wijXimkj}.

Yk∗k∗ is forced to be 0 and then 1. The first stage Branch-and-Bound process will be termi-

nated either with an optimal (including ε-optimal) solution or with p hubs forced to open

(or equivalently, ∣N∣ − p hubs forced to close).

In the latter case, the second stage Branch-and-Bound method is applied to close the gap.

Branching is made for Yik (allocation) variables for spoke node i. First, the level of violation,

vi, for spoke node i is computed. Given the current solution to the relaxed problem, the total

number of violations to constraints in (2.2), (2.3), and (2.4) for each i are then calculated.

The spoke node with the largest violation level vi, say i∗, is selected for branching. Then,

we partition the hub set H (note that hub locations are already determined) into two sets

H1 and H2 and create two nodes. Correspondingly, constraint ∑k∈H1
Yi∗k = 1 is added to the

left-hand node and constraint ∑k∈H2
Yi∗k = 1 to the right-hand node. Once hub and spoke

node allocation decisions are made, the remaining problem, including regular route and

alternative route decisions, is polynomially solvable, which implies that no further branching

is necessary.

During the whole Branch-and-Bound procedure, the set of Lagrangian multipliers that

yields the smallest gap at a given node is passed to its child nodes as initial multipliers.

2.4 Reliable Multiple Allocation Hub-and-spoke Model

In this section, we consider the reliable MA-HLP model (R-MAHMP). Compared with

the single allocation model, the multiple allocation model does not restrict flows from one
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source (or to one destination) to route through the same hub. As a result, we do not need

to introduce spoke-hub allocation variables but simply introduce binary variables to define

hubs.

2.4.1 Reliable MA Model: Definition and Formulation

The formulation for R-MAHMP is given below, most constraints reflect the requirements

similar to those in R-SAHMP.

min ∑
i∈N

∑
k∈H/{i}

∑
m∈H

∑
j∈N/{m}

j>i

Fikmjwij(1 − qk − qkm)Xikmj

+∑
i∈N

∑
j∈N
j>i

( ∑
m∈H/{j}

Fiimjwij(1 − qim)Xiimj

+ ∑
k∈H/{i}

Fikjjwij(1 − qjk)Xikjj + FiijjwijXiijj)

+ ρ(∑
i∈N

∑
k∈H

∑
m∈H/{k}

∑
j∈N
j>i

∑
n∈H

(FinmjwijqkXikmjUijn + FiknjwijqmXikmjVijn)

+∑
i∈N

∑
k∈H

∑
j∈N
j>i

∑
n∈H

FinnjwijqkXikkjUijn) (2.18)

s.t.

∑
k∈H

Xikjj = Yj ∀i, j > i (2.19)

∑
m∈H

Xiimj = Yi ∀i, j > i (2.20)

∑
i∈N

Yi = p (2.21)

∑
k∈H

∑
m∈H

Xikmj = 1 ∀i, j > i (2.22)

Uijk + ∑
m∈H

Xikmj ≤ Yk ∀i, j > i, k (2.23)

∑
k∈H

Uijk = 1 − ∑
m∈H

Xiimj − ∑
m∈H

Xijmj ∀i, j > i (2.24)
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Vijm + ∑
k∈H

Xikmj ≤ Ym∈H ∀i, j > i,m (2.25)

∑
m∈H

Vijm = 1 − ∑
k∈H

Xikjj − ∑
k∈H

Xikij ∀i, j > i (2.26)

Xikmj ∈ {0,1} ∀i, j > i, k,m; Yk ∈ {0,1} ∀k; Uijk, Vijk ∈ {0,1} ∀i, j > i, k (2.27)

we use a binary variable Yk to indicate whether k is a hub. Constraints (2.19)-(2.20) imply

that if i (or j) is a hub, it must be the first (or the second) hub in the routes of all flows

from i (or to j). Constraints (2.22) require that each i − j flow must have a route through

hub(s).

Compared to the R-SAHMP, R-MAHMP is much simpler. First, Campell (1994) states

that, for the classical MA-HLP, since there is no capacity restriction on links, each i− j flow

should be routed through the least-cost hub pair. So one optimal solution would always

force the X variables to be 1 or 0 and therefore there is no need to restrict X variables to be

binary. Second, MA-HLP is polynomial solvable if p is fixed. In fact, these two observations

still hold in R-MAHMP. For a given p, the R-MAHMP problem is polynomially solvable,

and there exists one optimal solution such that all the flow variables Xikmj take either 0 or

1 for all i, j > i, k, and m.

2.4.2 Solution Methods for R-MAHMP

Note that the two linearization approaches described in Appendix A could be applied to

R-MAHMP with little modification. So, we only describe the development of a Lagrangian

relaxation algorithm for R-MAHMP. We dualize constraints linking the route variables X and

the hub variables Y and solve two resulting subproblems separately. By dualizing constraints

in (2.19), (2.20), (2.23), and (2.25) with Lagrangian multipliers δij,1, δij,2, γijk,1 ≥ 0, and

γijm,2 ≥ 0, we obtain subproblems MAsub-1 and MAsub-2 as follows.

min{∑
k∈H

C̄kYk ∶ ∑
k∈H

Yk = p, Yk ∈ {0,1} ∀k}
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where C̄k = −∑i∈N,i<k δik,1 −∑i∈N,i>k δki,2 −∑i∈N∑j∈N,j>i(γijk,1 + γijk,2). Clearly, MAsub-1 can

be solved by sorting variables’ coefficients and selecting smallest p of them.

min ∑
i∈N

∑
k∈H/{i}

∑
m∈H

∑
j∈N/{m}

j>i

(Fikmjwij(1 − qk − qkm) + γijk,1 + γijm,2)Xikmj

+∑
i∈N

∑
j∈N
j>i

∑
m∈H/{j}

(Fiimjwij(1 − qim) + δij,2 + γiji,1 + γijm,2)Xiimj

+∑
i∈N

∑
j∈N
j>i

∑
k∈H/{i}

(Fikjjwij(1 − qjk) + δij,1 + γijk,1 + γijj,2)Xikjj

+∑
i∈N

∑
j∈N
j>i

(Fiijjwij + δiji,1 + γiji,1 + δijj,2 + γijj,2)Xiijj

+∑
i∈N

∑
k∈H

∑
m∈H/{k}

∑
j∈N
j>i

∑
n∈H

ρFinmjwijqkXikmjUijn +∑
i∈N

∑
j∈N
j>i

∑
k∈H

γijk,1Uijk

+∑
i∈N

∑
k∈H

∑
m∈H/{k}

∑
j∈N
j>i

∑
n∈H

ρFiknjwijqmXikmjVijn +∑
i∈N

∑
j∈N
j>i

∑
m∈H

γijm,2Vijm

+∑
i∈N

∑
k∈H

∑
j∈N
j>i

∑
n∈H

ρFinnjwijqkXikkjUijn (2.28)

s.t.

Constraints (2.22), (2.24), (2.26), (2.27)

Uijk + ∑
m∈H

Xikmj ≤ 1 ∀i, j > i, k (2.29)

Vijm + ∑
k∈H

Xikmj ≤ 1 ∀i, j > i,m (2.30)

similar to SAsub-2, constraints (2.29) and (2.30) are supplied to get a tighter lower bound.

Again, MA-sub-2 can be solved by using the combinatorial structure of each single i−j flow.

To obtain a feasible solution, as well as an upper bound, we take advantage of the result from

MAsub-1 to fix hubs. Then, an optimal solution for those given hubs can be determined by

deriving an optimal route for each individual i − j flow.

Lagrangian multipliers are updated iteratively by applying the classical subgradient al-

gorithm. Also, a variable fixing strategy and a Branch-and-Bound technique which consider
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only hub location variables, are developed and implemented. Given that optimal routing

decisions can be obtained in polynomial time if all hubs are fixed, this Branch-and-Bound

procedure is guaranteed to be completed by branching on hub location variables only, which

has a similar complexity to that of reliable facility location models in Snyder and Daskin

(2005), Li and Ouyang (2011), and Cui et al. (2010)

2.5 Computational Experiments

2.5.1 Data and Design of Experiments

We test our algorithms on the widely-used CAB data set (O’Kelly, 1987), which con-

tains the distance between two nodes (interpreted as the transportation cost c) and origin-

destination traffic flow w.We set the disruption rate qi to a random number within [0.01,0.05]

for i ∈ N.

We consider 36 combinations structured from setting the number of nodes ∣N∣ = 10,15,20,

25, the number of hubs p = 3,5,7, and inter-hub transportation cost discount factor α =

0.3,0.5,0.7. Because rerouting flows will cause more operations and much longer waiting

times, we set ρ to 2 to represent this effect (Welman et al., 2010).

The aforementioned instances provide a test bed for both R-SAHMP and R-MAHMP

models. We set the optimality tolerance, ε, to 0.1% for all solution methods, including the

off-the-shelf MIP solver CPLEX 12.1 that is adopted for benchmark. For the Lagrangian

relaxation/Branch-and-Bound algorithm, the initial values of all multipliers are set to zero.

The step-size multiplier, ∆, is set to 6; the maximum number of iterations allowed to obtain

an improvement of the lower bound is set to 50, i.e., when 50 consecutive iterations fail to

improve the lower bound, ∆ will be halved and the Lagrangian multipliers will be reset to

the values used to get the best lower bound. The maximum number of iterations at the root

node in the Branch-and-Bound tree is set to 3000 and at a child node it is set to 200. In

the implementation of subgradient method, we terminate the Lagrangian procedure if one

of the following conditions is met: (i) all Lagrangian multipliers are zero, which implies the

current solution is proven to be optimal; (ii) the difference between the upper and lower

bounds is below a threshold value ε, i.e., an ε-optimal solution is found; (iii) the maximum

number of iterations, 3000, is reached. If (iii) happens, the variable fixing procedure starts,
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then if applying variable fixing fails to reduce the gap to less than ε, Branch-and-Bound is

embedded into the Lagrangian relaxation algorithm. The maximum computation time is set

as 3600 seconds. The problem is reported as unsolvable if no optimal solution is obtained

within 3600 seconds.

All algorithms are implemented in C++, and all instances are tested on a Dell Optiplex

760 desktop computer (Intel Core 2 Duo CPU, 3.0GHz, 3.25GB of RAM) in Windows XP

environment.

2.5.2 Performance of Lagrangian Relaxation and Branch-and-Bound

Table 2.1 summarizes the computational results of our Lagrangian relaxation and Branch-

and-Bound methods for instances of R-SAHMP and R-MAHMP. The column marked Iter.

indicates the total number of Lagrangian iterations in all Branch-and-Bound nodes; the

column marked Gap(%) provides the smallest relative gap we have achieved within the time

limit. The column BB Nodes shows the total number of nodes evaluated in the procedure

of Branch-and-Bound (excluding the root node); the column marked Time(s) presents the

total computational time in seconds for obtaining optimal solution, if some instances cannot

be solved due to time limit or memory issue, we use T or M, respectively, to represent the

reason.

Similarly, Table 2.2 presents computational results of CPLEX 12.1 used to solve two types

of linearized formulations, i.e., those obtained by the standard and a compact linearization

methods, for R-SAHMP and R-MAHMP. Detailed derivations and concrete linear formula-

tions are presented in the appendix. Results of instances with ∣N∣ > 15 are omitted because

CPLEX fails to deal with larger instances within 3600 seconds.

The outcomes of the computational experiments show that: (i) The commercial solver

CPLEX is of a very limited capability to solve practical instances with more than 10 nodes.

With compact linearization formulation, the solver can provide feasible solutions; (ii) the

Lagrangian relaxation algorithm with variable fixing and Branch-and-Bound is efficient in

solving reliable models. All 72 instances can be solved to optimality within 1000s; (iii)

the Branch-and-Bound technique is necessary to derive optimal solutions for quite a few

instances. This observation clearly shows that reliable models are more challenging than the
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Table 2.1: Computation of R-SAHMP and R-MAHMP

∣N∣ p α
R-SAHMP R-MAHMP

Iter. BB Nodes Gap(%) Time(s) Iter. BB Nodes Gap(%) Time(s)
3 0.3 250 0 0.099 1.3 878 2 0.100 2.6
5 0.3 565 0 0.100 3.7 1057 0 0.090 3.5
7 0.3 184 0 0.098 1.8 604 0 0.100 1.4
3 0.5 257 0 0.098 4.6 830 2 0.000 2.6

10 5 0.5 1902 6 0.095 17.6 866 0 0.097 2.3
7 0.5 184 0 0.099 1.7 587 0 0.099 1.5
3 0.7 182 2 0.099 1.5 607 2 0.070 2.7
5 0.7 1515 4 0.096 5.8 731 0 0.098 1.8
7 0.7 323 0 0.098 2.7 561 0 0.095 2.8
3 0.3 1015 2 0.016 15.0 1455 4 0.000 20.0
5 0.3 1353 4 0.099 27.3 596 0 0.097 4.3
7 0.3 1722 6 0.099 30.4 716 0 0.100 8.4
3 0.5 1362 4 0.095 24.4 910 4 0.100 18.4

15 5 0.5 1701 6 0.080 31.3 563 0 0.096 2.3
7 0.5 1313 6 0.090 21.7 635 2 0.100 15.7
3 0.7 980 2 0.099 21.6 1958 8 0.098 27.6
5 0.7 1540 4 0.099 31.4 573 0 0.092 3.4
7 0.7 512 0 0.099 13.7 564 2 0.099 12.7
3 0.3 482 0 0.098 32.3 1979 6 0.000 92.0
5 0.3 553 0 0.099 37.6 608 2 0.000 36.1
7 0.3 118 0 0.100 8.1 581 0 0.100 33.2
3 0.5 1762 6 0.098 116.1 1441 6 0.000 68.1

20 5 0.5 1584 4 0.099 107.8 605 0 0.100 26.6
7 0.5 589 0 0.099 63.7 971 4 0.100 77.8
3 0.7 3925 16 0.097 177.6 1660 8 0.044 82.8
5 0.7 3871 14 0.099 188.2 722 0 0.100 38.4
7 0.7 2095 8 0.097 138.8 561 0 0.100 28.9
3 0.3 2020 6 0.098 365.3 2845 8 0.000 338.0
5 0.3 965 2 0.100 221.3 1709 6 0.100 268.8
7 0.3 812 2 0.100 239.2 1601 6 0.000 257.5
3 0.5 1745 6 0.097 361.2 2914 10 0.092 375.2

25 5 0.5 2774 10 0.099 435.5 727 0 0.100 97.7
7 0.5 201 0 0.082 33.0 1587 8 0.100 323.4
3 0.7 765 4 0.076 121.7 3313 12 0.000 416.1
5 0.7 7318 34 0.096 953.8 3126 12 0.099 457.8
7 0.7 879 2 0.100 249.2 613 0 0.100 31.2
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Table 2.2: Solver Performance for R-SAHMP and R-MAHMP

∣N∣ p α
R-SAHMP R-MAHMP

StdLinear CptLinear StdLinear CptLinear
Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%)

3 0.3 33.7 0.032 T 0.514 641.1 0.100 1456.7 0.100
5 0.3 24.5 0.047 T 1.827 3516.3 0.100 T 1.896
7 0.3 5.2 0.000 2.2 0.000 138.4 0.100 4.4 0.100
3 0.5 40.4 0.000 T 2.069 343.5 0.099 T 0.321

10 5 0.5 35.3 0.000 T 3.414 T 0.164 2041.3 0.000
7 0.5 7.1 0.006 4.5 0.094 520.9 0.100 76.5 0.100
3 0.7 50.1 0.000 T 2.007 407.6 0.100 1335.4 0.100
5 0.7 39.2 0.010 T 1.660 M 0.760 T 1.951
7 0.7 7.6 0.000 19.7 0.099 M 0.330 M 0.740
3 0.3 M NA T 4.030 M 16.360 T 4.440
5 0.3 M NA M 5.070 M 14.480 T 5.441
7 0.3 M NA T 4.789 M 18.660 T 3.669
3 0.5 M NA T 3.729 M 11.650 T 4.531

15 5 0.5 M NA M 5.340 M 14.960 T 4.620
7 0.5 M NA T 4.020 M 13.560 T 3.117
3 0.7 M NA T 4.907 M 10.110 T 3.949
5 0.7 M NA M 4.560 M 9.770 T 3.723
7 0.7 M NA T 3.480 M 9.600 T 2.662

classical ones for which study presented in Pirkul and Schilling (1998) shows that Lagrangian

relaxation method itself is sufficient to solve CAB instances; (iv) comparing reliable SA and

MA models, the former often involves more Branch-and-bound nodes and longer computation

times, which also confirms that the former one is of a higher complexity level than the latter

one.

2.5.3 Analysis and Discussion on System Design and Performance

In this section, we discuss the impact of reliable design paradigm on the system configu-

rations and performance. The network configurations are compared with those determined

by the classical hub-and-spoke models, which actually are special cases of the proposed

R-SAHMP and R-MAHMP with the disruption probability q=0.

2.5.3.1 Impact of Hub Unavailability on System Design

Hub locations and spoke node allocations of reliable models could be different from those

of classical models. Figure 2.3 demonstrates a case with ∣N∣ = 25 (their associated disruption

probabilities are presented in Table B.1 in the appendix), p = 5, and α = 0.7. Note that

with classical hub-and-spoke network design, Philadelphia is selected as one of the hubs.

Nevertheless, when the reliability issue is considered in the design, this hub is replaced by

New York, and the spoke nodes in the service region of Philadelphia are re-allocated to New

York as well.

28



(a) Configuration from Classical Model (b) Configuration from Reliable Model

Figure 2.3: Optimal System Configurations in Different SA Models

Expected numbers of served passengers are calculated as the performance metrics and

compared for different network configurations. It is a better measurement of airlines ser-

vice quality for this study because the objective functions of reliable hub-and-spoke network

models include the costs under both normal and disruption conditions which make them

incomparable with the objective functions from classical models that only count the costs

under normal condition. The following formulas are used to calculate the expected num-

bers of served passengers of classical (Psgc) and reliable hub-and-spoke networks (Psgr)

respectively.

Given the disruption probabilities presented in Table B.1, for the particular case discussed

in this subsection, the classical network configuration is expected to transport 4,126,900

passengers and the reliable one 4,270,000 passengers (by both regular and alternative routes)

with a 3.47% improvement. In fact, we want to highlight that, even without considering

backup hubs and alternative routes, the derived reliable network system can transport more

passengers (4,127,250) just by its regular routes than the classical network configuration.

Such an observation indicates that it is necessary to consider the availability issue of network

components when we design the network system for better performance.
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Table 2.3: Comparison of Served Passengers

SA model MA model

∣N∣ p Classical Reliable Classical Reliable
Psgc Psgr Improvement(%) Psgc Psgr Improvement(%)

10
3 484653 499513 3.066 490297 499513 1.845
5 487181 499513 2.531 494180 499513 1.068
7 494730 499513 0.967 495343 499513 0.835

15
3 1155060 1182470 2.373 1162180 1182470 1.716
5 1149840 1182470 2.838 1164140 1182470 1.550
7 1154940 1182470 2.384 1169760 1182470 1.075

20
3 2781810 2877300 3.433 2820550 2877300 1.972
5 2801900 2877300 2.691 2832790 2877300 1.547
7 2803800 2877300 2.621 2845150 2877300 1.117

25
3 4135680 4270000 3.248 4163530 4270000 2.493
5 4126900 4270000 3.467 4166670 4270000 2.420
7 4133240 4270000 3.309 4210840 4270000 1.385

Psgc = ∑
i∈N

∑
k∈H/{i}

∑
m∈H

∑
j∈N/{m}

j>i

wij(1 − qk − qkm)Xikmj

∑
i∈N

∑
j∈N
j>i

( ∑
m∈H/{j}

wij(1 − qim)Xiimj + ∑
k∈H/{i}

wij(1 − qjk)Xikjj +wijXiijj) (2.31)

Psgr = Psgc +∑
i∈N

∑
j∈N
j>i

∑
k∈H

∑
m∈H/{k}

∑
n∈H

wijqkXikmjUijn

+∑
i∈N

∑
j∈N
j>i

∑
k∈H

∑
m∈H/{k}

∑
n∈H

wijqmXikmjVijn

+∑
i∈N

∑
j∈N
j>i

∑
k∈H

∑
n∈H

wijqkXikkjUijn (2.32)

2.5.3.2 Performance of Reliable Hub-and-spoke Networks

The expected numbers of served passengers of reliable models and those of the classical

models are further compared for more scenarios. Results are listed in Table 2.3. In the

table, the performance measures (Psgc and Psgr) for the classical and reliable model are

presented with numerical values and the relative improvements (denoted by Improvement)

achieved by the reliable model are shown in percentages. In all experiments, the inter-hub

transportation cost discount factor α is set to 0.7.
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Note that since our model can handle any single hub disruption, the number of served

passengers is exactly the total transportable flow ∑i∈N∑j∈N,j>iwij, which is constant for

each fixed ∣N∣. It is observed that the reliable network always transports more passengers

compared to classical model, with the magnitude increasing with the growth of the network

scale ∣N∣. Therefore, in terms of the expected number of served passengers, the reliable

models clearly outperform the classical ones.

2.5.3.3 Verification with Correlated Multiple Disruptions

One assumption we made in developing reliable models is that no more than one hub

will fail at any time. In some extreme cases, such an assumption may not valid and multiple

failures could occur simultaneously. So, in this section, we perform numerical experiments

to evaluate the influence of the single disruption (SD) assumption. We study the optimal

network configurations obtained from our models in an environment that correlated multiple

disruption (MD) may occur. Letting the random variable Dk be the status for any hub k,

i.e., Dk = 1 when hub k is down and 0 otherwise, we use the following equations to recalculate

the expected number of passengers to be served with possible multiple hub disruptions in

the real situation.

Psg′c = ∑
i∈N

∑
k∈H/{i}

∑
m∈H

∑
j∈N/{m}

j>i

wijP (Dk = 0,Dm = 0)Xikmj

∑
i∈N

∑
j∈N
j>i

( ∑
m∈H/{j}

wij(1 − qim)Xiimj + ∑
k∈H/{i}

wij(1 − qjk)Xikjj +wijXiijj), (2.33)

Psg′r = Psg′c

+∑
i∈N

∑
j∈N
j>i

∑
k∈H

∑
m∈H/{k}

∑
n∈H

wijP (Dk = 1,Dm = 0,Dn = 0)XikmjUijn

+∑
i∈N

∑
j∈N
j>i

∑
k∈H

∑
m∈H/{k}

∑
n∈H

wijP (Dk = 0,Dm = 1,Dn = 0)XikmjVijn

+∑
i∈N

∑
j∈N
j>i

∑
k∈H

∑
n∈H

wijP (Dk = 1,Dn = 0)XikkjUijn. (2.34)
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Figure 2.4: Curve of Correlation between Dk and Dm

Given that P (Dk = 1) = qk for any hub k, by setting a correlation corr(Dk,Dm) of any pair

of random variables (Dk, Dm) and assuming a relationship between P (Dm = 0,Dn = 0∣Dk = 1)

and P (Dm = 0,Dn = 0) we can obtain the probabilities in (2.33) and (2.34). Specifically, we

want the correlation between given nodes k and m decreases as the distance ckm grows, so we

choose corr(Dk,Dm) = e−Γ1x where Γ1 is a positive constant. In order to avoid the situation

in which the correlation decreases too fast, Γ1 is set to 1
200 (see Figure 2.4). Note that under

this correlation assumption, the geographically close nodes can have high correlations. For

instance, corr(D5,D8) = 0.624 (Cleveland and Detroit). Based on the correlation function,

we can derive the required P (Dk = 0,Dm = 0) and P (Dk = 1,Dn = 0). For the probabilities

involving three nodes like P (Dk = 1,Dm = 0,Dn = 0) we further assume that P (Dm = 0,Dn =

0∣Dk = 1) = P (Dm = 0,Dn = 0)(1 − e−
ckm+ckn

2

Γ2
), i.e., P (Dm = 0,Dn = 0∣Dk = 1) is related to

but smaller than P (Dm = 0,Dn = 0) and also determined by the average distance ckm+ckn
2 ,

then P (Dk = 1,Dm = 0,Dn = 0) can be easily calculated. See Appendix C for details. We

mention that by changing the form of the correlation function, we can even model negative

correlation. Therefore, (2.33) and (2.34) provide us a useful tool to evaluate a hub-and-spoke

network in the real practice in which correlated multiple node failures may occur.

First, the relative decrease of expected served passengers with respect to that under

the single disruption assumption is listed in the column “Change(%)” of Table 2.4. It is

easy to observe that, in terms of expected served passengers, the influence of the multiple
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hub disruptions to the system performance is small (all less than 0.5%). Next, expected

served passengers of the reliable model and the classical model under multiple disruptions

are computed and listed in Table 2.5. According to the results, proposed reliable models

outperform the classical ones under correlated multiple disruptions as well.

Table 2.4: Relative Change of Passengers with Different Assumptions

SA model MA model

∣N∣ p SD MD Change(%) SD MD Change(%)

10
3 499513 497023 -0.498 499513 497804 -0.342
5 499513 497444 -0.414 499513 498744 -0.154
7 499513 498563 -0.190 499513 498853 -0.132

15
3 1182470 1181630 -0.071 1182470 1181060 -0.119
5 1182470 1179170 -0.279 1182470 1179760 -0.229
7 1182470 1179450 -0.255 1182470 1180440 -0.172

20
3 2877300 2871970 -0.185 2877300 2874430 -0.100
5 2877300 2873540 -0.131 2877300 2874820 -0.086
7 2877300 2870280 -0.244 2877300 2873950 -0.116

25
3 4270010 4262770 -0.170 4270000 4263220 -0.159
5 4270000 4263040 -0.163 4270000 4265340 -0.109
7 4270000 4262290 -0.181 4270000 4264660 -0.125

Table 2.5: Performance of Reliable Models with Multiple Disruption Assumption

SA model MA model

∣N∣ p Classical Reliable Classical Reliable
Psg′c Psg′r Improvement(%) Psg′c Psg′r Improvement(%)

10
3 488612 497023 1.721 490613 497804 1.466
5 491128 497444 1.286 494187 498744 0.922
7 494733 498563 0.774 496130 498853 0.549

15
3 1155140 1181630 2.293 1163250 1181060 1.531
5 1157080 1179170 1.909 1164630 1179760 1.299
7 1162000 1179450 1.502 1171440 1180440 0.768

20
3 2783080 2871970 3.194 2828600 2874430 1.620
5 2802660 2873540 2.529 2833540 2874820 1.457
7 2805300 2870280 2.316 2846600 2873950 0.961

25
3 4137710 4262770 3.022 4164820 4263220 2.363
5 4129250 4263040 3.240 4182190 4265340 1.988
7 4183440 4262290 1.885 4217820 4264660 1.111

Finally, a sensitivity analysis of failure rates on system configurations is conducted both

for classical and reliable models. Assuming that all nodes have the same hub disruption

probability, we investigate the impact of small variation in failure rate q on the aforemen-

tioned performance measures, Psg
′

c and Psg
′

r. Both low (q = 0.009) and high probability

scenarios (q = 0.04) are considered for multiple disruption scenarios. In Table 2.6, numerical

results for ∣N∣ = 25, p = 3,5,7, and α = 0.7 are presented, with the columns Psg
′

c and Psg
′

r
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representing the expected number of passengers of the corresponding network configuration

with initial hub failure rates and the column Change(%) representing the percentage change

from Psg
′

c to Psg
′

r when q is increased by 0.001 while keeping the network configuration

fixed.

A clear observation is that the reliable model is much less sensitive than the classical

model to the variations of hub availability. The reliable networks have a higher survivability

and are more robust to disruptions. Such observations again demonstrate the importance of

taking into account hub unavailabilities in designing robust hub-and-spoke networks.

Table 2.6: Sensitivity Analysis of Failure Rates Under Multiple Disruptions

Model p q
Classical Reliable

Psg
′

c Change(%) Psg
′

r Change(%)

SA

3
0.009 4226770 -0.114 4268530 -0.005
0.04 4079250 -0.116 4258290 -0.011

5
0.009 4236470 -0.088 4269210 -0.003
0.04 4122120 -0.089 4262140 -0.008

7
0.009 4239740 -0.079 4267870 -0.006
0.04 4136310 -0.080 4256210 -0.011

MA

3
0.009 4248990 -0.055 4269440 -0.002
0.04 4176820 -0.056 4264540 -0.005

5
0.009 4250050 -0.052 4269560 -0.002
0.04 4181600 -0.053 4265030 -0.005

7
0.009 4250620 -0.051 4268440 -0.005
0.04 4184070 -0.051 4259930 -0.008

2.5.3.4 Application of Proposed Reliable Models

The recent merger between United and Continental Airlines brings the new United Air-

lines (UA) eight domestic hubs. The hub at Cleveland Hopkins Airport shares a great

functional similarity with the hub at Chicago O’Hare and is expected to be closed to save

cost by industrial experts (Grossman (2010)). In this section, we apply the proposed reliable

models to UA network and evaluate different network configurations in a quantitative way.

Our analysis uses the proposed reliable MA network with CAB data set under the correlated

multiple disruption assumption with current eight hubs in UA. Parameter q is shown in

Table B.1, ∣N∣ is set as 25 and α = 0.7. We evaluate two performance measurements, i.e., the

expected number of served passengers and the expected transportation cost, under different

single hub closing options. We point out that our study is simply for demonstration as UA’s

coverage and traffic flows may be very different from those from CAB data set.
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(a) Results for q in Table B.1 (b) Results for q in Table B.1 with q5 =
0.025

Figure 2.5: Relative Changes of Passengers and Transportation Cost

We first compute the impact of closing Cleveland and obtain corresponding results: the

expected number of served passengers is 4.25603× 106 and the expected transportation cost

is 3.54629 × 109. Then, we compute results of closing any of other hubs and calculate the

differences compared with the result of closing Cleveland. The outcomes are presented in

Figure 2.5. For example, closing the hub in New York will result in 4.255 × 106 served

passengers and a transportation cost of 3.71088 × 109, which are 1030 less passengers and

1.6459× 108 more cost compared to the performance of closing the Cleveland hub (as shown

in Figure 2.5(a)).

It is observed that the disruption probability of Cleveland (q5) is relatively high in Table

B.1 (0.047 in the range of 0.012 to 0.050 for all 25 nodes). A different scenario with q5 equal to

0.025 is evaluated and the corresponding results are presented in Figure 2.5(b). We observe

that, from the perspective of transportation cost, the hub in Cleveland is always the optimal

choice to be closed. This quantitative analysis endorses the opinion from the industrial

expert. Nevertheless, if the number of served passengers is of a higher priority, closing the

hub at Washington DC becomes a better option. Although no current information of UA but

the CAB data set is used, this quantitative analysis demonstrates that the proposed reliable

models and algorithms can be used to provide decision support to the management of airlines

to re-structure their networks. Similarly, they can be used by airlines for identifying strategic

partners/alliance to hedge against disruptions and achieve their desired operational goals.
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2.6 Conclusion

In this study, we construct reliable single and multiple allocation hub-and-spoke models

that generalize their classical counterparts. Our models seek to build hub-and-spoke systems

with backup hubs and alternative routes to better hedge against various disrupted situations

in practice. Due to the complexity of the reliable models, we develop a set of easy-to-

implement Lagrangian relaxation/Branch-and-Bound algorithms that can compute optimal

solutions efficiently. Computational study demonstrates the effectiveness of these algorithms,

as well as the superiority of the proposed models to classical models in terms of serving

passengers and being robust subject to the variations of hub failure rates.

To the best of our knowledge, our work is the first analytical study on reliable hub-and-

spoke network design problem. It theoretically extends the existing literature on reliable

network design and also has a clear practical impact on transportation and telecommunica-

tions systems. The proposed models can be slightly modified to deal with different situations,

such as just allowing a subset of nodes being chosen to be hubs and allowing a subset of flows

to be rerouted. Therefore, they are powerful decision support tools for system designers to

derive optimal system configuration with a desired trade-off among performance measures.

Nevertheless, the proposed models have significant caveats that need to be addressed

in future research. Although it is demonstrated that the resulted network settings from

proposed models outperform those from classical models under correlated multiple disruption

scenarios, explicitly including multiple disruption into mathematical modeling is a desire and

should be considered in future research. Furthermore, more complicated issues in practice,

such as congestion effect, should also be taken into account.
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3 Extended Reliable Hub-and-spoke System Design

3.1 Introduction and Previous Works

In this chapter, we conduct a deeper research of the reliable hub-and-spoke network on the

basis of the work done in Chapter 2. Specifically, multiple node failures and hub congestions

will be considered.

Chapter 2 embraced the single random hub failure in the hub-and-spoke system de-

sign. Although multiple hub failures rarely happen in the real world, the single disruption

assumption is restrictive. Neglecting the multiple simultaneous hub failures may lead to a

suboptimal network configuration under adverse weather or other extreme conditions. More-

over, in order to deal with the real applications of the hub-and-spoke system, more realistic

features should be considered. For instance, a large volume of traffic is often required by

an interhub link to maintain the economies of scale, while consolidating flows at hubs will

lead to congestions. Take the air transportation industry for example, it is estimated that

airport congestion costs US economy $32.9 billion in 2007 (Pita et al., 2012). Federal Avi-

ation Administration (FAA) forecasts that the total number of US airline passengers will

reach 1 billion in 2024 (Price, 2014), so the congestion effect will become more and more

significant in the following years. Unfortunately, this main side effect is seldom studied in

the hub-and-spoke system literature primarily because the congestion is normally modeled

as a nonlinear function of the traffic flow and the introduction of nonlinear terms will cause

the formulation highly difficult to solve. de Camargo et al. (2009b) designs the multiple

allocation hub-and-spoke system with hub congestion, generalized Benders decomposition is

applied and the nonlinear congestion is handled directly by the flow deviation algorithm.

However, in many other applications, the nonlinear formulation has prohibitively large inte-

grality gap which renders solving nonlinear models impossible. Elhedhli and Hu (2005) and

Elhedhli and Wu (2010) consider hub-and-spoke networks with congestions applying tangent

lines to form lower envelopes and approximate the nonlinear terms. Only single allocation is
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studied in both works and no hub failures are included in the model. We mention that the

two emerging factors are actually closely related to each other. Hub congestion is a major

reason for hub failures while diverting flows from the failed hub in turn could overload other

existing hubs. Ideally, the hub congestion and hub disruptions should be considered together

in the design stage of a hub-and-spoke network.

In our new formulation, we propose to use two-stage robust optimization to address

an extended reliable hub-and-spoke design problem which considers multiple node failures

and hub congestions. All possible disruptive scenarios (single and multiple hub failures)

are represented in an uncertainty set and for each of them, the affected passengers are

rerouted with backup routes. Hub congestions are included in the objective function and

modeled as convex functions of traffic flows which are then linearized to avoid computational

challenges brought by nonlinearity. In addition to that, we will also study a phenomenon

in which the flow originated from a disrupted node, regardless of whether the origin is a

hub or not, will not be served. This demand loss assumption is generally accepted in air

transportation systems where the passengers departing from a disrupted airport can not be

assigned to another airport due to long distance between two cities. The large scale model is

successfully solved by customized column-and-constraint generation algorithm. The solution

of our robust model is able to mitigate the recourse cost of failure scenarios comprehensively

considering hub disruptions and congestions as well as their coupling effects mentioned above.

The rest of this chapter is organized as follows. Section 3.2 presents our route-based

and flow-based formulations of reliable hub-and-spoke system design with congestions along

with their variants with demand loss assumption. Section 3.3 describes the linearization

method and the solution method applied to solve the cases. Section 3.4 gives the computa-

tional results using CAB data set with corresponding analysis and Section 3.5 provides the

conclusion.

3.2 Formulation

3.2.1 Route-based Model

We adopt the multiple allocation which is widely applied in the real practice nowadays

and assume that the number of hubs is fixed as p. The formulation has a structure of
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the two-stage robust optimization model. In the first stage, the model determines the hub

location and the primary routing strategy under the normal situation. In the second stage,

a worst case scenario is identified given the network configuration of the first stage and the

recourse strategy is then found to minimize the recourse cost. Hub congestion costs are taken

into account for both stages. Let the set of nodes be N and ρ be the weight of recourse

cost. Following the notation in Chapter 2, we define the unit transportation cost c and F,

hub location variable Y, and primary routing variable X. Besides, the continuous decision

variable Wikmj is used to indicate the portion of traffic flow between i and j that uses backup

hub k and m in a disruptive scenario z ∈ A, where A is the uncertainty set expressed as

{z ∈ {0,1}∣N∣ ∶ ∑
k∈N

zk ≤ Γ}

λij is used to represent the flow between i and j. P 0
k and Pk are the traffic flows served by

hub k under normal and disruptive situations, respectively. For the traffic flow volume Pk of

hub k, the associated congestion cost is defined to be a convex function C(Pk) = ak(Pk)bk ,

where ak and bk are constants controlling the curvature of the function.

For now, we assume that a disrupted node will cease to serve other flows if it is a hub

but still generate flows originating from and receive flows going to itself that have to be

routed through hubs. The formulation RoHMPC based on route variables (see Chapter 2 or

Skorin-Kapov et al. (1996)) is given as follows.

min
X,Y,P0

(1 − ρ)(∑
i

∑
k

∑
m
∑
j>i
FikmjλijXikmj +∑

k

ak(P 0
k )bk)+

ρmax
z∈A

min
W,P

(∑
i

∑
k

∑
m
∑
j>i
FikmjλijWikmj +∑

k

ak(Pk)bk) (3.1)

s.t.

∑
k

Yk = p (3.2)

∑
k

∑
m

Xikmj = 1 ∀i, j > i (3.3)
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Xiijj ≥ Yi + Yj − 1 ∀i, j > i (3.4)

∑
m≠j

Xiimj ≥ Yi − Yj ∀i, j > i (3.5)

∑
k≠i
xikjj ≥ Yj − Yi ∀i, j > i (3.6)

∑
i

∑
j>i
∑
m

λijXikmj +∑
i

∑
j>i
∑
m≠k

λijXimkj = P 0
k ∀k (3.7)

∑
m

Wikmj + ∑
m≠k

Wimkj ≤ 1 − zk ∀i, j > i, k (3.8)

∑
m

Wikmj + ∑
m≠k

Wimkj ≤ Yk ∀i, j > i, k (3.9)

∑
k

∑
m

Wikmj = 1 ∀i, j > i (3.10)

wiijj ≥ (Yi − zi) + (Yj − zj) − 1 ∀i, j > i (3.11)

∑
m

Wiimj ≥ (Yi − zi) − (Yj − zj) ∀i, j > i (3.12)

∑
k

Wikjj ≥ (Yj − zj) − (Yi − zi) ∀i, j > i (3.13)

∑
i

∑
j>i
∑
m

λijWikmj +∑
i

∑
j>i
∑
m≠k

λijWimkj = Pk ∀k (3.14)

Xikmj ≥ 0 ∀i, k,m, j > i; Yk ∈ {0,1} ∀k; P 0
k ≥ 0 ∀k;

Wikmj ≥ 0 ∀i, k,m, j > i; Pk ≥ 0 ∀k (3.15)

Note that in both stages, the transportation cost and congestion cost are simultaneously

considered. Most constraints are directly borrowed from the model R-MAHMP in Chapter

2. Constraints (3.4) ensure that the flow λij goes through hubs i and j when both of them

are hubs. Constraints (3.5) and (3.6) restrict the number of hubs to two when i or j are hubs,

respectively. Constraints (3.7) simply calculate the flow of hub k and build the relationship

between P0 and X. Constraints (3.11)-(3.14) in the recourse problem are similar to their

counterparts in the first stage taking into account the hub availabilities.

The model RoHMPC has an important property that given fixed hub locations y∗, the

corresponding worst case scenario z∗ will have z∗k ≤ y∗k for all k. In other words, the disrupted

nodes will always be hubs in a worst case scenario. The proof of this property is straight-
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forward under the assumption that the disrupted node still generate and receive flows that

have to be routed by hubs. Since the worst scenario is the one with the largest recourse

cost, if we have a worst scenario that has zk0
∗ = 1 for a nonhub k0, one can find a scenario

with larger recourse cost by letting zk0
∗ = 0 and zk1

∗ = 1 where yk1
∗ = 1 and zk1

∗ = 0. The

contradiction is obtained.

Next, we adopt the demand loss assumption and suppose that a disrupted node will not

generate and receive traffic flows and stop serving other flows if it is a hub. The robust hub-

and-spoke model with this assumption d-RoHMPC can be derived with little modification

from RoHMPC. Only the second-stage constraints (3.8)-(3.14) need to be changed as given

below.

min
X,Y,P0

(1 − ρ)(∑
i

∑
k

∑
m
∑
j>i
FikmjλijXikmj +∑

k

ak(P 0
k )bk)+

ρmax
z∈A

min
W,P

(∑
i

∑
k

∑
m
∑
j>i
FikmjλijWikmj +∑

k

ak(Pk)bk) (3.16)

s.t.

Constraints (3.2) − (3.7)

∑
m

Wikmj + ∑
m≠k

Wimkj ≤ 1 − zk ∀i, j > i, k (3.17)

∑
m

Wikmj + ∑
m≠k

Wimkj ≤ Yk ∀i, j > i, k (3.18)

∑
k

∑
m

Wikmj ≥ 1 − zi − zj ∀i, j > i (3.19)

∑
m

Wiimj ≥ Yi − zi − zj ∀i, j > i (3.20)

∑
k

Wikjj ≥ Yj − zj − zi ∀i, j > i (3.21)

∑
i

∑
j>i
∑
m

λijWikmj +∑
i

∑
j>i
∑
m≠k

λijWimkj = Pk ∀k (3.22)

Xikmj ≥ 0 ∀i, k,m, j > i; Yk ∈ {0,1} ∀k; P 0
k ≥ 0 ∀k;

Wikmj ≥ 0 ∀i, k,m, j > i; Pk ≥ 0 ∀k (3.23)
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by adding “−zi−zj” to constraints in (3.10) we guarantee that the flow with disrupted origin

or destination will not be served. Constraints in (3.12) and (3.13) are modified similarly.

3.2.2 Flow-based Model

The route-based model mentioned in the previous section is a tight formulation and has

the advantage of small integrality gap. However, the four-index variable X may drastically

increase the problem size. In order to control the problem scale and avoid the potential

memory issues, we also adopt the flow-based model introduced in Ernst and Krishnamoorthy

(1998b), whose variables have at most three indices, to build a robust model that is equivalent

to RoHMPC.

The basic idea of the flow-based formulation is to use continuous flow variables (S, I,Q)

to indirectly describe the configuration of the network. Let Sik denote the flow going from

node i to hub k, Iikm be the amount of flow originating at node i going through hubs k and

m, and Qimj be the flow originating at node i that is routed to node j using m as the second

hub. In our two-stage robust model, we also need (U,V,T) as the counterpart of (S, I,Q)

in the second stage. The flow-based RoHMPCf is given as follows.

min
Y,S,Q,I,P0

(1 − ρ)∑
i

[∑
k

cikSik +∑
k

∑
m

γckmIikm +∑
m
∑
j>i
cmjQimj] + (1 − ρ)∑

k

ak(P 0
k )bk+

ρmax
z∈A

min
U,V,T,P

∑
i

[∑
k

cikUik +∑
k

∑
m

γckmVikm +∑
m
∑
j>i
cmjTimj] +∑

k

ak(Pk)bk (3.24)

s.t.

∑
k

Yk = p (3.25)

∑
k

Sik =∑
j>i
λij ∀i (3.26)

∑
m

Qimj = λij ∀i, j > i (3.27)

∑
m

Iikm +∑
j

Qikj −∑
m

Iimk − Sik = 0 ∀i, k (3.28)

Sii = (∑
j>i
λij)yi ∀i (3.29)
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Qijj = λijYj ∀i, j > i (3.30)

∑
i

(∑
m

Iikm +∑
j

Qikj) = P 0
k ∀k (3.31)

∑
k

Uik =∑
j>i
λij ∀i (3.32)

∑
m

Timj = λij ∀i, j > i (3.33)

∑
m

Vikm +∑
j

Tikj −∑
m

Vimk −Uik = 0 ∀i, k (3.34)

Uii = (∑
j>i
λij)(yi − zi) ∀i (3.35)

Tijj = λij(yj − zj) ∀i, j > i (3.36)

∑
i

(∑
m

Vikm +∑
j

Tikj) = Pk ∀k (3.37)

Yk ∈ {0,1} ∀k; Sik ≥ 0 ∀i, k; Iikm ≥ 0 ∀i, k,m; Qimj ≥ 0 ∀i,m, j > i; P 0
k ≥ 0 ∀k

Uik ≥ 0 ∀i, k; Vikm ≥ 0 ∀i, k,m; Timj ≥ 0 ∀i,m, j > i; Pk ≥ 0 ∀k (3.38)

Given the notation above, the constraints (3.25)-(3.27) are straightforward. Constraints

(3.28) are the divergence equations. Constraints in (3.29)-(3.30) limit the number of hubs

to two when i or j are hubs, respectively. Constraints in (3.31) serve the same function as

(3.7) in the route-based model RoHMPC. Finally, we give the formulation of the flow-based

model with the demand loss assumption (d-RoHMPCf) which is different from RoHMPCf

only in second stage constraints (3.32)-(3.37).

min
Y,S,Q,I,P0

(1 − ρ)∑
i

[∑
k

cikSik +∑
k

∑
m

γckmIikm +∑
m
∑
j>i
cmjQimj] + (1 − ρ)∑

k

ak(P 0
k )bk+

ρmax
z∈A

min
U,V,T,P

∑
i

[∑
k

cikUik +∑
k

∑
m

γckmVikm +∑
m
∑
j>i
cmjTimj] +∑

k

ak(Pk)bk (3.39)

s.t.

Constraints (3.25) − (3.31)

∑
k

Uik =∑
j>i
λij(1 − zi)(1 − zj) ∀i (3.40)

43



∑
m

Timj = λij(1 − zi)(1 − zj) ∀i, j > i (3.41)

∑
m

Vikm +∑
j

Tikj −∑
m

Vimk −Uik = 0 ∀i, k (3.42)

Uii = (∑
j>i
λij)yi(1 − zi)(1 − zj) ∀i (3.43)

Tijj = λijyj(1 − zi)(1 − zj) ∀i, j > i (3.44)

∑
i

(∑
m

Vikm +∑
j

Tikj) = Pk ∀k (3.45)

3.3 Solution Methods

3.3.1 Linearization of Congestion Cost

Figure 3.1: Linearization of C(Pk)

For illustration, we pick the model RoHMPC and take the second stage hub congestion

of k for example. Nonlinear terms in other models and stages can be dealt with in a similar

way. We first take nL points on the curve of C(Pk), starting from the origin (0,0) and ending

in (TD,ak(TD)bk), where TD is the total demand flow of the network. At each point, a

corresponding tangent line is drawn as shown in Figure 3.1. We denote the intersections of

each pair of neighbouring tangent lines as (fk1, qk1), ... (fk,nL−1, qk,nL−1) and (TD,ak(TD)bk)

as (fk,nL, qk,nL). C(Pk) is linearized by these points together with the two endpoints (0,0)

and (fk,nL, qk,nL). By introducing a continuous variable between Λkl ∈ [0,1] to each hub
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k and point l, the traffic flow Pk0 is equal to ∑nLl=0 fklΛkl and C(Pk0) can be approximated

by the convex combination ∑nLl=0 qklΛkl. Observing that the tangent lines of sample points

constitute a lower envelope of the original curve, we have ∑nLl=0 qklΛkl ≤ C(Pk0) but when nL

is large enough ∑nLl=0 qklΛkl will be a good approximation of C(Pk0). In our model, we choose

nL to be 30 according to our computational experience.

The linearized model for RoHMPC is obtained by replacing the objective function (3.1)

with

min
X,Y,P0

(1 − ρ)(∑
i

∑
k

∑
m
∑
j>i
FikmjλijXikmj +∑

k

∑
l

q0
klΛ

0
kl+

ρmax
z∈A

min
W,P

(∑
i

∑
k

∑
m
∑
j>i
FikmjλijWikmj +∑

k

∑
l

qklΛkl), (3.46)

the constraints of the first stage (3.7) with

nL

∑
l=0

Λ0
kl = Yk ∀k (3.47)

∑
i

∑
j>i
∑
m

λijXikmj +∑
i

∑
j>i
∑
m≠k

λijXimkj =
nL

∑
l=0

f 0
klΛ

0
kl ∀k, (3.48)

and the constraints of the second stage (3.14) with

nL

∑
l=0

Λkl ≥ Yk − zk ∀k (3.49)

nL

∑
l=0

Λkl ≤ 1 ∀k (3.50)

∑
i

∑
j>i
∑
m

λijWikmj +∑
i

∑
j>i
∑
m≠k

λijWimkj =
nL

∑
l=0

fklΛkl ∀k, (3.51)

3.3.2 Customized Column-and-constraint Generation Algorithm

General robust models are highly difficult to solve. In Zeng and Zhao (2013), the authors

propose a column-and-constraint generation algorithm which decompose the original problem

into a master problem and a subproblem and fully utilize the information provided by the

subproblem in each iteration. The method is shown to be effective (Hervet et al., 2013;
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Zugno and Conejo, 2013). We will apply the column-and-constraint generation algorithm to

seek solutions of our two-stage robust formulations. For demonstration, we will only take

the linearized route-based model RoHMP for example and the flow-based models can be

handled in a similar way.

An important issue of designing the customized column-and-constraint generation al-

gorithm is to solve the subproblem in each iteration which typically involves dealing with

nonlinearities. We first give the formulation of the subproblem obtained by taking the dual

of the inner most “min” problem and merge it with the “max” problem in the second layer

supposing hub locations are already fixed in the master problem, Y = Y∗. Note that we

denote the dual variables of the constraints (3.8)-(3.13) and (3.49)-(3.51) as d1, d2, ..., d9,

respectively. For notational convenience, we let I(C) denote a constant indicating whether

the condition C is satisfied or not, taking value of 1 or 0, respectively. Following is the full

formulation of the subproblem SubP.

max
z,d1,...,d9

∑
i

∑
j>i
∑
k

(1 − zk)d1
ijk +∑

i

∑
j>i
∑
k

Y ∗
k d

2
ijk +∑

i

∑
j>i
λijd

2
ij +∑

i

∑
j>i
d3
ij

+∑
i

∑
j>i

((Y ∗
i − zi) − (Y ∗

j − zj) − 1)d4
ij +∑

i

∑
j>i

((Y ∗
i − zi) − (Y ∗

j − zj))d5
ij

+∑
i

∑
j>i

((Y ∗
j − zj) − (Y ∗

i − zi))d6
ij +∑

k

(Y ∗
k − zk)d7

k +∑
k

d8
k (3.52)

s.t.

d1
ijk + d2

ijk + d3
ij + λijd9

k + I(i = k, j =m)d4
ij + I(i = k, j ≠m)d5

ij + I(i ≠ k, j =m)d6
ij ≤ Fikmjλij

∀i, k,m ≠ k, j > i (3.53)

d1
ijk + d1

ijm + d2
ijk + d2

ijm + d3
ij + λijd9

k + λijd9
m + I(i = k, j =m)d4

ij + I(i = k, j ≠m)d5
ij

+I(i ≠ k, j =m)d6
ij ≤ Fikmjλij ∀i, k,m ≠ k, j > i (3.54)

d7
k + d8

k − fkld9
k ≤ qkl ∀k, l (3.55)

d1
ijk ≤ 0 ∀i, j > i, k;d2

ijk ≤ 0 ∀i, j > i, k;d3
ij free ∀i, j > i;d4

ij ≥ 0 ∀i, j > i;

d5
ij ≥ 0 ∀i, j > i;d6

ij ≥ 0 ∀i, j > i;d7
k ≥ 0 ∀k;d8

k ≤ 0 ∀k;d9
k free ∀k. (3.56)
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The complete procedure of column-and-constraint generation algorithm is given below.

(i) Set the lower bound LB = −∞, upper bound UB =∞, and iteration number τ = 0.

(ii) Solve the following master problem (MP) and obtain an optimal solution (Xτ ,Yτ ,Λ0τ ,

ητ) and set LB to the optimal value of the MP, which is shown below.

min (1 − ρ)(∑
i

∑
k

∑
m
∑
j>i
FikmjλijXikmj +∑

k

∑
l

q0
klΛ

0
kl) + ρη (3.57)

s.t.

Constraints (3.2) − (3.6), (3.47) − (3.48)

η ≥ (∑
i

∑
k

∑
m
∑
j>i
FikmjλijŴ

n
ikmj +∑

k

∑
l

qklΛ̂
n
kl), ∀n = 1,2, ..., τ (3.58)

∑
m

Ŵ n
ikmj + ∑

m≠k
Ŵ n
imkj ≤ 1 − znk ∀i, j > i, k, n = 1,2, ..., τ (3.59)

∑
m

Ŵ n
ikmj + ∑

m≠k
Ŵ n
imkj ≤ Yk ∀i, j > i, k, n = 1,2, ..., τ (3.60)

∑
k

∑
m

Ŵ n
ikmj = 1 ∀i, j > i, n = 1,2, ..., τ (3.61)

Ŵ n
iijj ≥ (Yi − zni ) + (Yj − znj ) − 1 ∀i, j > i, n = 1,2, ..., τ (3.62)

∑
m≠j

Ŵ n
iimj ≥ (Yi − zni ) − (Yj − znj ) ∀i, j > i, n = 1,2, ..., τ (3.63)

∑
k≠i
Ŵ n
ikjj ≥ (Yj − znj ) − (Yi − zni ) ∀i, j > i, n = 1,2, ..., τ (3.64)

nL

∑
l=0

Λ̂n
kl ≥ Yk − znk ∀k,n = 1,2, ..., τ (3.65)

nL

∑
l=0

Λ̂n
kl ≤ 1 ∀k,n = 1,2, ..., τ (3.66)

∑
i

∑
j>i
∑
m

λijŴ
n
ikmj +∑

i

∑
j>i
∑
m≠k

λijŴ
n
imkj =

nL

∑
l=0

fklΛ̂
n
kl ∀k,n = 1,2, ..., τ (3.67)

Xikmj ≥ 0, ∀i, k,m, j > i; Yj ∈ {0,1}, ∀j; η ≥ 0;

Ŵ n
ikmj ≥ 0, ∀i, k,m, j > i, n = 1,2, ..., τ ; Λ̂n

kl ≥ 0, ∀k, l, n = 1,2, ..., τ (3.68)
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(iii) Solve SubP with respect to (Xτ ,Yτ ,P0τ) and derive an optimal solution (zτ ,Wτ ,Λτ )

and its optimal value Qτ . Update

UB =min{UB, (1 − ρ)(∑
i

∑
k

∑
m
∑
j>i
FikmjλijX

τ
ikmj +∑

k

∑
l

q0
klΛ

0τ
kl ) + ρQn}.

(iv) If Gap = UB−LB
LB ≤ ε, an ε-optimal solution is found, terminate. Otherwise, create re-

course variables (Ŵτ , Λ̂τ ) and corresponding constraints associated with the identified

zn (constraints (3.62) - (3.67)) and add them to MP. Update τ = τ + 1. Go to Step 2.

It has been theoretically proven in Zeng and Zhao (2013) that C&CG algorithm can converges

in a finite number of iterations.

3.4 Computational Experiments and Analysis

As in Chapter 2, we test our formulations and algorithms on the CAB data set (O’Kelly,

1987). Because the robust models do not require probability information, we only need

to determine the number of disrupted nodes Γ in set A. We consider 32 combinations of

parameter settings: ∣N∣ = 10,15,20,25, p = 3,5,7, γ = 0.7, and Γ = 1,2,3. For the cases where

p = 3, Γ will only take 1 and 2. ak and bk are set as 10 and 1.5, respectively, for all node k.

The weight of the recourse cost ρ is set to 0.2 to represent our emphasis on the worst case

scenario.

We choose 0.1% to be the optimality tolerance (ε). The off-the-shelf MIP solver CPLEX

12.5 is adopted to solve the MP and SubP in each iteration. Solution process will terminate

after 3600 seconds or 1000 iterations.

Algorithms are implemented in C++ and all instances are tested on a Gateway laptop

(Intel Dual Core , 3.2GHz, 4GB of RAM) in Windows Vista environment.

From Table 3.1, we can see that the column-and-constraint generation algorithm is very

efficient in solving cases in RoHMPC and RoHMPCf. For the route-based model, the average

computation time is 331.09 seconds and one case has memory issue. For the flow-based

model, our method can find an optimal solution for all the cases with average computation

time of 401.84 seconds. This observation confirms the effectiveness of RoHMPCf in reducing

48



Table 3.1: Computation of RoHMPC and RoHMPCf

∣N∣ p Γ
RoHMPC RoHMPCf

OL Oz
Iter. T ime(s) Iter. T ime(s)

10

3 1 2 5.1 2 3.2 1 4 6 6
3 2 2 3.8 2 3.6 1 4 6 1 4
5 1 2 4.3 2 3.4 1 4 5 7 9 9
5 2 2 5.7 2 3.6 1 4 5 7 9 4 5
5 3 3 7.1 3 5.2 1 4 5 8 9 4 8 9
7 1 2 3.5 2 3.7 0 1 4 5 7 8 9 9
7 2 2 6.2 2 4.5 0 1 4 5 7 8 9 7 9
7 3 2 9.8 2 5.6 0 1 4 5 7 8 9 4 7 9

15

3 1 2 43.1 2 28.6 5 7 12 5
3 2 3 21.3 3 15.8 5 10 12 10 12
5 1 2 37.6 2 27.5 1 4 7 12 14 12
5 2 2 33.4 2 24.7 1 4 7 12 14 4 12
5 3 3 60.8 3 54.4 1 4 7 12 14 1 4 12
7 1 2 28.3 2 23.2 1 4 5 7 9 12 14 12
7 2 2 32.6 2 24.4 1 4 5 7 9 12 14 9 12
7 3 3 103.9 3 60.1 1 4 5 7 9 12 14 7 9 12

20

3 1 3 679.3 3 641.1 1 4 10 1
3 2 2 99.8 2 89.3 1 4 10 1 4
5 1 2 240.2 2 213.9 1 4 12 18 19 1
5 2 2 218.9 2 195.5 1 4 12 18 19 1 19
5 3 3 208.7 3 187.6 1 4 5 10 19 4 5 10
7 1 2 200.3 2 161.4 1 4 5 10 12 18 19 18
7 2 2 160.5 2 132.3 1 4 5 10 12 18 19 1 19
7 3 2 181.4 2 149.9 1 4 5 10 12 18 19 1 5 19

25

3 1 2 1376.3 2 1350.8 1 4 7 1
3 2 2 409.4 2 439 1 4 10 1 4
5 1 2 1390.8 2 1443.1 1 4 12 18 19 18
5 2 3 923.4(M) 3 2710.7 1 4 12 18 19 12 18
5 3 2 1135.6 2 1014.6 1 4 12 18 19 1 4 19
7 1 2 1082.5 2 1004.4 1 4 12 14 18 19 23 18
7 2 2 944.3 2 855.5 1 4 12 14 18 19 23 14 18
7 3 2 952.1 3 1993.9 1 4 12 14 18 19 23 1 4 19
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Table 3.2: Percentage of Single-hub Routes

γ (a, b) percentage(%)

0.7
(10, 1.5) 80.91
(1, 1.5) 79.05
(1, 1.3) 47.62

0.5
(10, 1.5) 80.91
(1, 1.5) 76.42
(1, 1.3) 40

the model sizes. Note that we use OL and Oz to indicate the optimal locations of hubs and

disrupted nodes in the worst case scenarios, respectively.

To justify our RoHMPC model and its flow-based variant, we take the case with ∣N∣ = 15,

p = 3, and Γ = 2 and compare the optimal network configurations obtained by RoHMPC

formulations with ρ = 0 and ρ = 0.2. The former case has the optimal hubs Cleveland,

Denver, and Memphis and the latter Cleveland, Kansas City, and Memphis. We observe

that in the worst case scenario, the former case which does not consider hub failures will

incur a 4.24% increase in the recourse cost than the latter case. If we further neglect the

congestion effect, i.e., set ak = 0 for all k, the optimal configuration (Atlanta, Houston,

and Miami) will increase the recourse cost by 7.25% which demonstrates the necessity of

considering hub failures and hub congestions.

In order to explore the contradictory effect between economies of scale and hub congestion,

we choose a case with ∣N∣ = 15, p = 7, and Γ = 2 and define single-hub route as the one with

Xikmj > 0 and k =m. Suppose that (ak, bk) take the value (a, b) for all k, then we calculate

the percentage of single-hub routes from the total number of routes to estimate the usage

of hub-and-spoke structure. Table 3.2 shows the results under different parameter settings.

It is obvious that under conservative cases (a = 10 and b = 1.5) where congestion cost is

high, the congestion effect dominate the economies of scale and the system tends to avoid

two-hub routes since it will cause more congestion cost. This effect could be mitigated by

either decreasing parameters a and b or increasing the benefit of using inter-hub links, i.e.,

decreasing γ.
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Table 3.3: Computation of d-RoHMPC and d-RoHMPCf

∣N∣ p Γ
RoHMPC RoHMPCf

OL Oz
Iter. T ime(s) Gap(%) Iter. T ime(s) Gap(%)

10

3 1 5 43.2 5 20.7 5 6 8 5
3 2 10 252.4 10 109.8 5 6 8 5 8
5 1 2 3.8 2 3.6 1 4 5 7 9 4
5 2 3 19.6 3 14.4 1 4 5 7 9 1 4
5 3 6 253.3 6 113.4 1 4 7 8 9 1 4 7
7 1 2 3.4 2 12.6 0 1 4 5 7 8 9 4
7 2 2 7.1 2 7.2 0 1 4 5 7 8 9 1 4
7 3 2 22 2 17.1 0 1 4 5 7 8 9 1 4 7

15

3 1 7 T(M) 0.89 9 1408.9 0 5 7 7
3 2 4 864.7(M) 8.19 15 3928.6(T) 3.71 6 8 14 6 14
5 1 4 349.7 4 120.1 1 4 7 12 14 12
5 2 7 865.2(M) 0.51 8 777.6 0 5 7 9 14 0 5
5 3 2 1658.9(M) 5.92 9 4374.7(T) 1.62 0 5 7 9 14 0 5 14
7 1 2 20.1 2 13.2 1 4 5 7 9 12 14 12
7 2 2 78.2 2 34.7 1 4 5 7 9 12 14 4 12
7 3 2 1643.4(M) 0.53 4 808.1 0 4 5 7 9 10 14 4 10 12

Finally, we investigate the computational performance under the demand loss assumption.

The computational results are shown in Table 3.3. Gap information is also provided if the

case can not be solved due to time or memory issues. Obviously,

3.5 Conclusion

In this chapter, we solve hub-and-spoke design problem with multiple hub failures and hub

congestions. Linearization technique is first introduced to avoid directly solving the nonlinear

models. Complete details of customized column-and-constraint generation method is then

provided to solve the large scale cases. Flow-based models and demand loss factor are also

considered in our work in this chapter. In the computational experiments, we demonstrated

the effectiveness of the proposed algorithm, explore the influence of congestions on the usage

of the hub-and-spoke structure, and show the computational performance of the solution

method on the formulations with demand loss factors. One possible research direction in the

further is to develop enhancement techniques to reduce the difficulty of considering demand

loss factor in our model.
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4 Reliable p-median Facility Location Problem: Two-stage Robust Models

4.1 Note to Reader

This chapter has been previously published ©2014 Elsevier. Reprinted, with permission,

from Yu An, Bo Zeng, and Yu Zhang, Reliable p-median Facility Location Problem: Two-

stage Robust Models and Algorithms, Transportation Research Part B: Methodological,

June. 2014 [64]. The second and third author, Dr. Bo Zeng and Dr. Yu Zhang, contributed

for part of literature review and the design of numerical experiments.

4.2 Introduction

The determination of facility locations and client assignments are among the most crucial

issues in designing an efficient distribution network. To address these issues, various facility

location models have been formulated and studied for decades, including those based on p-

median and fixed-charge facility location formulations and their extensions (Daskin (1995),

Drezner (1995), Revelle et al. (2008), and Melo et al. (2009)). The applications of those

facility location models can be found in various industries, including manufacturing, retail,

and healthcare (Barahona and Jensen (1998), Teo and Shu (2004), and Jia et al. (2007)).

Although it is expected by designers that the distribution network works reliably, the system

itself and/or its working environment could be seriously affected by various disruptions. For

example, some facilities may be disabled by natural disasters, labor strikes, or terrorism

threats. Since the material or information flows are generated, processed, and distributed

by facilities, facility disruptions could significantly deteriorate the performance of the whole

network and result in enormous economic losses (see the descriptions in Snyder et al. (2012)

and references therein). In addition, in a disruptive situation, the whole system may need to

deal with a demand pattern which is totally different from that in the normal disruption-free

situation (Ergun et al. (2010)). Ignoring those issues may lead to a less reliable configuration

of the distribution network that is not efficient in mitigating disruptions.
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To consider disruptions in system design for better reliability, several recent studies, in-

cluding Snyder and Daskin (2005), Berman et al. (2007), Chen et al. (2011), Cui et al.

(2010), Li and Ouyang (2010), Lim et al. (2009), Li (2011), and Peng et al. (2011), propose

to proactively consider disruptions and the incurred cost of countermeasures in the system

design stage. The countermeasures, i.e., mitigation or recourse operations, are to reassign

clients to survived facilities such that they can be served and the impact of disruptions can

be minimized. Hence, the objective of system design is to minimize the (weighted) overall

cost, including the operation cost in the normal situation when all facilities function prop-

erly, and the cost of mitigation in disruptive situations. To analytically represent this new

design scheme, based on the explicit probabilistic information, several compact (nonlinear)

mixed integer programs or scenario-based two-stage stochastic programming formulations

are developed and customized exact or approximation algorithms are designed to solve real

instances (Snyder and Daskin (2005), Chen et al. (2011), Cui et al. (2010), Li and Ouyang

(2010), Lim et al. (2009), Shen et al. (2011), and Peng et al. (2011)).

Nevertheless, in many situations, either accurate method does not exist, or data are

not sufficient to exactly characterize probability distributions, or data are contaminated to

provide precise information. Under such situations, probabilistic models, e.g., the aforemen-

tioned two types of models, could be inappropriate or lead to infeasible solutions. To address

this challenge, robust optimization (RO) method, which simply assumes an uncertainty set to

capture random data, is developed to provide solutions that are robust to any perturbations

within the uncertainty set. To model the situation where some decisions can be made and

implemented after the uncertainty is revealed, robust optimization is extended to include

the second stage recourse decisions so that the available information can be fully utilized to

produce a less conservative solution. After their introduction, original robust optimization

method and its two-stage extension have been applied in many operational and engineering

areas (Ben-Tal et al. (2009) and Bertsimas et al. (2011)), such as facility location problems

with random demands (Atamturk and Zhang (2007), Baron et al. (2011), and Gabrel et al.

(2014)). In fact, comparing with demand uncertainty, disruptions are often less likely to be

described by accurate probabilistic information. For example, earthquakes in California or
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hurricanes in Florida could cause facilities or client sites in those regions to be disrupted.

However, it is very difficult to estimate the number of earthquakes or hurricanes in next 10

years based on historical/statistical data. Hence, in this chapter, we apply the concept of

uncertainty set to capture the random disruptions and employ robust optimization method

to study reliable facility location problems.

Specifically, we adopt two-stage robust optimization approach to investigate the reliable

p-median problem, where location decisions are made before (here-and-now) and recourse

(mitigation) decisions are made after disruptions being revealed (wait-and-see). We mention

that such a modeling framework exactly captures the decision making sequence in real oper-

ations. In particular, due to its strong modeling capability, we are able to extend our study

to consider facility capacities and demand changes due to disruptions. The former situation

is very challenging for probabilistic models while the latter has not been analytically inves-

tigated in existing literature. We further implement two solution algorithms, i.e., Benders

decomposition and column-and-constraint generation methods. The latter one is enhanced

by a few improvement strategies based on structural properties. A set of numerical exper-

iments are performed to generate insights on the algorithm performance and the network

design.

The rest of the chapter is organized as follows. Section 4.3 reviews relevant literature on

probabilistic models and two-stage robust optimization models. Section 4.4 introduces two-

stage robust optimization reliable p-median models and analyzes their properties. Section

4.5 describes our solution algorithms. Numerical results and insights on system design are

presented in Section 4.6, followed by Section 4.7, where the chapter is concluded and future

research directions are discussed.

4.3 Literature Review

In this section, we briefly review two types of relevant studies on the facility location

problem: probability based reliable facility location models and (two-stage) robust opti-

mization formulations. Results on classical and deterministic facility location problems can

be found in Daskin (1995) and Drezner (1995). For problems with uncertain demands and

costs, readers are referred to a comprehensive review in Snyder (2006).
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The research by Drezner (1987) is probably the first one studying facility location prob-

lem with unreliable facilities while Snyder and Daskin (2005) present the first reliable facility

location models with inclusion of mitigation/recourse operations and costs. They implement

Lagrangian relaxation algorithms within a branch-and-bound scheme to solve the resulting

linear mixed integer programs for real instances. Chen et al. (2011) consider a combined

facility location and inventory management system subject to facility failures. The authors

develop an exact polynomial-time algorithm to handle the nonlinearity introduced by in-

ventory costs and apply Lagrangian relaxation as the solution method. By relaxing the

assumption that all sites share the same failure rate, Cui et al. (2010) build a nonlinear

mixed integer program and develop both Lagrangian relaxation and continuum approxima-

tion (CA) methods for this challenging problem. To reduce the complexity of the nonlinear

form, Lim et al. (2009) study a simplified model where clients are assigned to (unreliable)

facilities and reliable backup facilities if needed. Shen et al. (2011) present both scenario-

based stochastic programming and a nonlinear mixed integer programming model and show

that they are generally equivalent. Also, a constant-ratio approximation algorithm for the

case where all failure rates are identical is proposed. Li and Ouyang (2010) study a prob-

lem with correlated probabilistic disruptions and solve their model by CA method. Indeed,

because CA technique could be useful to derive analytical insights, this approximation ap-

proach has been adopted to study the reliable facility location model in a competitive market

environment by Wang and Ouyang (2013) and to investigate the effect of misestimation of

(a single) failure rate on the network configuration by Lim et al. (2013). In addition to

considering facility failures, Li (2011) study the problem with a fortification strategy where

the unreliable facilities can be fortified by hardening operations under a budget. Recently,

this line of research is extended to investigate more general reliable network design problems.

Peng et al. (2011) consider a reliable multiple-echelon logistics network design problem where

disruptions can happen in multiple echelons. An et al. (2011) study reliable hub-and-spoke

network design problems in which hubs could be disrupted and affected flows will be rerouted

through survived operational hubs. From those aforementioned studies, we observe that (i)

either complicated nonlinear mixed integer programs or large-scale scenario-based stochastic

55



programs are necessary to build the model. When professional solvers are not efficient to deal

with those models, customized algorithms, either analytical or heuristic ones, are developed;

(ii) some practical situations are not sufficiently investigated. For example, very limited

research is done for capacitated models except Peng et al. (2011) and Lim et al. (2013), and

no exact algorithm has been developed. Although it is noted that disruptions could cause

different demand patterns (Ergun et al. (2010)), the impact of such type of demand changes

has not been captured or included in the study of facility location problem.

Different from nonlinear mixed integer programs or scenario-based stochastic programs

that are developed based on precise probabilistic information, robust optimization based

location models, including those developed with two-stage robust optimization method, as-

sume a probability-free uncertainty set and seek to determine locations that are robust to

any perturbations in that uncertainty set. Baron et al. (2011) build a multi-period capac-

itated fixed charge (single-stage) robust location model and investigate the impact of dif-

ferent uncertainty sets on facility locations. Gülpınar et al. (2012) propose to use tractable

(single-stage) robust optimization method to approximately solve stochastic facility loca-

tion problem with a chance constraint. Atamturk and Zhang (2007), Gabrel et al. (2014),

and Zeng and Zhao (2013) develop two-stage (tri-level) robust optimization formulations

for location-transportation problems where locations and capacities are determined in the

first stage and transportation decisions are adjusted after demand is realized. Different

solution algorithms are proposed by them respectively, including an approximation algo-

rithm (Atamturk and Zhang, 2007), Benders cutting plane algorithm (Gabrel et al., 2014),

and the column-and-constraint generation (C&CG) algorithm (Zeng and Zhao, 2013). The

column-and-constraint generation algorithm demonstrates a superior computational perfor-

mance over Benders cutting plane method in the two-stage facility location problem subject

to random demands.

We also note a survivable network design problem presented by Smith et al. (2007) which

is formulated as a tri-level model where enemy’s attack on arcs plays a role similar to site

disruptions in the presented two-stage robust facility location models. It is different from
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our research by considering a commodity flow based network and employing Benders cutting

plane as the solution method.

To make this chapter focused, we restrict this study to p-median problem and leave the

study of two-stage RO formulations for another classical model, i.e., the fixed-charge facility

location problem, as a future research direction. Research presented in this chapter makes

the following contributions to the literature.

(i) To the best of our knowledge, no research has been done to apply two-stage RO to

formulate reliable facility location problems with consideration of disruptions. Hence, this

chapter presents the first set of reliable facility location formulations using two-stage robust

optimization tools; (ii) because of the modeling advantages of two-stage RO, we consider

real features that have received very limited or no attention. They are finite capacities of

facilities and demand changes due to disruptions; (iii) in addition to some analytical study

on these models, we customize and implement solution algorithms to perform numerical

experiments. We also present management insights based on the numerical results from

instances with real data.

4.4 Two-stage Robust p-median Reliable Models

In this section, we present our formulations on two-stage RO reliable p-median facility

location problem. We first consider uncapacitated robust models and then extend our work

to consider capacitated cases. Existing research generally ignores the demand changes due to

disruptions. We show that, by using the two-stage robust optimization framework, demand

changes can be easily incorporated. We also derive structural properties of these models.

4.4.1 Robust Uncapacitated p-median Facility Location Models

Different from stochastic programming models that explicitly consider all possible un-

certain scenarios, (two-stage) robust optimization models use an uncertainty set to describe

the concerned possible scenarios without depending on probability information. In the con-

text of disruption description, we employ a cardinality constrained uncertainty set, which

is probably the most used set to describe discrete uncertainties (see Atamturk and Zhang

(2007) and Bertsimas and Sim (2004) for examples). Specifically, assuming that all sites

in set J are homogeneous and considering all possible scenarios with up to k simultaneous
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disruptions, the uncertainty set, i.e., the disruption set in this chapter, can be represented

as

A = {z ∈ {0,1}∣J ∣ ∶∑
j∈J
zj ≤ k}, (4.1)

where zj is the indicator variable for site j, i.e., zj = 1 if site j is disrupted and zj = 0 otherwise.

Note that, although there may exist an exponential number of disruptive scenarios, this

formulation provides an implicit but compact algebraic format to capture all of them. In

the remainder of this chapter, unless explicitly mentioned, we employ this disruption set to

perform our study.

Next, we develop our two-stage RO reliable p-median facility location models. Let I

be the set of client sites (clients for short) and J ⊆ I be the set of potential facility sites.

Following the convention of previous research (Snyder and Daskin (2005), Chen et al. (2011),

and Cui et al. (2010)), we assume that I = J . Each client i ∈ I has a demand di and the

unit cost of serving i by the facility at j ∈ J is cij ≥ 0 with cii = 0. We use y and x to

denote the first stage (the normal situation without disruptions) decision variables: yj = 1

means that a facility is located at j, yj = 0 otherwise; xij ∈ [0,1] represents the portion of

i’s demand served by j in the normal situation. Note that the first stage decision variables

are to be fixed before any disruptive scenario z in set A is realized. In a disruptive scenario,

as in Snyder and Daskin (2005) and Cui et al. (2010), a disrupted facility can not serve any

client. However, system reliability can be achieved by implementing recourse or mitigation

operations such as re-assigning clients to survived facilities. So, we introduce w and q

to represent the second stage recourse operation decisions in a disruptive scenario, where

wij ∈ [0,1] represents the portion of demand di served by the survived facility at j and

qi ∈ [0,1] represents the unsatisfied portion. Each unit of unsatisfied demand of di will incur

a penalty M .

To the best of our knowledge, all existing formulations on facility location problem assume

that all sites keep generating regular demands in spite of disruptions. However, under some

situations, disruptions will introduce new demand patterns. On the one hand, demands
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of non-essential or luxury products often vanish in natural disaster-caused disruptions. On

the other hand, some daily necessities and protection-based items, such as medicines and

batteries, will significantly increase (Ergun et al. (2010)). To capture such phenomenon,

we introduce a parameter θ to reflect the client demand change due to a disruption. Then,

in a disruptive scenario, the demand of client i is set to (1 − θzi)di, which depends on the

site disruption status zi and θ. Clearly, by setting θ to a positive value (subject to ≤ 1)

or to a negative value, we can model the disruption-caused demand reduction or increase,

respectively. Hence, we consider θ ∈ (−∞,1] in the remainder of this chapter. Next, we

present the two-stage RO reliable p-median facility location model (RO-PMPθ) with up to

k simultaneous disruptions.

Vθ(p, k, ρ) = min
x,y

(1 − ρ)∑
i

∑
j

cijdixij+

ρmax
z∈A

min
(w,q)∈S(y,z)

(∑
i

∑
j

cij(1 − θzi)diwij +∑
i

M(1 − θzi)diqi) (4.2)

s.t.

xij ≤ yj, ∀i, j (4.3)

∑
j

xij = 1, ∀i (4.4)

∑
j

yj = p, (4.5)

xij ≥ 0, ∀i, j; yj ∈ {0,1}, ∀j (4.6)

where

S(y,z) = {wij ≤ 1 − zj, ∀i, j (4.7)

wij ≤ yj, ∀i, j (4.8)

∑
j

wij + qi = 1, ∀i (4.9)

wij ≥ 0, ∀i, j; qi ≥ 0, ∀i. } (4.10)
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The objective function in (4.2) seeks to minimize the weighted sum of the operation costs

in the normal disruption-free situation and in the worst disruptive scenarios in A. The weight

ρ ∈ [0,1] is a parameter reflecting the system designer’s attitude towards the disruption cost.

Clearly, a larger ρ indicates that the designer is more conservative and willing to configure

the system in a way such that less recourse/mitigation operation costs will incur in disruptive

situations. Constraints in (4.3)-(4.5) are from the classical p-median model and simply mean

that a client can be assigned to a facility only if the facility is built, the entire demand of a

client has to be served, and the total number of facilities is p, respectively.

The max operator identifies the disruptive scenario(s) in A yielding the largest operation

cost, given the location y. The second min seeks the least costly mitigation solution while

the set S(y,z) defines the possible recourse operations. That is, given the definition of yj and

zj, constraints (4.7) and (4.8) ensure that in any disruptive scenario, client i’s demand can

only be assigned to established and survived facilities. Then, constraints in (4.9) represent

that the portion (1−qi) of i’s demand has to be served and the rest will be lost and penalized.

In this chapter, our research focuses on the nontrivial cases where k ≤ p − 1. Otherwise,

there will be no mitigation operations in any worst disruption scenario and the problem

reduces to the p-median formulation.

Note from (4.2)-(4.10) that the two-stage RO is a very adaptable modeling framework.

By setting θ = 0, we can compactly formulate the regular robust facility location problem

without demand change, similar to existing studies on reliable facility location models (Cui

et al., 2010; Peng et al., 2011; Snyder and Daskin, 2005). We can also consider the more

involved situations by simply letting θ ≠ 0. As we mention, no existing work on the reliable

facility location problem studies the impact of demand changes due to disruptions on the

system design. One possible reason is that, if the demand change factor is considered,

classical probabilistic models have to evaluate all possible scenarios while different scenarios

will have different coefficients in their objective functions, which makes it very challenging to

have a compact and tractable formulation. Nevertheless, the two-stage robust optimization

scheme provides us a convenient modeling framework to address this issue. Indeed, even for

the most sophisticated situation where demand changes are site dependent, our model can
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easily capture it by introducing site specific θi into its objective function (4.2). We leave

research on this line as a future direction to keep our paper focused.

Although this robust formulation is a complicated tri-level optimization problem, we can

analyze the impact of θ by deriving some structural properties.

Remark 4.4.1 (i) The “closest” principle always holds when assigning demands to facili-

ties. Specifically, in the normal disruption-free situation, demand di from client i is served by

a facility that is closest to client i. In a disruptive situation, di is either served by a survived

facility that is closest to i, or abandoned if the unit service cost from that facility is more

than M . (ii) Let v(y,z) be the optimal value of RO-PMPθ for a given y and z, including

costs from both normal and disruptive situation z. Because of (i), we have v(y,z) is a linear

non-increasing function with respect to θ ∈ (−∞,1]. Furthermore, v(y) = maxz v(y,z) is a

piecewise linear non-increasing function with respect to θ ∈ (−∞,1]. Different pieces corre-

spond to different z. (iii) Vθ(p, k, ρ) = minyv(y) is a non-increasing quasi-convex function

with respect to θ ∈ (−∞,1].

Based on Remark 4.4.1, when θ ∈ [0,1], i.e., a disruption either does not affect demands

or causes demand reduction, the worst case disruptions can be further characterized.

Lemma 4.4.2 When M is sufficiently large, i.e., M ≥ maxi,j ci,j, consider given facility

location y∗ and the disruption set A. If θ ∈ [0,1], the worst case disruptions and therefore

demand reductions happen only at facility sites, i.e., those with y∗j = 1.

Proof. We prove it by contradiction. Consider a worst case disruptive situation z1 where a

disruption happens at site j0, on which there is no facility, i.e., z1
j0
= 1 and y∗j0 = 0. Let C1

be the operation cost under this disruptive situation.

As p−k ≥ 1, there exists a facility, say j1 with y∗j1 = 1, survived in the disruptive situation

z1. Consider two disruptive situations: z′ where z′j0 = 0, and z′j = z1
j for j ≠ j0, and z2 where

z2
j0
= 0, z2

j1
= 1 and z2

j = z1
j for j ≠ j0 and j ≠ j1. Denote the operation cost under z′ by C ′,

and that under z2 by C2.
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First, it is clear that C ′ ≥ C1, because demand from client j0 must be served by some

facility in z′ while this demand is decreased in z1 and incurs less cost. Note that the equality

could be achieved only if θ = 0.

Second, under the disruptive situation z2, because the facility at j1 is not available, all

its served clients’ demands, including the demand from j1, will be served by other survived

facilities, which will be further and more costly. Also, because cj1j1 = 0, the demand from

site j1 will not incur any service cost in z′. So, we have C2 ≥ C ′. Note that the equality

could be achieved only if θ = 1.

Because C2 ≥ C ′ ≥ C1 and equalities cannot be achieved simultaneously (given θ only

takes a single value), we have the desired contradiction.

However, the case with θ < 0, i.e., a disruption will cause demand increase, is more

complicated. Indeed, as demonstrated in the following example, for a given facility location

solution y∗, the worst case disruption may happen at a non-facility site.

(a) Normal Condition (b) z2 = 1 (c) z1 = 1

Figure 4.1: A 4-site Network with θ = −1

Example 4.4.3 In the uncapacitated 4-site network (θ = −1) in Figure 4.1.(a), two facilities

are built on site 2 and 4. The unit service costs are symmetric and they are c12 = c34 = c13 =

c24 = 1, and c14 = c23 = 1.41. The demands are d1 = d3 = 100, d2 = d4 = 10, and the penalty M

is set to 15. Consider k = 1. We observe in Figure 4.1.(b) that a disruption at site 2 (or site

4, respectively) will disable its facility, cause a demand increase, and incur a recourse cost of

261. Nevertheless, any disruption at a client site, such as site 1 in Figure 4.1.(c), will cause

a larger demand increase and incur a higher recourse cost of 300. Therefore, the worst case

disruption could happen at a non-facility site.
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Note from this example that we cannot properly evaluate the reliability of a distribution

network by just considering facility disruptions, if demands increase along with disruptions.

It further highlights the importance to adopt the presented robust p-median facility location

model to analytically design the distribution network to hedge against disruptions.

Because the “closest” principle holds in both normal and disruptive situations, the follow-

ing result is valid when demands must be met by existing facilities. Let Vθ(p, k, ρ∣C) denote

its optimal value under some condition C. Then, we can evaluate the function Vθ(p, k, ρ) by

its input parameters.

Lemma 4.4.4 For a given facility location y0, let Cr(y0) and Cz∗(y0) be the operating costs

in the normal situation and a worst disruptive situation z∗ in A, respectively. When M is

sufficiently large, we have Cz∗(y0) ≥ Cr(y0).

Proposition 2 When M is sufficiently large, the function Vθ(p, k, ρ) is (i) non-increasing

with respect to p; (ii) non-decreasing with respect to k; and (iii) non-decreasing with respect

to ρ.

Proof. Statements in (i) and (ii) are straightforward. We give the proof for the statement

(iii). Consider ρ1 ≤ ρ2 and their corresponding optimal facility locations y1 and y2.

Clearly, as y2 may not be optimal when ρ = ρ1, we have

Vθ(p, k, ρ1) = Vθ(p, k, ρ1∣y = y1) ≤ Vθ(p, k, ρ1∣y = y2).

Given that ρ1 ≤ ρ2, it follows from Lemma 4.4.4 that

Vθ(p, k, ρ1∣y = y2) ≤ Vθ(p, k, ρ2∣y = y2).

Therefore, we have

Vθ(p, k, ρ1) = Vθ(p, k, ρ1∣y = y1) ≤ Vθ(p, k, ρ2∣y = y2) = Vθ(p, k, ρ2).

We mention that results in Proposition 2 could be useful in algorithm design and imple-

mentation validation. For example, to deal with complicated instances with large p, k and
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ρ, strong lower or upper bounds can be obtained from instances with small p, k and ρ, which

are likely to be computationally simpler.

Next, we extend our study to the capacitated facility location problem, whose reliable

models have received little research attention.

4.4.2 The Robust Capacitated Facility Location Model

The capacitated p-median facility location (CPMP) problem is an extension of the clas-

sical facility location model. Besides the same objective function and decision variables as in

the classical uncapacitated facility location problem, it assumes that each potential facility

has a capacity, i.e., an upper bound on the amount of demand that it can serve (Sridharan,

1995). Let Kj denote the capacity of site j. The two-stage robust capacitated p-median

facility location problem (RO-CPMPθ) is shown as follows:

V C
θ (p, k, ρ) = min

x,y
(1 − ρ)∑

i

∑
j

cijdixij+

ρmax
z∈A

min
(w,q)∈SC(y,z)

(∑
i

∑
j

cij(1 − θzi)diwij +∑
i

M(1 − θzi)diqi) (4.11)

s.t.

Constraints (4.3) − (4.6)

∑
i

dixij ≤Kjyj, ∀j (4.12)

with

SC(y,z) = {(4.7) − (4.10)

∑
i

(1 − θzi)diwij ≤Kjyj, ∀j,} (4.13)

constraints (4.12) ensure that the total demand served by facility j does not exceed its

capacity Kj. Constraints (4.13) impose the similar requirement on the survived facility j.

Because of the facility capacity constraints, RO-CPMPθ is less trackable than the unca-

pacitated one. Nevertheless, under several mild assumptions, some properties can be derived.
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We assume that (i) Kj ≥ dj for all j, and (ii) the service costs satisfy the triangular

inequality. The first assumption indicates that in both normal and disruptive situations, it

is feasible to serve the whole demand of a (survived) facility site by the facility on it. The

second assumption shows that it always leads to less cost to serve the demand of a (survived)

facility site by the facility on it. Note that when θ < 0, because demands increase along with

disruptions, the total capacity from existing facilities may not be sufficient and therefore the

penalty due to unmet demands will be incurred. When θ ∈ [0,1], a result similar to Lemma

4.4.2 can be easily derived.

Lemma 4.4.5 Under assumptions (i) and (ii), when M is sufficiently large, consider a

given facility solution y∗ and a disruption set A. We have that if θ ∈ [0,1], the worst case

disruptions and therefore demand reductions happen only at facility sites, i.e., those with

y∗j = 1.

Also, similar to Lemma 4.4.4 and Proposition 2, we derive the following results to evaluate

V C
θ (p, k, ρ) by its input parameters.

Lemma 4.4.6 When M is sufficiently large, for a given facility solution y0 and a worst

disruptive situation z∗, we have Cz∗(y0) ≥ Cr(y0).

Proposition 3 When M is sufficiently large, the function V C
θ (p, k, ρ) is (i) non-increasing

with respect to p; (ii) non-decreasing with respect to k; and (iii) non-decreasing with respect

to ρ.

4.5 Solution Algorithms

Two-stage RO models in general are very difficult to solve (Ben-Tal et al., 2004). When

the second stage mitigation problem is a linear program (LP), as in each of the models we

introduce so far, Benders decomposition method can be employed to seek optimal solutions

(Bertsimas et al. (2013b) and Jiang et al. (2011)). However, Benders method is not efficient

in dealing with real size instances. A different solution method, the column-and-constraint

generation algorithm, denoted by C&CG algorithm, was developed in Zeng and Zhao (2013)
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recently, which shows a superior performance over Benders method in solving practical prob-

lems. In this chapter, we adopt C&CG method as the primary solution method to solve the

proposed RO models. We first provide details of a customized C&CG method for our ro-

bust models and then present a set of enhancement strategies. We also briefly discuss the

implementation of Benders decomposition method.

4.5.1 Implementation of C&CG Algorithm

We select RO-PMPθ to describe the development of the customized C&CG algorithm.

Because the capacitated robust model is of a similar structure, C&CG can be implemented

with minor modifications.

C&CG algorithm is implemented within a two level master-sub problem framework. In

the subproblem, for a given solution (x∗,y∗) to the first stage decision problem, we solve

the remaining max-min problem to identify the worst scenario. As the unsatisfied demand

will be penalized in any disruptive situation, the second stage mitigation problem is always

feasible. Hence, we can take the dual and obtain a max-max problem, which is actually

a maximization problem. Specifically, let u, v, and s be the dual variables of the con-

straints (4.7), (4.8), and (4.9) respectively. The resulting nonlinear maximization formula of

subproblem (NL-SubP) is as follows:

max
z,u,v,s

∑
i

∑
j

(1 − zj)uij +∑
i

∑
j

y∗j vij +∑
i

si (4.14)

s.t.

uij + vij + si ≤ cijdi(1 − θzi), ∀i, j (4.15)

si ≤Mdi(1 − θzi), ∀i (4.16)

∑
j∈J
zj ≤ k, (4.17)

uij ≤ 0, ∀i, j; vij ≤ 0, ∀i, j; si free, ∀i; zj ∈ {0,1}, ∀j, (4.18)

as the nonlinear terms are the products of a continuous variable and a binary variable, we

can linearize this formulation by replacing them with a set of new variables, i.e., Uij = uijzj,
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and using big-M method. We denote the big-M as M to differentiate it from the penalty

coefficient M .

As a result, the linearized subproblem SubP is:

Q = max
z,u,v,s,U

∑
i

∑
j

(uij −Uij + y∗j vij) +∑
i

si (4.19)

s.t.

uij + vij + si ≤ cijdi(1 − θzi), ∀i, j (4.20)

si ≤Mdi(1 − θzi), ∀i (4.21)

Uij ≥ uij, ∀i, j (4.22)

Uij ≥ −Mzj, ∀i, j (4.23)

Uij ≤ uij +M(1 − zj), ∀i, j (4.24)

∑
j∈J
zj ≤ k, (4.25)

uij ≤ 0, ∀i, j;Uij ≤ 0, ∀i, j; vij ≤ 0, ∀i, j;

si free, ∀i; zj ∈ {0,1}, ∀j. (4.26)

Note that the linearized subproblem (SubP), which is a MIP problem, can be solved

by a professional MIP solver. Next, we describe the details of the column-and-constraint

generation algorithm along with the formulation of the master problem, which will be solved

iteratively. In each iteration n, a significant scenario zn will be identified through solving

SubP. Then, a set of recourse variables (wn,qn) and corresponding constraints in the forms

of (4.28)-(4.31) associated with this particular scenario will be created and added to the

master problem, whose complete set of variables are listed in (4.32). Let UB and LB be

the upper and lower bounds respectively, Gap be the relative gap between UB and LB, n

be the iteration index and ε be. Then, the procedures of column-and-constraint generation

algorithm are given as follows.

(i) Set LB = −∞, UB =∞, and n = 0.
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(ii) Solve the following master problem (MP) and obtain an optimal solution (xn,yn, ηn)

and set LB to the optimal value of the MP as below.

min (1 − ρ)∑
i

∑
j

cijdixij + ρη (4.27)

s.t.

Constraints (4.3) − (4.6)

η ≥∑
i

∑
j

cij(1 − θzli)diwlij +∑
i

M(1 − θzli)diqli, ∀l = 1,2, ..., n (4.28)

∑
j

wlij + qli = 1, ∀i, l = 1,2, ..., n (4.29)

wlij ≤ 1 − zlj, ∀i, j, l = 1,2, ..., n (4.30)

wlij ≤ yj, ∀i, j, l = 1,2, ..., n (4.31)

xij ≥ 0, ∀i, j; yj ∈ {0,1}, ∀j; η free;

wlij ≥ 0, ∀i, j, l = 1,2, ..., n; qli ≥ 0, ∀i, l = 1,2, ..., n (4.32)

(iii) Solve SubP with respect to (xn,yn) and derive an optimal solution (zn,un,vn, sn) and

its optimal value Qn. Update

UB =min{UB, (1 − ρ)∑
i

∑
j

cijdix
n
ij + ρQn}.

(iv) If Gap = UB−LB
LB ≤ ε, an ε-optimal solution is found, terminate. Otherwise, create

recourse variables (wn,qn) and corresponding constraints associated with the identified

zn and add them to MP. Update n = n + 1. Go to Step 2. ◻

It has been proven in Zeng and Zhao (2013) that C&CG algorithm converges to an optimal

solution in finite iterations. Different from C&CG method, after solving SubP, Benders

decomposition method will iteratively supply a single cutting plane in the following form to
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its master problem that only carries the first stage decision variables (x,y)

η ≥∑
i

∑
j

(1 − znj )unij +∑
i

∑
j

vnijyj +∑
i

sni .

Comparing these two types of algorithms, Zeng and Zhao (2013) theoretically show that

(i) C&CG method is of a much less computational complexity. In our study, it depends

on the cardinality of the disruption set. However, for Benders decomposition method, its

computational complexity depends on the product of cardinality of the disruption set and the

number of extreme points of the dual for the recourse problem; (ii) for C&CG method, its

generated constraints are always stronger than those generated by Benders decomposition

method. Because of its proven computational advantage and solution capability, C&CG

method is recently employed to solve robust optimization problems in different applications

(Zugno and Conejo (2013) and Hervet et al. (2013)).

4.5.2 Algorithm Enhancement

In this section, we study how to improve the computational performance of the basic

C&CG method on solving reliable p-median facility location problems. In particular, note

that the numbers of variables and constraints in MP will quickly increase over iterations,

which may demand excessive amount of computational time for large instances. Hence, we

develop a few enhancement strategies to reduce the computational expenses.

(I) Variable fixing: Variable fixing technique has been widely used within Lagrangian

relaxation algorithms. It has been proven to be effective in reducing computation time for

complicated network design problems (see Snyder and Daskin (2005) and Contreras et al.

(2011b) for examples). Now, we extend this idea to improve C&CG method.

For any i ∈ I, we have the following results:

Proposition 4 Assume that UB is derived from a feasible solution to RO-PMPθ.

(i) if Vθ(p, k, ρ∣yi = 0) > UB for some i, we have yi = 1 in any optimal solution; (ii) if

Vθ(p, k, ρ∣yi = 1) > UB for some i, we have yi = 0 in any optimal solution.

Consequently, we can implement the following variable fixing steps within C&CG method.
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Corollary 4.5.1 Assume that y○ is the best facility location solution obtained and the cor-

responding objective function value is UB○. The following operations can be implemented

without losing any optimal solution:

(i) if y○i = 1 and the optimal value of MP with an additional constraint yi = 0 is strictly

greater than UB○, fix yi = 1 in MP; (ii) if y○i = 0 and the optimal value of MP with an

additional constraint yi = 1 is strictly greater than UB○, fix yi = 0 in MP.

Note that once yi is fixed, MP’s feasible space will be reduced, which may lead to better

solutions with less computational time. Although computing MP to optimality maybe diffi-

cult in practice, we can derive its lower bound within a time limit and use that lower bound

to perform the aforementioned variable fixing operations; (II) multiple scenario generation:

note that C&CG method generates, through solving SubP, a single scenario (i.e., its cor-

responding variables and constraints as in (4.28)-(4.32)) in each iteration. Because every

scenario yields a valid lower bound, we actually can identify multiple significant scenarios,

instead of a single optimal one. By supplying those scenarios to MP, we can further speed

up the increase of the LB. Specifically, at each iteration n, given an optimal zn that solves

SubP, we create another disruptive scenario by modifying disrupted sites with the least de-

mands to non-disrupted ones and changing non-disrupted sites with the largest demands to

disrupted ones. Scenarios that replicate existing ones are eliminated in our implementation,

although they will not affect the final solution. We observe that variable fixing and multiple

scenario generation typically work better for large-scale instances. For small-scale instances,

because they will either incur extra computational time on probing variables or lead to larger

MP with more scenarios, they may not show as good performance as the basic method does;

(III) good solutions of MP before convergence: note that MP gradually evolves into a

large-scale MIP that is computationally intensive. Indeed, when Gap of C&CG method is

large, it is not necessary to derive an optimal solution of MP and a good feasible solution

could be sufficient to generate significant disruptive scenarios. So, in the beginning iterations

where Gap is large, we can set a relatively larger optimality tolerance for a good solution to

MP. As Gap becomes smaller, a smaller optimality tolerance will be adopted for a better

solution and a more precise lower bound. Also, according to Proposition 2 and Proposition
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Table 4.1: Cities in 25-site Data Set

No. City No. City No. City No. City

0 Austin(TX) 7 St. Paul(MD) 14 Topeka(KS) 21 Pierre(SD)
1 Tallahassee(FL) 8 Baton Rouge(LA) 15 Charleston(WV) 22 Dover(DE)
2 Harrisburg(PA) 9 Frankfort(KY) 16 Salt Lake City(UT) 23 Washington(DC)
3 Columbus(OH) 10 Columbia(SC) 17 Lincoln(NE) 24 Montpelier(VT)
4 Richmond(VA) 11 Denver(CO) 18 Augusta(ME)
5 Boston(MA) 12 Hartford(CT) 19 Boise City(ID)
6 Annapolis(MD) 13 Des Moines(IA) 20 Helena(MT)

3, we can impose bound constraint on the objective function, which could also reduce the

computational time of the branch-and-bound process in solving MP.

4.6 Numerical Study and Analysis

In this section, we first describe data and experimental setup. Then, we demonstrate

the results of a set of numerical experiments and present our insights on various reliable

p-median models.

All of our experiments are performed on the 49-site data set described in Snyder and

Daskin (2005), which includes information of demands and site coordinates. We also consider

a data set of 25 sites that are randomly selected from the 49-site data set as shown in

Table 4.1.

In the study, cij is the Euclidean distance between site i and j obtained from site coor-

dinates. For capacitated models, the capacity of each site is randomly generated between

[D/10,3D/10] where D is the total demand of all sites. If the capacity is smaller than its

demand, we set the value of capacity equal to the demand. For all problems with 25 or 49

sites, we test them with different parameter values, i.e., θ = -1, 0, and 1, ρ = 0.2,0.4, p = 8,10,

and k = 1,2, and 3, totally 72 instances. For each instances, we also consider two cases where

M = 15 and M = maxi,j{cij}. The first value resembles a situation where an affected demand

will be served by competitors if the service cost of using survived facilities is more than 15.

The second value represents a situation where all demands must be served (if capacity is

sufficient) in any disruptive scenario.

C&CG algorithm is our primary solution method and we apply it to solve all cases.

For the comparison purpose, we also implement Benders decomposition method (BD) and

benchmark it with C&CG on the RO-PMP1 model with ∣I ∣ = 25 and M = 15 to confirm the
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Table 4.2: Computation of Benders Decomposition on The RO-PMP1 (M = 15)

∣I ∣ p k
ρ = 0.2 ρ = 0.4

Time(s) Iter Obj Gap(%) Time(s) Iter Obj Gap(%)

25

8
1 T 2321 1426.76 1.11 6994.2(m) 2308 1539.77 31.30
2 T 2317 1525.92 7.54 T 2320 1721.44 38.53
3 T 2350 1649.93 14.34 T 2351 1821.58 41.81

10
1 6666.7(m) 2337 1024.11 6.61 5443.7(m) 2103 1067.20 33.19
2 5274.8(m) 2101 1066.29 10.86 6887.9(m) 2377 1151.57 37.66
3 6714.5(m) 2361 1119.92 14.56 6717.1(m) 2365 1292.44 44.47

efficiency of C&CG algorithm over BD method. The optimality tolerance ε is set as 0.1% and

time limit 7200s. The master problems and the subproblems are solved by a mixed integer

programming solver, CPLEX 12.5, at its default settings. All algorithms are implemented in

C++ and tested on a Dell Optiplex 760 desktop computer (Intel Core 2 Duo CPU, 3.0GHz,

3.25GB of RAM) in Windows XP environment.

4.6.1 Algorithm Performance

Table 4.2 presents the performance of BD methods on instances of RO-PMP1. Table 4.3-

4.6 summarize the computational results of C&CG algorithm on the uncapacitated and

capacitated reliable models with different M values. In those tables, the column Time(s)

presents the computational time in seconds; the column Iter indicates the number of it-

erations; the column Obj shows the best objective value ever found; the column Gap(%)

provides the relative gap in percentage if it is larger than ε. We use letter T in Time(s) col-

umn to indicate an instance which can not be solved within the time limit. If the algorithm

terminates because the memory is not sufficient for the solver to compute MP or SubP, we

add “(m)” after the computation time in column Time(s).

Based on these tables, we observe that (i) C&CG algorithm performs hundreds of times

faster and takes much fewer iterations than the classical Benders decomposition method.

This result confirms the observations made in Zeng and Zhao (2013) for the location-

transportation network design problem. Actually, compared to results in Zeng and Zhao

(2013), a more significant superiority of the enhanced C&CG algorithm is observed in solv-

ing reliable p-median problems. To further demonstrate the computational advantage of

C&CG algorithm, Figure 4.2 shows the convergence plots of two algorithms under the time

limit of 15 seconds for a case (θ = 1, M=15, ∣I ∣ = 25, ρ = 0.2, p = 8,and k = 3). Obvi-
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Table 4.3: Computation of Uncapacitated Instances with M = 15

∣I ∣ ρ p k
RO-PMP−1 RO-PMP0 RO-PMP1

Time(s) Iter Obj Gap(%) Time(s) Iter Obj Gap(%) Time(s) Iter Obj Gap(%)

25

0.2

8
1 0.8 2 1763.95 1.9 5 1558.09 1.9 5 1426.76
2 0.8 3 2233.97 2.8 6 1855.51 3.2 7 1525.92
3 40.2 19 2846.98 818.8 59 2292.82 11.3 12 1649.93

10
1 0.7 2 1364.19 0.7 2 1139.08 3.4 7 1024.11
2 2.1 6 1759.77 2.0 6 1374.09 5.9 9 1066.29
3 3.5 6 2088.41 6.4 10 1601.93 4.9 8 1119.92

0.4

8
1 0.7 2 2214.17 2.9 5 1802.45 2.0 7 1539.77
2 1.4 4 3086.90 16.3 14 2335.00 18.0 14 1721.44
3 184.4 32 4126.34 6627.6 97 3136.73 40.1 18 1821.58

10
1 0.7 2 1814.40 1.8 2 1364.19 3.2 7 1067.20
2 2.6 5 2503.45 3.9 7 1785.45 9.4 11 1151.57
3 4.3 8 3139.28 51.2 23 2235.93 25.8 15 1292.44

49

0.2

8
1 4.8 4 6563.12 3.1 4 6145.54 2.2 3 5684.45
2 732.7 21 7502.22 48.2 10 6808.88 96.9 12 6020.47
3 T 32 8457.28 6.68 T 35 7426.71 5.64 6058.7 38 6364.45

10
1 2.1 3 5339.88 0.7 2 4950.32 9.1 6 4687.15
2 164.4 13 6090.26 126.3 12 5534.76 160.5 14 4982.95
3 T 30 7148.76 5.89 T 31 6111.83 4.27 737.5 20 5131.20

0.4

8
1 44.5 9 7405.65 4.5 4 6625.50 14.3 7 5898.97
2 T 37 8892.50 6.35 4208.4 30 8027.37 T 36 6528.61 0.23
3 T 32 10625.10 15.87 T 28 9198.43 19.56 T 31 7215.81 8.11

10
1 7.2 5 5988.67 3.7 4 5351.47 12.4 7 4796.70
2 T 27 7402.96 1.16 7165.2 31 6365.19 2153.1 24 5264.33
3 T 29 9337.32 17.71 T 28 7467.20 12.46 T 31 5697.75 4.52

Table 4.4: Computation of Uncapacitated Instances with M = maxi,j{cij}

∣I ∣ ρ p k
RO-PMP−1 RO-PMP0 RO-PMP1

Time(s) Iter Obj Gap(%) Time(s) Iter Obj Gap(%) Time(s) Iter Obj Gap(%)

25

0.2

8
1 1.9 2 1763.95 1.8 5 1558.09 1.3 5 1426.76
2 0.6 3 2233.97 2.3 6 1855.51 3.7 7 1525.92
3 177.6 32 2914.07 2287.6 71 2396.15 39.4 19 1734.64

10
1 1.8 2 1364.19 0.8 2 1139.08 6.6 9 1026.99
2 3.5 6 1759.77 2.7 6 1374.09 7.2 10 1083.22
3 3.8 6 2088.41 14.5 12 1616.81 5.6 8 1119.92

0.4

8
1 0.6 2 2214.17 2.8 5 1802.45 3.8 7 1539.77
2 1.4 4 3086.90 18.8 14 2335.00 25.1 15 1738.11
3 545.6 46 4197.12 T 88 3228.20 3.03 258.4 33 2010.03

10
1 1.7 2 1814.40 0.7 2 1364.19 7.7 10 1094.38
2 2.9 5 2503.45 4.6 7 1785.45 16.7 13 1183.81
3 6.0 8 3139.28 79.8 26 2252.60 35.1 17 1292.44

49

0.2

8
1 5.5 4 6567.18 4.7 4 6149.60 1.8 3 5686.38
2 T 30 8132.07 3.18 T 35 7599.45 6.43 77.7 10 6026.61
3 T 29 9561.88 13.09 T 32 8329.70 11.02 5518.2 38 6432.67

10
1 2.5 3 5339.88 1.9 2 4950.32 10.3 6 4687.15
2 192.5 13 6090.26 138.1 12 5534.76 261.2 16 4992.81
3 T 32 7288.48 8.28 T 36 6520.93 11.16 1117.1 22 5131.20

0.4

8
1 55.1 9 7405.65 5.7 4 6633.61 5.8 4 5902.83
2 T 29 9974.33 10.97 T 34 9294.07 15.56 5316.4 30 6583.29
3 T 25 12920.90 25.70 T 27 10829.30 23.77 T 31 7384.12 9.61

10
1 10.5 5 5988.67 4.7 4 5351.47 14.6 7 4796.70
2 T 26 7330.81 0.91 7112.8 31 6365.19 T 35 5316.31 0.13
3 T 29 9673.43 19.77 T 32 8384.91 23.48 T 30 5792.46 7.16
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Table 4.5: Computation of Capacitated Instances with M = 15

∣I ∣ ρ p k
RO-CPMP−1 RO-CPMP0 RO-CPMP1

Time(s) Iter Obj Gap(%) Time(s) Iter Obj Gap(%) Time(s) Iter Obj Gap(%)

25

0.2

8
1 0.9 2 2069.34 1.7 3 1783.39 2.8 4 1550.58
2 2.2 3 2686.70 4.8 6 2126.51 7.5 7 1638.56
3 4.6 5 3370.00 10.4 9 2466.17 6.7 7 1725.95

10
1 0.5 2 1474.23 0.6 2 1148.48 1.4 4 1036.93
2 1.2 2 1923.53 1.2 3 1383.48 4.6 6 1094.58
3 2.5 3 2405.02 2.8 3 1642.20 7.7 8 1180.54

0.4

8
1 1.3 2 2620.20 1.1 3 2024.04 3.8 5 1623.29
2 5.3 5 3809.90 25.9 11 2791.94 11.5 9 1799.26
3 40.6 13 5021.64 543.0 33 3495.95 79.9 18 2015.52

10
1 1.4 2 1981.33 0.7 2 1373.58 4.3 6 1083.45
2 1.8 2 2869.74 1.7 3 1843.59 12.1 10 1224.17
3 3.9 4 3832.70 14.8 10 2307.08 181.7 25 1403.52

49

0.2

8
1 20.3 5 6946.01 13.2 4 6432.77 24.8 5 6180.25
2 7150.5 24 7970.07 T 26 7290.78 6.30 1165.5 19 6525.89
3 T 21 8977.90 8.49 T 21 8095.26 12.93 7173.6 33 6937.76

10
1 11.4 4 5616.50 7.6 4 5045.10 19.4 5 4778.10
2 3968.1 22 6493.59 3335.1 26 5752.22 442.7 15 5097.14
3 T 20 7361.09 8.55 T 24 6187.69 3.65 3476.3 23 5250.64

0.4

8
1 164.6 9 7730.58 28.3 6 6939.44 87.2 9 6426.95
2 T 22 9591.76 12.70 T 22 8582.31 15.45 T 25 7113.72 2.20
3 T 16 11616.60 26.69 T 19 10144.40 25.84 T 22 7937.46 11.82

10
1 111.7 8 6248.44 23.8 6 5434.73 39.1 7 4881.02
2 T 21 7838.19 6.14 T 28 6888.70 8.38 T 27 5552.00 1.79
3 T 17 9496.51 18.43 T 22 7753.12 12.64 T 23 5885.55 6.35

Table 4.6: Computation of Capacitated Instances with M = maxi,j{cij}

∣I ∣ ρ p k
RO-CPMP−1 RO-CPMP0 RO-CPMP1

Time(s) Iter Obj Gap(%) Time(s) Iter Obj Gap(%) Time(s) Iter Obj Gap(%)

25

0.2

8
1 2.1 2 2069.34 2.5 3 1783.39 3.2 5 1550.58
2 9.8 7 2729.23 5.7 6 2126.51 23.7 12 1752.15
3 27.4 9 3944.68 243.4 20 2772.17 83.6 17 1880.17

10
1 1.1 2 1474.23 0.8 2 1148.48 4.3 6 1037.56
2 2.6 2 1923.53 2.4 3 1383.48 5.8 6 1094.58
3 8.5 5 2486.07 11.2 8 1726.22 24.7 12 1226.52

0.4

8
1 1.7 2 2620.20 2.7 3 2024.04 5.1 6 1656.87
2 22.2 9 3884.64 38.1 12 2816.64 243.3 27 2024.80
3 440.8 21 5948.72 2387.6 37 3863.25 981.5 38 2263.44

10
1 1.6 2 1981.33 0.6 2 1373.58 9.1 8 1103.78
2 2.4 2 2869.74 2.2 3 1843.59 14.5 10 1224.17
3 12.7 7 3920.41 91.3 17 2425.86 1248.9 46 1520.56

49

0.2

8
1 28.8 5 7008.87 82.7 8 6517.80 57.7 7 6197.10
2 T 19 8953.19 12.73 T 24 8175.68 6.71 5238.2 24 6585.34
3 T 17 11586.60 32.24 T 21 10005.10 30.47 T 22 7963.78 15.91

10
1 16.5 4 5616.50 8.3 4 5045.10 33.4 6 4794.66
2 T 21 6671.10 3.45 T 29 5949.65 3.65 473.9 15 5097.14
3 T 20 8396.78 22.37 T 21 7215.95 18.27 T 26 5292.58 1.01

0.4

8
1 414.1 10 7731.58 133.6 9 7086.20 276.4 11 6475.30
2 T 18 11470.30 24.19 T 21 10205.30 19.71 T 23 7232.63 5.55
3 T 17 17546.90 49.89 T 19 13976.10 47.42 T 20 10561.40 34.83

10
1 117.6 8 6248.44 26.4 6 5434.73 59.6 8 4914.15
2 T 20 8153.59 9.54 T 28 7209.75 14.43 T 27 5552.00 1.79
3 T 19 10833.00 30.05 T 23 9732.88 34.73 T 22 5969.43 9.35
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(a) Benders Decomposition
Method

(b) C&CG Method

Figure 4.2: Convergence Plots within 15 Seconds

ously, these two methods present distinct patterns in Figure 4.2. In Figure 4.2(a) Benders

decomposition method can not reduce the gap between upper bound and lower bound. In

particular, it fails to improve lower bound. In Figure 4.2(b), however, upper and lower

bounds of C&CG method quickly converge to the optimal value in a short time; (ii) the

computation complexity of C&CG algorithm increases with the problem size ∣I ∣ and k, as

well as the weight coefficient ρ. In all four tables, the most challenging instances are those

with largest ∣I ∣, k, and ρ. Note that all instances with k = 1 are easy to compute. Most

small size instances with ∣I ∣ = 25 can be solved to optimality or with a small optimality gap

while some instances with ∣I ∣ = 49 are difficult. A closer analysis shows that SubP is easier

to compute and the actual bottleneck is to solve MP, which will grow into a large MIP

problem over iterations. As CPLEX, a general-purpose MIP solver, is currently called to

solve MP, one possible direction of future research is to develop a specialized algorithm that

takes advantage of the structure of MP for a faster computation; (iii) Including additional

features does not incur significant computational expense. Compared with models without

capacity restrictions or demand changes, capacitated ones are slightly harder while models

with demand changes could be easier. Hence, our two-stage RO formulations of reliable

p-median problems are computationally robust to additional features or restrictions; (iv)

although for many instances the optimal objective values are the same for the different M

values, the large penalty coefficient M generally negatively impacts the computational per-

formance, which is more significant for instances in capacitated models. One explanation is
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that large penalty coefficient M forces demand that was served by a disrupted facility to be

served by survived ones, instead of being simply treated as unmet demand. As a result, the

optimization complexity increases.

4.6.2 Impact of the Reliability

In this section, we investigate the effect of including the worst disruptive scenarios on the

system configuration and operations. Specifically, for different ρ values, after deriving an

optimal solution, we compute the corresponding normal operation cost (NOC) and worst

case operation cost (WOC). Then, we plot those operation costs with respect to ρ. It

is obvious that the classical p-median model can be obtained by setting ρ to 0 and the

formulation to minimize only the worst case cost can be obtained by setting ρ to 1. Figure

4.3 and Figure 4.4 present our results for 25-site models with M = 15. Note that the weighted

objective function values are also included.

(a) Cost Curves of
RO-PMP−1

(b) Cost Curves of
RO-PMP0

(c) Cost Curves of
RO-PMP1

Figure 4.3: Effect of ρ on The Robust Uncapacitated Facility Location Models

(a) Cost Curves of
RO-CPMP−1

(b) Cost Curves of
RO-CPMP0

(c) Cost Curves of
RO-CPMP1

Figure 4.4: Effect of ρ on The Robust Capacitated Facility Location Models
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Clearly, the two cost functions demonstrate a monotone property, or a “staircase pattern”,

over ρ. Within a single stair the optimal system configurations are the same for different ρ

values. Actually, the small number of stairs implies that the optimal system configuration

based on two-stage RO is not very sensitive to different ρ. However, when ρ keeps increasing,

WOC would decrease while NOC would increase. Sometimes a slight increase in NOC will

lead to a significant decrease in WOC. Such a phenomenon is also observed in the stochastic

programming based reliable facility location models (Snyder and Daskin, 2005). Overall, a

desired trade-off between NOC and WOC can be achieved by selecting a configuration of

an appropriate stair. Another observation is that the WOCs and hence the objective values

of the models with demand changes are quite different from those of the classical models

(θ = 0). It is reasonable since, for example, in RO-PMP1/RO-CPMP1, under a disruptive

scenario, the demands of disrupted clients will disappear and will not incur any cost, which

counteracts the cost increase due to failed facilities.

4.6.3 Comparison of Stochastic Programming and RO Models

As mentioned in Section 4.3, stochastic programming (SP) has been used as the primary

tool to develop models and corresponding algorithms to study the reliable facility location

problems. To evaluate the solution quality of two-stage RO models, we compare the solutions

from our model RO-PMP0 and the SP model presented in Snyder and Daskin (2005) using

the same data set and penalty coefficient (i.e., the uncapacitated instance with ∣I ∣ = 25,

M = 15 and θ = 0). For the RO model, we first set the weight coefficient ρ = 0.2 and

1 − ρ = 0.8 for the worst case and normal situation operation costs, respectively. We set

the failure probability of each site to 0.01 in the SP model. It renders the probability of

the normal disruption-free situation to 0.78, which roughly matches the weight of normal

situation in the RO model. We compare two measures, i.e., NOC and WOC, for solutions

of both models to evaluate their performances. For the SP model, WOCSP is obtained by

inserting its optimal facility locations to the RO model. Numerical results are provided in

Table 4.7. We also consider a more conservative situation in which ρ is set to 0.4 in RO.

We note in Table 4.7 that, when ρ = 0.2, the qualities of SP and RO solutions are basically

close in normal situations. An SP solution might have an equal or a little bit less NOC, while
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Table 4.7: Comparison of SP and RO Models

ρ p k
SP RO

∆NOC(%)=NOCSP−NOCRO

NOCRO ∆WOC(%)=WOCSP−WOCRO

WOCRONOCSP WOCSP NOCRO WOCRO

0.2
8

2 1313.74 4022.6 1313.74 4022.6 0.00 0.00
3 1313.74 6732.09 1417.77 5793.01 -7.34 16.21

10
2 913.976 3214.53 913.976 3214.53 0.00 0.00
3 913.976 4651.45 967.934 4137.91 -5.57 12.41

0.4
8

2 1313.74 4022.6 1380.83 3766.26 -4.86 6.81
3 1313.74 6732.09 1546.41 5522.21 -15.05 21.91

10
2 913.976 3214.53 981.016 2992.1 -6.83 7.43
3 913.976 4651.45 967.934 4137.91 -5.57 12.41

its WOC could be significantly more, compared to an RO solution. When ρ = 0.4, because

more consideration is placed on the worst case performance in RO, RO solutions might not

be in favor of NOC while they have less WOC. Consequently, we observe more clearer

differences in NOC and WOC between SP and RO solutions among all cases. Nevertheless,

the difference in NOC for these two models is not drastic. Those results suggest that, SP

and two-stage RO models are comparable, even when a relatively large weight is assigned to

WOC in RO. Hence, our presented two-stage RO models are not overly conservative. Those

results also indicate that, instead of relying on accurate probabilistic information to build

an SP model, two-stage RO provides a dependable modeling alternative for practical usage

that requires much less information support.

4.6.4 Effect of Demand Changes

As we mentioned earlier, demand changes due to disruptions have not been included

or investigated in any existing reliable facility location models. So, it remains unknown

that how demand changes will affect system design and operations, or how approximate the

results we have if we ignore the demand change factor when it does exist. To explore the

impact of demand changes, Table 4.8-4.9 present optimal configurations of the models with

θ = −1,1, and 0 (M=15). The column OL represents the optimal locations of facilities. We

then insert the optimal locations derived from RO-PMP0/RO-CPMP0 into RO-PMP−1 and

RO-PMP1/RO-CPMP−1 and RO-CPMP1, and compute the associated operation costs in

normal and the worst disruptive situations. The relative changes of NOCs and WOCs for

RO-PMP−1 model with respect to its own optimal NOCs and WOCs are presented in the

column ∆−1
NOC(%) and ∆−1

WOC(%), respectively. Similar results for RO-PMP1 are in columns
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Table 4.8: Comparison between RO-PMP−1, RO-PMP1, and RO-PMP0

ρ p k
RO-PMP−1 RO-PMP1 RO-PMP0

OL OL OL ∆−1
NOC(%) ∆−1

WOC(%) ∆1
NOC(%) ∆1

WOC(%)

0.2

8
1 0 1 2 3 5 8 11 13 0 1 2 3 5 8 11 13 0 1 2 3 5 8 11 13 0.00 0.00 0.00 0.00
2 0 1 2 3 5 8 11 13 0 1 2 3 5 8 11 13 0 1 2 3 5 8 11 13 0.00 0.00 0.00 0.00
3 0 1 3 5 8 11 13 23 0 1 2 3 4 5 7 11 0 1 2 3 4 5 11 13 5.56 9.54 -4.09 13.82

10
1 0 1 2 3 4 5 8 11 13 16 0 1 2 3 4 5 7 8 11 14 0 1 2 3 4 5 8 11 13 16 0.00 0.00 -6.83 23.62
2 0 1 3 5 6 7 8 10 11 14 0 1 2 3 4 5 7 8 11 14 0 1 2 3 4 5 8 11 13 16 -9.01 15.36 -6.83 25.35
3 0 1 3 5 7 8 10 11 14 23 0 1 2 3 4 5 8 11 13 16 0 1 2 3 4 5 8 10 11 13 -4.53 12.49 5.90 9.69

0.4

8
1 0 1 2 3 5 8 11 13 0 1 2 3 5 8 11 13 0 1 2 3 5 8 11 13 0.00 0.00 0.00 0.00
2 0 1 3 5 6 8 11 14 0 1 2 3 4 5 7 11 0 1 2 3 8 11 12 13 -5.35 8.19 -6.59 29.26
3 0 1 8 9 11 12 14 23 0 1 2 3 4 5 7 11 0 1 3 5 6 10 11 17 -12.20 10.87 4.61 27.68

10
1 0 1 2 3 4 5 8 11 13 16 0 1 2 3 4 5 7 8 11 14 0 1 2 3 4 5 8 11 13 16 0.00 0.00 -6.83 23.62
2 0 1 3 5 7 8 10 11 14 23 0 1 2 3 4 5 7 8 11 14 0 1 2 3 4 5 7 8 11 14 -3.24 5.60 0.00 0.00
3 0 1 3 7 8 10 11 12 14 23 0 1 2 3 4 5 7 8 11 16 0 1 2 3 4 5 8 10 11 13 -10.45 15.38 -0.67 20.50

Table 4.9: Comparison between RO-CPMP−1, RO-CPMP1, and RO-CPMP0

ρ p k
RO-CPMP−1 RO-CPMP1 RO-CPMP0

OL OL OL ∆−1
NOC(%) ∆−1

WOC(%) ∆1
NOC(%) ∆1

WOC(%)

0.2

8
1 0 1 3 4 5 8 11 13 0 1 2 3 4 5 11 13 0 1 3 4 5 8 11 13 0.00 0.00 5.72 7.73
2 0 1 3 4 5 8 11 13 0 1 2 3 4 5 11 13 0 1 2 3 4 5 11 13 -5.41 15.53 0.00 0.00
3 0 1 3 4 8 11 12 13 0 1 2 3 4 5 11 13 0 1 2 3 4 5 11 13 -8.73 15.37 0.00 0.00

10
1 0 1 2 3 4 5 8 11 13 16 0 1 2 3 4 5 7 8 11 14 0 1 2 3 4 5 8 11 13 16 0.00 0.00 -6.77 22.18
2 0 1 2 3 4 5 8 10 11 13 0 1 2 3 4 5 8 11 13 16 0 1 2 3 4 5 8 11 13 16 -5.52 9.77 0.00 0.00
3 0 1 2 3 4 5 8 10 11 13 0 1 2 3 4 5 8 11 13 16 0 1 2 3 4 5 8 10 11 13 0.00 0.00 5.84 -1.14

0.4

8
1 0 1 3 4 5 8 11 13 0 1 2 3 4 5 7 11 0 1 3 4 8 11 12 13 3.64 1.30 5.14 28.70
2 0 1 3 4 8 11 12 13 0 1 2 3 4 5 7 11 0 1 2 3 4 5 8 17 13.15 1.62 18.97 34.97
3 0 1 4 8 9 11 12 13 0 1 2 3 4 5 11 13 0 1 2 3 4 5 11 13 -19.30 23.20 0.00 0.00

10
1 0 1 2 3 4 5 7 8 11 14 0 1 2 3 4 5 7 8 11 14 0 1 2 3 4 5 8 11 13 16 -6.77 6.05 -6.77 22.19
2 0 1 2 3 4 5 8 10 11 13 0 1 2 3 4 5 7 8 11 16 0 1 2 3 4 5 8 11 13 16 -5.52 9.77 -6.15 12.30
3 0 1 2 3 4 5 8 10 11 13 0 1 2 3 4 5 7 8 10 11 0 1 2 3 4 5 8 10 11 13 0.00 0.00 -5.83 11.88

∆1
NOC(%) and ∆1

WOC(%). For a case, if the optimal facility locations are different among

the three models, we will highlight the locations by underlines.

We observe that the demand change plays a significant role in determining system con-

figuration. In all 24 instances, including uncapacitated and capacitated ones, there are 21

instances whose optimal facility locations are different for different θ values. In fact, when we

put more weight on the worst disruptive situations or consider facility capacities, the impact

of demand changes becomes more significant. For example, when ρ = 0.4, there are 11 in-

stances (out of 12) on which those models yield different solutions. Furthermore, the different

facility locations present different performances in both normal and the worst disruptive sit-

uations. From the columns ∆−1
NOC(%) and ∆1

NOC(%), we note that the system configuration

derived without demand changes could incur more or less cost in the normal situation, which

can hardly be predicted beforehand. In fact, the difference can be as significant as −19.30%

or 18.97%, definitely a non-trivial value. Nevertheless, in the worst disruptive situation, it is
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generally observed that the system configuration derived without demand changes will incur

much more operation cost, which can be up to 34.97% in a capacitated instance. Therefore,

we can conclude that the demand change factor, if it exists in the practice, should not be

ignored in system design, especially when the weight coefficient ρ is large and capacity needs

to be considered.

To develop insights on system configuration, we plot optimal facility locations and normal

situation assignments of a small-scale instance in Figure 4.5, where p = 4, k = 1 and ∣I ∣ = 25

with ρ = 0.2 and M = maxi,j{cij}. We also include a relatively extreme case where θ = −5,

which indicates a four-time demand increase of a disrupted site.

We mention that sites are numbered according to the descending order of demand quan-

tities. In Figure 4.5, we observe a clear trend on selecting facility locations. When θ = 1, four

facilities are constructed on the sites of the smallest indices, i.e., those with largest demands.

With θ becoming smaller, facilities are generally built on sites with smaller demands. One

explanation is that: on the one hand, with θ becomes smaller, more demands should be

served in disruptive situations; on the other hand, if sites with large demands are selected

for facilities, although it saves cost in the normal situation, disruptions on those facility sites

will incur very high service costs as demands will be served by facilities far away. Therefore,

if demands increase under disruptions, to balance the cost and the risk, facilities should be

built on sites with smaller demands to avoid the large cost in the worst scenarios.

4.6.5 A Correlated Disruption Set

The disruption set with a simple cardinality restriction in Equation (4.1) indicates that

all sites are of the identical failure possibility and there is little correlation among them. In

this section, given the adaptability of our modeling framework, we investigate a different

disruption set that carries some correlations. Specifically, we partition J into a few subsets

and assume that sites in each subset are temporally or spatially correlated. Hence, the

number of disruptions in each subset can be better estimated. Also, we have an overall

budget constraint to restrict the total number of disruptions. The disruption set takes the
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(a) System Configuration of RO-PMP1 (b) System Configuration of RO-PMP0

(c) System Configuration of RO-PMP−1 (d) System Configuration of RO-PMP−5

Figure 4.5: Optimal Configurations of Uncapacitated Models with Different θ
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Table 4.10: Computation for Uncapacitated Instances with A1

∣I ∣ ρ p b
RO-PMP−1 RO-PMP0 RO-PMP1

Time(s) Iter Obj Gap(%) Time(s) Iter Obj Gap(%) Time(s) Iter Obj Gap(%)

25

0.2

8
15 1.1 2 1763.95 1.5 5 1558.09 2.4 5 1426.76
30 0.9 3 2233.97 3.6 7 1820.23 4.5 7 1525.92
40 9.8 11 2455.70 19.5 15 1989.57 6.4 10 1592.05

10
15 1.6 2 1364.19 0.4 2 1139.08 2.7 7 1024.11
30 2.7 6 1759.77 2.9 6 1374.09 4.8 8 1060.02
40 17.1 14 2003.68 11.8 12 1490.87 5.5 9 1088.26

0.4

8
15 0.8 2 2214.17 1.7 5 1802.45 3.4 7 1539.77
30 1.5 4 3086.90 12.2 12 2306.74 15.6 13 1674.14
40 22.6 16 3352.64 27.1 16 2458.94 18.9 14 1724.86

10
15 0.4 2 1814.40 0.6 2 1364.19 3.2 7 1067.20
30 2.5 5 2503.45 4.8 7 1785.45 6.7 9 1139.02
40 11.6 12 2883.19 43.4 19 2055.38 27.3 16 1221.07

49

0.2

8
15 4.7 4 6563.12 3.1 4 6145.54 1.3 3 5684.45
30 73.5 11 7325.44 30.6 8 6631.47 203.4 16 6007.48
40 19.8 7 7447.91 10.6 5 6643.61 165.4 14 6046.56

10
15 2.1 3 5339.88 0.6 2 4950.32 9.6 6 4687.15
30 38.5 9 5865.65 8.4 5 5307.93 46.7 10 4887.14
40 266.4 15 6251.45 152.8 13 5559.63 995.9 23 5033.25

0.4

8
15 44.9 9 7405.65 4.9 4 6625.50 14.2 7 5898.97
30 570.3 17 8649.65 125.4 13 7393.31 972.1 21 6284.88
40 177.4 13 8954.28 116.1 11 7393.31 1064.6 20 6284.88

10
15 7.9 5 5988.67 3.2 4 5351.47 11.7 7 4796.70
30 1620.0 20 7158.15 68.8 11 5947.01 1302.4 22 5200.39
40 94.1 12 7575.79 81.2 11 6192.15 T 34 5357.96 1.38

following form:

A1 = {z ∈ {0,1}∣J ∣ ∶ ∑
j∈J1

zj ≤ k1,∑
j∈J2

zj ≤ k2, ..., ∑
j∈JL

zj ≤ kL,
L

∑
l=1

∑
j∈Jl

aljzj ≤ b}. (4.33)

In our numerical study, L = 2, sites are randomly assigned to J1 and J2, k1 = 2 and k2 = 1,

a1
j takes the value of 10 for all j ∈ J1 and a2

j = 15 for all j ∈ J2. Experiments are performed

with n = 25,49, ρ = 0.2,0.4, p = 8,10, b = 15,30,40, and M = 15. We mention that it is rather

a simple set just for the demonstration of the impact of correlation. The computational

performance of C&CG algorithm is presented in Table 4.10 and Table 4.11.

Note that with b = 15,30, and 40 in A1, the number of disruptions over the entire site set

can be 1,2 and 3 respectively, which resembles the set we study in (4.1) with k = 1,2 and

3. Nevertheless, comparing Table 4.10 with Table 4.3, and Table 4.11 with Table 4.5, we

observe that: (i) the algorithm performance is generally better for the correlated set with less

iterations; (ii) the objective function value, i.e., the weighted operation cost, is often smaller.

Both points can be explained by the fact that the disruption set in (4.33) is a tighter and

more precise description of all kinds of disruptive scenarios, if correlations exist; and A1 is a

82



Table 4.11: Computation for Capacitated Instances with A1

∣I ∣ ρ p b
RO-CPMP−1 RO-CPMP0 RO-CPMP1

Time(s) Iter Obj Gap(%) Time(s) Iter Obj Gap(%) Time(s) Iter Obj Gap(%)

25

0.2

8
15 1.3 2 2069.34 2.6 3 1783.39 2.3 4 1550.58
30 1.2 3 2686.70 3.7 5 2126.51 4.6 6 1597.10
40 9.8 8 3253.49 11.9 8 2331.96 6.9 7 1626.47

10
15 0.7 2 1474.23 1.9 2 1148.48 2.3 4 1036.93
30 2.5 2 1923.53 1.7 3 1383.48 4.7 6 1084.08
40 13.1 9 2259.29 15.3 10 1612.96 5.6 6 1119.55

0.4

8
15 1.5 2 2620.20 1.4 3 2024.04 3.8 5 1623.29
30 5.7 5 3809.90 32.6 12 2791.94 15.2 11 1737.18
40 54.6 14 4670.89 11.6 7 2895.55 14.1 10 1791.85

10
15 1.5 2 1981.33 0.8 2 1373.58 4.4 6 1083.45
30 1.5 2 2869.74 1.8 3 1843.59 20.7 12 1224.17
40 18.4 11 3398.16 58.4 17 2211.98 23.1 12 1291.03

49

0.2

8
15 21.6 5 6946.01 7.6 4 6432.77 14.7 5 6180.25
30 7126.0 23 7919.65 T 27 7062.09 1.40 723.5 15 6470.81
40 T 20 8214.50 0.16 452.5 11 7062.09 572.3 15 6470.81

10
15 11.8 4 5616.50 7.4 4 5045.10 10.4 5 4778.10
30 757.7 14 6290.50 224.6 12 5466.82 295.4 14 5064.34
40 T 21 6775.00 2.08 T 21 5796.18 1.22 5917.2 26 5215.26

0.4

8
15 172.6 9 7730.58 27.3 6 6939.44 87.6 9 6426.95
30 T 20 9585.18 12.30 T 25 8255.52 10.02 1373.8 16 6791.59
40 T 17 10139.70 7.01 7037.1 22 7948.09 1961.9 17 6791.59

10
15 115.4 8 6248.44 21.6 6 5434.73 21.0 7 4881.02
30 T 18 7881.48 5.07 7141.2 23 6276.43 T 24 5466.90 1.41
40 T 19 8813.58 9.55 T 20 6696.92 5.93 T 23 5519.86 1.84

subset of that defined in (4.1) with an appropriate k. So, with more structural information

available, both the master and subproblems are easier or smaller to compute than those with

the cardinality set (4.1). Clearly, the cardinality set (4.1) is an overestimation of disruptions

if disruptions actually happen according to the pattern defined in (4.33). Hence, in terms

of system design and operations, the cardinality set (4.1) could lead to a more conservative

system configuration with a higher objective function value as it is overprotective towards

some unrealistic disruptive situations. So, with a proper description of the correlation, a less

conservative system design can be achieved with the desired reliability level.

4.7 Conclusion

In this chapter, we propose two-stage robust optimization based models for the reliable

p-median facility location problem. In particular, we demonstrate the strong modeling ca-

pability of two-stage robust optimization framework by considering two practical features,

i.e., facility capacity and demand change due to site disruption, in a compact fashion, which

otherwise would demand for large-scale scenario-based stochastic programming formulations

and have received little attention. We study those models, and customize and implement
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exact computing algorithms, i.e., the column-and-constraint generation and Bender decom-

position methods, to solve them. From a set of computational experiments, we note that (i)

the column-and-constraint generation algorithm drastically outperforms the other method.

Instances with up to 49 sites, including those with demand changes and capacities, can be

solved exactly or with a reasonable gap; (ii) by assigning an appropriate weight to the op-

eration cost from the worst disruptive situations in the objective function, a considerable

decrease of that cost could be achieved by a small increase in the operation cost in the normal

situation; (iii) demand changes due to disruptions should not be ignored in system design.

Otherwise, a different network configuration could result in a huge increase of the operation

cost in the worst disruptive situation; (iv) a description of disruption correlations, even in

a simple form, makes those models less challenging and leads to less conservative system

designs with the desired reliability.

A clear direction of the future research is to explore the problem structure to enhance

the column-and-constraint generation algorithm for larger scale instances. So, a customized

procedure can be developed to replace the professional solver for a better performance.

Moreover, in real practice, one disruption can cause a complicated demand pattern. It could

vary at different phases of the disruption and is also highly dependent on population and

economic conditions of different locations (Ergun et al. (2010)). Hence, another interesting

direction is to extend the recourse problem to a multi-period formulation so that it can

capture dynamic and site-specific demand variations.
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5 Exploring the Modeling Capacity of Two-Stage Robust Optimization

5.1 Note to Reader

This chapter has been previously published ©2014 IEEE. Reprinted, with permission,

from Yu An and Bo Zeng, Exploring the Modeling Capacity of Two-Stage Robust Optimiza-

tion: Variants of Robust Unit Commitment Model, IEEE Transactions on Power Systems,

May. 2014 [PP]. The second author, Dr. Bo Zeng, contributed for part of literature review

and numerical experiment.

5.2 Introduction

Recently, robust optimization (RO) techniques (Ben-Tal and Nemirovski (1998), Ben-

Tal and Nemirovski (1999), Ben-Tal and Nemirovski (2000), Bertsimas and Sim (2003),

and Bertsimas and Sim (2004)), especially two-stage robust optimization method (Ben-Tal

et al., 2004), have attracted many researchers’ attentions and been utilized to solve practical

system design and operation problems. Different from classical stochastic programming

models, an RO formulation has two features: (i) instead of assuming any probabilistic

information on random factors, it assumes uncertain sets to capture randomness; (ii) instead

of seeking for solutions with the optimal expected value, it derives a solution of the best

performance with respect to worst cases in the uncertainty set. As a result, an RO model

is less demanding on data to capture randomness and its solution is more reliable towards

uncertainty. Therefore, robust optimization approaches are often adopted to address real

problems, e.g., the operational problems in power industry (Hajimiragha et al. (2011), Zheng

et al. (2012), Bertsimas et al. (2013b), Zhao and Zeng (2012b), Jiang et al. (2012), Xiong

and Jirutitijaroen (2012), and Wang et al. (2012)), when it is challenging to construct a

stochastic model to capture randomness and the system reliability is a critical concern.

Nevertheless, because a solution of the regular (single-stage) RO must hedge against any

possible realization within the uncertainty set, it tends to be overly conservative and may

not be cost-effective. To address the issue, two-stage (and multi-stage) robust optimization

85



model (Ben-Tal et al., 2004) has been introduced to support decision making where decisions

are partitioned into two stages, i.e., before and after uncertainty is disclosed. The first stage

decisions still need to be made with respect to any realization in the uncertainty set while

the second stage decisions can be made after the first stage decisions are determined and the

uncertainty is revealed, which essentially enables the decision maker a recourse opportunity.

Hence, comparing with that of the regular (single-stage) RO, a solution to two-stage RO is

less conservative and more cost-effective. Note that this decision making structure nicely

matches that of the day-ahead unit commitment (UC) problem, which makes use of dis-

patch as the recourse tool but must handle significant variability in loads, renewable energy

generation, as well as various contingencies. Consequently, over the last few years, several

two-stage robust unit commitment formulations have been developed and implemented to

ensure reliable power generation and dispatch, see (Bertsimas et al. (2013b), Zhao and Zeng

(2012b), Jiang et al. (2011), Jiang et al. (2012), Xiong and Jirutitijaroen (2012), Zhao et al.

(2010), and Wang et al. (2012)).

As an optimization scheme at its early stage, we note that two key concepts of two-

stage RO, i.e., the uncertainty set and the consideration of the worst case performance

with recourse opportunities, jointly provide a very flexible mechanism that can actually be

used to satisfy more complicated modeling needs. For example, on the one hand, when

a single uncertainty set maybe too rough to describe the random factor, we can utilize

different uncertainty sets to jointly define it. On the other hand, bounds on the worst case

performances can be included as constraints to control the overall risks. As a result, the

standard two-stage RO can be extended to capture different random situations, diverse data

availabilities and qualities, and to meet various requirements. We mention that, although

new models may be more involved than existing robust UC models in the literature, they

generally can be solved rather efficiently by the recent column-and-constraint generation

method with minor customizations (Zeng and Zhao, 2013).

Under this direction, we present two robust unit commitment variants in this chapter

to demonstrate the advanced modeling capabilities of two-stage RO in solving practical

problems. The first one is the expanded robust unit commitment model that considers the
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weighted summation of performances over multiple uncertainty sets. It actually yields solu-

tions that are less conservative than those from the classical robust UC. The second one is

the risk constrained robust unit commitment model that derives solutions subject to different

bounds on the worst case performances in different uncertainty sets. Therefore, any feasible

solution, if exists, will have guaranteed performances under those uncertainty sets.

Stochastic UC model is a popular model which utilizes probabilistic scenarios to cap-

ture random factors. Through those scenarios, critical properties in random factors, such as

temporal and spatial correlations, can be explicitly included due to the narrative capacity

of scenarios (Takriti et al. (1996), Papavasiliou and Oren (2013), and Constantinescu et al.

(2011)). Furthermore, decision maker’s risk consideration on specific scenarios, e.g., those

which may fail to meet a predefined target, can be explicitly included by adding appropriate

constraints on them (Li et al. (2007), Wu et al. (2008), and Abreu et al. (2012)). As shown

in this paper, within robust optimization scheme, the usage of multiple uncertainty sets gives

us a capable tool, comparable to the set of scenarios, to provide those modeling features.

Indeed, stochastic UC and its risk constrained variant can be treated as special cases of our

proposed robust UC models, when uncertainty sets reduce to scenarios. We also note that the

risk constrained robust UC model is similar to the globalized affinely adjustable robust coun-

terpart (Ben-Tal and Nemirovski, 2008) under two stage decision making framework, where

violations of constraints due to randomness are bounded to a tolerable level. Indeed, because

of the fully adjustable second stage decisions and the customized column-and-constraint gen-

eration method, our work carries stronger modeling capability and is able to produce exact

solutions. Overall, we believe that, the presented models and solution method provide us

useful tools to integrate practical data, decision maker’s understanding on the underlying

randomness, and system requirements to make unit commitment decisions.

The chapter is organized as follows. In Section 5.3, we first provide the expanded robust

UC model and discuss its properties and connection with the scenario based stochastic

UC model. Then, we introduce the risk constrained robust UC model, show a linkage to

the risk constrained stochastic UC model, and present a customized column-and-constraint

generation solution method. In Section 5.4, we perform a set of computational study of these
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two models and report numerical results. Section 5.5 concludes the chapter and discusses

future research directions.

5.3 Two Robust Unit Commitment Variants

5.3.1 The Expanded Robust Unit Commitment Model

The classical robust unit commitment model is formulated as follows. We provide a

compact matrix format for easy exposition while detailed formulations can be found in

Bertsimas et al. (2013b), Zhao and Zeng (2012b), and Jiang et al. (2011).

min
x

ax +max
u∈U

min
y∈Ω(x,u)

gy

s.t.

Dx ≥ f , x binary, (5.1)

Ω(x,u) = {y ∶ Ey ≤ e,

Ay ≤ L −Gx −Ru,Fy = d −Tu },

where x represents the first stage decision variables, including binary start-up/shut-down

and on-off decisions, y represents the second stage (i.e., recourse) decision variables, includ-

ing economic dispatch and market buy/sell decisions that are continuous, u represents some

uncertain factor, e.g., the renewable energy generation, load, or contingencies, whose ran-

domness is captured by the uncertainty set U. Note that, because of the two-stage decision

making nature, the essential solution to the above robust model is the first stage decisions

x while the second stage decisions y are made with perfect information on u. Hence the set

U plays a critical role in determining the quality of the first stage decisions.

Lemma 5.3.1 Consider two uncertainty sets U1 and U2 such that U1 ⊆ U2, i.e., U1 is

included in U2, and denote their corresponding optimal values of (5.1) by θ(U1) and θ(U2).

We have θ(U1) ≤ θ(U2), i.e., θ is non-decreasing in U (in terms of set inclusion).

Proof. Let θ(U∣C) represent the optimal value of (5.1) under a condition C. Note that, for

a given first-stage solution x0, because U1 ⊆ U2, we have
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max
u∈U2

min
y∈Ω(x0,u)

gy

= max{max
u∈U1

min
y∈Ω(x0,u)

gy, max
u∈U2/U1

min
y∈Ω(x0,u)

gy}

≥ max
u∈U1

min
y∈Ω(x0,u)

gy.

Hence, it follows that θ(U2∣x = x0) ≥ θ(U1∣x = x0). Let x2 denote an optimal solution of

θ(U2). Consequently, we have θ(U2) = θ(U2∣x = x2) ≥ θ(U1∣x = x2) ≥ θ(U1).

Hence, adopting a tight U leads to a less costly solution x. However, if the scope of

U is small, it cannot sufficiently depict the uncertain factor. For example, we construct

U to capture random loads of a city in Florida using 7 consecutive days’ historical data

(24× 7 loads), which are presented in Figure 5.1. If the set is defined as a hypercubic set

U = {ut ∶ ut ∈ [ut − σt, ut + σt]}, where ut is the average load and σt is the standard deviation

(STD) in hour t, it clearly cannot ensure a coverage on all load possibilities, which may cause

us to take a risky first-stage UC solution infeasible to meet load or with a high recourse cost.

Nevertheless, if the scope of U is large, we may take a solution that is costly and overly

protective. As in Fig. 5.2, the set defined as U = {ut ∶ ut ∈ [ut−3σt, ut+3σt]} might overstate

that randomness and result in running units more than necessary.

To balance the risk and cost, one way is to construct and make use of a sophisticated

uncertainty set to describe the randomness, which could be technically challenging. First,

because of the nature of RO, extreme scenarios play a critical role in defining the uncertainty

set. However, as they typically happen much less frequently, available data might not be

sufficient to support a well-developed uncertainty set that not only precisely captures the

critical dynamics in/among random factors but also provides an adequate coverage for those

factors. Second, using a complicated uncertainty set, such as a general polyhedron, makes

the derivation of the worst case situations computationally demanding (Zeng and Zhao,

2013) and therefore restricts the applications of robust UC model in real systems. We

note that a novel data-driven method is developed recently to construct uncertainty sets

for (single-stage) RO (Bertsimas et al., 2013a). Nevertheless, that method is less applicable

in two-stage RO scheme given the fact that it focuses on the feasibility issue (of a single
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constraint) and the resulting uncertainty sets are described by computationally challenging

nonlinear formulations.

We believe that one improved strategy is to expand the uncertainty description by using

multiple sets in robust UC model, along with their respective recourse problems. Then, we

can integrate the impacts from multiple sets under the same umbrella by assigning different

weights to the worst case performances of those sets.

Specifically, let Uk, k = 1, . . . ,K denote K uncertainty sets and ρk be their weight coef-

ficients normalized for the totality being one. The expanded robust unit commitment model

is formulated as

min
x

ax +∑
k

ρk(max
u∈Uk

min
y∈Ωk(x,u)

gky)

s.t.

Dx ≥ f , x binary, (5.2)

Ωk(x,u) = {y ∶ Eky ≤ ek,

Aky ≤ Lk −Gkx −Rku,Fky = dk −Tku}.

Note that Ωk and its associated parameters are indexed with k. So we can model the

situation in which different uncertainty sets or recourse problems are associated with different

environments. For example, components of a real system may be operated with different

ratings (e.g., different capacities) under the normal status and contingencies.

If Ωk and gk are identical for all k, the next result follows easily from Lemma 5.3.1.

Proposition 5 Consider two uncertainty sets U1 and U2 such that U1 ⊆ U2, and two coef-

ficients ρ1 ≥ 0 and ρ2 ≥ 0 such that ρ1 + ρ2 = 1. Denote the corresponding optimal value of

(5.2) by Θ((U1,U2), (ρ1, ρ2)). We have θ(U1) ≤ Θ((U1,U2), (ρ1, ρ2)) ≤ θ(U2). The equalities

are achieved by setting ρ1 = 1 and 0 respectively.

Clearly, by jointly considering U1 and U2 through non-trivial ρ1 and ρ2, the expanded

robust UC model will yield solutions that are less conservative than those derived exclusively
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Figure 5.1: 24-hour Load Distribution and Single STD Description

under U2 while are more reliable than those derived exclusively under U1. Result in Propo-

sition 5 can be generalized for the more general expanded robust UC models when Ωk’s and

gk’s are identical.

Corollary 5.3.2 Consider a collection of uncertainty sets U⃗ = {U1, . . . ,UK} and a set of

coefficients ρ⃗ = {ρ1, . . . , ρK} such that ∑k ρk = 1. Denote the corresponding optimal value of

(5.2) by Θ(U⃗, ρ⃗). We have

min
k
θ(Uk) ≤ Θ(U⃗, ρ⃗) ≤ max

k
θ(Uk).

We mention that weight coefficients reflect decision maker’s conservative/protective level

and his understanding of the likelihoods of those sets. For example, U1 and U2 are defined

as {ut ∈ [ut−σt, ut+σt]} and {ut ∈ [ut−3σt, ut+3σt]} respectively, to describe the overall load

uncertainty. Based on data in Figure 5.1-5.2, although rigorous statistical analysis might not

be obtainable, we are confident to conclude that the worst case situations of U1 are much more

likely than those of U2. So, we can set ρ1 to a value larger than ρ2 to show our confidence.

Actually, practitioners often perform relative evaluation on different uncertain situations,

such as ranking them according to their likelihoods. Although no absolute quantities are

derived to exactly describe the overall randomness, the qualitative information can be reliable

and useful to practitioners. Hence, assigning weights to uncertainty sets provides us a flexible

function to take advantage of such dependable information.

We further mention that employing multiple sets helps us to reduce the impact of unre-

alistic worst case situations. First, note that a single uncertainty set should be of a large
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Figure 5.2: 24-hour Load Distribution and Three STD Description

scope to cover all concerned possibilities. Then, some of its worst case situations could be

unrealistic, which however cause a big impact on the final UC solution. Nevertheless, in the

expanded robust UC model, even that large-scope uncertainty set is adopted as one of mul-

tiple uncertainty sets, the impact of its worst case situations will be modulated by its weight

coefficient in the objective function, which could be of much less importance in determining

UC solutions.

Second, introducing multiple sets allows us to better explore available data to identify

simple but critical patterns of random factors. Using our load example, the arguably most

popular way to build an uncertainty set is to impose a budget of uncertainty constraint

(Bertsimas et al. (2013b), Bertsimas et al. (2011), Zhao and Zeng (2012b), and Jiang et al.

(2011)) on top of the hypercubic set:

U = {ut ∶ ut ∈ [ut − ût, ut + ût],∑
t

∣ut − ut∣
ût

≤ Γ} (5.3)

where the parameter Γ is to bound the aggregated deviations from nominal values, which can

also be interpreted as the overall likelihood of ut’s taking their upper/lower bounds. This

set has a nice property that when Γ is integral, its worst case situations will only be those

with ut at its bound or its nominal value for all t. Hence, U can be reduced to an equivalent

set with only discrete points of that property, which renders itself computationally friendly

(Zhao and Zeng (2012b) and Jiang et al. (2011)). Nevertheless, when ût is large to cover all

possibilities, because only a few observations can be made on ut reaching its lower or upper

bound, very limited analysis can be done to help us eliminate unrealistic ones from those
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satisfying that property. This issue can actually be mitigated by considering two or more

uncertainty sets. For example, for a set defined with a smaller ût, as more observations can

be made on ut taking value equal to or beyond ut± ût, we can compute the correlation among

those events. If a perfect correlation is derived for ut1 and ut2 reaching their bounds, we can

introduce the following equality

ut1 − ut1
ût1

= ut2 − ut2
ût2

. (5.4)

Note that including (5.4) into (5.3)’s discrete equivalence does not change its structure but

simply eliminates some unrealistic worst case scenarios that do not carry the aforementioned

correlation. If we consider the original continuous set of (5.3), when the equality may not

strictly hold for uts within their bounds, (5.4) could be a reasonable and computationally

friendly approximation of the underlying correlation, given that many observations show that

loads reach bounds simultaneously if they do. Certainly, general inequality representations

of correlations should be more accurate, which are our next step research. In Appendix F,

a demonstration of this idea is presented.

As another advantage of considering multiple uncertainty sets, Γ for the set with a small

ût can be obtained in a more objective fashion with relatively more observations on ut

reaching its bounds. For a set defined with a larger ût, we can set its Γ to a smaller value

given it is less likely that ut reaches its bounds. Clearly, such a strategy can also avoid overly

estimating Γ and reduce the unrealistic scenarios.

We recognize that the aforementioned strategies are basic steps to build meaningful un-

certainty sets that capture the essence of random factors. When UC model is considered

within a power grid system, uncertainties in loads, renewable energy injection, as well as sys-

tem contingencies (Papavasiliou and Oren (2013), Constantinescu et al. (2011), and Street

et al. (2011)), require more accurate uncertainty descriptions to reflect system nature and

real environment. For instance, the likelihoods of N − 1, N − 2, or more general N − k con-

tingencies are definitely different. It indicates that multiple uncertainty sets with different

weight coefficients will be more appropriate. It further demands for advanced methods to
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analyze the physical grid to define correlations among contingencies and to assign weight

coefficient ρ1, ρ2, . . . , ρk to those sets. Also, geographically distributed renewable energy gen-

eration sources often demonstrate very strong spatial correlations, in addition to randomness

presented within individual sources. For those situations, one possible strategy is to first

construct uncertainty sets individually and then include correlation descriptions for neigh-

boring generation sources. Overall, it is worth studying and developing more sophisticated

methods to construct uncertainty sets of simple structures that can capture the inherent

nature of random factors.

Next we show a connection between our expanded robust UC and the classical scenario

based stochastic UC model.

Proposition 6 Suppose the randomness of the uncertainty factor is completely captured by

scenarios uk, k = 1, . . . ,K. Let Uk be a singleton {uk} and set ρk equal to the corresponding

realization probability, then the expanded robust UC is equivalent to the stochastic program-

ming UC model.

Proof. Note that when Uk = {uk}, the max operator can be eliminated from the formulation.

Hence, we have

min
x

ax +∑
k

ρk( min
y∈Ωk(x,uk)

gky)

s.t.

Constraints in (5.2).

Because economic dispatch and buy/sell decisions are made specific to individual scenar-

ios, we can replace y by introducing recourse variables yk for the resource problem associated

with uk/Ωk. Also, the second min operator can be removed given that it aligns with the

first min operator. Hence, the overall min-max-min formulation can be simplified as

min
x,y1,...,yK

ax +∑
k

ρkgkyk
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s.t.

Dx ≥ f , x binary,

Ekyk ≤ ek, ∀k

Akyk ≤ Lk −Gkx −Rkuk, ∀k

Fkyk = dk −Tkuk, ∀k

which is exactly the scenario based stochastic programming UC model.

According to Proposition 6, we can conclude that the expanded robust UC model is a

complete and flexible modeling framework to handle various randomness. Decision makers

can customize their uncertainty sets and adjust weight coefficients for their conveniences, ac-

cording to data availability, data quality, system requirements, their conservative/protective

level, and computational capability.

For the situation where the number of scenarios is not large and we are confident that they

precisely capture the randomness, we believe that the classical stochastic program should be

a good choice. If data size is big, the expanded robust model can be a reasonable alternative.

Under such a situation, those samples can be organized into a small number of groups, on

each of which we can build an uncertainty set with a simple structure. Then, we can set the

weight coefficient of one uncertainty set to the sum of realization probabilities (the propor-

tion of samples of that group). Hence, instead of computing a large-scale sampling based

stochastic programming model, we can solve the compact expanded robust model based on

those uncertainty sets, which actually could take significantly less computational time than

the stochastic one (see a benchmark result in Table 5.2 in Section 5.4). Moreover, uncer-

tainty sets’ weight coefficients can be modified to reflect our concerns on specific situations

and to achieve a desired trade-off among computational time, cost, and risk.

Actually, the framework of multiple uncertainty sets is supportive to develop data-driven

approaches to fully make use of available data. For example, data within one group, which

could be more homogeneous, may allow us to design a structural uncertainty set that is

95



not only computationally friendly but also with quantitative insights. In addition, in an

environment where data become available dynamically, the information from new data can

be reflected by adjusting weights of existing uncertainty sets, or modifying parameters of a

single uncertainty set, or constructing and including a new uncertainty set (and adjusting

weights of uncertainty sets), which provides a great flexibility to handle data.

Further, taking a more direct approach, when some prior knowledge is available, e.g.,

the shape and bounds of the distribution, instead of depending on large-scale sampling to

describe a sophisticated random factor, we can use multiple interval uncertainty sets, which

have varying sizes and weight coefficients, to capture or approximate that randomness. Note

that by considering those uncertainty sets under the two-stage RO umbrella, we can reduce

the impact of possible information misrepresentation on the solution’s feasibility.

In Appendix E, we present a concrete expanded robust UC model by considering multiple

load uncertainty sets. Numerical results of this model and comparison with other existing

models are provided in Section 5.4.

5.3.2 The Risk Constrained Robust Unit Commitment Model

In this section, we show how to further extend our modeling capacity. Specifically, based

on the nature of random factors and system requirements, we explicitly impose hard con-

straints to restrict some performance measurements in the worst case situations of uncer-

tainty sets. As a result, any derived solution, if exists, can guarantee its performance with

respect to those uncertainty sets. Let γk denote our performance restriction in uncertainty

sets Uk, k = 1, . . . ,K. Also, let u0 be the nominal situation that the decision maker would

like to consider.

The risk constrained robust unit commitment model is formulated as

min
x,y0

ax + g0y0

s.t.

Dx ≥ f , x binary.
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E0y0 ≤ e0,

A0y0 ≤ L0−G0x−R0u0, (5.5)

F0y0 = d0 −T0u0,

max
u∈Uk

min
y∈Ωk(x,u)

gky ≤ γk, k = 1, . . . ,K

Ωk(x,u) = {y ∶ Eky ≤ ek,

Aky ≤ Lk −Gkx −Rku,Fky = dk −Tku}.

Again, we mention that the essential solution to the above robust UC model is the first

stage x decisions. It may not be optimal to implement the solution y0 because the virtual

optimal one can be derived after u is disclosed.

Let γ⃗ denote {γ1, . . . , γK} and Φ(U⃗, γ⃗) be the optimal value of the problem (5.5) with

U⃗ and γ⃗. When γ⃗1 (U⃗1, respectively) is component-wise less than or equal to (included

in, respectively) γ⃗2 (U⃗2, respectively), we say γ⃗1 ≤ γ⃗2 (U⃗1 is included in U⃗2, respectively).

Because the consideration of worst case performances is included as constraints, the whole

formulation could be infeasible. Under such a situation, following the convention in math-

ematical programming, we set the optimal value of (5.5) to ∞. Then, we analyze Φ(U⃗, γ⃗)

with respect to its input parameters.

Proposition 7 (i) For a given U⃗, the function Φ(U⃗, γ⃗) is non-increasing in γ⃗; (ii) for a

given γ⃗, the function Φ(U⃗, γ⃗) is non-decreasing in U⃗ (in terms of set inclusion).

Note that if Uk1 ⊆ Uk2 , and Ωk1 = Ωk2 and gk1 = gk2 , i.e., recourse problems have the

identical structure, it is necessary to set γk1 < γk2 . Otherwise, from the proof of Lemma

5.3.1, it is clear that the performance bound constraint over the recourse problem of Uk2

dominates that of Uk1 . Therefore, γk should be in an increasing order with respect to set

inclusion relationship.

We also note that, similar to results in Proposition 6, our risk constrained robust UC

resembles the risk constrained stochastic programming models (Li and Shahidehpour (2007),

Li et al. (2007), Wu et al. (2008), and Abreu et al. (2012)). In those stochastic UC models,

risk is defined by the failure to meet the target performance in scenario s, i.e., RISKs =
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{0, V0−ax − gys}+ where V0 be the target performance value and ax + gys is the performance

(to be maximized) in s with ys representing the recourse variables. Then, the downside risk

can be controlled by adding the following constraint to the stochastic UC model

∑
s

psRISKs ≤ AL (5.6)

where ps is the realization probability and AL represents the accepted risk level. To build

that modeling capability in robust UC, we can first modify Ωk in (5.5) as

Ωk(x,u) = {(V,y) ∶ V ≥ 0, V ≥ V0 − ax − gy,

Eky ≤ ek,Aky ≤ Lk −Gkx −Rku,Fky = d −Tku}.

Then, instead of imposing performance bounds on each individual uncertainty sets as in

(5.5), we can include a single upper bound on the aggregated performance as follows

∑
k

ρk(max
u∈Uk

min
(V,y)∈Ωk(x,u)

V ) ≤∑
k

ρkγk.

Indeed, if we set recourse problem Ωk = Ω, γk = AL, ρk = pk, let Uk and (Vk,yk) be sin-

gle scenarios and recourse decision variables for k = 1, . . . ,K, using the same argument of

Proposition 6, the aforementioned inequality reduces to (5.6), which again shows the link-

age between two-stage RO with multiple uncertainty sets and the scenario based stochastic

programming model.

It is worth mentioning that the risk constrained robust UC model (and its generalization

- the risk constrained robust optimization model) is close to the globalized affinely adjustable

robust counterpart (Ben-Tal and Nemirovski, 2008) under two stage decision making frame-

work, where violations of constraints due to randomness are bounded to a tolerable level.

Nevertheless, our work carries more powerful modeling and solution capabilities given that:

(i) recourse problems are fully recoursable and recourse decisions are not required to follow

affine rules of random factors; (ii) through considering multiple uncertainty sets, different vi-

olation tolerances on different recourse problems can be included; (iii) using the customized
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column-and-constraint generation method presented in the following subsection, an exact

solution can be derived, which does not require the convexity structure of uncertainty sets

and can handle discrete contingencies.

In Appendix G, we present a concrete risk constrained UC model by considering G-

1 (i.e., one generator in forced outage) and G-2 (i.e., two generators in forced outages)

contingencies as our U1 and U2. We impose upper bounds on load sheds in worst cases in

those two uncertainty sets to control our risks. Numerical results of this model are presented

in Section 5.4.

5.3.3 A Solution Procedure

The aforementioned robust UC models can be solved by well-known Benders dual meth-

ods, which have been applied to solve classical robust UC models in existing literatures

(Bertsimas et al. (2013b), Zhao and Zeng (2012b), Jiang et al. (2011), and Jiang et al.

(2012)). A recent column-and-constraint generation method has also been developed in

Zhao and Zeng (2012b) and Zeng and Zhao (2013) that solves the classical robust UC mod-

els. It progressively identifies and includes significant scenarios (and their recourse problems)

from the uncertainty set in the derivation of the final solution, which performs an order of

magnitude faster than Benders dual methods. A similar strategy is adopted in Bertsimas

et al. (2013b), which also includes scenarios and recourse problems to speed up their Benders

dual algorithm. Indeed, the basic column-and-constraint generation algorithm can be cus-

tomized to solve our new robust UC variants. Because the expanded robust UC is similar to

the classical robust UC and just needs a few minor modifications, our illustration is within

the context of the risk constrained robust UC model.

The column-and-constraint generation method is implemented in a master-subproblem

framework. For a given x∗, we define the following subproblem SPk.

Qk(x∗) = max
u∈Uk

min
y∈Ωk(x∗,u)

gky
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s.t.

Eky ≤ ek, (5.7)

Aky ≤ Lk−Gkx∗ −Rku, (5.8)

Fky = dk −Tku. (5.9)

Although SPk is a bi-level max-min program, because the inner problem is a linear

program, it can be converted into a mixed integer program (MIP) by using classical Karush-

Kuhn-Tucker (KKT) conditions (Zeng and Zhao, 2013). Specifically, let π1, π2, and π3 be

dual variables for (5.7), (5.8), and (5.9), respectively (satisfying π1 ≤ 0 and π2 ≤ 0). Solving

SPk is equivalent to solving the following problem KKT-SPk.

max
u ∈ Uk, y ∈ Ωk(x∗,u),

π1,π2,π3

gky

s.t.

Constraints (5.7) − (5.9),

π1Ek +π2Ak +π3Fk ≤ gk,

π1(Eky − ek) = 0,

π2(Aky −Lk +Gkx∗ +Rku) = 0,

y(π1Ek +π2Ak +π3Fk − gk) = 0.

The last three constraints represent complementary slackness and can be transformed into

linear constraints using binary variables and big-M linearization method. For example, the

n-th constraint in the first group can be replaced by

(ek −Eky)n ≤Mvn, π
1
n ≥ −M(1 − vn), vn ∈ {0,1}.

Next, we provide algorithmic details on solving the risk constrained UC model.
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(I) Set iter = 0, VIOLATION = VIOLk= FALSE, and Lk = 0 for k = 1, . . . ,K.

(II) Call an MIP solver to compute the following master problem MP.

min
x,y0

ax + g0y0

s.t.

Dx ≥ f , x binary,

E0y0 ≤ e0,

A0y0 ≤ L0−G0x −R0u0,

F0y0 = d0−T0u0,

gkyk,l ≤ γk, ∀k, l = 1, ..., Lk

Ekyk,l ≤ ek, ∀k, l = 1, ..., Lk

Akyk,l ≤ Lk−Gkx −Rkuk,l, ∀k, l = 1, ..., Lk

Fkyk,l = dk−Tkuk,l, ∀k, l = 1, ..., Lk

Derive an optimal solution (x∗,y∗
0 ,y

∗
1,1 . . . ,y

∗
1,L1

, . . . ,y∗
K,1, . . . ,y

∗
K,LK

).

(III) With given x∗, for k = 1, . . . ,K, do

(i) call an MIP solver to compute (linearized) KKT-SPk.

(ii) if Qk(x∗) > γk, set VIOLATION = VIOLk = TRUE, use uk,Lk+1 to record the

optimal u∗ and update Lk = Lk + 1.

(IV) If VIOLATION = FALSE, return x∗ and terminate. Otherwise, set VIOLATION =

FALSE and for k = 1, . . . ,K, do

(i) If VIOLk = TRUE, create variables yk,Lk
and add the following constraints
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gkyk,Lk
≤ γk

Ekyk,Lk
≤ ek

Akyk,Lk
≤ Lk−Gkx −Rkuk,Lk

Fkyk,Lk
= dk−Tkuk,Lk

to MP.

(ii) Set VIOLk= FALSE.

(V) Update iter = iter + 1 and go to Step 2.

Given that the second stage recourse problems are linear programs, the convergence and

the complexity results follow from the complexity analysis of the column-and-constraint

generation method presented in Zeng and Zhao (2013). Let bk be the number of extreme

points of Uk if it is a polytope (e.g., the uncertainty sets for random loads) or the set

cardinality if it is a finite discrete set (e.g., the G-k contingency set). We have

Proposition 8 The column-and-constraint generation method either terminates with an op-

timal solution or reports infeasibility of the risk constrained robust UC model (the expanded

robust UC model, respectively) in O(
K

∏
k=1

bk) iterations.

Actually, the computational performance of this method on solving practical problems is

drastically better than the theoretical result, which can be seen in the discussion of Fig. 5.4.

We would like to comment two features of the presented column-and-constraint gener-

ation procedure. First, with a given x∗, subproblem SPk’s are independent of each other.

Hence, it allows us to employ the parallel computing strategy, which is recently adopted to

deal with stochastic UC model (Papavasiliou and Oren, 2012), to implement Step 3 for better

computational performance. Second, the whole procedure can handle a general polyhedral

uncertainty set that can better capture randomness. However, because of the complementary

constraints (or linearized ones using big-M and binary variables) in solving SPk, it is compu-

tationally very challenging. So, to solve large-scale real problems, we would recommend to

use simple polyhedra in the form of (5.3) because SPk can be reformulated through strong

102



duality into a much simpler MIP for fast computation (Zhao and Zeng (2012b) and Jiang

et al. (2011)). The strong duality based reformulation of SPk is presented in Appendix E

and computational comparison between these two solution strategies for SPk can be found

in Appendix H.

5.4 Numerical Examples

In this section, we implement our proposed robust UC models and solution algorithms,

numerically investigate their performances, and compare results with those from existing

models, along with analysis and discussions to understand their differences and demonstrate

advantages of our models.

5.4.1 Data and Experiment Setup

Our numerical study primarily considers to solve a unit commitment problem to minimize

its total cost with 11 gas generators (at a single bus with no transmission network) over a

time horizon of 24 time periods (hours). A data set with loads of 7 consecutive days is

obtained from a utility company in Florida (see specifications on generators and loads in

Zhao et al. (2013)). Those load data are used to define uncertainty sets and to generate

random scenarios.

Specifically, for the expanded robust UC model presented in Appendix E, following the

study in Bertsimas et al. (2013b), we consider the equation (E.6) to define two uncertainty

sets for random load (u0, . . . , u23), i.e., U1 and U2. Based on load data over 7 days, ūt is set

to the average load (over 7 days) in time t, and ûkt is set to 1.5σt for k = 1 (in U1) and 3σt

for k = 2 (in U2), for all t. For stochastic UC model, we randomly generate 500 scenarios

to represent random loads, following the normal distribution with parameters (ūt, σ2
t ) for

all t. For the risk constrained UC model, we define two uncertainty sets for G-1 and G-2

contingencies, i.e., all possibilities with up to one generator and two generators are down

respectively. Load shed restrictions are also explicitly included. Complete formulation of

the risk constrained UC model is presented in Appendix G.

To demonstrate the practical usefulness of proposed models, we also perform experiments

on larger systems. Numerical results and discussions are presented in Appendix H.
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Table 5.1: Expanded Robust UC with U1 and U2

Case ρ1, ρ2 Γ1,Γ2 iter. time(s) Obj.

1

0.86, 0.14

12,12 2 0.869 973087.4
2 12,10 2 0.853 969668.16
3 12,8 2 0.837 966147.13
4 12,6 2 0.869 962286.85
5 12,4 2 0.837 958204.08
6 12,2 2 0.869 954041.31
7 6,6 2 0.79 929118.42
8 6,4 2 0.806 925028.02
9 6,2 2 0.885 920861.62
10

0.6, 0.4

12,12 2 0.79 994916.84
11 12,10 2 0.917 985147.59
12 12,8 2 0.932 975089.39
13 12,6 2 0.917 964060.01
14 12,4 2 0.933 952394.95
15 12,2 2 0.901 940490.81
16 6,6 2 0.837 940911
17 6,4 2 0.885 929224.14
18 6,2 2 0.821 917320.15

Our column-and-constraint generation algorithm is implemented in C++ and tested on

a Dell Optiplex 760 desktop computer (Intel Core 2 Duo CPU, 3.0GHz, 3.25GB of RAM)

in Windows XP environment. CPLEX 12.5 is adopted as the mixed integer programming

solver. The optimality tolerance is set to 10−4.

5.4.2 Expanded Robust UC

In the study of the expanded robust UC, we set parameter Γ1 of U1 and Γ2 of U2 in a way

such that Γ2 ≤ Γ1, knowing that random loads are less likely to reach lower/upper bounds if

the uncertain interval is larger. We consider two sets of weight coefficients, i.e., ρ1 = 0.86 and

ρ2 = 0.14, and ρ1 = 0.6 and ρ2 = 0.4, in our computation. The first set is selected according

to the fact that loads will fall within ±1.5σ range with probability 0.86 under the normal

distribution. The second set is simply selected to emphasize the importance of U2, which

might lead to a more conservative solution. Computational results are presented in Table 5.1.

In our discussions and analysis, we use objective values and total costs interchangeably for

better exposition.
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Figure 5.3: Objective Value vs. Γ2

Similar to the classical robust UC, with Γ1 and Γ2 increase, which indicates both U1

and U2 become larger, the overall costs increase. Nevertheless, different interaction patterns

between uncertainty sets can be observed under different (ρ1, ρ2). Figure 5.3 presents the

total costs in Table 5.1 with Γ1 fixed at 12, Γ2 from 2 to 12, and (ρ1, ρ2) set to (0.86,0.14) and

(0.6,04), respectively. Note that the curve of (ρ1, ρ2) = (0.86,0.14) is much stabler than that

of (ρ1, ρ2) = (0.6,0.4), which agrees with the fact that U1 does not change and its stabilizing

effect has a much larger impact when ρ1 = 0.86. It is interesting to note that the curve of

(0.6,0.4) changes from below the other one to clearly above it, with Γ2 increase. The reason

is that when (ρ1, ρ2) = (0.6,0.4), the worst case cost from U2 has a much larger impact.

When Γ2 is small, the worst case cost from U2 is low and it causes the total cost small.

When Γ2 is large, the worst case cost from U2 becomes high, which then dominates that

from U1 and makes the total cost large. Those observations suggest that we can use multiple

uncertainty sets (along with their weight coefficients) to model the impact of complicated

randomness, which otherwise is challenging to be described by a single uncertainty set.

We also mention that although the expanded robust UC involves multiple uncertainty

sets and recourse problems, it can be solved efficiently (within 2 iterations of column-and-

constraint generation method). The solution time is comparable to that of the classical

robust UC (Zhao and Zeng, 2012b). Given that the classical robust UC is currently evaluated

and validated in real systems (Zheng et al. (2012) and Bertsimas et al. (2013b)), the good
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computational performance of the expanded robust UC ensures its computational feasibility

in practice, as an improvement to the classical one.

A computational study of the expanded robust UC with respect to larger systems is

presented in Appendix H. Basically, the computational expense could increase with respect

to the problem size, which, however, is not drastic. More discussions can be found in

Appendix H.

5.4.3 Robust UC and Stochastic UC

In this part, we compare the expanded robust UC with the classical robust UC and the

stochastic UC models. We first present their total costs and computational times in Table

5.2 where (ρ1, ρ2) is set as (0.86,0.14) for the expanded robust UC model. When Γ (= Γ2)

in the classical robust UC is not very small, e.g. ≥ 6, it can be seen that results from the

expanded robust UC are between the total cost of the stochastic UC model and those of the

classical robust UC. It confirms our understanding that (i) if uncertainty sets are individual

scenarios, the expanded robust UC reduces to the stochastic UC model, and (ii) if only

one uncertainty presents, the expanded robust UC becomes the classical robust UC; (iii)

the expanded model produces balanced solutions between those from the classical robust

and stochastic UC models. It is worth mentioning that compared to the stochastic UC

model, which takes more than 2000 seconds to compute, the expanded robust UC performs

thousands of times faster and has a clear computation advantage. It indicates that a good

trade-off among cost, risk, and computational time can be achieved by defining multiple

uncertainty sets and by adopting the expanded robust UC.

We further analyze hourly unit commitment decisions made by those three models, which

are presented in Table 5.3-5.5 respectively. Note that the unit commitment solution of the

expanded robust model is almost the same as that of the stochastic UC model except that

generator 1 is turned on for two more hours (hour 9 and 10). Nevertheless, compared with

the expanded model, the classical robust model derives a more conservative schedule in which

unit 6 has to be on for 23 hours. Those results again confirm the advantage of the expanded

robust UC in deriving solutions that balance cost and risk.
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Table 5.2: Comparison of Three Models

Stochastic UC Expanded Robust UC Classical Robust UC with U2

time(s) Obj. Γ1, Γ2 iter. time(s) Obj. Γ = Γ2 iter. time(s) Obj.

2011.02 880424.3

12,12 2 0.869 973087.52 12 2 0.453 1045220.26
12,10 2 0.853 969668.72 10 2 0.485 1020833.8
12,8 2 0.837 966147.02 8 2 0.468 995708.48
12,6 2 0.869 962286.8 6 2 0.5 968124.63
12,4 2 0.837 958203.98 4 2 0.438 938907.5
12,2 2 0.869 954041.22 2 2 0.453 909147.51

Table 5.3: Unit Commitment Decision from Stochastic UC

Unit
Hour

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 5.4: Unit Commitment Decision from Expanded Robust UC

Unit
Hour

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table 5.5: Unit Commitment Decision of Classical Robust UC

Unit
Hour

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5.4.4 Correlation in Expanded Robust UC

As shown in Zhao and Zeng (2012b) and Jiang et al. (2011), worst case situations for

the popular hypercubic set with a budget constraint are those discrete points with ut at its

upper bound or at its nominal value for all t. So, instead of considering ut ∈ [ūt − ût, ūt + ût],

we consider a discrete set with ut = ūt+ ûtht where ht is a binary variable for all t, along with

the budget of uncertainty constraint. To eliminate unrealistic worst cases and to capture

correlations, we use the load data set to define a (−1,0,1) data matrix according to uts’

behavior of reaching lower bounds (-1), upper bound (1) or otherwise (0). Then, a correlation

analysis is done on that (−1,0,1) matrix. When a perfect correlation is observed, an equality

constraint in the form of (5.4) is included into the discrete version of the uncertainty set.

Detailed analysis of U1 is presented in Appendix F. Because of limited information on ut

reaching bounds of U2, we keep U2 in its original formulation.

Numerical results for the expanded robust UC with the aforementioned correlation con-

straints are presented in Table 5.6, where relative changes of the total cost with respect to

those in Table 5.1 are presented. Note that all the total costs are smaller than those in Table

5.1, which indicates that UC solutions are less conservative and also confirms that including

correlation constraints eliminates some unrealistic worst case situations. We also observe

that those correlation constraints generally reduce the computational time.
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Table 5.6: Expanded Robust UC with Correlations

Case ρ1, ρ2 Γ1,Γ2 iter. time(s) Obj. ∆Obj.(�)

1

0.86, 0.14

12,12 2 0.328 968499.5 -4.71
2 12,10 2 0.328 965078.38 -4.73
3 12,8 2 0.437 961551.87 -4.76
4 12,6 2 0.438 957664.21 -4.8
5 12,4 2 0.437 953573.81 -4.83
6 12,2 2 0.422 949407.41 -4.86
7 6,6 2 0.625 922849.49 -6.75
8 6,4 2 0.594 918766.72 -6.77
9 6,2 2 0.562 914603.95 -6.8

10

0.6, 0.4

12,12 2 0.438 991802.15 -3.13
11 12,10 2 0.469 982027.5 -3.17
12 12,8 2 0.469 971951.76 -3.22
13 12,6 2 0.438 960844.15 -3.34
14 12,4 2 0.421 949157.3 -3.4
15 12,2 2 0.453 937253.3 -3.44
16 6,6 2 0.468 936545.58 -4.64
17 6,4 2 0.547 924880.51 -4.67
18 6,2 2 0.5 912986.9 -4.72

5.4.5 Risk Constrained Robust UC

Computational results of the risk constrained robust UC model with different γ1 and

γ2 are presented in Table 5.7, where column LS in G-1 and LS in G-2 provide optimal

solutions’ load sheds in the worst case situations in G-1 and G-2 contingency sets.

Note from Table 5.7 that with γ1 and γ2 become more restrictive in G-1 and G-2 con-

tingencies, solutions with higher total costs are derived. When constraints with γ1 = 200

and γ2 = 2000 are imposed, the model actually becomes infeasible. Hence, we can conclude

that if the reliability standard with γ1 = 200 and γ2 = 2000 is required, the system needs to

obtain and operate extra generators. Therefore, this model can also be treated as a decision

support tool for system expansion under reliability consideration.

Table 5.7: Results of G-1/G-2 Risk Constrained Model

Case γ1, γ2 iter. time(s) Obj. LS in G-1 LS in G-2

r1 300,3000 5 70.203 885890.9 268.8 2912.15
r2 250,2500 5 44.312 886219.02 225.26 2499.03
r3 200,2000 4 10.35 Infeasible

Figure 5.4 shows the behavior of our customized column-and-constraint generation method

over iterations in solving Case r1. It can be seen that the algorithm starts with a solution
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Figure 5.4: Load Sheds over Iterations for Case r1

that seriously violates load shed upper bounds and then progressively produces better ones

to meet those requirements. Although there are 11 ∗ 24 = 264 and 11 × 24 × 10 × 24 = 63360

different contingencies in G-1 and G-2 sets, the algorithm quickly identifies significant ones

(8 contingencies) and converges to an optimal solution in 5 iterations, which demonstrates

a superior performance over the theoretical complexity presented in Proposition 8.

We note that, compared to the study for the expanded robust UC, the risk constrained

model demands much more computation time. It suggests that imposing bounds on the

worst case performances in a two-stage robust optimization model will significantly increase

the computational burden. Such a computational challenge is also demonstrated in our

numerical study with a system of 36 generators in Table H.3 in Appendix H.

5.5 Conclusion

In this chapter, we explore and extend the modeling capacity of two-stage robust opti-

mization method. We demonstrate the improved capability by presenting two new robust

unit commitment models, i.e., the expanded robust unit commitment and the risk con-

strained robust unit commitment models. We derive some structural properties, show that

both models generalize or resemble the scenario based stochastic unit commitment mod-

els, and present a customized column-and-constraint generation method. We then perform

a set of numerical experiments on those models to illustrate their modeling strength, eco-
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nomic outcomes with respect to related UC models under different uncertainty sets, and the

algorithm performance in solving those models.

Although those unit commitment models improve our ability to capture uncertainties

and handle risks in power systems, we mention that the presented research is a basic work in

exploring robust optimization, a young optimization paradigm that may have many powerful

modeling and solution features. For example, a natural extension is to adopt mixed integer

recourse programs (Zhao and Zeng, 2012a) that can model quick-start generators and trans-

mission line switching in the second stage (Hedman et al., 2010). Also, advanced methods

need to be developed to strengthen uncertainty set description that capture essential dy-

namics of random renewable energy and also yield computational advantages (Papavasiliou

and Oren (2013) and Constantinescu et al. (2011)). In particular, novel methods that ana-

lytically make use of existing data, such as the one in Bertsimas et al. (2013a), to construct

computationally friendly uncertainty sets in a data-driven fashion are worth of a deep study.

Moreover, the concepts of modeling presented in this chapter can be applied into other ro-

bust optimization applications, e.g., (Chen et al. (2012) and Zugno and Conejo (2013)), to

address practical needs.
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6 Conclusion

We successfully solve four reliability issues in transportation networks, distribution net-

works, and power generation systems in this dissertation.

In Chapter 2 and 3, a reliable design problem for hub-and-spoke air transportation sys-

tems subject to random hub failures is studied. At first, single disruption is considered in

a compact stochastic model, which is the classical tool to deal with randomness. Due to

the complexity of the problem, we applied Lagrangian relaxation and Branch-and-Bound to

compute solutions efficiently. A set of experiments that can fully investigate the model per-

formance under complicated condition (multiple correlated hub failures) is also developed.

The model is shown to be able to hedge against random hub unavailabilities and significantly

improve the served passengers when compared to classical models. Then multiple hub fail-

ures are included in a two-stage robust optimization model. Given its modelling advantages,

a challenging factor (hub congestions) are also introduced into our formulation. A newly

developed column-and-constraint generation method is utilized to obtain optimal solutions.

Multiple meaningful insights are discovered from the model that simultaneously includes hub

congestion and hub failures.

The projects in Chapter 2 and 3 establish a basis for the studies afterwards. Chapter

4 proposes a reliable p-median facility location problem. The modelling capability of two-

stage is further explored and practical features (demand variation and facility capacity)

widely neglected by previous studies are integrated into our model. We present a thorough

research on the formulation structures followed by insightful computational experiments.

A breakthrough in modelling methodology is proposed in Chapter 5. We develop several

variants of the two-stage robust optimization to better describe the randomness in real ap-

plications and build a connection between robust optimization and stochastic programming.

Besides the potential future works mentioned in conclusion sections of aforementioned

chapters. We emphasize that the contributions made by this dissertation can be utilized
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to deal with the reliability issues of many other infrastructure systems, including homeland

security and hydraulic engineering (Lewis (2006), Lansey et al. (1989), and Su et al. (1987)),

and for the theoretical part, the results in Chapter 5 can serve as a foundation for devel-

oping approximation algorithms of stochastic programming models (Chen et al. (2007) and

Bertsimas and Goyal (2010)).
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Appendix A Linearization Techniques and CPLEX Performance

We first introduce the standard linearization of R-SAHMPA, linear reformulation for

R-SAHMP is obtained by using standard linearization techniques (Nemhauser and Wolsey,

1988), which is denoted by StdLinear.

min ∑
i
∑
k≠i

∑
m
∑
j>i
j≠m

Fikmjwij(1 − qk − qkm)Xikmj

+∑
i
∑
j>i

(∑
m≠j

Fiimjwij(1 − qim)Xiimj +∑
k≠i

Fikjjwij(1 − qjk)Xikjj + FiijjwijXiijj)

+∑
i
∑
k

∑
m≠k

∑
j>i
∑
n

ρ(FinmjwijqkZ1
ikmjn + FiknjwijqmZ2

ikmjn)

+∑
i
∑
k

∑
j>i
∑
n

ρFinnjwijqkZ
1
ikkj (A.1)

s.t.

Constraints (2.2) − (2.10) (A.2)

Z1
ikmjn ≤Xikmj , Z

1
ikmjn ≤ Uijn, Z1

ikmjn ≥Xikmj +Uijn − 1 ∀i, k,m, j > i, n (A.3)

Z2
ikmjn ≤Xikmj , Z

2
ikmjn ≤ Vijn, Z2

ikmjn ≥Xikmj + Vijn − 1 ∀i, k,m, j > i, n (A.4)

Z1
ikmjn, Z

2
ikmjn ≥ 0 ∀ i, k,m, j > i, n. (A.5)

Compared with the quadratic form in (2.2)-(2.10), XikmjUijn is replaced by Z1
ikmjn and

XikmjVijn is replaced by Z2
ikmjn. Also, a few sets of constraints are added to enforce that

Z1
ikmjn =XikmjUijn and Z2

ikmjn =XikmjVijn. Note that this mixed integer linear reformulation

has to deal with a huge number of additional variables and constraints.

Next we give the compact linear reformulation of R-SAHMP. A recent linearization ap-

proach and its variants are developed for quadratic 0-1 programs to obtain a compact linear

reformulation (see Chaovalitwongse et al. (2004), Sherali and Smith (2007), and He et al.

(2012)). While the standard one introduces a quadratic number of extra variables and con-

straints, this type of linearization method introduces only a linear number of extra variables

and constraints. Therefore, we adopt and extend this linearization technique to reformulate

our quadratic R-SAHMP model.
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First, we point out that ∑k∑m≠kXikmj ∈ {0,1} for all i, j > i. Because this expression

appears in the objective function of R-SAHMP, we can treat it simply as a binary variable as

a whole and perform linearization with respect to ∑k∑m≠kXikmj and Uijn (∑k≠m∑mXikmj

and Vijn can be linearized similarly). We obtain the compact CptLinear formulation as

follows.

min ∑
i
∑
k≠i

∑
m
∑
j>i
j≠m

Fikmjwij(1 − qk − qkm)Xikmj

+∑
i
∑
j>i

(∑
m≠j

Fiimjwij(1 − qim)Xiimj +∑
k≠i

Fikjjwij(1 − qjk)Xikjj + FiijjwijXiijj)

+∑
i
∑
j>i
∑
n

(Ωijn − σijUijn)

+∑
i
∑
j>i
∑
n

(Θijn − σijVijn)

+∑
i
∑
j>i
∑
n

(Γijn − σijUijn)

s.t.

Constraints (2.2) − (2.10)

∑
k

∑
m≠k

ρwijqkFinmjXikmj − sijn + σij = Ωijn ∀i, j > i, n (A.6)

sijn ≤ (µij + σij)(1 −Uijn) ∀i, j > i, n (A.7)

∑
k≠m

∑
m

ρwijqmFiknjXikmj − tijn + σij = Θijn ∀i, j > i, n (A.8)

tijn ≤ (µij + σij)(1 − Vijn) ∀i, j > i, n (A.9)

∑
k

ρwijqkFinnjXikkj − rijn + σij = Γijn ∀i, j > i, n (A.10)

rijn ≤ (µij + σij)(1 −Uijn) ∀i, j > i, n (A.11)

Ωijn, sijn,Θijn, tijn,Γijn, rijn ≥ 0 ∀i, j > i, n, (A.12)

where µij = ρwij max
k,m

{Fikmj}max
k

{qk}, and σij ≥ 0 is a predetermined coefficient for i, j > i.

In our numerical study, we set σij = 0 for all i and j. The linearizataion for the quadratic
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term∑
i

∑
k

∑
m≠k
∑
j>i
∑
n

ρFinmjwijqkXikmjUijn in R-SAHMP is completed by new variables Ωijn,

sijn and constraints (A.6) and (A.7). Similarly, Θijn, tijn, (A.8) and (A.9) are used for

linearization of ∑
i

∑
k≠m
∑
m
∑
j>i
∑
n

ρFiknjwijqmXikmjVijn; Γijn, rijn, (A.10) and (A.11) are for

∑
i

∑
k

∑
j>i
∑
n

ρFinnjwijqkXikkjUijn.

As a result, following Theorem 1 of He et al. (2012) and using the fact that ∑
i

∑
j>i
Xikmj

takes only a binary value for all k and m, we have

Proposition 9 The linear CptLinear formulation is equivalent to the quadratic R-SAHMP

model. An optimal solution to CptLinear yields an optimal solution to R-SAHMP.

We mention that if we simply consider the linearization of XikmjUijn and XikmjVijn, the

number of additional variables for linearization will be of O(∣N∣4). Nevertheless, due to the

variable reduction by considering ∑k∑m≠kXikmj/∑k≠m∑mXikmj as a single binary variable,

the number of additional variables in CptLinear is of O(∣N∣3). Given that the number of

variables in R-SAHMP is of O(∣N∣4), CptLinear distinguishes itself by the fact that the

number of variables does little change.
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Appendix B Sample Disruption Probabilities for CAB Data Set

Table B.1: Disruption Probabilities of Potential Hubs in Reliable Model

No. City q value No. City q value No. City q value

0 Atlanta 0.023 9 Houston 0.026 18 Phoenix 0.045

1 Baltimore 0.017 10 Kansas City 0.018 19 Pittsburgh 0.012

2 Boston 0.047 11 Los Angeles 0.049 20 St. Louis 0.035

3 Chicago 0.041 12 Memphis 0.024 21 San Francisco 0.043

4 Cincinnati 0.026 13 Miami 0.027 22 Seattle 0.020

5 Cleveland 0.047 14 Minneapolis 0.013 23 Tampa 0.036

6 Dallas-Fort Worth 0.012 15 New Orleans 0.019 24 Washington DC 0.050

7 Denver 0.015 16 New York 0.050

8 Detroit 0.035 17 Philadelphia 0.024
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Appendix C Disruption Probabilities in Involving Correlations

The probabilities of two nodes P (Dk = 0,Dm = 0) and P (Dk = 1,Dn = 0) are calculated

as follows.

Assume that corr(Dk,Dm) = f(ckm) for any k and m. We let f(x) takes the form e−
x

200

so that the corrlation becomes smaller as the distance between two nodes increases.

Since Dk is a binary random variable, E(Dk) = 0 ∗ P (Dk = 0) + 1 ∗ P (Dk = 1), we have

E(Dk) = qk.

So,
E[(Dk − qk)((Dm − qm)]

σDk
σDm

= corr(Dk,Dm),

E(DkDm) − qkqm
σDk

σDm

= corr(Dk,Dm).

Noting that D2
k and DkDm are both binary random variable,

E(DkDm) = P (Dk = 1,Dm = 1),

σ2
Dk

= E(D2
k) −E2(Dk) = qk − q2

k.

Hence we can obtain P (Dk = 1,Dm = 1) by the following equation:

P (Dk = 1,Dm = 1) = corr(Dk,Dm)
√
qk − q2

k

√
qm − q2

m + qkqm.

Then,

P (Dk = 1,Dm = 0) = P (Dk = 1) − P (Dk = 1,Dm = 1),

P (Dk = 0,Dm = 1) can be obtained similarly.
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We also need P (Dm = 0,Dk = 0):

P (Dm = 0,Dk = 0) =1 − P (Dm = 1,Dk = 1)

− P (Dm = 0,Dk = 1) − P (Dm = 1,Dk = 0).

The probabilities involving three nodes like P (Dk = 1,Dm = 0,Dn = 0) and P (Dk =

0,Dm = 1,Dn = 0) are obtained as follows.

For any different nodes k, m, and n. We need to make further assumptions: fix Dk = 1,

assume a new probability P (Dm = 0,Dn = 0∣Dk = 1):

P (Dm = 0,Dn = 0∣Dk = 1) = P (Dm = 0,Dn = 0)(1 − e
− ckm+ckn

2

10
).

Then, P (Dm = 0,Dn = 0,Dk = 1) = P (Dm = 0,Dn = 0∣Dk = 1)P (Dk = 1). P (Dk = 0,Dm =

1,Dn = 0) can be obtained.
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Appendix D Nomenclature for Chapter 5

Table D.1: Indices and Sets

i Generator, i = 0,1, ..., I − 1

t Planning period, t = 0,1, ..., T − 1

k Uncertainty set, k = 1, ...,K

n Constraint index

j Column index of the data matrix (for j-th day)

Uk The k-th uncertainty set

Ω, Ωk Set of feasible solutions of recourse problem
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Table D.2: Model Parameters

ai Start up cost of unit i
ri Running cost of unit i
ci Fuel cost of unit i
q+t Purchase price at time t in power market
q−t Sale price at time t in power market
ρk Weight of the worst case cost of the k-th uncertainty set
ūt Nominal value of load at time t

ût(ûkt) Bound on load deviation at time t for the (k-th) uncertainty set
σt Standard deviation of the load data at time t

Γ(Γk) the right-hand-side for the budget constraint of the (k-th) uncertainty set
γk the right-hand-side for the risk constraint of the (k-th) uncertainty set
P −
i Lower bound output of unit i
P +
i Upper bound output of unit i

∆i+ Ramping up limit of unit i
∆i− Ramping down limit of unit i
mi+ Minimum up time limit of unit i
mi− Minimum down time limit of unit i
SRt System reserve requirement at time t
dt Power demand at time t
ps Probability of the scenario s
bk Number of extreme points/cardinality of the k-th uncertainty set

Table D.3: Uncertain Factors

ut(uit) Load at time t (forced outage of generator i at time t)

Table D.4: Decision Variables

xit Binary on/off status of unit i at time t
zit Binary start up of unit i at time t
yit Continuous generation of unit i at time t
s+t Purchased power or load shed at time t (continuous)
s−t Sold power at time t (continuous)
wit Spinning reserve of unit i at time t
ht, vn Auxillary binary variable
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Appendix E The Expanded Robust UC Model

In this model, we consider the unit commitment problem with random load, which is

captured by multiple uncertainty sets. For simplicity, we do not include spinning reserve

constraints and assume a linear fuel cost function. The expanded robust UC is formulated

as follows.

min
x,z

I−1

∑
i=0

T−1

∑
t=0

(rixit + aizit) +
K

∑
k=1

ρk max
u∈Uk

min
(y,s+,s−)∈Ωk(x,z,u)

(
I−1

∑
i=0

T−1

∑
t=0

ciyit +
T−1

∑
t=0

(q+t s+t − q−t s−t )) (E.1)

s.t.

−xi(t−1) + xit − xih ≤ 0

∀i, t ≥ 1, t ≤ h ≤min{mi
+ + t − 1, T − 1}; (E.2)

xi(t−1) − xit + xih ≤ 1

∀i, t ≥ 1, t ≤ h ≤min{mi
− + t − 1, T − 1}; (E.3)

−xi(t−1) + xit − zit ≤ 0 ∀i, t ≥ 1; (E.4)

xit, zit ∈ {0,1} ∀i, t; (E.5)

where

Uk = {u ∶ ūt − ûkt ≤ ut ≤ ūt + ûkt ∀t;
T−1

∑
t=0

∣ut − ūt∣
ûkt

≤ Γk} k = 1, . . . ,K; (E.6)

and

Ωk(x,z,u) = {(y, s+, s−) ∶ P −
i xit ≤ yit ≤ P +

i xit ∀i, t; (E.7)

I−1

∑
i=0

yit + s+t − s−t = ut ∀t; (E.8)
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yi(t+1) ≤ yit + xit∆i
+ + (1 − xit)P +

i

∀i, t = 0,1, ..., T − 2; (E.9)

yit ≤ yi(t+1) + xi(t+1)∆i
− + (1 − xi(t+1))P +

i

∀i, t = 0,1, ..., T − 2; (E.10)

yit ≥ 0 ∀i, t; s+t , s−t ≥ 0 ∀t}. (E.11)

The objective function in (E.1) is to minimize the total cost, including the first stage com-

mitment cost and the second stage economic dispatch cost estimated by the weighted sum

of the worst case costs in different uncertainty sets. Constraints in (E.2)-(E.5) are typical

commitment constraints that restrict the minimum up and down times, generator status,

the start-up decisions, and variable types. Uk in (E.6) is defined in the same fashion as

those in Bertsimas et al. (2013b); Zhao and Zeng (2012b). It uses a budget constraint to

refine our uncertainty set description. The polyhedral set Ωk(x,z,u) is the feasible set of

the economic dispatch problem, for the fixed (x,z,u). y, s+, and s− represent unit genera-

tion, purchased power, and sold power, respectively. Constraints in (E.7) define the lower

and upper bounds on generation level. Constraints in (E.8) ensure loads can be satisfied all

the time. Constraints (E.9) and (E.10) are ramping up/down limits. Constraints in (E.11)

provide variable type restrictions.

In our numerical study, the column-and-constraint generation algorithm is applied while

a different strategy is adopted to solve SPk. Specifically, instead of considering linearized

KKT-SPk, we use strong duality to convert SPk into the following problem (Dual-SPk),

where x∗ is a given first stage decision, λ,π,ϕ,ω, and δ are dual variables of constraints

(E.7)-(E.10), respectively.

max
λ,π,ϕ,ω,δ,u

I−1

∑
i=0

T−1

∑
t=0

(P −
i x

∗
itλit + P +

i x
∗
itπit) +

T−1

∑
t=0

utϕt

+
I−1

∑
i=0

T−2

∑
t=0

(x∗it∆i
+ + (1 − x∗it)P +

i )ωit

+
I−1

∑
i=0

T−2

∑
t=0

(x∗i(t+1)∆
i
− + (1 − x∗i(t+1))P +

i )δit (E.12)
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s.t.

λi0 + πi0 + ϕ0 − ωi0 + δi0 ≤ ci ∀i, t = 0; (E.13)

λit + πit + ϕt − ωit + δit + ωi(t−1) − δi(t−1) ≤ ci

∀i, t = 1,2, ..., T − 2; (E.14)

λi(T−1) + πi(T−1) + ϕT−1 + ωi(T−1) − δi(T−1) ≤ ci

∀i, t = T − 1; (E.15)

ϕt ≤ q+t ∀t; (E.16)

−ϕt ≤ −q−t ∀t; (E.17)

λit ≥ 0, πit ≤ 0, ωit ≤ 0, δit ≤ 0 ∀i, t;ϕt free ∀t; (E.18)

u ∈ Uk. (E.19)

Note that Dual-SPk has linear constraints and a bilinear objective function, which involves

product term utϕt. As proven in Zhao and Zeng (2012b) and Jiang et al. (2011), for the

uncertainty set defined in (E.6), regardless of the recourse problem, worst cases will be those

with ut set to ūt or ūt + ûkt for all t. So, the continuous uncertainty set is equivalent to a

discrete set by simplifying ut to ūt + ûktht where ht is a binary variable, which allows us to

linearize utϕt to convert Dual-SPk into an MIP formulation. In particular, we mention that,

because explicit tight bounds on ϕt can be obtained from (E.16) and (E.17), the resulting

MIP has a much simpler structure for fast computing, compared to the linearized KKT-SPk.

We refer this method as the strong duality method. Note that such methods is directly

applicable when the uncertainty is a binary set, such as G-1 and G-2 sets presented in

Appendix G.
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Appendix F Correlation Analysis of Load Data

To analyze the behavior of loads reaching lower/upper bounds of an interval, we define

a (−1,0,1) bounding matrix H̃ based on our 24 × 7 load data. Specifically, for loadtj and an

interval [ūt − ût, ūt − ût], we have

H̃tj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, if loadtj ≤ ūt − ût;

0, if ūt − ût < loadtj < ūt + ût;

1, if loadtj ≥ ūt + ût.

In our experiments, we let ût = 1.5σt to match the uncertainty set U1. A sample of

the resulting bounding matrix for hour 17-23 is presented in Table F.1. Then, we perform

correlation analysis on the bounding matrix. The correlation matrix is presented in Table F.2,

which shows that loads in hour {17,22,23} ({18,19} respectively) are perfectly correlated

on reaching bounds. As the following example, we can include such equality constraints into

U1 to reflect correlation information on reaching bounds.

u17 − ū17

û1,17

= u22 − ū22

û1,22

= u23 − ū23

û1,23

.

Those equalities simply reduce the dimension of U1 and do not incur any additional

computation challenge, which is suitable to strengthen the popular uncertainty set, i.e., the

hypercubic set with a budget of uncertainty constraint (Bertsimas et al. (2013b), Bertsimas

et al. (2011), Zhao and Zeng (2012b), and Jiang et al. (2011)), especially its equivalent

discrete set. We mention that when uts are continuous, those equalities may not strictly

Table F.1: Bounding Matrix for Hour 17-23

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Hour 17 -1 0 0 0 0 0 0
Hour 18 0 0 0 0 1 0 0
Hour 19 0 0 0 0 1 0 0
Hour 20 0 0 0 0 0 0 0
Hour 21 0 0 0 0 0 0 0
Hour 22 -1 0 0 0 0 0 0
Hour 23 -1 0 0 0 0 0 0
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Table F.2: Correlation Matrix for Hour 17-23

Hour 17 Hour 18 Hour 19 Hour 20 Hour 21 Hour 22 Hour 23

Hour 17 1
Hour 18 0.167 1
Hour 19 0.167 1 1
Hour 20 0 0 0 1
Hour 21 0 0 0 0 1
Hour 22 1 0.167 0.167 0 0 1
Hour 23 1 0.167 0.167 0 0 1 1

hold but they serve as reasonable approximations to capture correlations, given that it is

observed in sample data that those loads reach bounds simultaneously.
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Appendix G The Risk Constrained Robust UC Model

In this model, we consider the unit commitment problem with bound constraints on load

sheds under G-k contingencies (i.e., up to k generators in forced outages). Most notations and

variables are identical to those used in the expanded robust UC model. Important differences

are: spinning reserve constraints are included in the nominal situation with variable wit

representing spinning reserve of generator i at time t and parameter SRt representing system

reserve requirement at time t, Uk is a finite discrete set to describe the generator outage

status, and parameter dt is used to represent load at time t that is certain. In our experiments,

SRt is set as one tenth of dt for all t.

min
x,z,y0

I−1

∑
i=0

T−1

∑
t=0

rixit + aizit + ciy0,it (G.1)

s.t.

−xi(t−1) + xit − xih ≤ 0

∀i, t ≥ 1, t ≤ h ≤min{mi
+ + t − 1, T − 1}; (G.2)

xi(t−1) − xit + xih ≤ 1

∀i, t ≥ 1, t ≤ h ≤min{mi
− + t − 1, T − 1}; (G.3)

−xi(t−1) + xit − zit ≤ 0 ∀i, t ≥ 1; (G.4)

y0,it ≥ P −
i xit ∀i, t; (G.5)

y0,it +wit ≤ P +
i xit ∀i, t; (G.6)

∑
i

wit ≥ SRt ∀t; (G.7)

y0,i(t+1) ≤ y0,it + xit∆i
+ + (1 − xit)P +

i

∀i, t = 0,1, ..., T − 2; (G.8)

y0,it ≤ y0,i(t+1) + xi(t+1)∆i
− + (1 − xi(t+1))P +

i

∀i, t = 0,1, ..., T − 2; (G.9)
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I−1

∑
i=0

y0,it − s−0,t = dt ∀t; (G.10)

max
u∈Uk

min
(y,s+)∈Ωk(x,z,u)

∑
t

s+t ≤ γk k = 1, . . . ,K (G.11)

xit, zit ∈ {0,1}, y0,it ≥ 0, s−0,t ≥ 0, wit ≥ 0 ∀i, t; (G.12)

where

Uk = {u ∶∑
i

uit ≤ k ∀t (G.13)

ui(t+1) ≥ uit ∀i,0 ≤ t ≤ T − 2; (G.14)

uit ∈ {0,1} ∀i, t;} k = 1, . . . ,K; (G.15)

(G.16)

and

Ωk(x,z,u) = {(y, s+, s−) ∶ s+t − s−t = dt −∑
i

yit ∀t; (G.17)

P −
i xit(1 − uit) ≤ yit ≤ P +

i xit(1 − uit) ∀i, t; (G.18)

yi(t+1) ≤ yit + xit∆i
+ + (1 − xit)P +

i

∀i, t = 0,1, ..., T − 2; (G.19)

yit ≤ yi(t+1) + xi(t+1)∆i
− + (1 − xi(t+1))P +

i

+P +
i ui(t+1) ∀i, t = 0,1, ..., T − 2; (G.20)

s+t ≥ 0, s−t ≥ 0, ∀t; yit ≥ 0 ∀i, t}. (G.21)

The objective function in (G.1) is to minimize the overall cost in the nominal situation.

Constraints in (G.2)-(G.10) are the regular unit commitment constrains, along with variable

type restrictions in (G.12). Constraints in (G.11) define the different restrictions on the

overall load shed in K contingency sets. The contingency set Uk in (G.13)-(G.15) includes

all the contingencies with up to k generator outages. Specifically, constraints in (G.13)

ensure that at any time, no more than k generators are in outage. Constraints in (G.14)

indicate that once generator i is in outage at time t, i.e., ui,t = 1, it remains in outage status.
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Finally, the set Ωk(x,z,u) in (G.17)-(G.21) defines the feasible set of the economic dispatch

subject to fixed (x,z,u). Note from (G.18) that once generator i is in outage at time t, its

generation will be zero. Also, (G.20) ensures that the ramping down constraint is not needed

if generator i is in outage at time t + 1.
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Appendix H Numerical Study on Large Systems

To verify their performances and applicability among practical-scale systems, we investi-

gate our proposed models and solution methods on large instances.

Data of 36 thermal units, including generator parameters and hourly load information,

from IEEE 118-bus system (Ma and Shahidehpour, 1999), and Zhao and Zeng (2012b) are

adopted as the basic testbed. To define load uncertainty sets, we treat the given load as

nominal value ūt for all t, and let the deviations û1t be 15% and û2t be 30% of ūt, respectively.

To generate larger instances, we follow the strategy used in Ostrowski et al. (2012) to replicate

generators and scale up hourly loads accordingly, which yield systems with 72 and 108 units.

For uncertainty sets of the latter two systems, the deviation ûkt are
√

2 and
√

3 times of

their counterparts for the system of 36 units, respectively.

In all numerical experiments, we set weight coefficients (ρ1, ρ2) to (0.6,0.4) as this pair

of coefficients may demand more computation time, according to Table 5.1. To evaluate

different methods to solve the max-min subproblem SPk, we implement both KKT condition

based method presented in Section 5.3.3 and the strong duality based method presented in

Appendix E when Γ1 and Γ2 are integral. For KKT condition method, the big-M value used

in linearization procedure is set to 105. Computational results are presented in Table H.1,

where the column “SP time(s)” presents the average solution time for max-min subproblems

over iterations.

We first note from Table H.1 that both the number of iterations and computational time,

regardless of different methods to solve SPk, generally increase with respect to the problem

sizes. Nevertheless, in most cases the increase is mild, which indicates the expanded robust

UC models, along with the customized column-and-constraint generation algorithm, could be

used to deal with practical-scale instances. Second, we observe that the customized column-

and-constraint generation algorithm with the strong duality method is much faster than the

other variant with KKT method. On average, the former one is about 2.5 times faster than

the latter one. After taking a closer look at the differences, we notice that the strong duality

method can quickly solve SPk while KKT method takes much longer computational time.

On average, the former one is 6.8 times faster than the latter one. For some instances, the
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Table H.1: Expanded Robust UC on Large Systems

# of Units Γ1,Γ2
strong duality method KKT method

Obj.
iter. time(s) SP time(s) iter. time(s) SP time(s)

36

12,12 2 0.906 0.062 2 2.671 0.473 791604.23
12,10 2 0.875 0.055 2 2.78 0.5 779675.63
12,8 3 2.062 0.083 3 3.73 0.323 766767.83
12,6 3 2 0.081 3 4.41 0.477 752645.03
12,4 3 1.984 0.091 3 4.19 0.437 735609.83
12,2 4 7.312 0.16 3 6.11 0.346 718151.83
6,6 3 2.657 0.104 3 3.75 0.331 723425.63
6,4 3 2.5 0.122 3 4.38 0.445 706390.43
6,2 4 8.499 0.121 4 10.84 0.375 688932.43

72

12,12 3 4.749 0.247 3 16.703 1.912 1780542.59
12,10 2 2.062 0.172 2 6.69 1.266 1746723.41
12,8 3 3.984 0.24 3 14.83 1.971 1710214.64
12,6 2 1.829 0.184 2 6.19 1.215 1670269.34
12,4 3 4.687 0.253 3 12.98 1.534 1608116.59
12,2 2 4.5 0.242 2 8.56 1.183 1539172.26
6,6 3 4.875 0.24 3 10.17 1.05 1587624.39
6,4 4 8.875 0.301 3 12.41 1.406 1525471.64
6,2 3 15.937 0.253 3 24.11 1.247 1456527.31

108

12,12 4 13.718 0.486 4 64.827 5.775 2913662.29
12,10 6 43.264 0.535 6 130.83 6.451 2851679.47
12,8 4 21.234 0.555 5 73.34 4.506 2784353.64
12,6 2 3.312 0.352 2 13.08 2.703 2710424.36
12,4 2 3.281 0.34 2 12.39 2.559 2576045.65
12,2 2 6.797 0.266 2 15.27 2.355 2430536.04
6,6 3 8.906 0.487 3 20.59 2.331 2558595.9
6,4 3 9.062 0.513 3 17.58 1.786 2424217.19
6,2 3 19.687 0.399 3 29.33 1.883 2278707.58

average 3 7.761 0.257 2.963 19.731 1.735
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former one could be 12.1 times faster. Those numerical results confirm the importance of

adopting a simple uncertainty set and solving max-min subproblems using the strong duality

method.

As in Bertsimas and Sim (2004) and Bertsimas et al. (2013b), the aggregated volatility

of T (= 24) random inputs is proportional to
√
T . So, we perform a set of experiments on

instances with Γ1 and Γ2 scaled according to
√
T , for which, because

√
T is not integral,

only KKT method is applied. Numerical results are presented in Table H.2. Basically, all

instances can be solved within an acceptable amount of time, comparable to those of KKT

method presented in Table H.1. Another observation is that the computational time for

max-min subproblem generally reduces when Γ1 and Γ2 reduce, which is more obvious when

the system has 108 units. It can be explained by the fact that when Γ1 and Γ2 reduce, the

uncertainty sets become smaller and less algorithmic operations are needed to solve max-min

subproblems.

Finally, we investigate our risk constrained robust UC model for large systems. Noting

that it is much more difficult to compute, we just present results on the basic system with 36

units. In Table H.3, the restrictions of total load shed over 24 hours are set to 0.1%, 0.5%,

1%, and 2% of total load, whose numerical values are 84.24, 421.18, 842.36, and 1684.72

respectively. Compared to results in Table 5.7, it is clear that risk constrained robust UC

model is not only difficult to compute, but also very sensitive to problem size. Hence, more

powerful algorithm enhancements are needed.
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Table H.2: Expanded Robust UC with Γ ∝ O(
√
T )

# of Units Γ1,Γ2 iter. time(s) SP time(s) Obj.

36

3
√
T , 3
√
T 2 3.109 0.563 818211.98

3
√
T , 2
√
T 2 2.95 0.516 789847.92

3
√
T ,
√
T 3 5.19 0.576 754670.3

3
√
T , 0.5

√
T 4 6.53 0.344 733777.07

3
√
T , 0.1

√
T 2 2.02 0.199 708355.59√

T ,
√
T 4 7.23 0.491 707014.04√

T , 0.5
√
T 5 15.75 0.438 685859.35√

T , 0.1
√
T 2 2.28 0.168 661224.89

72

3
√
T , 3
√
T 2 7.546 1.441 1855800.68

3
√
T , 2
√
T 2 9.98 2.105 1775495

3
√
T ,
√
T 2 7.19 1.406 1666346.01

3
√
T , 0.5

√
T 3 18.48 1.732 1582627.59

3
√
T , 0.1

√
T 2 10.81 1.445 1497669.3√

T ,
√
T 3 12.52 1.419 1531173.16√

T , 0.5
√
T 3 16.86 0.886 1447835.32√

T , 0.1
√
T 3 20.31 0.948 1364148.11

108

3
√
T , 3
√
T 3 41.234 5.695 3052000.24

3
√
T , 2
√
T 5 84.25 5.394 2906694.05

3
√
T ,
√
T 2 11.02 2.168 2691161.8

3
√
T , 0.5

√
T 2 14.27 2.219 2510368.58

3
√
T , 0.1

√
T 2 11.86 1.394 2345691.03√

T ,
√
T 3 29.75 3.735 2443532.59√

T , 0.5
√
T 3 29.2 1.94 2262739.37√

T , 0.1
√
T 3 26.77 1.497 2098061.82

average 2.792 16.546 1.613

Table H.3: Results of G-1/G-2 Risk Constrained Model with 36 Units

Case γ1, γ2 iter. time(s) Obj. LS in G-1 LS in G-2

r4 84.24, 1684.72 1 321.056 622163.9 0 629
r5 84.24, 842.36 1 321.06 622163.9 0 629
r6 84.24, 421.18 5 1395.721 622483.9 0 413
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