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Abstract

Pandemic influenza outbreaks have historically entailed significant societal and

economic disruptions. Today, our quality of life is threatened by our inadequate pre-

paredness for the imminent pandemic. The key challenges we are facing stem from a

significant uncertainty in virus epidemiology, limited response resources, inadequate

international collaboration, and the lack of appropriate science-based decision support

tools. The existing literature falls short of comprehensive models for global pandemic

spread and mitigation which incorporate the heterogeneity of the world regions and

realistic travel networks. In addition, there exist virtually no studies which quantify

the impact of resource sharing strategies among multiple countries. This dissertation

presents three related models that contribute to filling the existing vacuum. The first

model develops optimal capacity management strategies for multi-region pandemic

surveillance. The second model estimates the pandemic propagation time from the

onset to a likely pandemic export region, such as a major transportation hub. The

model builds on a large-scale agent-based simulation and geographic information sys-

tems (GIS). The model is tested on a hypothetical outbreak in Mexico involving 155

regions and over 100 million people. The third model develops an empirical relation-

ship to quantify the impact of various U.S. - Mexico antiviral sharing strategies under

several pandemic detection and response scenarios.
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1. Introduction

Influenza is a respiratory infection caused by a virus which is endemic to the

humans. However, sometimes a virus can attack more people than expected causing

epidemics. Such epidemics can be identified by comparing the number of influenza like

illness (ILI) cases to historical values. When an epidemic spreads to more than one

country, or if the fatality or transmission ratios are very high, the epidemic is called

a pandemic. The virus most often associated with pandemic influenza (PI) is that

of type A. Influenza viruses are described by two key elements: hemagglutinin (H)

and neuraminidase (N) (e.g., H1N1, H3N2, H5N1). Additionally, every year antigenic

shifts can occur generating new virus subtypes. To cope with these changes, vaccines

should be formulated periodically [2]. When a novel virus subtype adapts to the

human population, our bodies can no longer develop immunity. Consequently, a PI

outbreak can start. The duration of an outbreak, the number of people and regions

affected, and the mortality ratio are directly related not only to how the virus is

transmitted, but also to the social and demographic characteristics of a society.

On May 9 of 1997, the first human case of H5N1, also known as Avian Flu,

appeared in Hong Kong [3]. A major slaughter of chickens was implemented in an

attempt to stop the bird-to-human transmission [4]. Nowadays, the World Health Or-

ganization (WHO) has declared H5N1 human outbreaks in fifteen Asian and African

countries with a total of 438 infected cases, and the 59.8% case fatality ratio [5].

On March 18 of 2009, the Mexican government reported a suspicious ILI outbreak

in rural areas in the south of the country. By April 4, WHO confirmed that the

infection cases were caused by an aggressive novel subtype of influenza virus A/H1N1

[6]. At the end of April, WHO reported that this new subtype of H1N1 had been
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confirmed in several countries with over 182,166 cases. In the American continent,

approximately 1,579 of the 1,799 deaths were reported [7]. By mid-October, WHO

reported 400,000 confirmed cases, with at least 4,735 deaths, worldwide [8].

Despite the facts that the H5N1 virus is believed to be transmittable only by eating

food contaminated with fresh bird feces and that human-to-human transmission has

not been confirmed yet, there exists a major concern due to potential mutations

of the virus which can combine its code with another influenza virus capable of a

human-to-human transmission.

Nowadays, the international community has both antiviral drugs to reduce the

impact of influenza, and a capability to produce vaccines in a few months once the

virus is isolated and identified. However, antiviral drugs are perishable items that

cannot be stored in large quantities for long periods of time due to cost constraints.

On the other hand, at present vaccines are produced using a 50-year technology, mak-

ing it difficult to accurately forecast the production output. Additionally, a high level

of population compliance to vaccination campaigns is needed to stop the spread of a

pandemic. Past unfortunate experiences can affect the risk attitudes of the popula-

tion during vaccination campaigns. For example, a major public health vaccination

campaign was conducted by the United States government in 1976, trying to prevent a

major pandemic of H1N1 that did not actually happen. Major lawsuits and allegedly

vaccination-caused diseases established legal and social precedents which need to be

considered by public health officials today [9].

Figure 1 shows the world population density (from white to red) and the world

airports (green dots). It can be seen that most of the airports are concentrated in the

U.S. and Europe. Consequently, once an outbreak reaches these regions, it will be

almost impossible to contain the spread and hence a global outbreak will be inevitable.

On the other hand, it has been discussed in the literature [10] that it is probable that

an outbreak would start in a high density region in a poor rural area (most of them
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Figure 1: Map of the World Population Density and Major Airports

represented in red in Figure 1). However, with the exception of Southeast Asia, most

of these areas lack an effective PI surveillance system. As a consequence, when an

outbreak starts in one of these regions, it is just a matter of time before infected

travelers reach a region with a major travel hub. From that moment, it is just a

matter of days for the outbreak to spread around the world. This effect was observed

during the H1N1/2009 PI outbreak.

The possible global economic impact of PI was analyzed in a study developed by

the Lowy Institute for International Policy coordinated by experts of the Australian

National University [11]. This study analyzed four scenarios of PI: mild (H3N2 1967-

68 equivalent scenario), moderate (H2N2 1957-58 scenario), severe (1918 Spanish flu

scenario), and an ultra severe scenario (1918 Spanish flu scenario affecting equally

every demographic group in the population). By analyzing these scenarios, the au-

thors estimated that in our time a PI outbreak would cost a country between 1.5%

and 5% of its gross domestic product. This impact is attributable to school and com-

pany closures, (in)voluntary workforce reduction, and medical expenses. In the case

of the United States, the estimated impact ranges between $73.1 to $166.5 billion

dollars. The same study estimated the number of deaths in the U.S. to be 20,000
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(mild scenario), 200,000 (moderate scenario), 1M (severe scenario), and 2M (ultra

severe scenario).

Inefficiency of the global PI surveillance network can negatively affect the U.S.

preparedness in the event of a global PI outbreak. Furthermore, the U.S. also faces

some domestic preparedness and response issues. The first issue is related to the

cost and accuracy of the tests for virus diagnosis. The higher costs of more accurate

tests makes it economically infeasible to apply the tests to all individuals who present

ILI symptoms. On the other hand, low reliability (false negatives up to 70%) of

more economic and rapid tests can make medical personnel believe that even negative

results may be positive [12]. The second issue is that there exists a constrained supply

of response resources. For example, antiviral drugs are available for just a fraction of

the total population (the U.S. stockpile was only 6.7% of the population in 2008 [13]).

There can also be delays in the production of vaccines. Moreover, it is estimated that

up to 65% of the U.S. population would not be willing or would decide not to receive

the vaccine [14]. The existing pro-rata policy of the department of Health and Human

Resources (HHR) establishes a distribution of mitigation resources in proportion to

the population in each affected state [15]. However, this policy assumes that all

affected states have homogeneous affected population and simultaneous outbreaks.

As a result, extra resources can be assigned to regions where the outbreak is mild

or where the peak has already passed, while limited resources will be left to regions

where the outbreak is just beginning. Finally, the U.S. lacks a clear international

collaboration policy in the case of overseas-born PI outbreaks.

There exists a strong motivation for the U.S. to explore international collaboration.

If an outbreak starts overseas and is detected promptly, and if the country of origin

has appropriate pharmaceutical and non-pharmaceutical interventions in place, then

the outbreak may be contained at the source [16]. However, developing countries may

not have enough supply of antiviral drugs, or their detection capabilities and health
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care infrastructure may be limited. Additionally, the countries may lack required

expertise to efficiently implement non-pharmaceutical interventions [17]. By sharing

pharmaceutical repositories, giving financial aid to develop proper surveillance and

health care systems, and training public health officials, the U.S. may help to protect

its population domestically. There is also a benefit that developing countries can

share their virus strains in a timely manner, so that the samples can be included in

the design of a vaccine [17]. Hence, the important question is how much and what

resources to share to delay, and possibly avoid, the arrival of overseas-born pandemics

to the U.S. soil.

Our research contributes to the development and improvement of the U.S. mit-

igation strategies during global influenza pandemics. In Chapter 2, we analyze the

status of the relevant academic literature and identify most significant gaps. Chapter

3 describes our research objectives. Chapter 4 presents a model to develop optimal

capacity management strategies for PI surveillance. Chapter 5 presents the agent-

based simulation model to estimate the outbreak lead time from the onset to a likely

pandemic export region for the testbed of Mexico. Chapter 6 develops an empirical

relationship for the outbreak lead time in order to examine U.S. - Mexico antivi-

ral sharing strategies in global pandemic scenarios. Chapter 7 summarizes the main

results, contributions, and future research opportunities.
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2. Literature Review

We classify the existing PI models into three main categories: statistical, dynamic

compartmental, and simulation-based models.

The main objective of the statistical models is to estimate epidemiological param-

eters with the use of statistical analysis and/or optimization tools, such as maximum

likelihood estimation, Markovian analysis, linear programming or regression-based

approaches. For example, Carrat et al. applied Markovian models to compare the

short-term influenza immunity obtained from vaccination to the long-term immunity

acquired from actual infection. The authors demonstrated that yearly vaccinations

during young years could make an individual more prone to the disease in his senior

years [18]. Becker and Starczak evaluated the effectiveness of a vaccination campaign

using a linear programming model. Considering constraints on resource availability,

the model aimed to optimize the expected reproduction number by selecting the pro-

portion of people in each household to be vaccinated [19]. In their classic 1982 paper,

Longini and Koopman applied the maximum likelihood principle to fit a statistical

model to symptom related data [20]. More recently, Yang, Longini and Halloran

applied the same methodology to estimate the transmission probabilities and the ef-

ficacy of prophylactic interventions [21]. The authors took data from two trials in

2001 and 2004 using the antiviral drug osteltamivir (also known as Tamiflu). The

paper estimated a reduction in the probability of infection by 85% for exposed cases,

and a reduction in the probability of transmission of 66% for infectious individuals

[21]. Cauchemez et al. used Markov chain Monte Carlo sampling to model the risk of

household-based and community-based infection. The paper concluded that children

were more prone to influenza than adults in 79% of cases, and that they had higher
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risk from community born infection in 76% of cases [22]. In the example papers

above, some models used simulation as a validation mechanism or a tool for deriving

numerical conclusions.

Dynamic compartmental models have mostly focused on describing the natural

history of influenza. Typically, each individual in the population is assigned to a

compartment. However, this model does not address some important aspects of the

disease such as the latency period, or the fact that some infected individuals never

develop symptoms. To model the transitions among compartments, most models use

tools such as Markov chains and differential equations. It is widely accepted that the

Markovian assumption of dependency only on the previous stage is reasonably valid

for modeling influenza like diseases.

Ball and Lyne explored different vaccination policies using three dynamic com-

partmental models: Susceptible, Infected, Recovered (SIR), Susceptible, Infected,

Susceptible (SIS), and Susceptible, Infected, Recovered, Susceptible (SIRS). The three

models represented permanent, non-existent, and temporary immunity, respectively,

after the individual was infected [23]. Most of the dynamic compartmental models

assume homogeneity of the population. Larson attempted to build more heteroge-

neous populations by developing three models that divided the population in the

groups of active/inactive, working/non-working, and changing social distancing and

personal hygienic behavior [24]. While the models increased in their complexity, the

conclusions were still very aggregate.

Arino et al. stated that complex compartmental models can yield similar conclu-

sions as simulation-based models. The authors used nine states of which two were

Susceptible-Latent-(A)Symptomatic-Recovered models, with and without treatment,

respectively. The recovered state was shared, and latent and infected individuals could

obtain or decline medical treatment [25]. The models assumed homogenous popula-

tion in each compartment, and did not include any type of non-pharmaceutical inter-
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vention or consideration of social dynamics. Consequently, the model only emulated

the conclusions of agent-based simulation models in the estimation of pharmaceutical

interventions using antiviral drugs. Atkinson and Wein designed a more complicated

variation of these models in an attempt to quantify the routes of influenza transmis-

sion. Based on previous medical studies, they concluded that aerosol based transmis-

sion (e.g., by sneezing) is the dominant mode of transmitting influenza. However, the

authors also acknowledged that their conclusions were not definitive and other types

of transmission (e.g., through contaminated surfaces) could not be discarded [26].

Mathews et al. argued through historical evidence that after recovering, an in-

dividual can present long-term or short-term immunity. They built a model that,

besides the latent-(non-)infectious and (a)symptomatic stages, included these two

new stages. The authors fitted their model with records from 1918 and 1971 PI

from some remote British territories. They concluded that for individuals that had

been isolated from endemic influenza, PI could be more aggressive due to the lack

of heterosubtypic immunity created by individuals living in societies with endemic

influenza [27]. As it can be concluded from the above examples, some important

observations can be drawn regarding the natural history of influenza using dynamic

compartmental models. However, the complexity of PI outbreaks in a heterogeneous

and dynamic society can not be adequately analyzed by using these types of models.

Because of the complexity of the issues surrounding PI outbreaks, it is highly

challenging to build a purely mathematical model of a heterogeneous population

with diverse social interactions. Simulation models have been used to address these

challenges. Another benefit of simulation models is an explicit consideration of ran-

domness of events. This is done by using random variables. By running a model

several times and modifying the values of some key parameters, sensitivity analysis

can be performed to estimate the confidence intervals for the output variables. Below

we provide a sample of representative simulation-based models.
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Figure 2: Chicago Defined as a Metropolitan Area by Halloran et al [1]

A collaborative network of researchers supported by the National Institute of

General Medical Sciences and the National Institutes of Health (NIH) created the

Models of Infectious Disease Agent Study (MIDAS). Despite the fact MIDAS was not

created exclusively to study PI, three major models [28–30] were developed to study

a set of interventions known as targeted layered containment (TLC). The objective

of TLC is to study the synergetic effects of various interventions, such as targeted use

of antiviral drugs, isolation of infected individuals, quarantine of affected households,

school and workplaces closure, and social distancing. Halloran et al. developed a

cross validation of the MIDAS models using the data of 8.6 million people in the city

of Chicago [1]. For this purpose, the authors partitioned the Chicago Metropolitan

Area by using geographic coordinates, as shown in Figure 2. By doing that, the

authors were able to identify metropolitan regions in a specific geographic context.

However, it can be observed from the map that using square-shaped boundaries may

not be the best approach to define a region.

Ferguson et al. used geographic information systems (GIS) to incorporate demo-

graphic densities obtained from LandScan [31] into an epidemiological model. The
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model incorporated a heterogeneous population of households and three types of

schools and workplaces, distributed randomly according to the population density.

The authors modeled Thailand [10] and the continental U.S. and U.K. [28]. The

assumptions regarding transmission of PI in schools were conservative compared to

similar models. As a result, the conclusions did not emphasize school closures. Fergu-

son et al. developed a force of infection transmission model based on the probability

of getting infected according to the theoretical basic reproduction number (R0). The

authors also presented a comprehensive air travel network for their U.S.-U.K. paper.

However, it was assumed that infected people arrived to the main airports of the

countries at a fixed rate. This assumption made it difficult to assess the conclusions

regarding global outbreaks outside the regions of study.

A typical small U.S. town was modeled by Glass et al. The contact process was

based on the Ferguson et al. model[28], but the authors used fixed and random links

to relate a network of 10,000 individuals and neighborhood contacts. More emphasis

was given to the contact among children and teenagers in two types of schools. As a

result, school closure proved to be the most reliable type of intervention [32]. Another

MIDAS model was created by Germann et al., based on the transmission process

considered by Longini et al. [16]. The model considered 281 million people residing

in the continental U.S. and R0 from 1.6 to 2.4. The paper concluded that it was

important to apply travel restrictions in addition to other interventions which can

help to reduce the spread of the outbreak and gain additional time. However, travel

restrictions by themselves seemed to be not very effective [29].

Wu et al. modeled a single region (Hong Kong City), adding an infectious pre-

symptomatic stage in the incubation period of the natural disease history. As a

result, they concluded that household-based interventions were more important, even

if the compliance level was relatively low. They also suggested an algorithm to im-

plement isolation, quarantine, and antiviral prophylaxis in six different scenarios: no
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interventions; quarantine; quarantine and isolation; quarantine and antiviral drugs;

quarantine, isolation; and antiviral drugs, and quarantine, isolation, antiviral drugs

with contact tracing [33]. Some of the strategies were economically unfeasible because

they required up to 12 doses of antiviral drugs per individual in the population. As

a reference, in 2006 the U.S. stockpile was only five million doses [29].

Historical data from a 2003-2004 influenza outbreak in six North Carolina coun-

ties were used by Cooley et al. to fit an agent-based simulation model with ILI

records from local authorities. The model, which included schools, workplaces, pub-

lic transportation, households, neighborhoods and communities, achieved a strong

fit with historical data [34]. Los Alamos National Lab developed an epidemic sim-

ulation engine called EpiSimS, a discrete agent-based simulator, that was used to

model Southern California with data from the 2000 Census. Mniszewski modeled six

counties in California with a total population of almost 19 million individuals divided

into six million households and almost a million locations, such as business, schools,

shops, and restaurants. Some scenarios of the study, for example, closing school for

up to six months, did not seem to be realistic [13].

Das, Savachkin and Zhu developed a large-scale simulation model for 1.1 million

people distributed in 400,000 households. The model featured a high level of granu-

larity, including hourly schedules for each individual and hour-by-hour interactions to

simulate the contact process. The model included a total of thirteen different types

of community establishments. Pharmaceutical and non-pharmaceutical interventions

were simulated, and detailed statistics were collected including the cumulative num-

bers of infected and dead, the total cost of medical care, and lost productivity [35].

This model was one of the most detailed simulation found in our review of the aca-

demic literature, but also one of the most demanding in terms of computing resources.

Uribe et al. designed a multi-region testbed for Florida using detailed demographic

and social information for the counties of Hillsborough, Dade, Leon and Duval [36].
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The definition of a metropolitan area using only county data may be inadequate,

because part of the metropolitan population that live outside the county may not be

included (for example, Pinellas County in the case of Tampa or Broward County in the

case of Miami). On the other hand, rural areas of the county may not be so relevant

for simulation purposes. However, the conclusions of their work were not affected by

this issue. The authors were able to demonstrate that the current pro-rata policy

of pharmaceutical distributions of resources among counties was not optimal. The

study designed a simulation-based optimization model to distribute such resources in

a more efficient way, thus decreasing the total cost of the outbreak.

To the best of our knowledge, there has been only a few global PI simulators

developed. The IBM Eclipse group built the Spatio-Temporal Epidemiological Mod-

eler [37]. However, this model is based on a network of regions with completely

homogeneous populations. PI propagated from one region to another only by ground

transportation, in proportion to the length of the common boundaries between ad-

jacent regions. Inside each region, simple dynamic compartmental models like SIR

calculated the number of infected and recovered using differential equations.

Colizza et al. [38] took a different approach by using a global air travel network

[42]. The model connected most of the world cities (2094) with international airports.

However, the population within each city was homogeneous and the outbreak model

followed the SEIR model. Moreover, there was no consideration of the rural area

surrounding each one of the metropolitan areas. A different study showed that a

selected sample of 155 airports including 100 most important cities produced similar

results with less computational load [43]. Table 1 summarizes the above simulation

models.

Academic papers focusing on international collaboration to reduce the impact

of PI are mostly in the form of qualitative studies. A sample of these papers is

shown in Table 2. There exist some studies discussing national and multi-national
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Table 1: Simulation-Based PI Containment and Mitigation Models

Single region
(SR) /

Author, year Cross re-
gional (CR)

Objective Key features

Ferguson et al,
2005 [10] and Fer-
guson et al, 2006
[28]

SR-
2005(Thailand)
and CR-2006
(US & UK)

Model PI spread
& assess mitigation
strategies

- Use of GIS (Landscan)

- Targeted mass prophylactic use of antiviral
drugs and social distancing

- Heterogeneous among groups, homogeneous
within group

- 85M Thailand, 300M US, 58.1M UK

Glass et al, 2006
[32]

SR (small town
in New Mexico)

Examine role of social
distancing

- Targeted social distancing to mitigate PI

- Fixed, small-scale contact network

- Transmission rule follows exponential distribu-
tion

- Emphasis in children and teenagers

Germann et al,
2006 [29]

SR (US) Assess mitigation
strategies

- Sensitivity analysis on R0 from 1.6 to 2.4

- Artificial 281M individuals from 2000 US cen-
sus data divided in 2000-person commu-
nities

- Long trips modeled after Bureau of Trans-
portation data

Wu et al, 2006
[33]

SR (Hong
Kong)

Test different inter-
vention scenarios

- Natural history includes infectious pre-
symptomatic

- Suggest household-based interventions

- Requires high stocks of anti-viral drugs

Colizza et al,
2007 [38, 39]

CR (global) Model worldwide
spread of a pandemic
with air travel

- Air travel network

- Urban centers

- Compartmental models (SLIR)

- Analysis of antiviral and travel restrictions

Halloran et al,
2008 [1]

SR (Chicago) Cross-validate
targeted lay-
ered containment
models (Fergu-
son/Germann/Eubank)

- Chicago metropolitan area (8.6 million people)

- R0 from 1.9 to 3.0

- Simulate effectiveness of feasible intervention
strategies

Cooley et al, 2007
[34]

SR (NC) Compare real life
pandemic curve
against simulation

- Use of 2003-2004 NC outbreak data

- Use ILI data to estimate model parameters

- Curve fitting exercise

Das, Savachkin
and Zhu, 2008
[40]

SR Mimic stochastic
propagation of PI

- Large-scale model

- Hourly schedules

- Heterogeneous population (1.1 M)

Savachkin et al,
2009 [41]

CR (4 counties,
Fl)

Model PI spread
& assess mitigation
strategies

- Dynamic predictive strategy test bed (4M peo-
ple)

- Optimization model for resource allocation

- Minimize total cost of the outbreak

STEM-
Eclipse,2009
[37]

CR (global) Model PI spread
- Geographic visualization of PI spread

- SIR model

- Only ground travel
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Table 2: Literature on International Collaboration

Author, year Objective Key features

Guimera, 2005 [42] Design an optimal global
airport travel network

- Used in subsequent papers by Colizza and others

Fraser, 2009 [54], Col-
izza, 2009 [61], and Lip-
sitch, 2009 [62]

Estimate the number of in-
fected cases during H1N1
outbreak in Mexico

- Domestic air travel

- Homogeneous population

- SEIR models

- Results varied from 2K to 1.4M

Patel, 2008 [44], Hanvo-
ravong, 2010 [45], Men-
sua, 2009 [46], and
SPPNA, 2007 [47]

Compare national PI pre-
paredness plans (qualita-
tive discussions)

- UK, US, NZ, CAN, AUS

- SE Asia

- Latin America

- North America

Franco, 2009 [51], Gal-
laher, 2009 [52], and
Katz, 2009 [53]

Conduct qualitative analy-
ses of H1N1 2009 outbreak;
recommendations for pre-
paredness

- Accurate outbreak chronology

- Comparison to 1918 outbreak

- Revise international regulations

McDougall, 2008 [48],
Oshitani, 2008 [17],
and Paranthaman,
2008 [49]

Suggest international col-
laboration

- Qualitative discussions

Thompson, 2006 [50] Analyze ethical aspects in
pandemic preparedness

- Qualitative discussion

PI preparedness plans [44–47]. Another set of papers presented arguments in favor of

international collaboration [17, 48, 49]. However, the discussion was centered on ideas

which were not supported by quantitative data. The ethical aspects to consider in

pandemic preparedness were also argued in the literature [50]. In the last two years, a

significant number of papers were published regarding the H1N1/2009 experience [51–

60]. Some of these papers included quantitative analysis, either using data collected

from the outbreak or from simulation models trying to emulate its behavior. However,

the discussion on international collaboration in these papers was limited.

In October of 2006, a committee from the Institute of Medicine (IOM) put a

set of recommendations to enhance the existing pandemic models. The most relevant

recommendations for our research are the following: (i) to develop improved estimates

of model and parameter uncertainty, (ii) to include a broader range of closure options,

(iii) to include costs and benefits of intervention strategies, (iv) to design models that

14



will help policy makers establish strategies and policies, (v) to include decision-aid

models that can be linked to surveillance data to provide real-time feedback, (vi) to

consider the possible negative effects of non pharmaceutical interventions, and (vii)

to consider not only the public health benefits, but also the ethical, social, economic

and logistical costs [63].

In addition to the IOM recommendations, our review has identified the following

gaps in the academic literature: (i) there is a lack of comprehensive models for global

spread of pandemic influenza, (ii) there is a lack of models which incorporate realistic

travel networks and heterogeneity of the world regions, and (iii) there exists an im-

portant need to develop models which can quantify the impact of sharing mitigation

resources between countries during global pandemic outbreaks.

The need to develop heterogeneous global pandemic models can be challenging

due to the lack of centralized sources of data. Every country manages its own census

data and publishes information in different formats or even sometimes refuses to share

it with the international community. In this work, we are interested in in modeling

the propagation of an outbreak born in a country with a high level of diversity in

both the economical and social aspects. Mexico is the ideal candidate because: (i) it

has both industrialized cities and extremely undeveloped regions, (ii) it is adjacent to

the United States, (iii) it has a policy of sharing information with the international

community and features a well developed national statistics system, and (iv) it was

the first country to declare the H1N1/2009 outbreak which made apparent the lack

of effective international surveillance and resource sharing policies.
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3. Research Objectives

Our first research objective is to enhance capacity management strategies for

multi-region pandemic surveillance. The global surveillance network has only a lim-

ited number of laboratories, most of them being located in developed countries, to

perform surveillance in large populations. During an outbreak, the number of samples

to process may become extremely large, and hence a capacity management problem

can become a serious issue. To address this challenge, we formulate a capacity opti-

mization model of a single lab surveying several geographical regions. The model can

be extended to consider a network of labs that can share surveillance capacities.

Our second research objective is to estimate the outbreak propagation time from

the onset to a likely pandemic export region, such as an international travel hub. For

this purpose, we have adapted the simulation model developed by Uribe et al. [36]

for the case of Mexico. Our testbed implementation features a set of regions with

comprehensive consideration of social, demographic and economic attributes as well

as a complex travel network that mimics travel patterns within Mexico.

Our third research objective is to examine different U.S. antiviral sharing strategies

during global influenza pandemics. For this purpose, we experimented with differ-

ent levels of surveillance, various non-pharmaceutical interventions (NPI) as well as

antiviral stockpiles and prophylaxis and treatment strategies. We developed an em-

pirical relationship to quantify the impact of various U.S. - Mexico resource sharing

strategies under several pandemic detection and response scenarios.
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4. Development of Optimal Capacity Management Strategies for Pan-

demic Influenza Surveillance

Before 2009, PI surveillance systems were focused on the H5N1 virus with em-

phasis on Southeast Asia. Due to the experience with H5N1 outbreaks in developing

countries, U.S. labs were designed to deal with a low transmissibility and high sever-

ity virus. The H1N1/2009 outbreak demonstrated that the U.S. surveillance system

was not prepared to handle a high transmissibility virus. Fortunately, H1N1 was not

as severe as H5N1, but the number of specimens arriving to the labs at the peak of

the outbreak caused significant processing delays. This issue brought attention to a

capacity priority dilemma between diagnosis and surveillance functions of the labs.

In U.S., the main objective of the state labs is surveillance while diagnosis is

mostly a function of the private labs. As the H1N1/2009 outbreak showed, at the

beginning of an outbreak, private labs may not have the necessary materials to per-

form the appropriate tests. As a consequence, medical providers would have to send

their specimens to the state labs for diagnosis confirmation. Even when the private

labs become able to perform the tests, high processing costs or lack of confidence can

result in additional diagnosis workload for the state labs. However, at this point of

the outbreak, the priority should be shifted to surveillance. Normally surveillance is

done using specimens sent by medical sentinel providers. In addition, diagnosis spec-

imens can also contribute to the surveillance of a particular area. During the latest

pandemic, most state labs operated under the “first come, first served” processing

policy. As a result, when the number of specimens to be processed significantly ex-

ceeded the capacity of state labs, the lead time from specimen reception to test result

increased dramatically.
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The most significant capacity bottleneck during the H1N1/2009 outbreak was

surprisingly not due to the processing equipment, but to the pre-processing of the

specimens. Once a day, an unknown number of samples arrived to the lab, which

then were tagged and recorded into the computer system by lab personnel. Little

or no time was allocated for processing planning. Therefore, the “first come, first

served” model made a lot of sense. After that experience, the state labs have been

moving to using online specimen tracking systems. Such systems allow to have an

advanced knowledge of the specimens in transit. However, the labs still lack effective

planning mechanisms that will allow to improve the use of the limited capacity. This

section develops such an optimization tool.

4.1 Single Lab Multi-Region Capacity Management Model

Figure 3 shows a schematic of the single lab multi-region model. We consider

a single lab serving N potential outbreak regions over a surveillance horizon of T

periods. During period r (e.g., one day), region i sends a number of specimen Qir ≥ 0

to the lab. Each region i has a surveillance goal Gi, which is the number of specimens

to process during the entire surveillance horizon. The lab has a finite processing

capacity Cp during each period p. In each period r, when the lab receives a specimen,

it must decide when to process this specimen (immediately or at a later time r ≤ p).

Figure 3: Schematic of the Single Lab Multi-Region Model
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As an example, consider the Hillsborough county of the State of Florida (see figure

4). The county can be partitioned in a number of regions based on the zip codes. For

each one of the regions (zip codes), a surveillance goal can be set, depending on the

population of the region and the population density. The surveillance horizon can be

one week, formed by seven daily periods. When sentinels or medical providers send

specimens to the lab, it will aggregate the specimens by zip code for each period.

For example, the specimens sent from region 3 during day 2 will be denoted Q32.

According to the specimens inventory remaining from the previous days, the available

daily capacity, and the forecasted demand, the objective of our model is to decide

how many specimens to process for both surveillance and diagnosis, for each region,

during each period of the surveillance horizon. The decision criterion is minimization

of the total penalty cost due to untimely surveillance and diagnosis processing.

Figure 4: Hillsborough County with Zip Code Based Clusters

First of all, we need to introduce some notation:

N = number of regions served by the lab;

T = number of periods within the surveillance horizon;
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Cp = total available lab capacity in period p;

Qir = total number of specimens received from region i in period r;

Gi = total surveillance goal for region i over the surveillance horizon (Gi = 0 if

an outbreak has already been detected in region i);

πS = penalty cost per unprocessed surveillance specimen;

πD = penalty cost per unprocessed diagnosis specimen per period.

The decision variables are the following:

Sirp ≥ 0 = number of specimens processed for surveillance of region i in period p

from the specimens received in period r, r ≤ p (Sirp = 0 if an outbreak has already

been detected in region i);

Dirp ≥ 0 = number of specimens processed for diagnosis from region i in period p

from the specimens received in period r, r ≤ p.

The following linear programming model can be built:

Minimize z = πS

N∑
i=1

(Gi −
T∑

r=1

T∑
p=r

Sirp) + πD

N∑
i=1

T∑
r=1

T∑
p=r

(Qir −
p∑

k=r

(Sirk +Dirk))

subject to:

T∑
p=r

(Sirp +Dirp) ≤ Qir, for all i = 1, ..., N , for all r = 1, ..., T (1)

T∑
r=1

T∑
p=r

Sirp ≤ Gi, for all i = 1, ..., N (2)

N∑
i=1

p∑
r=1

(Sirp +Dirp) ≤ Cp, for all p = 1, ..., T (3)

The objective function minimizes the sum of the penalty costs due to untimely

surveillance and diagnosis. The first term is the penalty cost due to unmet surveillance

goals over all unaffected regions. The second term is the total penalty cost associated

with delayed diagnosis of the specimens.
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The problem is subject to the following sets of constrains. Constraints (1) account

for the specimens received from each region during each period. Constraints (2)

assure that the number of processed surveillance specimens cannot exceed the regional

surveillance goal. Constraint (3) is the daily capacity constraint.

4.2 An Illustrative Example

To illustrate the use of the developed model, we considered a single lab monitoring

four regions (i = {1, 2, 3, 4}), with respective weekly surveillance goals G1 = 50,

G2 = 30, G3 = 20, and G4 = 20. The daily capacity of the lab was set to Cp = 60 for

all daily periods. The values of Qir for all regions are shown in Table 3.

To estimate the value of πS, we proceeded as follows. We first selected two time

epochs (days) in the outbreak period, t1 and t2 (t2 > t1), which represented two

alternative days of initiation of mitigation strategies. Then we used the simulation

model described in Chapter 5 to calculate the total outbreak costs for each time

epochs t1 (respective cost c1) and t2 (respective cost c2). The incremental cost (c2−c1)

divided by the difference (t2− t1) was interpreted as the daily penalty cost due to the

detection delay associated with untimely surveillance. Since we were interested in the

cost per unit of surveillance specimen during a surveillance horizon πS, we multiplied

the ratio by the total number of periods (days) in the surveillance horizon divided by

the surveillance goal. Hence, the value of πS was estimated as:

πS =
(c2 − c1)

(t2 − t1)
· T
G

To estimate the value of πD, we divided the incremental cost (c2 − c1) by the

increment in the number of visits to doctor during the same time period (n2 − n1)

divided by (t2− t1). The resulting expression was used as an estimate of the cost per

unprocessed diagnosis specimen per daily period.

πD =
(c2 − c1)

(n2 − n1) · (d2 − d1)
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To calculate the values of πS and πD, we used the following simulation parameters:

region 14, random seed 23, antiviral stockpile 260,000, antiviral strategy using contact

tracing, and no NPI enforced. The values of t1 and t2 were set to t1 = 10 and

t2 = 30 days. The resulting values of πS and πD were πS = 608, 100 and πd = 967

(c1 = 236, 432, 380, c2 = 444, 923, 837, n1 = 9, 726, n2 = 20, 725, and T = 7).

The solution of the optimization model is shown in Tables 3 and 4. It can be

observed that the model prioritizes the processing of surveillance specimens while

minimizing the delay in processing of diagnosis specimens, subject to available daily

capacity. The result of the model is a specimen processing schedule that can be

implemented by the lab. The optimal solution resulted in the total penalty cost of

$1,229,057. As a comparison, the total penalty cost of the “first come, first served”

policy was $2,445,257.
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Table 3: Results of the Example of Single Lab Model with Four Regions

Receiving Processing Region
Day Day (p) 1 (G1 = 50) 2 (G2 = 30) 3 (G3 = 20) 4 (G4 = 70)∑4

i=1 Qi1 = 72 C1 = 60 Q11 = 18 Q21 = 18 Q31 = 18 Q41 = 18
S11p D11p S21p D21p S31p D31p S41p D41p

1 - 18 - 18 - 6 18 -
2 - - - - - - - -
3 - - - - - - - -

1 4 - - - - - - - -
5 - - - - - - - -
6 - - - - - - - -
7 - - - - 12 - - -∑4

i=1 Qi2 = 270 C2 = 60 Q12 = 100 Q22 = 100 Q32 = 30 Q42 = 40
S12p D12p S22p D22p S32p D32p S42p D42p

2 - - - 32 - - 28 -
3 - - 30 - 8 - 12 -

2 4 - 6 - 6 - - - -
5 9 8 - 4 - 4 - -
6 41 - - - - - - -
7 - 14 - 7 - 7 - -∑4

i=1 Qi3 = 54 C3 = 60 Q13 = 24 Q23 = 10 Q33 = 10 Q43 = 10
S13p D13p S23p D23p S33p D33p S43p D43p

3 - - - - - - 10 -
4 - 12 - 6 - 6 - -

3 5 - - - - - - - -
6 - - - - - - - -
7 - - - - - - - -∑4

i=1 Qi4 = 54 C4 = 60 Q14 = 24 Q24 = 10 Q34 = 10 Q44 = 10
S14p D14p S24p D24p S34p D34p S44p D44p

4 - 6 - 6 - 6 - 6
4 5 - - - - - - - -

6 - - - - - - - -
7 - - - - - - - -∑4

i=1 Qi5 = 65 C5 = 60 Q15 = 35 Q25 = 10 Q35 = 10 Q45 = 10
S15p D15p S25p D25p S35p D35p S45p D45p

5 - 9 - 9 - 9 - 8
5 6 - - - - - - - -

7 - - - - - - - -∑4
i=1 Qi6 = 49 C6 = 60 Q16 = 19 Q26 = 10 Q36 = 10 Q46 = 10

S16p D16p S26p D26p S36p D36p S46p D46p

6 6 - 5 - 5 - 5 - 4
7 - - - - - - - -∑4

i=1 Qi7 = 48 C7 = 60 Q17 = 18 Q27 = 10 Q37 = 10 Q47 = 10
S17p D17p S27p D27p S37p D37p S47p D47p

7 7 - 5 - 5 - 4 2 4
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Table 4: Summary of Single Lab Model Example

Region
Receiving 1 2 3 4

Day G1 = 50 = G2 = 30 = G3 = 20 = G4 = 70 =
7∑

r=1

7∑
p=r

S1rp

7∑
r=1

7∑
p=r

S2rp

7∑
r=1

7∑
p=r

S3rp

7∑
r=1

7∑
p=r

S4rp

1.
4∑

i=1

Qi1 = 72 Q11 = 18 Q21 = 18 Q31 = 18 Q41 = 18

4∑
i=1

7∑
p=r

(Si1p + Di1p) = 72 S11p D11p S21p D21p S31p D31p S41p D41p

- 18 - 18 12 6 18 -

2.
4∑

i=1

Qi2 = 270 Q12 = 100 Q22 = 100 Q32 = 30 Q42 = 40

4∑
i=1

7∑
p=r

(Si2p + Di2p) = 216 S12p D12p S22p D22p S32p D32p S42p D42p

50 28 30 49 8 11 40 -

3.
4∑

i=1

Qi3 = 54 Q13 = 24 Q23 = 10 Q33 = 10 Q43 = 10

4∑
i=1

7∑
p=r

(Si3p + Di3p) = 34 S13p D13p S23p D23p S33p D33p S43p D43p

- 12 - 6 - 6 10 -

4.
4∑

i=1

Qi4 = 54 Q14 = 24 Q24 = 10 Q34 = 10 Q44 = 10

4∑
i=1

7∑
p=r

(Si4p + Di4p) = 24 S14p D14p S24p D24p S34p D34p S44p D44p

- 6 - 6 - 6 - 6

5.
4∑

i=1

Qi5 = 65 Q15 = 35 Q25 = 10 Q35 = 10 Q45 = 10

4∑
i=1

7∑
p=r

(Si5p + Di5p) = 35 S15p D15p S25p D25p S35p D35p S45p D45p

- 9 - 9 - 9 - 8

6.
4∑

i=1

Qi6 = 49 Q16 = 19 Q26 = 10 Q36 = 10 Q46 = 10

4∑
i=1

7∑
p=r

(Si6p + Di6p) = 19 S16p D16p S26p D26p S36p D36p S46p D46p

- 5 - 5 - 5 - 4

7.
4∑

i=1

Qi7 = 48 Q17 = 18 Q27 = 10 Q37 = 10 Q47 = 10

4∑
i=1

7∑
p=r

(Si7p + Di7p) = 20 S17p D17p S27p D27p S37p D37p S47p D47p

- 5 - 5 - 4 2 4
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5. Estimation of the Outbreak Propagation Time from the Onset to a

Likely Pandemic Export Region (Testbed of Mexico)

It is believed that a new strain of PI will likely emerge in a rural area of a devel-

oping country [10]. Such areas typically have high population density and extreme

poverty conditions leading to close and repetitive contact with animal reservoirs. In

addition, such areas lack basic hygienic measures and have inadequate health care in-

frastructure. Because of historic reasons, most of the global surveillance systems and

preparedness programs have concentrated their efforts on monitoring the Southeast

Asia. As a consequence, the emergence of a new virus in rural Mexico in 2009 was

somewhat unexpected. Since the virus was detected by observing changes in vital

statistics and not by surveillance laboratories, the epidemiologists knew very little

about the behavior of the novel virus strain. The result was the overestimation of its

severity and the implementation of strict non-pharmaceutical interventions, causing

significant economic costs. When the virus arrived to the U.S., the surveillance stud-

ies conducted by the CDC in Chicago and Delaware [64] made it possible to estimate

the true potential impact of H1N1/2009. Consequently, the NPI implemented by the

U.S. government were more proportionate to the virus severity.

The H1N1/2009 experience gave an important evidence of the lack of effective

surveillance systems in most developing countries outside the SE Asia region. On the

other hand, it takes six to nine months to develop and produce an effective vaccine in

sufficient quantities to mitigate the impact of a PI outbreak. If the existing surveil-

lance networks can be enhanced, more potentially harmful viruses can be included

in the formulation of annual seasonal vaccines. Furthermore, additional information

on the transmissibility and severity of new virus strains would be available before a
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pandemic outbreak is born. If a new outbreak is detected early in an isolated region,

the travel restrictions and antiviral prophylaxis (normally considered as ineffective

intervention measures) may contain the pandemic at the source. Even if an outbreak

cannot be contained, the possibility of decreasing its pace may give public health offi-

cials additional time for studying the virus, designing adequate containment policies,

and starting production of a vaccine to face a second pandemic wave.

Our literature review has shown that such ideas are still hypothetical. A modeling

environment where these hypotheses can be tested needs to be developed. We selected

Mexico as a testbed for a variety of reasons including its recent pandemic history, its

proximity to the United States, the availability of various types of data, our familiarity

with its socio-economic structure, and the heterogeneity of its regions. It is indeed

difficult to find a world region with some extremely undeveloped regions and high PI

potential so close and so connected to the United States.

5.1 Regional Structure of Mexico

The country of Mexico is administratively divided into 32 states and 2495 mu-

nicipalities (see Figure 5). Most of the economic and demographic data collected by

the Mexican National Institute for Statistics, Geography and Informatics (INEGI)

are reported either at the state or at the municipal level. However, from a modeling

perspective, the states can be too large and heterogenous areas, making most of the

modeling assumptions very aggregate and thus impractical. On the other hand, the

municipalities are usually small areas, too numerous in quantity, and often possessing

closely related characteristics with their bordering neighbors. Modeling the country

at the municipal level will unnecessarily increase the model complexity and inevitable

limit its computational feasibility. Therefore, we divided the states into homogeneous

areas by aggregating the municipalities with similar characteristics and common bor-

ders. Such a cluster of municipalities within a state was defined as a region, the

cell-unit used in our simulation.
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Figure 5: Administrative Structure of Mexico

In order to form the regions, we developed the following heuristic. The heuristic

can be particularized to other countries with similar granularity of data. The heuristic

is based on two rules: (i) a region has to be composed by municipalities (splitting

municipalities is not allowed) and (ii) a region has to be completely within the borders

of a state. We also tried to limit the average size of a region to 500,000 people.

The heuristic for region formation is presented below:

I. Set a regional population goal to S.

II. Select a state which has not been clustered. If none available, stop.

III. Start forming a new region

III.a Find an unassigned municipality with the highest population density

in the state and assign it to the new region.

III.b If the region size is smaller than S and if there are unassigned munic-

ipalities in the state then,

III.b.i Add an unassigned municipality with the highest population den-

sity which is adjacent to the last added municipality. Repeat step III.b.

III.b.ii Otherwise, the formation of the region is complete. Go to step III.
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Figure 6: Histogram of the Size of the Regions Using the Developed Heuristic

Figure 6 shows the resulting histogram of the size of the regions applying the

described heuristic. At the end, it was decided to make an exception for the case

of Mexico City and model it as a single region of 19.25 million people. Without

considering Mexico City, the regional population size averaged 600,234 individuals

with a median of 548,794, a standard deviation of 365,611, a minimum value of

54,792 and a maximum value of 2,145,452. The procedure resulted in a total of 154

regions plus Mexico City (see Figure 7).

INEGI reports the data on demographics, household distributions, health services,

and school systems at the state level [65], while workplaces and population size are

reported at the municipal level [66]. Consequently, certain levels of (des)aggregation

were needed to organize the data for each of the regions. To this end, it was necessary

to filter, query, and merge data from several databases using SQL. The original format

of the raw data was converted to the format shown in Appendix C.

At the end of this section, we can note from our experience that the main obstacle

that modelers may face when developing systems like the one we are describing will

likely be the lack of a universal data format followed by all countries in the way they

report demographic, economic, transportation, and healthcare related information.
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Figure 7: Mexico Partitioned into 155 Regions

5.2 Likely Pandemic Export Regions

Table 5 suggests that once an outbreak has started in Mexico, it is very probable

that it would be exported abroad by a foreign visitor rather than a Mexico resident

[65]. Because of this consideration, a certain number of regions would more likely be

responsible for pandemic export. These regions, called likely pandemic export (LPE)

regions, include major transportation hubs and the regions with a common border

with the U.S. (see Table 6 and Figure 8). It can also be noted from Figure 8 that the

United States attracts 77% of all Mexican abroad travel [67].

Table 5: International Travel to/from Mexico

Total visits (2008): 26.2 M
Foreign travelers 21.6 M (82.5%)

Tourists 10.5 M (40.0%)
Cruises/sea commerce 8.1 M (31.0%)
Business/others 3.0 M (11.5%)

Mexicans 4.6 M (17.5%)
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Table 6: Areas of Mexico with Major International Transportation Hubs

Area [number of regions] Travelers
Quintana Roo (Cancun) [1] 9.1 M (35%)
Mexico City [1] 5.0 M (19%)
Jalisco (Guadalajara, Puerto Vallarta) [2] 3.0 M (11%)
Baja California Sur (Los Cabos) [1] 2.3 M (8.5%)
Border States (6 States) [14] 2.8 M (11%)

By analyzing the recent pandemic history, it can be expected that a PI outbreak is

very likely to originate from an isolated and economically underdeveloped rural area.

At the outbreak onset, the probability of an immediate global spread is small because

of the geographic isolation of the region. It is when the outbreak reaches one of the

LPE regions shown in Figure 8 that the probability of a global outbreak substantially

increases. Then the following questions arise: (i) How long does it take from the onset

of the outbreak until it reaches one of the LPE regions? (ii) Is it possible to contain

or slow down a global outbreak if the virus is promptly detected in the originating

areas? (iii) What mitigation resources are needed to achieve these goals? (iv) What

type of surveillance system is required for a timely pandemic detection? (v) Would

developed countries, namely the U.S., be willing to share the required resources to

avoid or mitigate global outbreaks?

To the best of our knowledge, it is not possible to answer the above questions with

the existing models. It is therefore the main motivation of our work to try answering

these questions to the best of our ability.

5.3 Designation of Economically Undeveloped Regions

In order to determine economically undeveloped regions, we have used the data on

the social security coverage rather than the unemployment rate. The reason for that

is due to the fact that because of its traditional definition in the economic sciences,

some of the economically undeveloped states can have a relatively low unemployment

rate [68]. There are two major public health institutions in Mexico which provide
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Figure 8: Likely Pandemic Export Regions in Mexico

medical insurance to workers, their economic dependents, and retirees. These insti-

tutions are the Mexican Institute of Social Security (IMSS) with 49.1 M beneficiaries

and the Institute of Security and Social Services of State Workers (ISSSTE) with

11.1 M people covered [69]. For an employed Mexican resident, it is mandatory to

pay insurance premiums to one the above institutions. Consequently, the residents

without a formal job are not covered by these organizations. Both IMSS and ISSSTE

report state level statistics in the form of the ratio of insured population to the to-

tal population of the state. In our testbed, we selected economically undeveloped

regions from the states with the ratio less than or equal to 0.5. As a result, we have

selected 69 potential outbreak starting regions in the following states: Chiapas (the

ratio is 0.25), Oaxaca (0.31), Puebla (0.36), Tlaxcala (0.38), México (0.38), Guerrero

(0.39), Hidalgo (0.41), Tabasco (0.42), Veracruz1 (0.42), Michoacán (0.45), and More-

los (0.49). It can be observed from Figure 9 that the economic undeveloped regions

are mostly concentrated in the central and southern part of the country.

1The first cases of the H1N1/2009 were reported in the Mexican state of Veracruz [54].
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Figure 9: Economically Underdeveloped Regions and LPE Regions in Mexico

5.4 Multi-Region Travel Network

Most papers on modeling global spread have used air travel as the only mode

of transportation for the population under study [28, 38, 43]. However, as it can

be seen from Table 7, a travel model for Mexico needs to take into consideration

the land transportation because it accounts for 97.7% of the domestic travel volume

[70]. On the other hand, air transportation accounts for only 1.6%. However, air

transportation will likely play a key role in potential export of a PI outbreak.

Table 7: Distribution of Domestic Travel by Transportation Mode

Transport Type Percentage
Highways 97.7%
Air 1.6%
Railroads 0.3%
Sea 0.4%

In order to determine the inter-regional travel probabilities, we adopted a database

that listed the geographic location and aggregated demographic information of 4,400

urban areas of Mexico [71]. For the purposes of our model, we selected the largest
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urban areas/cities which were most representative of each of the 155 regions discussed

in Section A. A total of 164 cities were selected (they are represented by green dots

were selected which are in Figure 10, left).

One of the biggest challenges we have encountered was to connect the selected

cities in a way that would mimic the land transportation network of the country.

Data from the three largest bus companies in the country were obtained from their

web pages [72–74]. With that information and the data obtained from the Mexican

Institute of Transportation [67], we estimated the traffic volume between the regions

by using the daily number of buses that cruised between the respective cities of the

regions (see Figure 10, right). Using these data, we obtained an origin/destination

traffic volume matrix which was transformed into a 155x155 matrix of inter-regional

travel probabilities.

Figure 10: A Schematic of Inter-Regional Traffic Volume Network

According to the Mexican Institute of Transportation, the probability of a Mexican

resident traveling outside his community is 8% on any given day [70]. However, it

should be noted that in that study communities are defined as areas located in close

geographic proximity. As a consequence, the above probability would also include

internal travel within our testbed regions and thus should only be used as an upper

bound. Longini et al. used a daily travel probability of 1% in the case of Thailand

[16]; this value was also used in our model.
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5.5 Multi-Region Pandemic Simulation Model

Appendix B shows a schematic of the multi-regional simulation model developed

by Das et al. [35]. The agent-based simulation model mimics the detailed social and

disease dynamics, featuring hourly schedules of regions inhabitants while they work

or attend school, run errands, attend leisure activities, or stay at home with their

families. The simulation was developed in C following an object-oriented program-

ming style. In the following paragraphs, we will explain the main functions of each

object or subprograms to give the reader a better understanding of the simulation

structure. This simulation has been published in the academic literature [35, 75].

The object Main controls the simulation. Main declares all the constants and calls

the following objects in a sequential order: Read Input, Initialize, Ongoing Region,

Cost, Daily Statistics, and Reproduction Number. The first two objects are called once

at the beginning of the simulation, whereas the others are called on a periodic (daily

or hourly) basis. Main also determines the maximum duration of the simulation and

records the daily statistics in the respective output files.

Read Input reads a set of input files and assign values to most simulation variables.

Since every region has different demographics, different data is needed to capture the

heterogeneity of the regions. Appendix C lists the different read files and their struc-

ture. Read Input opens each one of the files, declares arrays of appropriate sizes,

writes the input data into the arrays, and closes the input files. Most of the con-

stants are declared within the main simulation program. However, if they need to be

modified, constants.txt is the input file that contains their values. Additionally, con-

stants.txt indicates which region need to be simulated and which random replication

seed will be used. When an experiment is designed, different simulation versions will

use different versions of the constants.txt file.

After calling Read Input, Main calls Initialize. Initialize creates an array of re-

gional variables that will be updated during the simulation, and then calls Generate
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Businesses and Generate Entities. Generate Businesses creates a set of business

structures to designate workplaces of individuals. Additionally, the object also de-

clares mixing groups within businesses structures of the region. Generate Entities

creates individual (human) entities, assigning them a particular household. In addi-

tion, each individual is assigned a set of attributes that will be tracked and updated

during the simulation. After creating an adult entity, the simulation calls Adult

Age Workplace, whereas after creating a child entity Children Age School is called.

These objects assign adults and children to their respective workplaces/schools, mix-

ing groups, and after-school activities.

Once the regional community has been generated, Main calls Ongoing Region. Af-

ter initializing the vector value of daily statistics, it checks if the outbreak has started

in the region, and then calls Generate Outbreak. Generate Outbreak randomly se-

lects a pre-defined number of initial infected individuals from the regional population

and starts their disease clock. After that, Ongoing Region checks the status of NPI

in the region and calls the appropriate scheduling object. Schedules are created on

an hourly basis so that each individual is situated in a particular establishment at

any moment during the simulation. Then Disease Progress, Tracking Individuals,

Household Spread, Hourly Contact, and Visit Doctor objects are called every hour.

Disease Progress monitors all infected individuals within a region. Every hour,

the disease clock of each infected individual is updated until a culmination period is

reached. At this point, the individual either recovers or dies with some probability.

Recover Process records the statistics of the recovered individuals by age in the output

files. Recovered individuals develop full immunity. Disease Progress also calculates

the mortality probability based on the age based mortality probability and status of

antiviral treatment. Death Process collects the statistics of the deceased individuals.

Every business entity in the simulation is divided into mixing groups, allowing

individuals to have a closer interaction with others in their respective mixing group.
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Tracking Individuals creates two tracking arrays within a mixing group, one for sus-

ceptible individuals and one for infected individuals. Every time an individual is

infected, he is moved from the susceptible array to the infected array. When an in-

dividual dies, he is removed from the respective mixing group. When an individual

recovers, he remains in the mixing group, but is removed from the susceptible and in-

fected arrays. Tracking Individuals also counts the number of susceptible households

at any point during the simulation.

Household Spread tracks the contacts among susceptible and infected individuals

within each household. Each hour, the object checks who is present in the household

and creates random (uniform) contacts. For any new contacts, Household Spread calls

Infection. Hourly Contact is the analogous object for businesses. It checks the contact

among infected and susceptible individuals within mixing groups. Contact rates vary

with business type. Household Spread and Hourly Contact calculate duration of

contact ∆t for each contact event. Infection calculates the probability of infection for

each susceptible contact. Visit Doctor handles the individuals who are looking for

medical assistance. Additionally, it administers antiviral drugs according to a preset

policy, and declares social distancing strategies (individual, household, workplace, or

community based).

At the end of each day, the main program checks if there are N infectious travelers

in any of the unaffected regions. If so, the program starts running the new outbreak(s)

in parallel with the rest of the ongoing outbreaks. This process is sketched in Figure

11. The main simulation ends when an outbreak reaches a likely export region, or if

the outbreak is contained no more infected individuals are generated before reaching

such a region. The maximum simulation duration was set to 600 days.

Three additional objects are called to calculate the daily statistics. Cost computes

the cost due to deaths, hospitalized individuals, and loss of productivity. While it is

difficult and polemic to attempt translating human life into money, it is nevertheless
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Figure 11: A Schematic of a Regional Outbreak Generation

necessary to have a common unit to measure the aggregated impact of death, loss of

productivity, and medical expenses. Besides, we only used the cost criterion to com-

pare different simulation scenarios. Daily Statistics records daily information in the

output files SummaryRegion.txt and ContactProcess.txt, while Reproduction Number

takes care of the statistics by generation of infected in the file ReproductionNumber.txt.

The content of these output files is listed in Appendix C.

5.6 Automated Replication Interface

Our multi-region simulation model is programmed in C. Because it was required

to run the model thousands of times with different parameters, we developed an

automated replication program using Visual Basic Applications (VBA). We used MS

Access to define an experiment as a table. Such an experiment is composed of several

simulations, all of them with different parameters. A client computer inquires the
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database for any simulations to be run, in which case the VBA program creates

the input files with the parameters taken from the table. Every client computer is

connected to the server and independently runs the simulations and generates the

output files. When the simulations finish, the VBA program reads and records the

output files in the central database. Using the database, a comprehensive repository

of results is created in MS Access, which can be organized and presented according to

the needs of a decision maker. For more advanced statistical analysis, we used SQL

to export a particular dataset to the SAS statistical software.

The automated replication program allows the end user to: (i) manage an exper-

imental design of multiple scenarios, (ii) run automatically every simulation within a

scenario, and (iii) create a repository of the results obtained from each simulation. We

created a Scenario Manager using MS Access as the main tool to implement function

(iii) and the VBA program to implement functions (i) and (ii) (see Appendix D).

Since all information obtained through the output files is read and stored in Sce-

nario Manager, generic reports and graphs can be designed for each simulation and

scenario. Figure 12 shows an example of the type of graphs that can be easily created.

In this particular example, an outbreak starts in region 71 on day 1. On approxi-

mately day 35, two outbreaks start in regions 77 and 110, respectively. By day 75,

the outbreak in the original region has reached its peak, but it is in an increasing

stage in the other two regions. Another outbreak starts in region 30 around day 79.

At day 86, an outbreak starts in region 96, a likely pandemic export region. At this

point, the simulation ends.

5.7 Classification of Regions for Calibration Purposes

Mexico is a country with a very strong economic stratification, including one of

the largest cities in the world with around 20 million people, some very industrialized

and developed urban centers, small towns supported by family-owned businesses,

tourist resorts with large hotels and casinos, and isolated rural areas where more
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Figure 12: Example of a Graph Showing the Regional Daily Infection Rate

than 40 million people live under the conditions of extreme poverty. According to the

census data, 95% of the Mexican companies have 5 employees or less [66]. However,

the presence of large companies in certain regions may affect the way disease spreads.

Because of this heterogeneity, in order to calibrate our simulation model, we classified

all 155 regions into four quadrants, as shown in Figure 13. The x-axis presents

the percentage of industrial businesses in the region, while the y-axis represents the

average company size. The quadrants are divided by the mean value of each one of

these variables. Detailed information for each region is presented in Appendix A.

5.8 Calibration of the Simulation Model

To calibrate our simulations for each quadrant, we used the disease strength pa-

rameter ρ. It has been observed from preliminary analysis that when using low values

of ρ, a regional outbreak could be initiated and sustained using certain random seeds,

but not the other seeds. A total of more than two thousand simulations were run

to find the minimum value of ρ that would guarantee a sustained outbreak in each

region. The details of the calibration results are presented in Appendix E. Table 8
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Figure 13: Regions Classified by Company Size and Percentage of Industries

summarizes the minimum values of ρ obtained from the calibration process and the

percentages of the regions where an outbreak was able to be initiated and sustained.

5.9 The Outbreak Lead Time from the Onset to a LPE Region

To create a baseline scenario, we used the travel probability of 1%, as in Longini et

al. [16]. We also adapted key parameters from Ferguson [28], such as a 27% initially

immune population, 10 seed infectious to start a regional outbreak, and the value

of ρ = 1575, to guarantee that an outbreak is started and sustained in any region,

independently of the selected replication seed. We also used N=10 as the minimum

number of infectious travelers in a region to declare an outbreak in the region.

We designed a preliminary experiment to estimate the impact of both the number

of travelers to start an outbreak and the travel probability on the outbreak lead time.

As initial regions, we used the sixty nine economically undeveloped regions defined
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Table 8: Summary of Calibration Values of ρ

Number of Cumulative Cumulative
Minimum Regions with % of Regions Total Population

value Sustained with Sustained Population Size
of ρ Outbreaks Outbreaks Size (% of Individuals)
975 1 0.6% 456,488 0.5%
1025 1 1.3% 718,103 1.3%
1100 53 35.7% 27’869,746 33.3%
1175 46 65.6% 27’520,549 64.9%
1250 23 80.5% 16’521,772 83.9%
1325 20 93.5% 8’578,487 93.8%
1375 6 97.4% 3’230,871 97.5%
1575 4 100.0% 2’195,718 100.0%

earlier in Section V.B (see Appendix C). We ran each initial region, one at a time,

with the values of the travel probability 0.5% and 1%, and the number of travelers

to start an outbreak of 5 and 10, with a total of 276 simulations. Table 9 shows the

average lead time (in days) and the number of times each LPE region was reached.

From the table, it can be observed that in 84% of the time, the LPE region reached

was a major city, either Mexico City (65%) or Guadalajara (19%). The U.S. border

regions were reached in only 11% of the time, and the tourist regions were reached

only 5% of the time. Only 11 out of 19 LPE regions were reached. The rest of the

regions (65, 117, 120, 137, 138, 142, and 151) are underpopulated regions in widely

arid areas, and region 149 (La Paz/Los Cabos) is geographically isolated from the

rest of the country because of its location in the Baja California peninsula. Table 9

also shows that both the travel probability and the number of individuals to start an

outbreak can affect the lead time. A more detailed analysis of the effect of these and

other parameters on the lead time is developed in the next chapter.
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Table 9: Summary of the Results for the Baseline Scenario

Average Lead Time in Days
(# Times Reached)

Likely Pandemic Travel # Individuals to Start an Outbreak
Export Region Probability 5 10
79. Ciudad de México, D.F. 0.5% 44.81 (44) 55.32 (46)

1% 41.53 (45) 46.59 (44)
96. Guadalajara, Jalisco 0.5% 55.83 (12) 70.42 (14)

1% 45.25 (12) 57.8 (15)
39. Cancún, Quintana Roo 0.5% 60.25 (4) 70 (2)

1% 54 (4) 62.5 (2)
152. Mexicali, Baja California 0.5% 55.5 (4) -

1% 38.5 (2) 54.67 (3)
22. Nuevo Laredo, Tamaulipas 0.5% 37 (1) 46 (1)

1% 47.5 (2) 55 (2)
21. Reynosa, Tamaulipas 0.5% 55 (2) 41 (1)

1% 28.5 (2) -
150. Tijuana, Baja California 0.5% 48 (1) -

1% 43 (1) 59.5 (2)
29. Nogales, Sonora 0.5% 52 (1) -

1% 41 (1) 49 (1)
18. Matamoros, Tamaulipas 0.5% 44 (1) -

1% - 47 (1)
95. Puerto Vallarta, Jalisco 1% 31 (1) 41 (1)
121. Cd. Juárez, Chihuahua 1% - 65 (1)
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6. U.S. Resource Sharing Strategies During Global Influenza Pandemics

6.1. Mitigation Resources and International Collaboration

In Chapter 1, we discussed the importance of international collaboration to en-

hance the U.S. preparedness for a global pandemic outbreak. However, at present

there exist no studies which can quantify the impact of collaboration, particularly

resource sharing. Assigning too few resources to an international partner may not

be enough to enhance our preparedness. On the other hand, sharing too many re-

sources may be a costly enterprise which can undermine domestic preparedness and

response. An adequate strategy would be the one that can increase the safety level of

all involved countries by reducing the number of affected regions, increasing the lead

time to allow manufacturers to produce more antiviral drugs and develop a potent

vaccine, or even possibly containing the outbreak at the source. We explore diverse

resource sharing strategies in this chapter.

Every resource sharing strategy has a probability of success and a cost and the

decision makers have to balance these two factors. Our work attempts to provide

public health officials with a decision aid model aimed at improving the existing ad-

hoc resource sharing strategies during global influenza pandemics. In what follows,

we discuss both pharmaceutical and non-pharmaceutical resources that can be shared

with a country of pandemic origin.

Assuming the outbreak is caused by a novel virus strain, the only pharmaceuti-

cal mitigation resource available at early pandemic stages would be antiviral drugs.

Currently, antiviral drugs are available in most pharmacies with a physician’s pre-

scription. However, a massive pharmaceutical prophylaxis will require substantial

stockpiles and advanced distribution logistics. In this work, we are considering two
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main factors that may affect the effect of antiviral-based intervention: antiviral dis-

tribution strategy and antiviral stockpile.

We consider three different antiviral distribution strategies. The first strategy

prescribes antivirals to every symptomatic individual who visits a doctor. It can be

noted that during the H1N1/2009 outbreak, the Mexican government was conservative

about the use of antivirals and only provided them to the patients whose life was

considered to be at risk. A risk adverse decision maker may adopt such a strategy in

an attempt to avoid mutation of the virus into an antiviral-resistant strain. However,

we will adopt a risk-neutral strategy and provide a complete treatment to every

individual visiting a doctor. Our second strategy is based on contact tracing. In

this case, not only the symptomatic individual receives the antiviral course, but also

his/her household members as well as the members of his/her workplace mixing group.

Because antivirals reduce the capability of the virus to reproduce in the human body,

such a strategy may reduce both the infectiousness of infected cases and the exposure

of uninfected individuals. Our third strategy attempts to provide antivirals to the

entire regional population. We call this strategy ‘blanket’ since it attempts to cover

an entire geographic region. In all strategies, the application of antiviral drugs was

paced according to the available distribution capacity. Such a gradual distribution

was particularly important for implementing the blanket strategy.

To implement an antiviral strategy it is necessary to have an adequate antiviral

stockpile. Some of the above strategies require more courses than others, which may

require the use of shared quantities. In this work, we studied how different levels of

antiviral stockpile impact the effectiveness of a antiviral strategies.

We also consider certain non-pharmaceutical interventions which can be used by

the Mexican authorities. During an outbreak, officials may decide to totally or par-

tially close schools and workplaces and/or ban or limit public gatherings in places

like theaters, stadiums, and churches. In 2009, the Mexican government was strict in
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implementing non-pharmaceutical strategies, declaring closures of schools, non-vital

workplaces, and banning social gathering for several weeks. These measures were im-

plemented nationwide, even in unaffected regions. In our study, we only considered

two scenarios when either most comprehensive, all inclusive NPI were implemented

or when no NPI were used. By doing so, we sought to understand the isolated effect

of non-pharmaceutical interventions on the outbreak lead time.

A variable that indirectly measures the efficiency of a surveillance system is what

we called the detection delay. A sophisticated surveillance system is costly, but

it can assure a fast detection and prompt intervention (pharmaceutical and non-

pharmaceutical), while a nonexisting or inefficient surveillance system may reduce

the intervention effectiveness because the outbreak has already spread to several re-

gions. It can be noted that in the case of H1N1/2009, the outbreak was detected

through vital statistics which showed an increase in the number of deaths due to

respiratory diseases in certain regions. In this case, several weeks had elapsed from

the onset of the outbreak until the emergency was declared.

From the perspective of a U.S. decision maker, understanding how the above fac-

tors affect the lead time of an overseas-born outbreak can be of significant importance.

Knowing which factors and their levels are more relevant can aid in developing intel-

ligent resource sharing strategies. The following analysis aims to achieve this goal.

6.2 Design of Experiment for the Outbreak Lead Time

After identifying the factors that can impact the outbreak lead time, we designed

an experiment to quantify the impact through an empirical relationship. Table 10

summarizes the design of experiment. We selected six initial outbreak regions from

different parts of the country with diverse population strata and economic devel-

opment. The economic development was reflected in the quadrant of the region.

Economically undeveloped regions tend to be located in quadrants 1 and 2, while

heavily industrialized regions tend to be situated in quadrants 3 and 4. We selected

45



three levels of antiviral stockpiles: zero (none), a relatively small stockpile (260K),

and a stockpile large enough to cover the entire population of the initial region and

some more, if needed (2M). The stockpile was measured in terms of courses of doses.

We used the three types of antiviral distribution strategies and the two types of non-

pharmaceutical interventions described in the previous section. Finally, we used three

levels of detection delay (1, 10, and 30 days) and three levels of N , the number of

infectious individuals required to start a regional outbreak (N = 3, 6, and 10).

Table 10: Design of Experiment: Factors and Levels

Factor Definition # of Levels Level Values
- Region ID N/A 71 130 14 36 32 145
Q Region quadrant 4 1 1 2 2 3 4
P Population (in thousands) 6 931 195 482 646 620 378
N Number of infectious 3 3

individuals required to 6
start a regional outbreak 10

AS Antiviral stockpile, 3 0
courses 260,000

2,000,000
AD Antiviral distribution 3 Treatment of visits to doctor (1)

strategy Contact tracing treatment (2)
Blanket prophylaxis (3)

NPI Level of NPI 2 None (0)
Comprehensive (1)

D Detection delay, 3 1
days 10

30

Figure 14 (top) illustrates the selected initial outbreak regions: four regions from

quadrants 1 and 2, and two regions from quadrants 3 and 4, respectively. The regions

also represented diverse geographic areas of the country (See Figure 14 (bottom)).
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Figure 14: Regions Selected for the Design of Experiment
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6.3 Empirical Relationship for the Outbreak Lead Time

We executed a total of 2,250 replicates using all possible combinations of the

factor levels with three random replication seeds. The dependent variable was the

outbreak lead time, defined as the number of days since the onset of the outbreak

until it reaches a LPE region. We used SAS v.9.2 for the statistical analysis. The

first statistical analysis we performed was a set of normality tests (see Appendix H).

To study the effect of the interactions among the factors, we used a regression

model with the main factors and their second and third order interactions. We ob-

tained a value of R2 = 0.7158. However, some of the factor interactions were not

significant. We eliminate from the model factor interactions with p − values ≥ 0.05

and ended up with a value of R2 = 0.7028 and the average lead time of 304.68 days.

Table 11 shows the resulting regression model with only significant factors. As

an example of using the regression model, consider the following factor values: a

region with population of 650K, located in quadrant 1, an antiviral stockpile of 700K

courses, antiviral treatment of visits to doctor, no NPI, a detection delay of 10 days,

and N = 6. Based on the regression model, the outbreak lead time will be 35.94 days.

We also conducted ANOVA with Tukey tests to determine significant statistical

difference in the factor levels. Table 12 summarizes which levels of each factor were

found to be statistically different at the 0.05 level. Based on this table, a decision

maker can conclude that for instance, blanket prophylaxis and contact tracing based

treatment are expected to have similar effect on the outbreak lead time. On the other

hand, the expected effect will be rather different for a 10-day and a 30-day detection

delay as well as for the initial regions located in quadrants 1 and 3, respectively.

Table 13 shows the strategies that contained the outbreak at the source. Most

of the strategies required the use of comprehensive NPI. It can also be observed

that the blanket strategy was the most efficient of all antiviral distribution strate-

gies. However, it did not prove to be statistically different than a combination of
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Table 11: Regression Model for the Outbreak Lead Time

Factor Coefficient p-value
Intercept -149.08 0.0001

P 0.0001178 0.0016
N 10.5057564 0.0003
AS -0.0000669 < 0.0001
NPI 115.3587827 0.0017
D 8.7207832 < 0.0001

Q · AD 35.9602963 < 0.0001
Q ·NPI -120.3634501 < 0.0001
Q ·D -2.2014098 0.0006
P · AD 0.0000944 0.0019
P ·NPI -0.0003678 < 0.0001
P ·D -0.0000111 0.0001
N · AD 8.2419937 < 0.0001
N ·D -0.7762634 0.0002
AS · AD 0.0001019 < 0.0001
AS ·NPI 0.0001491 < 0.0001
AD ·NPI 103.352587 < 0.0001
AD ·D -3.5162046 < 0.0001
NPI ·D -4.2564074 0.0003
Q · P · AD -0.0000824 < 0.0001
Q · P ·NPI 0.000318 < 0.0001
Q · P ·D 0.0000048 0.0004
P ·N · AD -0.0000158 < 0.0001
P ·N ·NPI 0.0000167 < 0.0001
P ·N ·D 0.0000012 0.0003

N · AS ·NPI -0.0000045 0.0085
N · AS ·D 0.0000003 < 0.0001

AS · AD ·NPI -0.0001031 < 0.0001
AS · AD ·D -0.0000017 < 0.0001
AD ·NPI ·D 4.8207876 < 0.0001

Q = region quadrant; P = population; N = number of infectious individuals required to start a
regional outbreak; AS = antiviral stockpile; AD = antiviral distribution strategy; NPI = level of

non-pharmaceutical interventions; D = detection delay.
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Table 12: Factor Levels Grouped by Significance

Factor Definition Significant Levels
Q Region quadrant {1, 2}, {3}, {4}
P Population (in thousands) {195, 378}, {482}, {620, 646}, {931}
N Number of infectious {3}, {6}, {10}

individuals required
to start a regional outbreak

AS Antiviral stockpile, {0}, {260,000}, {2,000,000}
courses

AD Antiviral distribution {Treatment of visits to doctor},
strategy {Contact tracing treatment,

Blanket prophylaxis}
NPI Level of non-pharmaceutical {None},

interventions {Comprehensive}
D Detection delay, {1}, {10}, {30}

days

contact tracing based treatment with comprehensive NPI. This result is important

because the blanket distribution is expensive, very challenging logistically, and may

increase the antiviral immunity of the virus. On the other hand, contact tracing based

treatment implemented within 10 days of the pandemic detection and accompanied

by comprehensive NPI appeared to have the same effect as the blanket policy but

without any of the above disadvantages.

Table 13: Strategies Resulted in Outbreak Containment at the Source

AS AD NPI D
Treatment Contact

Initial of doctor tracing Blanket
Outbreak 0 260K 2M visits treatment Prophylaxis 0 1 1 10 30

* * * *
* * * *

All regions * * * *
* * * *
* * * *
* * * *

All regions * * * *
but the largest * * * *
(in addition to * * * *

the above) * * * *
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The detection delay appeared to have a significant impact on the outbreak lead

time. Outbreak containment at the source was possible for both a 1-day and a 10-day

delay. This can suggest that a surveillance system does not have to be perfect to be

effective. However, a 30-day delay led to a significant decrease in the lead time.

The number of infectious individuals required to start a regional outbreak, N , had

a proportionate effect on the outbreak lead time. In our experience, setting this value

too low may increase the noise in the simulation results, since some travelers may

have limited social interaction in the destination regions. It appears that the effect of

this variable on the lead time was approximately linear in the range between N = 3

and N = 10. However, this variable did not affect the set of strategies which led to

outbreak containment at the source.

Appendix I shows a histogram of the lead time eliminating those simulations when

an outbreak was contained at the source. The effect of all strategies in containing the

outbreak at the source is presented in Appendix J.
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7. Summary of Main Results, Contributions and Future Research

This dissertation presented three related models to aid decision makers to analyze

resource sharing strategies during global influenza pandemics. The first model devel-

oped optimal capacity management strategies for a single lab to enhance multi-region

pandemic surveillance. As it was shown in the later chapters, the detection delay

could have a significant impact on the effectiveness of any resource sharing strategy.

The second model estimated the outbreak lead time from the onset to a likely pan-

demic export region, such as a major transportation hub. The model served as the

foundation for addressing the main objective of this dissertation. Substantial efforts

were put to achieve accurate data support and computational feasibility of the model.

The third model developed an empirical relationship to quantify the impact of var-

ious antiviral sharing strategies on the outbreak lead time under several pandemic

detection and response scenarios.

7.1 Summary of the Main Results

Our study supports the claim that it is possible to contain an outbreak at the

source. Table 13 lists different strategies to achieve this goal. In the majority of

cases, the source containment was not possible without sharing of antivirals (2M

courses). Both the blanket antiviral prophylaxis and the less costly contact tracing

based treatment achieved at-source containment, but only when combined with a

comprehensive NPI strategy and a prompt outbreak detection (within 10 days). Nei-

ther antiviral treatment of visits to doctor nor using only comprehensive NPI could

achieve at-source containment.

In the worst case scenario, with no interventions, the 95% confidence interval for

the mean outbreak lead time was [43.2, 47.6] days. Using only comprehensive NPI
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without antivirals yielded the confidence interval of [163.8, 207.2] days with at-source

containment achieved in only 5% of the time. In the most optimistic scenario of imple-

menting both comprehensive non-pharmaceutical interventions and blanket/contact

tracing based antiviral strategies (with 2M courses), with a prompt detection (within

10 days), the corresponding confidence interval was [580.6, 600.0] days with at-source

containment achieved in 98% of the time.

The impact of the factors on the outbreak lead time was nonlinear and complex

with some factors and interactions being more influential than others. All of the

factors considered in the design of experiment were found to be significant, either

by themselves or through factor interactions. In all cases, outbreak containment was

achieved at the source while none was achieved in transit to a LPE region.

Mexico and Guadalajara were the most recurrent LPE regions with approximately

80% of all pandemic paths ending in these two major cities. It can be suggested that

these regions need special PI surveillance once an outbreak is detected, particularly

at the airports and bus stations. From the standpoint of Mexico partners, it can

also be suggested that restricting incoming travel from the above regions may be a

more appealing option than banning the air traffic from the entire country. It was

found that touristic LPE regions were among the least affected LPE regions unless

an outbreak started in a nearby area. Not all regions of the country were equally

affected by pandemic. The areas on the intersection of major highways were among

the most affected and thus requiring higher surveillance, whereas the areas with low

population density (such as deserts in the northern part of the country) seemed to be

less impacted and hence needing less surveillance.

The propagation of a PI outbreak was highly correlated with the transportation

network and the regional demographics. It was observed in some isolated cases that

small and less connected regions could contain the outbreak without interventions.

While eventually the virus may escape such small isolated regions, with adequate

53



surveillance, public health officials would be able to develop a potent vaccine to

protect the rest of the country population.

To enhance the U.S. preparedness and response, it is necessary to assist the de-

veloping countries to establish adequate surveillance systems. We have shown that

these systems do not have to be perfect to be effective, and that sampling of specimens

should be distributed differently among the regions. For surveillance to be effective,

it needs to focus on economically undeveloped areas, regions with high connectivity,

and likely pandemic export regions.

7.2 Main Contributions

Our work is one of the first decision models for a quantitative assessment of re-

source sharing strategies during global pandemic scenarios. We have developed an

empirical relationship for the outbreak lead time. Our results demonstrate the im-

portance of considering both the regional heterogeneity and comprehensive travel

networks in pandemic models. Our research is also an initial attempt to develop a

detailed simulation of pandemic spread and mitigation strategies in Mexico. Such

a study is important because of the precedence of H1N1/2009, a virus with high

transmissibility and low severity, that demonstrated the inadequacy of the existing

international collaboration. Mexico also stands as the U.S. nearest possible pan-

demic incubator. We hope that the above contributions will help to enhance the U.S.

preparedness and response planning for influenza pandemics.

7.3 Future Research

The outbreak detection delay was found to be a significant determinant of the

effectiveness of any resource sharing strategy. The ability of our model to project

expected outbreak paths can pinpoint the regions requiring higher level of surveillance.

Hence, one of the future research opportunities would be to support the design of an

efficient countrywide surveillance system, including the number and placement of
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laboratories and development of sampling strategies. In particular, we would like to

explore the logistics required for a Mexican pandemic surveillance system.

Our conclusions were drawn based on a testbed of Mexico. At this point, we can-

not say whether the conclusions will apply to other countries, particularly those with

different regional demographics and the prevalent domestic transportation modes.

Moreover, we have only considered a “one country - one country” type of collabo-

ration. It will be both desirable and very challenging to examine international col-

laboration involving multiple resource donors and pandemic incubators. A necessary

part of such examination will be the design of an improved global outbreak alert and

response network (GOARN).
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Appendix A

Repository of Mexico Data

In this appendix we list all regions, their population, quadrant classification, and

coordinates, shown in Figure 13. The national average percentage of industrial busi-

nesses was 35% while the national mean of the average business size was 4.8 employees.
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Region Quadrant Population

% of Industrial 

Businesses

Average 

Company Size

1. Pinos, Zacatecas 1 825,881 32.5% 2.5

2. Fresnillo, Zacatecas 1 551,896 33.9% 4.2

3. Tizimín, Yucatán 2 1,043,294 42.8% 3.5

4. Mérida, Yucatán 3 781,549 38.7% 6.4

5. Tierra Blanca, 

Veracruz 2 883,261 37.3% 2.8

6. Martínez de la Torre, 

Veracruz 2 680,586 36.0% 2.8

7. Tantoyuca, Veracruz 2 622,439 37.1% 3.0

8. Poza Rica de Hidalgo, 

Veracruz 1 1,025,364 34.7% 3.4

9. Coatepec, Veracruz 1 1,184,980 32.2% 2.9

10. Veracruz, Veracruz 3 654,410 38.0% 6.5

11. San Andrés Tuxtla, 

Veracruz 1 303,827 35.1% 3.1

12. Córdoba, Veracruz 2 520,710 36.1% 4.4

13. Coatzacoalcos, 

Veracruz 2 877,007 35.5% 4.5

14. Xalapa, Enríquez, 

Veracruz 2 482,113 40.8% 4.1

15. Tlaxcala de 

Xicohténcatl, Tlaxcala 2 583,922 37.1% 3.2

16. Huamantla, Tlaxcala 1 503,078 32.5% 3.3

17. San Fernando, 

Tamaulipas 1 206,541 33.7% 3.3

18. Heroica Matamoros, 

Tamaulipas 3 527,595 40.6% 8.2

19. Ciudad Victoria, 

Tamaulipas 2 589,529 37.9% 4.7

Appendix A (Continued)

Table A1: Repository of Mexico Data
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Region Quadrant Population

% of Industrial 

Businesses

Average 

Company Size

20. Tampico, Tamaulipas 3 661,272 39.7% 6.5

21. Reynosa, Tamaulipas 3 636,551 36.5% 9.3

22. Nuevo Laredo, 

Tamaulipas 3 423,964 40.4% 5.8

23. Macuspana, Tabasco 2 526,887 39.1% 3.3

24. Cunduacán, Tabasco 2 349,645 43.4% 3.6

25. Cárdenas, Tabasco 2 557,294 36.3% 4.0

26. Villahermosa, 

Tabasco 3 558,569 40.1% 6.3

27. Ciudad Obregón, 

Sonora 3 600,291 44.3% 6.3

28. Navojoa, Sonora 2 432,274 40.5% 4.6

29. Heroica Nogales, 

Sonora 3 679,908 40.8% 7.2

30. Hermosillo, Sonora 3 704,542 47.0% 7.3

31. Navolato, Sinaloa 2 469,209 37.4% 4.2

32. Mazatlán, Sinaloa 3 620,821 40.7% 6.0

33. Guasave, Sinaloa 3 738,985 42.5% 5.2

34. Culiacán Rosales, 

Sinaloa 3 796,335 44.6% 6.1

35. Rioverde, San Luis 

Potosí 1 819,897 28.3% 3.1

36. Ciudad Valles, San 

Luis Potosí 2 646,287 36.8% 3.2

37. San Luis Potosí, San 

Luis Potosí 3 959,906 39.5% 6.3

38. Cozumel, Quintana 

Roo 4 728,854 31.3% 6.1

Appendix A (Continued)

Table A1 (Continued)
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Region Quadrant Population

% of Industrial 

Businesses

Average 

Company Size

39. Cancún, Quintana 

Roo 3 574,441 36.0% 8.7

40. Cadereyta de 

Montes, Querétaro 1 237,688 26.9% 3.1

41. San Juan del Río, 

Querétaro 3 630,763 37.5% 6.4

42. Santiago de 

Querétaro, Querétaro 3 734,608 36.6% 6.7

43. Tehuacan, Puebla 2 553,986 39.2% 4.3

44. Huauchinango, 

Puebla 1 676,386 35.0% 2.4

45. Teziutlan, Puebla 2 432,106 37.3% 3.9

46. Atlixco, Puebla 1 504,321 34.4% 2.5

47. Amozoc de Mota, 

Puebla 1 524,514 34.1% 2.6

48. Heroica Puebla de 

Zaragoza, Puebla 3 1,486,068 36.3% 5.1

49. Palmar de Bravo, 

Puebla 2 805,462 39.0% 2.2

50. San Martin 

Texmelucan de 2 500,730 39.3% 4.8

51. Santiago Pinotepa 

Nacional, Oaxaca 1 1,037,783 32.1% 2.4

52. San Juan Bautista 

Valle Nacional, Oaxaca 2 424,182 38.4% 2.8

53. Heroica Ciudad de 

Huajuapan de León, 1 398,818 28.6% 2.6

54. Santo Domingo 

Tehuantepec, Oaxaca 1 613,411 32.2% 2.9

55. Oaxaca de Juárez, 

Oaxaca 1 456,488 33.2% 3.6

56. Salina Cruz, Oaxaca 2 352,193 40.6% 2.8

57. San Juan Bautista 

Tuxtepec, Oaxaca 2 477,403 37.6% 3.2
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58. Ciudad San Nicolás 

de los Garza, Nuevo 3 476,761 39.1% 10.1

59. Ciudad Monterrey, 

Nuevo León 3 1,133,826 41.5% 9.0

60. Ciudad Benito 

Juárez, Nuevo León 4 249,559 33.7% 6.0

61. Ciudad Guadalupe, 

Nuevo León 3 691,965 37.7% 6.4

62. Ciudad General 

Escobedo, Nuevo León 4 299,428 27.2% 6.5

63. Ciudad Santa 

Catarina, Nuevo León 3 382,039 42.2% 15.7

64. Ciudad Apodaca, 

Nuevo León 4 418,971 32.5% 14.5

65. Linares, Nuevo León 4 560,331 33.4% 6.0

66. Tepic, Nayarit 2 678,365 38.0% 4.0

67. Acaponeta, Nayarit 1 279,019 34.2% 3.5

68. Yautepec de 

Zaragoza, Morelos 1 759,546 29.7% 2.7

69. Cuernavaca, Morelos 1 698,204 34.5% 4.4

70. Cuautla, Morelos 1 160,339 29.9% 2.9

71. Puruándiro, 

Michoacán 1 931,317 32.5% 2.7

72. Heroica Zitácuaro, 

Michoacán 2 550,109 35.6% 2.5

73. Uruapan, Michoacán 2 916,206 41.4% 3.2

74. La Piedad de 

Cabadas, Michoacán 2 348,460 35.7% 3.1

75. Pátzcuaro, 

Michoacán 2 214,324 46.7% 2.5

76. Apatzingán de la 

Constitución, Michoacán 2 179,115 35.3% 2.8
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77. Morelia, Michoacán 2 684,373 39.0% 4.2

78. Ciudad Lázaro 

Cárdenas, Michoacán 1 163,367 34.3% 4.4

79. Ciudad de México, 

Distrito Federal 4 19,308,938 33.1% 6.4

80. Ixtlahuaca de Rayón, 

México 1 1,472,902 29.8% 4.3

81. Toluca de Lerdo, 

México 4 747,536 33.0% 5.5

82. Amecameca de 

Juárez, México 1 213,118 29.1% 2.5

83. Texcoco de Mora, 

México 1 490,663 32.7% 3.0

84. Metepec, México 1 282,906 31.5% 3.8

85. Tenancingo de 

Degollado, México 1 1,590,998 28.9% 3.4

86. Autlán de Navarro, 

Jalisco 1 589,289 31.5% 3.0

87. Ciudad Guzmán, 

Jalisco 2 195,554 36.4% 3.2

88. Zapopan, Jalisco 3 1,156,203 37.4% 8.1

89. Ocotlán, Jalisco 4 761,727 32.6% 6.0

90. Lagos de Moreno, 

Jalisco 1 910,743 33.1% 3.7

91. Tequila, Jalisco 1 111,663 25.9% 3.2

92. Tonalá, Jalisco 2 408,805 36.5% 3.2

93. Tlaquepaque, Jalisco 4 563,086 34.4% 4.9

94. Tala, Jalisco 1 261,837 31.4% 3.1

95. Puerto Vallarta, 

Jalisco 4 220,558 32.7% 6.2
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96. Guadalajara, Jalisco 3 1,600,954 39.8% 6.7

97. Tula de Allende, 

Hidalgo 1 775,896 34.5% 4.2

98. Pachuca de Soto, 

Hidalgo 2 660,334 36.7% 4.2

99. Tulancingo, Hidalgo 2 391,654 37.1% 3.1

100. Huejutla de Reyes, 

Hidalgo 1 530,640 33.4% 2.8

101. Chilpancingo de los 

Bravo, Guerrero 1 391,281 31.6% 2.6

102. Teloloapan, 

Guerrero 2 312,102 51.2% 2.4

103. Ixtapa Zihuatanejo, 

Guerrero 1 648,020 31.1% 3.1

104. Iguala de la 

Independencia, 2 251,638 39.1% 2.5

105. Tlapa de 

Comonfort, Guerrero 1 774,876 31.3% 2.2

106. Acapulco de Juárez, 

Guerrero 1 718,103 28.8% 4.6

107. Acámbaro, 

Guanajuato 1 638,594 31.3% 2.7

108. Guanajuato, 

Guanajuato 1 799,418 31.3% 4.3

109. San Miguel de 

Allende, Guanajuato 1 486,713 30.8% 4.0

110. Irapuato, 

Guanajuato 2 698,654 35.4% 4.7

111. Pénjamo, 

Guanajuato 2 592,141 35.4% 3.9

112. León de los 

Aldama, Guanajuato 3 1,279,590 39.1% 6.3

113. Celaya, Guanajuato 3 416,539 37.7% 5.3

114. El Salto, Durango 1 563,483 29.6% 3.5
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115. Gómez Palacio, 

Durango 3 435,114 37.3% 9.4

116. Victoria de 

Durango, Durango 3 528,557 42.5% 4.9

117. Guadalupe y Calvo, 

Chihuahua 1 423,728 31.9% 4.0

118. Delicias, Chihuahua 3 225,008 35.6% 5.3

119. Hidalgo del Parral, 

Chihuahua 2 119,061 36.5% 4.5

120. Cuauhtémoc, 

Chihuahua 3 436,736 35.8% 7.6

121. Juárez, Chihuahua 3 1,314,400 35.5% 11.8

122. Chihuahua, 

Chihuahua 3 759,493 39.2% 8.9

123. Tila, Chiapas 1 446,808 17.4% 2.4

124. Ocosingo, Chiapas 1 613,709 21.1% 2.6

125. Chiapa de Corzo, 

Chiapas 1 212,892 28.1% 2.8

126. Venustiano 

Carranza, Chiapas 1 492,055 29.3% 2.5

127. Villaflores, Chiapas 1 519,985 34.1% 3.0

128. Tapachula de 

Córdova y Ordóñez, 1 635,905 32.0% 3.1

129. Tuxtla Gutiérrez, 

Chiapas 2 568,792 35.5% 4.2

130. La Trinitaria, 

Chiapas 1 195,868 22.7% 2.3

131. Reforma, Chiapas 1 311,157 24.7% 4.1

132. San Cristóbal de las 

Casas, Chiapas 1 333,800 27.5% 3.0

133. Comitán de 

Domínguez, Chiapas 1 184,008 29.5% 2.3
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134. Colima, Colima 2 237,878 41.3% 4.7

135. Manzanillo, Colima 1 263,524 34.6% 4.5

136. Cuauhtémoc, 

Colima 1 70,684 29.1% 3.4

137. Ciudad Acuña, 

Coahuila 4 212,788 30.3% 13.3

138. San Buenaventura, 

Coahuila 4 56,358 28.1% 6.3

139. Parras de la Fuente, 

Coahuila 4 90,242 27.0% 5.5

140. Torreón, Coahuila 3 1,155,364 40.5% 8.6

141. Matamoros, 

Coahuila 1 246,271 30.2% 4.3

142. Piedras Negras, 

Coahuila 3 292,553 35.6% 8.4

143. Saltillo, Coahuila 3 727,500 37.3% 8.0

144. Monclova, Coahuila 4 303,368 35.2% 7.2

145. Ciudad del Carmen, 

Campeche 4 378,869 35.1% 6.7

146. Hopelchén, 

Campeche 1 58,972 23.3% 3.1

147. Campeche, 

Campeche 2 326,394 36.4% 4.5

148. Santa Rosalía, Baja 

California Sur 2 133,106 43.7% 4.3

149. La Paz, Baja 

California Sur 3 387,716 41.9% 5.8

150. Tijuana, Baja 

California 3 1,485,310 40.6% 9.8

151. Ensenada, Baja 

California 3 510,367 41.3% 6.3

152. Mexicali, Baja 

California 3 860,288 43.0% 8.9
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153. Aguascalientes, 

Aguascalientes 3 877,498 38.1% 6.2

154. Rincón de Romos, 

Aguascalientes 1 136,762 27.3% 3.8

155. Calvillo, 

Aguascalientes 1 58,180 30.6% 3.2
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Appendix B

Simulator Flow Graph

The following figure represents a flowchart of the single-region simulation model.

Figure B1: Simulator Flow Graph
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Appendix C

Input and Output Files

Table C1: Input Files

File name Content
age children.txt Column 1: Age group

Column i+1: CDF of region i, for i=1,2,...,155
Column 157: School type
Column 158: Age group

age adults.txt Column 1: Age group
Column i+1: CDF of region i, for i=1,2,...,155
Column 157: Age group

households.txt Column 1: Number of adults in the household
Column 2: Number of children in the household
Column i+2: CDF of region i, for i=1,2,...,155

workplaces.txt Column 1: Business type
Column 2i: Number of businesses per type in region i,
for i=1,2,...,155
Column 2i+1: CDF of people working in each businesses
type in region i, for i=1,2,...,155
Column 312: Number of subgroups
Column 313: Percentage of weekday errands
Column 314: Percentage of weekend errands
Column 315: Percentage of voluntary quarantine errands

travel.txt Column 1 and Row 1: Region ID
Column i, Row j: Probability to travel from Region i to
Region j, for i=1,2,...,155, and j=1,2,...,155

serologic.txt Column 1: Lower bound age
Column 2: Upper bound age
Column 3: Scale factor

mortality.txt Column 1: Age group
Column 2: Mortality probability

contact probability.txt Column 1: Contact type
Columns 2 and 3: Not used
Column 4: Contact probability
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Appendix C (Continued)

Table C2: Output Files

File name Content
SummaryRegion.txt Region ID

Day
Population size
Number of workplaces
Number of mixing groups
Antiviral risk group
Vaccination risk group
Region status
Total cost
Dead cost
Quarantine cost
Daily contacts
Daily infected cases
Daily fatality ratio
Infected
Infected by age group
Recovered
Recovered by age group
Deaths
Deaths by age group
Asymptomatic cases
Visits to doctor
Visits to doctor by age group
Individuals in quarantine
Individuals in quarantine by age group
Antiviral stockpile
Vaccination capacity
Vaccine stockpile
Vaccination period
Quarantine compliance
Quarantine category

ContactProcess.txt Day
Daily contacts
Daily infected cases
Daily contacts in households and workplaces
Daily infected cases in households and workplaces

ReproductionNumber.txt Region ID
Day
Daily infection number
Sum reproduction number
Average reproduction number
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Appendix D

Relationships in the Scenario Manager

Figure D1: Relationships in the Scenario Manager
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Appendix E

Calibration Values

In this appendix, we summarize the values obtained from the calibration process.

We display the values of ρ = 1100, 1175, 1250, 1325, 1575 since they were the most

common stable values obtained for most of the regions and seeds. However, some

regions had their stable values as low as ρ = 975 and as high as ρ = 1575. Since we

wanted to guarantee that an outbreak will start and sustain in any of the regions, the

value of ρ = 1575 was chosen. Cells highlighted in orange indicate that the simulation

was stopped by reaching the maximum value of days.
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Region Seed 1100 1175 1250 1325 1375 1575 Stable level Quadrant Population
1 22 0.67 0.73 0.77 0.80 1100 1           825,882 

1 23 0.67 0.74 0.78 0.80 1100 1           825,883 

1 20 0.64 0.74 0.77 0.80 1100 1           825,881 

2 20 0.81 0.85 0.87 0.89 1100 1           551,896 

3 22 0.26 0.81 0.85 0.87 1175 2        1,043,295 

3 23 0.00 0.81 0.85 0.87 1175 2        1,043,296 

3 20 0.03 0.21 0.85 0.87 1175 2        1,043,294 

4 20 0.12 0.81 0.85 0.87 1175 3           781,549 

5 20 0.01 0.33 0.85 0.88 1175 2           883,261 

6 20 0.00 0.46 0.86 0.88 1175 2           680,586 

7 22 0.00 0.00 0.84 0.87 1250 2           622,440 

7 23 0.00 0.01 0.84 0.87 1250 2           622,441 

7 20 0.00 0.03 0.75 0.88 1250 2           622,439 

8 20 0.00 0.80 0.88 1175 1        1,025,364 

9 22 0.00 0.01 0.85 0.88 1250 1        1,184,981 

9 23 0.00 0.18 0.85 0.88 1250 1        1,184,982 

9 20 0.00 0.02 0.56 0.88 1250 1        1,184,980 

10 20 0.00 0.82 0.85 0.87 1175 3           654,410 

11 20 0.01 0.81 0.86 0.88 1175 1           303,827 

12 20 0.77 0.81 0.85 0.87 1100 2           520,710 

13 22 0.75 0.81 0.85 0.87 1100 2           877,007 

13 23 0.00 0.82 0.85 0.87 1175 2           877,007 

13 20 0.63 0.82 0.85 0.87 1100 2           877,007 

14 20 0.77 0.82 0.85 0.87 1100 2           482,113 

15 22 0.79 0.82 0.85 0.87 1100 2           583,923 

15 23 0.78 0.83 0.85 0.87 1100 2           583,924 

15 20 0.20 0.82 0.85 0.87 1175 2           583,922 

16 22 0.00 0.00 0.86 0.89 1250 1           503,078 

16 23 0.00 0.37 0.87 0.89 1250 1           503,078 

16 20 0.00 0.17 0.86 0.89 1250 1           503,078 

17 20 0.00 0.00 0.00 0.85 1325 1           206,541 

18 20 0.00 0.00 0.00 0.82 1325 3           527,595 

19 20 0.00 0.07 0.83 0.86 1250 2           589,529 

20 22 0.00 0.78 0.83 0.86 1175 3           661,273 

20 23 0.00 0.78 0.82 0.86 1175 3           661,274 

20 20 0.00 0.53 0.83 0.86 1175 3           661,272 

21 22 0.00 0.00 0.05 0.75 1325 3           636,551 

21 23 0.00 0.00 0.00 0.79 1325 3           636,551 

21 20 0.00 0.01 0.09 0.79 1325 3           636,551 

22 20 0.01 0.09 0.81 0.85 1250 3           423,964 

23 22 0.00 0.55 0.85 0.88 1250 2           526,887 

23 23 0.00 0.00 0.85 0.00 1250 2           526,887 

23 20 0.00 0.20 0.85 0.88 1250 2           526,887 

24 20 0.00 0.00 0.00 0.01 0.89 0.92 1375 2           349,645 
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Region Seed 1100 1175 1250 1325 1375 1575 Stable level Quadrant Population
25 22 0.00 0.80 0.85 0.88 1175 2           557,295 

25 23 0.00 0.00 0.85 0.88 1250 2           557,296 

25 20 0.00 0.02 0.00 0.88 1325 2           557,294 

26 22 0.75 0.81 0.85 0.87 1100 3           558,570 

26 23 0.76 0.82 0.85 0.88 1100 3           558,571 

26 20 0.00 0.82 0.85 0.87 1175 3           558,569 

27 20 0.00 0.76 0.86 1250 3           600,291 

28 20 0.00 0.01 0.00 0.84 1325 2           432,274 

29 20 0.00 0.00 0.00 0.84 1325 3           679,908 

30 22 0.00 0.00 0.02 0.85 1325 3           704,542 

30 23 0.00 0.00 0.02 0.85 1325 3           704,542 

30 20 0.00 0.00 0.11 0.85 1325 3           704,542 

31 23 0.83 0.89 1325 2           469,209 

31 22 0.01 0.89 1375 2           469,209 

31 20 0.86 0.89 1325 2           469,209 

32 22 0.00 0.80 0.84 0.88 1175 3           620,821 

32 23 0.03 0.80 0.85 0.88 1175 3           620,821 

32 20 0.05 0.80 0.85 0.88 1175 3           620,821 

33 20 0.01 0.15 0.85 0.88 1250 3           738,985 

34 22 0.00 0.79 0.84 0.87 1175 3           796,336 

34 23 0.00 0.80 0.85 0.87 1175 3           796,337 

34 20 0.01 0.67 0.85 0.87 1175 3           796,335 

35 20 0.18 0.86 0.88 0.90 1175 1           819,897 

35 22 0.00 0.86 0.88 0.90 1175 1           819,897 

35 23 0.18 0.86 0.88 0.90 1175 1           819,897 

36 20 0.00 0.84 0.88 0.89 1175 2           646,287 

37 20 0.81 0.85 0.87 0.89 1100 3           959,906 

38 22 0.77 0.82 0.85 0.88 1100 4           728,855 

38 23 0.78 0.82 0.88 1100 4           728,856 

38 20 0.77 0.82 0.85 0.88 1100 4           728,854 

39 20 0.78 0.83 0.86 0.89 1100 3           574,441 

40 20 0.00 0.00 0.01 0.13 0.90 1375 1           237,688 

41 20 0.01 0.08 0.85 0.88 1250 3           630,763 

42 22 0.00 0.81 0.85 0.87 1175 3           734,609 

42 23 0.77 0.82 0.85 0.87 1100 3           734,610 

42 20 0.09 0.82 0.85 0.87 1175 3           734,608 

43 20 0.00 0.85 0.87 0.89 1175 2           553,986 

44 20 0.00 0.16 0.88 0.90 1250 1           676,386 

45 22 0.03 0.01 0.88 0.89 1250 2           432,107 

45 23 0.06 0.84 0.88 0.89 1175 2           432,108 

45 20 0.00 0.36 0.88 0.90 1250 2           432,106 

46 20 0.01 0.85 0.88 0.90 1175 1           504,321 

47 20 0.57 0.85 0.88 0.89 1100 1           524,514 

48 20 0.81 0.84 0.87 0.89 1100 3        1,486,068 
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49 20 0.00 0.00 0.88 0.90 1250 2           805,462 

50 20 0.81 0.84 0.87 0.89 1100 2           500,730 

51 20 0.00 0.89 0.90 1250 1        1,037,783 

51 22 0.82 0.86 0.88 0.90 1100 1        1,037,784 

51 23 0.82 0.86 0.89 0.90 1100 1        1,037,785 

52 20 0.82 0.86 0.88 0.90 1100 2           424,182 

53 20 0.83 0.87 0.88 0.90 1100 1           398,818 

54 20 0.45 0.87 0.88 0.90 1175 1           613,411 

55 20 0.80 975 1           456,488 

55 23 975 1           456,488 

55 25 0.80 975 1           456,488 

55 22 0.80 1025 1           456,488 

56 20 0.81 0.85 0.87 0.88 1100 2           352,193 

57 20 0.81 0.86 0.88 0.90 1100 2           477,403 

58 22 0.00 0.00 0.00 0.83 0.87 0.91 1325 3           476,761 

58 23 0.00 0.00 0.01 0.82 0.87 0.91 1325 3           476,761 

58 20 0.00 0.00 0.00 0.00 0.86 0.91 1375 3           476,761 

59 20 0.58 0.82 0.85 1100 3        1,133,826 

60 22 0.00 0.00 0.00 0.00 0.83 0.91 1375 4           249,559 

60 23 0.00 0.00 0.00 0.00 0.46 0.91 1500 4           249,559 

60 20 0.00 0.00 0.00 0.00 0.08 0.91 1425 4           249,559 

61 20 0.00 0.00 0.00 0.85 0.87 0.91 1325 3           691,965 

62 22 0.00 0.00 0.00 0.03 0.82 0.91 1375 4           299,429 

62 23 0.00 0.00 0.10 0.83 0.91 1375 4           299,430 

62 20 0.00 0.00 0.00 0.00 0.67 0.91 1375 4           299,428 

63 20 0.00 0.00 0.00 0.01 0.87 0.91 1375 3           382,039 

64 22 0.00 0.00 0.00 0.00 0.01 0.82 1575 4           418,971 

64 23 0.00 0.00 0.00 0.00 0.00 0.83 1575 4           418,971 

64 20 0.00 0.00 0.00 0.00 0.00 0.82 1575 4           418,971 

65 22 0.00 0.00 0.17 0.83 1325 4           560,332 

65 23 0.00 0.00 0.15 0.84 1325 4           560,333 

65 20 0.00 0.00 0.00 0.57 0.86 0.91 1325 4           560,331 

66 20 0.77 0.82 0.85 0.87 1100 2           678,365 

67 20 0.80 0.88 1175 1           279,019 

68 20 0.77 0.82 0.85 1100 1           759,546 

69 20 0.76 0.81 0.84 0.86 1100 1           698,204 

70 20 0.74 0.79 0.81 0.84 1100 1           160,339 

70 22 0.75 0.79 0.81 0.84 1100 1           160,339 

70 23 0.74 0.79 0.82 0.84 1100 1           160,339 

71 20 0.00 0.85 0.88 0.90 1175 1           931,317 

72 20 0.80 0.85 0.87 0.89 1100 2           550,109 

73 20 0.79 0.84 0.87 0.88 1100 2           916,206 

74 20 0.80 0.84 0.87 0.89 1100 2           348,460 

74 22 0.80 0.84 0.87 0.89 1100 2           348,461 
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74 23 0.80 0.84 0.87 0.89 1100 2           348,462 

75 20 0.78 0.83 0.86 0.88 1100 2           214,324 

76 22 0.81 0.84 0.87 0.88 1100 2           179,115 

76 23 0.80 0.84 0.87 0.88 1100 2           179,115 

76 20 0.00 0.84 0.86 0.88 1175 2           179,115 

77 20 0.79 0.87 1100 2           684,373 

77 22 0.79 1025 2           684,373 

77 25 0.78 1100 2           684,373 

78 20 0.80 0.83 0.86 0.88 1100 1           163,367 

79 4     19,308,938 

80 20 0.00 0.00 0.54 0.86 1250 1        1,472,902 

81 22 0.23 0.79 0.85 1175 4           747,536 

81 23 0.80 1175 4           747,536 

81 20 0.08 0.80 0.85 1175 4           747,536 

82 20 0.01 0.80 0.84 0.87 1175 1           213,118 

82 22 0.22 0.80 0.84 0.87 1175 1           213,119 

82 23 0.34 0.00 0.84 0.87 1250 1           213,120 

83 20 0.09 0.80 0.84 0.86 1175 1           490,663 

84 20 0.74 0.80 0.83 0.86 1100 1           282,906 

85 20 0.00 0.68 0.84 0.87 1175 1        1,590,998 

86 20 0.77 0.82 0.86 0.88 1100 1           589,289 

86 22 0.77 0.82 0.86 0.88 1100 1           589,290 

86 23 0.76 0.83 0.86 0.88 1100 1           589,291 

87 20 0.77 0.82 0.85 0.87 1100 2           195,554 

88 22 0.00 0.00 0.88 1325 3        1,156,204 

88 23 0.00 0.06 0.85 0.88 1250 3        1,156,205 

88 20 0.00 0.06 0.85 0.88 1250 3        1,156,203 

89 22 0.00 0.81 0.86 0.87 1175 4           761,727 

89 25 0.00 0.81 0.85 0.87 1175 4           761,727 

89 20 0.00 0.00 0.85 0.87 1250 4           761,727 

90 20 0.65 0.83 0.86 0.88 1100 1           910,743 

91 20 0.00 0.81 0.86 0.89 1175 1           111,663 

91 23 0.17 0.70 0.86 0.89 1175 1           111,663 

91 22 0.00 0.09 0.86 0.89 1250 1           111,663 

92 20 0.00 0.82 0.86 0.89 1175 2           408,805 

93 22 0.01 0.05 0.86 0.89 0.90 0.93 1250 4           563,086 

93 23 0.00 0.02 0.80 0.00 0.90 0.93 1250 4           563,086 

93 20 0.00 0.60 0.86 0.89 0.90 0.93 1175 4           563,086 

94 20 0.78 0.83 0.86 0.89 1100 1           261,837 

94 22 0.78 0.83 0.86 0.88 1100 1           261,838 

94 23 0.78 0.83 0.86 0.88 1100 1           261,839 

95 22 0.77 0.81 0.85 0.87 1100 4           220,559 

95 23 0.77 0.82 0.85 1100 4           220,560 

95 20 0.77 0.81 0.85 0.87 1100 4           220,558 
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Region Seed 1100 1175 1250 1325 1375 1575 Stable level Quadrant Population
96 22 0.75 0.80 1100 3        1,600,954 

96 23 0.76 0.80 1100 3        1,600,954 

96 20 0.46 0.80 1175 3        1,600,954 

97 20 0.00 0.84 0.87 0.89 1175 1           775,896 

98 20 0.79 0.83 0.86 0.88 1100 2           660,334 

98 22 0.79 0.83 0.86 0.88 1100 2           660,335 

98 23 0.79 0.83 0.86 0.88 1100 2           660,336 

99 20 0.79 0.83 0.87 1100 2           391,654 

100 20 0.00 0.11 0.85 1250 1           530,640 

101 20 0.84 0.87 0.88 0.90 1100 1           391,281 

102 20 0.25 0.87 0.89 0.90 1175 2           312,102 

102 22 0.69 0.87 0.89 0.90 1100 2           312,102 

102 23 0.69 0.87 0.89 0.90 1100 2           312,102 

103 20 0.84 0.87 0.89 0.90 1100 1           648,020 

104 20 0.81 0.84 0.86 0.88 1100 2           251,638 

105 20 0.07 0.88 0.90 0.91 1175 1           774,876 

106 20 0.83 1025 1           718,103 

106 22 0.83 1025 1           718,103 

106 25 0.83 1025 1           718,103 

107 20 0.80 0.84 0.87 0.88 1100 1           638,594 

108 20 0.00 0.85 0.88 0.90 1175 1           799,418 

109 20 0.00 0.84 0.88 0.89 1175 1           486,713 

109 22 0.00 0.85 0.87 0.89 1175 1           486,714 

109 23 0.00 0.85 0.87 0.89 1175 1           486,715 

110 20 0.22 0.84 1175 2           698,654 

110 22 0.23 0.84 1175 2           698,654 

110 25 0.00 0.85 1200 2           698,654 

111 20 0.02 0.85 0.88 0.89 1175 2           592,141 

112 20 0.80 0.84 0.87 0.89 1100 3        1,279,590 

113 20 0.80 0.84 0.86 0.88 1100 3           416,539 

114 20 0.07 0.83 0.87 0.89 1175 1           563,483 

115 20 0.00 0.00 0.86 0.88 1250 3           435,114 

116 20 0.00 0.84 0.87 0.88 1175 3           528,557 

116 22 0.79 0.84 0.87 0.88 1100 3           528,558 

116 23 0.80 0.84 0.87 0.88 1100 3           528,559 

117 20 0.00 0.00 0.01 0.84 1325 1           423,728 

118 20 0.00 0.78 0.84 0.86 1175 3           225,008 

119 20 0.75 0.80 0.84 0.86 1100 2           119,061 

120 20 0.00 0.00 0.15 0.82 1325 3           436,736 

121 22 0.00 0.54 0.856 1325 3        1,314,400 

121 23 0.72 0.86 1325 3        1,314,400 

121 20 0.00 0.00 0.809 1400 3        1,314,400 

122 20 0.00 0.10 0.82 0.86 1250 3           759,493 

123 20 0.00 0.01 0.87 0.90 1250 1           446,808 
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Region Seed 1100 1175 1250 1325 1375 1575 Stable level Quadrant Population
123 22 0.00 0.00 0.61 0.90 1250 1           446,808 

123 23 0.00 0.00 0.88 0.90 1250 1           446,808 

124 20 0.69 0.88 0.89 0.91 1100 1           613,709 

125 20 0.01 0.85 0.89 0.91 1175 1           212,892 

126 20 0.85 0.88 0.89 0.90 1100 1           492,055 

127 20 0.85 0.87 0.89 0.90 1100 1           519,985 

128 20 0.85 0.87 0.89 0.90 1100 1           635,905 

129 20 0.84 0.86 0.88 1100 2           568,792 

130 20 0.61 0.87 0.89 0.91 1175 1           195,868 

131 20 0.83 0.87 0.89 0.90 1100 1           311,157 

132 20 0.82 0.85 0.87 0.88 1100 1           333,800 

133 20 0.84 0.86 0.87 0.89 1100 1           184,008 

134 20 0.70 0.77 0.81 0.84 1100 2           237,878 

135 20 0.72 0.79 0.83 0.85 1100 1           263,524 

136 20 0.01 0.78 0.83 0.86 1175 1             70,684 

137 23 0.00 0.56 0.83 0.89 1325 4           212,788 

137 22 0.00 0.00 0.00 0.83 0.89 1425 4           212,788 

137 20 0.00 0.01 0.01 0.84 0.89 1425 4           212,788 

138 22 0.00 0.00 0.01 0.00 0.01 0.90 1575 4             56,359 

138 23 0.01 0.00 0.01 0.00 0.00 0.90 1575 4             56,360 

138 20 0.01 0.02 0.00 0.79 1325 4             56,358 

139 22 0.00 0.00 0.14 0.61 0.87 0.91 1325 4             90,242 

139 23 0.00 0.00 0.01 0.01 0.87 0.91 1375 4             90,242 

139 20 0.00 0.00 0.06 0.84 0.84 0.91 1325 4             90,242 

140 20 0.00 0.46 0.82 0.85 1250 3        1,155,364 

141 20 0.00 0.00 0.00 0.85 1325 1           246,271 

142 20 0.00 0.11 0.83 0.90 1325 3           292,553 

142 22 0.00 0.00 0.83 0.90 1325 3           292,553 

142 23 0.00 0.05 0.84 0.90 1325 3           292,553 

143 20 0.00 0.00 0.81 0.86 1250 3           727,500 

144 23 0.00 0.02 0.81 0.85 1250 4           303,368 

144 22 0.00 0.01 0.33 0.85 1325 4           303,368 

144 20 0.00 0.00 0.78 0.86 1250 4           303,368 

145 22 0.74 0.81 0.85 0.87 1100 4           378,870 

145 23 0.75 0.81 0.85 0.87 1100 4           378,871 

145 20 0.00 0.81 0.85 0.87 1175 4           378,869 

146 20 0.00 0.01 0.89 1325 1             58,972 

147 20 0.77 0.82 0.85 0.87 1100 2           326,394 

148 20 0.61 0.78 0.81 0.85 1100 2           133,106 

149 20 0.03 0.78 0.83 0.86 1175 3           387,716 

150 20 0.00 0.00 0.00 0.00 0.57 0.63 1375 3        1,485,310 

151 20 0.00 0.00 0.00 0.84 1325 3           510,367 

151 22 0.00 0.05 0.80 0.84 1250 3           510,368 

151 23 0.00 0.00 0.00 0.84 1325 3           510,369 
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152 20 0.00 0.00 0.00 0.78 1325 3           860,288 

153 20 0.23 0.80 0.84 0.87 1175 3           877,498 

154 20 0.00 0.00 0.55 0.87 1325 1           136,762 

155 20 0.31 0.81 0.84 0.87 1175 1             58,180 
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Appendix F

List of Economically Undeveloped Regions

Table F1: List of Economically Undeveloped Regions

Region Population
5. Tierra Blanca, Veracruz 883,261
6. Mart́ınez de la Torre, Veracruz 680,586
7. Tantoyuca, Veracruz 622,439
8. Poza Rica de Hidalgo, Veracruz 1’025,364
9. Coatepec, Veracruz 1’184,980
10. Veracruz, Veracruz 654,410
11. San Andrés Tuxtla, Veracruz 303,827
12. Córdoba, Veracruz 520,710
13. Coatzacoalcos, Veracruz 877,007
14. Xalapa, Veracruz 482,113
15. Tlaxcala de Xicohténcatl, Tlaxcala 583,922
16. Huamantla, Tlaxcala 503,078
23. Macuspana, Tabasco 526,887
24. Cunduacán, Tabasco 349,645
25. Cárdenas, Tabasco 557,294
26. Villahermosa, Tabasco 558,569
43. Tehuacan, Puebla 553,986
44. Huauchinango, Puebla 676,386
45. Teziutlan, Puebla 432,106
46. Atlixco, Puebla 504,321
47. Amozoc de Mota, Puebla 524,514
48. Puebla de Zaragoza, Puebla 1’486,068
49. Palmar de Bravo, Puebla 805,462
50. San Martin Texmelucan de Labastida, Puebla 500,730
51. Santiago Pinotepa Nacional, Oaxaca 1’037,783
52. San Juan Bautista Valle Nacional, Oaxaca 424,182
53. Huajuapan de León, Oaxaca 398,818
54. Santo Domingo Tehuantepec, Oaxaca 613,411
55. Oaxaca de Juárez, Oaxaca 456,488
56. Salina Cruz, Oaxaca 352,193
57. San Juan Bautista Tuxtepec, Oaxaca 477,403
68. Yautepec de Zaragoza, Morelos 759,546
69. Cuernavaca, Morelos 698,204
70. Cuautla, Morelos 160,339
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Appendix F (Continued)

Table F1 (Continued)

Region Population
71. Puruándiro, Michoacán 931,317
72. Zitácuaro, Michoacán 550,109
73. Uruapan, Michoacán 916,206
74. La Piedad de Cabadas, Michoacán 348,460
75. Pátzcuaro, Michoacán 214,324
76. Apatzingán de la Constitución, Michoacán 179,115
77. Morelia, Michoacán 684,373
78. Ciudad Lázaro Cárdenas, Michoacán 163,367
80. Ixtlahuaca de Rayón, México 1’472,902
81. Toluca de Lerdo, México 747,536
82. Amecameca de Juárez, México 213,118
83. Texcoco de Mora, México 490,663
84. Metepec, México 282,906
85. Tenancingo de Degollado, México 1’590,998
97. Tula de Allende, Hidalgo 775,896
98. Pachuca de Soto, Hidalgo 660,334
99. Tulancingo, Hidalgo 391,654
100. Huejutla de Reyes, Hidalgo 530,640
101. Chilpancingo de los Bravo, Guerrero 391,281
102. Teloloapan, Guerrero 312,102
103. Ixtapa Zihuatanejo, Guerrero 648,020
104. Iguala de la Independencia, Guerrero 251,638
105. Tlapa de Comonfort, Guerrero 774,876
106. Acapulco de Jurez, Guerrero 718,103
123. Tila, Chiapas 446,808
124. Ocosingo, Chiapas 613,709
125. Chiapa de Corzo, Chiapas 212,892
126. Venustiano Carranza, Chiapas 492,055
127. Villaflores, Chiapas 519,985
128. Tapachula, Chiapas 635,905
129. Tuxtla Gutiérrez, Chiapas 568,792
130. La Trinitaria, Chiapas 195,868
131. Reforma, Chiapas 311,157
132. San Cristóbal de las Casas, Chiapas 333,800
133. Comitán de Domı́nguez, Chiapas 184,008
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Appendix G

List of Likely Pandemic Export Regions

Table G1: List of Likely Pandemic Export Regions

Region Population Category
18. Matamoros, Tamaulipas 527,595 Border
21. Reynosa, Tamaulipas 636,551 Border
22. Nuevo Laredo, Tamaulipas 423,964 Border
29. Nogales, Sonora 679,908 Border
39. Cancún, Quintana Roo 574,441 Tourist
65. Linares, Nuevo Len 560,331 Border
79. Ciudad de México, D.F. 19’308,938 Major city
95. Puerto Vallarta, Jalisco 220,558 Tourist
96. Guadalajara, Jalisco 1’600,954 Major City
117. Guadalupe y Calvo, Chihuahua 423,728 Border
120. Cuauhtémoc, Chihuahua 436,736 Border
121. Ciudad Juárez, Chihuahua 1’314,400 Border
137. Ciudad Acuña, Coahuila 212,788 Border
138. San Buenaventura, Coahuila 56,358 Border
142. Piedras Negras, Coahuila 292,553 Border
149. La Paz, Baja California Sur 387,716 Tourist
150. Tijuana, Baja California 1’485,310 Border
151. Ensenada, Baja California 510,367 Border
152. Mexicali, Baja California 860,288 Border
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Appendix H

Results on the Normality of the Regression Model

The following figure shows that the errors followed a normal distribution. Conse-

quently, parametric statistics was used to analyze the results of the models.

Figure H1: Results on the Normality of the Regression Model
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Appendix I

Histogram of Lead Time

The following figure shows a histogram of the lead time not considering the cases

when the outbreak was contained at the source.

Figure I1: Histogram of Lead Time
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Appendix J

Percentage of Containment at the Source

The following table shows the percentage of the time that an outbreak was con-

tained at the source given certain strategy.

Table J1: Percentage of Containment at the Source
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