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DEDICATION

To my new born son Luis Can, my wife and family



ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Dr. Tapas K. Das for his guidance

and support throughout the course of this dissertation. Thank you for showing new

ways of approaching and solving a problem. I wish to thank Dr. Ralph Fehr, Dr.

Kandethody Ramachandran, Dr. Alex Savachkin, and Dr. Jose Zayas-Castro for

serving in my committee and for their suggestions; and Dr. Aydin Sunol for chairing

my defense. I would like to thank IMSE department administration and staff for their

assistance and trying to improve the work environment.

Last but by no means least, I would like to thank my family and friends for their

confidence, support and companionship. You will continue to be part of my studies.



TABLE OF CONTENTS

LIST OF TABLES iii

LIST OF FIGURES iv

ABSTRACT v

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 LITERATURE REVIEW 6
2.1 FTR: Financial Transmission Rights 7

2.1.1 Point-to-Point FTR and Flowgate FTR 7
2.1.2 Types of FTR: Options and Obligations 9
2.1.3 Simultaneous Feasibility and Revenue Adequacy 10

2.2 Settlement Approaches in FTR Market 11
2.2.1 Bidding Strategies 12
2.2.2 FTR Auctions 13
2.2.3 Optimal Power Flow 14
2.2.4 Performance Measures 16
2.2.5 FTR Market Power 17

CHAPTER 3 A MATRIX GAME MODEL FOR SETTLEMENT OF FTR
MARKET 19

3.1 A Matrix Game Model Formulation for FTR Allocation 19
3.1.1 Computation of Payoff Matrix Elements 21

3.1.1.1 ISO’s FTR Revenue Maximization Model 21
3.1.1.2 Expected FTR Revenue of a Bidder 23
3.1.1.3 FTR Utility of a Bidder 23

3.2 Solution of Matrix Game for Equilibrium FTR Bidding Strategy 24
3.2.1 A Value Iteration Algorithm for N -Player Matrix Games 25

CHAPTER 4 JOINT FTR AND ENERGY BIDDING MODEL 28
4.1 A Matrix Game Model for Joint FTR and Energy Market Settle-

ment 29
4.2 A Matrix Game Model Formulation for Joint Market Settlement 31

4.2.1 FTR Allocation Model Formulation 31

i



4.2.2 Energy Allocation Model Formulation 33

CHAPTER 5 NUMERICAL EXAMPLE: FTR MARKET SETTLEMENT 39
5.1 The Sample Network 39
5.2 Equilibrium Bidding Strategies for Different Network Scenarios 40
5.3 Impact of Bid Parameter Discretization 43
5.4 Impact of Bid Parameter Variations 44
5.5 Impact of the Network Parameter Variations 48

CHAPTER 6 NUMERICAL EXAMPLE: JOINT FTR AND ENERGY MAR-
KET SETTLEMENTS 51

6.1 The Sample Network 51
6.2 Impact of FTRs in Market Settlement 52
6.3 Impact of Contingency and Demand Scenario Variability 56
6.4 Impact of Generator Cost Function Variations 60

CHAPTER 7 CONCLUSIONS 65

REFERENCES 68

ABOUT THE AUTHOR End Page

ii



LIST OF TABLES

Table 5.1 Network and Bid Values 41

Table 5.2 Equilibrium Bidding Strategies for Sixteen Network Scenarios 42

Table 5.3 Strategies with Higher Payoffs than Nash Equilibrium 42

Table 5.4 Impact of Bid Parameter Discretization 44

Table 5.5 Impact of Type Mix Parameter 49

Table 5.6 ANOVA with Bidder 2’s Payoffs 50

Table 5.7 ANOVA with Bidder 1’s Payoffs 50

Table 6.1 Equilibrium Bidding Strategy of Generator 1 and Bus LMPs 53

Table 6.2 Bidding Parameters and Factors of Generators 53

Table 6.3 Equilibrium Payoffs without FTR and with FTRs 55

Table 6.4 Equilibrium Payoffs for Contingency-Demand Probability Matri-
ces 57

Table 6.5 Contingency Scenarios 57

Table 6.6 Demand Scenarios 58

Table 6.7 FTR Market Data for Contingency-Demand Variations 58

Table 6.8 Equilibrium Payoffs for Different Cost Function of Generator 5
and 2 61

Table 6.9 Joint Contingency-Demand Probability Matrix 62

Table 6.10 FTR Market Data for Cost Function Variations Variations 63

iii



LIST OF FIGURES

Figure 4.1 FTR and Energy Market Operation Cycle 29

Figure 4.2 Matrix Game Model Solution Steps for Joint Market 38

Figure 5.1 FTR Bidders in a 3-Bus Power Network 40

Figure 5.2 Price Effect on Bidder 1’s Average Utility 45

Figure 5.3 Price Effect on Bidder 2’s Average Utility 46

Figure 5.4 Quantity Effect on Bidder 1’s Average Utility 47

Figure 5.5 Quantity Effect on Bidder 2’s Average Utility 47

Figure 5.6 Strategic Impact of Quantity Parameter 48

Figure 5.7 Type Mix Effect on Bidder 1’s Average Utility 48

Figure 5.8 Type Mix Effect on Bidder 2’s Average Utility 49

Figure 6.1 PJM 5-Bus Power Network 52

Figure 6.2 Generator Factor Effects for Contingency-Demand Variations 60

Figure 6.3 Load Factor Effects for Contingency-Demand Variations 61

Figure 6.4 Generator Factor Effects for Generation Cost Variations 64

Figure 6.5 Load Factor Effects for Generation Cost Variations 64

iv



EQUILIBRIUM BIDDING IN JOINT TRANSMISSION AND
ENERGY MARKETS

Cihan Babayiǧit

ABSTRACT

Participants in deregulated electric power markets compete for financial trans-

mission rights (FTRs) to hedge against losses due to transmission congestion by

submitting bids to the independent system operator (ISO). The ISO obtains an FTR

allocation, that maximizes sales revenue while satisfying simultaneous feasibility. This

FTR allocation remains in place for a length of time during which the participants

compete in the energy market to maximize their total payoff from both FTR and en-

ergy markets. Energy markets (bi-lateral, day ahead, real time) continue until the the

end of the current FTR period, at which time the participants can choose to modify

their FTR holdings for the next FTR period. As in any noncooperative game, find-

ing Nash equilibrium bidding strategies is of critical importance to the participants

in both FTR and energy markets. In this research, a two-tier matrix game theo-

retic modeling approach is developed that can be used to obtain equilibrium bidding

behavior of the participants in both FTR and energy markets considering the total

payoff from FTR and energy. The matrix game model presents a significant deviation

from the bilevel optimization approach commonly used to model FTR and energy al-

location problems. A reinforcement learning (RL) algorithm is also developed which

v



uses a simulation model and a value maximization approach to obtain the equilibrium

bidding strategies in each market. The model and the RL based solution approach

allow consideration of multi-dimensional bids (for both FTR and energy markets),

network contingencies, varying demands, and many participants.

The value iteration based RL algorithm obtains pure strategy Nash equilibrium for

FTR and energy allocation. A sample network with three buses and four participants

is considered for demonstrating the viability of the game theoretic model for FTR

market. A PJM network example with five buses, five generators and three loads

is also considered to analyze equilibrium bidding behavior in joint FTR and energy

markets. Several numerical experiments on the sample networks are conducted using

the approach of statistical design of experiments (DOE) to assess impacts of variations

of bid and network parameters on the market outcomes like participant payoffs and

equilibrium strategies.
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CHAPTER 1

INTRODUCTION

Capacity limitations in the transmission grid constrain movement of power across

the grid and thereby impose differential locational marginal prices (LMPs). This

phenomenon, which may expose market participants to volatile energy prices is de-

scribed as transmission congestion. Transmission congestion creates a dilemma for

the system operator (ISO) as the revenues collected from the customers (retailers)

exceed the payments to generators/suppliers. Electricity markets use instruments

like financial transmission rights (FTRs) to hedge the market participants from the

volatility of the congestion charges. This is accomplished through a redistribution of

the excess revenue among the FTR holders (Hogan [1]).

Hence, FTR is a financial risk instrument intended to offset transmission users’

congestion charges. An FTR is represented as MW amount between two points in the

transmission network and is valid over a defined period of time. The definition of FTR

also depends on how the transmission capacity (in MW) is specified and measured.

FTRs defined between any two particular buses in the system are known as point-to-

point financial transmission right (PTP-FTR). Holder of PTP-FTR is entitled to be

paid if the difference in the locational marginal prices between the specified points

of withdrawal and injection (∆LMP )is positive. A much less common FTR type

is referred to as flowgate financial transmission right (FGR-FTR), which grants the

holder a capacity reservation or scheduling priority for using specific transmission

links or flowgates. FGR-FTR between any two nodes can be obtained by combining
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the capacity reservations (FGRs) of the lines connecting the nodes. In this research,

only PTP financial transmission rights are considered.

PTP-FTRs can be further classified as obligations or options depending on the

financial settlement strategy. An FTR obligation is bi-directional and can have a

negative or a positive price difference (∆LMP ). In case of a negative value of ∆LMP ,

the holder of the FTR makes a payment equal to the product of the FTR quantity

times the ∆LMP . An FTR option is uni-directional and can only have a nonnegative

value. That is, the holder of an FTR option is not expected to make a payment to

the ISO if the ∆LMP is negative, but will be paid by the ISO when the ∆LMP is

positive. In this research, a PTP-FTR bidder has a choice to bid for any combination

of obligation and option.

After the PTP-FTR bids are submitted, two important conditions that are taken

into account in allocating the available FTRs are:

1. Simultaneous feasibility

2. Revenue adequacy

Simultaneous feasibility refers to the condition where the allocated FTRs are within

the capability of the existing transmission system. That is, tested by checking if the

power flows that occur due to the allocated FTRs fall within the constraints of the

system. Revenue adequacy is a condition whereby the net payments, collected by the

system operator through the actual dispatch of energy, should be greater or equal to

the payments made to the FTR holders. It has been shown that revenue adequacy

follows from simultaneous feasibility [1].

It is considered that to acquire FTR on a path, market participants submit strate-

gic bids to ISO comprised of four parameters: obligation price, option price, obligation

quantity, and option quantity. FTR bidders are assumed to submit different bids for
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the FTR paths. Based on the bids, the FTRs are allocated such that ISO’s revenue

from FTR sales is maximized while satisfying the constraints of simultaneous feasi-

bility condition. FTR bidders attempt to maximize their expected utility for holding

an FTR. Two different approaches for obtaining equilibrium FTR bidding strategies

are examined:

1. Considering bidding in the FTR market alone assuming that the estimates of

∆LMP s are available, and

2. Considering bidding in the FTR market in conjunction with bidding in the

energy market to derive the actual LMPs.

The solution of joint FTR and energy markets is not found in the open literature.

In a deregulated electric power market with multiple bidders for FTRs, it is es-

sential to understand the equilibrium bidding behavior and the resulting payoffs to

the participants. It is also imperative to understand the impact of various network

parameter values on the equilibrium outcome(s). A common approach adopted in

the electric market literature to obtain equilibrium bidding behavior is a bi-level op-

timization method. This approach has also been used in the FTR market. In the

bi-level method, the upper level problem obtains the equilibrium bids of the par-

ticipants, while the lower level problem finds the corresponding FTR allocation via

ISO’s revenue maximization subject to the SFT constraints. The upper level problem

attempts to find an equilibrium strategy by repeatedly updating bidders’ strategies

one at a time while assuming strategies of other bidders fixed until no further change

in the strategies is possible. Such an approach can be found in a recent paper [2],

which considers price as the only PTP-FTR bid parameter, and assumes that each

bidder submits bid for a single FTR path. It is also assumed in the paper that the

∆LMP estimate is known to a bidder, and the bidder utility is a function of the risk
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coefficient and the variance of ∆LMP of the FTR path. Various methods that have

been used to forecast LMPs are price simulation methods [3], statistical methods like

artificial neural network method [3], [4], and time series method [5].

In this research, a matrix game theoretic approach to examining equilibrium FTR

and energy bidding behavior of the participants in a deregulated power market is

presented. The bids are considered to be a discrete valued vector of FTR prices and

quantities. Also, a bidder is allowed to bid on any subset of the available FTR paths

in a network. The matrix game theoretic model allows simultaneous solution of the

equilibrium bidding behavior of the participants. A recently developed value iteration

based reinforcement learning (RL) approach is used in solving for equilibrium FTR

biding strategies [6]. A sample FTR network, that was studied in [2], is used in

numerically demonstrating the matrix game theoretic modeling approach for FTR

allocation under ∆LMP assumptions. A PJM-5 bus example is used to study the

joint FTR and energy allocation process. Experiments are conducted to determine

the impacts of the bid and network parameters through single factor analysis and

multi-factor analysis using factorial experimental design and consequent analysis of

variance.

This dissertation is organized as follows. Chapter 2 provides the literature about

the transmission rights in deregulated electric market. Chapter 3 presents the formu-

lations to model the FTR allocation problem as a matrix game and value iteration

based RL algorithm to solve the equilibrium bidding strategies. Chapter 4 presents

the formulations to integrate the FTR and energy markets and find the equilibrium

strategies with this joint model. Chapter 5 presents the numerical experiments and

their results when FTR allocations are done using estimation of ∆LMP s. Chapter

6 provides the numerical experiments with results to reveal the significant factors
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when the FTR and energy markets are settled jointly. Conclusions are summarized

in Chapter 7.
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CHAPTER 2

LITERATURE REVIEW

The move towards a deregulated electric power industry has raised the awareness

of the critical impact of transmission congestion on power networks. Limitations in the

transmission grid constrain long-distance movement of power, which results in higher

prices in certain locations of the network. This phenomenon is termed as transmission

congestion, and the difference in the locational marginal prices (LMPs) between any

two busses is called congestion cost (transmission charge) to the participants at those

busses. Electricity markets use various transmission right mechanisms to hedge the

market participants from the volatility of the transmission charges. Transmission

rights allow their holders to derive benefits from the use of the transmission capacity

as follows:

1. Financial benefits resulting from the use of the capacity

2. Right to use the transmission capacity.

Hence, the transmission rights could be financial and/or physical in nature. A purely

financial approach, known as financial transmission rights (FTR), provide market

traders and other market participants an instrument for constructing financial hedges.

The Federal Energy Regulatory Commission (FERC), in a notice of public ruling

(NOPR) in 2002, proposed location-based marginal pricing together with FTRs as

the mechanism to build efficient energy markets ( [7]). The above ruling, according

to Hogan [8], sets the right incentives to the market participants. LMP-based FTR

6



markets have been in operation in New York and PJM for a few years. New England

has recently adopted this, while the Midwest and California markets are scheduled to

implement this structure soon [9]. The above markets together represent a significant

portion of United State’s electricity market.

2.1 FTR: Financial Transmission Rights

Transmission congestion creates a dilemma for the system operator as the revenues

collected from the customers exceed the payments to generators. The additional

revenue is referred to as the congestion revenue. Hogan [10] suggests that a convenient

solution to this dilemma would be to re-distribute the congestion revenue through a

system of long-run financial transmission rights (FTRs). FTR is defined as a financial

risk instrument intended to offset the congestion charges incurred in a transmission

network. FTR serves to not only protect a market participant from the losses linked

with congestion but also as a means of generating revenue in a deregulated market, in a

way similar to the stocks in the financial sector. It is also referred to in the literature as

transmission congestion contract (TCC) or congestion revenue right (CRR). Various

types of existing FTR contracts are discussed below.

2.1.1 Point-to-Point FTR and Flowgate FTR

The definition of FTR further depends on how the transmission capacity is spec-

ified. FTR between any two particular buses in a system is known as point-to-point

(PTP) financial transmission right, which is also called firm transmission right or

just FTR. Owner of PTP FTR is entitled to be paid if the difference in the locational

prices between the specified point of withdrawal and injection is positive. The other

less frequently used FTR type is the flowgate (referred to as FGR). In a constrained

dispatch, a flowgate has a shadow price, which defines the flowgate’s market clear-
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ing price. Flowgate FTR is a contract to collect the shadow price from the realized

dispatch for a specified quantity of the constraint. This approach creates the idea of

selling the line limits or resources besides the electric flow on the lines TrHoganF02.

Generators and loads are interested in being able to transfer power between two

specific locations in the network. O’neill et. al [11] state that PTP FTRs are well

suited for hedging congestion cost for such cases in the long run. However, existence

of a large number of possible PTP combinations makes it difficult to choose in the

dynamic environment of electric trade. As a result, resellers of PTP contracts face a

thin market. Furthermore, any change in configuration of PTP rights require simulta-

neous feasibility which has to be solved by the regional transmission operator (RTO)

with all other rights. This centralized optimization procedure limits the development

of off-RTO secondary markets for PTP rights [12]. Adamson [13] presents a new

method of trading PTP transmission rights which is claimed to decrease the level of

central optimization. This method is based on the principles of unequal exchange

rates between different point-to-point transmission rights.

Though FERC has recently endorsed the merit of having flowgate transmission

rights, there is a lot of debate surrounding the subject. Chao et al. [14] propose

flow-based systems as a potentially efficient method of trading rights that does not

require centralized optimization. Moreover, electricity traders often argue that since

there will be fewer congested flowgates compared to number of node combinations in

PTP rights, flow-based rights will yield a more liquid forward market for energy and

transmission. However, the number of transmission rights that must be defined to

account for all of the actual or possible constraints on an actual network may be large

and impractical [15]. Andrew [16] suggests that FGR systems when implemented in

large grids may not capture all the congestion costs in the system, forcing the operator

to provide continuous update of the new commercially significant flowgates.
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2.1.2 Types of FTR: Options and Obligations

Financial transmission rights can be defined as obligations or options depending

on the financial treatment to the holder of the right.

Obligation: An FTR obligation is bi-directional and can have a negative value or a

positive value. In case of a negative value the holder of the FTR makes a payment

equal to the product of the FTR quantity times the price difference. A similar pay-

ment is received by the holder, from the ISO, if the FTR has a positive value. This

type of FTR is commonly used due to its ease of implementation though it is not as

practical from an economic standpoint.

Option: An FTR option is uni-directional and can only have a positive value. That

is, the holder of the FTR is not expected to make a payment to the ISO if the FTR is

negative but will always be paid by the ISO when the FTR is positive. It is natural

that this type of FTR would be more appealing to market participants however an

FTR option tends to cost more at auction than its equivalent obligation. Moreover,

practical implementation of this type of FTR is a complex task. For example, in a

power network of 3000 buses, there would be upwards of 100,000 constraints. Solving

for an FTR option would require evaluation of each of these individual constraints, a

task which is daunting.

An FTR auction for both point-to-point obligations and options is similar to

an economic dispatch problem [1]. But in FTR auction for options, evaluating a

contingency and constraint condition requires solving an unconstrained optimal power

flow for the worst-case impact. This increases the complexity of the model and hence

success with this auction model has not yet been demonstrated. In the case of NYISO

working with an AC (Alternating Current) power network further complicates its

efforts at implementing FTR options. On the other hand, an FTR auction for flowgate
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obligations or options is more complicated and it is not like an economic dispatch

problem. In this model, there could be a large number of flowgates in the real grid that

greatly complicates any construction of hedges. Also the required flowgate amounts

to hedge any transaction change frequently with changing dispatch restrictions. A

hybrid model with point-to-point and flowgate obligations and options can produce

a computational challenge and it is not clear whether this auction model could be

solved for a realistic grid. O’neill et al. [11] propose an auction-based process that

allows the market participants to acquire and reconfigure the financial transmission

rights. The paper shows that by allowing flowgate and point-to-point obligations and

options to be reconfigured and exchanged, the market can decide what combination

of financial rights are most useful to the market participants.

2.1.3 Simultaneous Feasibility and Revenue Adequacy

Two important aspects, which are considered to assess viability of the FTRs are

simultaneous feasibility and revenue adequacy. In electric power networks, conditions

such as thermal limits, power limits, generating capacity, and demand vary with

time. As a result, FTR allocation may need to be varied to maintain electrical and

economic constraints. These constraints are known as simultaneous feasibility and

revenue adequacy. Simultaneous feasibility refers to testing whether the allocated

FTRs are within the capability of the existing transmission system. That is, the

power flows that occur due to the allocated FTR must fall within the constraints of

the system. Revenue adequacy is a condition whereby the net payments, collected by

the system operator through the actual dispatch of energy, should be greater than the

payments to the FTR holders. The ISO constantly checks for the viability of these

allocated FTRs by performing a simultaneous feasibility test (SFT).

10



The SFT is done by modeling the FTRs as generation at point of injection (source

point) and load at point of withdrawal (sink point). An AC power-flow analysis

is carried out to evaluate if the system will remain within all permissible limits,

including single contingency situations (like the loss of a line etc.). This power flow

analysis employs an optimization program that is used to simulate the working of

the actual power network. This program is called the economic dispatch program or

optimal power flow. Once the parameters of the power network have been modeled

into the program, it simulates the actual operation of the network under varying

conditions and parameters. If the outstanding FTR violate any of the system limits

then they are considered to be unviable. This will usually result in the ISO running

the allocation program again to obtain a re-allocation or in the worst case asking the

market participants to bid again. The allocated FTR must also ensure that the excess

revenue (congestion charges) collected by the ISO is adequate to cover the payments

required under the FTRs. Fortunately however, both of the above conditions need

not be individually verified. It has been proven that revenue adequacy follows from

simultaneously feasibility [1].

2.2 Settlement Approaches in FTR Market

Ideally, an optimal security constrained dispatch is the dispatch that gives similar

results like the unconstrained dispatch with equal LMPs at all system buses. However,

constrained transmission considerably impacts energy prices as indicated by large

fluctuations in LMPs. This forces participants to play strategically with the market

tools like auctions and FTRs. In the end, the system settles down by solving a social-

welfare problem. In [2], Li and Shahidehpour formulate FTR auction problem as a

linear program with the objective of maximizing the revenue collected from the FTR
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auction market. An FTR bidder’s objective is to maximize its expected utility for

holding an FTR.

2.2.1 Bidding Strategies

The auction is the central mechanism of an FTR market. To buy or sell FTR,

market participants submit quantity, cost information and points of injection and

delivery in the form of bids, to the ISO. The ISO being the neutral party arbiter

runs an FTR auction to allocate the FTRs. The bids are allocated such that they

maximize the revenue from FTR sales while satisfying the simultaneous feasibility

condition. As a result, user’s bidding behaviors become significant. Bidders make

their decisions based on anticipated system operating conditions while holding FTRs.

Specifically, they need to estimate LMP differences between sink and source points

on a certain FTR path and identify potential competitors and their corresponding

bidding information [2]. The methods that forecast the electricity price include price

simulation methods [3], statistical method such as artificial neural network [3], [4],

and time series [5]. Each FTR bidder’s objective is to maximize its expected utility

for holding an FTR. Understanding this behavior is a work in progress. The problem

is to determine the competitive equilibrium bidding strategies in an FTR auction by

considering the equilibrium profits realized in the energy market as the performance

measure. A sound bidding strategy is needed for purchasing FTRs, for the following

reasons. If the bid price is too low, sufficient FTRs may not be allocated resulting

in the supplier paying high congestion costs. On the other hand, bidding too high

will likely win ownership of the auctioned FTR, but may mean loss of profit. Market

participants in their efforts to bid for FTRs should take into account two important

factors. One of these factors is the estimated price differential between the supply

node and the load node, for which an accurate prediction of future locational prices
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is important. The other factor is the anticipated total supply quantity as it ideally

represents the amount of power that needs to be hedged against the congestion costs.

Li and Shahidehpour [2] model the FTR bidding problem as a bilevel optimization

with the upper subproblem representing bidders and the lower subproblem represent-

ing the solution to the ISO’s FTR market clearing problem. Their results presented

bidding differences between FTR obligations and options. Furthermore, the results

showed that forecasting an accurate LMP differences and proper risk preferences were

the critical points in FTR bidding and bidders’ payoffs.

2.2.2 FTR Auctions

An auction is defined as the method of allocating goods under competition. Auc-

tions are essentially pricing mechanisms. Increasingly, in a deregulated power market

environment, market participants who may or may not have the ability to actually

schedule power supply in the network, are attempting to buy and sell FTR in order

to profit from the revenues and payments warranted under the FTR system. As the

number of participants increases, the competition to buy or sell FTRs also increases.

This rising trend in competition has ensured that at any time there are numerous

participants vying for the same FTR. Such a situation fosters the need to utilize well-

established methods of selling or buying FTR to multiple market participants, while

increasing the revenue generated for the ISO. Worldwide, a variety of auction strate-

gies are utilized in many market scenarios to carry out trading on similar grounds.

Ideally, the FTR auction mechanism should increase price certainty of the energy

market and improve market efficiency in the long run. The choice of an auction

mechanism affects the prices in the market. It is hence worthwhile to investigate the

various auction rules and strategies.

13



Auctions used in electricity markets are called multi-unit auctions since more than

one unit of the same type is auctioned. Two forms of multi-unit electricity auctions are

commonly used in present day restructured electricity markets: uniform price auction

and discriminatory auction. The uniform price auction is further differentiated as first

price uniform auction and second price uniform auction. A review of the literature

suggests that different auction rules have not been compared for their effectiveness in

trading FTR.

The initial and most important requirement to test various auction rules on the

selling and buying of FTR is a computational framework able to evaluate the effects

of different auction strategies on FTR allocation. That is, a means of allocating

the FTR is required in which an auction framework can be embedded. Commonly

practiced methods of FTR allocation use DC (Direct Current) approximations to an

AC network scenario to determine load flows and guarantee simultaneous feasibility

and revenue adequacy. In recent years, system operators have begun using non-linear

optimization algorithms that model an AC network without any approximations. The

optimal power flow (OPF) is a popular algorithm that is utilized for this purpose.

2.2.3 Optimal Power Flow

OPF is a generic term that describes a broad class of problems which try to

optimize a specific objective function while satisfying constraints dictated by the op-

erational and physical characteristics of the electric network [17]. The OPF algorithm

is concerned with the physical allocation of generation capacities and the objective

function is generally to minimize cost of supplying power. It is therefore necessary

to transform its structure to make it suitable for FTR allocation as suggested by

Hogan [1].
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OPF is involved in the solution of a large-scale non-linear mathematical pro-

gramming problem and it has taken mathematicians and scientists many decades of

research to develop efficient algorithms to solve it. The unique feature of OPF is

that the cost of operating the network can be minimized while maintaining the func-

tional constraints. Significant progress has been achieved in this area [18], [19], [20].

Many optimization techniques have been employed to solve the OPF problem. The

techniques are classified as follows [17]:

1. Non linear programming

2. Quadratic programming

3. Newton based solutions of optimality conditions

4. Linear programming

5. Hybrid versions of LP and IP

6. Interior point methods

The deregulated power market has increased the need for fast reliable and accurate

OPFs capable of simulating the real time spot market. Variations occurring in real

time have to be modeled with greater accuracy. Recent years have seen the focus

shifting to adapting the formulation of OPF to work in a deregulated power market

environment [21], [22], [23], [24], [25]. Increase in computational capabilities and

improved mathematical algorithms have ensured that OPF is robust enough to be

employed in a deregulated environment. The rise in the use of the World Wide

Web (due to increase in bandwidth and data transfer capabilities) [22] brought the

optimal power flow to the forefront of real time, online multiple participant interaction

simulations of the deregulated market. In [21], Yong and Lassater take into account
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the presence of multiple market participants who have the ability to select their own

energy supplier.

The formulation for OPF can be categorized based on the type of power network:

alternating current optimal power flow (AC-OPF) and direct current optimal power

flow (DC-OPF). In the literature, DC-OPF is widely used to formulate the OPF

problem in AC networks, since DC-OPF is faster compared to the AC-OPF. The

DC-OPF formulation is obtained by ignoring reactive power balance equations, line

losses and tap dependence in transformer reactance and assuming that all voltage

magnitudes are identically one per unit. The DC-OPF hence converts the power flow

problem to a linear problem and solves a linear set of equations. The disadvantage

of DC-OPF is that all non-linear system parameters are converted to linear form

thereby compromising on the ability of the optimization program to accurately model

the system.

The formulation for AC-OPF is complex and non linear in nature. This complexity

though, is offset by the benefits that it offers. The major benefit of AC-OPF is that it

internalizes losses, i.e., during the economic dispatch process the supply generators are

set at a higher level to compensate for both the actual load and the losses that occur

from the dispatch for that load. The LMPs that result from this dispatch will reflect

the cost of generation to compensate for these losses. It also models reactive power

and voltage constraints in the system making the AC-OPF dispatch a much more

accurate and realistic representation of the power system. As a result the AC-OPF

provides us with a comprehensive framework for the FTR auction process.

2.2.4 Performance Measures

Electric dispatch problem can have different solutions. Which dispatch alternative

is optimal depends on the performance measures. In [26], Alomoush introduces some
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performance indices to quantify severity of congestion, degree of system utilization

and uniformity of energy prices. Total congestion charge, total system generation,

index of total generation charge, index of locational marginal prices, average locational

marginal price of generation/load and system utilization are the indices that the

author proposes. Based on these indices different dispatch scenarios can be compared

and optimal dispatch can be determined. Some indices will be more important than

the others depending on the performance priorities. Power system stability is another

performance measure that has to be taken into consideration while choosing the

appropriate dispatch scenario. Some dispatches may yield more preferred outcomes;

however, it may create a less secure power system. Power systems with very close

to the voltage collapse point, which can be measured by an appropriate steady-state

voltage stability indicator [27], [28], should be avoided.

2.2.5 FTR Market Power

In FTR markets, it is important to monitor situations in which holders can in-

crease their FTR payouts by increasing the relevant congestion intentionally. Because

of particular characteristics of power markets, it is possible to exercise market power

as in no other kind of market. In [29], [30], [31], strategic behavior of FTR holders

has been analyzed in a two-node network. It has been shown that if a generator

in the importing node holds an FTR, it increases its power market; however, if the

FTR is held by a generator in the exporting node, it has no effect in the market

power of the generator. Oren [32] argues that centralized implementation of FTRs

will result in inefficient dispatch and market power for the generators. Stoft [29]

provides a counter-argument to Oren’s conclusion and proves that under certain “ex-

cess capacity” conditions, financial transmission rights curb market power. Joskow et

al. [33], [34] study the impact of allocation of financial and physical transmission rights
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on market power. [33], [34], [35] conclude that the effect of rights depend upon nu-

merous factors including the configuration of the underlying market power problems

(location of buyer and seller) and the microstructure of the market for transmission

rights. In [36], Bautista and Quintana propose a method based on relative hedging

position ratios to screen and discriminate FTRs with market power potential.
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CHAPTER 3

A MATRIX GAME MODEL FOR SETTLEMENT OF FTR MARKET

3.1 A Matrix Game Model Formulation for FTR Allocation

Let I = {1, 2, · · · , I} denote the set of paths of source and sink locations for which

FTRs can be obtained. Also, let N = {1, 2, · · · , N} denote the set of participants

bidding for the available FTRs. A bidder n ∈ N is considered to bid on a subset

of paths In ⊂ I with a 4-dimensional bid vector for each path consisting of price

(as a fraction of the ∆LMP estimate for both obligation and option), quantity (as a

fraction of the maximum flow limits), and FTR type mix factor (indicating proportion

of the quantity that is categorized as obligation, and the rest of the quantity as

option). A bid vector for bidder n for path i ∈ In can be denoted as

an
i =

(
kn,ob

i ∆LMP n
i ; kn,op

i ∆LMP n
i ; lni Qi; mn

i

)
,
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where

kn,ob
i nth bidder’s obligation price bid factor valued between 0 and

1,

kn,op
i nth bidder’s option price bid factor valued between 0 and 1,

∆LMP n
i nth bidder’s forecast of cumulative LMP difference between

sink and source buses of path i over all FTR holding periods

P (i.e., ∆LMP n
i =

∑P
p=1 ∆LMP n

i,p).

lni nth bidder’s quantity bid factor valued between 0 and 1,

Qi approximate maximum flow of electricity on path i, and

mn
i nth bidder’s bid for FTR type mix factor valued between 0

and 1 on path i, where: 0 indicates all FTR quantity bid as

options, and 0.5 indicates equal division of FTR quantity

between options and obligations.

The bid vector of participant n can be given as an = (an
i ; ∀i ∈ In). Then the

complete bid vector of all the players can be denoted as a = (a1, a2, · · · , aN). Since

|In| denotes the number of paths on which bids are submitted by bidder n, the

dimension of the bid vector for the bidder n is 4 × |In|. Since the N bidders are

in competition to maximize their FTR benefits, the non-cooperative bidding process

can be modeled as an N -player matrix game, if the continuous bid vector elements

are suitably discretized. A higher level of discretization gives better approximation

to the real scenario, though at a higher cost of computation. If, for example, the bid

vector elements kn,ob
i , kn,op

i , lni , and mn
i are discretized at eleven levels each (starting

at 0 with 0.1 increments up to 1), then the action space of bidder n can be given as

(11× 11× 11× 11)|In|. Hence, the matrix game consists of N payoff matrices each of

size (11× 11× 11× 11)|I1| × (11× 11× 11× 11)|I2| × · · · × (11× 11× 11× 11)|IN |.
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Formulation of a matrix game would require computation of the payoff matrix

elements. These elements represent utilities of the bidders obtained from a detailed

consideration of variance and risk associated with ∆LMP estimates, network con-

straints and contingencies, and ISO’s settlement. In what follows, the details for

computing the elements of the payoff matrices are provided.

3.1.1 Computation of Payoff Matrix Elements

For any given bid combination, the ISO’s revenue maximization model is solved

first to determine the FTR allocations for the bidders for each path included in

their bids. The FTR quantities are then used to calculate revenues for the players,

which are then converted to utility values considering the variabilities in the ∆LMP

estimates of the players and their risk coefficients.

3.1.1.1 ISO’s FTR Revenue Maximization Model

A dc model is adopted for FTR allocation. Adaptation of the dc model is solely

for simplification of the computational needs of this research. A true ac model can

be substituted for real life implementations requiring higher computing power. The

optimization model maximizes ISO’s revenue from FTR allocations while considering

simultaneous feasibility for the network. The model can be given as follows.

max

N∑
n=1

∑
i∈In

ρn,ob
i ∗ FTRn,ob

i + ρn,op
i ∗ FTRn,op

i (3.1)

s.t.

N∑
n=1

∑
i∈In

[Dn,c
i,l ∗ FTRn,ob

i + max(0, Dn,c
i,l ) ∗ FTRn,op

i ] ≤ Bc
l ∀ l, c (3.2)
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N∑
n=1

∑
i∈In

[−Dn,c
i,l ∗ FTRn,ob

i + max(0,−Dn,c
i,l ) ∗ FTRn,op

i ] ≤ Bc
l ∀ l, c (3.3)

FTRn,ob
i ≤ mn

i ∗Qn
i ∀ n, i (3.4)

FTRn,op
i ≤ (1−mn

i ) ∗Qn
i ∀ n, i (3.5)

where

FTRn,ob
i quantity of obligation FTR allocated to nth bidder on path

i (decision variable)

FTRn,op
i quantity of option FTR allocated to nth bidder on path i

(decision variable)

ρn,ob
i obligation bid price of nth bidder on path i

ρn,op
i option bid price of nth bidder on path i

Dn,c
i,l PTDF of the nth bidder’s ith path on line l under contin-

gency c

Bc
l capacity limit of line l under contingency c

Qn
i upper bidding quantity of bidder n for path i (i.e., Qi ∗ lni )

The relationship between a transaction (power injection at one bus to be with-

drawn at another bus) and how much of that transmission flow on a line is called

the power transfer distribution factor (PTDF). PTDFs can be used in ISO’s FTR

settlement model to check the line limits. That is, line capacities become resources

in FTR settlement model. When the shadow prices are added over all lines, marginal

clearing price for an FTR is found.
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3.1.1.2 Expected FTR Revenue of a Bidder

Based on ISO’s FTR allocation, the expected revenue for bidder n, Rn, can be

obtained as follows:

Rn =
∑
i∈In

[∆LMP n
i ∗ FTRn,ob

i + max(∆LMP n
i , 0) ∗ FTRn,op

i −

(MCP n,ob
i ∗ FTRn,ob

i + MCP n,op
i ∗ FTRn,op

i )] (3.6)

where

Rn nth bidder’s expected revenue

MCP n,ob
i market clearing price for obligation FTR of bidder n in path

i

MCP n,op
i market clearing price for option FTR of bidder n in path i

Rn shows the expected revenue ($) over all paths that the participant n has

submitted bids for (This is a peculiar situation since the participant can play with

the bids on the paths that he is bidding. At the same time, participant competes

both with his rivals and himself to maximize the total FTR revenue). Discriminatory

price auction is used for the ISO’s FTR settlement model. As a result, MCP n,ob
i and

MCP n,op
i are simply bidder n’s obligation and option price bid respectively for path

i. That is, marginal clearing price for an FTR path is determined by the winning

bidder.

3.1.1.3 FTR Utility of a Bidder

Revenues for the bidders are calculated at the energy market with the actual

∆LMP s. However, since the nodal energy prices are volatile, a mean value and a

variance are considered by the bidders for each ∆LMP estimate. To hedge against

the variability of ∆LMP s, the bidders consider a risk factor in computation of their
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actual payoff (utility) as follows ( [2]):

Un = Rn − rn ∗ var (Rn) , (3.7)

where

Un utility of bidder n,

rn risk coefficient of bidder n, and

var(Rn) variance of bidder n’s revenue estimate.

The level of risk depends on the bidder behavior (neutral, risk-averse, or risk-

taker), which is captured by the sign and magnitude of r value. Bidders are chosen

to be risk averse in this study. The variance can be obtained from the covariance

estimates of the ∆LMPs as shown in [2]. In the following section, an algorithm is

presented that can be used to obtain a Nash equilibrium FTR bidding strategy for

the bidders.

3.2 Solution of Matrix Game for Equilibrium FTR Bidding Strategy

In this section a recently developed approach is discussed to obtain Nash equilib-

rium of N -player matrix games ( [6]). Let V n(a) denote the payoff matrix of the nth

player of which rn(a1, · · · , aN) are the matrix elements. Define the value of an action

an to player n as

V n(an) =
∑

{a1,··· ,aN\an}

p(an, a−n)rn(a1, · · · , an, · · · , aN), (3.8)

where: p(an, a−n) denotes the probability of choice of an action combination a−n by

all the other players while player n chose action an. In decision making problems with

a single player (those are modeled as MDPs and SMDPs), there exist optimal values

for each state-action pair, and the highest value determines the optimal action in each
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state ( [37]). Drawing an analogy from MDPs, for matrix games that have multiple

players and a single state, it is conjectured that there exist optimal values over all

actions of the players that can yield pure NE strategies. However, the probabilities

(p(an, a−n)) needed to compute these values are impossible to obtain for real life prob-

lems without prior knowledge of bidders’ behavior. Therefore, a learning approach is

employed to estimate the values of the actions as follows. (3.8) is rewritten as

V n
t+1(a

n) = (1− γt) [V n
t (an)] + γt

[
rn(a1, · · · , an, · · · , aN)

]
, (3.9)

where: t denotes the iteration count. The algorithm presented below utilizes the

value learning scheme (3.9) to derive pure NE strategies for N -player matrix games.

3.2.1 A Value Iteration Algorithm for N-Player Matrix Games

It is assumed that the game has N -players and each player n has a set of An

possible actions to choose from. Hence, N different reward matrices of size |A1| ×

|A2| × · · · × |AN | are available.

The Algorithm:

1. Eliminate rows and columns of the matrices associated with the dominated

actions. A dominated action is one that will never be adopted by a rational

player irrespective of the choices of other players. An action an ∈ An for player

n is said to be dominated if rn(an, a−n) ≤ rn(ân, a−n), where: ân ∈ An\an and

a−n denotes the actions of all other players.

2. Let iteration count t = 0. Initialize the values for all actions of the player

V n(an) to zero. Also initialize the learning parameter γ0, exploration parameter
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φ0, and parameters γτ , φτ needed to obtain suitable decay rates of learning and

exploration, respectively. Let Maxsteps denote the maximum iteration count.

3. If t ≤ Maxsteps, continue learning of the values through the following steps.

(a) Action Selection:

Greedy action selection for pure strategy Nash equilibrium:

Each player n, with probability (1 − φt), chooses a greedy action ân for

which V n(ân) ≥ V n(a),∀a ∈ An\ân. A tie is broken arbitrarily. With

probability φt, the player chooses an exploratory action from the remain-

ing elements of An (excluding the greedy action), where each exploratory

action is chosen with equal probability.

(b) Value Updating: Update the specific values for each player n corresponding

to the chosen action an using the learning scheme given below.

V n
t+1(a

n)← (1− γt)V
n
t (an) + γt

(
rn(an, a−n)

)
. (3.10)

(c) Set t← t + 1.

(d) Update the learning parameters γt and exploration parameter φt following

the DCM scheme given below ( [38]):

Θt =

(
Θ0

1 + u

)
, where u =

(
t2

Θτ + t

)
, (3.11)

where: Θ0 denotes the initial value of a learning/exploration rate, and Θτ

is a large value (e.g., 109) chosen to obtain a suitable decay rate for the

learning/exploration parameters. Exploration rate generally has a large
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starting value (e.g., 0.8) and a quicker decay, whereas learning rate has a

small starting value (e.g., 0.1) and very slow decay rate. Exact choice of

these values depends on the application ( [38,39]).

(e) If t < MaxSteps, go to Step 3(a), else go to Step 4.

4. Equilibrium Strategy Determination: From the final set of values, obtain the

equilibrium strategy as follows.

Pure strategy equilibrium: For each player n, the pure strategy action is an for

which V n(an) = maxa∈An{V n(a)}. The pure actions of all players combined

constitute the pure strategy equilibrium.
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CHAPTER 4

JOINT FTR AND ENERGY BIDDING MODEL

There have been many studies in literature about either the FTR market or the

energy market, however, there is only a limited number of studies that examine the

both markets together ( [11] is one example). FTR and energy markets affect each

other directly, in fact, revenues for holding an FTR is determined at energy market

and one of the main motivation of having an FTR is to hedge against the volatile

energy market LMPs. Therefore, integrating these two markets will not only reflect

the real life scenario but also make it possible to analyze different aspects of the joint

market that would be based on assumptions otherwise. Such a joint model can be used

to investigate the effects of FTRs on participants’ bidding strategies in energy market.

Effects of dynamic environment of the energy market such as varying contingency and

demand scenarios on the equilibrium settlements can also be studied through such an

approach. Market power due to FTRs, effects of suppliers’ generation cost functions

are some other topics that can be analyzed with a joint model. In short, an integrated

model of both FTR and energy markets is a more realistic representation of real life

scenario and will allow a more detailed analysis about the power market.

A joint transmission and energy market implementation in real life is given in

Figure 4.1. As seen from the figure, first participants compete for FTRs. After ISO

clears the FTR market, participants hold the allocated FTRs until the end of FTR

auction horizon during which energy market settlements take place regularly.
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Figure 4.1 FTR and Energy Market Operation Cycle

4.1 A Matrix Game Model for Joint FTR and Energy Market Settlement

Let I = {1, 2, · · · , I} denote the set of paths of injection and withdrawal locations

for which FTRs can be obtained. Let N = {1, 2, · · · , N} denote the set of bidders

participating in the joint market some of whom are generators denoted by set G, and

loads denoted by set L where: G ⊂ N and L ⊂ N . Also, let S be the set of actions in
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the joint market. A bidder n ∈ N is considered to bid on a subset of paths In ⊂ I in

FTR market with an action ai
n ∈ S i

n for each path where: S i
n is the set of strategies

available to bidder n on path i. It is assumed that loads have inelastic (constant)

demands, therefore, only generators compete in energy market. A generator g ∈ G

is considered to bid with a strategy ag ∈ Sg where: Sg denotes the set of available

actions for generator g in energy market.

The cycle of FTR and energy market operations is given in Figure 4.1. A matrix

game model is used to solve the non-cooperative competition among bidders. A

schematic diagram of the steps of the joint matrix game model is presented in Figure

4.2. Initial step (step 0) is to define the network parameters such as the set of FTR

paths of each bidder, generation cost functions of suppliers, contingency and demand

scenario probabilities and strategy space of the bidders. At step 1, we initialize the

strategies of all bidders to the first strategy in their strategy set. Step 2-4 and 14-17

is to cover all strategy combinations by the participants on all their paths in FTR

market. At the end of each strategy combination, FTR market is settled by the ISO at

step 5. After allocating FTRs to the participants in step 5, algorithm continues with

the energy market operations starting with initializing the strategies of all generators

to the first strategy in their energy strategy set (step 6). Steps 7-8 and 11-12 are

to explore all the possible energy strategy combinations by the generators. At the

end of each strategy combination, ISO settles the energy market and determines

the generation quantities by the generators together with the bus LMPs (step9).

At step 10, the model is ready to calculate the payoffs of the generators for the

corresponding strategy combination. After computing the payoffs of generators, it

is transferred to energy payoff matrix which is completed at the end of step 12. At

step 13, equilibrium strategy in the energy market is found by RL algorithm for the

current FTR allocation. This equilibrium point is used not only to calculate the
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payoffs of the generators but also loads who compete in FTR market (step 14). This

cycle continues until all the FTR strategies are visited and corresponding payoffs are

transferred to FTR payoff matrix (end of step 17). At step 18, RL algorithm is used

to find the equilibrium strategy in the FTR market.

The value iteration based reinforcement learning algorithm to find the equilibrium

strategy in both markets is explained in Section 3.2. Details about the strategy vectors

of the bidders, ISO’s settlement models and calculation of the payoffs in both FTR

and energy market is discussed in Section 4.2.

4.2 A Matrix Game Model Formulation for Joint Market Settlement

In this section, bid vector of participants are presented for both FTR and energy

markets. Participants compete with each other by submitting bids to ISO which

settles the market for the given bids. ISO’s market settlement models are also given

together with payoff calculations of the bidders.

4.2.1 FTR Allocation Model Formulation

A bidder n submits her FTR benefit function which is a non-decreasing quadratic

concave function defined as fn(X) = βnXn − τnX
2
n where: Xn is the quantity of FTR

either in form of obligation or option. Therefore, the bidder is required to submit a

linear parameter and a quadratic parameter for her benefit function, and the type of

FTR to ISO for FTR auction. Thus, a bid vector for bidder n on path i ∈ In can be

denoted as

ai
n =

(
βi

n; τ i
n; ki

n

)
,
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where

βi
n nth bidder’s linear price bid on FTR path i,

τ i
n nth bidder’s quadratic price bid on path i,

ki
n nth bidder’s FTR type selection on path i valued 1 for obligation

and 0 for option type.

After participants submit their bids for FTR auction, ISO allocates the FTRs

based on an optimization model with an objective of revenue maximization (Step 5

in Figure 4.2). This dc model can be given as follows.

max
N∑

n=1

∑
i∈In

βi
n ∗ (FTRi,ob

n + FTRi,op
n ) − τ i

n ∗ (FTRi,ob
n + FTRi,op

n )2 (4.1)

s.t.

N∑
n=1

∑
i∈In

[Di,c
n,l ∗ FTRi,ob

n + max(0, Di,c
n,l) ∗ FTRi,op

n ] ≤ Bc
l ∀ l, c (4.2)

N∑
n=1

∑
i∈In

[−Di,c
n,l ∗ FTRi,ob

n + max(0,−Di,c
n,l) ∗ FTRi,op

n ] ≤ Bc
l ∀ l, c (4.3)

FTRi,ob
n ≤ kn

i ∗M ∀ n, i (4.4)

FTRi,op
n ≤ (1− kn

i ) ∗M ∀ n, i (4.5)
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where

FTRi,ob
n quantity of obligation FTR allocated to nth bidder on path

i (decision variable)

FTRi,op
n quantity of option FTR allocated to nth bidder on path i

(decision variable)

Di,c
n,l PTDF of the nth bidder’s ith path on line l under contin-

gency c

Bc
l capacity limit of line l under contingency c

M big-M value used to constrain allocation of FTR only to the

selected type

ISO’s FTR revenue maximization model determines the FTR allocation and cor-

responding costs for all participants. FTR cost of a bidder n who is bidding with

(βi
n, τ i

n, ki
n) strategy vector on her FTR paths In is calculated as

FCn =
∑
i∈In

βi
n(FTRi,ob

n + FTRi,op
n ) − τ i

n(FTRi,ob
n + FTRi,op

n )2.

Although FTR costs are calculated at the end of FTR auction, ISO has to clear the

energy market before FTR revenues can be calculated, i.e., energy settlement data

are needed to compute FTR revenue. Therefore, computation of FTR revenue and

profit are explained in the following section.

4.2.2 Energy Allocation Model Formulation

Generators have marginal (real) cost functions which are assumed to be quadratic

convex functions defined as hg(Zg) = γo
gZg + ηo

g(Zg)
2 where: Zg is the quantity of

electricity supplied by generator g. However, generator g ∈ G submits her energy cost

function as hg(Zg) = γgZg + ηg(Zg)
2 where linear and quadratic cost coefficients are

part of her strategy to maximize her payoff. The generator also has to submit the
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lower and upper bound (capacity) of her power generation. Therefore, a generator

is required to submit a linear cost parameter, a quadratic cost parameter, lower

production limit, and upper production limit to ISO for energy auction. Thus, a bid

vector for generator g can be denoted as

ag = (γg; ηg; p
g
; pg),

where

γg gth generator’s linear cost bid,

ηg gth generator’s quadratic cost bid,

p
g

gth generator’s lower generation limit,

pg gth generator’s generation capacity.

After participants submit their bids for energy auction, ISO determines the power

supply among the generators based on an optimization model with an objective of

cost minimization of supplying power to consumers (Step 9 in Figure 4.2). There

are two random factors in the ISO’s model that is ascertained at the time of energy

auction:

1. Contingency situation

2. Demand situation

ISO clears the energy market based on the current contingency situation and consumer

demands. It is assumed that there are C contingency scenarios of lines and U demand

scenarios of loads. Let c ∈ {1, 2, · · · , C} denote the current contingency scenario and

u ∈ {1, 2, · · · , U} denote the current demand scenario. Also, let b ∈ B denote the

buses, ij ∈ A denote the arcs (directed lines), and m ∈ R denote the transmission

line loops present in the network. All the arcs that are in loop m are denoted by the

set Am. Similarly, all the generators (loads) that are located at bus b are denoted by
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Gb (Lb). Then ISO’s energy settlement model can be given as follows.

min
∑
g∈G

γg ∗ Zg + ηg ∗ Z2
g (4.6)

s.t.

∑
g∈Gb

Zg − Qu
b +

∑
b:ib∈A

Tib −
∑

j:bj∈A

Tbj = 0 ∀ b (4.7)

∑
ij∈Am

sijmTij = 0 ∀ m (4.8)

Tij ≤ T
c

ij ∀ ij (4.9)

Zg ≤ pg ∀ g (4.10)

Zg ≥ p
g

∀ g (4.11)

Zg ≥ 0; Tij ≥ 0 ∀ g, ∀ ij (4.12)
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where

Qu
b total quantity of demand at bus b under demand scenario u

(i.e., Qu
b =

∑
l∈Lb

qu
l )

Zg quantity of electricity supplied by generator g (decision vari-

able)

Tij amount of electric flow on arc ij (decision variable)

sijm Kirchhoff voltage coefficient for arc ij in loop m, equals to

1 if ij in the same direction with the loop m and -1 if in the

opposite direction with the loop m

T
c

ij Electric flow capacity of arc ij under the contingency sce-

nario c

ISO’s energy cost minimization model determines the allocation of power gen-

eration by suppliers to meet the demand. Energy profit of a generator g for the

contingency scenario c and demand scenario u is calculated as

EP c,u
g = LMP c,u

bg
· Zc,u

g − [γo
gZ

c,u
g + ηo

g(Z
c,u
g )2],

where: LMP c,u
bg

denotes the LMP at the bus where generator g is located. Loads do

not compete in energy market, however, they make payments to the ISO based on

the energy settlement data. Therefore, energy profit of a load for the contingency

scenario c and demand scenario d is basically the cost of her demand which can be

stated as

EP c,u
l = −LMP c,u

bl
· qc,u

l ,

where: LMP c,u
bl

denotes the LMP at the bus where load l is located. As stated in the

previous section, FTR costs (FC) are computed at the end of the FTR settlement,

however, energy settlement data are needed to calculate the FTR revenue of a par-
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ticipant. Therefore, FTR profits can be calculated at this stage together with energy

profits. FTR profit of a bidder n who has a set of FTR paths In will be calculated

for the contingency scenario c and demand scenario u as

FP c,u
n =

∑
i∈In

[∆LMP i
n · FTRi,ob

n + max(∆LMP i
n, 0) · FTRi,op

n − FCi
n].

In the equation above, ∆LMP ’s and FTR quantities are for contingency scenario c

and demand scenario u. It is assumed that each of the contingency-demand scenario

has a probability to occur defined with joint probability matrix φ(c, u). Since the

contingency and demand scenario that will happen during the energy auction is un-

known to the market participants, the average payoff value over all contingency and

demand scenarios is significant. Expected payoff of bidder n for an FTR and energy

settlement with different contingency and demand scenarios is

P̂On =
C∑

c=1

U∑
u=1

φ(c, u) · (FP c,u
n + EP c,u

n ).
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Figure 4.2 Matrix Game Model Solution Steps for Joint Market
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CHAPTER 5

NUMERICAL EXAMPLE: FTR MARKET SETTLEMENT

In order to demonstrate the matrix game theoretic approach to obtain equilibrium

bidding strategies for an FTR market, a sample power network, as studied in [2], was

adopted. By varying the network parameters like contingencies and LMP differences

between the nodes, sixteen different network scenarios are created for which equilib-

rium FTR bidding strategies are presented. Since in the matrix game formulation

the continuous bid parameters (obligation price, option price, quantity, and type mix)

are discretized, the effect of the extent of discretization is examined next. Thereafter,

the impact of individual bid parameters of the bidders under the assumption that the

other bidders choose their actions uniformly from the available sets is studied. Finally,

the impact of the network parameters on the equilibrium FTR bidding strategies is

investigated through an analysis of variance (ANOVA) via a 24 factorial experiment.

The columns of the tables that do not have units are in generic units.

5.1 The Sample Network

The sample network consisting of three buses and four bidders is depicted in Figure

5.1. The Bidders 3 and 4 are considered non-strategic, hence only bidders 1 and 2

are considered strategic bidders in the matrix game. The paths between source and

sink buses on which the bidders bid are shown in the Figure 5.1, which also indicates

the reactance values and flow limits of each line.
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Figure 5.1 FTR Bidders in a 3-Bus Power Network

5.2 Equilibrium Bidding Strategies for Different Network Scenarios

Four key network related parameters that were considered in this study are contin-

gency (c), ∆LMP s (l), variances of the ∆LMP estimates (v), and the risk coefficient

(r). Sixteen different network scenarios were created by varying each of the four net-

work parameters at two levels. The parameters l, v, and r (which could be varied for

both strategic bidders) were varied only for bidder 2. In order to simplify the numeri-

cal exposition, the obligation and the option price bids are considered to be identical,

which reduced the size of the bid vector from four to three dimensions. It is noted

however, that obligation FTR may become a liability, whereas the option FTR does

not have such a risk, and hence the bid prices could be different. Our model is general

and accommodates this characteristic. For each of the sixteen scenarios, the possible

number of bid choices of the two players was kept constant at 125 with five levels

of discretizations for each of price, quantity, and the type mix. Table 5.1 shows the
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Table 5.1 Network and Bid Values

values of the network and the bid parameters. For each scenario, the payoff matrices

were constructed and the value iteration based learning algorithm was implemented.

The network scenarios and the corresponding pure strategy equilibrium as obtained

by the RL algorithm are presented in Table 5.2.

As indicated in the last column of Table 5.2, in ten out of the thirteen scenarios

having pure strategy Nash equilibria, the RL algorithm converged to a Nash equilib-

rium point. Among the multiple Nash equilibria that exist for scenarios vr and clvr,

the strategies that the RL algorithm converged to have higher payoffs for both bidders

compared to the other Nash equilibrium points. In three of the remaining scenarios

(with ’No’ in the last column), the RL algorithm converged to non-NE strategies

yielding higher payoffs for both of the bidders compared to the NE payoffs. Recog-

nizing these solutions is critical since all bidders must accept to stay at these points

in order to gain the benefits of these higher than Nash equilibrium payoffs. For these

scenarios, Table 5.3 shows a comparison of the payoffs from the Nash equilibrium

strategies and the corresponding non-NE strategies obtained by the RL algorithm.

The remaining three scenarios (with a ’-’ in the last column) do not have a pure
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Table 5.2 Equilibrium Bidding Strategies for Sixteen Network Scenarios

Table 5.3 Strategies with Higher Payoffs than Nash Equilibrium
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strategy Nash equilibrium. The RL algorithm converged to strategies with a high

payoff distribution for the bidders.

5.3 Impact of Bid Parameter Discretization

As discussed earlier, discretization of the bid parameters is essential to formulating

the non-cooperative behavior of the bidders as a matrix game. A finer discretization

of the continuous parameters is required to minimize the deviation from the actual

problem scenario and the true equilibrium. At the same time, finer discretization

of the parameters of a multidimensional bid vector expands the action space, which

increases the dimensions of the payoff matrices and the resulting computational re-

quirements.

In order to expose the significance of discretization, the impact of price parameter

discretization on the equilibrium bidding strategies is studied. Five different levels of

discretization of the price parameter (3, 5, 10, 15, and 20) were considered while the

discretization of quantity and type mix parameters were kept constant at 5 levels

each. This resulted in payoff matrix sizes varying from 75×75 (3×5×5) to 500×500

(20×5×5). The equilibrium payoffs of the players are given in Table 5.4. As evident

from the payoffs, the equilibrium strategies varied quite significantly with the level

of discretization. It also appears that with finer price discretization the payoffs of

the bidders increased. This is due to the fact that the algorithm always looks for an

equilibrium with high values, and as discretization increases, the algorithm has more

candidates to choose from.
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Table 5.4 Impact of Bid Parameter Discretization

5.4 Impact of Bid Parameter Variations

The equilibrium outcome of a matrix game is a resultant of the parameter val-

ues of the participants’ bid vectors. Though it is difficult, it is desirable to extract

insight into the impact of the individual bid parameter on the equilibrium payoffs.

Therefore, an experiment where impact of each bid parameter was graphically ana-

lyzed is conducted as follows. It is acknowledged that the observations made in this

section have problem specific interpretations with some potential for generalization.

In the experiment, the network parameter values were maintained at the following.

For bidder 1: ∆LMP = $20, variance = 0.2, risk coefficient = 0.003, and for bidder

2: ∆LMP = $10.5, variance = 0.2, risk coefficient = 0.002. Maximum quantity (Q)

was considered to be 300, and the network was assumed to have no contingency. The

price factor of bidders 1 and 2 were varied in ten steps between 0.1 and 0.95 in steps

of 0.1. Figure 5.2 shows the impact of price variations by bidder 2 on bidder 1 pay-

offs. The payoffs of bidder 1, as plotted, were averaged over all possible combinations

(80× 80) of quantity and type mix parameters of the two bidders, where each bidder

has 10 × 8 possible bid choices. For all bidder 1 price factor values up to 0.7, the

payoff was zero. For bid price factor beyond 0.7, bidder 1’s payoffs were identical
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for all bid price factors less than or equal to 0.7 by bidder 2. Hence, only the bid

price factor scenarios with both bids greater than or equal to 0.7 are critical as shown

in Figure 5.2. As bidder 2 changes its price factor, the optimal price bid for bidder

1 also changes. For example, as bidder 2 changes price factor from 0.7 to 0.8, the

optimal price bid for bidder 1 changes from 0.8 to 0.9. Similarly, Figure 5.3 shows

the impact of price bid variations of bidder 1 on the bidder 2’s payoffs (utility). A

general conclusion that can be drawn from the above is that a significant interaction

exists between the bidder prices in how they impact the bidder utilities. The exact

level of interactions will depend on the network parameter values.

Figure 5.2 Price Effect on Bidder 1’s Average Utility

Analyses, similar to that of price, were also conducted with quantity and type

mix parameters. The results from the investigation of the quantity parameter are

presented in Figures 5.4 and 5.5. For both bidders, the quantity effect appears to be

somewhat identical. The bidder payoffs increase with increase in the quantity bid, and

they level off after 0.5 for bidder 1 and 0.7 for bidder 2 irrespective of the competitor’s

bid. This indicates that for the given problem parameters, the quantity bid should

be kept at the maximum possible value. However, it was our conjecture that in the
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Figure 5.3 Price Effect on Bidder 2’s Average Utility

presence of high values of variance and/or risk coefficient, the choice of the quantity

parameter could become strategic. To test this conjecture, the sample network was

studied under a new scenario with the following network parameters. For bidder 1:

∆LMP = $20, variance = 0.2, risk coefficient = 0.003, and for bidder 2: ∆LMP =

$13, variance = 2, risk coefficient = 0.01. The strategic impact of bidder 2’s quantity

bid on her payoff, which starts to decline beyond a certain value of quantity bid, is

shown in Figure 5.6. This is in clear contrast to the higher the better behavior seen

earlier. A general conclusion can be stated that FTR quantity could be a significant

parameter and should be considered in the bidding process.

The results of the investigation on the impact of type mix parameter on the

bidder payoffs are given in Figures 5.7 and 5.8. It appears from Figure 5.7 that

bidder 1’s payoff is not affected by its choice of the type mix parameter, and is only

minimally affected by the choice of bidder 2’s type mix parameter. On the other

hand, bidder 2s payoff is completely independent of bidder 1’s strategy, as evident

from the overlapping curves in Figure 5.8. Bidder 2 suffers a significant decrease in

utility with the choice of higher values of the type mix factor (i.e., higher proportion of
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Figure 5.4 Quantity Effect on Bidder 1’s Average Utility

Figure 5.5 Quantity Effect on Bidder 2’s Average Utility

obligation). Table 5.5 depicts, for a sample scenario, how the total FTR allocation as

well as its obligation and option components change for bidder 2, as the bidder varies

its type mix bid. This supports the trend observed in Figure 5.8, since bidder 2 wins

the most FTR when the type mix factor is set at zero (i.e., all option), and the FTR

allocation decreases as more obligations are added to the mix. It is concluded that
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Figure 5.6 Strategic Impact of Quantity Parameter

type mix parameter could play a significant role in a multi-bidder FTR settlement

process and thus should be adequately investigated.

Figure 5.7 Type Mix Effect on Bidder 1’s Average Utility

5.5 Impact of the Network Parameter Variations

The impact of the network parameters on the equilibrium payoffs of the bidders

was studied through an analysis of variance (ANOVA) via a 4-factor designed exper-

iment. The factors, their levels, and the sixteen (24) experiments were presented in
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Figure 5.8 Type Mix Effect on Bidder 2’s Average Utility

Table 5.5 Impact of Type Mix Parameter

Table 5.1 and 5.2. Two sets of ANOVA were performed using payoffs of bidder 1

and bidder 2 (given in Table 5.2) as experimental outcomes. Since each outcome is

a single replicate, normal probability plots of the factor and interaction effects were

constructed to obtain error sum of square (SS) estimates. The ANOVA results are

given in Tables 5.6 and 5.7. It appears from Table 5.6 that bidder 2’s payoff is affected

by all four of the factors and is insensitive to any of the factor interactions. Among

the significant factors, the ∆LMP appears to be the most critical with a p-value of
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Table 5.6 ANOVA with Bidder 2’s Payoffs

Table 5.7 ANOVA with Bidder 1’s Payoffs

0.0001. Table 5.7 shows that, for the given network, bidder 1’s payoff is affected only

by the ∆LMP estimate of bidder 2 and the contingency in the network. As expected,

variance and risk coefficient parameters of bidder 2 (which are the other two factors

considered in the experiment) have no significant impact on the payoff of bidder 1.
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CHAPTER 6

NUMERICAL EXAMPLE: JOINT FTR AND ENERGY MARKET
SETTLEMENTS

In order to demonstrate the matrix game theoretic approach to obtain equilibrium

bidding strategies for joint FTR and energy markets, a sample power network is

adopted. First, impact of the FTRs on the strategies of a bidder is investigated by

assigning a different FTR path to the bidder. FTR effects have also been analyzed by

comparing the payoffs of participants with and without FTRs. Thereafter, the impact

of the contingency and demand variations in the electric market to the equilibrium

market point has been examined by changing the frequencies of contingency and

demand scenarios. Finally, the impact of generators’ marginal cost function on the

equilibrium bidding payoffs has been studied by varying the cost functions for some

generators. The columns of the tables that do not have units are in generic units.

6.1 The Sample Network

The sample network chosen to examine the joint market is PJM 5-bus example in

which there are five generators and three loads. The location of each generator and

load together with the transmission lines and their reactance values are depicted in

Figure 6.1.
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Figure 6.1 PJM 5-Bus Power Network

6.2 Impact of FTRs in Market Settlement

The impact of FTRs on the bidding strategies of participants has been studied by

assigning certain quantities of FTR on different paths. Only one bidder is selected

and certain FTR quantities are allocated to this bidder on different FTR paths one at

a time. To simplify the experiment and single out the FTR effect, other participants

are not allocated any FTRs. Generators compete with each other by changing their

strategies and finally an equilibrium point is reached through RL algorithm.

In this experimentation, generator 1 is chosen to hold the FTR on varying path

scenarios which are given in 6.1. The bidding parameters and factors of generators

for energy market is shown in Table 6.2. For example, if generator 4 selects second

linear strategy and second quadratic strategy to bid then generator 4’s cost function

will be h(Z4) = 1.4∗30∗Z4 + 1.2∗0.025∗Z2
4 where 0 ≤ Z4 ≤ 200. As seen in Table

6.2, any generator who bids with the first linear and quadratic strategy in fact bids

less than her marginal cost function. This characteristic is integrated in the bidding

model to enlarge bidding space of a bidder. For example, a bidder may accept to lose

energy revenue in return of high FTR revenue. Bidding parameters in the table are
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Table 6.1 Equilibrium Bidding Strategy of Generator 1 and Bus LMPs

Table 6.2 Bidding Parameters and Factors of Generators

similar to PJM 5-Bus example and basically exhibits the idea of having loads with

expensive local generation and cheaper generation in other further buses. A generator

has total of six strategy combinations (3 linear × 2 quadratic factors). For each FTR

path scenario, the equilibrium strategy of generator 1 and the corresponding LMPs at

each bus are presented in Table 6.1 including the no FTR case. The cost of 150MW

FTR is assumed to be $2400. All the equilibrium points reached for different FTR

path scenarios have the property of pure Nash equilibrium.

As seen in Table 6.1, generator 1 has little effect on the LMPs which change

minimally between generator 1’s minimum price strategy, (0.9, 0.8), on path 1 −

2, and her maximum price strategy, (2, 1.2), on path 2 − 1. When the different

FTR scenarios at Table 6.1 are examined, it is observed that generator 1 chooses
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the strategy combination that maximizes its sum of energy profit and FTR profit.

For example, when generator 1 competes without FTR, electric market settles down

with generator 1 having (0.9, 1.2) strategy for her linear and quadratic price factors

and LMP of $59.9 at her bus, bus 1. However, when generator 1 is allocated an

obligation FTR of 150MW on path 1 − 2, the market settles on an equilibrium

point with generator 1 having (0.9, 0.8) strategy. By changing her strategy from

(0.9, 1.2) to (0.9, 0.8), generator 1 does not increase her energy revenue since LMP

at bus 1 remains same at $59.9, however, generator 1’s FTR revenue increases due

to ∆LMP1−2 increase. On the other hand, if the direction of FTR is reversed, i.e.,

selecting path 2-1, obligation FTR becomes a liability. Generator 1 adopts to this

condition by switching her equilibrium strategy factor to (2, 1.2). As a result, not

only ∆LMP2−1 improves but also her energy revenue increases by a rise at the bus

1 LMP. As presented in Table 6.1, when FTR path 5− 4 is allocated to generator 1,

she stays at the same strategy of (2, 1.2). As a result, LMP at bus 1 continues to be

$60.1 and ∆LMP5−4 is $4.2. Whereas, if FTR path 4− 5 is allocated to generator 1,

generator 1 has a conflicting strategy outcomes. If generator 1 chooses the strategy of

(0.9, 0.8), she receives a smaller FTR liability (∆LMP4−5 = $− 3.9) but her energy

revenue decreases with LMP of $59.9 at bus 1. If generator 1 attains the strategy

of (2, 1.2), she gets a higher energy revenue with LMP of $60.1 but FTR liability

increases with a ∆LMP4−5 of $ − 4.2. As stated earlier, generator 1 chooses the

strategy which maximizes her overall payoff. Expected quantity of electricity that

generator 2 supplies is 109.5MW when generator 1 selects strategy (0.9, 0.8), and

102.6MW when generator 1 chooses (2, 1.2). As a result, her overall payoff for the

(0.9, 0.8) strategy is 109.5 ∗ 59.9 + 150 ∗ (−3.9) = $5975.3 and for the (2, 1.2)

strategy is 102.6 ∗ 60.1 + 150 ∗ (−4.2) = $5533.3. Therefore, generator 1 chooses

the strategy of (0.9, 0.8).
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Table 6.3 Equilibrium Payoffs without FTR and with FTRs

In order to assess the overall impact of FTRs, FTRs are made available to some

of the participants simultaneously and corresponding equilibrium payoffs have been

compared with the payoffs of no FTR case. Results are given in Table 6.3. The

shaded cells in the table indicates the FTR path that the corresponding participant

bids to acquire FTR. To increase the computational performance, participants have

discretized price bid strategies starting at a minimum value.

Table 6.3 shows that generator 2, 3 and load 1 raise their payoffs when they hold

FTRs. Their equilibrium FTR bidding strategies also indicate that they are willing

to buy the corresponding FTRs, i.e., their price bids are higher than the minimum

price bid strategy. Load 2’s equilibrium price bid is also higher than the minimum

price strategy. Thus, load 2 is willing to attain the FTR on path 3-5, however, ISO

which has an objective of maximizing FTR sales revenue, does not allocate any FTR

to load 2 with the given bid. On the other hand, load 2 does not find it profitable to

bid more than her current bid which is less than her maximum price bid. Generator 1

is the only participant who bids minimum price for her FTR. The reason can be seen

at her decreasing equilibrium payoff while holding FTR, i.e., generator 1 does not find

it beneficial to posses this FTR path even with the minimum price bid. Finally, the

change in the payoffs of the participants that do not hold any FTR is in the mixed
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direction. While generator 4 and 5 see a decrease in their payoff, load 2 and 3 see

a small increase. It appears that existence of FTRs make the generators bid more

competitively in the energy market which decrease the revenue for generators and

cost for loads.

6.3 Impact of Contingency and Demand Scenario Variability

To study the effect of contingency and demand scenarios variability on the market

equilibrium payoffs, four sets of joint probability matrix (φ(c, u)) are generated. These

matrices which are created as 22 factorial design, are shown in Table 6.4. Both factors

(contingency variability, demand variability) have low level and high level. Notations

used in this table are as follows

1. Low level of contingency variability and low level demand variability ((1))

2. Low level of contingency variability and high level of demand variability (d)

3. High level of contingency variability and low level of demand variability (c)

4. High level of contingency variability and high level of demand variability (dc)

5. Effect of demand variability (D)

6. Effect of contingency variability (C)

7. Joint effect of contingency and demand variability (DC)

There are four contingency scenarios and three demand scenarios. Contingency

scenarios and corresponding line limits are given in Table 6.5. Contingency scenario

1 is basically there is no contingency and all the line limits are at their normal levels.

Contingency scenario 2, 3 and 4 corresponds a decrease in the line limits of 12, 45 and

34, respectively. Low level for contingency variability factor means that majority of
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Table 6.4 Equilibrium Payoffs for Contingency-Demand Probability Matrices

Table 6.5 Contingency Scenarios

the time it will remain in the no contingency scenario, 1. High level for contingency

variability factor means that there is a higher probability for the contingency scenario

to be other than no contingency scenario, i.e., frequency of line 12, 45 or 34 being

down is higher. There are three demand scenarios of loads which are presented in

Table 6.6. Demand scenario 1 is created to reflect a medium demand by all loads.

Similarly, 2 represents a high demand, and 3 represents a low demand at the network.

Low level of demand variability factor means that majority of the time the demand

will remain in the medium demand scenario, 1. Similarly, high level of demand

variability factor means that probability of having unusual demands such as low or

high quantities will be bigger.

FTR market data are shown in Table 6.7. As seen from the table, generators 1,

2, and 3, and loads 1 and 2 compete in the FTR market. Their FTR paths in terms
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Table 6.6 Demand Scenarios

Table 6.7 FTR Market Data for Contingency-Demand Variations

of source and destination buses, bidding parameters and factors of both linear and

quadratic components of the benefit function are also given in Table 6.7. It is not

given in the table, however, both obligation and option type FTR is available to the

bidders as part of their FTR bidding strategy. If load 1 (bidder 6) chooses to bid for

FTR on path 3 − 4 with the second linear factor and the first quadratic factor then

her benefit function will be f(X6) = 8 ∗ 10 ∗ X6 − 3 ∗ 0.002 ∗ X2
6 . Low and high

levels of linear and quadratic coefficients of the benefit function allow the bidder to

adjust the price on her path. If a bidder values her FTR path low then the bidder

can choose first linear factor and second quadratic factor which will keep the price

for that FTR low. Generators’ bidding parameters and factors for energy market

settlement remain same as shown in Table 6.2.
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Equilibrium payoffs and factor effects of the participants for each contingency and

demand variability level is given in Table 6.4. The changes in the factor effects based

on source of variations are presented in Figure 6.2 for generators and in Figure 6.3

for loads. It should be noted that these payoffs are obtained after series of energy

market settlements which is followed by the FTR market settlement. Each settlement

is subject to ISO’s allocation optimization model and participants bid strategically

to maximize their overall payoffs. Therefore, they are result of the complex relations

among market dynamics.

Figure 6.2 shows that increase in the demand variability reduces the payoffs of

generator 1, 2, 3, and 4 whereas improves the payoff of generator 5. When demand

variability increases, average demand decreases which pulls the average LMP s at the

buses down resulting in lower energy revenue for generators. However, ISO allocates

more power generation to generator 5 in the presence of high demand variability

which offsets the lower energy revenue due to lower LMP and even increases her

overall profit. Contingency variability increase has similar effect on the payoff of

generator 3, 4, and 5, however, has a positive effect on the payoffs of generator 1

and 2. The LMP at bus 1 where generator 1 and 2 are located, is still low, however

∆LMP s of the FTR paths of generator 1 and 2 (1 − 5 and 1 − 2, respectively)

increases which increases their overall payoffs. When the load payoffs are analyzed

under increased demand variability, it appears that all of them are affected positively.

This is partly due to the fact that their average demand decreases and partly because

of the decrease at the LMP s of their buses. It is also observed that improvement

in load 1’s payoff is smaller than load 2 and 3. This can be explained by the FTR

that load 1 is holding, 3 − 4. Whereas, this FTR path helps load 1 to increase

her payoff when the contingency variability increases since ∆LMP increases on path

3 − 4. Load 2 and 3 who do not hold any FTR see a decrease in their payoffs
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because of increased LMP s at their buses. The joint effect of contingency and demand

variability on the payoffs of the participants is negligible. In short, contingency and

demand variability have significant effects on the payoffs of the market participants.

The direction of these effects change from bidder to bidder and from case to case

showing the complex relations between the market dynamics such as equilibrium

LMP s, whether the bidder holds any FTR, generation quantities.

Figure 6.2 Generator Factor Effects for Contingency-Demand Variations

6.4 Impact of Generator Cost Function Variations

In order to analyze the effect of generator cost function variability on the market

equilibrium payoffs, linear cost coefficient of generator 2 and 4 is varied at two levels

(low and high) forming a 22 factorial design. These coefficient levels are shown in

Table 6.8. Notations used in this table are as follows

1. Low marginal cost for generator 2 and low marginal cost for generator 5 ((1))

2. Low marginal cost for generator 2 and high marginal cost for generator 5 (g5)

3. High marginal cost for generator 2 and low marginal cost for generator 5 (g2)
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Figure 6.3 Load Factor Effects for Contingency-Demand Variations

Table 6.8 Equilibrium Payoffs for Different Cost Function of Generator 5 and 2

4. High marginal cost for generator 2 and high marginal cost for generator 5 (g5g2)

5. Effect of generator 5 marginal cost function (G5)

6. Effect of generator 2 marginal cost function (G2)

7. Joint effect of generator 5 and 2 marginal cost functions (G5G2)

Four contingency and three demand scenarios presented in the previous section

(see Table 6.5 and 6.6) stay same for this experimentation. A new joint contingency
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Table 6.9 Joint Contingency-Demand Probability Matrix

- demand probability matrix which is composed of medium contingency and demand

variability, is generated for this problem (unlike the low - high contingency - demand

variability combinations in the previous section). This new joint probability matrix

is given in Table 6.9.

A bigger FTR market whose data are shown in Table 6.10, is created for this

problem. As seen from the table, generators 1, 2, and 3, and loads 1 and 2 con-

tinue to be the competitors with the same FTR paths in the FTR market, however,

generator 2 has an extra FTR path, 3 − 2. The bidding parameters and factors of

both linear and quadratic components of the benefit function are also given in Table

6.10. Obligation and option type FTRs are still part of FTR bidding strategy of the

bidders. Generators’ bidding parameters and factors for energy market settlement

remain same as shown in Table 6.2.

Equilibrium payoffs and factor effects of the participants for the marginal cost

function combinations are given in Table 6.8. The changes in the factor effects based

on source of variations are presented in Figure 6.4 for generators and in Figure 6.5

for loads. When the bus LMP s are examined, it is seen that generator 5’s bidding

price affects the LMP s over the whole network (price setter) whereas generator 2’s

bidding price has a minimal affect over the bus LMP s including bus 1 where she
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Table 6.10 FTR Market Data for Cost Function Variations Variations

is located (price taker). This observation explains the trend in the figures. As seen

from Figure 6.4, all generators’ payoffs are higher when generator 5 has a higher

marginal cost. A higher marginal cost for generator 5 makes her to bid higher in

the energy market resulting in higher LMP s and increased energy profits for the

generators. Higher LMP s mean increased energy costs for the loads as seen in 6.5.

While the increase in the payoff of generator 4 is maximum, generator 5 has a lower

increase in her payoff. It is observed that in this network generator 4 and 5 act like

substitutes. Thus, when generator 5 bids higher price for power generation, ISO who

has a goal of minimizing total cost of power generation, allocates more MW to be

produced by generator 4 and less by generator 5 creating more profit for generator

4 and less for generator 5. Since generator 2 is price taker, the LMP s on the buses

do not differ much when she bids higher price due to higher marginal cost. The only

participant whose payoff is significantly affected by generator 2’s higher price bidding

is herself which is obviously because of her higher marginal cost. To summarize,

impact of a generator’s production cost function is a product of complex relations

among the market dynamics. If a generator has a higher cost function, this may
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decrease her equilibrium payoff, may or may not affect the equilibrium payoffs of the

other participants depending on whether she is a price maker or a price taker.

Figure 6.4 Generator Factor Effects for Generation Cost Variations

Figure 6.5 Load Factor Effects for Generation Cost Variations
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CHAPTER 7

CONCLUSIONS

Financial transmission right is considered an important mechanism for power mar-

ket participants to hedge against price uncertainties resulting from transmission con-

gestion. FTR also serves as a means of generating revenue in a deregulated market,

in a way similar to the stocks in the financial sector. A framework for FTR allocation

was originally introduced in [10]. Though bidding strategies in an FTR market is

highly influenced by the bidding strategies in the energy market and vice versa, to

our knowledge, no attempt has been made prior to this research to jointly model and

examine equilibrium bidding behaviors in FTR and energy markets.

In this dissertation, a game theoretic model for examining non-cooperative bid-

ding strategies for acquiring FTRs in a deregulated power market is presented. The

matrix game theoretic model presents a significant departure from the commonly used

bi-level optimization approach found in the literature, and it allows consideration of

multidimensional bids with many bidders, multiple FTR paths, different obligation

and option prices, and contingencies and varying demands.A value iteration based

RL algorithm is used as a solution tool for the matrix game model. A sample power

network is used in elaborate demonstration of the matrix game model for analyzing

FTR bidding strategies. Sixteen different numerical scenarios are constructed from

the sample network for which equilibrium FTR bidding solutions are presented. The

quality of the solutions in terms of their Nash property and bidder payoffs are dis-

cussed. It is shown that the value iteration based RL algorithm is able to find Nash

65



equilibrium solution in majority (10 out of 13) of the problem scenarios for which

pure strategy Nash equilibrium exist.

Additional experimentations were also conducted to study the impact of bid pa-

rameters on equilibrium solution. The numerical results show that price is an impor-

tant factor and its value could significantly alter the FTR allocation outcome. The

FTR quantity bid is shown to be a function of risk and variance parameters of the

network. Without high values of risk and variance, quantity bid could behave in a

nonstrategic manner (higher the better). The combination of obligation and option

(type mix bid) may have significant impact on the payoffs of the bidders, and hence

should be considered while bidding.

A statistically designed 2-level factorial experiment provided an ideal means for in-

vestigating impacts of four different network related parameters (contingency, ∆LMP ,

variance of ∆LMP estimates, and risk coefficient of the bidders) on the equilibrium

outcome. The results show that all four of the factors significantly impact equilib-

rium FTR settlement, but their interactions were not significant. It was found that

some contingencies in the network can create favorable bidding positions for some

of the bidders. The results indicate that an accurate consideration of the network

parameters is crucial in determining an equilibrium bidding strategy.

In the joint FTR and energy market model,LMP s are directly attained from the

energy market where generators compete to maximize their payoffs. Integration of

FTR and energy markets reveals the complex relations among the market dynamics.

It also allows to incorporate detail characteristics of power market such as varying

contingency and demand scenarios. Generators consider all contingency and demand

scenarios and try to maximize their expected payoffs. Experimentations with the

joint FTR and energy markets via a PJM-5 bus network example showed that FTR

holdings have a significant impact on both the energy market strategies and the joint
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equilibrium payoffs. When the contingency and demand scenario variabilities were

changed, payoffs of the participants were affected. Marginal cost functions of the

generators were also found to have influence on the equilibrium market settlement. It

has been observed that depending on the production capacity and network location,

some generators have influence over all network LMPs (price setters) while others do

not (price takers).

The model and the solution approach presented here will help the market par-

ticipants to better evaluate their FTR and energy bidding strategies, and thus aid

the markets to reach an equilibrium, reducing uncertainty for the participants. The

research outcomes will also serve as valuable tools for the designers of the restruc-

tured power markets. It is also expected that restructured markets designed using the

approach developed here will provide a higher level of market reliability than what

has been experimented so far.
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