
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

2008

Discrete event system modeling of demand
responsive transportation systems operating in real
time
Y Daniel Yankov
University of South Florida

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the American Studies Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in
Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
scholarcommons@usf.edu.

Scholar Commons Citation
Yankov, Y Daniel, "Discrete event system modeling of demand responsive transportation systems operating in real time" (2008).
Graduate Theses and Dissertations.
http://scholarcommons.usf.edu/etd/575

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F575&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

Discrete Event System Modeling Of Demand

Responsive Transportation Systems Operating In Real Time

By

Daniel Y. Yankov

A Dissertation submitted in partial fulfillment

 of the requirements for the degree of

Doctor of Philosophy

Department of Industrial and Management Systems Engineering

College of Engineering

University of South Florida

Date of Approval:

March 18, 2008

Major Professor: Ali Yalcin, Ph.D.

Natasha Jonoska, Ph.D.

Aliaksei Savachkin, Ph.D.

 Kimon Valavanis, Ph.D.

 Susana Lai Yuen, Ph.D.

Keywords: intelligent transportation systems, supervisory control, air charter service,

aero medical evacuation, local supervisors, concurrent subsystems

© Copyright 2008, Daniel Yankov

Acknowledgements

I would like to thank my advisor Dr. Ali Yalcin for his support and mentoring

throughout the course of this research.

I would like to thank my committee members Dr. Natasha Jonoska, Dr. Kimon

Valavanis, Dr. Alex Savachkin and Dr. Susana Lai-Yuen for their kind reviews and

support, and for the wisdom they possess which they allowed me to benefit.

Last but not the least, I would like to thank my family and friends, without them

the journey would neither start nor complete.

 i

Table of Contents

List of Tables v

List of Figures vi

Abstract x

Chapter One Introduction 1

Chapter Two Related Literature Review 6

2.1. DRT related OR problems 6

2.2. Heuristic approaches in DARP 11

2.2.1. Heuristics for SDARP 12

2.2.1.1. Insertion heuristics for SDARP 12

2.2.1.2. Parallel insertion heuristics for SDARP 13

2.2.1.3. Metaheuristic approaches for SDARP 13

2.2.1.4. Two or three phase approaches for SDARP 15

2.2.2. Heuristics for DDARP 16

2.2.2.1. Heuristics performing global search 17

2.2.2.1.1. Dynamic constructive techniques 18

2.2.2.1.2. Dynamic iterative techniques 20

2.2.2.2. Heuristics performing local search 21

2.2.2.2.1. Parallel metaheuristics 21

2.2.2.2.2. Clustering and locating 21

2.3. Simulation approaches in DRT 23

2.4. Intelligent transportation systems (ITS) approaches in DRT 30

 ii

2.4.1. ITS approaches in centralized DRT systems 31

2.4.2. ITS approaches in decentralized DRT systems 35

Chapter Three Research Motivation, Problem Domain, Research Goal

and Objectives 38

3.1. Research motivation 38

3.2. Research problem domai 39

3.3. Research goal and objectives 41

Chapter Four Discrete Event Systems and Supervisory Control 47

4.1. Discrete event systems 48

4.1.1. FA modeling of DES 48

4.1.2. Language and language characteristics 49

4.1.3 Operations on languages 50

4.1.4. Unary operations on automata 50

4.1.5. Composition operations on automata 51

4.1.6. Analysis of DES 52

4.2. Supervisory control 55

4.2.1. Controlled DES 55

4.2.2. Controllability theorem and realization of supervisors 57

4.2.3. Modular supervisory control 60

4.2.4. Decentralized supervisory control 62

4.2.4.1. Conjunctive decentralized architecture 63

 4.2.4.2. Disjunctive decentralized architecture 64

 4.2.4.3. General decentralized architecture 65

4.2.5 Nonblocking decentralized supervisory control 66

 4.2.5.1. Nonblocking conjunctive decentralized supervisor 66

4.2.5.2. Nonblocking disjunctive decentralized supervisor 67

4.2.5.3. Nonblocking general decentralized supervisor 68

 iii

Chapter Five Taxonomy of DRT Systems, DRT Modeling with FA and

Illustrative Example 70

5.1. Taxonomy of DRT systems 70

 5.1.1. Origin and destination considerations 70

 5.1.2. Vehicle fleet characteristics 71

 5.1.3. Transportation demand characteristics 72

5.2. Modeling of DRT systems with FA 72

5.3. Illustrative example of a small air-charter service operation 77

5.3.1. Problem description of small air-charter system’s operation 78

5.2.2. DES modeling of a small air charter DRT system 79

5.3.2.1. Computation of centralized supervisor 80

5.3.2.2. Computation of modular supervisor 83

5.2.2.3. Computational complexity of supervisor synthesis 92

Chapter Six Decentralized Supervisory Control of Concurrent DES 94

 6.1. Decentralized control of concurrent DESs 94

 6.2. Decentralized supervisor of separate groups of vehicles – passengers 98

 6.3. Illustrative Example of ARE Service in D-DARP MADO Environment 100

 6.3.1. Problem description of ARE Service in D-DARP MADO

 environment 102

 6.3.2. DES modeling of a small emergency DRT system in

 D-DARP MADO environment 104

 6.3.2.1. Computation of the supervisor of one vehicle -

one passenger (LS11) 108

 6.3.2.2. Computation of the supervisor of one vehicle –

two passengers (LS12) 113

 6.3.2.3. Computation of the local supervisor of one vehicle –

one passenger (LS32) 118

 iv

6.3.2.4. Computation of the local supervisor of one vehicle –

two passengers (LS113) 122

 6.3.2.5. Computation of the local supervisor of one vehicle –

two passengers in case of a closed MTF (LS448) 128

 6.3.2.6. Generating the global SC of the emergency DRT 135

6.3.2.7. Computational complexity of decentralized

supervisor 136

Chapter Seven Contribution of the Study and Future Research 137

7.1. Summary of the completed work and contribution of the study 137

7.2. Future research 139

 7.2.1. Application of timed DES (TDES) 139

 7.2.2. Application of hybrid DES (HDES) 141

References 143

Bibliography 147

About the Author 149

 v

List of Tables

Table 1 Summary of the discussed heuristics for SDAP 16

Table 2 Summary of the discussed heuristics for DDAP 23

Table 3 The set of all the events of the small air charter 79

Table 4 The set of all the events of a small emergency DRT system 105

Table 5 Considered requests, assigned vehicles and LSs 135

 vi

List of Figures

Figure 3.1 A map of MTFs and patient pick up locations in Tampa bay area. 40

Figure 3.2 Framework for real time DRT control. 42

Figure 4.1 The feedback loop of supervisory control. 56

Figure 4.2 Modular supervisory control with two supervisors. 60

Figure 4.3 Conjunctive supervisory control with two supervisors. 64

Figure 4.4 Disjunctive supervisory control with two supervisors. 65

Figure 4.5 General decentralized supervisory control with two supervisors 65

Figure 5.1 Simple air taxi DRT system operating at four airports. 73

Figure 5.2 Automaton pjetj - the possible locations and flights of jet j. 74

Figure 5.3 Automaton tripj – the maximum allowed flight within a trip. 75

Figure 5.4 Automaton vehustj – vehicle j in unpredicted stoppages. 75

Figure 5.5 Automaton capj - jet j may pickup at most two passengers. 76

Figure 5.6 Automaton priori gives priority of reassigned passengers. 76

Figure 5.7 Automaton pjet1. 80

Figure 5.8 Automaton pass1. 81

Figure 5.9 Automaton trip1. 81

Figure 5.10 Automaton paspd1. 82

Figure 5.11 Supervisor CS1. 83

 vii

Figure 5.12 Automata  21,j,pjet j  . 84

Figure 5.13 Parallel synchronization of automata pjet1 and pjet2. 85

Figure 5.14 Automata  21,i,passi  . 85

Figure 5.15 Automata  21,j,trip j  . 86

Figure 5.16 Automata  21,i,paspdi  . 87

Figure 5.17 Supervisor MS1. 88

Figure 5.18 Specm1 - synchronization of jet1 and passenger1. 89

Figure 5.19 Specm2 - synchronization of jet2 and passenger2. 90

Figure 5.20 Language SP2. 91

Figure 6.1 DES split in subsystems of vehicles and passengers. 99

Figure 6.2 Structure of the global system and local control. 101

Figure 6.3 Region R with 5 origins and 3 destinations. 102

Figure 6.4 Automaton pasn1. 108

Figure 6.5 Automaton pveh1. 108

Figure 6.6 Automaton fd1. 109

Figure 6.7 Automaton trips1. 111

Figure 6.8 Automaton vehdil11. 111

Figure 6.9 Automaton paspd11. 112

Figure 6.10 Automaton of LS11. 113

Figure 6.11 Automaton pasn12. 114

Figure 6.12 Automaton pasn2. 114

Figure 6.13 Automaton pveh12. 114

 viii

Figure 6.14 Automaton trips12. 115

Figure 6.15 Automata  21,i,vehdil
1i

 . 116

Figure 6.16 Automata  21,i,paspd
1i

 . 117

Figure 6.17 Automaton pasn23. 118

Figure 6.18 Automaton pveh3. 119

Figure 6.19 Automaton fd3. 120

Figure 6.20 Automaton trips3. 120

Figure 6.21 Automaton vehdil23. 121

Figure 6.22 Automaton paspd23. 121

Figure 6.23 Supervisor LS32. 122

Figure 6.24 Automata ipasn . 123

Figure 6.25 Automaton pveh13. 123

Figure 6.26 Automaton fd13. 124

Figure 6.27 Automaton trips13. 124

Figure 6.28 Automata  3,1, ivehdil1i .

125

Figure 6.29 Automata  3,1, ipaspd1i . 126

Figure 6.30 Automaton LS113. 127

Figure 6.31 Automata  8,4, ipasni . 128

Figure 6.32 Automaton pveh4. 129

Figure 6.33 Automaton fd4. 130

Figure 6.34 Automaton fstat3. 130

 ix

Figure 6.35 Automaton trips48. 131

Figure 6.36 Automata  84,i,vehdili4  . 132

Figure 6.37 Automata  84,i,paspdi4  . 133

Figure 6.38 Automaton fstat3. 134

Figure 6.39 Automaton of LS448. 135

 x

Discrete Event System Modeling of Demand Responsive Transportation Systems

Operating in Real Time

Daniel Y. Yankov

ABSTRACT

Demand responsive transportation is a variable route service of passengers or

freight from specific origin(s) to destination(s) in response to the request of users.

Operational planning of DRT system encompasses the methods to provide efficient

service to the passengers and to the system operators. These methods cover the

assignments of vehicles to transportation requests and vehicle routings under various

constraints such as environmental conditions, traffic and service limitations. Advances in

the information and communication technologies, such as the Internet, mobile

communication devices, GIS, GPS, Intelligent Transportation Systems have led to a

significantly complex and highly dynamical decision making environment.

Recent approaches to DRT operational planning are based on “closed information

loop” to achieve a higher level of automation, increased flexibility and efficiency.

Intelligent and effective use of the available information in such a complex decision

making environment requires the application of formal modeling and control approaches,

which are robust, modular and computationally efficient.

 xi

In this study, DRT systems are modeled as Discrete Event Systems using Finite

Automata formalism and DRT real time control is addressed using Supervisory Control

Theory. Two application scenarios are considered; the first is based on air-charter service

and illustrates uncontrolled system model and operational specification synthesis. The

automatic synthesis of centralized and modular supervisors is demonstrated. The second

scenario is a mission critical application based on emergency evacuation problem.

Decentralized supervisory control architecture suitable for accommodating the real-time

contingencies is presented. Conditions for parallel computation of local supervisors are

specified and the computational advantages of alternative supervisory control

architectures are discussed.

Discrete event system modeling and supervisory control theory are well

established and powerful mathematical tools. In this dissertation, they are shown to be

suitable for expressing the modeling and control requirements of complex and dynamic

applications in DRT. The modeling and control approaches described herein, coupled

with the mature body of research literature in Discrete Event Systems and Supervisory

Control Theory, facilitate logical analysis of these complex systems and provide the

necessary framework for development of intelligent decision making tools for real time

operational planning and control in a broad range of DRT applications.

 1

Chapter One

Introduction

DRT passenger services are public transportation services characterized by

flexible routing and scheduling of relatively small capacity vehicles (occupancy of up to

20 persons) to provide shared-occupancy and personalized transportation on demand. The

role of DRT services has changed dramatically in recent years. For example, rural transit,

which is a wide-spread DRT service, was limited to a type of social service transportation

for a specific set of clients who primarily traveled in groups to common meal sites, work

centers for the disabled, or clinics in larger communities. Service schedules and

passenger assignments were developed and augmented manually in a preset calendar.

Due to the lack of advanced communication and information technologies, the early DRT

systems tended to operate as advanced reservation systems with some service providers

requiring users to make a reservation at least 24 hours in advance of their travel. Since it

took hours to build the schedule, any last-minute changes could wreak havoc with the

operational planning of the dispatch office. Nevertheless, given these parameters, a

manual scheduling system worked for small DRT systems.

Lave at al. (1996) report that the advanced reservation DRT operation has been

associated with significantly low system productivity. Despite the problems, such DRT

systems allocated capacity easily and are less complex to implement than real time

 2

reservation systems. However, for a number of the passenger groups, such as job

commuters and clinic patients, the 24-hour preplanned schedule is not viable. They need

a system that can take their request when they are ready. Workers and commuters

especially need a system that is reliable and robust.

Although DRT service is user-friendly because of its door-to-door capability and

semiprivate, comfortable vehicles, its adoption has not been widespread due to the

relatively high cost of operation. DRT is a labor intensive mode of transportation with

costs comparable to the taxicab, due to inherently low passenger productivity (passengers

per vehicle-hour), (Lave at al. 1996). As a result, DRT service is most commonly offered

by social service agencies to transport their clients, by transit districts experiencing high

enough passenger transportation demand, or by counties and cities for persons with

special needs or qualifying conditions.

The 1990 Americans with Disabilities Act (ADA) requires every U.S. transit

agency operating in fixed-route transit to provide complementary DRT for persons with

disabilities within their service areas without advanced reservation. Thus, the ADA

mandate is causing an expansion of the number of DRT services and growth in the size of

the existing services. This growth motivated the search for more cost-effective means of

operating DRT systems. One promising means of improving the cost effective

performance of demand-responsive transit is the use of latest developments of

information and communication technologies.

Contemporary DRT systems accept telephone or internet requests for both

immediate and advance reservation service; develop a continually changing set of vehicle

 3

schedules that accommodate these trip requests, and route vehicles to the appropriate

passenger origin and destination locations in accordance with the schedule. Because both

the trip requests and the vehicle scheduling and routing decisions occur in real time, DRT

control problem becomes complex even in systems where small number of vehicles and

trip requests are involved.

One of the most critical, complex and dynamic application domain of DRT

service is the military aeromedical regulation and evacuation (ARE) of patients to

medical treatment facilities (MTFs). Doctrinally during both wartime and piece, patients

requiring extended treatment must be evacuated by air to a suitable MTF. The process of

routing and scheduling the required aeromedical evacuation flights (missions) and

assigning patients to suitable missions is a critical part of the evacuation planning and

execution, Sadeh and Kott (1996).

The major challenge in the design of any DRT operation is the choice between the

level of efficiency and level of quality of the service. Service quality ranges from the

most costly exclusive-ride taxi service, in which only one person rides at a time, to trips

in which vehicles are shared, and each passenger may have to ride longer than is needed

for his/her trip while the vehicle drops and picks up other riders. Assigning many

passengers to a vehicle results in increased efficiency due to minimizing the total distance

traveled by the vehicle and smaller vehicle fleet required. However, high passenger loads

lower the quality of the service by increasing the average ride time and the variability of

promised pickup and arrival times. These trade-offs are usually determined by specifying

 4

minimum service levels in terms of the longest ride times allowable and the maximum

lateness for a promised pickup or arrival.

With every service request the system operator obtains the parameters of the

desired trip from the passenger - pickup point, drop-off point, desired pickup or delivery

time, number of passengers, and any special requirements (e.g. wheelchair accessibility),

and then communicates to the passenger whether the system is able to accommodate the

trip request with these specific parameters and, if so, when a vehicle will arrive. The

process of scheduling individual service requests while the customer is on the phone or

using the Internet is called real time or online scheduling. This term refers to a scheduling

system in which some means of accepting or denying a trip request is based on available

system capacity and, if a request is accepted, an estimated time of arrival of the vehicle is

given to the requester, usually within a specified time window. With the online service

the requests are accepted during the travel of the vehicles and are to be inserted into their

current schedules. Hence, vehicle fleet’s routing and rerouting are to be done in real time,

as well. Therefore, with the online communication DRT service experiences real time

operational dynamics that necessitates higher level of automation, flexibility and

integration of the system development. To achieve such a development, more formal

approaches of system design must be applied.

We represent DRT systems as discrete event systems (DESs) where system

models capture both the low level dynamics (such as infrastructure conditions, current

status of vehicles) and high level dynamics (such as service demand requests) of system

 5

evolution. Supervisory Control Theory based on Finite Automata formalism is applied to

provide real time control of DRT service as supervisory control of DES.

The remainder of this dissertation is organized as follows: Chapter Two presents a

literature review of the operational planning methodologies for DRT service. Chapter

Three introduces the research problem domain, motivation, research goal and objectives.

Chapter Four presents an introduction to Discrete Event Systems, Finite Automata

formalism and Supervisory Control Theory. The possible architectures of decentralized

supervisors and the conditions for their nonblocking behavior are discussed. In Chapter

Five first a taxonomy of DRT systems is introduced and a framework of DRT operation

modeling as DES is presented. A simple air charter system is used to illustrate the system

modeling and the synthesis of centralized and modular supervisors. Chapter Six discusses

the decentralized control of concurrent DESs. The computation of the local supervisors

and the synthesis of the global one are illustrated with the control of a small aeromedical

evacuation system. In Chapter Seven the completed work is summarized and the future

research issues are discussed.

 6

Chapter Two

Related Literature Review

The presented literature survey first reviews the fundaments of Operations

Research problems related to DRT operation, covers the developed heuristic approaches

for solving these problems, and reviews the recent intelligent transportation systems’

methods in DRT operational planning and real time control. We limit our review to

deterministic DRT problems and solution approaches, and do not cover stochastic

methods. The emphasis of the review is on highlighting the advantages of the

decentralized methods over the centralized ones in the operational planning of dynamical

and complex DRT systems.

2.1. DRT related OR problems

The OR literature contains numerous studies addressing DRT related problems. In

most of the works the Vehicle Routing Problem with Pickup and Delivery (VRPPD)

represents the mathematical fundaments of DRT and henceforth is of great interest to our

study. Since the most practical applications of the VRPPD include restrictions on the time

at which each location may be visited by a vehicle, it is convenient to present a slightly

more general variant of the problem, called the VRPPD with time windows

(VRPPDTW). Cordeau at al. (2004) discuss that VRPPDTW is NP-hard, because it

 7

generalizes the Traveling Salesman Problem (TSP), which is known to be NP-hard. In the

presence of time windows, even finding a feasible solution to the problem is NP-hard

since the feasibility problem for the TSP with time windows is itself NP-complete.

The Dial-a-Ride Problem (DARP) is a particular case of the VRPPD arising in

contexts where passengers are transported, either in groups or individually, between

specified origin and destination locations. The most common DARP application arises in

door-to-door transportation services for elderly or handicapped people.

In their recent survey Cordeau and Laporte (2007) review the developed OR

models and algorithms on the DARP. The goal of the DARP solutions is to plan a set of

minimum cost vehicle routes capable of accommodating as many service requests as

possible, under a set of constraints. The main emphasis is on the human satisfaction, and

the reduction of passenger inconvenience should be balanced against minimizing the

system operating costs.

Dial-a-ride services may operate in static or dynamic mode. In the static case, all

transportation requests are known a priori, while in the dynamic case requests are

accepted throughout the entire period of service (e.g. a shift) and vehicle routes are

adjusted in real time to meet demand. In practice pure dynamic DARPs rarely exist since

a subset of requests is often known when planning starts. Cordeau and Laporte (2007)

present two formulations of the DARP – a three-index integer formulation in case of

heterogeneous vehicle fleet, and a two-index formulation for the case of homogeneous

fleet. The objectives in the static algorithms of multi-vehicle DARP vary in minimizing

the fleet size, total route duration, total service cost, total distance traveled by vehicles

 8

and by passengers, total service time, time window violations and/or minimizing linear

combinations of some of these factors. Cordeau and Laporte (2007) discuss that the

distinction between static and dynamic DARPs is often blurred in practice since the

service requests are often cancelled and, as a result, transporters may allow the

introduction of new requests in a solution designed for a static problem. The difficulty

then is to design seed vehicle routes for these requests with sufficient slack time and

capacity to accommodate future dynamic demand. The objectives in the dynamic

algorithms of multi-vehicle DARP vary in maximizing the number of served passengers,

minimizing the route lengths, ride times and time violations.

A special case of the DARP is the Dial-a-Flight Problem (DAFP), introduced by

Cordeau at al. (2004). The operation is planned as “per-seat on-demand” service.

Passengers select the destinations, time of arrival and the time window for travel. The

static DAFP (SDAFP) is concerned with the scheduling of the single passenger requests

for air transportation during a given time period (usually a single day). Each request

specifies an origin airport, the earliest acceptable departure time, a destination airport,

and the latest acceptable arrival time at the destination. A homogeneous fleet of airplanes

operable by a single pilot is available to provide the requested air transportation. Each

airplane and pilot has a home base, where they have to return at the end of each planning

period. In the dynamic DAFP (DDAFP) passengers book seats online as they do with

airline service, except there are no fixed schedules. The set of requests for air

transportation arrives during the time of operation and with each request the service

provider must immediately decide whether it is feasible to accept the request given the

 9

available resources and the commitments already made. If it is feasible to accept the

request, the provider will want to decide whether it is desirable to accept it, i.e. whether it

will increase the profit of operation. The latter decision is especially complex as it

depends on the requests that will arrive in the future. A more complex variant of DDAFP

incorporates “same day travel” service, where requests can arrive during the execution of

a flight schedule and have to be incorporated into the current schedule.

Cordeau at al. (2004) present an IP formulation of the SDAFP. It is a time-

discretized multicommodity network flow model, which becomes large quickly and even

solving medium size instances (e.g., involving 15 to 30 airports and 5 to 10 airplanes)

require specialized solution approaches.

In DDAFP the operator has to decide in real time, given a set of already accepted

requests, whether an incoming request can be served or not. Cordeau at al. (2004) suggest

that fast heuristics will have to be part of that decision technology. In case the heuristics

fail to accept a request quickly, a customer may be given the option of receiving final

notification of acceptance or rejection in short time (e.g. 30 minutes) to allow time for

optimization based techniques to try and accommodate the request.

Sadeh and Kott (1996) study the application of dynamic transportation planning

technologies to the class of complex transportation planning problems, called Dynamic

Dial-A-Ride Problem with Multiple Acceptable Destinations and/or Origins (D-

DARPMADO). Their work was motivated by the military Aeromedical Regulation and

Evacuation (ARE) of patients to Medical Treatment Facilities (MTFs). The problem

domain is highly dynamic, complex and critical. There has been very limited experience

 10

with this approach to handling patients other than in peace time. The first Persian Gulf

war was the first significant armed conflict in which this concept has been put to a serious

test. The results were far from satisfactory - about 60% of the patients ended up at the

wrong destinations and half in the wrong country, Sadeh and Kott (1996).

The integrated medical regulation/evacuation problem requires the dynamic

identification of appropriate MTFs for new patients and the planning/scheduling of

aeromedical evacuation operations to transport these patients from their current locations

to the selected MTFs. This is a large-scale, highly dynamic planning and scheduling

problem that can involve hundreds or even thousands of simultaneous patient movement

requests. Despite the similarities with DDAFP, D-DARPMADO is more complex and

hard to control. Each patient has one or several medical requirements that constrain the

type of MTF to which he or she can be evacuated and a ready-time prior to which

evacuation cannot start. Additional constraints can include a maximum altitude above

which the evacuation aircraft cannot take the patient, a maximum number of hours that a

patient can spend in a flight before requiring an overnight rest, a maximum number of

stops the patient can tolerate during evacuation, etc., (Sadeh and Kott 1996). The most

challenging aspect in planning and scheduling medical evacuation operations has to do

with the dynamics of a domain in which requirements and constraints continuously

change over time. The authors clearly point out that the dynamic transportation problem

domain is in many ways more complex than VRP/DARPs traditionally discussed in the

literature. The D-DARP-MADO model expands DARP along two main directions:

 11

 There may be multiple acceptable destination and/or origin locations for a

given demand;

 Both the demands and the resources can change dynamically, while the initial

schedule is being executed.

Dial (1995) introduced the concept of the Autonomous Dial-A-Ride Transit

(ADART) service based on fully automated command and control, order-entry and

routing and scheduling systems implemented on computers on-board vehicles. The

approach outwits possible large size of DRT system with applying distributed

communication between the passengers and the vehicles and negligible central

management intervention. The system is fully automated, the only human intervention in

the process is the customer requesting service. Furthermore, the routing and scheduling

are not done at the central dispatching centre, but are distributed among vehicles through

an auction mechanism.

In this section the OR problems related to DRT were introduced. The next two

sections review the methods for solutions of DARP and DRT service optimization.

2.2. Heuristic approaches in DARP

Abundant research work has been done for both static and dynamic modes of

DARP. Heuristics is the most widely used approach to provide fast and quality solutions

for both subproblems of DARP, namely scheduling the passengers and routing of the

vehicles. Scheduling subproblem concerns the assignments of passengers to the vehicles,

and routing subproblem consists of search for the shortest sequence of visits the origin

and destination locations of all the passengers scheduled to each vehicle.

 12

2.2.1. Heuristics for SDARP

Based on the applied techniques the following four types of heuristics approaches

for SDARP can be distinguished. For each of them one or two representative works are

cited.

2.2.1.1. Insertion heuristics for SDARP

One of the first insertion heuristics for the multiple-vehicle version of the SDARP

is presented by Jaw et al. (1986). In the problem formulation, customers booking in

advance can specify the origin and destination locations and either a desired pick-up time

or desired delivery time. The actual pick up or delivery time of a customer is allowed to

deviate from the desired one, but constraints of a fixed maximum wait time window and a

maximum ride time that a passenger may spend in the vehicle are imposed. The objective

function of the model is the weighted sum of disutility to the customers and to the

operator. The heuristic selects users in order of earliest feasible pickup time and gradually

inserts them into vehicle routes so as to yield the least possible increase of the objective

function. However, Wong and Bell (2006) note that the sequence or order of the requests

to be inserted into the schedules has a significant impact on the performance of insertion

heuristics.

A commonly used technique to reduce the computation time in the insertion

heuristics for the SDARP is the clustering of the users to be served by the same vehicle

prior to the routing. Such clustering leads to two-phase approaches. In the first phase,

groups (clusters) of customers to be served within the same area at approximately the

 13

same time are formed, and the algorithms search for optimal combination of the clusters

to form feasible vehicle routes. In the second phase, each vehicle route is reoptimized

with a single vehicle algorithm.

2.2.1.2. Parallel insertion heuristics for SDARP.

Another way to speed up the computation time is through the use of parallel

computing. Toth and Vigo (1996) developed a parallel insertion procedure on the

assigning of the requests to routes. Then the method performs intra-route and inter-route

exchanges of passengers in search for better solutions.

 Diana and Dessouky (2004) adopted the operating scenario of Jaw et al. (1986)

and presented a new parallel insertion heuristic for SDARP with time windows. They

developed a route initialization procedure by inserting an initial request to each of the

vehicles, taking the spatial and temporal effects into account. A parallel regret insertion

heuristic is then used for the rest of the requests not inserted into the initialization. Instead

of ranking the requests by certain criteria (e.g., earliest pick-up time or latest delivery

time) as in classic insertion heuristics, the regret insertion builds up an incremental cost

matrix for each of the unassigned requests when assigned to each of the existing vehicle

routes. A regret cost, which is a measure of the potential difficulty if a request is not

immediately assigned, is calculated for each request, and the algorithm seeks the request

with the largest regret cost, and inserts it into the existing schedules. The regret insertion

algorithm requires at each step a feasibility check for the insertion of each unscheduled

request in all the routes. The whole procedure is repeated until all requests are inserted.

The algorithm is successfully implemented for a real case of up to 1000 service requests.

 14

2.2.1.3. Metaheuristic approaches for SDARP

Because of their ability to find close to optimal solutions, metaheuristic

algorithms have been sought to solve the SDARP. Tabu search stands out as a very

powerful tool for the DARP since it is highly flexible and efficient. Flexibility stems

from the capacity of handling a large number of variants within the same search

framework. Efficiency is associated with solution quality. It is now clear that tabu search

is capable of consistently generating high quality solutions on a large variety of routing

problems. The negative side of tabu search algorithms is that their running time can be

rather high. Cordeau and Laporte (2003) formulated and solved the static case applying

sequential tabu search. Instead of measuring disutility by the deviation between the actual

pick-up/drop-off times and the user-desired ones, their model allows users to specify a

time window of a fixed width on their inbound or outbound trips, with an upper limit on

the travel time for any user.

In general, the insertion heuristics are computationally fast, but may not provide

as good solution as metaheuristics. On the other hand, metaheuristics may not be

computationally feasible when a large number of requests need to be scheduled in a

dynamic environment, and they usually require extensive computational tests to set up a

number of parameters that are highly case-sensitive. Thus, in many of the approaches

both methods are combined – the insertion part provides fast and rough solution, which is

being improved with a metaheuristic local search. Such a combination leads to two or

three phase heuristic approaches.

 15

 2.2.1.4. Two or three phase approaches for SDARP

 Toth and Vigo (1997) are among the first who improved their solution method

obtained after parallel insertion phase through the execution of a local search based on

tabu thresholding optimization procedure. In their recent study Wong and Bell (2006)

modified the parallel insertion heuristic into a three phase method. In the first phase trip

characteristics are calculated and trips are ranked with a particular order for insertion.

Next, a parallel insertion is performed to iteratively insert the requests into the existing

routes. An optional local search procedure based on tabu search is used to further

optimize the objective function.

 Cordeau and Laporte (2007) conclude that excellent heuristics have already been

developed for the SDARP, which allow solving instances with several hundreds of users

within reasonable times and it should be possible to apply decomposition techniques for

larger instances involving, two or three thousand users. Therefore, it is expected that

more emphasis be put on the DDARP. This involves the construction of an initial

solution for a limited set of requests known in advance and the design of features capable

of determining whether a new request should be served or not and if so, how existing

routes should be modified to accommodate it. In addition, it should be possible to update

a partially built solution to deal with cancellations and other unforeseen events such as

traffic delays and vehicle breakdowns.

A brief summary of the reviewed heuristic algorithms for SDARP is presented in

Table 1.

 16

Table 1. Summary of the discussed heuristics for SDAP.

Reference Objective Time Windows Constraints Algorithm

Jaw at al.

(1986)

Minimize nonlinear

combination of

total disutility

function

On pick up or

on delivery

Vehicle

capacity;

Maximum ride

time

Insertions

Toth and

Vigo

(1996)

Minimize total

service cost

On pick up and

on delivery

Vehicle

capacity;

Maximum ride

time

Parallel

insertion and

route

exchange

Diana and

Desouky

(2004)

Minimize weighted

sum of distance,

excess ride time,

vehicle idle time

Lower bound

on pick up time,

upper bound on

delivery time

Vehicle

capacity;

Maximum ride

time; Maximum

waiting time

Parallel

regret

insertion

Cordeau

and

Laporte

(2003)

Minimize total

route length

On pick up or

on delivery

Vehicle

capacity;

Maximum route

duration;

Tabu search

Toth and

Vigo

(1996)

Minimize total

service cost

On pick up and

on delivery

Vehicle

capacity;

Maximum ride

time

Parallel

insertion

with tabu

threshold

search

Wong and

Bell (2006)

Minimize weighted

sum total operation

time, passenger

delay, penalty for

unsatisfied demand

On pick up or

on delivery

Heterogeneous

fleet capacity,

max wait time;

max ride time

Three phase:

ranking of

trips; parallel

insertion;

local

optimization.

2.2.2. Heuristics for DDARP

In the DDARP, operational constraints are the same as in the SDARP and the

primary goal is to satisfy as many requests as possible with the available fleet of vehicles.

As it was discussed in Section II.1, in some DRT systems if enough time is available, the

 17

operators may apply static approaches in DDARP optimization. Requests are dealt with

one at a time in a first come, first served fashion. Whenever a request can be served

without violating any of the constraints, it is accepted and becomes a part of the problem.

As the planning horizon goes on, the degree of flexibility decreases and the last requests

to be released are likely to be rejected.

Transportation systems that provide dynamic dial-a-ride service are more flexible

and can react to unpredicted events, but usually have tight real time constraints on the

reoptimization algorithm. Moreover they require a monitoring system able to track the

position of vehicles, their current load, and the state of the transportation network with a

certain frequency. Dynamic dial-a-ride systems are more competitive than traditional

transportation systems, but they need very good scheduling policy and route

optimization.

Based on the applied search techniques two general types of heuristics approaches

for DDARP can be distinguished – executing global and local search. For each of them

we describe the most common methods and cite one or two representative works.

2.2.2.1. Heuristics performing global search

In this approach the heuristic algorithms perform search for near optimal

scheduling and routing over the whole domain. The two main types covered are

constructive and iterative heuristics and dynamic insertion heuristics.

 18

2.2.2.1.1. Dynamic constructive techniques

In dynamic constructive methods the process begins with an incomplete or empty

solution and constructs the missing elements of the solution. Typical examples are

rebuilding new solutions from scratch, insertion techniques, partial revision, the matchup

scheduling approach, the conflict propagation approach and truth/reason maintenance

approach. Sadeh and Kott (1996) review two general dynamic replanning/rescheduling

methods applicable for VRPTW and DARP. They discuss the possibilities for dynamic

rerouting and rescheduling using constructive and iterative repair techniques. The

authors envisioned two main concerns applying constructive approaches in large-scale

domains with highly dynamic demand, such as the ARE domain. First, the computational

requirements of such an approach could be prohibitive - by the time a new solution has

been constructed, additional contingencies may have occurred, rendering the new

solution obsolete. Second, in situations where it is possible to build a brand new solution

each time a contingency occurs, this approach may still be undesirable because it

introduces too many disruptions. The authors suggest that it is preferable to restrict

solution revisions to small parts of the domain, because of two reasons - to avoid

difficulties in communicating new solutions in real-time and adapting the system to new

solutions.

Madsen et al. (1995) present a dynamic heuristics algorithm for passenger DARP

with multiple capacities and multiple objectives as well as updating capability. The

model is based on the procedure introduced by Jaw et al. (1986). Routes are pre-planned

for the requests known at the beginning of the day, and the new requests can be

 19

dynamically inserted throughout the day. Travel time updates and vehicle breakdowns

can be considered. The developed insertion algorithm can be efficient enough to be

implemented in a dynamic environment for online scheduling. The model was tested with

300 customers and 24 vehicle instance over a day operation, and the authors report that

good quality solutions were generated in short time.

One of the challenges when optimizing dynamic transportation is to make good

short term decisions without adverse long term effect. Mitrovic-Minic et al. (2004)

considered the dynamic problem with a double-horizon-based heuristic, considering a

short-term and long-term horizon. The short-term goal is to find the shortest route length,

similar to the objective function of the static optimization problem. The routing decisions

are taken with a constructive heuristic searching for the cheapest insertion procedure. The

long-term goal is to minimize the linear combination of routes and travel time so that

future requests are easily accommodated. Actually this is a mixed approach, because the

solution can be improved through a longer term consideration, performed with a local

tabu search heuristic. To obtain a better schedule, the advanced dynamic waiting strategy

is applied. The available waiting time in a route is split into a few large waiting intervals

which are arranged along the whole route. The route is partitioned into segments, each

containing consecutive locations that are reasonably close to each other in the plane. The

segments may change dynamically as new locations are inserted in a route or removed

from it. The simulated test results with 100 and 500 requests show the superior

performance of double horizon heuristic over the classical rolling horizon heuristics.

 20

 2.2.2.1.2. Dynamic iterative techniques

 Dynamic iterative repair techniques traverse in the domain of complete, possible

infeasible solutions, eliminate constraint violations and try to improve the quality of the

solutions. Sadeh and Kott (1996) review two main iterative approaches – interchange

approaches and constraint-directed repair. An interchange procedure iteratively

considers possible interchanges in the neighborhood of the current solution. If a given

interchange improves the quality of the solution, it is performed and a new solution is

obtained. The procedure can be applied until a solution is found that can no longer be

improved. In their simplest form, interchange procedures are only allowed to move from

one feasible solution to another. By allowing the procedure to wander into infeasible

regions of the search space, it is possible to eventually reach better solutions. If applied in

their simplest form, interchange procedures usually get stuck in local optima. A number

of techniques have been developed to allow the procedure to transition to neighboring

solutions that are not as good as the current one in the hope of eventually reaching better

solutions. Examples of such techniques include genetic algorithm procedures, simulated

annealing or constraint-directed repair procedures reviewed by Sadeh and Kott (1996).

Iterative improvement methods that exclude infeasible solutions can still be used to

reoptimize solutions when favorable contingencies occur that make the problem easier

and offer opportunities for improving the quality of the existing solution (e.g.

cancellation of a request, addition of a new vehicle, duration of a trip is shorter than

expected, etc.). In the face of contingencies that invalidate an existing solution (e.g. a

transportation asset becoming unavailable for some period of time), iterative techniques

 21

require heuristics to decide which part of the solution to restore, similar to constructive

techniques. Thus, in large-scale systems with highly dynamic demand, both constructive

and iterative techniques result in low efficiency if they search the entire domain for better

solution.

2.2.2.2. Heuristics performing local search

In addition to the NP-hardness of the problem, the solution of a dynamic dial-a-

ride system is time critical, because it must be performed in real time and repeated every

time when significant variations of data occur. Therefore, some researchers seek for

approximation, not for optimization. Two representative examples of approaches based

on local search are reviewed in this section - parallel metaheuristics and clustering and

locating.

2.2.2.2.1. Parallel metaheuristics

To improve the computation efficiency of metaheuristics, Attanasio et al. (2004)

implemented a family of parallel tabu search heuristics. Their work is an extension of the

method by Cordeau and Laporte (2003) to the dynamic case. First a static solution is

constructed on the basis of the requests known at the beginning of the planning horizon.

When a new request arrives, the algorithm performs a feasibility check for solution that

can include the new service request. If the new request can be accepted, the algorithm

performs a post-optimization, i.e., it tries to improve the current solution. The

computational experiments indicate that parallel computing can be beneficial in solving

real-time vehicle routing problems. Moreover, the penalty mechanism of the objective

 22

function turns out to provide the best results while the choice of the initial static solution

seems to be irrelevant.

2.2.2.2.2. Clustering and locating

Colorni and Righini (2001) develop a two-phase model, based on clustering and

local search rather than a constructive mechanism. The algorithm computes the ordered

sequence of pick-up and destination points, and leaves the drivers to follow their own

routes through the area. Local search algorithm is performed to find a better sequence of

points in its neighborhood. The neighborhood of a solution is the set of all solutions that

can be obtained from the current one by removing a customer, which is scheduled but not

picked and insert them into another vehicle’s sequence. The authors do not provide

results from the simulation experiments, instead discuss that the level of service of the

system is dependent on the following parameters: number of overlapping time windows

of the requests, tightness of time windows, computational time, planning horizon, and

number of vehicles with their capacities.

The quality of solutions produced by modern heuristics is strongly related to

running time. Thus, if sufficient time is given, the algorithms attain near optimal or even

optimal solutions, as borne out by empirical studies, Diana and Dessouky (2004).

However, the time available for decision making in a real time service in highly dynamic

environment is often short and a different approach is needed in such contexts.

A brief summary of the reviewed heuristic algorithms for DDARP is presented in

Table 2.

 23

Table 2. Summary of the discussed heuristics for DDAP

Reference Objective Time Windows Constraints Algorithm

Madsen at

al. (1995)

Multi criteria On pick up or

on delivery

Vehicle capacity;

Maximum route

duration;

Maximum

deviation of ride

time

Insertion

heuristic

performing

global search

Mitrovic-

Minic at al.

(2004)

Minimize total

route length

Time window

from start to

end service of

request

All request to be

served; pairing

and preceding

constraints

Double-

horizon

insertion

Attanasio

et al.

(2004)

Minimize time

windows

constraints, route

duration and

riding times

On pick up and

on delivery

Upper bound of

the ride times

Three phase

insertion

with tabu

search for

optimality

Colorni and

Righini

(2001)

Maximize

number of served

customers;

Minimize total

traveled distance

Time window

from start to

end service of

request

Vehicle capacity;

preceding

constraints

Iterative

clustering

algorithm

based on

local search

After the OR transportation problems and the heuristic approaches of DARP were

introduced, in the next two sections some of the applied approaches in DRT service are

presented.

2.3. Simulation approaches in DRT

In this section we briefly review some practical applications of the heuristic

methods discussed in the previous sections into DRT real time operations.

As it was discussed in Chapter One, in DRT operation passengers and service

provider usually have opposite interests – passengers need quick and reliable service,

 24

while the provider would like to have more passengers served by the same vehicle,

driving in the shortest possible route between the pickup and drop-off locations. To cope

with these conflicting requirements in real time some researchers developed dynamic

multi-objective heuristic methods. Dessouky and Adam (1996) propose a real time

scheduling algorithm for DRT service that considers vehicle location, vehicle capacity

and passenger demand. The algorithm tries to optimize three conflicting objectives –

minimum total travel distance of vehicles, minimum total travel time of passengers and

minimum total lateness of passenger pickup or drop-off. The limiting assumptions are

that the number of vehicles is given in any shift and the vehicles operate under a fixed

schedule. At first step the algorithm determines the schedule based on the calculated total

cost of service and at second step the solution is improved either within the schedule of

the same vehicle, or with reassigning the passengers to different vehicles. The

performance of the heuristic is simulated with data generated from real para-transit

service. A service request is considered for scheduling 10 min before the desired pick up

time, and a is considered to be on-time if it arrived no later than 15 minutes of the

schedule for the advance reservation requests and 1 hour for the immediate requests. The

authors conclude that when the DRT system's workload is low, it will operate similarly to

a taxi service (depending on the selection of the penalties in the objectives). As soon as

the workload increases over a given limit, ridesharing is the preferred alternative of the

heuristic.

Horn (2002) introduces a software scheduling and dispatching system called

L2sched for passenger DRT. Demand is realized as a stream of service requests, which

 25

are scheduled as they arrive. Each service request applies to a group of one or more

passengers and includes the locations and time windows for pick up and drop offs. Travel

requirements are temporally elaborated to allow a long-sighted view of fleet management

and exploit system optimization. Scheduling objectives are designed to obtain efficient

fleet utilization while satisfying the service requirements of each request. Thus, the

software applies the centralized approach in routing and scheduling. Each vehicle

provides real time information about arrivals, departures, trip cancellations and

breakdowns. The software provides dynamic scheduling and routing as an extension of

the current system plan. Typically the difference between the current and the next plan is

induced with a small change in scheduling and/or routing, e.g. assignment of additional

request and inclusion a new trip. Thus, the optimal system plan does not change radically,

but evolves over time. This evolution is implemented in a three-tier optimization strategy:

least-cost insertions of new requests; search for local improvements in the neighborhood

of the passenger; periodic reoptimization of the planned routes. A so-called “rank-

homing” heuristic is also proposed for governing the relocation of idle vehicles. A set of

locations, known as “cab-ranks”, are specified in advance and the heuristic chooses the

cab-rank where the idle vehicle should be dispatched. To make a decision, the heuristic

exploits information about future patterns of demand at each cab-rank. The performance

of the software is tested in simulated environments. Two major conditions with two

levels are considered – single and shared riding; immediate service or reservations in

advance. Initial experiments show that in single-ride mode the system accommodates

approximately 95% of the demand with an upper limit of 15 min on waiting time. In a

 26

case of shared riding and advanced reservations the number of possible implementations

is significantly greater. The CPU execution time varies from 2:12 to 6:06 min in single

hiring and immediate service, 2:31 – 26:01 min in single riding and advanced reservation,

2:24 – 6:18 in shared riding and immediate service, and 2:31 – 46:40 min in shared riding

and advanced reservation. The test results show that the proposed software produces fast

and quality solutions in both single riding cases, but in shared riding and in case of high

rate of contingencies, the centralized optimization does not perform well.

To reduce the limitations of the centralized approach, Uchimura, Takahashi and

Saitoh (2002) introduce a hierarchical model of three level transit operation system,

called local initiative for neighborhood circulation (LINC). The first two levels provide

regular transportation between the cities in the metropolitan area and between the

communities within the cities, respectively. The third level provides a dial-a-ride service

on passengers in a given area within the communities and the neighborhoods using small

vans. Thus, the third level is a feeder service to both Level 1 and 2. To achieve better

reliability drivers are given freedom to follow any route between the stations in Level 2.

The system has the following operational characteristics: 10-15 min reservation; coverage

area 1.5 – 2 sq mi with approximately 10,000 people; unlimited origins and destinations

within the area; ADA accessible vehicles with maximum capacity of 20 passengers. To

meet these service characteristics, the LINC system should select in real time the routes

with the shortest overall trip time and minimum on-board time for most of the

passengers. To track the origins and destinations of the requests in real time and to inform

the passengers about the time of pickups, GIS with GPS will be used. Since the

 27

combinatorial optimization would determine the economical route and the optimum

scheduling in very long time, the authors have developed a heuristic based on genetic

algorithms (GA) to obtain near optimal solution in real time. The heuristic follows a

search procedure based on Dijkstra’s algorithm to determine the minimum cost of

vehicle’s routes. The heuristics is tested with simulated instances of 10 passengers, which

are solved in short processing time (approximately 40 s). However, the model does not

incorporate any constraints such as traffic congestions, unmet service demand and

multiple vehicle service.

It was observed that in many DRT systems in order to circumvent the undesirable

feature of taxicab systems and to avoid traffic congestions, drivers are allowed to deviate

from their direct routes between the destination points. This strategy increases the

average riding times, but also increases the flexibility to serve other passengers, increases

the average occupancy and productivity of the vehicles, and hence decreases average

waiting times. Since DRT is a service operation, it is expected that the main stress is on

customer’s needs. Therefore, a reasonable objective can be of maximizing the sum of

passenger and operator surplus. Such an objective function recognizes the separate roles

of customers and providers and the trade-off of increasing operational costs and

increasing service quality. Gillen and Raffaillac (2002) present an algorithm to measure

the contribution of automatic vehicle location (AVL) to both passenger satisfaction and

system efficiency. The model accurately predicts the average waiting and total time in the

system and the average total distance traveled. A similar problem is faced by the recently

developed “webvan” food delivery service, which takes orders for groceries over the

 28

internet and commits to delivery to the order's address within a given time frame, and

telemarket logistics, which is discussed with the next study. Both systems are of single

origin with multiple destinations.

Sheu (2006) presents a dynamic customer group-based resource allocation

methodology for the use in demand-responsive city logistics distribution operations. The

motivating example comes from the resource allocation problem resulting from tele-

shopping service to manage the corresponding inventories and to provide quick-

responsive door-to-door logistics services to the corresponding end-customers. Thus,

dynamic allocation of logistics resources defines the feasibility of an efficient demand-

responsive city logistics distribution system by enhancing the resource utility as well as

by shortening the pre-route work process time in quick response to changes in customer

demands. In his review Sheu (2006) notes that some multi-resource allocation problems

are formulated with globally optimized procedures under strong assumptions in the

problem definition, demand and/or supply side, and thus lead to too simplified models. In

addition, global optimization programming approaches may have difficulties in searching

optimal solutions in large-scale distribution networks and high customer demand.

Furthermore, these globally optimized models may not have the capabilities of updating

and grouping customer orders dynamically in quick response of customer orders. For all

these reasons the author formulates the dynamic logistics resource allocation model with

sequential mechanism. The proposed methodology is composed of five sequential

operational phases: order processing, customer grouping, customer group ranking,

container assignment, and vehicle assignment. The whole procedure is executed each

 29

time when the database of customer entries is input to trigger a new logistics distribution

mission. The methodology is tested in a simulated environment of 136 orders served in

one day by 14 vehicles with different capacities. Two generalizations can be made from

the obtained results: first, the algorithm assigns the large-sized and medium-sized

vehicles to grouped customer orders and small-sized vehicles for short-distance and

miscellaneous goods delivery. Second, different customer groups can be consolidated,

and then served by the same vehicle avoiding extra loading and dispatching. Sheu (2006)

discusses that appropriate customer order grouping and resource assignment prior to

vehicle dispatching do improve the performance of city logistics systems in reducing the

operational costs and average lead time. The implementation of a novel route guidance

technology with the proposed dynamic resource allocation method reduces the expected

delivery time associated with each customer group, which is critical in stimulating the

customer satisfaction with the improved average lead time. There is still a great potential

for integrating more elaborate vehicle routing algorithms for quick-responsive logistics

distribution operations. Such an integrated customer group-based logistics distribution

operation appears even more important to provide efficient goods delivery service in a

large-scale logistics network under time-varying traffic network conditions.

In the last two sections some of the simulation approaches in DRT operations

were introduced. All of them adopted centralized approaches, where the control and

decision-making is done through the objective(s) that maximize the global utility of the

whole system (i.e. benefit for the service provider and convenience for the clients). These

approaches are usually implemented as heuristic procedures that extend basic graph

 30

search algorithms, acting over large data collections that describe the entities of the

domain problem (service requests, vehicles and schedules). A key aspect when applying

these approaches is the identification of a good estimation of the client’s utility function,

in order to allow the generation of adequate solutions from the client’s point of view.

However, this is not always feasible because not all the clients share the same desires, nor

appreciate them with the same importance.

From the review of heuristic and simulation approaches the following general

deficiencies of centralized DRT planning methods are observed:

 Computational complexity, i.e. the models suffer to adjust the schedules and

routes in real time;

 Difficulties in planning of large scale and highly dynamic problems;

 Inability to respond in case of missing information about a service request or

current status of a vehicle;

 Low utilization of the vehicle fleet due to special requirements such as

handicapped people transportation;

 Possible high cost of operation, in some instants close to taxi service.

To address some of these deficiencies, some researchers perform metaheuristic

local search instead of global one Cordeau and Laporte (2007), or search for

approximation rather than optimization of the solutions, Attanasio et al. (2004).

2.4 Intelligent Transportation Systems (ITS) approaches in DRT

The advance in the information and communication technologies, such as

Internet, Geographic Information Systems (GIS), Global Positioning Systems (GPS),

 31

Artificial Intelligence (AI) and the availability of low-cost mobile communication

devices have led to a significant changes in DRT operational planning. The real time

reservations become easier to manage and simultaneously the systems can operate in

more complex and highly dynamic decision making environment. The increase in

automation has caused the shift to online reservation system, hence, requiring service

providers to have real time scheduling and dynamic dispatching capabilities. In a

dynamic dispatching mode, the schedules and routes of vehicles are modified in real-time

to account for any trip cancellations or any new orders. To be effective, real-time

scheduling and dynamic dispatching systems require immediate information and data on

the location and status of each vehicle. By taking into account real time information

concerning passenger demand, vehicle location, and road conditions, real time scheduling

can give the best assignment of vehicles to riders and route selection. Hence, real time

scheduling and routing have the potential to improve service efficiency, to reduce the cost

of transit providers and to improve customer satisfaction.

ITS offer a number of newly developed approaches for DRT operational planning

and control. To increase the service through increased system efficiency, two types of

advanced technological responses have been implemented: AVL and dynamic

scheduling, Kihl at al. (1996). AVL can track and report in real time the location of all

vehicles in the fleet as frequently as every other second. With the aid of a real-time

display map generated by an AVL system, trips can be inserted by the dispatcher and

directly posted to the closest vehicle. The most utilized method of AVL is GPS. The main

disadvantage of AVL is the high cost. Dynamic scheduling is time-specific, rather than

 32

location-specific like AVL. Unlike AVL, it does not report the actual location of the

vehicle, but rather it approximates the vehicle’s location based on estimated travel time

between points.

Based on the decision making process concerning service requests, the ITS

approaches applied in DRT operation can be split in two main groups – centralized and

decentralized, which are reviewed in the next two sections.

2.4.1. ITS approaches in centralized DRT systems

In DRT systems that adopt centralized approaches, the control and decision-

making is done through the objective(s) that maximize the global utility of the whole

system (i.e. benefit for the operator and convenience for the clients).

To adapt DRT operations in advance or to meet the current demand in real time,

Finn and Breen (1996) introduce the telematics approach. Telematics can be broadly

defined as the integration of telecommunications and informatics systems. It consist of a

communication platform (either by wire or by air) and ITS. Telematics DRT systems are

based on the integration of information and telecommunication (ITC) technologies –

vehicle location systems, dispatch centers, communications, booking, and reservation

systems. In addition, optimization systems are included to determine the routing, vehicle

size, assigned passenger based on cost, passenger requirements, and fleet ability. The

most utilized telematics technologies include the following components:

 Communications between the vehicles and dispatch centers (or depots) across

the area of coverage.

 33

 Vehicle location systems for effective system management and passenger

information systems. The most practical form is GPS.

 Network Management and Control Systems - dispatch centers which have

substantial data collection and processing capabilities, combined with the

decision and communication mechanisms to implement needed interventions.

 Booking and reservation systems - by combining integrated databases of

services with real time knowledge of network state, it is possible to operate a

more dynamic booking service, and to use the network control communication

system to advise the vehicle driver of seat availability.

 Ticket and fare collection systems can be linked to the booking and

reservation systems to automatically generate travel documents. Currently, the

greatest potential for the fare collection is smart cards.

 Passenger information services - allow potential users to determine the

available service offer. All data is normally held in a centralized database with

links to the systems of the individual operators. The construction of the

database is to be designed to allow rapid retrieval of information.

The presented trial DRT system by Wipke (1996) utilizes most of the above

discussed components – GPS to locate the vehicles, two-way communications between

the vehicles and a central computer-server, and advanced dispatching and routing

software to control the movement of vehicles within the fleet. To provide passenger

information service, the developed advanced web site allows visitors to see all the

updates of vehicle position on a map every 20 seconds. The project demonstrates how a

 34

fixed-route, fixed schedule shuttle service can be converted to be demand-responsive

with increased efficiency. The proposed concept is based on three essential telematic

elements:

 Precise location of the vehicles through GPS and two-way electronic

communicator;

 Advanced mapping software to take current vehicle locations and directions of

travel, and the incoming passenger requests for rides;

 Optimization routines in real time to determine which vehicle should make the

pickup and the optimal route to take.

Thus, DRT service overcomes many of the disadvantages of public transport by

using state-of-the-art ITC technologies, GPS and system optimization to arrange pick-ups

and drop-offs from the desired locations.

Casey at al. (2000) report on an Advanced Public Transportation System (APTS)

project. The purpose of the project is to apply ITS technologies that will improve the

intermodal transportation services in a rural area with seasonal variability of demand.

While the paratransit/dial-a-ride system serves residents only, because of the summer

tourist pattern of the area, the fixed-route services experience significant seasonal

changes in demand. The system utilizes GPS to provide real-time information on vehicle

locations and/or expected arrival times available to customers in the three ways - by

phone calls, via the internet and at video monitors positioned at transit or public centers.

Mobile data terminals are used to send messages between dispatchers and drivers, and to

store data collected on board the vehicles. A GIS-based decision-support system

 35

integrated with an Internet-based travel planner performs the scheduling of the

passengers. This tool assists the client agencies and individual customers in planning

their trips by displaying vehicle routes and schedules that can serve a desired trip

origin/destination and time. In addition to making real-time information available, the

APTS is able to increase the number of handled customer calls (including information

requests) as a result of reducing the time required for other tasks. Without APTS callers

sometimes give up service because of the long waiting time to communicate to the

system dispatcher.

2.4.2. ITS approaches in decentralized DRT systems

In DRT systems applying decentralized decision making approach, vehicle fleet is

represented as a community of agents that perform low-level planning, scheduling,

execution, and control tasks. As opposite to centralized evaluations, optimization can be

done with less information and, as consequence, the planning solutions could be far from

the optimal for the whole system. This might be the main reason why very few

researchers apply decentralized approach in their studies of DRT operations.

Cubillos at al. (2004) present a mixed multi-agent system (MAS) approach to

perform distributed operational planning of DRT service. The method combines the best

features of both centralized and decentralized decision making approaches. The model is

structured as a two-layer architecture: the Internet layer, which provides the interface

with the vehicles, clients and other systems, and the Planning layer, which encapsulates

the assignment and scheduling services. The model involves a negotiation process to

 36

solve the tradeoffs between the passengers and the service provider, incorporating the

client only in the final decision making. The underlying MAS framework allows the

implementation of different scheduling policies, and evaluates the insertions of the trips.

The adopted policy finds all the feasible ways in which a new customer can be inserted

into the actual vehicle’s schedule, choosing the one that offers the maximum additional

utility according to an objective function. The advantage of this approach is in avoiding

the estimation of the utility function, because the client is involved only in the final

decision process. This is the most utilized approach in the online search engines of

transportation service.

In his decentralized ADART technology, Dial (1995) introduces a fully

automated dispatching (FAD) system, which can field a customer requests, schedule and

optimally route a vehicle without human intervention. Every vehicle is autonomous and

when vehicle’s on-board computer receives a customer request, it inserts this request into

the vehicle’s schedule and plans the optimal route to accomplish the schedule.

Furthermore, the computer may pass the request off to another vehicle. Each vehicle’s

computer collectively assigns the new trip to a “cluster” belonging to the responsible

vehicle, thus leaving each computer to solve only a small optimization problem. All

vehicles’ computers work on their particular routing and scheduling problems in parallel.

Thus, the huge system problem is decomposed into several easier small problems, and all

of them are solved simultaneously. This enables an ADART operation to keep up with

even largest demand surges. In addition, each vehicle computer can operate in virtual

 37

ignorance of the states of the other vehicles, while at the same time cooperating with the

other computers towards minimizing the total cost of service.

After reviewing the simulation and ITS approaches in real time DRT control, we

can note the following disadvantages of the centralized systems:

 The developed heuristics are not invariant to the sequences of the service

requests to be inserted into the vehicle schedules;

 With approaching the end of the planning horizon, the degree of freedom of

flexibility of inserting the last requests decreases;

 In a highly dynamic environment by the time a new solution is constructed,

additional contingencies occur, causing too frequent disruptions of the

determined assignments and schedules;

 In large scale systems with highly dynamic demand the developed heuristics

work with low efficiency if search over the entire domain for better solution;

 The proposed simulation products do not produce quality real time solutions

in case of high rate of contingencies and multi shared vehicles.

To reduce the low efficiency of the centralized systems in areas with heavy traffic

contingencies, some of the DRT operators give their drivers freedom to select the actual

routes between the pickup and drop off locations, Colorni and Righini (2001), or between

the stationery bus stops Uchimura, Takahashi and Saitoh (2002). Thus, the actual

routings of the vehicles are determined individually, not by a central processor. This

partial decentralization of the routings saves computational time and reduces the

information exchange between the vehicles and the operating center.

 38

Chapter Three

Research Motivation, Problem Domain, Research Goal and Objectives

3.1. Research Motivation

DRT operational planning where transport requests are accepted and scheduled

for service, and vehicles are routed/rerouted in real time has changed significantly due to

the recent advances in Intelligent Transportation Systems. However, the high level of

dynamics associated with real time communication between the system operator and

passengers, and system operator and vehicles require fast processing of a number of

parameters. Some of these parameters consider the passenger requests; others

characterize the vehicle routings and the environmental conditions. Some of these groups

of data might be unrelated to each other. In addition, some system related information

may or may not be available continuously based on the reliability of the technological

infrastructure. Thus, the intelligent and effective processing of the available information

in such a complex decision making environment requires the use of formal modeling,

analysis and control approaches which are robust, modular, and/or decentralized.

Robustness will provide that the system behaves in the desired manner in the

unpredictable and quickly changing environment. Modularity will provide independent

modeling of the service requests’ assignments to the vehicles, vehicle routings and

reroutings and environmental conditions. In case of a conflict or other unpredicted

 39

situation, only the modules that cover the particular request will be affected. The

decentralization will reduce the computational efforts, improve the tractability of the

solution and allow parallel computations.

3.2. Research Problem Domain

In this research, we aim to provide real time control of DRT operations in a

complex transportation problem referred to as Dynamic Dial-A-Ride Problem with

Multiple Acceptable Destinations and Origins (D-DARP-MADO).

A highly dynamical and critical application domain of D-DARP-MADO is the

military Aeromedical Regulation and Evacuation (ARE) of patients to Medical Treatment

Facilities (MTFs). In this problem, the origin of the service requests can be any location

within the affected region, and the destination of the demand can be assumed to be one or

more locations known a priori (such as MTFs). Routing and scheduling operations in

such a domain require the dynamic coordination and (re)allocation of a large number of

resources subject to a wide variety of constraints. Key assets/resources and associated

constraints include vehicles (airplanes or helicopters) and their characteristics (e.g.

capacity, length of travel, fueling requirements, etc.), pilot and medical crews and

restrictions on the number of hours they can work in any given day, airports and their

different characteristics (e.g. capacity, types of aircraft they can accommodate, etc.),

number of hospital beds at MTFs and the types of patients each MTF can accommodate,

etc. For example, in case of a natural or man - made disaster in Tampa bay area the

community authorities may appoint several (let’s consider four) hospitals to serve as

 40

temporary MTFs – Tampa General Hospital (TGH), St Joseph Hospital (SJH), Town &

Country Hospital (TCH), and University Community Hospital (UCH), Fig3.1.

Helicopters, light jets or heavy duty land transporters can be used to transport patients

(passengers) to the MTFs, which provide shelter and first aid.

Fig. 3.1 A map of MTFs and patient pick up locations in Tampa bay area.

If patients can be accommodated at more than one possible MTF, the problem is

with multiple acceptable destinations. In case the patients can get to different designated

areas to be picked (the dark spots on Fig. 3.1), we talk about multiple acceptable origins.

A special case of D-DARP-MADO is when patients can be picked from any possible

location.

 41

The most challenging aspect in planning and scheduling of medical evacuation

operations is the high dynamics of the domain in which requirements and constraints

continuously change over time. As it was discussed in Section II.1, ARE imposes two

general extensions in DRT operations:

 Multiple acceptable destination and/or origin locations for a given demand;

the solution to this problem must include assignments of each demand to a

destination and/or origin locations;

 Both the demands and the resources can change dynamically while the initial

route and schedule are being executed. The proposed solution method must be

capable of real time revision of the assignments of patients to resources and

routes and schedules of vehicles.

3.3. Research Goal and Objectives

In this study we propose the representation of DRT systems as a Discrete Event

Systems (DESs) where the model captures both the low level dynamics (such as

infrastructure conditions, current status of vehicles and limitations) and high level

dynamics (such as service demand requests) of system evolution in a modular manner.

The mathematical foundation of DES theory facilitates logical analysis of these complex

systems and provides the necessary framework for the development of real time

scheduling and intelligent decision making tools.

 42

The real time control of DRT is developed as SC of DES, which synthesizes the

supervisor(s) – i.e. the acceptable behaviors of all the elements of the system. Fig. 3.2

outlines the framework of the online DRT control structure.

Fig. 3.2 Framework for real time DRT control.

In Fig.3.2, DRT control system takes input data from the passenger request

interface and the physical environment (vehicle fleet and service area with its conditions).

When a new service request is received the assignment controller checks if it is feasible

to accept this passenger. If the request cannot be accepted because of operational limits,

the system sends a signal of rejected request. If the request is feasible, the routing

PASSENGER REQUEST INTERFACE

SC –

Assignments

and

Routings

PHYSICAL ENVIRONMENT

Request Assignment & Routing

Traffic Surveillance &

Vehicle Availability

Vehicle Fleet Interface

D
R

T
 C

O
N

T
R

O
L

 S
Y

S
T

E
M

Data information (in both levels)

Lower task-level signal information

(issue 1)

Process-level: logical event feedback and control

information

 43

supervisor generates the possible routings of the vehicles to serve the request. In case of

more than one possible assignments and/or routings, the system may use an optimizer or

rule based logic (e.g. Route Planner and Task-assignment) to select the preferred vehicle.

In any case, the information to the selected vehicle is sent through the Vehicle Fleet

Interface, and the passenger is informed for the service. During operation the system (e.g.

Traffic Surveillance and Vehicle Availability) receives feedback information for the

current conditions of the physical environment (vehicles breakdowns, traffic congestions,

etc.).

To the best of our knowledge, Seow, Pasquier and Hong (1999) are the first

researchers who proposed the application of Supervisory Control Theory (SCT) to the

modeling and real time operational control of the class of land DRT systems. The main

advantages of SCT for online service control of DRT systems over the heuristic and

simulation methods for operational planning are:

 Possibilities to consider service of a new request without affecting the already

scheduled requests;

 Possible modularity and decentralization of the supervised control, which

allows autonomous service operational control of the vehicles and parallel

computation of their supervisors;

 Dealing with unobserved events that may occur in complex systems.

 44

In this research we provide several supervisory controller synthesis methodologies

applicable in real time control of large scale DRT systems operating in ARE

environment. Within this goal are the following objectives:

 Model the uncontrolled system behavior and specifications of ARE problem

using Finite Automata (FA);

 Synthesize centralized supervisory controller to demonstrate the decision

making of accepting or rejecting service requests;

 Synthesize general supervisor from the independent modular supervisors of

the different specifications;

 Apply decentralized supervisory control to compute in parallel the local

supervisors of concurrent groups of vehicles and passengers; synthesize the

global supervisor of the entire system.

To accomplish these objectives, we apply and extend the DES modeling

framework in the study of Seow and Pasquier (2004) of DRT supervisory control of the

land transportation model in the following four main directions:

 Extend modular SC with additional specifications which are characteristics of

ARE problem domain: maximum length of the routes (e.g. flights); finite set

of origin-destinations of the requests.

 In modular SC the action of the central supervisor S is represented as a

combination of the control actions of two or more supervisors. The advantage

of this method is in the simplified procedure to check the feasibility of any

 45

service request. If a given request cannot be accepted by one of the

supervisors, there is no need to check for the rest of the supervisors.

 Develop decentralized SC: A decentralized SC consists of “processing nodes”

that jointly control a distributed system, Cassandras and Lafortune (1999). In

a decentralized DRT system each vehicle and its assigned passengers form a

subsystem. Thus, vehicles’ routings and assignments of each subsystem do not

interfere with the routings and assignments from any other subsystem. Hence,

local supervisors of each subsystem may not observe and do not control the

behavior of the rest of the subsystems.

 Since the formed subsystems operate simultaneously they form concurrent

DESs, which are independent to each other. Thus, all the local supervisors can

be synthesized in parallel.

In the centralized planning approach (see Section II.4), the scheduling and routing

of the entire system is updated with any new request or change in the domain. Despite

efficient heuristics and communication technologies, the permanent update of all the

passenger assignments and vehicle routings take computational time, which cannot be

neglected in real time planning of a complex problem like the emergency aeromedical

evacuation. In addition, the heuristics need all the relevant information of the requests to

compute the passenger assignments and calculate the vehicle routings.

 46

The results of this research are expected to overcome the disadvantages

centralized control and achieve a methodology for synthesis of robust, modular and

decentralized real time control of concurrent systems.

 47

Chapter Four

Discrete Event Systems and Supervisory Control

In this chapter we introduce the basic concepts of DES, supervisory control theory

(SCT) and their representation with finite automata (FA).

4.1. Discrete Event Systems

DESs are dynamic systems driven by event occurrences usually at irregular

intervals. These events take the systems from one state to another. Such systems arise in a

variety of contexts such as information and communication networks, complex and

multimode production processes and robotics, logistics and vehicular traffic. These

applications require control and coordination to ensure the orderly flow of events. As

controlled (or controllable) dynamic systems, DESs qualify for a proper subject for

control theory (CT). CT for DES considered in this study is based on FA concepts. The

essential concepts and modeling of DES can be found in Cassandras and Lafortune

(1999) and the fundamentals of the FA theory and supervisory control theory (SCT) in

Wonham (2006). In the following review of DES modeling and SCT background till

Section 4.2.3 we adopt the formalism of Cassandras and Lafortune (1999), and Sections

4.2.4 and 4.2.5 are based on the study of Yoo and Lafortune (2002).

 48

4.1.1. FA modeling of DES

 An automaton is a device that is capable of representing a sequence of events

according to well defined rules. Automata are used as a modeling formalism since they

are easy to use, intuitive, amenable to all the unary and composition operations, and easy

to analyze.

A DES can be modeled as a five-tuple automaton A, i.e.  mQ,q,,,QA 0 ,

where Q is a set of states, Σ is a non-empty set of events (alphabet), QxQ:  is a

transition function, Qq 0 is the initial state and QQm  is the set of marked states (i.e.

states indicating the completion of the tasks or sequences of tasks from a control

perspective). A transition in the automaton A is any element of δ, and may be denoted

simply by the triple  ',, qq  , where   'q,q  .

If the transition function δ is partial, only a proper subset of Σ can occur, and a

more flexible and economical representation of DES is provided by a generator G, i.e.

 mQ,q,,,QG 0 . If   ,q is defined, then we say that ζ is eligible at q in G and

denote it as  !, q . The set of all feasible events that can be executed at state q is

denoted by  q , i.e.     !,q:q   .

Finite state automata are graphically described by directed-transition graphs. In

order to represent an automaton, a state is identified by a node (represented by a circle

with the state’s number inside, e.g.
1

) of the graph whose edges are labeled by

 49

transition labels (represented by an arrow, e.g.
21

σ

). The initial state is labeled

with an entering arrow
0

, while a marked state is labeled with an emitting arrow

1

 When Qq 0 is also a marked state, it is labeled with a double arrow
0

.

4.1.2. Language and language characteristics

A language L defined over an event set Σ is a set of finite-length strings formed

from events in Σ. The set Σ
*
 contains all possible finite sequences, or strings, over Σ, plus

the null string ε. The definition of δ can be extended to Σ
*

as follows:

   q,q 

        andsfor,s,qs,q *

.

System’s behavior may then be described by two languages: L(A), the prefix-

closed language generated by automaton A, and Lm(A), the language marked by

automaton A. Formally,     !,: 0

* sqsAL 

and

      .Qs,q:ALsAL mm  0

The language generated by automaton A can be interpreted as the set of all the

sequences of events that take the system from its initial state to some reachable state in A.

The language marked by A can be interpreted as the set of all the strings that take the

system from its initial state to some marked state i.e. final state or a state of satisfactory

completion. By definition,  ALALm )(is the subset of strings in L(A), which ends in

any of the final states Qm. Thus, if an automaton A represents a DES, then Qm represents

 50

completed tasks executed with the physical process of the DES. If automaton A models a

behavioral specification K, then)A(LK m is the behavior of interest.

4.1.3. Operations on languages

The following three operations on languages are essential in language

composition:

 Concatenation: If *
ba L,L  then a string s is in baLL , if it can be written as

the concatenation of a string in La with a string in Lb is:

      bbaaba
*

ba LsandLsandsss:sLL   .

 Prefix-closure: The prefix closure of L is the language denoted by L ,

consisting of all the prefixes of all the strings in L. If
*L , then

  Lstt:sL **   . L is said to be prefix-closed if any prefix of any

string in L is also an element of L, i.e. LL  .

 Language-closure: a language  ALL m is said to be  ALm -closed if

  LALL m  .

4.1.4. Unary operations on automata

The following three operations on automata are essential in FA theory:

 Accessible states: The set of all the states that can be reached from the initial

state is called the accessible states subset. Let Qa denotes the accessible states

subset, and is described as:     qs,q,s:QqQ *
a  0 .

 51

 Co-accessible states: The set of all the states q from which some marked state

can be reached is called the co-accessible states subset. The co-accessible

states subset denoted by Qca,     m
*

ca Qs,q,s:QqQ  0 .

 Trim automaton: an automaton that is both accessible and co-accessible is said

to be trimmed.

4.1.5. Composition operations on automata

The following two composition operations on automata are of great importance in

SCT:

 Product of two automata A1 and A2 is the accessible automaton A,

  210201212121 mm QQ,q,q,,,QQAAA   , where

  
        






otherwiseundefied

qandqifqq
qq

!,!,,,,
,,

22112211

21




In the product, the transitions of the two automata are synchronized on a common

event, i.e. 21   . It is verified that      2121 ALALAAL  and

     2121 ALALAAL mmm 

 Parallel composition of two automata A1 and A2 is the automaton A,

  210201212121 mm QQ,q,q,,,QQAAA   , where

  

        

    

    














otherwiseundefied

qonlyifqq

qonlyifqq

qandqifqq

qq
!,,,

!,,,

!,!,,,,

,,
22221

11211

22112211

21








 52

In the parallel composition a common event 21  can only be executed if

both automata execute it simultaneously. The rest of the events    2112  \\  can

be executed whenever possible. If  21  , then there are no synchronized

transitions and 21 AA is the concurrent behavior of the two automata. This is also called

the shuffle of A1 and A2.

4.1.6. Analysis of DES

One of the key reasons for applying finite state automata (FSA) to model DES is

their flexibility and amenability to analysis for answering various questions about the

behavior of the system. The computational complexity of navigating the state transition

diagram of a deterministic automaton if there is no need of iterations is linear of the state

space, i.e.  nO , where n is the state space, Qn  . If iterations are necessary, the

complexity typically is  2nO .

In the next subsections the most-often encountered analysis problems for DES are

reviewed.

 Safety properties are concerned with the reachability of certain undesired

states, i.e. the presence of certain undesirable strings or substrings in the

language generated by the automaton. A DES model of a system is usually

built in two steps: first automaton models of the components of the system are

defined; next the complete system model is obtained by either product and/or

parallel composition of the constituent automata. The safety questions are

 53

posed on this complete automaton. The algorithms that answer all these safety

questions are quite straightforward and described in Cassandras and Lafortune

(1999):

 To determine if a given state q2 is reachable from another state q1, one has to

check if q2 is accessible from q1 being initial state.

 To determine if a given substring s1 is possible in the automaton, one has to

try to execute s1 from all the accessible states.

 To test the inclusion BA is equivalent to testing 0 cBA . The

intersection is implemented by taking the product of A and B.

 Blocking properties are concerned with the coaccessibility of states to the set

of marked states. An automaton A is said to be blocking if    ALALm  and

nonblocking if    ALALm  .

This implies that for every string  ALs , there is at least one string ω such that

 ALs m . In other words, an automaton is nonblocking if every string starting from

the initial state can be completed to some string that leads to a marked state. To

determine if a given accessible automaton A is blocking, one has to check if all the states

of A are coaccessible. If there are states that are not coaccessible, A is blocking, otherwise

it is nonblocking. If A can reach a state q, where   mQqand,,,q   0 , then q

is said to be a deadlock state. Deadlock states can be found by examining the active event

sets of the states. A can also reach an unmarked state p, which is strongly connected to a

set of unmarked states P, i.e. these states are reachable from one another but there is no

 54

transition going out of P. In such a case there is always at least one transition that can be

executed but A can never reach any of the marked states. This situation is called a

livelock.

 Unobservable events are events that occur in the system but are not seen or

observed by an outside observer of the system behavior. For example, fault

events that do not cause any immediate change in the sensor readings are

unobservable events.

If the transitions caused by all the unobservable events are labeled by ε, then a

nondeterministic automaton model of the system will be obtained. In order to keep the

determinism, the event set Σ is partitioned into two disjoint sets: Σo – the set of

observable events, and Σuo – the set of unobservable events.

Recall from section IV.1.1 an automaton with a partial transition function is called

a generator (G). With the structure (G, Σo) the natural projection *
o

*:P   is defined

as follows:

    P



 









o

o

eif,

eif,e
eP





         e,sforePsPseP *

.

In other words P erases only the unobservable events. If Gobs denotes the

minimum deterministic automaton equivalent to the generator of interest G, we have that:

     GLPGL obs 

     GLPGL mobsm 

 55

 The state of Gobs reached after string   GLPs will contain all the states of

G that can be reached after any of the strings in    GLsP 1 . In words, the

state of Gobs is the union of all the states of G consistent with the observable

events occurred so far (i.e. string s).

4.2. Supervisory control

 In supervisory control of a given DES the behavior of the system must be

modified by feedback control to achieve a given set of specifications. If a generator G

models a DES, then it is said that G represents the uncontrolled behavior of the system.

The premise is that this behavior is not satisfactory and must be modified by control;

modifying the behavior is restricting to a subset of  GL . To alter the behavior of G we

need a supervisor S. S observes some (possibly all) of the events that G generates and

tells G which of the defined events are allowed. Thus, the two key considerations are that

S is limited in terms of observing the events executed by G and S is also limited in

disabling feasible events of G. Therefore, we consider the observable events in Σ - those

that S can observe and controllable events in Σ - those that S can disable.

4.2.1. Controlled DES

Let a DES be modeled by a pair of languages L and Lm, where L is the set of all

strings that can be generated by the system and LL m is the set of marked strings that

represent the completion of some tasks by the DES. Assume that both L and Lm are the

languages generated by  mQ,q,,,QG 0 .

 56

The event set Σ is partitioned in two disjoint subsets: ucc   , where Σc is

the set of controllable events that can be prevented from occurring by a supervisor S and

Σuc is the set of uncontrollable events that cannot be prevented from happening.

The adjoined supervisor S interacts with generator G in a feedback manner, as

depicted in Fig. 4.1.

S

G

sS(s)

Fig. 4.1 The feedback loop of supervisory control.

Let all the events in Σ be observed by S. Thus, in Fig. 4.1 s represents all the

strings of the events executed by G so far and observed by S. The control pattern means

that the transition function δ can be controlled by S in the sense that Σc can be

dynamically enabled or disabled, so that the modeled system exhibits a desired language.

Formally, S is any map   2GL:S . Thus, for each  GLs generated by G, the set of

enabled events that G can execute at its current state  s,qo if    !, sqsS o . S is said

to be admissible if for all  GLs ,    sS!s,qouc  , i.e., S is not allowed to disable

a feasible uncontrollable event. Given G and an admissible S, the resulting closed-loop

system is denoted by S/G (i.e. S controlling G). The controlled system S/G is a DES,

characterized with its generated and marked languages    G/SLandG/SL m . The

generated language  GSL / is defined recursively as follows:

 57

  G/SL

             G/SLssSandGLsandG/SLs  

Since always     GLG/SL  ,  GSL / is nonempty and closed.

The marked language  G/SLm is defined as follows:      GLG/SLG/SL mm  .

The DES S/G is said to be blocking if    G/SLG/SL m and nonblocking

when    G/SLG/SL m . Since    G/SLG/SLm  always holds, the nonblocking

condition is also equivalent to    G/SLG/SL m .

4.2.2. Controllability theorem and realization of supervisors

The key existence result for supervisors in the presence of uncontrolled events is

specified by the Controllability Theorem (CTh): Let a DES is modeled by the generator

 mQ,q,,,QG 0 , where uc is the set of uncontrolled events, and  GLK  ,

K . There exist a supervisor S such that   KG/SL  if and only if

  KGLK uc  . This condition is called the controllability condition. The proof of

the theorem is presented in Cassandras and Lafortune (1999).

CTh is utilized to define when a language is controllable with respect to another

given language. Thus, if K and MM  are languages over event set Σ and  uc , K

is said to be controllable with respect to M and Σuc if KMK uc  . Since

 58

controllability is a property of prefix-closure, K is controllable if and only if K is

controllable.

Suppose a language  GLK  is controllable with respect to G and   KG/SL  .

From the proof of CT it follows that the supervisor S of the controlled system S/G is

defined by        Ks:s,qsS cuc   0 , for  GLs , and results in

  KG/SL  , Cassandras and Lafortune (1999).

To build an automaton realization of S, it suffices to build an automaton that

marks K . Let R be such an automaton, i.e.  mP,p,,,PR 0 , where R is trim, and

    KRLRLm  . R can be connected to G by product operation and the result GR is

the desired behavior of the system S/G;

     

 

 G/SLK

GLK

GLRLGRL







Similarly,

       G/SLGLG/SLGRL mmm  .

Note that R is defined over the same event set Σ, thus GRG||R  . Hence, the

control action S(s) is encoded into the transition structure of R i.e.

       
  

   s,q,p

s,p

Ks:s,qsS

GR

R

cuc

00

0

0















In the latter, GR and   denote the active event set and transition function of

GR , respectively.

 59

The interpretation with the control paradigm is as follows: Let G is in state q and

R is in state p following the execution of a string  G/SLs , and G generates an event σ

that is enabled. The same event is also present in the active event set of R at p. Thus, R

also executes ζ. If qand p are the new states of G and R after execution of ζ, the set of

enabled events of G after string s is given by the active event set of R at p . With this

procedure R is called the standard realization of S.

Consider the reverse question – if there is a given automaton C and we form the

product GC , can that be interpreted as controlling G by C? The supervisor S for G

induced by C can be defined as;

 
          



 


otherwise

CLGLsifCLs:s,q
sS

uc

cuc



 0

Therefore,    GCLG/SL  if and only if  CL is controllable with respect to

 GL and Σuc, i.e.      CLGLCL uc  . The resulting closed loop behavior is defined

with the languages:

        GLCLGCLGSL /


       GLCLGCLG/SL mmmm 

.

If a given language L is not controllable, it is useful to find the “largest”

sublanguage of L that is controllable, denoted by CL . Cassandras and Lafortune (1999)

present two effective algorithms to calculate CL in prefix-close case and in general case.

 60

4.2.3. Modular supervisory control

In modular control, the control action of a supervisor S is given by combination of

the control action of two or more supervisors. Consider the case of two supervisors S1 and

S2 each defined for G, the modular supervisor is determined as      sSsSsSmod 2112  .

Thus, an event ζ is enabled if and only if it is enabled by both S1 and S2. Fig. 4.2 depicts

the architecture of a modular supervisory control with two supervisors.

S1

S2

G

AND

S2(s)

S1(s)

Smod12(s)

s

 Fig. 4.2 Modular supervisory control with two supervisors.

The closed-loop behavior under modular control is formalized with the following

languages:


     G/SLG/SLG/SL mod 2112 


     G/SLG/SLG/SL mmmodm 2112 

.

Modular supervisory control is introduced as a solution to the problem of state

space increase faced by the centralized supervisory control. The idea is in presenting

 sSmod12 as the intersection of the active event sets of R1 and R2, i.e.

 61

  GRRsSmod  2112 . Then, if the standard realizations R1 and R2 of S1 and S2 have n1

and n2 states respectively, the model needs to store a total of 21 nn  states instead of 21nn .

The modular supervisory control problem (MSCP) with a given a DES G with

event set Σ, uncontrollable event set  uc , and admissible language

anaaa LLLL  21 , where   , ...,n, for i GLLL aiai 21 , is to find a

modular supervisor Smod (according to the architecture in Figure 4.2) such that

  C
amod LG/SL  .

To solve MSCP, first we build the standard realizations Ri of Si such that

  C
aii LG/SL  . Next, take Smod to be the modular supervisor, such that

         sSsSsSsSsS nnmod  211 . With this choice of modular supervisor

Smod the desired solution is   C
a

C
an

C
a

C
anmod LLLLG/SL   211 .

Wonham and Ramadge (1988) defined two languages
*L,L 21 to be

nonconflicting if 2121 LLLL  .

If , ...,n, i forSi 21 are the individual nonblocking supervisors for G, then

Smod1n is nonblocking if and only if every  C/SL im is a nonconflicting language, i.e.

       C/SLC/SLC/SLC/SL nmmnmm   11 . This statement is

proved in section IV.2.5.

 62

4.2.4. Decentralized supervisory control

Decentralized control represents the situation where there are several local

supervisors that are jointly controlling a given system that is inherently distributed. Such

decentralized control architectures arise in a variety of network systems such as mobile

communications, automated vehicular systems, and integrated sensor networks.

There are two main advantages of the decentralization – improved computational

tractability of the control and possibility of partial observation of the event set. Consider

a DES controlled by n local supervisors and the i
th

 having im states, n,,,i 21 . A

global supervisor with the same control action will require nmmm 21 states. Let the

complexity of designing a supervisor with m states is  mf . Then the complexity of

designing a global supervisor is  nmmfa 1 , while the complexity of designing n

local supervisors is    nmfmfb  1 . Lin and Wonham (1988) report that in a

typical case   2033
1  im,n,mCmf and the ratio ba explodes to 710132 . . Let the

memory requirement for implementation of a supervisor is  mg . Then the memory

required to implement a centralized supervisor is  nmmgc 1 , while the memory

required to implement n local supervisors is    nmgmgd  1 . Typically  mg is a

linear function of m , i.e.   mCmg 2 . Lin and Wonham also report that with the same

values of n and mi, the ratio 210331  .dc .

Another distinguishing feature of the decentralized from the modular control

architecture is the possibility that the individual supervisors can be partial-observation

supervisors and moreover their respective sets of observable and controllable events need

 63

not be the same. To formulate the decentralized supervisory control problem consider a

set of n partial-observation supervisors, each associated with a different projection Pi,

ni ,,1 jointly controlling the given DES G with event set Σ. Four sets of events are

associated with G: Σc, Σuc, Σo, and Σuo. With each supervisor Si we have: the set of

controllable events cc,i   , where c

n

i
c,i 

1

 , the set of observable events oo,i   ,

where o

n

i
o,i 

1

 , and the natural projection *
o,i

*
i :P   corresponding to o,i . The

domain of partial-observation supervisor can be extended from   GLPi to  GL and

    sPSsS iPii  .

Here we briefly review the three architectures of decentralized supervision:

conjunctive, disjunctive and general described by Yoo and Lafortune (2002).

4.2.4.1. Conjunctive decentralized architecture

Similarly to modular control, the net control action of conjunctive architecture is

the intersection of the sets of the events enabled by each supervisor, i.e.

   n
i iconj sSsS 1 . For the conjunctive architecture, a local decision rule of Si enables

by default the set i,cc \ . Fig. 4.3 depicts the architecture of conjunctive decentralized

supervisory control with two supervisors.

The prefix closed language generated by the conjunctive supervisor is expressed

as follows:


 G/SL conj

;

 64


          GSLssSiGLsGSLs conjiconj /,/  

.

The marked language is defined as:      GLG/SLG/SL mconjconjm  .

S1

S2

G

AND

S2(s)

S1(s)

Sconj(s)

s

P2

P1

P1(s)

P2(s)

Fig. 4.3 Conjunctive decentralized supervisory control with two supervisors.

4.2.4.2. Disjunctive decentralized architecture

For the disjunctive architecture, a local decision rule of Si disables by default the

set i,cc \ , which is controllable by the other supervisors. The disjunctive supervisor

Sdisj is defined as follows:    sSsS n
i idisj  1 . Fig. 4.4 depicts the architecture of

disjunctive decentralized supervisory control with two supervisors.

The prefix closed language generated by the disjunctive supervisor is expressed as

follows:


 G/SL disj

;


          G/SLssS,iGLsG/SLs disjidisj  

.

Analogously, the marked language of the disjunctive supervisor is

     GLG/SLG/SL mdisjdisjm  .

 65

S1

S2

G

OR

S2(s)

S1(s)

Sdisj(s)

s

P2

P1

P1(s)

P2(s)

Fig. 4.4 Disjunctive decentralized supervisory control with two supervisors.

4.2.4.3. General decentralized architecture

In the general architecture the set of controllable events Σc is partitioned into two

subsets Σc,e and Σc,d : d,ce,cc   . Here Σc,e is the set of controllable events for

which the default setting is enablement, while Σc,d is the set of controllable events for

which the default setting is disablement.

S1

S2

G

OR

S2(s)

S1(s)

Sgen(s)

s

P2

P1

P1(s)

P2(s)

AND

Fig. 4.5 General decentralized supervisory control with two supervisors

Fig. 4.5 depicts the architecture of disjunctive decentralized supervisory control

with two supervisors. The generalized decentralized supervisor Sgend is defined as

 66

follows:         ucdisjcdconjcegend sSPsSPsS  , where Pce and Pcd are the following

projection mappings: e,cce :P   and d,ccd :P   . The prefix closed language

 GSL gend / generated in the general architecture is:


 GSL gend /

;


          G/SLssS,iGLsG/SLs gdecgdecgend  

.

The marked language is      GLG/SLG/SL mgendgendm  , Yoo and Lafortune

(2002).

It is important to note that when the sets Σc,i are mutually disjoint, the three

architectures (general, disjunctive and conjunctive) are the same. The reason is that each

controllable event is controlled by only one supervisor, i.e. the event is enabled if and

only if the corresponding supervisor enables it.

4.2.5. Nonblocking decentralized supervisory control

In this section we present the conditions under which the conjunctive and

disjunctive decentralized supervisors are nonblocking. Recall from Section IV.1.6 that a

language generated by G is nonblocking if    GLGLm  , and from Section IV.2.1

     GLG/SLG/SL mm  . Thus,  GSL / is said to be nonblocking supervisor if

   GSLGSLm //  , i.e. S is nonblocking for G if every state trajectory of the closed

loop process can be extended to reach the set of marked states of G.

 67

4.2.5.1. Nonblocking conjunctive decentralized supervisor

 Wonham and Ramadge (1988) prove that the conjunctive supervisor

21 SSSconj  is nonblocking if and only if the marked languages  GSLm /1 and

 GSLm /2 are nonconflicting (Proposition 4.2).

Here we restate the proof from Wonham and Ramadge:

21 SSSconj  is nonblocking

     

       

       

    .//

,////

,////

,//

21

2121

2121

2121

tingnonconflicareGSLandGSL

GSLGSLGSLGSL

GSLGSLGSLGSL

GSSLGSSL

mm

mmmm

mm

m









□

 With the extension of the nonblocking property for finite number of languages,

the above proof is valid for finite set of languages. Hence, the conjunction decentralized

supervisor nconj SSSS  21 is nonblocking with respect to G if all individual

supervisors nS,,S,S 21 are nonconflicting.

4.2.5.2. Nonblocking disjunctive decentralized supervisor

Theorem 3.4.1 by Wonham (2006) states that there exist a nonblocking supervisory

controller  G/SLm for G if and only if  GSLm / is controllable with respect to G and

 G/SLm is Lm(G)-closed. Thus, to prove that 21 SSSdisj  is nonblocking, we have to

 68

show that (i) Sdisj is controllable with respect to G and (ii) Sdisj is Lm(G)-closed. Let

 G/SLS m 11  ,  G/SLS m 22 

then    G/SLG/SLS mmdisj 21  .

Proof:

(i) need to show that if  GSLm /1 and  GSLm /2 are controllable, then

   GSLGSL mm // 21  is also controllable.

            

         

   

   GSLGSL

GSLGSL

GLGSLGLGSL

GLGSLGSLGLGSLGSL

mm

mm

ucmucm

ucmmucmm

//

//

//

////

21

21

21

2121









(ii) need to show that if  GSLm /1 and  GSLm /2 are Lm(G)-closed, then

   GSLGSL mm // 21  is also Lm(G)-closed.

            

   .//

////

21

2121

GSLGSL

GLGSLGSLGLGSLGSL

mm

mmmmmm





 □

With the extension of the nonblocking property for finite number of languages,

the above proof is valid for finite set of languages. Hence, the disjunction decentralized

supervisor ndisj SSSS  21 is nonblocking with respect to G if all individual

supervisors nS,,S,S 21 are controllable and Lm(G)-closed.

4.2.5.3. Nonblocking general decentralized supervisor

Based on the above two proofs, in case of a general decentralized supervisor Sgend, i.e.

   disjqdisjpconjconjgend SSSSS  
11

, we may say that Sgend is nonblocking

 69

with respect to G if all individual conjunctive supervisors
pconjconj SS 

1
are

nonconflicting and all individual disjunctive supervisors disjqdisj SS 
1

 are

controllable and Lm(G)-closed.

 70

Chapter Five

Taxonomy of DRT Systems, DRT Modeling with FA and Illustrative Example

In this chapter we present an approach of modeling DRT systems as DESs and

their real time control with centralized and modular supervisors. To facilitate the

formalism of modeling and analysis of the systems, we first present taxonomy of the

DRT systems according to their characteristics relevant to DES representation.

5.1. Taxonomy of DRT systems

Every DRT system is determined with the following three component

characteristics: origin/destination characteristics, vehicle fleet characteristics, and

transportation demand characteristics. Based on these components, DRT systems can be

classified in the manner described below.

5.1.1. Origin and destination considerations

 Many to one – these systems transport passengers or freight from many origin

locations to one destination location. Typical examples are systems with single

commodity PDP, e.g. an armored vehicle that transports money from local

branches to the head office of a bank; on-demand air charter (taxi) service

 71

utilizing Dial-a-Flight-Problem (DAFP) picking passengers from small airports

and transferring them to a larger airport (hub).

 Many to few - these systems serve more than one, but a fixed number of origin or

destination locations; Example include n-commodity PDP, where n types of

goods are considered and each commodity requires single pickup and delivery

node, military and ARE service, the emergency services like police patrols,

ambulance fleet management.

 Many to many - these systems serve large and usually random number of origin

and destination locations. Typical examples are based on Urban Courier Service

Problem (UCSP), taxi cab service.

5.1.2. Vehicle fleet characteristics

 Systems with fleet of vehicles where no capacity constraints are considered like

postal and courier service, emergency fire fighting.

 Systems with a homogeneous fleet with the same load capacity and speed

capabilities like taxi cabs, shuttle vans.

 Systems with a heterogeneous fleet with the different capacities and/or speed

capabilities like air charters operating with different size airplanes.

 Systems with constraints on length or duration of vehicle routes – e.g. range of an

aircraft, pilot shift restrictions in air taxi systems.

 Systems where the fleet is located at one central or multiple depots. After the end

of service all the vehicles must return back to the depot(s) – like in taxi operators.

 72

 Systems where vehicles are subject to unpredicted stoppages or re-routings like

caught in a traffic jam, detours, or breakdown. Examples include all the land

transportation systems operating in urban areas.

5.1.3. Transportation demand characteristics

 Systems with a priori known static demand that accept service reservations made

in advance. Classical examples are the school bus service and fixed route dial-a-

ride systems working with advance reservations.

 Systems with dynamic service demand where every customer request is eligible

for immediate consideration and requires real time adjustments of the already

established routes and schedules. Typical example is a courier service system.

 Systems where some groups of passengers are given priority over the rest or have

special service requirements. Examples include service of people with disabilities,

air charter transportation of special cargos.

5.2. Modeling of DRT systems with FA

The application of SCT in DRT control, where it is required to provide automated

system update in real time is based on the following three groups of models, Seow and

Pasquier (2005):

 Plant - models of the uncontrolled behavior of system’s components with FA;

 Specifications - models of control objectives (behaviors) to be specified with FA;

 A supervisory controller to be synthesized.

 73

The taxonomy presented in Section V.1 is used here as a guideline to present the

plant and specifications automata modeling various feathers of a DRT system operation.

 To model a system with origins and destination locations from a fixed finite set,

the origins/destinations can be presented as states, and the travels between every

two destinations as events. For example a small air taxi system covering the

demand over four airports A, B, C, and D is presented in Fig. 5.1. Any airport is

reachable from the other airports by the used jets.

C

D

A

B

Fig. 5.1 Simple air taxi DRT system operating at four airports.

All possible flights of jet j are depicted in automaton pjetj of Fig.5.2. The set of

states of pjetj  3210 ,,,Q  represents all the possible locations of the jet – i.e. the four

airports D, A, B, and C respectively and the set of transitions  jCD,,jDA – i.e.

the events represent the flights of jet j between the corresponding airports (e.g. jDA

means that j is in flight from the depot D to airport A).

 74

3

1

2

jD
AjAD

jBC
jC

B
jC

D
jD

C

jAB

jB
A

jA
C

jC
A

jDB

jBD
0

Fig.5.2 Automaton pjetj - the possible locations and flights of jet j.

 In modeling systems with depot(s), where fleet starts and ends its operation,

specific automata must assure that all the allowed sequences of transitions of the

fleet (events) start and end at the state representing the depot(s).

 To model a system with constraints on the length of vehicle routes, automata of

vehicle behavior should limit the number of the possible consecutive transitions.

For example in the air taxi system described in Fig.5.1, if airport D is the system’s

depot and each jet is allowed maximum three flights per trip, the automaton tripj

in Fig. 5.3 guarantees that all the flights start and end at D, and jet j performs at

most three flights per trip. State 0 represents j being located at depot D, state 1 –

all the possible locations of j after the first flight from D, and state 2 all the

possible locations of j after one more flight. Since each sequence of transitions

ends at state 0 the max allowed flights are three.

 75

0 1 2
jDA, jDB, jDC

jAD, jBD, jCD

jAD, jBD, jCD

∑ - {jAD,

jBD, jCD}

Fig.5.3 Automaton tripj – the maximum allowed flight within a trip.

 If vehicles are subject to unpredicted stoppages like in traffic jams or breakdowns,

the events that lead to these states are to be introduced in the plant model. For

example in modeling a land DRT system, if both traffic jams and breakdowns are

considered, the automaton vehustj in Fig. 5.4 describes such a behavior of vehicle

j. When j is in service (state 1) it may get in a jam (state 3) and after the jam is

eliminated it is back in service; if it breakdowns (state 2), after repair it is in initial

standby state (state 0).

0 1

startj

stopj

2
dwn j

repj

3

injam
j

outjam
j

Fig.5.4 Automaton vehustj – vehicle j in unpredicted stoppages.

 In modeling systems where the vehicles have capacity constraints, the number of

passengers on board or loaded cargo units represent different states of the vehicle

and the picking up or dropping of a passenger or delivery of a cargo –events. In

 76

the air taxi system example, if the seating capacity of jet j is two passengers, the

automaton capj in Fig. 5.5 limits the possible pickups and drops off. State 0

represents the jet without passengers on board, states 1 and 2 represent the jet

with 1 and 2 passengers on board, respectively.

0 1 2
dropij dropij

pickij pickij

Fig.5.5 Automaton capj - jet j may pickup at most two passengers.

 If a prioritization in the service of a group of passengers is needed, a group of

automata should impose that the service of the rest of the passengers starts after

all the passengers with priority have been served. For example the automaton

priori in Fig.5.6 assures that all the reassigned passengers (event rasij) are helped

before the remaining passengers that have to be assigned (event acij) for first time.

0 1
rasij

acij

 Fig.5.6 Automaton priori gives priority of reassigned passengers.

 77

5.3. Illustrative example of a small air-charter service operation

In this section we develop a DES model that provides nonblocking behavior of a

DRT system, capable of making real time decisions regarding the acceptance of

passenger requests. The model can also cover the case of service with minimum possible

fleet size, i.e. a new vehicle is being activated only if none of the currently active vehicles

can meet a particular service request. In addition, there is a constraint on the length of

vehicle service operation during a working shift. An example of a destination-specific

DRT system is used. It is based on DDAFP defined by Cordeau at al. (2004). The system

is a small air taxi operator providing on-demand air charter service. Such a business

encounters an increased interest because of its ability to quickly respond to the

customer’s needs and flexible service.

The modeling of this type of service is close to D-DARPMADO operations

studied by Sadeh and Kott (1996), and to a large group of emergency and rescue air

logistics problems, Shen, Dessouky and Ordonez (2005). The service of an air taxi

operator is similar to the emergency ARE problem in the following characteristics: high

dynamics of operations that requires immediate decision about the feasibility of a request

and real time update of jets routings and schedules; limited jet capacities with small

number of seats or beds; limited length of flights; possible closures of some airports

causing unpredicted changes of the flights. The dissimilarities are that the origins of the

requests belong to a set of airports in the air taxi service and could be anywhere in the

covered region in ARE environment, and the available jets are not subject to change or

breakdown during service.

 78

An air taxi service operates over a given set of airports, which implies that flight

and schedule optimizers can be successfully applied. The operation is planned as “per-

seat on-demand” service. Customers book seats online as they do with airline service,

except there are no fixed schedules.

5.3.1. Problem description of a small air-charter system’s operation

Consider an air charter DRT system which covers the demand over a fixed set of

four airports (P = 4) by means of a homogeneous fleet of jets M,,j 1 (Fig.5.1). A jet

may fly from any to any other airport. One of the airports (D) serves as a depot, where all

the jets are kept and after the end of their services must return. The fleet consists of very

light jets (VLJ) with seating capacity of two passengers. The system receives randomly

initiated passenger requests N,,i 1 (N is the current number of passengers to serve)

with origin and destination locations, and provides real time answers – i.e. the dispatcher

must decide in real time whether the system can serve a particular request, assign the

passenger to a jet, and route or reroute that jet.

To formalize the length of service of a jet, we define a flight of a jet within the

system to be the route from one airport to another; a trip of a jet to be a sequence of

flights which starts and ends at D. To incorporate the limits of pilot duty, VLJ flight

range, etc. the following constraints are included:

 At most two intermediate stops are allowed during a trip;

 A jet may complete up to one trip through a working shift.

 Hence, a working shift (i.e. a trip) may include up to three flights.

 79

 Let at the beginning of a shift the system receives a request from passenger1, who

wants to fly from airport A to airport C. The control procedure needs to compute the

possible behavior of jet1, so that passenger1 will be picked from its location and

transported to the desired destination.

5.3.2. DES modeling of a small air charter DRT system

The set of all the events  of the considered system is summarized in Table 3.

The pickup and drop off events have two indexes representing the number of the

passenger and the number of the jet serving that passenger. The first event is controllable

(can be controlled by the operator), while the second one is uncontrollable (whether a

passenger will reach the final destination depends on airport condition, flight condition,

etc. – all uncontrolled). Each flight is labeled as a combination of a digit followed by two

letters. The digit represents the number of the jet and the letters – the origin and the

destination correspondingly. All flights are considered as controllable events.

Table 3 The set of all the events of the small air charter.

Process Events – c: controllable; u: uncontrollable

Passenger’s

demand service

pickij Passenger i picked with jet j c

dropij Passenger i transported with jet j u

Flights jDA Jet j flies from D to A c

jDB Jet j flies from D to B c

jDC Jet j flies from D to C c

 80

Table 3 (Continued)

 jAB Jet j flies from A to B c

jAC Jet j flies from A to C c

jAD Jet j flies from A to D c

jBA Jet j flies from B to A c

jBC Jet j flies from B to C c

jBD Jet j flies from B to D c

jCA Jet j flies from C to A c

jCB Jet j flies from C to B c

jCD Jet j flies from C to D c

5.3.2.1. Computation of centralized supervisor

We apply the procedure of Section V.2. and develop the following three models:

Plant model: the plant consists of two automata - pjet1 (Fig. 5.7) models the

possible behavior of jet1, and pass1 (Fig. 5.8) describes the behavior of passenger1.

3

1

2

1D
A1AD

1BC
1C

B
1C

D
1D

C

1AB

1B
A

1
A

C

1
C

A

1DB

1BD
0

 Fig.5.7 Automaton pjet1.

 81

The set of states Q and the set of events of pjet1 are the same Q and  for

automaton pjetj of Fig.5.2.

0 1 2
drop11pick11

 Fig.5.8 Automaton pass1.

In automaton pass1, passenger1 releases a service request at the initial state 0, next

it is picked by jet1 (state 1) and jet1 drops off passenger1 (state 2).

In this case the plant is obtained by parallel composition of the two automata, i.e.

111 || passpjetPlant  .

Specification models: two specifications are considered - automaton trip1 (Fig.

5.9) ensures that jet1 will make up to three flights, and automaton paspd1 (Fig. 5.10)

specifies after which flights passenger1 can be picked and dropped off.

0 1 2 3
1DA,1DB,1DC 1AD,1BD,1CD

Σ' - {1AD,

1BD,1CD}

1AD,1BD,1CD

  1111, droppickSelfloop 

Fig.5.9 Automaton trip1.

The states and events of trip1 are analogous to the state and event sets of

automaton tripj of Fig.5.3. In the trip1 automaton the selfloops (not shown) are adjoined

to each state and account for the events that are irrelevant to the specification, but may be

 82

executed in the model. In the graphs of the automata of this section  denotes the set of

all flights of jet1, i.e.  CD 1 , 1DA, .

1 2
pick11 drop11

30
1DA, 1BA, 1CA 1AC, 1BC, 1DC

4

Σ2Σ1 Σ 

Fig.5.10 Automaton paspd1.

In state 0 of paspd1 jet1 can fly from the depot D to any location and passenger1 is

at airport A. Only the flights that end at airport A allow the jet to get to the passenger

(state 1), and after picking them up (state 2) jet1 can fly to any location. The flights that

end at airport C take the system to state 3, and after dropping off passenger1 at its

destination, the system reaches in the marked state 4. The event sets of paspd1 Σ1 and Σ2

denote the flight sets  CA,BA,DA\ 111 and  DC,BC,AC\ 111  respectively.

 The automaton 111 paspdtripSpec  represents the synchronization of both

specification automata. It has 12 states and 33 transitions.

Synthesis of the centralized supervisor: the intersection of languages marked by

Plant1 and Spec1 automata provides the centralized supervisor (CS1), i.e.

111 SpecPlantCS  . The described three steps of the procedures are performed with

XPTCT-software developed by Systems Control Group in the Dept. of Electrical &

Computer Engineering at University of Toronto, (Design Software: XPTCT). The

computed CS1 is controllable with 5 states and 5 transitions: i.e. starting from the initial

 83

position at depot D (state 0) jet1 must fly to airport A (state 1), pick passenger1 (state 2),

flies to airport C (state 3), drops off the passenger (state 4) and flies back to depot D, Fig.

5.11.

3

1

1DA

1CD

0

1
A

C

drop11

2
pick11

4

Fig. 5.11 Supervisor CS1.

5.3.2.2. Computation of modular supervisor

Let at the current time instant jet1 is at airport A picking passenger1 and a new

request is received: passenger2 wants to fly from airport B to airport D. The problem

consists of making an immediate decision if it is feasible to accept the new request given

the available resources (active jet1) and the existing schedule. In the case of the small air

charter system, the control procedure would check if the active jet will be enough to meet

the demand, and if not, the scheduling and routing for two jets should be developed.

Thus, a new jet is introduced in the system – jet2. To illustrate the modularity of

the supervisory synthesis, the three steps of the procedure will be developed in such a

way, that two supervisors will be synthesized – one controlling system operation with jet1

only, and one – controlling service with both jet1 and jet2.

 84

Plant model is the synchronization of the following two pairs of automata:

  2,1jpjet j (Fig. 5.12a and 5.12b) models the possible flights of jet1 and jet2,

respectively. Automaton pjet1 is updated with the current location of jet1 – airport

A. Thus, the initial state of pjet1 at this step is 1, not 0, i.e. 10 q .

3

1

2

1D
A1AD

1BC
1C

B
1C

D
1D

C

1AB

1B
A

1
A

C

1
C

A

1DB

1BD
0

3

1

2

2D
A2AD

2BC
2C

B
2C

D
2D

C

2AB

2B
A

2
A

C

2
C

A

2DB

2BD
0

 a) Automaton pjet1 b) Automaton pjet2

 Fig.5.12 Automata  2,1jpjet j .

Fig. 5.13 depicts the parallel synchronization of automata pjet1 and pjet2. The

flights of jet1 are in continuous line and the flights of jet2 - in dash. To avoid obscurity

only the flights in the first row and column are labeled.

 85

Fig. 5.13 Parallel synchronization of automata pjet1 and pjet2.

  2,1ipassi (Fig. 5.14a and 5.14b), where pass1 encounters that passenger1

is to be picked by jet1 and passenger2 can be picked by any jet.

0 1 2
drop11pick11

0 1 2
drop2jpick2j

 a) Automaton pass1. b) Automaton pass2.

 Fig.5.14 Automata  2,1ipassi .

1,0 2,0
1AB

1BA 1DC

1CD
3,0 0,0

1BC

1CB

1AC
1CA

1DB
1BD

1AD
1DA

2
A

D

2
D

A

2
B

A

2
A

B
2

B
C

2
C

B

1,1

1,2

1,3

2
A

C2
C

A
2

D
C2
C

D

2
B

D
2

D
B

2,3

2,2

2,1

3,3

3,2

3,1

0,3

0,2

0,1

 86

After synchronization, the plan automaton of this case 2Plant is obtained:

21212 passpasspjetpjetPlant  has 144 states and 1152 transitions.

The specifications of this case are modeled with the following two pairs of

automata:

  2,1jtrip j (Fig. 5.15a and 5.15b), where trip1 is updated with the current

position of jet1 and encounters that jet1 has two flights left, i.e. at state 0 jet1 is

at airport A, at state 1 it is either at B or C and at state 2 it is back at depot D.

Automaton trip2 is analogous to tripj from Fig. 5.9.

0 1 2
1BD,1CD1AB, 1AC

1AD

 Σ, , droppickSelfloop  1111

a) Automaton trip1.

 Here  CD 2 , 2DA, .

0 1 2 3
2DA,2DB,2DC 2AD,2BD,2CD

Σ″ - {2AD,

2BD,2CD}

2AD,2BD,2CD

 Σ, , drop, pick, drop,pick, droppickSelfloop  222221211111

 b) Automaton trip2.

 Fig. 5.15 Automata  21,jtrip j  .

 87

 paspdi (i = 1, 2) (Fig. 5.16a and 5.16b), paspd1 is updated with the current

position of jet1 and paspd2 covers the possibilities that passenger2 can be

picked by either jet1 or jet2.

0 1
pick11 drop11

2
1AC, 1BC, 1DC

3

Σ2 Σ 

  22212221 ,drop,drop,pickpick Selfloop  

a) Automaton paspd1.

Recall that  CD 1 , 1DA, and  DC,BC,AC\ 1112   .

In addition,      DB,CB,AB\DB,CB,AB\ 2221113   ,

    CD,BD,AD'\ 1114   ,     CD,BD,AD\' 2225   .

1 3
pick21

drop
21

5

0

1DB, 1
AB, 1

CB
1AD, 1BD, 1CD

7

Σ4

Σ3

2 4
pick22

6
2AD, 2BD, 2CD

Σ5

2DB, 2AB, 2CB dro
p 22

Σ 

ΣΣ 

Σ  Σ 

Σ 

b) Automaton paspd2.

Fig. 5.16 Automata paspdi (i = 1, 2).

The state space and transitions of the upper rung of paspd2 cover the case when

passenger2 is picked and dropped off by jet1, and the bottom rung consider the possibility

 88

that passenger2 is transported by jet2. Each of these rungs has three intermediate states (1-

3-5 or 2-4-6, respectively) and 53 transitions.

Synthesis of the modular supervisor:

 First, the planning procedure may check if jet1 can transport both passengers. The

required specification for that case Spec2 is computed with the product of

automata trip1, paspd1, and paspd2, i.e. 2112 paspdpaspdtripSpec  . The

supervisor MS1 is obtained as the intersection of Plant1 and Spec2, i.e.

211 SpecPlantMS  (fig. 5.17). It has 19 states and 18 transitions.

2 1 4

3

1AD 1AC

1
A

B

5

6

7

1DA

1D
B

1
D

C

11

d
ro

p
1
110

pi
ck

21

8

p
ic

k 2
1

5
6

7

1B
A

1
B

D

1BC

12

d
ro

p
2
1

9
drop11

13

141
C

B

1CA

1CD
15

16

p
ic

k 2
1

jet1 at D,

passenger1

transported

jet1 at D,

passenger2

transported

Fig.5.17 Supervisor MS1.

However, there is no marked state on the graph. When the system gets to state 12

jet1 arrives at depot D and has dropped off only passenger2, and when at state 15 jet1

arrives at D and has dropped off only passenger1. Thus, jet1 cannot transport both

 89

passengers in one shift. To meet the demand the service provider has to use one more jet -

jet2.

To compute the specification when jet2 is introduced, the control procedure may

use that passenger1, which is already picked by jet1 is to be transported by the same jet

hence, passenger2 should be picked by jet2. Thus, one module of specifications is

111 paspdtripSpecm  for passenger1 - jet1 coordination depicted in Fig.5.18, and

another specification 222 paspdtripSpecm  for passenger2 – jet2, Fig.5.19.

1 41AC 9
drop11 1CD

15

jet1 at D,

passenger1

transported

Fig.5.18 Specm1 - synchronization of jet1 and passenger1.

 90

1 0 3

2

2DA 2DB

2
D

C

4

5

6

2
A

B

2AC

2
A

D

27

13

2C
B

pi
ck

22

7

8
9

2CA

2
C

D

2C
B

20

p
ic

k2
2

10
pick22

22

23

2BC

2
B

D
2
B

A

21

37

2C
B

11
pick22

12
2CD

14

2
C

A

25

2BA

24

26

2BD

2BC

2DB

15

2D
C

2DA

18

2D
B2
A

B

28

pi
ck

22
17

2A
C

16

2AD

2DC

19

2
D

A

30

2BA

29 31

2
B

D

2BC

39

d
ro

p
2

2

38
drop22

jet2 at D,

passenger2

transported

36
2CA

2
C

D

32

d
ro

p
2

2

41

40 42

2
D

B2D
A

2D
C

2A
C

35

2
A

B

3433

2AD
43

drop22
jet2 at D,

passenger2

transported

jet2 at D,

passenger2

transported

jet2 at D,

passenger2

transported

 Fig. 5.19 Specm2 - synchronization of jet2 and passenger2.

 The modular supervisors for transportation of passenger1 - SP1 and for

transportation of passenger2 – SP2 are computed with the intersections of

Plant2 with Specm1 (Fig. 5.18) and Specm2 (Fig. 5.20), respectively.

121 SpecmPlantSP  , 222 SpecmPlantSP  .

 Specm1 provides the only possible way to complete service of passenger1 and its

supervisor is the same as the specification, i.e. 11 SpecmSP  .

 91

1 0 3

2

2DA 2DB

2
D

C

4

2
A

B

9

2C
B

20

p
ic

k 2
2

10
pick22

22

23

2BC

2
B

D
2

B
A

2111
pick2225

2BD

30

2
B

D

2
C

D

35
2AD

39

d
ro

p
2

2

jet2 at D,

passenger2

transported

32

d
ro

p
2

2

jet2 at D,

passenger2

transported

43
drop22

jet2 at D,

passenger2

transported
38

drop22

jet2 at D,

passenger2

transported

Fig.5.20 Language SP2.

Since both supervisors SP1 and SP2 have no common transitions, the modular

supervisor MS2 is their union, 212 SPSPMS  . It has 23 states and 22 transitions. As a

comparison, the centralized supervisor for transportation of two passengers by two jets

calculated with XPTCT-software has 55 states and 114 transitions.

 92

5.2.2.3. Computational complexity of supervisor synthesis

Let the plant generator G be modeled with r states and two supervisors S1 and S2

with p1 and p2 states respectively, jointly control the system. Cassandras and Lafortune

(1999) discuss the significant computational and memory savings of modular control.

The supervision of G can be interpreted as the product GSS  21 . If the centralized

supervisor 21 SSS  is built, we need to store totally  21 pp states and in modular

control – only  21 pp  states. In the worst case, the computational complexity for

centralized supervisor synthesis is  rppO 21 and   rp,pmaxO 21 for the modular

supervisor.

 Consider the general case when at a given state of the DRT system the available

m number of jets are supposed to transport n passengers. Let the seating capacity of the

jets is two passengers and
2

n
m  . There will be m0 jets that have not assigned

passengers, m1 jets that have one passenger assigned, and m2 jets that have two

passengers assigned, i.e. 210 mmmm  . Passengers can be split into two groups: n0

that are not assigned yet and n1 that are already assigned to any jet, i.e. 10 nnn  .

Obviously, 121 2 mmn  . Thus, for the number of the unassigned passengers n0,

we have:

.2 12

10

mmn

nnn





 93

For all n0 requests the control procedure is to check for feasibility of service first

with the m1 jets. As we saw in V.3.2.2, this is done as a product of automata tripj and

paspdi.

However, the numbers of states and transitions of automata tripj and paspdi

depend on the current location and the number of remaining flights of jetj. If jetj is at the

depot D and can make a 3 flight trip (e.g. trip2 of Fig. 5.15b), automaton tripj will have

four states and 18 transitions plus a selfloop of  11222 1101  mmnn transitions at

each state. If jetj is at an airport and has two flights remaining in its trip (e.g. trip1 of Fig.

5.15a) then tripj will have 3 states and 5 transitions plus a selfloop of

 11222 1101  mmnn transitions at each state. For each unassigned passengeri (from 1

to n0) the corresponding automaton paspdi will have  10 mm  rungs of three states and

each of them will generate additional   2536 10 mm transitions and a selfloop of 12n

transitions for each state. In addition,  10 mm  automata capj of Fig 5.5 with 3 states

and  1004 mmn  transitions should be used to secure that up to two passengers will be

assigned to each jet.

In any real case combination of n0, n1, m0 and m1, the product of these automata

will be large enough to cause computational complexity in the synthesis of the modular

supervisor. Thus, we need a procedure that will limit the check for a feasible jet for every

new service request. In the next chapter we present such a method, based on

decentralized supervisory control.

 94

Chapter Six

Decentralized Supervisory Control of Concurrent DES

In Section 4.2.4. we introduced the decentralized supervisory control (DSC) with

three modeling architectures and in Section 4.2.5 the nonblocking conditions of the

decentralized control architectures were presented. In this chapter we consider the

decentralized control of DES with specialization to local supervisory control (SC) and

concurrent systems. The advantages of the DSC are illustrated in an example of

emergency ARE DRT service.

6.1. Decentralized control of concurrent DESs

Concurrent DESs are defined as collections of components (subsystems) that

perform simultaneously and may interact with each other. Consider a DES G composed

of n concurrent subsystems Gi, with event sets n,...,,i,i 21 . Suppose that for each

subsystem Gi there is a local supervisor Si that observes and controls only the events of i

. The global controlled DES can be obtained as the concurrent operation of the locally

controlled subsystems niGS ii 1,/ . Thus, the problem of decentralized control of

concurrent DESs is to find the conditions under which local synthesis and control for any

 95

specifications of Gi do not result in loss of optimality compared to the global supervisor’s

control GS / , and control of one subsystem Gi never incurs blocking in the other

subsystem Gj.

Recall from the Controllability theorem introduced in Section 4.2.2 that

controllability of the language of the desired behavior is a necessary and sufficient

condition for the existence of a supervisor that achieves this behavior for a given DES

under the complete observation of the events. In the case of decentralized control when

there are n local supervisors observing and controlling their corresponding sets of events

i , Cieslak at al.(1988) introduced the condition of co-observability if the controlled

behavior is given as a prefix closed language. Lafortune at al. (2001) relaxed the

conditions of co-observability for the existence of local supervisors in the conjunctive,

disjunctive and general decentralized architectures.

Willner and Heymann (1991) introduce the notion of separability of a language -

L is said to be separable with respect to (w.r.t.)

 i

n
i


1
 if there exists a set of languages

niL ii  1,*
 called a generating set of L, such that i

n
i LL 1 . For a finite set of

languages  n
iiiL

1

*


 the parallel composition of  iL , denoted i

n
i L1 is defined as

 i
n
i ii

n
i LPL  1

1
1 


  . Recall, iP is the natural projection *

i
*

i :P  .

Consider a set of concurrent DESs   niQqQG miiiiii  1,,,,, 0 with event

partitions iucici   such that

    jiucji (eq. 6.1)

 96

This assumption means that there is no synchronization between the uncontrolled

events of the systems. Willner and Heymann (1991) prove that separability under

assumption (eq. 6.1) is a necessary and sufficient condition that guaranties that the

decentralized control can achieve the optimal behavior of the centralized supervisor.

Since their work is closely related to our method, we briefly review it in the remaining

part of this section.

The model of the global system G is defined by  mQqQG ,,,, 0 , where

n
i in ,Q...QQQ 121   (with n

i icc 1  , n
i iucuc 1 ),

 nqqqq 002010 ,...,, and QQ:  is given by;

  

     

 



















.

;,

,,,,...,,,

,...,,, '

'''
2

'
1

21

otherwiseundefined

iforqq

anddefinedisqififorqqwhereqqq

qqq
iii

iiiin

n 





We denote i
n
i GG 1 for the entire (global) system. Thus, in G an event that

belongs to exactly one subsystem can occur asynchronously and independently. If an

event belongs to several subsystems, it must occur simultaneously in all of them, in order

to occur in the composite system. It follows that if i
n
i GG 1 , then    i

n
i GLGL 1 . In

particular, if i are all disjoint, then G is the shuffle product of Gi (see section IV.2.4).

Recall from section 4.2.2 that a global supervisor S achieves optimal (i.e. less

restrictive) behavior of G under the controlled specification C by synthesizing the

language         */  GLCLGCLGSLK . In the case of concurrent systems,

where each subsystem Gi is controlled by its local supervisor Si, the concurrent operation

 97

of all controlled subsystems ii GS / generates a new global system Ggl, namely

      iii
n
iii

n
igl GSLPGSLGLK //

1

11

~ 

   .

The following theorem (Theorem 4.1 in [27]) gives the conditions under which

the concurrent control scheme achieves the optimal global behavior.

Theorem1: Let a global DES i
n
i GG 1 , where   niQqQG miiiiii  1,,,,, 0 . There

exist local supervisors Si, which observe and control only the events of i of each Gi

such that KK 
~

 if and only if K is separable w.r.t.

 iΣ

n

i 1
.

 The proof of Theorem1 is given in Willner and Heymann (1991). The authors

introduce an algorithm of polynomial complexity for checking the separability of a

language K when the subsets n,...,,i,i 21 are pairwise disjoint. Since our method is

similar to this algorithm, here we introduce it in brief.

 Let  Q,q,,,QA 0 be a deterministic automaton with m states that accepts a

language K and i are pairwise disjoint subset of event set .

Algorithm1 (Algorithm 4.1 in [36]):

(1) For each ni ,...,2,1 construct the automaton  QqQA iiii ,,,, 0 as defined in step

2.

(2) For each pair  qi, , where ni ,...,2,1 and Qq , define   qqQA iiiiq ,,,, 0 and

define       ,qqd iii .

 98

(2a) Construct the product automaton   Qq,qq,,,QQAA iiiiiiq  00 . Define

QQiq  to be the set of all states Qq ' such that  ',qq is an accessible state in iiq AA  ,

i.e.       t,q,qq,qQq,q,tQqQ '
i

*
i

'
iq 201002010   .

(2b) If there exists iqQq ' such that    'qdqd ii  , then stop.

(3) If all the pairs  qi, were checked, then stop. Else repeat step (2) for another pair  qi, .

 The concept of Algorithm1 is as follows. For each pair  qi, ,  iqAL is the set of

all strings  tPi , such that Kt and   qtq ,0 , and  qdi is the set of all i such

that Kt  . By constructing iiq AA  the algorithm identifies the set iqQ , which is the set

of all states Qq ' such that there exists Kts , , which satisfies and   qtq ,0 , and

  '
0 , qsq  . If    'qdqd ii  then there exists   such that Kt  and Ks  ,

which contradicts separability.

The complexity of Algorithm1 is  3nmO  .

6.2. Decentralized supervisor of separate groups of vehicles – passengers

 To avoid the discussed increases of the state space and number of transitions in

section 5.2.2.3, a decentralized approach of supervisory control can be applied for a DRT

system split in separate subsystems (groups) of vehicles and passengers. Let all the n

passengers and m vehicles are split in disjoint groups, such that each group of passengers

is to be served only by their designated group of vehicles. Fig.6.1 depicts the case when

groups of two passengers are to be served by two vehicles.

 99

vehicle1

Passenger1 Passenger2

Subsystem1

Passengerm-1 Passengerm

Subsystemm/2

vehicle2 vehiclem-1 vehiclem

Fig. 6.1 DES split in subsystems of vehicles and passengers.

In this case the local supervisors of each subsystem are easily computed similarly

to computation of MS2 in section 5.2.2.2. Since the event sets of the groups are disjoint,

the decentralized supervisor decS of the global DES will be the union of all the local

supervisors of each group:

2/21 mdec SSSS   .

There are two main advantages of such a decentralization: very limited state space

and number of transitions for each local supervisor, and all the local supervisors can be

computed in parallel. However, with the decentralized architecture of separate groups if

the vehicles are designated only to one group of passengers, some of them will not be

utilized with full capacity, e.g. can have assigned one passenger (or generally less than

their seating capacity) and thus, the global supervisor decS is not optimal. As Leduc at al.

(2005) discusses, this is the price we have to pay for the advantages that the approach

offers.

 To avoid the possibility of underutilization of the vehicles and thus using the

smallest possible fleet, we develop a DSC of dynamic subsystems of vehicles and

passengers. Every vehicle with its assigned passenger(s) is a subsystem of the global DES

 100

and is controlled with its local supervisor. With every new request, all the local

supervisors check if their vehicles can serve the new passenger. A new vehicle is to be

involved only if none of the active vehicles can serve received request. In the next section

we demonstrate the method with an example for control of DRT system for emergency

evacuation.

6.3. Illustrative Example of ARE Service in D-DARP MADO Environment

In the present section we develop a DSC model capable for real time nonblocking

control of a DRT system offering emergency service in ARE environment. The system

operates under D-DARPMADO conditions over a region of natural or man-made disaster

providing emergency evacuation of passengers from their origins to specific destinations

(MTFs) as defined by Sadeh and Kott (1996). The DRT system is modeled as a global

DES system consisting of a set of concurrent subsystems. Each subsystem is a DES

modeling the behavior of a vehicle (e.g. a helicopter or a VLJ) and its assigned

passenger(s). The local supervisors (LSs) of the particular subsystems are capable in real

time decision making of accepting passenger requests and routing or rerouting the

vehicles. If there is no interaction between the vehicles and passengers, the event sets of

all the subsystems are disjoint and the global supervisor (GS) of the entire system is

constructed as a conjunction of all jLS , i.e. MLSLSLSGS  ...21 , where M is the

number of the vehicles, Fig. 6.2.

 101

 Fig.6.2 Structure of the global system and local control.

 Similar to the model of Section 5.3.2 this model controls the service with

minimum possible fleet size, and satisfies the same constraint on the length of vehicle

service during a working shift. The emergency evacuation DRT service in ARE

environment differs from the air charter service in the following characteristics:

 Vehicles do not have specific depots to be kept, i.e. they may stand by at any

MTF and do not have to conclude their service at a given depot;

 Some of the MTFs can be closed during service and the vehicles with passengers

whose destinations are closed should be redirected to other ones;

 Some of the passengers may have more than one possible destination, i.e. they

may be transported to either one of two different MTFs.

The common features of both problems are high dynamics of operations that

requires immediate decision about the feasibility of a request and real time update of jets’

routings and schedules; limited carriage capacities with small number of seats or beds;

limited length of flights, the available vehicles are not subject to change or breakdown

during service.

LS1 LS2 LSM

M

GLOBAL DRT SYSTEM

 102

The most challenging question of D-DARPMADO problem is the set of the

possible origins of the service requests - they may belong to a large but finite set of

locations or could be any point in the covered region. In the next sections we solve the

problem with a finite set of origins. In Chapter Seven we discuss the challenges and

possible ways to solve the problem with infinite many origins of requests.

6.3.1. Problem description of ARE Service in D-DARP MADO environment

 Consider a DRT system which covers the demand for emergency evacuation of

people over a region R with a fleet of four jets  4,3,2,1j , (Fig.6.3). There are five

origin locations in R  51 O,...,O where passengers can release service requests and can be

picked up, and three MTF destinations  321 F,F,F .

F1
O1 O3

O2

O4

O5

F3

F2

R

 Fig. 6.3 Region R with 5 origins and 3 destinations.

 103

Let the fleet consists of vehicles (VLJs and/or helicopters) with limited seating

capacities – vehicles1, 2 and 4 can accommodate two passengers, and vehicle3 – three

passengers.

The system receives randomly initiated passenger requests for transportation from

one of the origins to some of the destinations. Because of the limits of the software used

for verification of the model (XPTCT-software) we will review the modeling of only the

first nine requests, i.e.  9,...,1i .

In this model we keep the same definitions of a flight of a jet and a trip of a jet as

in the model in section 5.3.2. In addition, the same constraints of at most two

intermediate stops during a trip and up to one trip through a working shift per vehicle are

to be satisfied. Thus, a working shift (i.e. a trip) includes up to three flights. However, if

the destination facility of some of the passengers on board a given vehicle is closed, then

the vehicle is assumed to have a traveling resource to make an emergency flight to

another MTF i.e. destination.

The main difference of the two models is in the way their SCs are implemented.

In the model of section 5.3.2 the centralized and modular SC were computed. With this

model we demonstrate the synthesis of distributed SC of concurrent systems. Each of the

vehicles and its assigned passengers form a subsystem which performs concurrently with

the other subsystems of the rest of the fleet and their passengers. Since there is no

interaction between the vehicles and the passengers assigned to different vehicles, the

DSC of the subsystems is conjunctive.

To utilize a minimum number of vehicles, with every new released request the

procedure checks if any of the activated vehicles can be assigned to that passenger. If

 104

adding the origin and destination locations in the route of a vehicle with enough seating

capacity does not violate the constraints, the LS of that subsystem provides the updated

language of desired behavior of these vehicle and passenger. If the control procedure

finds the updated language of the LSj of the subsystem of some vehiclej to be feasible, i.e.

jLS , that vehicle can accommodate the request and the passenger is assigned to

vehiclej. There is no need for the procedure to check for the rest of LSj.

 Let at the beginning of the working shift vehicle1 and vehicle2 are positioned at F1,

vehicle3 is at F2 and vehicle4 is at F3. Let the DRT system follows some simple rules for

the initial activating of the vehicles: if a request is released from either O1 or O2 and there

is no active vehicle, vehicle1 is activated; if the request comes from either O3 or O4,

vehicle3 is activated, and if the request is released from O5, vehicle4 is activated.

 At the beginning of the working shift the system receives a request from

passenger1, who needs to be transported from O1 to F1. Since there are no active vehicles,

vehicle1 is activated. The control procedure needs to compute the possible behavior of

vehicle1, so that passenger1 will be picked from its location (O1) and transported to the

desired destination (F1).

6.3.2. DES modeling of a small emergency DRT system in D-DARP MADO

environment

 The set of all the events Σ of the considered system is summarized in Table 4.

Any vehicle can be in active state or waiting at a MTF. The assignment, pickup drop off

and emergency drop off events have two indexes – i represents the number of the

 105

passenger and j - the number of the vehicle serving that passenger. Facilities can be open

or closed. Each flight is labeled as a combination of a digit followed by two letters. The

digit represents the number of the vehicle and the letters – the origin and the destination

correspondingly. There are two uncontrollable events – when a vehicle lands at a facility

and (atfj) and when a facility is closed (closedk).

Table 4 The set of all the events of a small emergency DRT system.

Process Events – c: controllable; u: uncontrollable

Vehicle status actj Vehicle j is in service c

atfj Vehicle j is landed at a MTF u

Passenger’s

demand service

pasgnij Passenger i assigned to vehicle j c

pickij Passenger i picked by vehicle j c

dropij Passenger i dropped by vehicle j c

edropij Passenger i dropped in emergency by vehicle j c

Facility status openk MTF k is open for passenger acceptance c

closedk MTF k is closed for passengers u

Flights jF1O1 Vehicle j flies from F1 to O1 c

jF1O2 ------ // ---- from F1 to O2 c

jF2O3 ------ // ---- from F2 to O3 c

jF2O4 ------ // ---- from F2 to O4 c

jF3O5 ------ // ---- from F3 to O5 c

 106

Table 4 (Continued)

 jO1O2 ------ // ---- from O1 to O2 c

jO1O3 ------ // ---- from O1 to O3 c

jO1O4 ------ // ---- from O1 to O4 c

jO1O5 ------ // ---- from O1 to O5 c

jO1F1 ------ // ---- from O1 to F1 c

jO1F2 ------ // ---- from O1 to F2 c

jO1F3 ------ // ---- from O1 to F3 c

jO2O1 ------ // ---- from O2 to O1 c

jO2O3 ------ // ---- from O2 to O3 c

jO2O4 ------ // ---- from O2 to O4 c

jO2O5 ------ // ---- from O2 to O5 c

jO2F1 ------ // ---- from O2 to F1 c

jO2F2 ------ // ---- from O2 to F2 c

jO2F3 ------ // ---- from O2 to F3 c

jO3O1 ------ // ---- from O3 to O1 c

jO3O2 ------ // ---- from O3 to O2 c

jO3O4 ------ // ---- from O3 to O4 c

jO3O5 ------ // ---- from O3 to O5 c

jO3F1 ------ // ---- from O3 to F1 c

jO3F2 ------ // ---- from O3 to F2 c

jO3F3 ------ // ---- from O3 to F3 c

 107

Table 4 (Continued)

 jO4O1 ------ // ---- from O4 to O1 c

jO4O2 ------ // ---- from O4 to O2 c

jO4O3 ------ // ---- from O4 to O3 c

jO4O5 ------ // ---- from O4 to O5 c

jO4F1 ------ // ---- from O4 to F1 c

jO4F2 ------ // ---- from O4 to F2 c

jO4F3 ------ // ---- from O4 to F3 c

jO5O1 ------ // ---- from O5 to O1 c

jO5O2 ------ // ---- from O5 to O2 c

jO5O3 ------ // ---- from O5 to O3 c

jO5O4 ------ // ---- from O5 to O4 c

jO5F1 ------ // ---- from O5 to F1 c

jO5F2 ------ // ---- from O5 to F2 c

jO5F3 ------ // ---- from O5 to F3 c

Emergency

flights

jeF1F2 Emergency flight of vehicle j from F1 to F2 c

jeF1F3 Emergency flight of vehicle j from F1 to F3 c

jeF2F1 Emergency flight of vehicle j from F2 to F1 c

jeF2F3 Emergency flight of vehicle j from F2 to F3 c

jeF3F1 Emergency flight of vehicle j from F3 to F1 c

jeF3F2 Emergency flight of vehicle j from F3 to F2 c

 108

6.3.2.1. Computation of the supervisor of one vehicle - one passenger (LS11)

Formalization of the plant model: having only one passenger at O1, we use

vehicle1 by default. The plant consists of the following three automata:

 pasn1 (Fig. 6.4) represents the possible behavior of passenger1 - it releases its

service request (state 0), passenger1 is assigned to vehicle1 (state 1), passenger1 is

picked by vehicle1 (state 2) and dropped off (state 3).

0 1
pasgn11

2
pick11

3
drop11

Fig.6.4 Automaton pasn1.

 pveh1 (Fig. 6.5) presents the possible behavior of vehicle1.

0 1
act1

2

1F1O
1

3

1F
1O

2

1
O

1
O

2 1
O

2 O
1

4 5
atf1

Σl1

Σt1 \ {1O2O1, Σl1}

Σt1 \ {1O1O2, Σl1}

Σl1

Fig. 6.5 Automaton pveh1.

In this chapter, 1t denotes all the flight events of vehicle1 – i.e.

 3521111 111 FO,,OF,OFΣt  , and 1l denotes all the flights of vehicle1 ending at any

 109

MTF, i.e.  3521111 111 FO,,FO,FOΣl  . After vehicle1 is activated from its stand by

position at F1 (state 1), it can fly either to O1 or O2 (states 2 and 3, respectively). Any new

flight except those ending at the MTFs keeps the vehicle in these states. When a flight

from 1l is executed, the system is in state 4, and if vehicle1 lands at a MTF, the system

is in state 5.

 fd1 (Fig. 6.6) coordinates the flights with which vehicle1 ends its trips. For

example, the vehicle may lend at any MTF through O1, e.g.

 352111 111 FO,,FO,FO  if it has visited O1 with the previous flight, e.g. one of

these flights has been executed:  1514131211 11111 OO,OO,OO,OO,OF .

0

1

2

3

4

5

6

1F1O1,1O2O1, 1O3O1,

1O4O1, 1O5O1

1
O

1
O

2 1
O

2 O
1

1
O

2
O

3

1
O

3 O
2

1
O

3
O

4 1
O

4 O
3

1
O

4
O

5 1
O

5 O
4

1
O

3
O

1

1
O

1
O

3

1
O

5
O

3

1
O

3
O

5

1
O

4
O

2

1
O

2
O

41
O

4
O

1

1
O

1
O

4

1
O

2
O

5

1
O

5
O

2

1
O

5
O

1

1
O

1
O

5

1O1F1,1O1F2, 1O1F3

1F1O2,1O1O2, 1O3O2,

1O4O2, 1O5O2

1O2F1,1O2F2,

1O2F3

1O3F1,1O3F2,

1O3F3

1O4F1,1O4F2,

1O4F3

1O5F1,1O5F2, 1O5F3

Fig.6.6 Automaton fd1.

 110

From the initial state (0), with every possible flight of vehicle1 that goes to O1 the

system gets to state 1, and every flight of vehicle1 that goes to O2 takes the system to state

2. Similarly, every flight between all the five origin locations takes the system to the

corresponding state – e.g. state 5 represents that vehicle1 is in O5. From any state 1 to 5

vehicle1 can fly to any MTF, thus bringing the system to the marked state 6.

Automaton fd1 becomes necessary in modeling the emergency DRT system,

because in automaton pveh1, which describes the possible behavior of vehicle1, all the

flights among the origin locations are modeled with two states – 2 and 3 and all the

flights to the MTFs take the system to one state - 4. This simplicity in representation of

the possible flights does not consider where exactly the vehicle is, like in the small air

charter model (section V.2.2), and reduces the state space. However, the price for it is the

necessary additional automaton to secure that after all the flights the vehicle gets to the

final MTF with the correct sequence of flights.

Thus, the plant automaton of the model is the parallel composition of three

automata, i.e. 11111 fdpvehpasnPlant  . It is comprised of 56 states and 338 transitions.

Formalization of the specifications: the following three automata specify the

desired behavior of vehicle1 and passenger1:

 Similarly to the small air charter model, we use an automaton trips1 (Fig. 6.7) to

ensure that vehicle1 makes up to three flights per trip.

 111

0 1
1F1O1,1F1O2

act1

2 3

Σt1 \ {1O1F1, 1O1F2, 1O1F3,

1O2F1,1O2F2, 1O2F3} Σl1

atf1
1O1F1, 1O1F2, 1O1F3,

1O2F1,1O2F2, 1O2F3

  111111 ,,sgn droppickpaSelfloop 

Fig. 6.7 Automaton trips1.

 vehdil11 (Fig. 6.8) ensures the diligent service of vehicle1 – i.e. passenger1 can be

assigned to vehicle1 if the vehicle is activated or not (state 0), and if it is not, it

must be activated, (state 2), next passenger1 must be picked up (state 3), after

vehicle1 gets at the facility (state 4), passenger1 can be dropped off (state 5).

0 1 2 5

act1

pasgn11 act1
3 4

atf1pick11 drop11

 1ΣtSelfloop 

 Fig. 6.8 Automaton vehdil11.

 paspd1 (Fig. 6.9) specifies that vehicle1 can pick up passenger1 right after a flight

to O1 (state 1), and passenger1 can be dropped off when the vehicle gets to F1.

 112

0 1 2 4

act1, pasgn11,

Σt1 \ Σe1

3
pick11 drop11Σe1 Σf1

 Σt1 \ Σf1 atf1 Σt1

Fig. 6.9 Automaton paspd11.

With 1e we denote all the flights of vehicle1 which go to O1, i.e.

 15141312111 11111 OO,OO,OO,OO,OFΣe  , and 1f denotes all the flights of vehicle1

which end up in F1, i.e.  15141312111 11111 FO,FO,FO,FO,FOΣf  .

 The cross product of trips1, vehdil1 and paspd1 generates the specification

automaton, i.e.
 1111111 paspdvehdiltripsSpec  , which consists of 24 states and 132

transitions.

Synthesis of the supervisor of vehicle1 - passenger1 (LS11): the intersection of the

languages marked by 11Plant and 11Spec automata produces LS11 (Fig. 6.10) i.e.

 111111 SpecPlantLS  . Again, we use the XPTCT-software to compute all the

languages of the automata in the three steps.

 113

atf1

0 1 2
pasgn11 act1 1F1O2

4
1O2O1

6

3

1
F

1
O

1
p

ic
k 1

1

5

7

8

9

10

1O 1
O 2

1O1O3

1O
1O

4

1O
1O

5

12 13 14

11

1O
2F

1

1O
3F

1

1O3F1

1O 5
F 1

1O1F1

p
ic

k 1
1

1
O

1
F

1

drop11

 Fig. 6.10 Automaton of LS11.

The synthesized LS11 is controllable with 15 states and 19 transitions. Starting

from the initial state (0), passenger1 has to be assigned to vehicle1 (state 1), after vehicle1

is activated (state 2), there are two possible routes – through O1 (states 3-5-7, 8, 9, 10-12)

and through O2 (states 4-6-11-12). In either way, passenger1 is picked up when the

vehicle is at O1 (states 3 or 11) and when vehicle1 gets to F1 (state 12) it is at facility

(state 13). At the facility passenger1 can be dropped off - (state 14), marked state.

6.3.2.2. Computation of the supervisor of one vehicle - two passengers (LS12)

Let at a given time instant passenger1 is assigned to vehicle1, vehicle1 is activated

and is taking off from F1 when another service request arrives - passenger2 has to be

transferred from O3 to F2. The operational planning procedure is to check if the active

 114

vehicle1 is capable to meet the second request. If it is, then passenger2 has to be assigned

to the same vehicle, and if not, a new vehicle is to be activated.

Formalization of the plant model: with two passengers the plant consists of the

following three automata:

 pasn12 (Fig.6.11) describes the updated behavior of passenger1 – being already

assigned it has to be picked and dropped off; and pasn2 (Fig.6.12) describes the

possible behavior of passenger2.

0 1
pick11

2
drop11

 Fig.6.11 Automaton pasn12.

0 1
pasgn21

2
pick21

3
drop21

 Fig.6.12 Automaton pasn2.

 pveh12 (Fig.6.13) describes the updated possible behavior of vehicle1 – the new

initial state is at F1.

0

1

1F1O
1

2

1F
1O

2

1
O

1
O

2

1
O

2 O
1

3 4
atf1

Σl1

Σt1 \ {1O1O2, Σl1}

Σl1

Σt1 \ {1O2O1, Σl1}

 Fig. 6.13 Automaton pveh12.

 115

 there is no change in automaton fd1 (Fig. 6.6) that coordinates the flights with

which vehicle1 ends its trips.

Thus, the plant is computed with the parallel composition of the four automata,

i.e.
 11221212 fdpvehpasnpasnlantP  .

Formalization of the specifications: the following five automata specify the

desired behavior of vehicle1 and both passengers:

 trips12 (Fig. 6.14) is the updated automaton of trips1 and ensures that vehicle1 has

no more than two flights remaining.

0 1 2

Σt1 \ {1O1F1, 1O1F2, 1O1F3,

1O2F1,1O2F2, 1O2F3} Σl1

atf1
1O1F1, 1O1F2, 1O1F3,

1O2F1,1O2F2, 1O2F3

  2121211111 ,drop,picksgn,pa,droppickSelfloop 

Fig. 6.14 Automaton trips12.

 two automata  2,1i,vehdili1 (Fig. 6.15) secure diligent service for both

passengers by vehicle1 - vehdil11 (Fig. 6.15a) is the updated automaton of vehdil1

and encounters the remaining events that must be executed for service of

passenger1, and vehdil21 (Fig. 6.15b) is the corresponding automaton to ensure

diligent service for passenger2 by the same vehicle.

 116

0 31 2
atf1pick11 drop11

   1212121 Σt,drop,picksgnpaSelfloop 

a) Automaton vehdil11.

0 1 5
pasgn21

3 4
atf1pick21 drop21

   11111 Σt,droppickSelfloop 

b) Automaton vehdil21.

Fig. 6.15 Automata  2,1i,vehdili1 .

 two automata  2,1i,paspdi1 (Fig. 6.16) are needed to specify when each

passenger can be picked and dropped off by vehicle1: paspd11 (Fig. 6.16a) covers

the picking and dropping of passenger1 – since it is assigned but not picked yet

and vehicle1 is activated, the change compared with paspd1 from (Fig. 6.9) is the

elimination of events act1 and pasgn21, and a selfloop that considers the necessary

events for the service of the other passenger; paspd21 (Fig. 6.16b) is the

corresponding automaton for passenger2.

 117

0 1 2 4

Σt1 \ Σe1

3
pick11 drop11Σe1 Σf1

 Σt1 \ Σf1 atf1 Σt1

  212121 ,drop,picksgnpaSelfloop 

a) Automaton paspd11.

0 1 2 4

pasgn21,

Σt1 \ Σe2

3
pick21 drop21Σe2 Σf2

 Σt1 \ Σf2 atf1 Σt1

  1111,droppickSelfloop 

b) Automaton paspd21.

 Fig. 6.16 Automata  2,1i,paspdi1 .

 With 2Σe we denote all the flights of vehicle1 that end at O3, i.e.

 35312 11 OO,,OOΣe  , and 2Σf denotes all the flights of vehicle1 that end at F2, i.e.

 25212 11 FO,,FOΣf  .

 Thus, the specification of the service of the two passengers with one vehicle is

computed with the cross product of trips12, vehdil11, vehdil21, paspd11, and paspd21 - i.e.

211121111212 paspdpaspdvehdilvehdiltripsSpec  .

 118

Synthesis of the supervisor of vehicle1 - passenger1 and passenger2 (LS12): the

intersection of the languages marked by 12Plant and 12Spec automata produces LS12 i.e.

 121212 SpecPlantLS  .

However, LS12 is empty (i.e. it has zero states and zero events) because it is

infeasible for a vehicle to visit two different origin locations (O1 and O3) and two

different destinations (F1 and F2) in one trip. Therefore, we need another vehicle to be

involved – by default it will be vehicle3, currently located at MTF2.

6.3.2.3. Computation of the local supervisor of one vehicle - one passenger (LS32)

As vehicle3 is getting involved, a need arises for another supervisor – LS32. Since

at this moment passenger2 will be the only passengers of vehicle3, LS32 will be analogous

to LS11 – one vehicle – one passenger. Here we briefly describe the synthesis of LS23 to

demonstrate the difference in the notations and indexes.

The synthesis of the plant is the parallel composition of the following three

automata:

 pasn23 (Fig. 6.17) - represents the possible behavior of passenger2

0 1
pasgn23

2
pick23

3
drop23

 Fig. 6.17 Automaton pasn23.

 pveh3 (Fig. 6.18) – describes the possible behavior of vehicle3

 119

0 1
act3

2

3F1O
1

3

3F
1O

2

3
O

1
O

2 3
O

2 O
1

4 5
atf3

Σl3

Σl3

Σt3 \ {3O1O2, Σl3}

Σt3 \ {3O2O1, Σl3}

Fig. 6.18 Automaton pveh3.

Similarly to LS11, here 3Σt denotes all the flight events of vehicle3, i.e.

 3521533 333 FO...,,OO,OFΣt  , and 3Σl denotes all the flights of vehicle3 ending at any

MTF, i.e.  3521113 333 FO,,FO,FOΣl  .

 fd3 (Fig. 6.19) – coordinates the flights with which vehicle3 has to end its trips;

 120

0

1

2

3

4

5

6

3F2O3,3O1O3, 3O2O3,

3O4O3, 3O5O3

3
O

3
O

4 3
O

4 O
3

3
O

4
O

1

3
O

1 O
4

3
O

1
O

2 3
O

2 O
1

3
O

2
O

5 3
O

5 O
2

3
O

1
O

3

3
O

3
O

1

3
O

5
O

1

3
O

1
O

5

3
O

2
O

4

3
O

4
O

23
O

2
O

3

3
O

3
O

2

3
O

4
O

5

3
O

5
O

4

3
O

5
O

3

3
O

3
O

5

3O3F1,3O3F2, 3O3F3

3F2O4,3O1O4, 3O2O4,

3O3O4, 3O5O4

3O4F1,3O4F2,

3O4F3

3O1F1,3O1F2,

3O1F3

3O2F1,3O2F2,

3O2F3

3O5F1,3O5F2, 3O5F3

Fig. 6.19 Automaton fd3.

Thus,
 332332 fdpvehpasnPlant  .

The synthesis of the specifications is the cross product of the following three

automata:

 trips3 (Fig. 6.20) limits the number of the flights in the trip of vehicle3

0 1
3F2O3,3F2O4

act3

2 3

Σt3 \ {3O3F1, 3O3F2, 3O3F3,

3O4F1,3O4F2, 3O4F3} Σl3

atf3

3O3F1, 3O3F2, 3O3F3,

3O4F1,3O4F2, 3O4F3

  232323 ,drop, picksgnpaSelfloop 

Fig. 6.20 Automaton trips3.

 121

 vehdil23 (Fig.6.21) ensures diligent service for passenger2 by vehicle3

0 1 2 5

act3

pasgn23 act3
3 4

atf3pick23 drop23

 3ΣtSelfloop 

Fig. 6.21 Automaton vehdil23.

 paspd23 (Fig.6.22) specifies after which flights passenger2 can be picked and

dropped off by vehicle3

0 1 2 4

act3, pasgn23,

Σt3 \ Σe3

3
pick23 drop23Σe3 Σf3

 Σt3 \ Σf3 atf3 Σt3

 Fig. 6.22 Automaton paspd23.

Here 3Σe denotes all the flight events of vehicle3 going to O3, i.e.

 35323 33 OO,,OFΣe  , and 3Σf denotes all the flight events of vehicle3 going to F2,

i.e.  25213 33 FO,,FOΣf  .

Hence, the automaton of specifications of the service of passenger2 by vehicle3,

32Spec is computed:
 2323332 paspdvehdiltripsSpec  The local supervisor LS32

(Fig. 6.23) of vehicle3 serving passenger2 can be synthesized:  323232 SpecPlantLS  .

 122

atf3

0 1 2
pasgn23 act3 3F2O4

4
3O4O3

6

3

3
F

2
O

3
p

ic
k 2

3

5

7

8

9

10

3O 3
O 1

3O3O2

3O
3O

4
3O

3O
5

12 13 14

11

3O
1F

2

3O
2F2

3O4F2

3O 5
F 2

3O3F2

p
ic

k 2
3

3
O

3
F

2

drop23

 Fig. 6.23 Supervisor LS32.

6.3.2.4. Computation of the local supervisor of one vehicle - two passengers

(LS113)

Let at the current time instant vehicle1 has picked passenger1, passenger2 is

assigned to vehicle3, which is activated, took off from its initial location F2 and another

service request is received: passenger3 has to be transferred from O2 to F1 or F2. Now the

control procedure checks from all the active vehicles if any of them is capable to meet

this request. In the remaining part of this section we will demonstrate that vehicle1 can

transfer passenger3 without violation of its current routing and scheduling.

Considering the current state of vehicle1 and both passengers, the plant of the

subsystem, Plant113 is composed with the following four automata:

 a pair of automata  3,1, ipasni
(Fig. 6.24) model the updated behavior of both

passengers - pasn1 (Fig. 6.24a) is updated, generating the only remaining event of

 123

service of passenger1 and pasn3 (Fig. 6.24b) models the necessary behavior of

passenger3.

0 1
drop11

a) Automaton pasn1.

0 1
pasgn31

2
pick31

3
drop31

 b) Automaton pasn3.

 Fig. 6.24 Automata ipasn .

 pveh13 (Fig. 6.25) describes the updated possible behavior of vehicle1

0 1 2
atf1Σl1

Σt1 \ Σl1

 Fig. 6.25 Automaton pveh13.

 fd13 (Fig. 6.26) synchronizes the all flight events with the necessary end flights to

the possible destinations

 124

0

1

2

3

4

5

1
O

1
O

2 1
O

2 O
1

1
O

2
O

3

1
O

3 O
2

1
O

3
O

4 1
O

4 O
3

1
O

4
O

5 1
O

5 O
4

1
O

3
O

1

1
O

1
O

3

1
O

5
O

3

1
O

3
O

5

1
O

4
O

2

1
O

2
O

41
O

4
O

1

1
O

1
O

4

1
O

2
O

5

1
O

5
O

2

1
O

5
O

1

1
O

1
O

5

1O1F1,1O1F2, 1O1F3

1O2F1,1O2F2,

1O2F3

1O3F1,1O3F2,

1O3F3

1O4F1,1O4F2,

1O4F3

1O5F1,1O5F2, 1O5F3

Fig. 6.26 Automaton fd13.

Hence,
 13331113 fdpvehpasnpasnPlant  .

It has 56 states and 438 transitions.

The specification automaton of the subsystem vehicle1 and passenger1 and

passenger3, Spec113 is computed with the product of the following five automata:

 trips13 (Fig. 6.27) specifies that up to two flights remain in the trip of vehicle1.

0 1 2

Σt1 \ {1O1F1, 1O1F2, 1O1F3,

1O2F1,1O2F2, 1O2F3} Σl1

atf1
1O1F1, 1O1F2, 1O1F3,

1O2F1,1O2F2, 1O2F3

  31313111 ,drop,picksgn,padropSelfloop 

Fig. 6.27 Automaton trips13.

 125

 two automata  3,1, ivehdil1i
(Fig. 6.28) ensure diligent service of the vehicle

for both passengers - vehdil11 (Fig.6.28a) is the updated automaton vehdil1 that

covers service for passenger1 and vehdil13 (Fig.6.28b) is the corresponding

automaton for passenger3.

20 1
atf1 drop11

  1313131 Σt,drop,picksgnpaSelfloop 

 a) Automaton vehdil11

0 1 2 5

act1

pasgn31 act1
3 4

atf1pick31 drop31

   111 ΣtdropSelfloop 

 b) Automaton vehdil13

Fig.6.28 Automata  3,1, ivehdil1i

 two analogous automata  3,1, ipaspd1i
(Fig. 6.29) specify when both

passengers can be picked and dropped off - since passenger1 is already picked,

paspd11 (Fig. 6.29a) covers only its dropping off , while paspd13 (Fig. 6. 29b)

ensures both picking and dropping of passenger3.

 126

0 21
drop11Σf1

 Σt1 \ Σf1 atf1 Σt1

  313131 ,drop,picksgnpaSelfloop 

 a) Automaton paspd11.

0 1 2 4

act1, Σt1 \ Σe1

3
pick31 drop31Σe1 Σf1

 Σt1 \ Σf1 atf1 Σt1

  11dropSelfloop 

 b) Automaton paspd13.

 Fig. 6.29 Automata  31,i,paspd1i  .

Thus,
 1311131113113 paspdpaspdvehdilvehdiltripsSpec  . It contains 20

states and 123 transitions. The local supervisor of the subsystem, LS113 (Fig. 6.30) is then

computed, i.e.
  113113113 SpecPlantLS  .

 127

atf1
0 1 2

pasgn31
3

1O1O2
4 5

1O2F1pick31 drop11
6

87

d
ro

p
3

1

d
ro

p
3

1

drop11

 Fig. 6.30 Automaton LS113.

One can note that LS113 is a part of LS11 (Fig.6.10) with added new states and

events for picking and drop off passenger3. Starting from state 5 of LS11, which

corresponds to state 0 in Fig. 6.30, LS113 assigns passenger3 to vehicle1 (state 1 of Fig.

6.30), then travels to O2 (states 7 and 2 of LS11 and LS113, correspondingly), picks

passenger3 (state 3 of LS113), travels to F1 (states 11 and 4 of LS11 and LS113), arrives at a

facility (states 13 and 5 of LS11 and LS113), where the passengers are dropped off (states14

of LS11, and 6-8 of LS113).

With the so far developed cases of distributed SC of operation of emergency DRT

system in sections 6.3.2.1 through 6.3.2.4 we modeled subsystems and obtained the local

supervisors of one vehicle – one passenger (LS11 and LS32), one vehicle – two passengers

with infeasible operation (LS12), and one vehicle – two passengers with feasible service

(LS113). In these four cases all the resources (i.e. vehicles and MTFs) were available

during the entire operation. However, as it was discussed in Sections 3.1 and 6.1, one of

the most critical features of the emergency DRT service in ARE environment is that some

of the resources may become suddenly unavailable during service. In the next section we

 128

demonstrate the system control in case when one of the MTFs is closed and cannot accept

any vehicles to land.

6.3.2.5. Computation of the local supervisor of one vehicle - two passengers in

case of a closed MTF (LS448)

Consider the following possible development of our system – passenger4 and

passenger8 have released service requests for transportation from O5 to F1 or F3, and from

O1 to F3 respectively. Both have been assigned to vehicle4, which have been routed from

its initial location F3 to visit O5, picked passenger4 from O5 traveled to O1 and right after

picking up passenger8 the system receives a signal that the desired destination of vehicle4

- F3 is closed.

In modeling such a scenario we utilize the emergency flight events, which have

not been used so far.

The plant of the subsystem, Plant448 is composed as the parallel composition of

the following five automata:

 A pair of automata  8,4, ipasni
(Fig. 6.31) model the possible behaviors of

both passengers - pasn4 (Fig. 6.31a) describes the behavior of passenger4 and

pasn8 (Fig. 6.31b) – of passenger8, respectively.

0 1

drop44,

edrop44 0 1

drop84,

edrop84

 a) Automaton pasn4. b) Automaton pasn8.

 Fig. 6.31 Automata  8,4, ipasni .

 129

 pveh4 (Fig. 6.32) describes the uncontrolled behavior of vehicle4

0 1 2
atf4

Σt4 \ {Σf41,

Σf42, Σf43}

3

a
tf

4

4eF
1F

2 , 4eF
1F

3 , 4eF
2F

1 ,

4eF
2F

3 , 4eF
3F

1 , 4eF
3F

2

Σf41, Σf42, Σf43

 Fig. 6.32 Automaton pveh4.

Similarly to the notations in automata pveh1 and pveh3, 4Σt denotes all the flight

events of vehicle4, i.e.

 3521534 444 FO,,OO,OFΣt  . In addition, 41Σf denotes all the

flights of vehicle4 that end at F1 without the emergency flights, i.e.

 151141 44 FO,,FOΣf  , 42Σf denotes all the flights of vehicle4 that end at F2 without

the emergency flights, i.e.  252142 44 FO,,FOΣf  , and 43Σf denotes all the flights of

vehicle4 that end at F3 without the emergency flights, i.e.  353143 44 FO,,FOΣf  .

 fd4 (Fig.6.33) ensures that all flight events of vehicle4 are bound with the

necessary terminal flights to the three possible destinations. The emergency flight

events keep the system at the marked state 5.

 130

0

1

2

3

4

5

4
O

1
O

2 4
O

2 O
1

4
O

2
O

3

4
O

3 O
2

4
O

3
O

4 4
O

4 O
3

4
O

4
O

5 4
O

5 O
4

4
O

1
O

3

4
O

5
O

3

4
O

3
O

54
O

4
O

2

4
O

2
O

44
O

4
O

1

4
O

1
O

4

4
O

2
O

5

4
O

5
O

2

4
O

5
O

1

4
O

1
O

5

4O1F1,4O1F2, 4O1F3

4O2F1,4O2F2,

4O2F3

4O3F1,4O3F2,

4O3F3

4O4F1,4O4F2,

4O4F3

4O5F1,4O5F2, 4O5F3

4eF1F2, 4eF1F3,

4eF2F1, 4eF2F3,

4eF3F1, 4eF3F2

4
O

3
O

1

Fig.6.33 Automaton fd4.

 fstat3 (Fig. 6.34) specifies that F3 is closed

0 1
closed3

Fig.6.34 Automaton fstat3.

Therefore, 34484448 fstatfdpvehpasnpasnPlant  . It has 64 states and 544

transitions.

The specification automaton Spec448 is synthesized with the cross product of the

following six automata:

 131

 trips48 (Fig.6.35) limits the number of the allowed flights in the trip - being at O1

(state 0) vehicle4 has one more flight to end the trip - if it is from the sets 41Σf

and 42Σf , the system gets to state 1, where it is considered that the vehicle is at

facility (state 3), if the flight is from set 43Σf , the system gets to state 2, where

some emergency flight to F1 or F2 must be executed.

0 31

2

atf4Σf41, Σf42

Σf43

4eF3F1,

4eF3F2

  8444443 ,edrop,edrop,dropclosedSelfloop 

Fig. 6.35 Automaton trips48

 two analogous automata  8,4, ivehdil4i
(Fig. 6.36) ensure the diligent service

of vehicle4 for both passengers. Automaton vehdil44 (Fig. 6.36a) models the

service for passenger4 and vehdil48 (Fig. 6.36b) - for and passenger8, respectively

– being already picked (state 0), the vehicle has to get to a MTF (state 1) in order

to do drop off or emergency drop off the passengers (state 2).

0 21
atf4

drop44,

edrop44

   484843 Σt,edrop,dropclosedSelfloop 

 a) Automaton vehdil44.

 132

0 21
atf4

drop84,

edrop84

   444443 Σt,edrop,dropclosedSelfloop 

 b) Automaton vehdil48.

 Fig. 6.36 Automata  8,4, ivehdil4i .

 a pair of automata  8,4, ipaspd4i
(Fig. 6.37) specifies when the passengers can

be dropped off. Automaton paspd44 (Fig. 6.37a) covers the dropping of

passenger4 and paspd48 (Fig. 6.37b) – of passenger8, respectively. Both

passengers can be dropped off either at their regular or emergency destinations.

0 31
Σf41 4eF1F2,4eF1F3

2
Σf43

4eF
3F1,4eF

3F2

Σf42

Σt4\{Σf41,

Σf42, Σf43}

atf4

atf4

4
edrop44

drop44

drop44

atf4

Σt4

  84843 ,edrop,dropclosedSelfloop 

 a) Automaton paspd44.

 133

0 1

Σf 41
, Σ

f 42

3

Σf43

atf4

2

Σt4

drop84

atf4

4
eF

3
F

1
,

4
eF

3
F

2

 edrop
84

Σt4\{Σf41, Σf42, Σf43}

  44443 ,edrop,dropclosedSelfloop 

 b) Automaton paspd48.

 Fig. 6.37 Automata  8,4, ipaspd4i .

 fstat3 (Fig. 6.38) specifies when vehicle4 gets at an open MTF providing F3 is

closed – at the initial state 0 the system receives a signal (event closed3) and gets

in state 1, next only the flight events from sets 41Σf and 42Σf , and the emergency

flights 4eF3F1 and 4eF3F2 can take the system to state 2, where the vehicle is

considered at a MTF and gets to the marked state 3.

0 1
closed3

Σt4

atf42

Σt4\{Σf41, Σf42}

3

Σt4

Σf41, Σf42,

4eF3F1, 4eF3F2

  84844444 ,edrop,drop,edropdropSelfloop 

 Fig. 6.38 Automaton fstat3.

 134

 Therefore,
 34844484448448 fstatpaspdpaspdvehdilvehdiltripsSpec  . It

includes 16 states and 43 transitions. The local supervisor of the subsystem vehicle4 -

passenger4 and passenger8, LS448 (Fig. 6.39) is computed:
  448448448 SpecPlantLS  .

At the initial state 0 vehicle4 is at O1 and is routed to F3. The two branches going out of

state 0 are determined from the exact receiving of the event closed3 - if it comes before

the take off, the system gets to state 1, and if vehicle4 takes off first, the system gets to

state 2. Then the signal for closed F3 comes during the flight to F3 (state 5).

0 1
closed3

3 6

2 4

4
O

1
F

3

4
O

1
F

2

5

closed
3

atf44O1F1

7

8

atf4

4eF3F1,4eF3F2

a
tf

4

9

11

10

ed
ro

p 44

edrop84

d
ro

p
4

4
12

edrop44

d
ro

p
4

4

edrop84

edrop
84

4
O

1
F

3

 Fig. 6.39 Automaton of LS448

In the first branch the vehicle may fly to all MTFs, but if it goes to F1 or F2 (states

3 and 4, respectively) it is considered at an open MTF, and can drop both passengers

(passenger8 is always dropped off in emergency). If vehicle4 flies to F3 (state 5), it joins

the second branch and has to make one more emergency flight to F1 or F2 (state 8) before

it gets to a MTF and consecutively drops off the passengers.

 135

6.3.2.6. Generating the global SC of the emergency DRT

With the models for LSs of the received passenger requests considered in sections

6.3.2.1 through 6.3.2.5 we covered the basic cases of passenger’s assignments to vehicles

and vehicle routings of the emergency DRT problem described in 6.3.1. Because of the

limitations of the applied XPTCT-software in terms of the number of states and events,

we were able to verify the modeling of 9 passenger requests served with 5 vehicles. Table

5 shows all the requests, their assignments to the vehicles and the controlling LSs.

Table 5 – Considered requests, assigned vehicles and LSs.

Request Passenger# Origin - destination Facility Assigned vehicle LS

1 passenger1 O1 - F1 vehicle1 LS113

2 passenger2 O3 – F2 vehicle3 LS3259

3 passenger3 O2 - F1 or F2 vehicle1 LS113

4 passenger4 O5 - F1 or F3 vehicle4 LS448

5 passenger5 O4 – F2 vehicle3 LS3259

6 passenger6 O5 - F1 or F2 vehicle2 LS267

7 passenger7 O2 – F2 vehicle2 LS267

8 passenger8 O1 – F3 vehicle4 LS448

9 passenger9 O4 – F2 or F3 vehicle3 LS3259

Although dynamically formed, every LS controls a group of a vehicle with its

assigned passengers, which does not interact with the other groups. Thus, there are no

 136

shared events (i.e. transitions) between the groups except of a closing or opening a MTF

(e.g. openk, closedk), if Fk is a common destination. Since there are no limits in the

number of vehicles to land at any Fk, openk and closedk do not cause any interaction or

dependency between the corresponding LSs. Therefore, the general SC of the global DRT

system, SCgen can be computed as the union of all the LSs, i.e.

2674483259113 LSLSLSLSSGgen  .

6.3.2.7. Computational complexity of decentralized supervisor

Recall from Section 5.2.2.3 that in the worst case the computational complexity of

modular supervisory control is   rp,pmaxO 21 . In decentralized synthesis if the service

of a given passenger with the vehicle is developed as an independent module, the

computational complexity of the corresponding LS has the same upper limit as in the

modular control. The main advantage of decentralization is that if the subsystems are

disjunctive, all the LSs can be computed in parallel and the nonblocking property of the

SCgen is still guaranteed.

 137

Chapter Seven

Contribution of the Study and Future Research

7.1. Summary of the completed work and contribution of the study

In this study DRT systems are modeled as DES using Finite Automate formalism,

and DRT operational planning and real time control are addressed using discrete event

supervisory control theory. DES modeling and supervisory control theory are well

established and powerful mathematical tools. In this dissertation, they are shown to be

suitable for expressing the modeling and control requirements associated with the

complex and dynamic applications in DRT. The modeling and control approaches

described herein, coupled with the mature body of research literature in discrete event

systems and supervisory control theory, facilitates logical analysis of these complex

systems and provides the necessary framework for the development of real time

scheduling and intelligent decision making tools for operational planning in a broad range

of DRT applications. To this extent, this work includes several significant contributions

to the field of DRT systems modeling and operational control.

To establish a systematic approach to the study of DRT systems, a taxonomy of

the identifying features of DRT application domains is presented. This taxonomy is based

on origin/destination characteristics, fleet characteristics, and demand characteristics.

 138

Within this taxonomy, several characteristics associated with DRT systems such

as capacity constraints, route lengths etc. are modeled using Finite Automata. The

representation of systems specifications and characteristics associated with DRT are

straight-forward to express in spoken languages, however correct mathematical

representation of these features is not without challenge. Two application scenarios are

considered; the first is based on air-taxi service operation and illustrates uncontrolled

system model and operational specification synthesis. Based on the uncontrolled system

model and the specifications models, the automatic synthesis of centralized and modular

supervisors are demonstrated. The second scenario is a mission critical application based

on the emergency aero-medical evacuation problem. In this scenario, decentralized

supervisory control architecture suitable for accommodating the real-time contingencies

associated with this application is presented. The conditions for parallel computation of

local supervisors are specified and the computational advantages of alternative

supervisory control architectures are discussed.

The alternative control architectures utilized in this work exhibit varying degrees

of suitability to different application domains within DRT systems. Centralized control

schemes suffer from exponentially increasing computational complexity and are only

suitable for small sized static systems (as illustrated with the air-taxi service application).

Decentralized control schemes provide a robust control solution to highly dynamic

applications, such as the emergency evacuation. Furthermore, it is shown that, following

the appropriate design procedures, the decentralized architectures still manage to

maintain desirable supervisory control characteristics such as nonblocking and are

computationally tractable for a subset of the DRT application domains.

 139

7.2. Future Research

The research should continue with modeling and control of many to many type of

DRT system where the origin and destination locations of the service requests can be

anywhere over the covered region. The main challenge is to control the allowed length of

travel of the vehicles. There are two possible approaches to cope with this problem:

7.2.1. Application of timed DES (TDES)

 In this approach the length of travel will be controlled with the limits of time it

can take. In TDES both logical behavior and timing information are considered in

system’s evolution. In modeling TDES first a FA called activity transition graph denoted

with Gatg is introduced to describe the untimed behavior of the system.

 m0actactact A,a,δ,ΣA,G  , where A is the finite set of activities, actΣ is the finite set of

events, AΣA:δ actact  is the partial activity transition function, a0 is the initial

activity and AAm  is the set of marked activities.

Timing information is introduced into actG with the following way: each event

actΣ is given a lower time bound Nl  and upper time bound Nuσ , such

that  ul  and N denote the nonnegative integers. The set of events actΣ is

decomposed into two subsets:  NuΣσΣ σactspe  and   σactrem uΣσΣ ,

where speΣ is the set of prospective and remΣ is the set of remote events. The lower time

 140

bound typically represents a delay in control, while the upper time bound is a hard

deadline. For each actΣ the time interval σT is defined as follows:

 

 








.Σσifl,

,Σσifu,
T

remσ

speσ

σ
0

0

TDES is defined as a FA  m0 Q,qδ,Σ,Q,G  , where the state set Q is defined as

   actσ ΣσTAQ . A state Qq

is of the form   actσ Σσta,q  , where

activity Aa

and timer  Tt  . Timer t encounters the passage of global time for

each ζ. The set QQ m is given as by a subset of    actσm ΣσTA . The event set 

is defined as  tickΣΣ act  , where event tick represents the passage of one time unit.

The state transition function δ is defined as follows - for each Σ and

    σq,δQ,Στta,q actτ 

is defined, i.e.  !σq,δ , if and only if one of the

following conditions hold:

 tickσ  and     0t!   a,δactspe ,

 speσ and  !a,δact and σσ lut0   ,

 remσ and  !a,δact and 0t .

In DRT system, every flight and travel of a vehicle will have its lower and upper

bounds, i.e. the limits of beginning and end of service. However, the main disadvantage

of TDES approach is the very large state space, caused by tracking all the states at any

tick of time. To improve the efficiency of the model, Saadatpoor and Wonham (2007)

propose instead of language control, state-based predicates in compressed form

represented with binary decision diagrams (BDDs). In this approach, the structure in the

 141

states in the form of event timers of the modeled TDES can help reduce the size of

BDDs.

7.2.2. Application of hybrid DES (HDES)

In HDES modeling, some of the state variables are discrete and some are

continuous. The dynamic behavior of discrete state systems is usually simpler to

represent, but the mathematical tools to formally express and solve the state equations

may be more complex. In contrast, continuous state models ultimately reduce to the

analysis of differential equations, for which many mathematical techniques are available.

The type of supervisory control problems that is of interest in HDES arises whenever a

continuous system is to be controlled by a discrete process such as a digital computer

program. The continuous process to be controlled, together with any continuous

controllers, is identified as the Plant and is typically described by differential/difference

equations. The Controller includes a discrete decision process that is typically a

represented by FA. The Interface makes it possible for these different processes to

communicate with each other. This control framework is quite flexible and can describe

modern engineering systems where a computer process is used to control and coordinate

several physical processes over a computer network. It can also describe a switching

control system where a continuous plant is controlled by different continuous controllers

over a number of operating regions. The discrete event controllers for hybrid systems are

based on discrete abstractions of the continuous dynamics. Applications have been

primarily in the continuous process industry and transportation service. The advantage of

this approach is that it generalizes well-known concepts from digital control design. One

 142

of the main characteristics of the SC approach has been the emphasis and explicit

identification of the interface issues between the continuous and discrete dynamics. These

interface issues are the cornerstone of any HDES study. Koutsoukos at al. (2000) present

a detailed framework for hybrid systems modeling and synthesis of SC for continuous

Plant and discrete Controller (supervisor). The developed Interface consists of a

generator and an actuator. The generator converts the continuous time output (states) of

the Plant to an asynchronous, symbolic input for the supervisor. The actuator sends the

appropriate control signal into the Plant.

 In HDES modeling of DRT service different continuous controllers can provide

supervision of the vehicles’ location and travel, and discrete event controllers can

supervise passengers’ requests. The main issue will be in the complexity of the interface

to coordinate the behaviors of all the system elements.

 143

References

1. Casey R., Porter C., Buffkin T. and Hussey L. (2000) Evaluation Plan for the

Cape Cod Advanced Public Transportation System, US DoT,

http://www.itsdocs.fhwa.dot.gov/jpodocs/repts_te/

2. Cassandras C. and Lafortune S. (1999) Introduction to Discrete Event Systems,

Kluwer Academic Publishers.

3. Cieslak R., Desclaux C., Fawaz A. and Varaiya P. (1988) Supervisory control of

disrete-event processes with partial observations. IEEE Transactions on Automatic

Control, 33 (3), 249-260

4. Cordeau J. and Laporte G. (2003) A tabu search heuristic for the static multi-

vehicle dial-a-ride problem. Transportation Research 37B, 579–594.

5. Cordeau J. and Laporte G. (2007) The dial-a-ride problem: models and

algorithms, an updated version of a paper in 4OR 1:89-101, 2003

http://neumann.hec.ca/chairedistributique/common/DARP.pdf

6. Cordeau J., Laporte G., Potvin J. and Savelsbergh M. (2004) Transportation on

Demand. CRT-2004-25, http://www2.isye.gatech.edu/~mwps/publications/

7. Cubillos C., Polanco F., and Demartini C. (2004) Multi Agent Infrastructure for

Distributed Planning of Demand-Responsive Passenger Transportation Service, Systems,

Man and Cybernetics, IEEE International Conference, vol. 2: 2013- 2017

8. Dessouky M. and Adam S. (1998) Real-time Scheduling Rules for Demand

Responsive Transit Systems. Systems, Man, and Cybernetics, IEEE International

Conference, vol. 3: 2956-2961

9. Dial R. (1995) Autonomous Dial-A-Ride Transit Introductory Overview,

Transportation Research part C, 3:261–275

10. Dial R. and Ghani G. (2003) The ADART driver interface. Proceedings of the

83th Annual Conference of the Transportation Research Board

http://www.itsdocs.fhwa.dot.gov/jpodocs/repts_te/
http://neumann.hec.ca/chairedistributique/common/DARP.pdf
http://www2.isye.gatech.edu/~mwps/publications/

 144

11. Diana M. and Dessouky M. (2004) A new regret insertion heuristic for solving

large-scale dial-a-ride problems with tome windows, Transportation Research 38B, 539-

557

12. Finn B. and Breen P. (1996) The use of transport telematics in inter-urban and

rural bus services, Public Transport Electronic Systems Int’l Conference, 5-10

13. Gillen D. and Raffaillac J. (2002) Assessing the role of AVL in demand

responsive transportation systems, California Partners for Advanced Transit and

Highways (PATH). Research Reports: Paper UCB-ITS-PRR-2002-16.

http://repositories.cdlib.org/its/path/reports/UCB-ITS-PRR-2002-16

14. Heymann M. and Lin F. (1994) Online control of partially observed discrete event

systems. Discrete Event Dynamic Systems, 4, 221-236

15. Horn M. (2002) Fleet Scheduling and Dispatching for Demand Responsive

Passenger Services. Transportation Research, Part C, vol. 10, No 1, 35-63

http://www.dist-systems.bbn.com/people/krohloff/krohloff_publications.shtml

16. Hunsaker B. and Savelsbergh M. (2002) Efficient testing for dial-a-ride problems.

Operations Research Letters, 30:169–173

17. Jaw J., Odoni A., Psaraftis H. and Wilson N. (1986) A heuristic algorithm for the

multi-vehicle many to many advance request dial-a-ride problem. Transportation

Research 20B, 243–257

18. Jiang S. and Kumar R. (2000) Decentralized control of discrete event systems

with specializations to local control and concurrent systems. IEEE Transactions on

Systems, Man and Cybernetics – part B, 30:5

19. Kihl M., Crum M., Shinn D. (1996) Linking real time and location in scheduling

demand-responsive transit, Final Report, Midwest Transportation Center

http://www.ctre.iastate.edu/reports/kihlrpt.pdf

20. Koutsoukos X., Antsaklis P., Lemmon M. and Stiver J. (2000) Supervisory

Control of Hybrid Systems, Proceedings of the IEEE Conference.

21. Lafortune S., Rohloff K. and Yoo T. (2001) Recent Advances on the Control of

Partially-Observed Discrete-Event Systems, Proceedings of, Symposium on the

Supervisory Contol of Discrete Event Systems (SCODES)

22. Lave E., Teal R. and Piras P. (1996) A Handbook for Acquiring Demand

Responsive Transit Software. Transit Cooperative Research Program Report #18,

Transportation Research Board, Washington D.C.

http://repositories.cdlib.org/its/path/reports/UCB-ITS-PRR-2002-16
http://www.dist-systems.bbn.com/people/krohloff/krohloff_publications.shtml
http://www.ctre.iastate.edu/reports/kihlrpt.pdf

 145

23. Leduc R., Brandin B., Lawford M. and Wonham W. (2005) Hierarchical

interface-based supervisory control – part I: serial case. IEEE Transaction on Automatic

Control, vol. 50, No 9, 1322-1335

24. Leduc R., Lawford M. and Wonham W. (2005) Hierarchical interface-based

supervisory control – part II: parallel case. IEEE Transaction on Automatic Control, vol.

50, No 9, 1336-1348

25. Lin F. and Wonham W. (1988) Decentralized supervisory control of discrete

event systems. Elsevier Science Publishing Co., Inc.

26. Queiroz M. and Cury J. (2000) Modular control of composed systems.

Proceedings of the American Control Conference, Chicago, Il.

27. Rudie K. and Wonham W. (1992) Think globally, act locally: Decentralized

supervisory control. IEEE Transaction on Automatic Control, vol. 37, 1692-1708

28. Saadatpoor A. and Wonham W. (2007) State based control of timed discrete event

systems using binary decision diagrams. System & Control Letters, vol. 56, 62-74

29. Sadeh N. and Kott A. (1996) Models and Techniques for Dynamic Planning

Demand- Responsive Transportation. CMU-RI-TR-96-04, Robotics Institute, Carnegie

Mellon University

30. Seow, K. T. and Pasquier, M. (2004) Supervising Passenger Land-Transportation

Systems. IEEE Transaction on Intelligent Transportation Systems, vol. 5, No. 3, 165 –

176

31. Seow, K. T., Pasquier, M. and Hong, M. (1999) A Formal Design Methodology

for Land-Transport Operations. Intelligent Transportation Systems, Proceedings,

IEEE/IEE/JSA International Conference, 110 – 115

32. Sheu J. (2006) A novel dynamic resource allocation model for demand-responsive

city logistics distribution operations. Transportation Research Part E 42:445-472

33. Takai S. and Ushio T. (2005) Decentralized supervisory control of discrete event

systems using dynamic default control. IEICE Transactions Fundamentals, Vol. E88-A

34. Toth P., Vigo D. (1997) Heuristic algorithms for the handicapped persons

transportation problem. Transportation Science 31, 60–71

35. Uchimura K., Takahashi H. and Saitoh T. (2002) Demand Responsive Services in

Hierarchical Public Transportation System. IEEE Transactions on Vehicular Technology,

vol.51, issue 4, 760-766

 146

36. Willner Y. and Heymann M. (1991) Supervisory control of concurrent discrete

event systems. International Journal of Control, vol. 54, issue 5, 1143-1169

37. Wipke K. (1996) Reducing VMTs through transit-on-demand with GPS and

satellite communications, IEEE Xplore Northcon, 404-408

38. Wong K. and Bell M. (2006) Solution for the dial-a-ride problem with multi-

dimensional capacity constraints, International Transactions in Operation Research, 195-

208

39. Wonham, W. M. (2006) Supervisory Control of Discrete-Event Systems.

monograph ECE 1336F / 1637S, http://www.control.utoronto.ca/DES/

40. Wonham, W. M. and Ramadge P.J. (1988) Modular supervisory control of

discrete event systems, Mathematics of Control, Signals, and Systems, 1, 13-30

41. Yoo T. and Lafortune S. (2002) A general architecture for decentralized

supervisory control of discrete-event systems, Discrete Event Dynamic Systems: Theory

and Applications, 12, 335-377

http://www.control.utoronto.ca/DES/

 147

Bibliography

1. Antsaklis P. and Koutsoukos X. (2005) Hybrid systems: review and recent

progress. Chapter in Software-Enabled Control: Information Technologies for Dynamical

Systems, T. Samad and G. Balas, Eds., IEEE Press.

2. Baillieul J. and Antsaklis P. (2007) Control and communication challenges in

networked real-time systems. Proceedings of the IEEE, Vol. 95, 1, pp. 9 – 28

3. Benoit G. and Merchand H. (2007) An efficient modular method for the control of

concurrent discrete event systems: A language based approach. Discrete Event Dynamic

Systems 17 pp. 179-209

4. Blouin S., Guay M. and Rudie K. (2000) An application of discrete event theory

to truck dispatching, Dept. of Computing and Information Science, Queen’s University,

Ontario, Canada, TR#2000-440

5. Bourdon S. Lawford M. and Wonham W. (2002) Robust nonblocking supervisory

control of discrete event systems. Proceedings of the American Control Conference,

Anchorage, AK

6. Chen P. Guzman J., Ng T., Poo A. and Chan C. (2002) Supervisory control of an

unmanned land vehicle, Proceedings on IEEE International Symposium on Intelligent

Control, Vancouver, Canada, pp. 580 -585

7. Fabian M. and Kumar R. (1997) Mutually nonblocking supervisory control of

discrete event systems. IEEE Conference on Decision and Control, p 2970--2975, San

Diego, CA.

8. Grigorov, L. and Rudie K. (2006) Near optimal online control of dynamic discrete

event systems. Discrete Event Dynamic Systems 16 pp. 419-449

9. Hruz B. and Zhou M. (2007) Modeling and control of discrete event dynamic

systems. Springer Engineering, 341 pg.

10. Jonoska N. (2007) Algebraic automata theory. USF lecture notes.

 148

11. Lafortune S., Rohloff K. and Yoo T. (2001) Recent advances on the control of

partially observed discrete event systems. Chapter in Synthesis and Control of Discrete

Event Systems, pp. 3-17, Kluwer Academic Publishers.

12. Lee S. and Wong K. (1997) Decentralized control of concurrent discrete event

systems with non-prefix closed local specifications. Proceedings of the 36
th

 Conference

on Decision & Control, San Diego, CA., pp. 2958-2963

13. Lin F. and Wonham W. (1988) On Supervisory Control of Real-Time Discrete-

Event Systems. Information Sciences 44, pp.159-183

14. Wong K. and Wonham W. (1998) Modular control and coordination of discrete

event systems, Discrete Event Dynamic Systems: Theory and Applications, 8 pp. 247-297

15. Yoo T. and Lafortune S. (2002) Decentralized supervisory control: A new

architecture with a dynamic decision fusion rule, Proceedings of the Sixth International

Workshop on Discrete Event Dynamic Systems (WODES ’02)

 149

About the Author

 Daniel Yankov received a Bachelor’s Degree in Mechanical Engineering from

Technical University, Sofia, Bulgaria in 1993 and a M.S. in Industrial Engineering from

Rochester Institute of Technology, Rochester, NY in 2004. He has wide engineering

experience in project management, tool design and quality control. Daniel entered the

Ph.D. program at the University of South Florida in 2004.

 While in the Ph.D. program at the University of South Florida, Mr. Yankov was

actively involved in a project for simulation and optimization of security check points at

major commercial airports. He also made a paper presentation at Informs ’07 Annual

meeting in Seattle, WA.

	University of South Florida
	Scholar Commons
	2008

	Discrete event system modeling of demand responsive transportation systems operating in real time
	Y Daniel Yankov
	Scholar Commons Citation

	DISCRETE EVENT SYSTEM MODELING OF DEMAND

