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Abstract

In this dissertation, we present a collection of manuscripts describing the development of prognostic

models designed to assist clinical decision making. This work is motivated by limitations of commonly used

techniques to produce accessible prognostic models with easily interpretable and clinically credible results.

Such limitations hinder prognostic model widespread utilization in medical practice.

Our methodology is based on Rough Set Theory (RST) as a mathematical tool for clinical data anal-

ysis. We focus on developing rule-based prognostic models for end-of life care decision making in an effort

to improve the hospice referral process. The development of the prognostic models is demonstrated using

a retrospective data set of 9,103 terminally ill patients containing physiological characteristics, diagnostic

information and neurological function values.

We develop four RST-based prognostic models and compare them with commonly used classification

techniques including logistic regression, support vector machines, random forest and decision trees in terms

of characteristics related to clinical credibility such as accessibility and accuracy. RST based models show

comparable accuracy with other methodologies while providing accessible models with a structure that

facilitates clinical interpretation. They offer both more insight into the model process and more opportunity

for the model to incorporate personal information of those making and being affected by the decision.
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Chapter 1: Introduction

1.1 Clinical Decision Making and Requirements for Prognostic Models

The Institute of Medicine (IOM) emphasizes the customization of health care to be responsive to

individual patient preferences, needs, and values [1]. Therefore, treatment recommendations and decision-

making are based in response to individual patient indicators of health state. This vision of personalized

health care requires new methodologies for developing patient-centered prognostic and diagnostic models

resulting in the selection of appropriate treatment for each patient.

To be accepted by physicians and patients and to be used in practice, prognostic and diagnostic

models must have clinical credibility [2]. That is, in addition to accurate prognostication, a model should

be traceable in its structure, allowing complete insight to the prognostic process; the variables in the model

should possess clinical relevance and its results should be interpretable thus facilitating explanation of the

prognosis.

1.2 Prognostic Models in Medicine: Strengths and Weaknesses of Widely Used Methods

Prognostic and diagnostic models assist physicians in making more accurate predictions and are

shown to be superior to physicians’ prognostication alone [3]. In addition, the accuracy of the models is

further improved when combined with physicians’ estimates [4–6]. Widely used models based on statistical

approaches make assumptions regarding the relationship between the prognostic factors and the outcome

variable. When these assumptions are violated, the resultant model is no longer representative of the data.

As an example, logistic regression assumes a linear relationship existing between a given prognostic factor

and the logit form of the outcome variable [7]. If the relationship is not linear, the statistical significance

of the logistic regression coefficient related to that prognostic factor may be inaccurate [8]. Artificial
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intelligence approaches, such as neural networks and support vector machines are designed to cope with

complex predictor-outcome variable relationship and are shown to be efficient in managing large amounts

of information. However, as black-box methods, they offer little insight into the process of prediction and

are difficult to interpret. None of these methods provide traceable and accessible results, which lead to

models that lack credibility.

1.3 Characteristics of Datasets Representing Clinical Information

Hood et al.[9], estimate that in 10 years, a virtual cloud of billions of data points including information

about genome sequence, images, demography, diagnostic tests and environmental data will represent a

patient’s medical record. The collection of such records will constitute a clinical dataset. Such a big and

heterogeneous clinical data is prone to noise and present inconsistencies resulting from the inherent complex

reality of illness and human physiology.

The complexity of clinical data due to its volume and heterogeneity causes the data to lack a canon-

ical form [10]. Furthermore, the underlying conceptual structures of medicine are not easily formalized

mathematically, as the medical field lacks the necessary constraints for the mathematical characterizations

common to the physical sciences. As a result, many medical concepts are vaguely defined [11]. These

particular characteristics of clinical data must be addressed when building prognostic models.

One of the grand challenges of personalized medicine is to reduce the dimensionality of clinical

datasets and express the information in simple hypothesis about health and disease. Thus, there is a need for

new mathematical methodologies to analyze heterogeneous, noisy, and inconsistent clinical data; extracting

at the same time relevant information that provides insights to the diagnosis and prognosis of a disease.

1.4 Problem Description

Disease diagnosis and prognosis can be seen as a classification process with a discrete outcome

variable d representing the result obtained for a given patient. In the case of diagnosis, the binary outcome

d = 1 represents a patient with a positive result for a given disease. In prognostic models, d = 1 denotes the
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occurrence of an event in a patient within a certain follow up period; for example, recurrence of a disease,

re-operation or death.

Each patient record in a clinical dataset can be represented by a tuple (x,d), where x represents the set

of characteristics that describe a patient. The objective of a prognostic model is to estimate the relationship

between x and d, and then use this information to predict the value of d given the values of x corresponding

to new patients.

Current methodologies for developing prognostic models are focused at the patient population level,

where a unique model characterizes the entire population. In contrast, the new trends of personalized health

care require mathematical models to make predictions considering individual patients’ characteristics, and

as required, make optimal decisions tailored for each patient.

1.5 Goals and Objectives

The goal of this dissertation is to design and develop classification models consistent with the current

trends for improving health care. That is, patient-centered classification models with features that allow the

model to be clinically credible and useful in clinical practice.

To achieve this goal, we defined the following objectives:

1. Evaluate different classification methodologies with respect to their accuracy and accessibility, con-

sidering clinical datasets that exhibit inconsistencies and complex predictor-outcome relationships.

2. Develop accessible and accurate classification models for non-trivial clinical datasets.

3. Design and develop a methodology for analyzing clinical datasets at the individual patient level and

develop patient-centered classification models.

1.6 Developing Classification Models for Hospice Referral

We focus our dissertation in the development of patient-centered classification models in an effort

to improve the hospice referral process. Hospice is designed to provide quality of life and support for
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terminally ill patients and their families. In the U.S., Medicare regulations stated that a patient should be

referred to hospice if his/her life expectancy is less than 6 months as certified by the primary physician.

Despite the well-documented advantages of hospice services, terminally ill patients do not reap the

maximum benefits of hospice care with the majority of them being referred to hospice either prematurely or

too late. A premature hospice referral is translated to patients losing the opportunity to receive potentially

effective treatment, which may have prolonged their lives. Conversely, late hospice referral reduces the

quality of life for patients and their families. It is apparent that accurate prognostication of life expectancy

is of vital importance for all parties involved in the hospice referral process (e.g. patients, their families, and

their physicians).

In this work, rather than predicting life expectancy, we want to determine whether the death event

occurs before the six month period to consider a patient as a hospice candidate. We define the binary variable

d to represent the event of the death of an individual patient, where, d = 1 represents a patient who does not

survive the period of six months.

1.7 Summary of the Manuscripts

The manuscripts in this dissertation present in detail the development of different Rough Set Theory

based classification models. Below is a summary of the manuscripts’ contents describing at the same time

the progression of our research towards a patient-centered and clinically credible classification models. The

complete versions of these manuscripts are in the Appendix section.

In the first manuscript, Predicting Academic Performance Using a Rough Set Theory-Based Knowl-

edge Discovery Methodology (Appendix B), RST is used to predict student performance in an engineering

course. This initial exercise, demonstrates the strengths of the RST approach to analyze datasets and develop

classification models that represents the characteristics of individuals. We are able to extract decision rules

with minimal information that classify new students as being successful or unsuccessful in the class with

notable classification accuracy. In addition, the results of the model in the form of if-then decision rules

provide effective decision support towards the improvement of student performance.

In medicine, applications of RST are mainly focused on the diagnosis and prognostication of diseases,

where it has been demonstrated that RST is useful for extracting medical prognostic rules using minimal
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information. In the next four manuscripts (Appendix C-F) we focus on the development of clinically credible

prognostic classification models for hospice referral. We utilize retrospective data from 9,103 terminally ill

patients to demonstrate the design and implementation of a classifier based on RST to determine potential

candidates for hospice referral.

The second manuscript, Rough Set Theory Based Prognostication of Life Expectancy for Terminally

Ill Patients (Appendix C), explores methodologies based on genetic algorithms and dynamic reducts for

developing RST-based classification models. A unique feature of the proposed model is a condition attribute

intended to represent the physicians’ life expectancy estimate. By including this feature, we increase the

performance of the classifier with an accuracy exceeding that of the baseline, gold standard, life expectancy

prognostic model [6]. However, around 30% of the test cases, considered as new patients, remain unclassi-

fied. Having decision rules with high number of attributes, and attributes with numerous categorical levels

cause the decision rules to be too specific for the training set and consequently reducing the ability of the

model to classify new cases.

To address this issue, in the manuscript, entitled as: Towards a Classification Model to Identify

Hospice Candidates in Terminally Ill Patients (Appendix D), we explore the object related reducts (ORR)

as a method for reducing the dimensionality of the dataset. Decision rules generated by this scheme contain

fewer attributes and are better suited for classifying new cases. The classification model covers 100% of

the test cases and improves the overall performance. A distinctive feature of this approach is that it reveals

redundancy in the condition attributes applicable for certain groups of patients. For example, we found that

for some patients, the use of the Pafi test (blood gases) does not improve the accuracy of the prognostication.

By analyzing the information in the ORRs we can identify groups of patients for whom it is possible to

evade costly, invasive or unnecessary tests. One limitation of this approach is that the number of ORR and

the decision rules generated can be extremely large as they depend on the number of condition attributes and

its categories. This limitation reduces the model’s accessibility and interpretability especially when applied

to clinical datasets that typically contain large numbers of condition attributes.

In the fourth manuscript, Rough Set Theory Based Prognostic Models for Hospice Referral (Appendix

E), we explore and evaluate the application of the classical and dominance-based RST (DRSA) to develop

clinical prognostic models for hospice referral. The DRSA approach considers patients characteristics with

preference-ordered values in relation to the patients’ risk of death. In this case, for both the classical and
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the DRSA, the dimensionality reduction process is omitted as the decision rules are induced directly from

the dataset. In addition, we relax the strictness of the dominance principle to induce more general rules,

for each rule, the proportion information consistent with the dominance principle. Selecting an appropriate

consistency level improves the model accuracy and reduces the number of unclassified patients.

The overall performance of the RST-based classifiers is compared to widely used classification ap-

proaches such as Logistic Regression, Support Vector Machines, C4.5 and Random Forrest. The results

show that RST based methods perform comparable to the rest of the classification methods, while providing

significant advantages in terms of traceability of the model and interpretability of the results. In particular,

the DRSA method provides a set of compact, easily explainable rules that support the estimated life-

expectancy classification. Inducing general rules (rules with few condition attributes) prevents overfitting

the training set and results in models that are more useful in classifying new cases. However, using rules

with few attributes, may cause skepticism, as some factors considered important in clinical practice may

be omitted [12, 13]. Moreover, shorter rules lose the property to capture individual patient’s characteristics

necessary to develop a patient-centered model.

In the last manuscript, Towards a Patient-Centered Classification Model for Hospice Referral (Ap-

pendix F), we develop a methodology to build a patient-centered classification model. The methodology

considers relevant characteristics of patients that differentiate them from the rest of patients having a dif-

ferent outcome. Given this information, the population of patients is divided in subgroups having similar

characteristics pertaining to each group. The subgroups obtained reveal insights about the information

requirements for classification of new cases. The performance of the proposed patient-centered classification

model is compared with widely used classification methodologies, in terms of its accuracy, coverage and

accessibility.
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Chapter 2: Conclusions

Most relevant research associated with the development of prognostic models evaluates the model

performance in terms of its accuracy and discrimination ability. This work, in addition, evaluates whether a

prognostic model is accessible and therefore potentially useful in clinical practice. Our results demonstrate

that the if-then decision rule structure offers significant advantages by increasing the accessibility of the

model as the prognosis is performed using a list of readily interpretable decision rules facilitating the

traceability of the results without compromising its accuracy.

In our proposed models, classification of new patients is based on a minimum set of condition at-

tributes leading to two distinct advantages. First, it is possible to identify potentially unnecessary, expensive

and/or invasive procedures that may not be necessary for classification. Second, the decision rules can be

used to classify new patients even when values for some attributes are missing. This is in contrast to a

logistic or Cox regression model, where complete information on all attributes is required to determine the

patient prognosis.

We introduce Dominance-based Object Related Reducts (DORR) as a method to decompose a dataset

into subgroups and build localized classification models. Compared to the VC-DOMLEM algorithm used

for hospice referral in [14], the DORR method shows no significant improvement in the accuracy or the

accessibility of the model.

However, the DORR-based subgroups provide useful information for sequential decision-making,

where the objective is to determine the most appropriate strategy that maximizes the benefits for a particular

patient. For example, in a disease diagnosis process, it is valuable for a physician to identify which set

of tests is the most appropriate alternative for a particular patient. After performing a diagnosis test, the

physician must decide whether to treat the patient immediately or continue testing.
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The DORR method allows determining subgroups of patients for whom the completion of a set of

diagnostic tests is indispensable for an accurate diagnosis and on the other hand patients for whom particular

test results are unnecessary. Requiring one or more diagnostic tests implies migrating patients to a different

subgroup, where it is possible to evaluate if acquiring more information improves the diagnosis accuracy

and is beneficial for the patients. The relationship among DORR-based subgroups represents therefore paths

for a sequential decision-making network where the interest is to arrive at an appropriate diagnosis accuracy

level without necessarily performing the full set of tests.
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Chapter 3: Limitations and Future Research

The performance of classification models is still a major issue for the targeted domain of life ex-

pectancy prognostication. Classifier performance, measured by AUC, is still sub-optimal, indicating a

challenging problem in need of further research.

One area that needs to be explored is the appropriate weighting of the condition attributes in terms

of their impact on the decision variable. The baseline case assumes that all the variables considered in the

model are weighed equally. We believe that a careful weighting of the attributes by consulting an expert

may greatly improve the classification accuracy of the models.

Another important limitation of this study is that patient-specific disease progression over time is not

considered, in part due to the static nature of the data set used. Future research must address the temporal

aspect of disease progression, a consideration often missing in other prognostic models for hospice referral.

The progression of a terminal illness is often highly non-linear by nature and generally does not present as a

steady decline over time but rather as periods of relative stability marked by turning points of acute decline.

A prognostic model that takes into account this temporal aspect may possibly provide both more accurate

life expectancy prognoses and more useful information for end-of-life decisions.

The DORR methodology is promising for sequential clinical decision-making as the paths defined

by the subgroups relationships provide important information to construct a cost-preference network for

diagnosis. Including information about patients’ needs, preferences and diagnosis tests costs is valuable for

obtaining a patient-centered diagnosis strategy by optimizing the cost-preference network.

Regardless of the accuracy of any classifier, medical decisions must consider the individual patient

preferences towards alternative forms of treatments. Our intent for future research is to incorporate our

methodology into a patient-centered decision support system that facilitate the hospice referral process.
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Finally, future work should evaluate the accessibility of decision rules in clinical practice through

testing the model by practitioner clinicians.
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In an eÄort to predict student performance in an engineering course, Rough Set Theory (RST) is employed as the core of a
knowledge discovery process. Student performance is captured in terms of successful course completion. Therefore,
students are classified into two categories: thosewho pass a course and thosewho do not. TheRough Set Theory paradigm
presented here analyzes each student based on a set of attributes. These attributes are collected through a series of surveys
conducted in the first week of the course, allowing for early identification of potential unsuccessful students. Variations of
theRoughSet approach are evaluated todetermine theonemost suited for the particular dataset. The results are promising
since the accuracy of student performance prediction presents an Area under the Receiver Operating Characteristic Curve
equal to 80%. The benefits anticipated from early identification of weak and/or potentially unsuccessful students will
enable educators to engage these students at the onset of the course and enroll them in additional activities to improve their
performance.

Keywords: academic performance prediction; linear systems; rough set theory; knowledge discovery

1. Introduction

Knowledge discovery is the research area concerned
with analyzing existing information and extracting
implicit, previously unknown, hidden and poten-
tially useful knowledge in an automated manner [1,
2]. The core of the presented knowledge discovery
process is Rough Set Theory (RST) [1], an extension
to classical Set Theory used to represent incomplete
or imperfect knowledge. RST combines theories
such as fuzzy sets [3], evidence theory [4] and
statistics, hence is able to cope with the shortcom-
ings of these underlying theories.
In this paper, we describe the application of an

RST-based knowledge discovery process in predict-
ing student performance in an undergraduate en-
gineering course. We measure student performance
in terms of successful completion of a course. In this
context, we classify students into two categories:
Passing students are those who complete the course
with a passing grade and Failing students are those
who fail to complete the course or receive a failing
grade.Note that the failing students category is used
in the generic sense and includes those students who
withdraw from it. The dataset for this study consists
of information collected from twodistinct groups of
students enrolled in two diÄerent classes of the
course. Student information was collected through
a series of surveys conducted in the first week of the
classes.

The rest of the paper is organized as follows:
Section 2 presents a review of the recent work in
predicting student performance in a single course.
Section 3 describes the dataset utilized in this study
and Section 4 presents in detail each of the steps
involved in the RST-based knowledge discovery
process and their application to predicting student
performance. Section 5 discusses our results and
finally, Section 6 concludes this paper.

2. Literature review

A variety of methodologies has been proposed to
predict student performance in academic settings
with the majority of them relying on statistical and
soft computing techniques. The specific topic of
academic performance prediction in a single course
is dominated by regression-based statistical ap-
proaches. Recent notable eÄorts based on regres-
sion analysis appear in [5–15].
Soft computing techniques have found applica-

tion in student performance prediction in the
broader sense of overall academic success and
retention in [16–19]. There are also notable eÄorts
in applying these techniques to student performance
prediction in a single course.
Hamalainen andVinni [20] compared five student

performance classification methods; two multiple
linear regression and three versions of naı̈ve Bayes
classifiers. Students were classified into a passing
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and failing group based on the final course grade.
The factors considered for all five classifiers were
based on six cognitive areas of programming
courses. The authors show that the Bayes classifier
had very good prediction accuracy.
Vandamme et al. [21] proposed three classifica-

tion models to measure the probability of failing a
course. The authors considered in their study socio-
logical attributes, class attendance, prior academic
experience regarding mathematics, study skill, and
student self-confidence. The authors used data from
three academic institutions from Belgium.
Fang and Lu [22] developed a prediction metho-

dology based on a decision tree to predict student
performance in a core engineering course. Based on
the grades of four prerequisite courses and the
cumulative GPA of the student, nine ‘‘if-then’’
decision rules were generated to predict student
performance represented by the final course grade.
It was revealed that a student’s grade in one of the
prerequisite courses and the cumulative GPA gov-
ern student performance. The prediction accuracy
of the Decision Tree model was tested using data
from two diÄerent semesters with remarkable accu-
racy. The results were superior to those of tradi-
tional multivariate statistical approaches.
Fan and Matsuyama [23] presented a rough set

theory-based approach to analyze academic perfor-
mance in aWeb-based learning support system. The
study included the analysis of 28 student profiles
considering general attributes such as age, gender,
financial aid, marital status, dependents, etc. No
results regarding the predictive capability of the
model were presented. The authors emphasized
the importance of personalized learning particu-
larly in web-based environments.
Most recently Pai et.al. [24], presented a model

based on RST to analyze academic achievement in
terms of overall course grades in junior high school
students. To predict a student’s performance, the
authors considered external relationships, such as
teacher–student interaction, parental expectations,
learning styles, and socio-demographic attributes
such as family income per month. Linear discrimi-
nant analysis was used to identify the nine attributes
significant to academic performance. The authors
compared the RST model based on linear discrimi-
nant analysis to five diÄerent data mining algo-
rithms and concluded that the RST model
performed better in terms of classification accuracy.
While this eÄort is not necessarily in the same topic
as addressed in this paper, to our knowledge, it is the
only significant example of usingRST-based knowl-
edge discovery methodologies in educational re-
search.
The work presented in this paper is unique in the

sense that it is the first example of applying an RST-

based knowledge discovery process for predicting
student success in a course. To ensure that the
prediction model is generally applicable, the data
used in the prediction model are universal and not
course specific. Furthermore, the model attributes
are limited to data that are available before or at the
time of course registration which allows the out-
comes of the prediction model to be eÄectively used
to benefit the students during the course.

3. Description of dataset

The dataset employed in this study consists of
information collected from two distinct groups of
students. The first group comprises 60 students
enrolled in the Introduction to Linear Systems
course during the spring term of the 2007–2008
academic year at the University of South Florida.
The second group consists of 70 students enrolled in
the same course during the spring term of the 2009–
2010 academic year at the same university.
The datasets collected from each group of stu-

dents have unique roles in the knowledge discovery
process. Specifically, we use the data from the first
groupof students todevelop the predictionmodel to
classify students as passing or failing (training
dataset) and the data from the second group to
validate the accuracy of the developed model (test-
ing dataset). By utilizing diÄerent datasets for
development and validation, we overcome pro-
blems related to overfitting and, hence, enhance
the robustness of the prediction model across
diÄerent student populations within the same
course.
We define student profile as the set of attributes

that capture information regarding the demo-
graphics, workload, and student’s previous perfor-
mance. These are few candidate attributes which we
believe to have a significant influence on the ex-
pected performance of the students in a particular
course. A complete list of the attributes considered
in this study is presented in Table 1. Student profiles
are populated through a set of surveys administered
at the beginning of both courses. Note that the
generic aspect of the attributes considered will allow
utilization of this basic student profile across var-
ious disciplines.
Analysis of the captured information was con-

ducted based on RST. In the RST framework, data
are represented by a two-dimensional table. Each
row represents a student and each column repre-
sents an attribute in the student profile. These
attributes are called condition attributes. To facil-
itate the student classification process, we define a
decision attribute named ‘‘performance’’ to indicate
whether a student was successful (he/she received a
passing score of A, B or C) or unsuccessful in the
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class (he/she receive a failing grade (D, F) or
dropped the course). Table 2 is a decision table
which shows an instance of the dataset used in this
study including the decision attribute.

4. Knowledge discovery process

The objective of the knowledge discovery process is
to identify meaningful relationships between condi-
tion and decision attributes. A comprehensive de-
scription of the RST-based knowledge discovery
process is outlined in Figure 1. The main steps
involved can be categorized in three phases: pre-
processing, data mining, and post-processing. The
rest of this section describes in detail each of these
phases.

4.1 Data preprocessing

The first step in the knowledge discovery process is
to identify and resolve missing values in the dataset.
Several methodologies have been described in the
literature [25–27] for imputing missing values such
as bootstrapping, pattern analysis, deletion, mean

substitution, and maximum likelihood estimation.
In this study, all but one of the student profiles
collected were complete. Therefore, we proceeded
with deletion of the particular profile.
Next step in the knowledge discovery process is to

split the entire dataset into two distinct datasets.
One of the datasets will be used as the training set
and the other as the testing set. In this study, we used
the 2007–2008 student profiles as the training set
and the 2009–2010 student profiles as the testing set.
Table 3 shows the distribution of student perfor-
mance in these two sets.
The RST-based knowledge discovery process

continues with the discretization step which in-
volves the representation of data using intervals
and ranges in lieu of exact observations to define a
coarser and more qualitative rather than quantita-
tive representation of the data. The data discretiza-
tion problem has been extensively studied and
various heuristic search algorithms have been pro-
posed [28–31]. In this work, all attributes in the
student profiles are categorical as shown in Table 1;
therefore the discretization step is not required.
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Table 1.Attributes. There are 8 condition attributes in each student profile. The table defines the code name, the description, and the value
range for each attribute.

Attribute Description Attribute range

Age The age of the student <21: Less than 21 years old
22–26: Between 22 and 26 years old
>26: greater than 26 years old

Child The student has children Yes
No

Crhr Number of credit hours the student is taking during the
semester

1–5
6–11
>12

Wrhr Number of hours/week a student spend working outside the
school

0–10
11–20
21–30
>30

Trnsf The student has been transferred from another institution Yes
No

Crch The student has made a career change Yes
No

Calc Number of semesters elapsed since taking a prerequisite course <4
>4

GPA Overall GPAof a student (On a scale of 0.0 to 4.0. However, no
students with GPA<2.0 were in the courses.)

2.0–2.5
2.5–3.0
3.0–3.5
3.5–4.0

Table 2. Decision Table. The decision table presents the relationship between condition attributes and the corresponding decision
attribute. Here, the decision attribute, performance, is used to classify a student as failing or passing the course

The condition attributes Decision attribute

Student Age Child Crhr Wrhr Trnsf Crch Calc GPA Performance

1 <21 NO >12 0–10 NO NO <4 2.5–3.0 Failing
2 >26 YES >12 >30 YES YES <4 3.5–4.0 Failing
3 22–26 NO >12 0–10 YES NO <4 3.5–4.0 Passing
4 <21 NO >12 11–20 NO NO <4 3.5–4.0 Passing
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4.2 Reduct generation

The reduct generation step is utilized in an eÄort to
reduce the dimensionality of the dataset by remov-
ing redundant information and consequently de-
creasing the complexity of the mining process.
Formally, a reduct is the minimal set of attributes
that enable the same classification as the complete
set of attributes without loss of information. There
are many algorithms for computing reducts. As will
be shown later in this paper, the eÄect of the reduct
generation algorithm to the classification perfor-
mance is critical. Therefore, the optimal algorithm
is identified as the one producing the best classifica-
tion results. However, since the computational
complexity of the reduct generation problem is
NP-hard [28, 32], various suboptimal techniques
have been proposed. The technique most appropri-
ate to the problem is the one that generates better
classification accuracy in the testing dataset. In this
work, two techniques are used for reduct genera-
tion: genetic algorithms and dynamic reducts. The
rest of this section describes these techniques.

4.2.1 Computing reducts using genetic algorithms

The computational cost for reduct computation is
exponential with respect to the size of the decision

table. Genetic algorithms, operating based on the
principle of survival of the fittest, can be used to
reduce the computational complexity [32–34].
Given a function f : Sá, the goal of a genetic
algorithm is to find an x0 2 S for which
f Öx0Ü à maxÖf ÖxÜ : x 2 SÜ. Elements ofS are called
individuals and the function f is the fitness function.
The values of function f ÖxÜ correspond to the ability
of the individual x to survive the evolution process.
The evolution process begins by creating a random
initial fixed size population of individuals. In an
iterative manner, the algorithm generates a new
population of individuals. First, the fitness of each
individual in the current population is calculated
and those individuals with high fitness are selected
as parents which interact based on a genetic opera-
tor (e.g.mutation and crossover) toproduce the new
population, child. The process is repeated until
some stopping condition is achieved.
The genetic algorithm for the reduct generation

uses as individuals the attributes in the student
profile, and as fitness function the output of a
heuristic algorithm that evaluates the quality of
each reduct generated. The details of the genetic
algorithm used for the reduct generation are pre-
sented in [32]. Using genetic algorithms, one reduct
{Age, Crhr, Wrhr, Trnsf, GPA} is generated which
includes 5 out of the 8 attributes.

4.2.2 Computing dynamic reducts

The main advantage of utilizing genetic algorithms
for reduct generation is the reduction in computa-
tional complexity. However, the results obtained

Predicting Academic Performance Using RST-Based Methodology 995

Fig. 1. Knowledge discovery methodology. There are three phases in the knowledge
discovery process: data preprocessing, data mining, and data post processing.

Table 3. Performance distribution in training and testing sets

Dataset Failing Passing

Training set 58.33% 41.67%
Testing set 37.68% 62.32%
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are highly dependent on the specific training dataset
and therefore could change each time a diÄerent
training set is selected. A strategy that generates
reducts invariant to the training set is expected to
generate more stable reducts. To this end, Bazan et.
al. [28, 32, 35], proposed a reduct generation tech-
nique called Dynamic Reducts. This technique aims
at obtaining the most stable sets of reducts for a
given dataset by sampling within this dataset. For
example, in an iterative manner diÄerent samples of
the testing set are selected for which reducts are
computed using a genetic algorithm. The reducts
appearing more frequently in these samples are
selected as the most stable.
Based on the principle of the dynamic reducts

technique, we have randomly selected 100 subdivi-
sions of the training set to use for reduct generation.
The actual number of student profiles included in
each subdivision of the training set varies as follows:

10 subdivisions with number of student profiles
equal to 50% of the training data set

10 subdivisions with number of student profiles
equal to 60% of the training data set

10 subdivisions with number of student profiles
equal to 70% of the training data set

10 subdivisions with number of student profiles
equal to 80% of the training data set

10 subdivisions with number of student profiles
equal to 90% of the training data set

The reducts for each subdivision as well as the
reduct from the complete training set are computed.
The most stable reducts obtained are as follows:

{Age, Crhr, Wrhr, Trnsf, GPA}
{Age, Wrhr, Trnsf, Calc, GPA}
{Age, Wrhr, Trnsf, GPA}
{Age, Crhr, Wrhr, Calc, GPA}
{Crhr, Wrhr, Trnsf, Calc, GPA}
{Age, Crhr, Wrhr, GPA}
{Wrhr, Trnsf, Crch, Calc, GPA}
{Age, Crhr, Trnsf, Calc, GPA}
{Age, Crhr, Trnsf, Crch, GPA}
{Age, Child, Crhr, Trnsf, GPA}
{Wrhr, Trnsf, Calc, GPA}
{Crhr, Wrhr, Trnsf, GPA}
{Wrhr, Trnsf, Crch, GPA}
{Child, Wrhr, Trnsf, GPA}
{Age, Crhr, Trnsf, Crch, Calc, GPA}
{Wrhr, Trnsf, GPA}
{Age, Wrhr, GPA}
{Age, Child, Wrhr, Trnsf, Calc}

When dealingwithmultiple sets of reducts, themost
significant attributes of the dataset can be identified.
These attributes are called core attributes and ap-
pear in every reduct. Omitting core attributes from
the classification process considerably aÄects the

classification accuracy. In the aforementioned list of
reducts, there is no attribute common among all the
reducts. Therefore, the set of core attributes is
empty. However, the attribute GPA appears in 17
out of the 18 reducts indicating that GPA can be
considered as a significant attribute in classifying
student performance. Similarly, the attributes Trnsf
andWrhr appear in 15 and 14 reducts, respectively
and are considered critical to the classification
model.

4.3 Rule induction

The ultimate goal of the RST-based knowledge
discovery methodology is to generate decision rules
which will be used in classifying each student as
failing or passing. A decision rule has the form if A
then B (A! B), where A is called the condition and
B the decision of the rule. Decision rules can be
thought of as a formal language for drawing con-
clusions from data.
A decision rule is generated using the attributes in

a student profile that are included in a reduct. For
example, consider the decision table shown in Table
2 and the reduct {Age, Crhr, Wrhr, Trnsf, GPA}
obtained using genetic algorithms. Since the reduct
includes only five attributes, the decision table can
be represented by Table 4. From the Reduced
Decision Table in Table 4 we can define four
decision rules as follows:

If the student is younger than 21 years old, takes
more than 12 credit hours in a semester, works for
less than 10 hours, is not a transfer student and
has GPA between 2.5 and 3.0, he/she will fail the
class.

If the student is older than 26 years old, takes more
than 12 credit hours in a semester, works formore
than 30 hours, is a transfer student and has GPA
between 3.5 and 4.0, he/she will fail the class.

If the student is between 22 and 26 years old, takes
more than 12 credit hours in a semester, works for
less than 10 hours, is a transfer student and has
GPA between 3.5 and 4.0, he/she will pass the
class.

If the student is younger than 21 years old, takes
more than 12 credit hours in a semester, works for
11 to 20 hours, is not a transfer students and has
GPAbetween 3.5 and4.0, he/shewill fail the class.

Considering the attributes in the reduct {Age,
Crhr,Wrhr, Trnsf, GPA} and the complete training
set, we can create 43 decisions rules. A portion of
these rules with the highest LHS Support are listed
in Table 5. The LHS Support indicates the number
of students satisfying the condition of the rule while
the RHS Support indicates the number of students
satisfying the decision of the rule.
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4.4 Classification process

Based on the set of rules generated, we can classify
students as passing or failing. However, as seen in
Table 5, not all rules are conclusive. Consider rules 1
and 3 in Table 5. Students with profiles identical to
the conditions of the rules are not decisively classi-
fied as passing or failing. In addition, there are
situations of contradictory rules, e.g. one or more
rules classify a student as passing and some other
rules classify the same student as failing. To over-
come these problems, a standard voting algorithm
[28] is usedwhich allows all rules to participate in the
decision process and classify a student based on
majority voting.
Let RUL denote the set of all decision rules

obtained from the training set. When a student
with student profile x from the testing set is pre-
sented for classification, the standard voting algo-
rithm operates as follows:

1. Assume that a student with profile x = {age
<21, Crhr >12, Wrhr = 0-10, Trnsf = NO, GPA
= 3.5-4.0} is to be classified. Let
RULÖxÜ ✓ RUL denote the set of firing rules
(those with the same conditions as student
profile x).

✏ If RULÖxÜ is empty, then no classification
can be made and x is declared undefined.

✏ IfRULÖxÜ is not empty, an election process is
performed among the rules in RULÖxÜ as
follows: Compute the number of votes each
rule contributes to student profile x. Each
rule r 2 RULÖxÜ, casts a number of votes in
favor of the decision class the rule indicates.
Typically the number of votes is related to the
RHS support of the rule. For example, con-
sider the 1st rule presented in Table 7 with
RHS Support à 1; 6. Then votesÖ1strule;
FailingÜ à 1 and votesÖ1strule;Passing &? Ü
à 6.

2. Compute the normalization factor associated
with the student profile x and the number of
rules fired: A normalization factor normÖxÜ is
computed for each student profile as the sum of
all votes from all rules fired to serve as a scaling
factor. In our example, since only the first rule
fired for x, normÖxÜ à 7.

3. Calculate the certainty coeÅcient associated
with each decision class as follows:

✏ CertaintyÖx;FailingÜ à
P

i
votesÖrx;i ;FailingÜ

normÖxÜ ;

with rx;i denoting all rules fired for student x.
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Table 4.Decision table and reduced decision table. The reduced decision table is used to generate the decision rules for the classification
model. Here, the reduced decision table has three attributes fewer than the original decision table

Original Decision Table

Condition attributes Decision attribute

Student Age Child Crhr Wrhr Trnsf Crch Calc GPA Performance

1 <21 NO >12 0–10 NO NO <4 2.5–3.0 Failing
2 >26 YES >12 >30 YES YES <4 3.5–4.0 Failing
3 22–26 NO >12 0–10 YES NO <4 3.5–4.0 Passing
4 <21 NO >12 11–20 NO NO <4 3.5–4.0 Passing

Reduced Decision Table based on reduct {Age, Crhr, Wrhr, Trnsf, GPA}

Condition attributes Decision attribute

Student Age Child Crhr Wrhr Trnsf Crch Calc GPA Performance

1 <21 >12 0–10 NO 2.5–3.0 Failing
2 >26 >12 >30 YES 3.5–4.0 Failing
3 22–26 >12 0–10 YES 3.5–4.0 Passing
4 <21 >12 11–20 NO 3.5–4.0 Passing

Table 5.A subset of decision rules based on genetic algorithm. The table presents a subset of rules generated using the reduct {Age, Crhr,
Wrhr, Trnsf, GPA}. LHS support and RHS support correspond to the number of students satisfying the condition of the rule and the
number of students satisfying the decision of the rule respectively. For rules with dual decision (e.g. rule 1) there are two values for RHS
Support corresponding to each decision

Rule Description LHS Support RHS Support

1 Age(<21) AND Crhr(>12) ANDWrhr(0–10) AND Trnsf(NO) ANDGPA(3.5–
4.0) Then Performance(Fail) OR Performance(Success)

7 1; 6

2 Age(<21) AND Crhr(>12) ANDWrhr(0–10) AND Trnsf(NO) ANDGPA(2.5–
3.0) Then Performance(Pass)

4 4

3 Age(<21) AND Crhr(>12) ANDWrhr(11–20) AND Trnsf(NO) AND GPA(3.0–
3.5) Then Performance(Fail) OR Performance(Pass)

3 2; 1
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✏ CertaintyÖx;PassingÜ à
P

i
votesÖrx;i ;PassingÜ

normÖxÜ .

For our example, CertaintyÖx;FailingÜ à 1
7

and CertaintyÖx;PassingÜ à 6
7.

4. Finally, classify the student with profile x in the
decision class for which the certainty factor is
greater than a threshold value (⌧) which is
typically fixed at 0.5. In this example, the
student with profile x is classified as Passing.

5. Results

This section compares the performance of the
classification processes based on the decision rules
generated using the reduct generation techniques
described in sections 4.2.1–4.2.2. At this stage of the
knowledge discoverymethodology, the objects (stu-
dent profiles) in training dataset are classified as
passing, failing or undefined based on the induced
rules and the classification process described. The
results are presented in a confusion matrix form.
The confusion matrix for each model includes the
numbers ofTrue Positive (TP), TrueNegative (TN),
False Positive (FP) and False Negative (FN) results.
Our perspective on positive and negative results
relates to the necessitation for action for failing
students. Specifically, we define:

TP: the number of students classified as failing the
course, when in fact failed the course (shown in
the top left cell of the confusion matrix).

FP: the number of students classified as failing the
course, when in fact passed the course (shown in
the bottom left cell of the confusion matrix).

TN: the number of students classified as passing the
course, when in fact passed the course (shown in
the bottom right cell of the confusion matrix).

FN: the number of students classified as passing the
course, when in fact failed the course (shown in
the top right cell of the confusion matrix).

Using these values we can compute the measures of
specificity and sensitivity as:

Sensitivity: The fraction of failing students correctly
classified by the classification algorithm.

Sensitivity à TP

TPá FN
(1)

Specificity: The fraction of passing students cor-
rectly classified by the classification algorithm.

Specificity à TN

TN á FP
(2)

The accuracy of each classification model is re-
ported in terms of Area under the Receiver Operat-
ing Characteristic (ROC) curve (AUC). The ROC
curve graphs the sensitivity of the classification
algorithm in terms of (1-specificity). The best pos-
sible classification is achieved whenAUC is equal to

1, while no classification ability exists when AUC is
equal to 0.5.

5.1 Performance of the classification algorithm
using reducts generated by genetic algorithms

Table 6 presents the confusion matrix for the
classification model based on reducts generated
using genetic algorithms. The classifier consists of
43 rules. With sensitivity equal to 80%, the classifier
demonstrates an ability to correctly identify the
failing students, however, the specificity score is
much lower (20%), which implies that the classifier
fails to correctly identify passing students. The term
undefined in Table 6 refers to 59 students (almost
85.5% of students in the testing sample) for whom
the classification algorithm was unable to classify
either as passing or failing. The coverage of the
classifier (defined by the ratio of objects classified to
the total number of objects in the testing set) is
14.5% since we are able to classify 10 students from
the 70 in the training set. Overall, the AUC score is
equal to 0.5 indicating classification inability.

5.2 Performance of the classification algorithm
using dynamic reducts

Table 7 shows the confusion matrix for the classifi-
cation model based on dynamic reducts. There are
593 decision rules. The classifier’s ability to cor-
rectly identify failing and passing students is 0.68
and 0.675, respectively. The overall classification
performance as indicated by the AUC is equal to
0.8, considerably better compared to the genetic
algorithm classifier. In addition, the number of
undefined cases has been decreased to four student
profiles and the coverage of the classifier is 96%.
Using dynamic reducts instead of genetic algo-
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Table 6. Confusion matrix. The classifier presents AUC equal to
0.5 indicating classification inability

Predicted

Failing Passing Undefined

Actual
Failing 4 1 21
Passing 4 1 38

Sensitivity: 0.8, Specificity: 0.2, AUC: 0.5

Table 7. Confusion matrix. The classifier presents AUC equal to
0.8 indicates good classification ability

Predicted

Failing Passing Undefined

Actual
Failing 17 8 1
Passing 13 27 3

Sensitivity: 0.68, Specificity: 0.675, AUC: 0.8
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rithms for reduct generation improved the overall
classification performance.
Table 8 summarizes our findings regarding the

performance of each classifier in predicting student
performance.

6. Discussion

The threshold value (⌧) in the classification process
described in Section 4.4 has a significant impact on
the accuracy as well as the usability of the classifica-
tion process, especially in this application of student
performance prediction. To better understand the
role of this threshold value, consider the definitions
of sensitivity, the fraction of failing students cor-
rectly classified, and specificity, the fraction of
passing students correctly classified by the classifi-
cation algorithm. In our particular application of
predicting student performance in a course, to
engage the potentially unsuccessful students early
on and to improve their performance, the ‘‘cost’’ of
misclassifying a failing student (as passing) is much
higher than that of misclassifying a passing student
(as failing). After all, if a potentially weak/unsuc-

cessful student is misclassified as passing, the op-
portunity to engage this student early is lost. On the
other hand, if a passing student is misclassified as
failing and is enrolled in activities to improve his/her
performance, he/she may actually end up with an
improved grade. Therefore, especially in this parti-
cular application, it is significantly more important
to ensure that the sensitivity value is closer to 1 than
the specificity value.
The threshold value is the parameter that estab-

lishes the relation between sensitivity and specificity
in the classification process. A higher threshold
value would require a higher certainty coeÅcient
value (making it more diÅcult) for a student to be
classified as failing, decreasing the sensitivity and
increasing specificity. In the same manner, a lower
threshold value would increase sensitivity and re-
duce specificity, which is the more desirable condi-
tion in this application.
The ROC curve describes the predictive behavior

of a classifier for varying values of the threshold
(0  ⌧  1), in terms of sensitivity, specificity and
classifier accuracy. Figure 2 shows the ROC curve
generated from the classification model based on
dynamic reducts. The area under the ROC curve
characterizes the overall accuracy of the classifier.
Each point on the curve corresponds to a diÄerent
pair of sensitivity and specificity values based on
varying the value of the threshold (⌧ ).
Table 9 shows some selected points on the ROC

curve and the associated threshold value used dur-
ing the classification process. For example, the
default value of ⌧ à 0.5 leads to the sensitivity and
specificity values reported in Table 7. The condi-
tional maximum values of both sensitivity and
specificity are obtained when the threshold values

Predicting Academic Performance Using RST-Based Methodology 999

Table 8. Comparison of classifiers. A classifier has been created
based on each reduct generation technique described in sections
4.2.1–4.2.2

Strategy

Performance measures Genetic Algorithms Dynamic reducts

Sensitivity 0.8 0.68
Specificity 0.2 0.675
AUC 0.5 0.8
Coverage 14.5 % 94%
# of reducts 1 18
# of decision rules 43 593

Fig. 2. ROC Curve for the classification model based on dynamic reducts. The specificity and sensitivity are controlled by the threshold
value.
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is 0.416. The confusion matrix for this threshold
value is shown in Table 10.
Considering the nature of this particular applica-

tion where the intent may lean towards maximizing
sensitivity, point 2 in Fig. 2 results in possibly the
most eÄective classification where only three failing
students were misclassified and 22 were correctly
classified. On the other hand, nearly half of the
passing students were classified as failing greatly
increasing the total number of students classified as
failing. The decision of which threshold value to use
for classification is a subjectivematter depending on
the cost and capacity of the available programs and
activities to improve student performance. For
example, if the planned activity to help potentially
unsuccessful students is aweb-based activity such as
endless quizzes [36] where questions and grading are
done automatically by the computer, then the addi-
tional number of students may not be prohibitive.
Point 5 inFig. 2 corresponds to threshold equal to

0.5 which results in sensitivity 0.68 and specificity
0.675 (Table 7).
As the value of threshold decreases, the sensitivity

of the classification model increases in the expense
of specificity. For the student performance applica-
tion, an increased sensitivity is a desirable outcome.

7. Conclusions

Thepresentedwork is significant in the sense that, to
our knowledge, it is the first example of applying an
RST-based knowledge discovery process for pre-
dicting student success in a single course in academic
settings. Most relevant research associated with the
use of soft computing approaches focuses exclu-
sively on the development and evaluation of the
data mining techniques neglecting pre and post
mining phases crucial to the eÄective use of the
data mining results. The work presented addresses
all stages of the knowledge discovery process and
describes how the classificationmethodology can be
tailored to varying levels of sensitivity and specifi-
city, and provide eÄective decision support depend-
ing on the cost and capacity of the available
programs and activities to improve student perfor-
mance.
Another important distinctive feature of thework

presented is that the training and testing sets are
distinct sets of students. Many of the proposed
methodologies in the field of educational perfor-
mance prediction do not validate their findings in
diÄerent student populations and may often suÄer
from over-fitting, which has been proven to cause
poor prediction performance when applied to dif-
ferent datasets.
In the prediction model presented, the condition

attributes are general and limited to data that can be
collected by administering a brief in-class survey at
the beginning of the course. We note that the
accuracy of this baseline prediction model may be
further improved by incorporating more cognitive
factors such as attributes related to metacognitive
skills and self-eÅcacy. A discipline-neutral predic-
tionmodel may further be focused by incorporating
attributes related to the discipline-specific skills. For
example, analytical and math skills would be likely
candidates for engineering courses. The degree of
complexity of the predictive model and the eÄort
required for data collection should be carefully
evaluated in accordance with the objectives and
scope of the predictive model.
The long-term goal of our research is the devel-

opment of a decision support system that enables
both students and educators to actively participate
in the development of a personalized education plan
taking into consideration the needs of the individual
student as well as the availability of resources to
provide the personalization.
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Abstract—We present a novel knowledge discovery 
methodology that relies on Rough Set Theory to predict the life 
expectancy of terminally ill patients in an effort to improve the 
hospice referral process. Life expectancy prognostication is 
particularly valuable for terminally ill patients since it enables 
them and their families to initiate end-of-life discussions and 
choose the most desired management strategy for the 
remainder of their lives. We utilize retrospective data from 
9105 patients to demonstrate the design and implementation 
details of a series of classifiers developed to identify potential 
hospice candidates. Preliminary results confirm the efficacy of 
the proposed methodology.  We envision our work as a part of 
a comprehensive decision support system designed to assist 
terminally ill patients in making end-of-life care decisions.  

I. INTRODUCTION 

COORDING to Medicare regulations, a patient should 
be referred to hospice if his/her life expectancy is less 

than 6 months [1]. However, despite the well-documented 
advantages of hospice services, terminally ill patients do not 
reap the maximum benefits of hospice care with the majority 
of them being referred to hospice either prematurely or too 
late. In general, premature hospice referral is translated to 
patients losing the opportunity to receive potentially 
effective treatment, which may have prolonged their lives. 
Conversely, late hospice referral reduces the quality of life 
for patients and their families. It is apparent that accurate 
prognostication of life expectancy is of vital importance for 
all parties involved in the hospice referral process (e.g. 
patients, their families, and their physicians). 
 Here, we propose a novel knowledge discovery 
methodology developed to identify terminally ill patients 
with life expectancy less than 6 months. The core of the 
proposed methodology is Rough Set Theory [2]. The rest of 
this paper describes implementation details, reports results, 
and discusses limitations and future directions of our work.  

II. METHODOLOGY 

A. Literature Review 
Approaches for developing prognostic models for 

estimating survival for seriously ill patients range from the 
use of traditional statistical and probabilistic techniques [3]-
[6], to models based on artificial intelligence techniques 
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such as neural networks, decision trees and rough set 
methods [7]-[11].  A recent systematic review of prognostic 
tools for estimating survival in palliative care highlighted the 
lack of accurate end-of-life prognostic models [13]. 

Both statistics based techniques and AI based models rely 
on data that are precisely well defined. However, medical 
information, which represents patients records that include 
symptoms and clinical signs, is not always well defined and, 
therefore, the data are represented with vagueness [14]. 
Particularly, for this kind of information, it becomes very 
difficult to classify borderline cases in which very small 
differences in the value of a variable of interest may 
completely change categorization and therefore the 
following decisions can changes dramatically [15]. 
Moreover, the dataset is presented with inconsistencies in 
the sense that it is possible to have more than one patient 
with the same description but showing different outcomes.  

In this work we propose the use of Rough Set Theory 
(RST) [2] to deal with vagueness and inconsistency in the 
representation of the dataset. RST provides a mathematical 
tool for representing and reasoning about vagueness and 
inconsistency. Its fundamentals are based on the 
construction of similarity relations between dataset objects 
from which approximate yet useful solutions are provided. 
In RST, the knowledge extracted from the data set is 
represented in the form of “if-then” decision rules where an 
explanation of how the final decision was derived can be 
traced. Clinical credibility in prognosis models depends on 
the ease with which practitioners and patients can 
understand and interpret the results [16]. Therefore, the if-
then decision rule representation offers a significant 
advantage over “black box” modeling approaches such as 
neural networks. 

RST has been used in a number of applications dealing 
with modeling medical prognosis [9]–[12]. For example, 
Tsumoto et al. [11], provides a framework to model medical 
diagnosis rules showing theoretically that the characteristics 
of medical reasoning reflect the concepts of approximation 
established in Rough Set Theory. Komorowski et al. [12], 
show that RST is useful to extract medical diagnosis rules to 
identify a group of patients for whom performing a test that 
is costly or invasive is redundant or superfluous in the 
prognosis of a particular medical condition. 

In this paper we describe a RST based knowledge 
discovery methodology to provide a classifier that properly 
discriminates patients into two groups, those who survive at 
least 180 days after evaluation for hospice referral and those 
who do not. ROSETTA [17] software is used to perform the 
analysis described in the remainder of the paper.  
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B. Dataset 
The dataset used in this study consists of the 9105 cases 

from the SUPPORT (Study to Understand Prognoses and 

Preferences for Outcomes and Risks of Treatments) 
prognostic model dataset [18]. We consider all variables 
used in the SUPPORT prognostic model [4] as condition 
attributes, i.e. the physiologic variables along with the 
diagnosis groups, age, number of days in the hospital before 
entering the study, presence of cancer, and neurologic 
function. Attributes’ names and descriptions are listed in 
Table I. 
 As the decision attribute, we define a binary variable 
(Yes/No) “deceases_in_6months” using the following two 
attributes from the SUPPORT dataset: 

� “death” which represents the event of death at any time 
up to NDI date (National Death Index date: Dec 31, 1994). 
� “D.time”: number of days of follow up 

The values of the decision attribute are calculated converting 
the “D.time” value in months and comparing against the 
attribute “death” as follows: 
� If “D.time” < 6 months and “death” is equal to 1 (the 

patient died within 6 months) then “deceases_in_6months” 
is equal to “Yes” 
� If “D.time” > 6 months and “death” is equal to 1 (the 

patient died after 6 months) then “deceases_in_6months” is 
equal to “No” 
� If “D.time” > 6 months and “death” is equal to 0 (the 

patient did not died after 6 months) then 
“deceases_in_6months” is equal to “No” 

C. Rough Set Theory 
Based on RST, we can formally define the prognostication 

problem as: 
 
ܶ =  ܣ,ܷ) {݀})              (1) 
 

where T represents the dataset in the form of a table. Each 
row represents an object and each column represents an 
attribute. U is a non-empty finite set of objects and the set A 
represents a non-empty finite set of attributes called the 
condition attributes. In our case, an object designates a 
terminally ill patient and an attribute designates each of the 

fifteen condition attributes that describe a patient (Table I). 

Also, for every attribute a Ӈ A, the function a: Uĺ9a makes 
a correspondence between an object in U to an attribute 
value 9a which is called the value set of a. 

The set T incorporates an additional attribute {d} called 
the decision attribute. The system represented by this 
scheme is called a decision system. 

D. Rough Set Theory Based Knowledge Discovery Process 
RST based knowledge discovery process requires 

sequential and parallel use of various mathematical, 
statistical and soft computing methodologies with the 
objective of identifying meaningful relationships between 
condition and decision attributes.  

The selection of specific methodologies for knowledge 
discovery is largely dependent on the considered dataset. We 
have taken the following steps in our approach:  

1) Data preprocessing: If the selected table contains 
“holes” in the form of missing values or empty cell entries; 
the table may be processed in various ways to yield a 
completed table in which all entries are present. The data 
completion process for SUPPORT dataset in [18] is adopted 
in this work. After the preprocessing phase, the number of 
patients with missing information is reduced by 2 cases. 
Therefore, there are 9103 complete cases. 

The next step in preprocessing is the discretization 
process. 13 out of 15 of the conditional attributes are 
continuous; therefore we transformed them into categorical 
variables. The discretization process is based on the 
searching of cuts that determine intervals. This process 
enables the classifier in obtaining a higher quality of 
classification rules. We found that using cut-off defined by 
medical experts is the best alternative for the discretization 
process. We consider the APACHE III Scoring System [5] 
for determining the cut-off for the physiologic variables 
along with the age variable. The remaining variables, not 
defined in [5] are discretized using Boolean Reasoning 
Algorithm [19] implemented in the ROSETTA software. 

Finally, the dataset is divided randomly into training and 
testing sets containing 500 and 8603 cases, respectively. The 
training set is used in the discretization process to obtain the 
cut-off for the numerical attributes. 

2) Reduct Generation: This step reduces the 
dimensionality of the dataset with the intention of removing 
redundant information and consequently decreases the 
complexity of the mining process. A reduct is the minimal 
set of attributes that enable the same classification as the 
complete set of attributes without loss of information. There 
are many algorithms for computing reducts for which the 
effect to the classification performance is critical. Since the 
computational complexity of the reduct generation problem 
is NP-hard [19], various suboptimal techniques have been 
proposed. In this work the dynamic reduct approach ([20-
21]) is used for reduct generation.  

2.1) Dynamic Reducts 
Dynamic reducts algorithm aims at obtaining the most 

TABLE I 
CONDITION ATTRIBUTES 

Name Description 
meanbp Mean arterial blood pressure Day 3 
wblc White blood cell count Day 3 
hrt Heart rate Day 3 
resp Respiratory rate Day 3 

temp Temperature (Celsius) 
alb Serum Albumin 
bili Bilirubin 
crea Serum Creatinine 
sod Sodium 
pafi Pa02 / (.01 * FiO2) 
ca Presence of cancer 
age Patient’s age 
hday Days in hospital at study admit 
dzgroup Diagnosis group 
scoma SUPPORT coma score based on Glasgow coma 

scale 
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stable sets of reducts for a given dataset by sampling within 
this dataset. Random samples of the testing set are selected 
iteratively and reducts for the samples are computed using 
genetic algorithms [22-23]. The reducts that most frequently 
appear in the samples are the most stable. 

Based on the principle of the dynamic reducts technique, 
we have randomly selected 100 subdivisions of the training 
set to use for reduct generation. The actual number of patient 
profiles included in each subdivision of the training set 
varies between 50% and 90% of the training dataset. Using 
this approach, 229 reducts were obtained from which the set 
of decision rules are generated. 

2.2) Using the decision attribute as condition attribute 
Typically only the condition attributes are used to 

generate reducts. As an alternative, we included the decision 
attribute d in the set of condition attributes and calculated 
the reducts based on this scheme.  

 The decision attribute (deceases_in_6_months) used as a 
condition attribute is intended to represent the physician’s 
estimate of life expectancy expressed in terms of the 
decision classes defined for this problem. Survival prognosis 
models that incorporate physician estimates are shown to 
improve both predictive accuracy and the ability to identify 
patients with high probabilities of survival or death [4]. In 
this case, 549 reducts were obtained. The next step is the 
induction of decision rules. 

3) Rule Induction. The ultimate goal of the RST based 
knowledge discovery methodology is to generate decision 
rules, which will be used in classifying each patient as 
surviving or not surviving within the defined period of time. 
A decision rule has the form: if A then B (A ĺ�%��  where A 
is called the condition and B the decision of the rule. 
Decision rules can be thought of as a formal language for 
drawing conclusions from data.  

The decision rules were generated based on the two 
aforementioned sets of reducts. After the process of reducts 
generation, the decision table is presented in a compact 
shape from which the decision rules are generated 

4) Classification. Based on the set of rules generated, we 
can classify patients as surviving or not surviving the six-
month period. However, not all rules are conclusive. Patients 
with profiles identical to the conditions of the rules are not 
decisively classified. In addition, there are situations of 
contradictory rules, e.g. one or more rules classify a patient 
as surviving and some other rules classify the same patient 
as dying. To overcome these problems a standard voting 
algorithm [19] is used which allows all rules to participate in 
the decision process and classify a patient based on majority 
voting. 

III. RESULTS 

This section compares the performance of the 
classification processes where, the patients in the training 
dataset are classified as VXUYLYH�� not survive or undefined 
based on the induced rules and the classification process 

 

 described. The results are presented in a confusion matrix 
form.  

The accuracy of each classification model is reported in 
terms of Area under the Receiver Operating Characteristic 
curve (AUC). The best possible classification is achieved 
when AUC is equal to 1, while no classification ability exists 
when AUC is equal to 0.5.  

Table 2 presents the confusion matrix for the 
classification model based on reducts generated on only the 
original condition attributes (without including the decision 
attribute). Table 3 shows the confusion matrix for the 
alternative case where the decision attribute is included in 
the set of condition attributes. 

The dynamic reducts approach without using the decision 
attribute as a condition attribute shows a weak 
discrimination ability. However, it demonstrates a fairly high 
level of coverage, being able to classify around 85% of the 
test cases. As shown in Table 3, the classification 
performance in terms of AUC when using the decision 
attribute as a part of the condition attributes is approximately 
0.90. Both the specificity and sensitivity scores are 
tremendously improved. However, the classification 
coverage in this case is reduced to 70%. 

The described classification process was repeated 10 
times using randomly selected samples from the dataset 
(again 500 cases for training and the remainder 8603 cases 
for testing). The overall classification performance is 
obtaining by averaging the AUC from each iteration.  Using 
the original set of attributes, the overall AUC is 0.56 (SD = 
0.01). Following the same, we obtained an AUC of 0.85 (SD 
= 0.065) for the case where the decision attribute is used as a 
condition attribute.  

 

TABLE 2 
CONFUSION MATRIX. THE REDUCTS ARE BASED ON SET ܣ. THE CLASSIFIER 

PRESENTS AUC EQUAL TO 0.55 INDICATING WEAK DISCRIMINATION 
ABILITY. 

Predicted 

Ac
tu

al
 

 Not 
survive 

Survive Undefined 

Not 
survive 

1395 1953 677 

Survive 1410 2542 626 

Sensitivity = 0.64 
Specificity = 0.42 

AUC = 0.55 
 

TABLE 3 
CONFUSION MATRIX. THE REDUCTS ARE BASED ON SET ܣ =  ܣ   {݀}. THE 

CLASSIFIER PRESENTS AUC EQUAL TO 0.90 INDICATING GOOD 
DISCRIMINATION ABILITY. 

Predicted 

Ac
tu

al
 

 Not 
survive 

Survive Undefined 

Not 
survive 

1999 471 1555 

Survive 312 3245 1021 

Sensitivity = 0.91 
Specificity = 0.81 

AUC = 0.90 
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IV. CONCLUSIONS AND FUTURE WORK 

The SUPPORT model is the “gold standard” model for 
prognostication of terminally ill patients. The AUC for 
prediction of survival for 180 days in the SUPPORT study is 
0.79, and 0.82 when SUPPORT model is combined with 
physician’s estimates [4]. 

This initial exercise in applying knowledge discovery 
methodologies based on rough set theory shows promise in 
developing a reliable methodology to predict life 
expectancy. The baseline model using dynamic reducts 
presents several opprotunities for improvement: 
1. Due to the limitations of the ROSETTA software, the 

size of the training set was limited to 500. The size of 
the training set may be a limiting factor to obtaining 
better classification accuracy and coverage considering 
the high number of categories associated with each 
attribute.   

2. One area that needs to be explored is the appropriate 
weighting of the condition attributes in terms of their 
impact on the decision variable. The baseline case 
assumes that all physiological attributes are weighed 
equally. We believe that a careful weighting of the 
attributes by consulting an expert will greatly improve 
the classification accuracy of the approach. 

 Including the physician’s estimate in the prognostication 
process is an important component of our future work. The 
classifier which uses the decision attribute as a condition 
attribute is intended to incorporate the professional opinion 
of the physician. This classifier performed much better than 
the baseline model and its accuracy exceeded that of the 
SUPPORT model. However we note that, in this approach 
only 70% of the test cases could be classified and more 
research is required to minimize the number of undefined 
cases. Furthermore, our model used the decision attribute 
from a retrospective study for which the decision was known 
with 100% accuracy. Ideally this approach should be tested 
on a prospective dataset and its performance compared to 
other soft models based on AI techniques which are a part of 
our future work.  
 Finally, it is important to remember that regardless of the 
accuracy of any classifier, medical decisions must take into 
account the individual patient preferences towards 
alternative forms of treatments[24]. Therefore, our intent is 
to incorporate our methodology into a patient-centric 
decision support system to facilitate the hospice referral 
process. 
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Abstract— This paper presents a Rough Set Theory (RST) 
based classification model to identify hospice candidates within 
a group of terminally ill patients. Hospice care considerations 
are particularly valuable for terminally ill patients since they 
enable patients and their families to initiate end-of-life 
discussions and choose the most desired management strategy 
for the remainder of their lives. Unlike traditional data mining 
methodologies, our approach seeks to identify subgroups of 
patients possessing common characteristics that distinguish 
them from other subgroups in the dataset. Thus, heterogeneity 
in the data set is captured before the classification model is 
built. Object related reducts are used to obtain the minimum 
set of attributes that describe each subgroup existing in the 
dataset.  As a result, a collection of decision rules is derived for 
classifying new patients based on the subgroup to which they 
belong. Results show improvements in the classification 
accuracy compared to a traditional RST methodology, in which 
patient diversity is not considered. We envision our work as a 
part of a comprehensive decision support system designed to 
facilitate end-of-life care decisions. Retrospective data from 
9105 patients is used to demonstrate the design and 
implementation details of the classification model. 

I. INTRODUCTION 

A. Hospice referral criteria 

Hospice is designed to provide comfort and support to 
terminally ill patients and their families. According to 
Medicare regulations, a patient should be referred to hospice 
if his/her life expectancy is approximately 6 months or less 
[1]. However, most patients are not referred to hospice in a 
timely manner [2, 3] and therefore they do not reap the well-
documented benefits of hospice services. A premature 
hospice referral translates to a patient losing the opportunity 
to receive potentially effective treatment, which may prolong 
their life. Conversely, a late hospice referral may deprive 
patients and their families of enjoying the benefits offered. 
Therefore, accurate prognostication of life expectancy is of 
vital importance for terminal patients as well as for their 
families and physicians. 

B. Prognostic models for estimating survival of terminally 
ill patients 

Survival prognostic models range from traditional 
statistical and probabilistic techniques [4-10], to models 
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based on artificial intelligence such as neural networks [11, 
12], decision trees [13, 14] and rough set methods [15, 16]. 
The primary goal of survival prognostic models is to provide 
accurate information regarding life expectancy and/or 
determine the association between prognostic factors and 
survival. Typically, the information derived by prognostic 
models is presented in terms of probability of death within a 
time period. Recent systematic reviews [17, 18] have 
highlighted the necessity of prediction models that can be 
easily integrated into clinical practice and facilitate end-of-
life clinical decision-making.  

Several important issues demand particular consideration 
when developing clinical classification models: First, clinical 
data, representing patient records that include symptoms and 
clinical signs, are not always well defined and are represented 
with vagueness [19]. Therefore, it is very difficult to classify 
cases in which small differences in the value of an attribute 
may completely change the classification of a patient and, as 
a result, the treatment decisions [20]. Second, clinical data 
may present inconsistencies, which means that it is possible 
to have more than one patient with the same description but 
with different outcomes. Third, the results of prognostic 
models should be readily interpretable to enable practical and 
posteriori inspection and interpretation by the treating 
physician or an expert system [21]. Finally, prognostic 
models should consider the heterogeneity in clinical data, i.e. 
the existence of patient diversity presented in terms of risk of 
disease and responsiveness to treatment [22, 23]. This 
consideration will enable a prognostic model to identify 
possible subgroups of patients for which certain covariates do 
not influence their classification. The practical implications 
of such considerations are associated with the ability to 
customize the prognostic model for each subgroup of patients 
(e.g. expensive and/or potentially harmful tests may be 
avoided for particular subgroups). 

Rough Set Theory (RST) [24], a mathematical tool for 
representing and reasoning about vagueness and 
inconsistency in data sets, has been used in a number of 
applications dealing with modeling medical prognosis [15, 
16, 25-28]. For example, Tsumoto et al. [25], provide a 
framework to model medical diagnosis rules showing 
theoretically that the characteristics of medical reasoning 
reflect the concepts of approximation established in RST. 
Komorowski et al. [26], show that RST is useful to extract 
medical diagnosis rules to identify a group of patients for 
whom performing a test that is costly or invasive is redundant 
or superfluous in the prognosis of a particular medical 
condition. Recently, [28] highlighted features of RST for 
integrating into medical applications. For example, RST has 
the ability to handle imprecise and uncertain information and 
provides a schematic approach for analyzing data without 
initial assumptions on data distribution.  
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In our previous work [29], we proposed the use of RST to 
predict the life expectancy of terminally ill patients using a 
global reduction [30] methodology to identify the most 
significant attributes for building the classification model. 
However, we found that the number of attributes used in the 
model was barely reduced and therefore produced long 
decision rules. Moreover, considering the number of 
discretization categories associated with each attribute, the 
generated decision rules were built to describe each object in 
the training set and therefore, they were poorly suited for 
classifying new cases. 

Here, we propose the use of an alternative attribute 
reduction methodology that aims to identify groups of 
patients that share common characteristics that distinguish 
them from the rest of the patients. As a result, we obtain 
subgroups of patients from which different sets of significant 
attributes are identified. The decision rules generated in this 
manner contain fewer attributes and therefore are more 
suitable to classify new patients. Moreover, by studying each 
subgroup, we can reason about how a different rule-set is 
applied to a particular patient.  

The rest of the paper describes details of the proposed 
RST based methodology to provide a classifier that properly 
discriminates patients into two groups: those who survive at 
least 180 days after evaluation for hospice referral and those 
who do not. ROSETTA [31] software is used to perform the 
analysis described in the remainder of the paper. 

II. METHODOLOGY 

A. Data Set 

The dataset used in this study consists of the 9105 cases 
from the SUPPORT (Study to Understand Prognoses and 
Preferences for Outcomes and Risks of Treatments) 
prognostic model dataset [30]. We consider all variables used 
in the SUPPORT prognostic model [3] as condition 
attributes, i.e. the 10 physiologic variables along with the 
diagnosis groups, age, number of days in the hospital before 
entering the study, presence of cancer, and neurologic 
function. Data collection and patient selection procedures are 
detailed in [3]. Attributes names and descriptions are listed in 
Table I. As the decision attribute, we define a binary variable 
(Yes/No) “deceases_in_6months” using the following two 
attributes from the SUPPORT prognosis model dataset: 

• death:  represents the event of death at any time up to 
NDI date (National Death Index date: Dec 31, 1994). 

• D.time: number of days of follow up 

The values of the decision attribute are calculated 
converting the “D.time” value in months and comparing 
against the attribute “death” as follows: 

• If “D.time” < 6 months and “death” is equal to 1 (the 
patient died within 6 months) then “deceased_in_6months” is 
“Yes”. Otherwise, it is implicit that a patient survived the 6-
month period; hence, “deceased_in_6months” is “No”. 

B. Rough Set Theory Data Representation  

Based on RST, the data set is represented as: 

� ܶ ൌ ሺܷǡ �ܣ  ሼ݀ሽሻ� ����

where T, represents the dataset in the form of a table. Each 
row represents an object and each column represents an 
attribute. U is a non-empty finite set of objects and the set A 
is a non-empty finite set of attributes called the condition 
attributes. In our case, an object designates a terminally ill 
patient and an attribute a ӇA designates each of the fifteen 
condition attributes that describe a patient (Table I). For 
every attribute, the function a: UĺVa makes a 
correspondence between an object in U to an attribute value 
Va which is called the value set of a. The set T incorporates 
an additional attribute {d} called the decision attribute. The 
system represented by this scheme is called a decision 
system.  
 
C. Development of the Classification Model  

This process typically involves numerous steps, such as 
data preprocessing, discretization, reduction of attributes, rule 
induction, classification and interpretation of the results. 
Details on the data preprocessing and data discretization for 
this data set are described in [29]. The ultimate goal of this 
process is to generate decision rules, which are used to 
classify each patient as surviving or not surviving within the 
defined period of time. A decision rule has the form: if A then 
B (A ĺ B), where A is called the condition and B the decision 
of the rule.  

Here, we are focusing on an alternative method of 
reducing the attribute dimensions and identify different 
subgroups of similar patients in the data set. In [32], two 
types of reducts are defined: 

1) Global Reducts: 
 Consists of the minimal set of attributes that preserve the 

structure of the entire data set. A set B � A is called a global 
reduct if the indiscernibility relation using attributes ܤ�is 
equal to the indiscernibility relation using all the condition 
attributes ܣ, i.e.: 

ሻܤሺܦܰܫ ൌ  ,ሻǡ whereܣሺܦܰܫ

ሻܤሺܦܰܫ ൌ ሼ൫ݑǡ ൯ݑ א� ܷଶǣܽ��� א� ǡܤ �୩ሺ�୧ሻ ് �୩൫�୨൯ሽ 
 As an example, consider the following global reduct 

obtained from the data set containing 12 condition attributes: 

TABLE I. CONDITION ATTRIBUTES

Name Description 
alb Serum albumin 
bili Bilirubin 
crea Serum creatinine 
hrt Heart rate  
meanbp Mean arterial blood pressure  
pafi Arterial blood gases  
resp Respiratory rate  
sod Sodium 
temp Temperature (Celsius) 
wblc White blood cell count  
dzgroup Diagnosis group 
age Patient’s age 
hday Days in hospital at study admit 
ca Presence of cancer 
scoma SUPPORT coma score based on Glasgow coma 

scale 
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G_RED = {age, dzgroup, scoma, ca, meanbp, wblc, hrt, resp, 
temp, bili, crea, sod} 

Using G_RED, few patients will have exactly the same 
attribute-value combinations because the number of 
discretization categories associated with each attribute is 
high. Thus, the decision rules generated are too specific to the 
cases in the training set and therefore may not be able to 
classify new cases accurately. Moreover, the fact that global 
reducts represent the entire data set makes it difficult to 
detect the presence of heterogeneous groups in the data 
meaning that the causes of diversity between the patient 
outcomes will remain unknown. 

2) Object related reducts (ORR): 
 Represents the minimal attribute subsets that discern an 

object ݑ� א ܷ from the rest of objects belonging to a different 
decision class. Mathematically, an ORR ܴ௨ ك  is defined ܣ
as: 

ݑ� א �ܷ  �݀ሺݑሻ ് ݀൫ݑ൯ �֜ ܽ� א� ܴ௨ǣ ܽሺݑሻ ് ܽ൫ݑ൯ǡ
ݑ�݁ݎ݄݁ݓ �്   .�ݑ

An ORR is the minimal and vital information that is used 
to partition the universe of objects into smaller, homogeneous 
subgroups, where objects within a subgroup are related by 
means of information described by the ORR. Decision rules 
generated by this scheme will usually contain fewer attributes 
and are more suitable to classify new cases. Some decision 
rules contain a different set of attributes applicable for a 
particular subgroup of patients. 

III. RESULTS  
The two methods for dimensionality reduction produce a 

set of reducts. The number of reducts and decision rules 
obtained are presented in Table II. Based on the decision 
rules generated, patients are classified as surviving or not 
surviving the six-month period. A standard voting algorithm 
[30] is used for this purpose. Table III, presents the 
performance of two classification models based on each type 
of reduct generation described. The performance of each 
classification model is represented in terms of sensitivity, 
specificity, Area under the Receiver Operating Characteristic 
curve (AUC) and coverage of the model. A 5-fold cross 
validation procedure was applied to estimate the performance 
of each classification model, where, the entire data set is 
randomly divided into five subsets (folds). Then, each fold 
(20% of the data set) is used once as a testing set, while the 
remaining folds (80%) are used for training. The process is 
repeated five times and the results are averaged to provide an 
estimate for the classifier performance. 

Compared to the Global reduct approach, the ORR approach 
has enhanced the classification performance in terms of AUC 
and sensitivity. Moreover the decision rules generated are 
able to classify all new cases.  

IV. DISCUSSION 
Analyzing the information obtained from the ORR, we 

can identify groups of patients for whom it is possible to 
evade costly, invasive or even unnecessary tests required by 
the prediction model. For example, the following two ORRs 
generate rules independent of the Pafi score (associated with 

the patient’s blood gases), without reducing the classification 
accuracy. The importance of such finding becomes apparent 
considering that in clinical practice Pafi is not collected 
routinely for patients outside the Intensive Care Unit (ICU). 

x ORR = {Age, dzgroup, meanbp} generates the 
following decision rules: 

o if age= [45, 60) AND dzgroup = (Lung Cancer) 
AND meanbp=[60, 70) then: Survive = 22.86%,  
Die = 77.14%. 

o if age= [45, 60) AND dzgroup = (CHF) AND 
meanbp=[100, 120) then: Survive = 82.93%,  Die = 
17.07%. 

o if age= [70, 75) AND dzgroup = (COPD) AND 
meanbp=[80,100) then: Survive = 84.21%,  Die = 
15.79%. 

x ORR = {Age, dzgroup, hrt, crea} generates the 
following decision rules: 

o if age= [45, 60) AND dzgroup = (CHF) AND 
hrt=[100,110) and  crea[1.95, *] then: Survive = 
83.33%,  Die = 16.67%. 

o if age= [75,85) AND dzgroup = (CHF) AND 
hrt=[50,110) and  crea[0.5, 1.5) then: Survive = 
82.19%,  Die = 17.81%. 

Consequently, the use of Pafi test in patients that belong to 
one of those groups defined by the ORR’s will not improve 
the prognostication accuracy. 

Our approach demonstrates features that make it 
particularly suitable for use in clinical decision-making.  It is 
a patient-centric methodology which is able to predict 
without the use of unnecessary, expensive and/or invasive 
procedures for certain subgroups of patients. Consequently, 
selection of attributes upon which a decision is to be made is 
critical to minimizing healthcare costs and maximizing the 
quality of patient care. Finally, considering that more than 
one ORR could discern each patient, the information 
acquired offers several options dependent on the attribute 
values available for each individual patient. 

V. FUTURE WORK 
The number of ORR and the decision rules generated 

depends on the number of condition attributes and its 
categories. For clinical datasets, which contain large 
numbers of condition attributes, the number of ORRs and 
decision rules generated can be extremely large to be 

TABLE III. CLASIFICATION RESULTS – GLOBAL VS. ORR 

Method Sensitivity Specificity AUC Coverage 
Global reducts 73.67% 44.05% 61.8% 86.43% 

ORR 86.92% 39.2% 71.9% 100% 
 

TABLE II. NUMBER OF REDUCTS AND DECISION RULES 
GENERATED – GLOBAL VS. ORR 

Method Number of reducts Number of rules 
Global reducts 99 647,223 
ORR 11,894 68,492 
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evaluated directly by human experts. Therefore, the 
interpretation and analysis of the ORRs and their decision 
rules requires the use of a well-defined methodology.  

 
Compared to our previous work [29], the results presented 

in this paper show an improvement in the classifier 
performance. However, further research need to be 
conducted in order to achieve a reliable prognostic model.  
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Abstract

Objective: The goal of this paper is to explore and evaluate the application of classical
and dominance-based Rough Set Theory (RST) for the development of data-driven prognostic
models for hospice referral. In this work, rough set based prognostic models are compared with
other data-driven methods with respect to two factors related to clinical credibility: accuracy and
accessibility.

Methods: We utilize retrospective data from 9,103 terminally ill patients to demonstrate the
design and implementation of classical and dominance-based RST classification models to iden-
tify potential hospice candidates. The classical rough set approach (CRSA) provides methods
for knowledge acquisition, founded on the relational indiscernibility of objects in a decision sys-
tem, to describe required conditions for membership in a concept class. On the other hand, the
dominance-based rough set approach (DRSA) analyzes information based on the monotonic re-
lationships between condition attributes values and their assignment to the decision class. CRSA
decision rules for six-month patient survival classification were induced under the classical rough
set approach using the MODLEM algorithm. Dominance-based decision rules were extracted
from the dataset utilizing the VC-DomLEM rule induction algorithm.

Results: The RSA classifiers are compared with other predictive and rule based decision
modeling techniques by examining the accuracy and accessibility of the models. Accessible
prognostic models provide traceable, interpretable results and use reliable data. Both classical
and dominance-based RSA classifiers perform comparably in accuracy to other common classifi-
cation methods, while providing significant advantages in terms of traceability and interpretabil-
ity of the model.

Conclusions: This paper contributes to the growing body of research in RST-based prog-
nostic models. RST and its extensions posses features that enhance the accessibility of clinical
decision support models. Developing prognostic models for hospice referrals is a challenging
problem resulting in substandard performance for all of the evaluated classification methods.

Keywords: rough set theory, dominance-based rough set approach, hospice referral, prognostic
models
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1. Introduction

Hospice care reduces the emotional burden of illness on terminal patients by optimizing pain
relief strategies [1] and provides a demonstrated, cost-e↵ective increase in the quality of end-of-
life care when compared to conventional programs [2]. This increase in quality of care elevates
the quality of life of both patients and their families [3].

The advantages of hospice care are diminished for terminally ill patients who enter either
prematurely or too late. In general, premature hospice referral represents a lost opportunity for
the patient to receive potentially e↵ective and life-prolonging treatment. Conversely, late hospice
referral is not desirable and negatively impacts both the quality of end-of-life care and the quality
of life of patients and their families [4, 5]. According to Medicare regulations, patient eligibility
for hospice care is contingent upon a life expectancy of less than six months, as estimated by the
attending physician and certified by the medical director of the hospice program [6]. Medicare
claims data report that 14.9% of hospice care patients lived for more than 180 days after enroll-
ment, while 28.5% were late referrals who died within 14 days [4, 6]. Accurate prognostication
of life expectancy is crucial in end-of-life care decisions and is consequently of vital importance
for patients, their physicians and their families.

Prognostic models are an important instrument in prognostication as, in conjunction with
direct physician observation, they increase the accuracy of prognostication when compared to
physician observation alone [7]. However, a significant barrier to the widespread practical use of
prognostic models is their perceived lack of clinical credibility [8].

The objective of this work is to explore and evaluate the application of rough set approaches
in the development of data-driven prognostic models with respect to two criteria essential to
clinical credibilty: accuracy and accessibility. To this end, we will explore Rough Set Theory as
it is applied to end-of-life care and hospice referral decision support models.

This paper is organized as follows: in Section 2 we present important features of clinically
credibile prognostic models and other characteristics of clinical data sets that motivate the use of
Rough Set Theory (RST). In Section 3.1, we present an overview of the fundamental theory of
rough sets for analyzing datasets, and in Section 3.2 we present a similar overview of the theory
of the Dominance-based Rough Set Approach (DRSA). In Section 3.3 we discuss the use of de-
cision rules in conjunction with the rough set approaches. Section 3.4 describes the dataset used
for the demonstration of the proposed prognostic models. Section 3.5 presents the development
of the prognostic models, followed, in Section 3.6, by an overview of the performance evalua-
tion methods used in this study. Finally, Sections 4, 5, and 6 report results and conclusions, and
discuss limitations and future directions of our work.

2. Motivation

The objective of a prognostic model is to determine quantitative or symbolic relationships
between covariates and a health-related outcome. In the case of life expectancy estimation, prog-
nostic models improve the accuracy in critical clinical decisions and are shown to be superior
to physicians’ prognostication alone [9]. Models for estimating the life expectancy of termi-
nally ill patients include the use of statistical and probabilistic methods [10–18], artificial intelli-
gence techniques such as neural networks and support vector machines (SVM) [19–21], decision

IThe authors declare no conflicts of interest.
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trees [22, 23] and rough set methods [24, 25]. Survival models [6, 12, 14, 16, 18, 22, 23] fo-
cus on estimating the probability that a patient will survive a finite period of time. Classification
models, based on methods such as neural networks, SVM and logistic regression [17, 19–21, 26],
represent the survival outcome as a binary variable, predicting the status of a patient at a critical
point in time (e.g. six months) by classifying the patient as surviving or not surviving the critical
time frame.

A recent review [15] demonstrated that, despite the importance of accurate prognostication
within the spectrum of medical care objectives, there is a lack of accessible and accurate prog-
nostic models available to physicians in practice. To withstand clinical trials, and to meet the
needs of physicians and patients, a prognostic model must have clinical credibility, meaning that
the model must posses a high level of accuracy and accessibility for physicians to believe in the
value of the model as a prognostic tool. That is, in addition to accurate prognostication, such a
model should be traceable in its structure, meaning the “model’s structure should be apparent and
its predictions should make sense to the doctors who will rely on them” [8]. Likewise, the model
should provide interpretable results that facilitate explanation of the prognosis, the data required
for the model must be relevant and simple to collect with high reliability, and physicians must be
able to apply the modeling method correctly without violating the fundamental assumptions of
the model.

Clinical datasets present unique challenges that must also be addressed when building data-
driven prognostic models. Cios and Moore [27] argue that there are a number of features specific
to medical data that result from the volume, heterogeneity and complexity of data that lack
canonical form and are limited by significant ethical, legal and social constraints. Furthermore,
the underlying conceptual structures of medicine are not easily formalized mathematically, as
the medical field lacks the necessary constraints for the mathematical characterizations common
to the physical sciences. As a result, many medical concepts are vaguely defined [28]. Addition-
ally, ethical, legal and societal concerns greatly a↵ect the framework under which medical data
may be used. The current US model encourages the use of de-identified, minimal risk medical
data for research purposes, specifically data collected during routine treatment of patients. It is
common for medical data collected in such a way to contain redundant, insignificant, incomplete
or inconsistent data objects.

Rough Set Theory [29] is a mathematical tool for data analysis that has been used to address
vagueness and inconsistencies present in datasets [30]. RST provides a systematic approach for
analyzing data without implicit assumptions about relationships between covariates, an advan-
tage that makes RST suitable for integration into medical applications [31]. RST operates on
discretized numerical or symbolic data, and the information extracted from the dataset can be
represented in the form of “if–then” decision rules—an intuitive representation that o↵ers signif-
icant advantage over “black box” modeling approaches [32] and that increases accessibility and
thus clinical credibility.

In the medical field, applications of RST focus mainly on the diagnosis and prognostication
of diseases, where it has been demonstrated that RST is useful for extracting medical prognostic
rules using minimum information. Tsumoto [33] argues that the concepts of approximation
established in RST reflect the characteristics of medical reasoning, explaining why RST performs
well in the medical field. For example, RST can be used to highlight non-essential prognostic
factors in a particular diagnosis, thus helping to avoid redundant, superfluous or costly tests [34–
38]. Recently, methods that combine survival analysis techniques and RST have been used to
generate prognostic rules that estimate the survival time of a patient [24, 25].

3
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3. Methods and Materials

3.1. Classical Rough Set Approach (CRSA)
Rough Set Theory, introduced by Pawlak in [29], provides methods for knowledge reduction

by exploiting the relational indiscernibility of objects in an information system. Central to RST is
the notion that an observed object has a certain amount of information associated with it. When
considered in relation to a cohort of observed objects, this information is used to group similar
objects into information granules. Together, the information provided by the set of observed
objects can be generalized to describe the conditions required for membership in a concept class.

3.1.1. Notation
The methods of classical RST, hereafter referred to as the CRSA, act upon an information

system of the form S = (U, A,V, f ), where U is a non-empty finite set of objects, called the
universe. A = C [ {d} is a set of attributes that describe a given object in U, comprised of a set
C of condition attributes and an optional decision attribute d. When d is present, the information
system is a decision system, and is typically presented in table form. The set of all values, V ,
contains the value sets Va, for every attribute a 2 A. Given an object x 2 U, f : U ⇥ A! V maps
the condition attribute of object x to its associated value v = f (x, a) 2 Va. A value attribute pair
(a, v) for a given object is referred to as a descriptor.

In the CRSA, a data requirement is that the attribute values must be in discrete or categorical
form. Table 1 provides an example of a discretized decision table, where six prognostic factors,
as the condition attributes, describe seven patients. The decision attribute, presence of coronary
disease in the patient, is represented by the binary attribute d ! {Yes,No}.

Once discretized, the objects in a decision table can be grouped according to their descriptors.
For example, patients x5 and x6 have the same attribute values and are thus indiscernible from
each other. In general, two objects xi, x j 2 U are indiscernible with respect to a set of condition
attributes B ✓ C if f (xi, a) = f (x j, a) 8a 2 B. This relation is called an indiscernibility relation,
given by R(B) = {(xi, x j) 2 U : 8a 2 B, f (xi, a) = f (x j, a)}.

For example, the patients in Table 1 can be separated into four groups according to the indis-
cernibility relation R(C) : X1 = {x1}, X2 = {x2}, X3 = {x3, x4, x7}, X4 = {x5, x6}. These groups of
objects are referred to as equivalence classes, or conditional classes for B ✓ C. An equivalence
class for the decision attribute is called a decision class or concept, and in this example there are
two groups: YNo = {x1, x2, x3} and YYes = {x4, x5, x6, x7}. The equivalence class specified by the
object xi with respect to R(B) is denoted as [xi]B.

3.1.2. Set approximations
The goal of the CRSA is to provide a definition of a concept according to the attributes of the

equivalence classes that contain objects that are known instantiations of the concept. As such, in
a consistent decision table, membership in a conditional class implies membership in a particular
decision class. In Table 1, x 2 X4 implies x 2 YYes. Membership in X3, however, does not imply
YYes as x4, x7 2 YYes but x3 2 YNo. Thus Table 1 is inconsistent as d(x4, x7) , d(x3).

To represent an inconsistent decision table, the CRSA establishes an upper and lower ap-
proximation for each decision class, Y . The lower approximation is comprised of all objects that
definitely belong to Y , while the upper approximation includes all objects that possibly belong
to Y . It can be said that an object xi definitely belongs to a concept Y if [xi]C ✓ Y and that xi
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possibly belongs to a concept Y if [xi]C \ Y , ;. Thus, the lower and upper approximations are
defined as follows:

RB(Y) = {x 2 U : [x]B ✓ Y} =
[

{[x]B : [x]B ✓ Y}

RB(Y) = {x 2 U : [x]B \ Y , ;} =
[

{[x]B : [x]B \ Y , ;}
RB(Y) � RB(Y) = BNDB(Y)

The boundary region, BNDB(Y), contains those objects that possibly, but not certainly, belong
to Y . Conversely, the set U � RB(Y) is the outside region containing those objects that certainly
do not belong to Y . In our example, the lower and upper approximations for YYes are RC(YYes) =
X4 = {x5, x6} and RC(YYes) = X4 [ X3 = {x3, x4, x5, x6, x7}, and the boundary region contains the
objects BNDB(YYes) = {x3, x4, x7}.

3.1.3. Reducts in the CRSA
Within a decision system, not all of the condition attributes may be required to define object-

concept allocation. If, for an attribute subset B ✓ C, the indiscernibility relation RB = RC , then
the set approximations remain the same, the structure of the decision system is preserved and
the attributes in C � B are said to be dispensable. There may be many such subsets, but if B is
minimal (does not contain any dispensable attributes), then B is termed a reduct. {Age, Smoker}
and {SystBP, HDL} are two such reducts from our example decision table.

3.2. Dominance-Based Rough Set Approach (DRSA)
Under the DRSA [39] the relations between objects are no longer made by the indiscerni-

bility relation as described in the CRSA [29]. Instead, the DRSA allows ordinal attributes with
preference-ordered domains when a monotonic relationship exists between the attribute and the
decision classes, for example when a “better” or “worse” value of an attribute leads to a “better”
or “worse” decision class.

3.2.1. Overview of the DRSA
A decision table in the DRSA is expressed in the same way as the CRSA. To di↵erentiate

between attributes with and without preference order domains, those with a preference order are
called criteria while those without are referred to as attributes, as in the CRSA.

In the DRSA the domain of criteria a 2 A is completely preordered by the outranking relation
⌫a, representing the preference order of the domain. The outranking relation is also applicable
for comparing two objects such that for xi, x j 2 U, xi ⌫a x j means that xi is at least as good as
(outranks) x j with respect to the criterion a 2 A.

Commonly, the domain of a criteria a is a subset of real numbers, Va ✓ R and the outranking
relation is then a simple order “�” on real numbers such that the following relation holds: xi ⌫a
x j , f (xi, a) � f (x j, a). This relation is straightforward for gain-type criteria (the more, the
better), and can be easily reversed for cost-type criteria (the less, the better).

Using Table 1 as an example, the decision class d is preference-ordered such that a positive
diagnosis of coronary disease is assumed to be the “preferred” decision class. Criterion prefer-
ence relations are then organized in the direction of the decision class; values which generally
contribute to the incidence of coronary disease are preferred over those which indicate lower
risk. For the criteria in Table 1, higher values are preferred to lower values—as in the case of

5
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Age, SystBP, and HDL—and “Yes” is preferred to “No”—as in the case of Smoker and Diabetic.
No such preference relation exists for Gender; as such, it is considered an attribute.

Let T = {1, . . . , n} represent the domain Vd of the decision class d, by which the decision
system is partitioned into n classes Y = {Yt, t 2 T }, where Yt = {x 2 U : f (x, d) = t}. Then, each
object x 2 U is assigned to one and only one class Yt. The decision classes are preference-ordered
according to the decision maker, where the class indices represents the order of preferences, i.e.
for all r, s 2 T such that for r � s the objects from class Yr are strictly preferred to the objects
from class Ys.

Upward and downward unions of classes are defined as:

Y�t =
[

s�t

Ys and Yt =
[

st

Ys, s, t 2 T

For any pair of objects (xi, x j) 2 U, xi dominates x j with respect to a set of condition attributes
P ✓ C, denoted by xi DP x j, if the following conditions are satisfied simultaneously:

xi ⌫q x j, for all critera q 2 P
f (xi, a) = f (x j, a), for all attributes a 2 P

The dominance relation defines two sets called dominance cones, where for each xi 2 U:

D+P(xi) = {x j 2 U : x j DP xi}, representing the set of objects that dominates xi

D�p(xi) = {x j 2 U : xi DP x j}, representing the set of objects dominated by xi

Considering the dominance cones, the lower and upper approximations of the union of de-
cision classes are defined as follows. The lower approximation RP(Y�t ) represents objects that
certainly belong to Y�t , such that there is no other object that dominates x and belongs to a de-
cision class inferior to Y�t . Similarly, the lower approximation RP(Yt ) represents objects that
certainly belong to Yt , with no other object dominated by x and belonging to a decision class
superior to Yt . The upper approximations represent objects that possibly belong to one of the
upward or downward unions of decision classes.

RP(Y�t ) =
n

x 2 U : D+P(x) ✓ Y�t
o

RP(Y�t ) =
[

x2Y�t

D+P(x) =
n

x 2 U : D�P(x) \ Yt , ;
o

RP(Yt ) =
n

x 2 U : D�P(x) ✓ Yt
o

RP(Yt ) =
[

x2Yt

D�P(x) =
n

x 2 U : D+P(x) \ Y�t , ;
o

Similar to the CRSA, the boundary regions are defined as:

BNDPY�t = RP(Y�t ) � RP(Y�t )

BNDPYt = RP(Yt ) � RP(Yt )

Using our example decision table, Table 1, and considering the full set of condition attributes,
it can be seen that x4 DC x3, and furthermore D+C(x4) = {x3, x4, x7}, D�C(x4) = {x3, x4, x7}. Con-
sidering the dominance cones for all patients, the lower and upper approximations of the union
of decision classes are RC(Y�Yes) = {x5, x6}, RC(Y�Yes) = {x3, x4, x5, x6, x7}, RC(YNo) = {x1, x2},
RC(YNo) = {x1, x2, x3, x4, x7} and the boundary regions are BNDCY�Yes = BNDCYNo = {x3, x4, x7}.
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3.2.2. The variable consistency DRSA
The variable consistency DRSA (VC-DRSA) allows the decision maker to relax the strictness

of the dominance relation, thus accepting a limited number of inconsistent objects in the lower
approximation, according to a consistency level threshold, l 2 (0, 1]. In practice, by selecting a
consistency level l, a patient x 2 U becomes a member of a given decision class if at least l⇤100%
of the patients dominating x also belong to that decision class. By allowing inconsistencies, the
VC-DRSA avoids over fitting the training set and thus may be more e↵ective in classifying new
cases.

The lower approximations of the VC-DRSA-based model are represented as follows:

Rl
P(Y�t ) =

(

x 2 Y�t :
|D+P(x) \ Y�t |
|D+P(x)| � l

)

Rl
P(Yt ) =

(

x 2 Yt :
|D�P(x) \ Yt |
|D�P(x)| � l

)

Continuing the example from Section 3.2.1, setting l = 0.6 moves the objects x4 and x7,
previously included in the upper approximation RC(Y�Yes), to the lower approximation of class
Y�Yes, i.e: R0.6

C (Y�Yes) = {x4, x5, x6, x7}. This follows from |D+C (xi)\Y�t |
|D+C (xi)| =

2
3 � l, for i = 4, 5, 6, 7.

3.2.3. Reducts in the VC-DRSA
For every subset of attributes P ✓ C, the quality of approximation of the decision classes

Y with respect to the attributes P, �P(Y), is defined as the proportion among all objects in U
of objects consistently defined with respect to the attributes P and the decision classes Y . Each
subset P ✓ C such that �P(Y) = �C(Y) is termed a reduct for both the VC-DRSA and DRSA.
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The subset of attributes {SystBP, HDL} is an example of such a reduct since �S ystBP, HDL(Y) =

�C(Y).

3.3. Decision rules
There are a number of methods available for induction of decision rules from the lower or

upper approximations of the decision classes [40–42] or from reducts extracted from the decision
table [43]. The rule induction methods used in this study are described in Section 3.5.1. Once
decision rules have been induced, the collection of these rules can then be used to classify unseen
objects—in the case of our example table, a new patient who may have cardiac disease.

In the CRSA, a decision rule has the form if A then B, or A ! B, where A is called the an-
tecedent and B the consequent of the rule. The antecedent is a logical conjunction of descriptors
and the consequent is the decision attribute or attributes suggested by the rule. For example,
a CRSA decision rule induced from object x1 from our example in Table 1 using the reduct
{Age, S moker} would be: if Age = H and Smoker = No then Coronary Disease = No.

Formally, in the CRSA, a decision rule, generated from an object x0 with respect to a set of
condition attributes, B ✓ C, is expressed as

if
^

i

⇣

f (x, ai) = x0ai

⌘

then x 2 Yx0
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where ai 2 B is an attribute found in the attribute set B, and x0ai
2 Vai and Yx0 are the attribute

values and decision class, respectively, of object x0.
In the DRSA, decision rules are induced from the lower approximations and the boundaries

of the union of decision classes. From the lower approximations, two types of decision rules are
considered. Decision rules generated from the P-lower approximation of the upward union of
decision classes Y�t are described by

if
^

i

�

f (x, bi) � rbi

�

^

0

B

B

B

B

B

B

@

^

j

⇣

f (x, a j) = ra j

⌘

1

C

C

C

C

C

C

A

then x 2 Y�t

where bi 2 P are criteria, a j 2 P are attributes, rbi 2 Vbi and raj 2 Vaj . Decision rules generated
from the P-lower approximation of the downward union of classes Yt are described by

if
^

i

�

f (x, bi)  rbi

�

^

0

B

B

B

B

B

B

@

^

j

⇣

f (x, a j) = raj

⌘

1

C

C

C

C

C

C

A

then x 2 Yt

where bi 2 P are criteria, a j 2 P are attributes, rbi 2 Vbi and ra j 2 Vaj . The boundaries BNDPY�t
and BNDPYt generate the following rules

if
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C
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then x 2 Y�t [ Yt

where bi, b j 2 P are criteria, ak 2 P are attributes, rbi 2 Vbi , rbj 2 Vbj and rak 2 Vak (note i and j
are not necessarily di↵erent).

From our example in Table 1, the information from objects x1 and x2 2 RC(YNo) yields the
following rule: if SystBP  H and HDL  L then Coronary Disease = No.

3.4. Dataset description
3.4.1. SUPPORT dataset

The dataset used in this study is the SUPPORT (Study to Understand Prognoses and Pref-
erences for Outcomes and Risks of Treatments) prognostic model dataset [44], a study of 9,105
terminally ill patients. SUPPORT enrolled patients, 18 years or older, who met specific criteria
for one of nine serious illnesses, who survived more than 48 hours but were not discharged within
72 hours. Patients were followed such that survival and functional status were known for 180
days after entry. The result of the SUPPORT study is a prognostic model for 180-day survival
estimation of seriously ill hospitalized adults based on cubic splines and a Cox regression model.
Given the inclusion criteria (described in full in Appendix 1 of [12]), the dataset is ideal for the
present research in regards to clinical applicability, completeness of data, and comparability of
results.

We consider as condition attributes the variables used in the SUPPORT prognostic model
equation [12] to ensure consistency. The SUPPORT variables include ten physiologic variables
in addition to the diagnosis groups, age, number of days in the hospital before entering the study,
presence of cancer, and neurologic function as recorded in the SUPPORT data. Attribute names,
descriptions and value ranges are listed in Table 2.

The median survival time for the patients in the study is 223 days. Figure 1 shows the
distribution of patients with respect to number of days until death. The SUPPORT study inclusion
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criteria was designed to include patients with 50% risk of death at 180 days; as seen in Table 2
death prior to 180s was observed in approximately 47% of patients.

General observations regarding the influence of condition attributes can be made by analyzing
the distribution of time until death by attribute. For example, the box-whisker plot in Figure 2
shows that a significant portion (75%) of patients with coma or multi-organ system failure with
malignancy (MOSF w/Malig) do not survive longer than 180 days, but patients with congestive
heart failure (CHF) or chronic obstructive pulmonary disease (CPD) tend to live longer than 180
days.

Note, also, that several dzgroup categories have a number of outliers, represented by circles
in Figure 2. Whereas the information from these patients would be lost in a regression model,
the RSA-based methods retain the information from these patients in the rule-generation and
rule-application process. Given the number of outliers presented, however, it is reasonable to
expect that a method that allows approximation (i.e. generalization) will be required to generate
meaningful decision rules.

3.4.2. Data preprocessing
In its published form, the SUPPORT dataset contains 9,105 cases. Missing physiological

attribute values are filled in with a standard fill-in value representing a normal physiological
response, as provided by the SUPPORT authors in [44]. It is also worth noting that in the SUP-
PORT study, a patient for whom it was not possible to establish a Glasgow coma score was
given a scoma value of zero. After missing data imputation, two cases are still incomplete; the
remaining 9,103 cases were considered in the development of the prognostic models.

3.4.3. Discretization
Discretization is the process by which appropriate categorical ranges are found for variables

with a continuous value range. This is a required step in the CRSA as the indiscernibility relations
are computed on categorical condition attributes. In general, this step is not required for the
DRSA, however in our study the chosen discretization method provides the necessary preference
order relations for the DRSA and ensures directly comparable rule sets for all evaluated rule-
based methods.

There are a number of methods available for unsupervised discretization that operate without
input from the decision maker and are based only on the information available in the data table.
In this work, however, discretization was primarily performed using the Acute Physiology and
Chronic Health Evaluation (APACHE) III Scoring System [11], a clinically accepted scoring sys-
tem designed to estimate the risk of death in ICU patients. In this sense, the use of the APACHE
III scoring system represents a research-validated, clinically appropriate, expert discretization
scheme. This choice is founded on the proposition that expert discretization via APACHE III
will result in medically and contextually relevant classification rules and data collection require-
ments, thus increasing the clinical credibility of the proposed prognostic model.

In addition, APACHE III scores are designed to increase monotonically with respect to risk of
death and thus provide the necessary preference relations for the DRSA. APACHE III scores for
any given variable are close to zero for normal or only slightly abnormal values of that variable
and increase according to increased severity of disease. For example, normal pulse rates of
50-99 bpm are given a score of 0, while elevated and lowered levels, 100-109 and 40-49 bpm
respectively, are both given a score of 5. Thus, higher APACHE III scores are preferred to lower
scores, as the higher scores indicate greater severity of disease and therefore greater risk of death
within six months (considered the positive diagnosis).
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For the rule-based methods considered in this study, the nine physiologic variables and the
age variable were transformed to their representative APACHE III scores. The remaining phys-
iologic variables not included in APACHE III—neurologic function, scoma, and blood gasses,
pafi—were discretized using clinically accepted categorizations [45, 46]. The variable hday was
discretized using the Boolean Reasoning Algorithm [47]. Table 3 shows the categories defined
in this process. Higher values of each of these variables are preferred to lower values.

3.5. Algorithms and implementation details
3.5.1. Rough set rule induction and classification

Decision rules were obtained using the MODLEM [40, 41] and VC-DomLEM [42] algo-
rithms for the induction of classical and dominance-based rough set rules. Both methods were
applied to the discretized SUPPORT dataset. As both the MODLEM and VC-DomLEM algo-
rithms generate a minimal set of decision rules using a minimal number of rule conditions, the
inclusion of MODLEM allows for an evaluation of the impact of accounting for the preference
order information.

Decision rules by sequential covering. The MODLEM and the VC-DomLEM algorithms utilize
a heuristic strategy called sequential covering [48] to iteratively construct a minimal set of min-
imal decision rules. The sequential covering strategy successively constructs a set of decisions
for each of the decision classes in a training set by selecting, at each iteration, the “best” decision
rule, after which the training objects described by the rule conditions are removed. Subsequent
iterations again select the best decision rule and remove the covered objects until reaching a
stopping criteria or until all of the objects in the decision class are described by a rule in the rule
set.

To ensure minimality, antecedent descriptors, called elementary conditions, of each rule are
checked at each iteration and redundant elementary conditions are removed. Similarly, redundant
rules are removed from the final rule set.

In both algorithms, decision rules are grown by consecutively adding the best available
elementary condition to the rule. CRSA elementary conditions are evaluated in the MOD-
LEM algorithm in terms of either the class entropy measure [49] or Laplacian accuracy [50].
Dominance-based elementary conditions are evaluated according to a rule consistency measure.
VC-DomLEM provides three such measures; in this study the rule consistency, ↵, of a proposed
rule, rYt , suggesting assignment to decision class Yt, is defined as

↵(rYt ) =

�

�

�

⇥

�(rYt )
⇤ \ Yt

�

�

�

�

�

�

⇥

�(rYt )
⇤

�

�

�

.

Here
⇥

�(rYt )
⇤

indicates the set of objects described by the elementary conditions in rYt . The
elementary condition, ec, that is selected for inclusion is that which leads to the highest rule
consistency measure ↵(rYt [ ec) when combined with the current set of elementary conditions
in the proposed rule. In the event of a tie, the elementary condition providing greatest coverage
of the new rule is selected, by

�

�

�

⇥

�(rYt [ ec)
⇤ \ Yt

�

�

�. The rule consistency measure, ↵, can also
be implemented in MODLEM to relax consistency requirements and allow more general rules
to be induced. For further details on the MODLEM and VC-DomLEM algorithms, the reader is
referred to [40–42].
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MODLEM algorithm for CRSA decision rules. CRSA decision rules were obtained using the
MODLEM algorithm as described in [40] and [41]. Decision rules were generated from the lower
approximations with a rule consistency level ↵ � m. The rule syntax follows the presentation in
Section 3.3.

VC-DomLEM algorithm for VC-DRSA decision rules. Dominance-based rules were obtained us-
ing the VC-DRSA as described in Section 3.2.2 and the VC-DomLEM algorithm as implemented
in jMAF [51]. VC-DomLEM decision rules were generated from the lower approximation of
each decision class. The syntax of the VC-DRSA decision rules is as shown in Section 3.3. Only
decision rules with confidence greater than the consistency level, ie. decision rules with ↵ � l,
are included in the classification model.

Parameter selection. In order to select the most appropriate models for comparison, the perfor-
mance of the rough set based models was evaluated for varying levels of rule consistency, m and
l, for the CRSA and VC-DRSA respectively. Classifier performance at a particular value of m or
l is dataset-dependent; however, in general, values close to one provide rule sets that are more
conservative in describing the training set objects, while values closer to zero provide rule sets
that are more general. Thus, to find the appropriate balance between strict, descriptive models
that are prone to overfitting and overly general models that provide little useful information, the
RSA models were evaluated at m, l = 0.1, 0.2, 0.4, 0.6, 0.8, 1.0.

Classification. For the RSA-based models, a standard voting process [47] is used to allow all
rules to participate in the decision process, arriving at a patient classification by majority vote.
Each rule is characterized by two support metrics. The left hand side (LHS) support is the
number of patients in the table whose attributes match the antecedent, while the right hand side
(RHS) support indicates the number of patients matching the consequent of the rule. For a new,
unseen patient, any rule whose antecedent descriptors match the patient descriptors “fires” by
contributing as votes the RHS support for each decision class. Once all rules have “voted”, the
number of votes for each decision class is normalized against the total number of LHS support
for all fired rules. The resultant ratio of RHS to LHS support is considered a frequency-based
estimate of the probability that the patient belongs to the given decision class.

A final classification is therefore determined according to a threshold value, ⌧ 2 [0, 1]. A
patient is classified as not surviving six months if the estimated probability of death in six months
is greater than ⌧. In the event of an estimated probability equal to ⌧, or in the absence of any fired
rules (no rule matches the patient profile), classification is not possible and the patient is labeled
undefined.

3.5.2. Comparative methods
To evaluate the performance of the RSA-based prognostic models, logistic regression, SVM,

C4.5, and random forests were applied to the non-discretized SUPPORT dataset. Logistic re-
gression was selected for its popularity in survival analysis and clinical settings [18, 52].

Support vector machines, originally presented in [53], find separating boundaries between de-
cision classes after input vectors are non-linearly mapped into a high dimensional feature space.
Support vector machines have been investigated in survival analysis applications [54] as they—
similar to the RSA-based methods—automatically incorporate non-linearities and do not make
a priori assumptions about factor interactions. SVM-based models are known to perform well at

11

Appendix E (continued)

51



classification tasks, however they do not provide clinician-interpretable justification for their re-
sults [55]. Support vector machines were selected to evaluate whether the increased accessibility
of the RSA-based methods involves a trade-o↵ in accuracy.

C4.5 is a well known algorithm for generating a decision tree using information entropy to se-
lect the best splitting criteria at each node [56]. A decision tree built by C4.5 can be expressed as a
set of if-then decision rules, thus providing a comparative decision rule based method. To ensure
directly comparable rule sets, C4.5 was applied to the discretized SUPPORT dataset. However,
as C4.5 provides methods for selecting appropriate cut-points in continuous attributes [57], a
second model was also generated from the non-discretized data set.

Random forests is a popular ensemble classification method based on decision trees [58].
The random forests algorithm builds an ensemble of decision trees, where each tree is built on
bootstrap samples of training data with a randomly selected subset of factors.

Each of these methodologies were applied to the non-discretized data set using the software
package Weka 3.6.9 [59], with default parameters.

3.6. Performance evaluation methods
The performance of the models was tested by measuring the discriminatory power of both the

m- and l-consistent decision rules sets when applied to the reserved testing data. For our notation,
a classification of d.6months = Yes is referred to as a positive classification, and d.6months = No
is negative. Sensitivity is defined as the fraction of patients who did not survive six months and
are correctly classified by the model, or the fraction of true positive classifications of all test
patients who did not survive six months. Conversely, specificity is defined as the fraction of
patients who did survive six months and were correctly classified by the model, or the fraction
of true negatives of all test patients who did survive six months.

The overall accuracy of the classification models is reported in terms of area under the Re-
ceiver Operating Characteristic (ROC) curve, or AUC (area under the curve). The ROC curve
graphs the sensitivity of the classifier, or the true positive rate, versus 1 � specificity, the false
positive rate, as the threshold probability, ⌧, for positive classification is varied from 0 to 1. The
best overall classification performance is realized when AUC is equal to 1, while an AUC of
0.5 indicates a classifier performance no better than random selection. Best separation between
decision classes is realized at the threshold corresponding to the point on the ROC curve closest
to the point (0, 1).

In order to select the most appropriate CRSA and VC-DRSA-based models for compari-
son, two performance issues related to the generated rule set were considered. The coverage of
the classification model—i.e. the percentage of testing set patients for whom a classification is
possible—for each m and l level was evaluated prior to selecting an appropriate level. To evaluate
the number of rules that would fire for an unseen patient, we also collected information on the
number of rules matching each test case patient for the evaluated levels of m and l.

Cohen’s Kappa coe�cient was computed for both the selected RSA-based models and the
comparative models [60]. Cohen’s Kappa coe�cient is designed to measure the agreement be-
tween two classification methods, but it is commonly used to measure model performance by
comparing a classifier with a random allocation of patients among the decision classes. A value
of zero indicates classification accuracy equivalent to chance (zero disagreement).

To assess for significant di↵erences in terms of AUC between the RSA-based methods and
the aforementioned classification approaches, we applied the Wilcoxon Signed-Rank test [61].
The Wilcoxon Signed-Rank test is a non-parametric paired di↵erence test that in this case is
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used to compare the performance of two classifiers by considering pairs of their AUC values
over repeated runs.

4. Results

This section presents the results obtained using the CRSA, the VC-DRSA, logistic regres-
sion, SVM, C4.5 and random forests models for six-month life expectancy prognostication of
terminally ill patients. The results are analyzed and compared.

To evaluate the performance of the prognostic models, a 5-fold cross validation procedure [62]
was applied to repeatedly select training and testing sets. Cross validation is well known to pro-
vide a reasonable estimate of the generalization error of a prediction model. In 5-fold cross
validation, the entire dataset is randomly divided into five subsets, or folds, and then each fold
(20% of the dataset) is used once as a testing set, with the remaining folds (80%) used for train-
ing.

In order to select appropriate m and l values for the CRSA and VC-DRSA-based models,
respectively, the performance of these models was evaluated first. AUC and coverage for each
evaluated m and l level are shown in Table 4. Figures 3 and 4 display the number of rules that
fire for each patient in the five testing folds for each m and l value. Based on these results,
m = l = 0.6 was chosen as the rule consistency parameter for both CRSA and VC-DRSA-based
classifiers for further evaluation with the comparative methods.

Table 5 describes the number of rules and the number of descriptors in each rule for the
two rough set approach-based classifiers at the selected consistency level of 0.6. The average
number of CRSA decision rules in the five rule sets generated by cross validation is 773 rules,
with mean and maximum length of 3.65 and 8 descriptors, respectively. The VC-DRSA decision
rules are on average slightly longer, with mean and maximum length of 6.85 and 13 elementary
conditions, respectively. The mean total number of VC-DRSA rules is 1,095 rules.

The performance of all of the evaluated classification models is shown in Table 6, where
Cohen’s kappa coe�cient [60] and AUC are reported for each classifier. Highest average kappa
coe�cient was achieved by VC-DRSA and logistic regression at ̄ = 0.35. The random forest
and C4.5 (using the pre-discretized SUPPORT data set) models obtained ̄ = 0.33. The CRSA
classifier and SVM approach achieved ̄ = 0.32, followed by C4.5 (developed using the non-
discretized SUPPORT data set) at ̄ = 0.31.

The results of the Wilcoxon Signed-Rank test are presented in Table 7. Each table entry
shows the p-value for the null hypothesis that there is no di↵erence in the AUC between each
pair of classifiers, when compared individually with the CRSA and VC-DRSA-based models.

5. Discussion

All of the methodologies show fair classification accuracy given that Kappa coe�cients are in
the range of 0.20 to 0.40 [63]. The results presented in Table 7 show no significant di↵erences in
the AUC when comparing the CRSA and VC-DRSA against the rest of the classification methods
at a significance level of 0.05.

Clearly, m and l are critical values in determining model performance for both the CRSA
and VC-DRSA. Together, Table 4 and Figures 3 and 4 demonstrate that selecting m = l = 0.6
balances the accuracy and coverage achieved by the rough set based classifiers against the amount
of inconsistency allowed in each.
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5.1. Interpretation and usability of decision rules
Clinical credibility in prognostic models depends in part on the ease with which physicians

and patients can understand and interpret the results of the models, in addition to the accuracy
of the information they provide. While the RSA-based prognostic models perform comparably
to similar methods, by presenting the physician with a list of matched rules, the if-then decision
rule approach o↵ers significant advantages by increasing both the traceability of the model and
the amount of information included in its results. This advantage is further increased in the case
of the VC-DRSA, where dominance-based rules permit greater information density per rule by
including attribute value ranges in each rule.

Table 8 contains the decision rules that fire for an example patient selected from the SUP-
PORT data set. This patient was 41 years old with a primary diagnosis of coma. The patient
displayed moderate head injury on the Glasgow Coma Scale, elevated levels of creatinine (1.60
mg/dL) and respiratory rate (26 bpm), normal levels of sodium (133 mEq/L), low white blood
cell count (1.90 cells/nL) and mean blood pressure of 107 bpm. Both the CRSA and VC-DRSA
classifiers correctly predict that the patient will not survive six months (the patient in fact sur-
vived only 4 days).

The VC-DRSA classifier predicts d.6months = Yes with an associated score of 80%, based
on the two rules (Rules 5 and 6). As can be seen in Table 8, Rule 5 isolates the combination of
Coma and elevated creatinine and sodium levels as a key predictor of six-month survival. In the
case of Rule 5, 51 patients in the training set have similar conditions as the example patient, of
which 47 did not survive six months. On the other hand, Rule 6 somewhat counterbalances this
prediction, pointing to 8 young patients with moderate coma who have been in the hospital less
than 44 days, of whom all 8 survived six months.

The CRSA classifier provides a less specific prediction, classifying the example patient as
not surviving six months with an associated score of 55%. Upon further investigation, the rules
matching the example patient (Rules 1–4) are more general than the rules provided by the VC-
DRSA classifier. Rules 1–3 provide general rules that point to the age, level of head trauma and
primary diagnosis of the patient. Considering only these three rules, the associated score would
be d.6months = Yes with a score of 54%, but this score is revised slightly by Rule 4 further in
favor of d.6months = Yes. Rule 4 isolates normal average heart beat, high respiratory rate and
low (and also very high) white blood cell counts.

For both the CRSA and VC-DRSA, a final prediction and associated score are presented by
the classifier. This prediction is further supported by the set of rules from which said prediction
derived. Thus, the gestalt survival expectation is presented without loss of contradictory informa-
tion, providing the physician with both the prognostication as well as supporting and contradict-
ing information. Furthermore, the rules clearly indicate the patient characteristics most relevant
to their survival expectation. This increases the transparency and traceability of the classification
process, strengthening the accessibility, and hence credibility, of the model.

The rules derived from the VC-DRSA, by including attribute value ranges for which the
rule is valid, provide more information to the physician, further increasing the interpretability
and utility of the life expectancy prediction. In a clinical setting, this set of rules serves to
support clinical decisions for future treatment or palliative care strategies as well as to support
the explanation of these decisions to the involved patient and their family.

This is in stark contrast to SVM, neural networks, and other black-box methods where very
little insight is available to a decision maker as to how an outcome was predicted. While our
results show similar performance in terms of accuracy between classification models, the RSA-
based results are naturally expressed in terms of a set of decision rules, a benefit that is not present
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in logistic regression, random forests, or the mentioned black-box methods. As an ensemble
method, the random forests method functionally reduces to a black-box style model, despite its
use of decision trees.

Prognostic models based on C4.5 can be expressed in terms of the decision tree on which
they are based or in the form of a set of decision rules. The benefits in terms of interpretability
achieved by the decision rule format may be o↵set by the complexity of the tree growing and
pruning methods used by C4.5 which limit the traceability of the model.

Additionally, rule-based prognostic models, including those based on the rough set approaches,
are supported by a set of decision rules which do not individually involve all of the condition at-
tributes. This o↵ers the advantage of providing potentially acceptable results should a particular
prognostic factor be di�cult or too costly to ascertain for a patient [34].

5.2. Decision analysis for hospice referral
Consider the costs—economic, emotional and physical—associated with the decision to enter

hospice care. These costs are justified for patients who either enter hospice care at the appropriate
time or for those who do not enter hospice care when they could benefit from curative treatment.
These cases represent true positive and true negative classifications. A higher emotional and
physical cost is born by patients sent to hospice care but who ultimately survive six months—
a false positive. The highest cost of all, emotionally, economically and physically is born by
the patient and his or her family when costly treatment is prolonged for a patient who should
have been referred to a hospice care program—a false negative. In this last case, some or all of
the benefits of hospice care would be lost while the stresses and economic burden of aggressive
treatment are endured.

In this light, the threshold parameter, ⌧ (described in Section 3.5.1), can be seen as a repre-
sentation of the patient and family’s preference for hospice care treatment and their risk tolerance
for a mistaken referral. The threshold parameter relates sensitivity to specificity and stipulates
the required level of certainty for a positive classification. A higher threshold value requires a
higher probability of not surviving six months for the classification of a patient as a hospice can-
didate, decreasing the sensitivity and increasing specificity (indicating a preference for continued
treatment). Conversely, a lower threshold value increases sensitivity while reducing specificity,
indicating a preference for avoiding the costly mistake of unnecessary treatment.

As this threshold value is a subjective matter and varies between physicians, patients and
family members, one suggested approach [64] involves the measurement of the amount of regret
the decision maker would have should an incorrect decision be made. As medical decisions must
take into account the preferences of those ultimately a↵ected by the decision, this application of
regret theory allows for the formal treatment of those preferences by calculating the threshold
value as a function of the measured anticipated regret.

6. Conclusions

This paper contributes to the growing body of research in RST—and its extensions—as a
prognostic modeling framework and highlights the strengths of this approach in terms of acces-
sibility. The CRSA and VC-DRSA are found to perform similarly to four common classification
approaches, logistic regression, SVM, C4.5, and random forests, while also o↵ering more infor-
mation through a rule-based format. The intuitive structure of the rough set approaches, built on
similarity relations and expressed in terms of if-then decision rules, o↵ers both more insight into
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the model process and more opportunity for the knowledge extraction process to incorporate the
personal preferences of those making and being a↵ected by the decision.

The performance of the classifiers presented in this study, measured by AUC, is good but
sub-optimal, indicative of a challenging problem in need of further research. The increased
performance achieved by the variable consistency approach suggests a dataset of highly diverse
patients. Future research will explore methods to improve the overall classifier performance
and address this diversity by building localized models for patient subgroups using rough sets
concepts to group patients with similar di↵erentiating characteristics.

A recent study developed a six-month survival prognostic model primarily based on the
Medicare Health Outcomes Survey responses of community-dwelling elderly patients [65]. This
model, named the Patient-Reported Outcome Mortality Prediction Tool (PROMPT), achieved
comparable AUC unsing only basic medical information, indicating that the performance of clas-
sification models for six-month survival is still a major issue for the targeted domain of hospice
referral recommendation.

An important limitation of this study is that patient-specific disease progression over time is
not considered, in part due to the static nature of the data set used. Future research must address
the temporal aspect of disease progression, a consideration often missing in other prognostic
models for hospice referral. The progression of a terminal illness is often highly non-linear
by nature and generally does not present as a steady decline over time but rather as periods of
relative stability marked by turning points of acute decline. A prognostic model that takes into
account this temporal aspect may possibly provide both more accurate life expectancy prognoses
and more useful information for palliative care planning.
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[24] J. Bazan, A. Osmólski, A. Skowron, D. Ślçezak, M. Szczuka, J. Wroblewski, Rough set approach to the survival
analysis, in: Rough Sets and Current Trends in Computing, Springer, 951, 2002.

[25] P. Pattaraintakorn, N. Cercone, K. Naruedomkul, Hybrid rough sets intelligent system architecture for survival
analysis, in: W. M. Victor, O. Ewa, Owska, S. Roman, Owinski, Z. Wojciech (Eds.), Transactions on rough sets
VII, Springer-Verlag, 206–224, 2007.

17

Appendix E (continued)

57



[26] D. Delen, G. Walker, A. Kadam, Predicting breast cancer survivability: a comparison of three data mining methods.,
Artificial Intelligence in Medicine 34 (2) (2005) 113–27.

[27] K. J. Cios, G. W. Moore, Uniqueness of medical data mining, Artificial Intelligence In Medicine 26 (1-2).
[28] P. Simons, Critical Notice of Timothy Williamson, Vagueness, International Journal of Philosophical Studies 4

(1996) 321–327.
[29] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Norwell, MA, 1992.
[30] Z. Pawlak, Vagueness—A rough set view, Structures in Logic and Computer Science (1997) 106–117.
[31] P. Pattaraintakorn, N. Cercone, Integrating rough set theory and medical applications, Applied Mathematics Letters

21 (4) (2008) 400–403.
[32] A. Hart, J. Wyatt, Evaluating black-boxes as medical decision aids: issues arising from a study of neural networks,

Informatics for Health and Social Care 15 (3) (1990) 229–236.
[33] S. Tsumoto, Modelling medical diagnostic rules based on rough sets, in: Rough Sets and Current Trends in Com-

puting, Springer, 475–482, 1998.
[34] J. Komorowski, A. Øhrn, Modelling prognostic power of cardiac tests using rough sets, Artificial Intelligence in

Medicine 15 (2) (1999) 167–191.
[35] P. Paszek, A. Wakulicz-Deja, Applying Rough Set Theory to Medical Diagnosing, Warsaw, Poland, 2007.
[36] M. Ningler, G. Stockmanns, G. Schneider, H.-D. Kochs, E. Kochs, Adapted variable precision rough set approach

for EEG analysis., Artificial Intelligence in Medicine 47 (3) (2009) 239–61.
[37] H. Long-Jun, D. Li-pin, Z. Cai-Ying, Prognosis System for Lung Cancer Based on Rough Set Theory, in: Third

International Conference on Information and Computing (ICIC), vol. 4, 7–10, 2010.
[38] C.-S. Son, Y.-N. Kim, H.-S. Kim, H.-S. Park, M.-S. Kim, Decision-making model for early diagnosis of congestive

heart failure using rough set and decision tree approaches, Journal of Biomedical Informatics 5 (45) (2012) 999–
1008.

[39] S. Greco, B. Matarazzo, R. Slowinski, Rough sets theory for multicriteria decision analysis, European Journal of
Operational Research 129 (1) (2001) 1–47.

[40] J. Stefanowski, The rough set based rule induction technique for classification problems, in: Proc. 6th European
Congress on Intelligent Techniques and Soft Computing, 7–10, 1998.

[41] J. Stefanowski, On combined classifiers, rule induction and rough sets, in: J. F. Peters (Ed.), Transactions on rough
sets VI, Springer, 329–350, 2007.
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8. Figures and Tables

Table 1: Example decision table

Condition Attributea Decision Attribute

c1 c2 c3 c4 c5 c6 d
Patient Gender Age SystBP HDL Diabetic Smoker Coronary Disease

x1 F H M L No No No
x2 M L L L No Yes No
x3 F M M H No No No
x4 F M M H No No Yes
x5 M H H L Yes Yes Yes
x6 M H H L Yes Yes Yes
x7 F M M H No No Yes

a Gender: Female/Male; Age: L = [54, 59), M = [59, 69), H = [69, 74]; SystBP: L =< 129, M
= [129 � 139], H = (139 � 159]; HDL: L =< 40 M = [40 � 60], H => 60.
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Table 2: Description of attributes from SUPPORT dataset
Variable Name Description Patient Distribution
Numerical Condition Attributes Range Mean Std. Dev

age Age of the patient 18–101 62.65 15.59
alb Serum albumin 0.4–29 2.95 0.87
bili Bilirubin 0.1–63 2.55 5.32
crea Serum creatinine 0.09–21.5 1.77 1.69
hday Number of days in hospital at study

entry
1–148 1.00 9.13

hrt Heart Rate 0–300 97.16 31.56
meanbp Mean arterial blood pressure 0–195 84.55 27.70
pafi Blood gasses, PaO2/(.01 ⇤ FiO2) 12–890.4 239.50 109.70
resp Respiration rate 0–90 23.33 9.57
scoma SUPPORT coma score, based on

Glasgow coma scale
0–100 12.06 24.63

sod Sodium 110–181 137.60 6.03
temp Temperature in �C 31.7–41.7 37.10 1.25
wblc White blood cell count 0–200 12.35 9.27

Categorical Condition Attributes Patients Percentage (%)

dzgroup Diagnosis Group:
ARF/MOSF w. Sepsis 3,515 38.60
CHF 1,387 15.23
Cirrhosis 508 5.56
Colon Cancer 512 5.62
Coma 596 6.54
COPD 967 10.60
Lung Cancer 908 9.97
MOSF w. Malignancy 712 7.81

ca Presence of cancer:
Yes 1,252 13.75
No 5,995 65.84
Metastasis 1,858 20.40

Decision Attribute Patients Percentage (%)

d.6months Death occured within 6 months:
Yes 4,263 46.83
No 4,840 53.17
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Figure 1: Distribution of patients with respect to number of days until death
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Figure 2: Survival time in number of days vs. dzgroup
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Table 3: Discretized attributes not in APACHE III

Attribute Description Categorization

scoma Minor (⇤, 9]
Moderate (9, 44]
Severe (44, ⇤)

pafi Normal [300, ⇤)
Severe defect in gas exchange [200, 300)
Acute respiratory distress syndrome [0, 200)

hday Short (⇤, 44]
Long (44, ⇤]
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Table 4: AUC and coverage for MODLEM and VC-DomLEM algorithms with l
and m-consistent rules

CRSA VC-DRSA

m, l AUC (%) Coverage (%) AUC (%) Coverage (%)

0.1 66.46 100.00 72.80 99.88
0.2 66.46 100.00 72.79 99.87
0.4 68.88 100.00 72.77 99.65
0.6 69.74 97.41 71.73 98.72
0.8 64.19 86.72 70.93 76.85
1.0 61.58 80.08 65.59 35.89
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Figure 3: Number of rules fired in each test case for m-consistent MODLEM classifiers
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Figure 4: Number of rules fired in each test case for l-consistent VC-DRSA classifiers
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Table 5: Number of descriptors and rules in MODLEM and VC-DomLEM induced decision rule sets, for m = l = 0.6
consistent rules, across the five cross-validation folds

Descriptors in rules

Method Mean number of rules Min. Max. Mean

CRSA 773 1 8 3.65
VC-DRSA 1095 2 13 6.85
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Table 7: Wilcoxon signed-rank test and p-values for comparison of CRSAs and VC-DRSA with other classifiers

Log. Reg. SVM C4.5 C4.5* Random Forest CRSA** VC-DRSA***

CRSA** 0.06 0.06 0.06 0.06 0.06 — 0.06
VC-DRSA*** 0.06 0.06 0.06 0.06 0.125 0.06 —

* C.45 with APACHE III discretized scores
** CRSA with MODLEM algorithm (m = 0.6)

*** VC-DRSA with VC-DomLEM algorithm (l = 0.6)
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Table 8: Selected decision rules from the CRSA using MODLEM and the VC-DRSA using VC-DomLEM

RHS Support

CRSA Rules using MODLEM LHS d.6months = No d.6months = Yes

1. If age scorea = 0 969 593 (61%) 376 (39%)
2. If scoma =Moderate 1016 399 (39%) 617 (61%)
3. If dzgroup = Coma 465 119 (26%) 346 (74%)
4. If hrt scoreb = 0 AND resp scorec = 6

AND wbc scored = 5
47 11 (23%) 36 (77%)

VC-DRSA Rules using VC-DomLEM

5. If dzgroup = Coma AND
crea scoree � 4 AND sod scoref � 2

51 4 (8%) 47 (92%)

6. If dzgroup = Coma AND
scoma Moderate AND hday  Short
AND age scorea  0

8 8 (100%) 0 (0%)

a age score: 0 = (age  44)
b hrt score: 0 = (50  hrt  99)
c resp score: 6 = (25  resp  34)
d wbc score: 5 = ((1  wbc  2.9) or (wbc � 25))
e crea score: � 4 = (crea � 1.5)
f sod score: � 2 = ((sod  134) or (sod � 155))
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Towards a patient-centered classification model for hospice
referral

Eleazar Gil-Herrera
Department of Industrial and Management Systems Engineering, University of South Florida, Tampa, FL 33620, USA

Abstract

We introduce a methodology for developing a patient-centered classification model to determine
potential hospice candidates in a population of terminally ill patients. In a patient-centered
approach, those patients whose characteristics di↵er from the rest of the population may require
di↵erent models to determine their classification. This is in contrast to population-based models
that induce a single model to be applied for all patients.

In the data analysis phase of the proposed methodology we use the Object Relate Reducts
(ORR) to identify indispensable patient characteristics that di↵erentiate it from other patients
having a di↵erent outcome. Since we consider condition attributes with preference-ordered
domains, the ORRs are obtained using the Dominance Based Rough Set Approach (DRSA).
These type of reducts are called Dominance Based Object Related Reducts (DORR).

The DORRs are used to construct subgroups of patients with similar characteristics in terms
of the condition attributes necessary for classification. The collection of decision rules relative to
each subgroup is used to classify new patients. The performance of the proposed methodology
is compared with commonly known rough set-based methodologies such as the MODLEM and
VC-DOMLEM algorithms.

1. Introduction

1.1. Characteristics of prognostic models for life expectancy

Life expectancy prognostication is particularly valuable for terminally ill patients since an

accurate prognostication enables them to initiate end-of-life discussions and choose the most

desired management strategy for the remainder of their lives.

Prognostic models for estimating life expectancy are developed to improve physicians’ sur-

vival estimations. These models are the result of a feature selection process and include variables

with high predictor-response correlation. Each variable in the model has to show independent
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statistical significance. This variable-centered methodology represents the prognostic model in

terms of an equation with coe�cients associated with each variable.

Well-known mortality prognostic models [4, 5], show good prediction accuracy when they

are applied to a population of critically ill patients. However, research shows limitations on their

ability to predict outcomes when applied to individual patients [5]. A recent study [7] shows that

it is not su�cient for a predictor variable to have statistical significance in a global model to be

considered useful for individual patient prognosis. Instead, [7] states that each variable should be

evaluated in terms of its role in identifying patients with di↵erential response to a given treatment.

Therefore, it is important to identify variables that di↵erentiate groups of patients and at the same

time are relevant in making decisions that better benefit an individual patient.

1.2. Patient-centered analysis in clinical data

Patient-centered analysis identify the most relevant factors that drive clinical decisions for an

individual patient, in contrast to the commonly used population-wide models that are constructed

to perform well on average on all future cases. Several studies [2, 7–10] have shown that patient-

centered methodologies improve the accuracy of the prognostic model and assist in identifying

profiles of patients with high risk of mortality.

The new vision of personalized health care [11] requires new methods for developing patient-

centered prognostic models resulting in the selection of specific and appropriate treatment for

each patient. In addition, to meet the needs of physicians and patients, prognostic models must

have clinical credibility [12, 16]. That is, in addition to accurate prognostication, a model should

be traceable in its structure, allowing complete insight to the prognostic process and its results

should be interpretable, thus facilitating explanation of the prognosis.

2
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In this paper we present the design and development of a new methodology based on Rough

Set Theory (RST) [13], for analyzing clinical datasets and develop a patient-centered classifica-

tion model. Since we consider condition attributes with preference-ordered domains, we use the

Dominance based rough set approach (DRSA) [15] to obtain the Object Related Reducts (ORR)

[14] for our dataset. We call this type of reducts as the Dominance Based Object Related Reducts

(DORR).

Central to this methodology is the identification of indispensable patient characteristics that

di↵erentiate it from other patients having a di↵erent outcome. We separate the population of

patients into smaller subgroups based on those indispensable characteristics. To classify new

patients our methodology considers decision rules pertaining to their corresponding subgroup

only. The performance of the proposed classification model is compared with other RST-based

methods discussed in [16].

The rest of the paper is organized as follows: Section 2, methods and materials, describes

the theoretical basis of the proposed methodology and the dataset used to demonstrate our

method. Section 3 presents the results obtained as well as the comparison results with the selected

methodologies. Finally in Section 4 we present the discussion of results and conclusions of this

work.

2. Methods and materials

Our methodology is based on Rough Set Theory (RST) [13], a mathematical tool designed to

analyze datasets. The basic concepts of RST consider the relation of objects in a dataset to group

similar objects into granules of information called equivalence classes. RST-based tools in data

analysis rely on their advantages to analyze datasets without previous assumptions and provide

readily interpretable results in the form of decision rules.
3
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2.1. Basic notation of Rough Set Theory

RST represents a dataset as an information system defined by S = (U, A,V, f ) where U,

called the universe, is a non-empty finite set of objects that represents real life entities. The set A

represents a non-empty finite set of attributes called the condition attributes. For every attribute

a 2 A, the function f : U ! Va makes a correspondence between an object u 2 U to an attribute

value Va called the value set of a. For datasets that include an outcome variable, RST defines

a decision system as DS = (U, A
S

d,V, f ), where d < A is called the decision attribute which

represents the outcome variable. The domain of the decision attribute defines equivalence classes

called decision classes. For binary decision attributes, two decision classes are defined and are

represented as Y0 and Y1.

2.2. Discernibility relation

Data analysis in RST is based on relations between objects in a dataset. These relations

considers similarities or di↵erences between objects. In RST, similarities are represented by a

discernibility relation, mathematically defined as:

DIS DS (B) =
n

(u, u’) 2 U2, 9a 2 B : f (u, a) , f (u’, a) and f (u, d) , f (u’, d)
o

8B 2 A

A discernibility matrix DmA is constructed by exploring the di↵erences between objects in a

decision system. Each cell of the matrix, DmA(u, u’), contains the set of attributes whose values

di↵erentiate a pair of objects u, u’ 2 U, i.e:

DmA(u, u’) = {a 2 B : f (u, a) , f (u’, a) and f (u, d) , f (u’, d)}

4
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Table 1 provides an example of a decision system DS with four prognostic factors (a1, a2, a3

and a4), as the condition attributes to describe five male patients (u1, u2, u3, u4 and u5). The

decision attribute represents the outcome of a fertility test performed on each patient, and is

represented by the binary attribute d ! {Normal, Altered}.

Table 1: Example of a decision system

Condition Attributea Decision Attribute

a1 a2 a3 a4 d
Patient Age ChildDisease Smoking HoursSitting FertilityTest

u1 L 1 1 0 Normal
u2 L 0 0 2 Normal
u3 L 0 0 0 Altered
u4 L 1 1 2 Altered
u5 M 1 3 3 Altered

a Age: L =< 40, M = (40, 60]; ChildDisease (chicken pox, measles, mumps, polio) 0 = No,
1 = Yes; Smoking: 0 = Never, 1 = Occasionally, 2 = Frequently, 3 = Daily; HrSitting: 0 = [0, 3],
1 = (3, 6], 2 = (6, 8] , 3 => 8

Using this information, we can generate the discernibility matrix DmA shown in Table 2.

For example, for patients u1 2 YNormal and u3 2 YAltered, the cell DmA(u1, u3) = {a2, a3}, since

( f (u1, a2) = 1) , ( f (u3, a2) = 0) and ( f (u1, a3) = 1) , ( f (u3, a3) = 0). Therefore, {a2, a3} are the

attributes that di↵erentiate u1 and u3.

Table 2: Example of discernibility matrix

u1 u2 u3 u4 u5

u1 a2, a3 a4 a1, a3, a4
u2 a4 a2, a3 A
u3 a2, a3 a4
u4 a4 a2, a3
u5 a1, a3, a4 A

2.2.1. Object related reducts

One can consider the information form the discernibility matrix to obtain a minimum set

of attributes (reduct) that distinguish a particular object u 2 U from the rest of the objects that
5
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belong to a di↵erent decision class. This type of reduct is called an object related reduct (ORR)

and is defined as:

8ui 2 U : f (ui, d) , f (d, u j) =) 9ak 2 ORRu : f (ui, ak) , f (u j, ak) where ui , u j

To obtain the ORR’s for each object, we apply the discernibility function [17] relative to each

row of the discernibility matrix. A discernibility function relative to a row i, is a boolean function

of the m condition attributes that appear in row i of the discernibility matrix DmA, i.e.:

fi(a1’, . . . , am’) =
V

⇣

W

Dm’(ui, u j)| j  |U |,Dm’(ui, u j) , ;
⌘

,

where, Dm’(ui, u j) = {a’|a 2 Dm(ui, u j)}

The resultant prime implicants from each discernibility function fi are the ORR’s correspond-

ing to each object ui 2 U. In our example we have:

• u1 : f1(a1, a2, a3, a4) = (a2 _ a3) ^ (a4) ^ (a1 _ a3 _ a4) ⌘ (a2 ^ a4) _ (a3 ^ a4), then

ORRu1 = {a2, a4}, {a3, a4}

• u2 : f2(a1, a2, a3, a4) = (a4) ^ (a2 _ a3) ^ (a1 _ a2 _ a3 _ a4) ⌘ (a2 ^ a4) _ (a3 ^ a4), then

ORRu2 = {a2, a4}, {a3, a4}

• u3 : f3(a2, a3, a4) = (a2 _ a3) ^ (a4) ⌘ (a2 ^ a4) _ (a3 ^ a4), then ORRu3 = {a2, a4}, {a3, a4}

• u4 : f4(a2, a3, a4) = (a4) ^ (a2 _ a3) ⌘ (a2 ^ a4) _ (a3 ^ a4), then ORRu4 = {a2, a4}, {a3, a4}

• u5 : f5(a1, a2, a3, a4) = (a1 _ a3 _ a4) ^ (a1 _ a2 _ a3 _ a4) ⌘ (a1) _ (a3) _ (a4), then

ORRu5 = {a1}, {a3}, {a4}

For each patient, the ORRs account for the minimal set of condition attributes that preserve

the di↵erences of that patient with respect to the others in a di↵erent decision class.

6
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2.2.2. Grouping objects based on Object Related Reducts

Using the ORR’s, we construct subgroups of objects by considering the ones having the same

ORR, where, each subgroup is described by a unique set of attributes. The ORRs also guarantee

that the subgroups are constructed avoiding the use of redundant attributes.

Let RED(U) be the set of all ORR’s obtained from a decision system. In our example,

RED(U) = {{a1}, {a3}, {a4}, {a2, a4}, {a3, a4}}. Then, for each element S 2 RED(U), we can

construct the following subgroups:

S a1 = S a3 = S a4 = {u5}

S a2,a4 = S a3,a4 = {u1, u2, u3, u4}

Using the information of the subgroups, one can observe that for patient u5, the only required

information to distinguish him from patients with Normal fertility test results is his Age (a1).

Alternatively we can use information about his smoking habits (a3) or the number of hours

he spends sitting per a day (a4). On the other hand, for patients u1, u2, u3 and u4, besides the

information on the number of hours they spend sitting (a4), information about their smoking

habits (a3) or the occurrence of a disease in their childhood (a2) is required.

2.2.3. Decision rules based on ORR

Decision rules are generated for each subgroup S B. As an example, considering the subgroup

S a4 = {u5} and S a3,a4 = {u1, u2, u3, u4}, then, the following rules are obtained from Table 1. The

objects that support the decision rule appear in parenthesis :

For S a4 :

if f (u,HoursS itting) = 3 then u 2 YAltered (u5)

7

Appendix F (continued)

79



For S a3,a4 :

if f (u, S moking) = 1 and f (u,HoursS itting) = 0 then x 2 YNormal (u1)

if f (u, S moking) = 0 and f (u,HoursS itting) = 2 then x 2 YNormal (u2)

if f (u, S moking) = 0 and f (u,HoursS itting) = 0 then x 2 YAltered (u3)

if f (u, S moking) = 1 and f (u,HoursS itting) = 2 then x 2 YAltered (u4)

2.2.4. Dominance based object related reducts (DORR)

The classical RST does not consider information about preference orders for classification.

However, this information is particularly valuable in many practical problems that involve the

evaluation of objects based on preference ordered domains. Blaszczynski et al. [15] present a

new approach called the Dominance Based Rough Set Approach (DBRA) that consider attributes

with preference-ordered domains (criteria) in both the condition and decision attributes.

When the domain of a criteria a is a subset of real numbers Va ✓ R, the outranking relation

is then a simple order ”�” on real numbers such that the following relation holds: ui �a u j ()

f (ui, a) � f (u j, a). This relation is straightforward for gain-type criteria (the more, the better),

and can be easily reversed for cost-type criteria (the less, the better).

Using Table 1 as an example, the decision class d is preference-ordered such that an altered

result in the fertility test is assumed to be the preferred decision class. The attribute-preference

relations are then organized in the direction of the decision class; values which generally con-

tribute to the abnormality in the test are preferred over those which indicate normality. For the

criteria in Table 1, higher values are preferred to lower values.

Considering the dominance principle, we redefine the discernibility matrix DmA as follows,

8(u, u0 2 U):

8

Appendix F (continued)

80



DmA =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

a 2 A : f (u, a) > f (u’, a) and f (u, d) > f (u’, d) if a is criterion

a 2 A : f (u, a) < f (u’, a) and f (u, d) < f (u’, d) if a is criterion

a 2 A : f (u, a) , f (u’, a) and f (u, d) , f (u’, d) if a is attribute

Table 3 presents the discernibility matrix considering the preference order of the attribute

domains.

Table 3: Example of discernibility matrix considering criteria

u1 u2 u3 u4 u5

u1 a4 a1, a3, a4
u2 a2, a3 A
u3
u4 a4 a2, a3
u5 a1, a3, a4 A

Note in Table 3, the row and column corresponding to patient u3 are now empty, compared to

the discernibility matrix presented in Table 2. Attributes a2, a3 and a4 are now removed due to in-

formation that is inconsistent with the dominance principle. That is, ( f (u3,ChildDisease) = 0) <

( f (u1,ChildDisease) = 1) and u1 2 YNormal. The same situation is observed for ( f (u3,HoursS itting) =

0) < ( f (u2,HoursS itting) = 2) as u2 2 YNormal.

The Dominance-based object related reducts (DORR) are obtained as follows:

• u1 : f1(a1, a2, a3, a4) = (a4) ^ (a1 _ a3 _ a4) ⌘ (a4), then DORRu1 = {a4}

• u2 : f2(a1, a2, a3, a4) = (a2 _ a3) ^ (a1 _ a2 _ a3 _ a3) ⌘ (a2 ^ a3), then DORRu2 = {a2, a3}

• u3 : ;, then DORRu3 = ;

• u4 : f3(a2, a3, a4) = (a4)^ (a2_a3) ⌘ (a2^a4)_ (a3^a4), then DORRu4 = {a2, a4}, {a3, a4}

• u5 : f4(a1, a2, a3, a4) = (a1 _ a3 _ a4) ^ (a1 _ a2 _ a3 _ a4) ⌘ (a1) _ (a3) _ (a4), then

DORRu5 = {a1}, {a3}, {a4}
9
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2.2.5. Grouping objects based on Dominance Object Related Reducts

DORR’s subgroups are obtained using the same grouping process described for the ORR’s

in section 2.3:

S a1 = {u5}, S a3 = {u5}, S a4 = {u1, u5}

S a2,a3 = {u2}, S a2,a4 = S a3,a4 = {u4}

The subgroups obtained from the DORRs have the following property:

Property. Let B, B0 ✓ A and B, B0 2 RED(U). If B ⇢ B0 , then the subgroups S B and S B0 are

disjoint, i.e. S B \ S B0 = ;.

Proof. Assuming B ⇢ B0 then, B \ B0 = B. We need to proof that S B \ S B0 = ;.

Suppose S B \ S B0 , ;, then, 9u 2 S B and u 2 S B0 . This implies that B 2 DORRu and

B0 2 DORRu. However, the DORRu is the prime implicant of the boolean function that includes

the term B ^ B0 , which implies that B 1 B0 , contradicting our assumption.

In our example, B = {a4} and B0 = {a3, a4} then, S B \ S B0 = ;. The set of attributes

in B0 � B = a3, represent the additional information required by objects in S B0 = {u4} to be

distinguishable from the rest of objects.

2.2.6. Decision rules based on DORR

For each subgroup S B, a set of decision rules can be generated following the syntax described

in [15], as follows:

Decision rules generated from the B-lower approximation of the upward union of decision

classes Y�t are described by:

10
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if
^

i

�

f (x, bi) � rbi

�

^

0

B

B

B

B

B

B

@

^

j

⇣

f (x, a j) = raj

⌘

1

C

C

C

C

C

C

A

then x 2 Y�t

where bi 2 B are criteria, a j 2 B are attributes, rbi 2 Vbi and raj 2 Va j . Decision rules

generated from the B-lower approximation of the downward union of classes Yt are described

by

if
^

i

�

f (x, bi)  rbi

�

^

0

B

B

B

B

B

B

@

^

j

⇣

f (x, a j) = raj

⌘

1

C

C

C

C

C

C

A

then x 2 Yt

where bi 2 B are criteria, a j 2 B are attributes, rbi 2 Vbi and raj 2 Vaj .

In our example, Y� and Y correspond to the decision classes YAltered and YNormal, respec-

tively. Considering the subgroup S a4 = {u1, u5} and S a3,a4 = {u4} , the following rules are

induced:

For S a4 :

if f (u,HoursS itting)  0 then u 2 YNormal (u1)

if f (u,HoursS itting) � 3 then u 2 YAltered (u5)

For S a3,a4

if f (u, S moking) � 1 and f (u,HoursS itting) � 2 then x 2 YAltered (u4)

2.2.7. Comparing ORRs vs. DORRs

The DORRs allow identifying patients with inconsistent information and avoid the use of

condition attributes that violates the dominance principle. The ORR method dismisses this

important information and is reflected in the subgroups and decision rules obtained from the

dataset.

For example, the information in patient u3 suggests that his test results should be normal, yet

the test results appears as altered. The inconsistent information appear in attributes a2, a3 and a4.
11
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As a result, the ORR grouping process results in patients u1 and u5 being in di↵erent groups. This

suggests that u1 needs additional information about either his smoking habits (a2) or a disease

presented during his childhood (a3). However, after capturing the inconsistent attributes, the

DORR’s, assign both patient in the same group indicating that the only required information for

both patients is the number hours they spend sitting per day (a4).

Patients u1, u2 and u4 appear in the same group under the OOR grouping scheme. On

the other hand, the DORR’s grouping process indicates that those patients belongs to di↵erent

groups. Patient u2, for example, needs di↵erent information than patient u4. Patient u2 requires

information about his smoking habits (a3) and the occurrence of a disease in their childhood (a2).

The decision rules from the ORR grouping process contain inconsistencies in their descrip-

tions as show in the rule induced form patient u3. Moreover, to classify new cases, the condition

part of the rule have to match exactly with the new patient attributes values. This disadvantage is

diminished by the DORR decision rules as they include attribute value ranges in their descriptors.

2.3. Dataset description

The dataset used in this study consists of the 9105 cases from the SUPPORT (Study to

Understand Prognoses and Preferences for Outcomes and Risks of Treatments) prognostic model

dataset [18]. We consider as condition attributes the variables used in the SUPPORT prognostic

model equation [19] to ensure consistency. The SUPPORT variables include ten physiologic

variables in addition to the diagnosis groups, age, number of days in the hospital before entering

the study, presence of cancer, and neurological function as recorded in the SUPPORT data.

Attribute names, descriptions and value ranges are listed in Table 4.
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Table 4: Description of attributes from SUPPORT dataset
Variable Name Description
Numerical Condition Attributes

age Age of the patient
alb Serum albumin
bili Bilirubin
crea Serum creatinine
hday Number of days in hospital at study

entry
hrt Heart Rate
meanbp Mean arterial blood pressure
pafi Blood gasses, PaO2/(.01 ⇤ FiO2) 0
resp Respiration rate
scoma SUPPORT coma score, based on

Glasgow coma scale
sod Sodium
temp Temperature in �C
wblc White blood cell count

Categorical Condition Attributes

dzgroup Diagnosis Group:
ARF/MOSF w. Sepsis
CHF
Cirrhosis
Colon Cancer
Coma
COPD
Lung Cancer
MOSF w. Malignancy

ca Presence of cancer:
Yes
No
Metastasis

Decision Attribute

d.6months Death occurred within 6 months:
Yes
No
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2.4. Data Preprocessing

To discretize the continuous variables we use the Acute Physiology and Chronic Health

Evaluation (APACHE) III Scoring System [4], a clinically accepted scoring system designed

to estimate the risk of death in ICU patients. APACHE III scores are designed to increase

monotonically with respect to risk of death and thus provide the necessary preference relations

for the DRSA. For further details see [16].

2.5. Performance Evaluation

The performance of our methodology is evaluated using a 5-fold cross validation procedure.

In 5-fold cross validation, the entire dataset is randomly divided into five subsets, or folds, and

then each fold (20% of the dataset) is used once as a testing set, with the remaining folds (80%)

used for training. The performance results of the proposed methodology are compared with

previous results obtained in [16], where we use the MODLEM and VC-DomLEM algorithms

for inducing decision rules based on the classical and dominance-based rough set approaches.

Both MODLEM and VC-DomLEM induce a minimum number of decision rules directly from

the dataset to cover all objects from the lower approximations of the decision classes.

3. Results

Table 5, shows the performance comparison in terms of AUC and coverage for the three RST-

based classification models. Our methodology, based on DORR subgroups, performs similar to

the other RST-based the methodologies (Wilcoxon Signed-rank test p � value > 0.05).

To measure the accessibility of the model, we calculate the average number of rules that fire

for classifying a new patient in the testing set. The CRSA with MODLEM algorithm generates

the fewest number of rules fired per patient with a mean of 3.06 and standard deviation of 1.65;
14
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Table 5: AUC and coverage between RST-based classifiers

CRSA* VC-DRSA** DORR

Fold AUC (%) Coverage (%) AUC (%) Coverage (%) AUC (%) Coverage (%)

1 69.96 97.38 71.54 97.97 67.85 99.06
2 70.10 97.47 72.53 98.57 68.25 98.75
3 67.58 97.64 70.48 98.96 67.53 97.23
4 71.78 97.58 73.64 98.40 69.54 98.32
5 69.21 96.98 70.44 98.45 67.21 97.45

Mean 69.73 97.41 71.73 98.47 68.08 98.16
Std. Dev. 1.52 0.26 1.37 0.36 0.90 0.80
* CRSA with MODLEM algorithm (↵-consistency level = 0.6)

** VC-DRSA (l-consistency level = 0.6)

followed by the DORR method, showing a mean of 4.47 and a standard deviation equals to 8.74.

Finally, the VC-DRSA has on average 13.65 rules that fire for each patient, with a standard

deviation of 20.78.

The number of descriptors in a decision rule determine how general or specific is the rule. The

MODLEM algorithm produces general rules with 3.65 descriptors on average and a maximum

of 8 descriptors. The VC-DOMLEM decision rules are on average longer, more specific with

mean and maximum length of 6.85 and 13 descriptors, respectively. The average length of the

DORR rules is slightly lower, with rules containing on average 6.27 descriptors and a maximum

of 15 descriptors.

4. Discussion

All three RST-based prognostic models perform comparable in terms of accuracy and acce-

sibility by presenting the physician with a list of matched rules that o↵er significant advantages

in terms of traceability of the model and the amount of information included in its results.

All the RST-based models analyze a clinical data set by exploring patients’ characteristics.

The MODLEM and VC-DOMLEM algorithms induce approximated decision rules to avoid
15
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overfitting the training set and to generate rules that are more useful in classifying new cases.

This process also induces shorter rules with high support for their description [16]. However,

rules with few attributes in their description can cause skepticism as some factors considered

important in clinical practice may be omitted [20, 21]. Moreover, shorter rules are less likely to

capture individual patient’s characteristics necessary to develop a patient-centered model.

Table 6 shows the set of matched decision rules that classify the following example patient

from the test set: A 52 years old patient with a primary diagnosis of coma and no cancer. The

patient displayed hight head injury on the Glasgow Coma Scale; normal levels of creatinine,

bilirrubin, albumin, temperature, and sodium; and moderated levels of respiratory rate (30 bpm),

heart rate (120 bpm) and mean blood pressure (110 bpm). The patient survived 1728 days.

Both the DORR and VC-DRSA methods correctly predict that the patient will survive the

six months period, however the MODLEM algorithm fails to classify the patient correctly. The

MODLEM algorithm induces a very general rule with only one descriptor (rule 3 in Table 6).

In the voting process, this rule practically decides the classification as it presents higher support

to classify the patient. The other two more specific rules (rule 1 and 2 Table 6) have low

support, yet correctly classify the patient. The VC-DOMLEM algorithm include rules with more

specific information as shown in rule 4 and rule 5 from Table 6. These rules consider that

the patient is relatively young with normal values in some of the physiological variables, such

as temperature and sodium. This specific information gives the necessary support to correctly

classify the patient. The proposed DORR-based method also induces patient-specific decision

rules with the particular characteristic that all rules are deterministic, i.e. all cases matching the

rule description support the classification with 100% accuracy. This characteristic removes the

limitation of applying general information for classifying new patients as all cases matching the

rule description fully support the classification of the patient. For example, rule 8 in Table 6
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describes patients with a degree of coma less or equal to severe, with normal levels of albumin

and white blood cell count less than 24.9 cu/mm ⇤ 1000. All the 10 patients matching these

characteristics survived the six month period.

5. Conclusions

We introduce the definition of the DORR’s to decompose the dataset into subgroups of pa-

tients with similar characteristics that di↵erentiate them from the rest of patients with a di↵erent

outcome. To classify new patients, our methodology determines the subgroups to which the

patient belongs and use the decision rules corresponding to that subgroups only. This in contrast

to common rule-based classifiers where the whole set of rules is used to classify new patients.

Our methodology performs similarly compared to the CRSA and VC-DRSA in terms of

accuracy. The main advantage of the proposed DORR approach is that we achieved a higher

coverage without using any approximation for generating the decision rules. We generate specific

decision rules to classify a patient using minimal information as appears in its reducts.

The type of data analysis performed in this paper, open the opportunity for the knowledge

extraction process to identifying groups of patients with similar characteristics allowing tailored

decisions for the pertaining subgroup. Applications of this methodology could be useful to

identify subgroups of patients that need di↵erent treatments, patients with di↵erential response

to therapy or patients that belong to di↵erent risk groups.
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Table 6: Decision rules fired from CRSA-MODLEM and VC-DRSA

RHS Support

CRSA-MODLEM Rules LHS d.6months = No d.6months = Yes

1. If resp scorea =6 AND age scoreb=5
AND meanbp scorec=4

98 62 (63.27%) 36 (36.73%)

2. If dzgroup=Coma AND age scoreb=5
AND hrt scored=7 AND
meanbp scorec=4 AND crea scoree=0

4 3 (75%) 1 (25%)

3. If scoma =Severe 517 79 (15.28%) 438 (84.72%)

VC-DRSA Rules

4. If dzgroup=Coma AND scoma S evere
AND age scoreb  5 AND temp scoref

 0

15 11 (73%) 4 (27%)

5. If dzgroup=Coma AND scoma S evere
AND age scoreb 11 AND temp scoref

 0 AND sod scoreg 0

12 11 (85%) 2 (15%)

DORR Rules

6. If dzgroup=Coma AND wbc scoreh 1
AND alb scorei  0

2 2 (100%) 0 (0%)

7. If dzgroup=Coma AND alb scorei 0
AND crea scoree 4

7 7 (100%) 0 (0%)

8. If Scoma S evere AND wbc scoreh 1
AND alb scorei 0

10 10 (100%) 0 (0%)

a resp score: 6 = (25  resp  34)
b age score: 5 = (45  age  59) ;  5 = (age  59) ;  11 = (age  64)
c meanbp score: 4 = (100  meanbp  119)
d hrt score: 7 = (120  hrt  139)
e crea score: 0 = (0.5  crea  1.4) ; 4 = (1.5  crea  1.94)
f temp score:  0 = (36  temp  36.9)
g sod score:  0 = (135  sod  154)
h wbc score:  1 = (wbc  24.9)
i alb score:  0 = (2.5  alb  4.4)
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