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ABSTRACT 

 

The Polytrauma/TBI Rehabilitation Center (PRC) of the Veterans 

Affairs Hospital (VAH) treats patients with Traumatic Brain Injury 

(TBI). These patients have major motor and cognitive disabilities. Most 

of the patients stay in the hospital for many months without major 

improvements. This suggests that patients, family and the VAH could 

benefit if healthcare provider had a way to better assess or “predict” 

patients’ progression. The individual progress of patients over time is 

assessed using a pre-defined multi-component performance measure 

Functional Independence Measures (FIM) at admission and discharge, 

and a semi-quantitative documentation parameter Clinical Pathway 

(CP) at weekly intervals. This work uses already de-identified and 

transformed data to explore developing a clinical outcome predictive 

model for patients with TBI, as early as possible. The clinical outcome 

is measured as percentage of recovery using CP scores. The results of 

this research will allow healthcare providers to improve the current 

resource management (e.g. staff, equipment, space) through setting 

goals for each patient, as well as to provide the family more accurate 

and timely information about the status and needs of the patient. 
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CHAPTER I:  

INTRODUCTION 

 

The James A. Haley Veterans Affairs Hospital (JAHVAH) receives 

soldiers from the Operation Enduring Freedom (OEF) in Afghanistan 

and in the Operation Iraqi Freedom (OIF) in Iraq. They present 

Traumatic Brain Injuries (TBI) caused by exposure to explosion on the 

field of combat. Veterans Affairs Hospital (VAH) operates a designated 

Polytrauma Rehabilitation Center (PRC) caring for wounded 

servicemen with complex injuries. Patients are admitted at distinct 

functional levels and have variable degrees of recovery. Many require 

total care, which includes comprehensive rehabilitative therapies over 

multiple stages, leading to high utilization of resources.  

This work main objective is to explore the development of a 

predictive model to forecast the patient’s clinical outcome as early as 

possible. The effort is deemed necessary due to the following: a) the 

complexity of rehabilitating these patients: b) the families’ need of 

accurate information and proper preparation for the discharge/transfer 

event; and c) the hospital’s need of an effective and efficient utilization 

of resources. 
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The model is based on one of the functional metric utilized in the 

PRC to measure motor and cognitive disabilities: “Clinical Pathway” 

(CP). This metric is comprised by 18 different components, each one 

measured in a scale from 1 to 7.  

The two models propose in this work use as output variable a 

percentage of potential recovery, which is a transformation of the 

regularly used delta score, i.e. the difference between discharge score 

and admission score. It is hypothesize that the use of this new variable 

will improve the accuracy of the prediction and be more meaningful 

than the “regularly variable delta”.  

The limitation of this work, however, lies in the sample size, 

which is49 patients. This amount of patients does not allow validating 

the metric “Clinical Pathway” as a tool to measure clinical outcomes, 

nor allows having training and testing sets.  

An effective predictive model should help in: deciding when to 

discharge transfer patients, a better utilize staff and equipment, 

provide more accurate and early information to the families about the 

rehabilitative status of the patients, and a better prepare the families 

for the discharge or transfer instance. 

This work is divided in four chapters. Chapter II explains the 

context and foundations that have motivated to develop this study. 

Chapter III explains the methodology used to achieve the objective 
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stated before, basically this work is based on applying the initial four 

data mining steps: data extraction, data cleaning, data transformation, 

and model building. Chapter IV analyzes the proposed models 

considering the contributions and limitations of each one. Finally, 

Chapter V summarizes the main conclusions of this research and lays 

out possible future work.  
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CHAPTER II: 

CONTEXT 

 

Chapter II is divided into three sections. The first section 

addresses TBI and its relationship with the “Wounded Warriors” that 

come from the OEF and the OIF. The second section explains the 

relationship between the TBI and the Polytrauma/TBI System of Care 

(PSC) of the VAH. The third section shows the impacts and needs of 

the families in the rehabilitation process of the patients with TBI.  

 

Traumatic Brain Injury  

On December 31st 2011, 152,000 active military personnel were 

deployed in the OEF in Afghanistan and in the OIF in Iraq, as 

consequence of the Global War on Terror (GWOT) (Belasco, 2009; 

Department of Defense, 2012). In the OEF, 18,191 soldiers were 

wounded between October 2001 and December 2012 (Department of 

Defense, 2013a), and in the OIF, 31,926 soldiers were wounded 

between March 2003 and December 2012 (Department of Defense, 

2013b).  



5 

 

Blast injury has been the main war wound in action in the GWOT 

(Mernoff & Correia, 2010; Owens et al., 2008; Sayer et al., 2008). 

This is a damage caused by a “violent explosion” or by the “wave of 

pressure from such an explosion” (Department of Veterans Affairs, 

2011b). The most substantial sources that produce this wound are 

rocket-propelled grenades (RPGs), improvised explosive devices 

(IEDs), explosively formed projectiles (EFP), mines, and booby traps 

(Belanger, Uomoto, & Vanderploeg, 2009; Veterans Health Initiative, 

2010). Technological advances in equipment have allowed that more 

soldiers survive to blast injuries than in previous conflicts (Gawande, 

2004; Mernoff & Correia, 2010; Peake, 2005; Sayer et al., 2008). 

Among blast injuries occurred in GWOT, 60% result in Traumatic Brain 

Injury (TBI) (Gawande, 2004; Ling, Bandak, Armonda, Grant, & 

Ecklund, 2009; Okie, 2005; DL Warden et al., 2005). 

According to the (Department of Veterans Affairs, 2011b), TBI is 

defined as “[…] the result of a severe or moderate force to the head, 

where physical portions of the brain are damaged and functioning is 

impaired […]”. The severity of the TBI depends on the brain region 

that was impacted, the nature and the strength of the force, and the 

physical and genetic characteristics of the victim (Kimberly Meyer, 

Kathy Helmick, Selina Doncevic, & Rachel Park, 2011). It can vary 

from mild (brief change in consciousness) to severe (long period of 
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unconsciousness). The most frequent diagnosis is mild TBI (mTBI) 

(Belanger et al., 2009). Only an 8% of the OEF and OIF veterans are 

diagnosed with severe TBI (Kimberly Meyer et al., 2011).  

The symptoms after a head injury are called Post-Concussion 

Syndrome (PCS), and depending on the severity of the injury, they 

can persist for months or years (Department of Veterans Affairs & 

Department of Defense, 2010). In the case of moderate or severe TBI, 

they can even be considered as permanent sequelae (Veterans Health 

Initiative, 2010). These symptoms are physical (e.g. headaches, 

dizziness, vision changes), cognitive (e.g. concentration problems, 

memory problems, abstract thinking problems), and emotional (e.g. 

irritability, anxiety, aggression) (Veterans Health Initiative, 2010). The 

previous conditions can make the diagnosis difficult because many of 

the patients may not show visible signals of injury (Mental Illness 

Research Education and Clinical Centers, 2009). 

The majority of the patients who are screened as positive for TBI 

are also diagnosed with a mental problem; the most frequent mental 

problem is Post-Traumatic Stress Disorder (PTSD) (Taylor et al., 

2012). In turn, patients with moderate to severe TBI increase the risk 

of Post-Traumatic Epilepsy (PTE) (Masel & DeWitt, 2010), which can be 

showed up in a range of years from the moment that the head injury 

occurs (Aarabi, Taghipour, Haghnegahdar, Farokhi, & Mobley, 2000). 
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The prevalence of soldiers with TBI has labeled this injury is 

considered as the “signature wound” of this war (Okie, 2006; D. 

Warden, 2006). Likewise, the VA, which is defined as “[…] the most 

comprehensive system of assistance for veterans in the world […]” 

(Department of Veterans Affairs, 2012a) has taken into account TBI as 

a priority in healthcare service (Belanger et al., 2009; Veterans Health 

Initiative, 2010).  

 

Polytrauma/TBI System of Care 

In 2005, the VA created a specialized care system for individuals 

with TBI and multiple injuries or polytrauma, which is known as 

Polytrauma/TBI System of Care (PSC) (Sigford, 2008). The mission of 

the PSC is: “[…] provides comprehensive, high-quality, and inter-

disciplinary care to patients. Teams of physicians from every relevant 

field plan and administer an individually tailored rehabilitation plan to 

help the patient recover as much as possible […]” (Department of 

Veterans Affairs, 2012c).  

Even though VA provides health care services for veterans, 

collaborative agreements with the Department of Defense (DoD) have 

allowed that active duty Service Members (SMs) also can receive care 

in PSC (Uomoto, 2012; Veterans Health Initiative, 2010). From 

October 2001 until the fiscal year (FY) 2012, 804,704 SMs that left 
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active duty in OEF and OIF (including Operation New Dawn (OND)) 

have obtained care in the VA Health Care System, of which 7% have 

been inpatients (Department of Veterans Affairs, 2012). Between the 

FY 2003 and FY 2011, PSC received 2,160 inpatients with TBI (Cifu, 

2012), thus, it is estimated that over 2,600 patients with TBI have 

been treated in the PSC from the beginning of the GWOT. 

PSC is composed of four modules of care: 5 PRCs which are 

located in Richmond, VA, Tampa, FL, Minneapolis, MN, Palo Alto, CA, 

and San Antonio, TX; 23 Polytrauma Network Sites (PNS); 87 

Polytrauma Support Clinic Teams (PSCT); and 38 Polytrauma Point of 

Contact (PPOC) (Department of Veterans Affairs, 2012d).  

The OEF and OIF militaries who enter the VA health care system 

may receive an initial TBI screen (Mernoff & Correia, 2010; Uomoto, 

2012; Veterans Health Initiative, 2010). The screen consists of 

determining any injury in the brain that “has made an effect in the 

consciousness” through a 5 minutes survey with questions related to 

the “current health” and “combat experiences”, as first step 

(Department of Veterans Affairs, 2012b; Veterans Health Initiative, 

2010). The diagnosis is ratified using severity ratings (such as Glasgow 

Coma Scale (GCS)), computed tomography (CT) and magnetic 

resonance imaging (MRI), if the patient’s condition allows (Veterans 

Health Initiative, 2010).  



9 

 

The patients diagnosed with TBI are referred to an adequate unit 

of care depending on the severity of the damage. All of those that 

return with a deeper level of unconsciousness or in coma are sent to 

acute rehabilitation programs such as Emerging Consciousness 

Program or Brain Injury Rehabilitation in one of the five PRCs 

(Department of Veterans Affairs, 2011a; Uomoto, 2012). In these 

programs, patients may emerge from the coma and then they start 

the rehabilitation process.  

The rehabilitation process consists of cognitive, physical and 

emotional treatments such as: improving the communication skills, 

dealing with changes in behavior, treatment for dizziness and pain, 

and supporting in adjustment and coping (Department of Veterans 

Affairs, 2011a). In this stage of recovery, two Activities of Daily Living 

(ADL) assessment tools play an important role in the PSCs: Functional 

Independence Measure (FIM) and Clinical Pathway (CP) scores, which 

evaluate the progress of patients in terms of cognitive and motor 

functions.  

FIM measures the functions of the patients routinely at 

admission and at discharge from the rehabilitation unit, and consists of 

18 components: 13 of them measure motor tasks, and the 5 

remainder, measure cognitive tasks (Uniform Data System for Medical 

Rehabilitation, 2013). CP measures similar functions weekly and also 
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comprises 18 components: 11 refer to motor functions and 7 to 

cognitive functions (Table 1).  

 

Table 1 Motor and cognitive FIM and CP components 

Functional Independence Measure 

FIM 

Clinical Pathway 

CP 

Motor 
Eating 
Grooming 
Bathing/showering 
Dressing upper body 
Dressing lower body 
Toileting 
Bladder management 
Bowel management 
Transfers:  bed/chair/wheelchair 
Transfer s: Toilet 
Transfers: bathtub/shower 
Locomotion: walk/wheelchair 
Locomotion: stairs 

Cognitive 

Comprehension 
Expression 
Social interaction 
Problem solving 
Memory 

Motor 
Eating 
Grooming 
Bathing 
Dressing - Upper Body 
Dressing - Lower Body 
Toileting 
Bladder Management 
Bowel Management 
Bed Mobility 
Locomotion 
Transfer 

Cognitive 

Language Comprehension 
Expression 
Attention 
Memory 
Social Language 
Problem Solving 
Safety 

Source: VA Hospital Data Set 

 
 

FIM score has been used to measure the progress of 

rehabilitation in a number of different condition such as: stroke, spinal 

cord injury, brain injury, multiple sclerosis, orthopedic conditions, and 

geriatrics (Uniform Data System for Medical Rehabilitation, 2013). It 

has been the most widely used assessment tool used to measure 

clinical outcomes in the United States (Cournan, 2011).  

(Black, 2012) states measuring the clinical outcome can help in: 

providing feedback to the team to improve the services/programs and 
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to monitor the resources utilization; facilitating the communication 

among the stakeholders (clinicians, family members, patients), 

through a “meaningful” and “readily available” information flow; 

establishing individual goals for each patient; and assisting in decision-

making about the discharge time.  

Similarly, (Poon, Zhu, Ng, & Wong, 2005) established that 

predicting clinical outcomes of patients with TBI has a positive effect in 

the “priority-setting of the limited resources”, as well as, an impact in 

the family members since it provides “essential information for 

counseling of the family”. This last effect is very important due to the 

leading role of the family in the rehabilitation process, and at 

discharge, since the usual discharge destination is “home” with 67% of 

the patients treated in the PRCs VAH (Cifu, 2012).  

 

Impacts on and Needs of the Family System 

A war has great consequences life of a family and many studies 

refer to the effects caused by the war on family members (Kelley & 

Jouriles, 2011; Lester et al., 2010; Paris, DeVoe, Ross, & Acker, 

2010). The characteristics of the service member's family before the 

injury, named as pre-TBI, are important in determining the way that 

the family members will deal with the “psychological adjustment” and 
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the “quality of life” once the injured soldier returns (Dausch & Saliman, 

2009; McFarlane, 2009). 

Relocation and employment problems, changes in the family 

roles, concern for the deployed family member, economic problems, 

and family conflicts are some of the pre-TBI problems that the families 

of the SMs have to face (Makin-Byrd, Gifford, McCutcheon, & Glynn, 

2011; McFarlane, 2009).  (Mansfield et al., 2010) concluded that the 

length of deployment in Iraq and Afghanistan has a mental health 

effect on the wives of the SMs: depressive disorder, anxiety, and acute 

stress reaction or adjustment disorder are the most common 

diagnoses. In addition, the previous causes can contribute to an 

increase in the rate of maltreatment (e.g. neglect, physical abuse, 

emotional abuse, and sexual abuse) in children of the families with 

active duty SMs (Gibbs, Martin, Kupper, & Johnson, 2007).  

On the other hand, the different family reactions post-TBI 

associated with the stage of rehabilitation of the patients were 

established by (Lezak, 1986) and adapted by VA (Veterans Health 

Initiative, 2010), which range from depression, shock, and denial, to 

complete reorganization of the family. The work of (Verhaeghe, 

Defloor, & Grypdonck, 2005) states that spouses have a greater 

psychological impact than parents in caring for individuals that have 
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TBI and, at the same time, the negative effects on the caregivers 

increase when there are children living at home.  

To reduce the negative psychological consequences for the 

family during the rehabilitation process, (Bond, Draeger, Mandleco, & 

Donnelly, 2003) established four needs of the families of the patients 

with TBI: “need for involvement” (contribution of the family in the care 

of patient), “need for consistent information” (the condition of the 

patient must be reported to the family beyond doubts or contradictions 

by health care personnel), “need to make sense of the experience” 

(understandable and comprehensive information about the procedures 

performed to the patient), and “need to know” (family members prefer 

to know the truth about the patient's condition whatever the outcome 

may be). This last need is directly related to the clinical outcome.  

On the other hand, an early study (Mintz, Van Horn, & Levine, 

1995) stated that family welfare indices improve when treatment is 

given in an outpatient program, as opposed to when the care is 

provided in the center of rehabilitation. In turn, the necessities of 

both, the patient and the family are different when the patient stays in 

the hospital as inpatient, from those required when patients receive 

outside assistance (Griffin, Friedemann-Sánchez, Hall, Phelan, & van 

Ryn, 2009). The information and the support that the caregivers can 

receive at discharge is important since they not only deal with helping 
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the family members in ADLs, but also with appointments, devices, and 

management of emotions and pain (Griffin et al., 2012).  

Based on the benefits for both healthcare providers and the 

families, to estimate in advance the possible clinical outcomes in 

patients with TBI, this work shows an approach to predict the potential 

recovery using the CP scores. The use of CP for this analysis provides 

a new metric, using serial, weekly measure which has not previously 

been published. 
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CHAPTER III: 

METHODOLOGY 

 

This chapter describes the methodology used to achieve the 

objective of predicting clinical outcome in patients with TBI using 

clinical pathway score. The work is based on the five steps depicted in 

the Figure 1. This chapter has been divided in the four first stages of 

the data mining process: data extraction, data cleaning, data 

transformation, and data mining or model building. 

 

 
Source: Own creation 

Figure 1 Data mining steps 

 

Data Extraction 

The data used in this study corresponds to a dataset of 49 

patients, which was extracted from the VA electronic medical records. 

Important note, the data was appropriately pre-processed by 
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authorized people before being analyzed in this work, to de-identify 

the patients, with conversion of dates to hospital day number. This 

action generated the following two “sub-datasets”: 

Sub-dataset 1: False patient ID, FIM scores per component at 

admission and at discharge (Table 2). 

 

Table 2 Example of data collection for FIM score 

Component 
False Patient ID 

1 2 3 4 5 6 

Eating 1 1 2 2 2 … 

Grooming 1 1 2 2 … … 

Bathing 1 1 1 … … … 

Dressing – U 1 1 … … … … 

… 2 … … … … … 

 

Sub-dataset 2: False patient ID, weekly score of the 18 CP 

components. Measurement numbering begins with 0 (Table 3).  

 

Table 3 Example of data collection for CP score (record of one patient) 

 

False 

ID 
Measurement Eating Grooming Bathing 

Dressing - 

Upper Body 

 

1 0 3 2 4 3 … 

 1 3 2 4 2 … 

 2 3 2 4 … … 

 3 3 2 … … … 

 4 2 … … … … 

 5 … … … … … 
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Data Cleaning  

Cleaning sub-dataset 2 basically consists of dealing with CP 

missing values including missing rows related to US federal holidays. 

The data set has a total of 72 missing rows and, additionally, around 

100 missing values. 

Missing values can be classified in four categories: (1) first 

measurement (or measurement 0) with missing values/row, (2) 

missing values/rows in the middle, (3) last measurement with missing 

values/row, and (4) a segment of missing values (i.e. more than two 

consecutive missing values in a column). 

The criteria used to fill the missing values are explained below: 

 

First Measurement with Missing Values/Row 

To deal with missing values in the first row the cross-

multiplication technique is used considering the tendency shown by the 

patient in the scores of the other components, from the first to the 

second measurement. Table 4 shows an example. 

 

Table 4 Example of a missing value in the first row 

ID Measurement Eating Grooming Bathing … Safety 

1 0  ?    

 1      

 2    … … 

 3   … … … 
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The missing value of the “Grooming” in the first row, is 

calculated by the ratio between the summation of the squares (first 

row) and the summation of the triangles (second row), the result is 

multiplied by the circle.  

On the other hand, if there is a missing row in the measurement 

0 and all the values in the measurement 1 are equal to 7 (Table 5), 

the missing row is replaced by the score 7. Otherwise, the row is 

deleted and all the measurements are moved one week up, i.e. 

measurement 1 becomes measurement 0, due to the uncertainty of 

the extrapolation process in a complete row and the importance of the 

admission scores for the prediction model.  

 

Table 5 Example of a missing row in the first row 

 
 
 
 
 
 
 

Middle Missing Values/Rows 

The criterion for replacing a missing value in the middle is the 

same as a middle missing row. If the empty cell falls between two 

different numbers that are two units apart (e.g. 4 and 2) it is replaced 

by the mean (e.g. 3). If the mean is a decimal value, i.e. the missing 

number falls between two different values that are consecutive (e.g. 4 

ID Measurement CP1 CP2 CP3 … CP18 

1 0 ? ? ? … ? 

 1 7 7 7 … 7 

 2    … … 

 3   … … … 
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and 3), the number is rounded to the nearest integer (e.g. 3.5 ≈ 4). If 

there are more than a two unit distance (e.g. 7 and 2 or 6 and 2) the 

two previous criteria are used depending on if the mean is decimal or 

integer, respectively. The use of the mean is based on the assumption 

of progressive in the recovery. 

 

Last Measurement Missing Value/Row 

A missing row in the last measurement is deleted and the prior is 

considered the last record as the discharge measurement. A missing 

value in the last row is replaced using cross-multiplication, as in the 

example described in Table 4.  

 

Segment of Missing Values 

If there are two or more consecutive missing values in a column 

in the middle of the dataset, all the missing values are replaced by the 

previous measurement, assuming that the patient has kept the same 

condition during that time. Cross-multiplication is used if the patient 

does not have data in a specific segment, which includes a missing 

value in the admission row or in the discharge row.  

On the other hand, since the FIM scores do not present missing 

values no replacement rule has been used.  
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Data Transformation 

In this section the transformation of the data to create the input 

and the output variable for setting the model is explained. In the first 

section the response variable and, in the second section the selection 

of the explanatory variables is explained. 

 

Response Variables 

The response variables should measure the clinical outcome. 

Based on the purpose of the clinical outcome presented before, the 

variable should measure the progress achieved during the inpatient 

rehabilitation. The data collection related to the FIM and the CP scores 

is used to create a continuous variable in terms of the improvements 

in the motor and cognitive skills of the patients.  

FIM and CP are metrics that represent the level of independence 

of the patient. Table 6 and Appendix B show the scoring criteria for 

FIM and CP, respectively. The metrics are rated from 1 to 7 and they 

are considered as ordinal Likert-scales (Nanna & Sawilowsky, 1998) 

because it is uncertain if the values are equally spaced. 

Although some literature suggests that the use of parametric 

methods in Likert-type scales accomplishes acceptable conclusions 

(Norman, 2010), in this work the individual components will be 

analyzed as ordinal scales. However, the sum of the scores for FIM and 
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CP metrics will be considered as interval scale, as it was suggested by 

(Kidd et al., 1995) in an early study developed for the FIM scores.  

 

Table 6 FIM scoring criteria 
 

Score Description 

1 Total assistance (patient can perform less than 25% of the 
task or requires more than one person to assist 

2 Maximal assistance (patient can perform 25% to 49% of 
tasks) 

3 Moderate assistance (patient can perform 50% to 74% of 
task) 

4 Minimal contact assistance (patient can perform 75% or 
more of task)  

5 Supervision or Setup 
6 Modified independence (patient requires use of a device, but 

no physical assistance) 
7 Complete independence 

Source: (Uniform Data System for Medical Rehabilitation, 2013) 

 

Based on the previous statement, the total “FIM 

Admission/Discharge” and the total “CP Admission/Discharge” is the 

result of dealing with all the components in each metric, as a group.  

Consequently, the total “FIM Admission” is calculated based on the 

score when the patient is admitted, and total “FIM Discharge” is 

computed by considering the last score registered as an inpatient. In 

the FIM scale, 1 indicates total dependence of the patient, and 7 

means complete independence, thus, the possible total FIM score 

ranges from 18 to 126, where a higher score implies more 

independence of the patients. 
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The same analysis can be performed for CP, in which it is also 

possible to calculate the total weekly progress achieved by the patient 

between admission and discharge. The meaning of the CP scale is 

opposite to the FIM scale: 1 indicates that the patient is totally 

independent and 7 means the patient is completely dependent. In 

turn, the possible total CP score can vary from 126 to 18with 126 

indicating complete dependence in the motor and cognitive functions. 

Table 7 displays the descriptive statistics of the total “FIM 

Admission/Discharge” and total “CP Admission/Discharge” of the 

sample.  

 

Table 7 Descriptive statistics of FIM and CP at admission and discharge 

  
FIM 

Admission  

FIM 

Discharge  

CP 

Admission  

CP 

Discharge  

Mean 52.65 88.22 84.20 56.04 

Median 46 108 95 37 

Mode 18 18 126 126 

Trimmed Mean (10%) 50.28 92.62 85.74 51.62 

Standard Deviation 31.61 39.61 36.20 40.05 

Minimum 18 18 23 18 

Maximum 122 126 126 126 
* The range for FIM score is [18, 126], and the range for CP score [126, 18]. 

 

The difference between the “FIM/CP Discharge” and the “FIM/CP 

Admission” is called “gain”, “delta”, or “maximum improvement 

achieved”. It refers to the progress in motor and cognitive skills 

accomplished by the patient during the rehabilitation time. Many 
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studies utilize the “delta” as the outcome in predicting/analyzing 

functional improvement (Ng, Stein, Ning, & Black-Schaffer, 2007; 

Poon et al., 2005; Ring, Feder, Schwartz, & Samuels, 1997; Sayer et 

al., 2008). 

In this study we propose the use of a new variable, “delta 

transformed”, as outcome variable. In this variable, the delta between 

discharge and admission achieved during the length of stay in the 

hospital are converted to a proportion based on the maximum delta 

possible at the time of admission, resulting in two possible response 

variables: Delta FIM Transformed or DFT (Eq. 1), and Delta CP 

Transformed or DPT (Eq. 2). DFT and DPT are computed by dividing 

the delta (or “maximum improvement achieved”) by the maximum 

potential recovery of the specific patient at the time of admission. 

These variables indicate what percentage of the total possible recovery 

of the patient is accomplished at the end of the rehabilitation. 

 

 DFT = 
FIM Discharge - FIM Admission

126 - FIM Admission
 Equation 1 

   

 DPT  = 
 CP Discharge  - CP Admission  

18 - CP Admission
 

Equation 2 
 

 

The use of the DFT or DPT allows equaling two patients who 

have different initial conditions and different deltas, at the end of 

rehabilitation. The base on this postulate lies on the conclusion 
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established by (Sayer et al., 2008) for this type of patients: at low 

levels of motor and cognitive functions the patients “make 

considerable progress over the course of the hospitalization” and, 

conversely, at high levels of functioning the patients “do not exhibit 

much functional gain over the course of the treatment”.  

Figure 2 depicts an example where two patients have the same 

percentage of recovery (DPT) at discharge time, the admission score is 

different and the delta of patient 2 is higher than the delta of patient 

1.  

 

 
Source: Own creation 

Figure 2 Example of two patients with similar percentage of recovery (DPT) at 
the end of the rehabilitation 
 

On the other hand, note that the Eq. 1 is defined as long as FIM 

Admission is different from 126, and the Eq. 2 is defined if CP 

Admission is different than 18. Insofar as the FIM/CP Admission scores 

are equal to the maximum scores possible indicates that the patient is 
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completely independent and consecutively, he/she does not require 

care in the PRC.  

DFT and DPT can take values equal to or close to 0, which 

means that the patient’s state is the same (no or minimal recovery). 

In the same way, DFT or DPT close to 1 means that the patient 

showed significant progress relative to his/her potential. In turn, 

according to the Eq. 1 and 2, DFT and DPT can also be negative values 

i.e. the patient can worsen during rehabilitation. Even though this 

latter case is not expected, it is possible. A negative DFT or DPT may 

be the result of factors independent of the treatment. Nevertheless, 

the expected result is that the clinical outcome of the patient shows a 

recovery or at least the patient keeps his/her initial motor and 

cognitive conditions, i.e. DFT and DPT are constrained to a range 

between 0 and 1.  

The summary statistics of the DFT and DPT of the sample are 

shown in Table 8; both variables are skewed to the left, and their 

means are less than the medians. The trimmed means for DFT and 

DPT are very close to the untrimmed means, indicating the absence of 

instance(s) far from the rest of the data. The standard deviation is 

similar between DFT and DPT.  

The sample shows values between 0 and 1 for DFT. On the other 

hand, the values of the sample for DPT, are ranged between -0.02 and 
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1 (the negative value corresponds to a single patient). It is possible to 

keep the patient’s record or to consider the value as an outlier, and 

then, delete the patient. In this case, since the value corresponds to a 

single instance and it is close to 0, it is not expected that it 

significantly affects the model, thus, the first option is used.  

 

Table 8 Descriptive statistics of DFT and DPT 

Descriptive Statistic DFT DPT 

Mean 0.57 0.52 

Median 0.65 0.62 

Mode 0 0 

Trimmed Mean (10%) 0.59 0.54 

Standard Deviation 0.35 0.34 

Minimum 0 -0.02 

Maximum 1 1 

 

On the other hand, the values obtained for DFT and DPT seem to 

be associated according to the scatterplot in Figure 3. The Pearson’s 

Correlation Coefficient r between DFT and DPT is 0.93, with a p-value 

<0.001, which suggests that the correlation is statistically significant. 

The association between these two variables indicates the use of 

either of them as response variable for the prospective model. The CP 

seems to be the best choice, since it is a weekly metric for the entire 

segment of care and provides more evidence about the progress of the 

patients in comparison to the FIM score, which is only at admission 
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and discharge. To be consistent with the metric selected, "DPT" is used 

as the response variable.  

 

 
Figure 3 Relationship between DFT and DPT 

 

Explanatory Variables 

Since CP is a metric with weekly measurements, each week is a 

potential explanatory variable for the predictive model. To create 

appropriate input variables it is assumed that the motor and cognitive 

disabilities of the patient are evaluated n + 1 times, where n is the 

amount of weeks of treatment. This means that once the patient is 

admitted into the PRC the staff initially measures the 18 components, 

and based on the results they schedule the first week of treatment. 

After the first week, the 18 components are evaluated again to 

schedule the treatment of the subsequent week, and so on (Figure 4). 
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n: length of stay in the PRC in weeks 

Source: Own creation 

Figure 4 Measurement and length of stay 

 

The selection of number of weeks being analyzed as early 

predictors is based on the number of inpatients per week, and then, 

the correlation of the input variables with the response variable, DPT. 

Figure 5 shows the percentage of patients by duration of inpatient 

segment of care. The curve decreases as weeks accrue and the 

patients are discharged.  

 

 

 

Figure 5 Percentage of patients by duration of inpatient segment of care, 122 
weeks (left) and 6 first weeks (right) 
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Figure 5 shows that over 80% of the inpatients stay in the 

hospital for 6 weeks. The percentage of inpatients falls to 78% in week 

7 and 69% in week 8. The sample has a mean of length of stay of 21 

weeks, with a minimum of 3 weeks, and a maximum of 122 weeks. 

Each of these 6 first weeks will be considered in the analysis of 

explanatory variables. The 6 weeks is involving 7 measurements: 

admission score (or measurement 0), and the measurement from 

week 1 to 6. 

The correlation between Total Motor Measurement m or TMMm   

(sum of the 11 motor CP components), and Total Cognitive 

Measurement m or TCMm (sum of the 7 cognitive CP components), 

showS a strong positive linear association in the 7 measurements with 

a p-value <0.001 according to the Pearson Correlation Coefficient r in 

Table 9 and the scatterplots in Figure 6. 

 

Table 9 Pearson Correlation Coefficient between TMMm and TCMm 

 
TMM0 TMM1 TMM2 TMM3 TMM4 TMM5 TMM6 

TCM0 0.860 
      

TCM1  
0.861      

TCM2  
 0.891     

TCM3  
  0.907    

TCM4  
   0.906   

TCM5  
    0.890  

TCM6  
     0.884 

P-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

TMMm = Total Motor Measurement m 

TCMm = Total Cognitive Measurement m 
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Source: Own creation 

Figure 6 Scatterplots of the TMMm and TCMm 
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We conclude from the previous exploration of the 7 

measurements that it is possible to use the summation of the 18 

components as a single input variable each week instead of using the 

TMMm and TCMm as two different weekly potential inputs to the model. 

Note that since motor and cognitive functions are pre-defined groups, 

it is implied that the components that shape both groups are related to 

each other.  

The input variables considered in the analysis are two different 

types: the “CP Admission” (Eq. 3) and the “Delta Pathway Transformed 

Measurement m (DPTMm)”, where m is the week number of the 

measurement (Eq. 4).  

 

 CP Admission= � (CP components 1�� week)
i

18

i=1
 Equation 3 

   

 DPTMm = 
CP Measurement m - CP Admission

18 - CP Admission
 

Equation 4 

 
 

CP Admission corresponds to the summation of the 18 

components once the patient is admitted in the PRC and represents 

the motor and cognitive skills of the patient in a specific instance since 

it is not compared with any previous time. The domain of the variable 

is between 18 and 126.  

On the other hand, the DPTMm is a variable that takes into 

consideration the treatment received for the patient previous to the 
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mth measurement. It evaluates the progress of the patient in 

percentage of recovery achieved every week using as reference the CP 

Admission. The variable DPTMm is based on the same foundations of 

the DPT, explained previously. The domain of DPTMm is between -1 

and 1, with expected values between 0 and 1. 

Figure 7 depicts the scatterplots between each potential 

explanatory variable and the response variable, DPT. The non-

parametric Spearman Correlation Coefficient (rs) is used to determine 

the existence of a monotonic association between the variables, since 

they do not seem to follow a linear relationship. 
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Figure 7 Scatterplot input/output 

 

Table 10 displays the rs per measurement. The results point out 

a negative correlation between CP Admission and DPT since the 

variables have opposite direction. In turn, the correlations of 

DPTM1/DPT and DPTM2/DPT can be considered as moderate. The 

correlations from the third measurement on are stronger.  

The measurements for the first six weeks are analyzed in the 

next section as input variables to determine a model for predicting 

percentage of recovery of the patient with TBI since the CP Admission 

and DPTMm with m=1,…,6 seem to be related to the output variable 

DPT.  
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Table 10 Spearman Correlation Coefficients between the inputs and the output 
variables 

 

CP 

Admission 
DPTM1 DPTM2 DPTM3 DPTM4 DPTM5 DPTM6 

DPT -0.612             

DPT   0.536           

DPT     0.688         

DPT       0.716       

DPT         0.799     

DPT           0.796   

DPT             0.813 

 

Model Building 

Support Vector Regression (SVR) is utilized to determine a good 

relationship between the input and the output variables. SVR is a 

machine learning technique, which lies in predicting the DPT given a 

new input value after observing the behavior of the training set. 

The selection of SVR is based on its two main characteristics: 

generalizability and robustness. The generalizability characteristic 

helps avoid over-fitting because it searches for the simplest model 

through the use of specific margin-limiting data points to define the 

function, which are called Support Vectors (SVs) (Nalbantov, Groenen, 

& Bioch). On the other hand, the robustness characteristic decreases 

the effect of outliers in the model, since SVR works with the absolute 

value of the errors (Nalbantov et al.).  

SVR is approximated through Eq. 5. w determines the 

orientation of the hyperplane in the space and b defines the distance of 

the hyperplane from the origin, both are the parameters of the model. 
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x is the input space, and ø(x) is a function that allows transforming the 

input space into a higher dimensional feature space for mapping. 

 

 f�x�= w · ø(x) + b Equation 5 

 

This work uses linear and non-linear functions to create a model. 

To obtain a linear function, the input space ø(x) is replaced by Eq. 6, 

where vi are the SVs. 

 

 
K�vi, x�= vi

T ∙ x Equation 6 

 

To estimate a non-linear function, the Radial Basis Function 

(RBF) is often used since it works well for small samples (Zhang, Tang, 

Zhu, & Wang). In addition, the RBF models are less complex than the 

models developed with others kernels since the extra hyperparameter 

required is only one (Hsu, Chang, & Lin, 2003). To obtain a RBF, 

ø(x) is substituted by Eq. 7, where vi are the SVs, and Г is a pre-

defined parameter which is greater than zero. 

 

 K�vi, x�=e(-Г�vi-x�2
) Equation 7 

 

To estimate the parameters w and b in Eq. 5, the convex 

optimization problem depicted in Eq. 8 must be solved. 
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Minimize         
1

2
 ‖w‖2 + C ∑ (ξ

i
+ ξ

i
*
)l

i=1   

Subject to      y
i
-(w∙∅(x)+ b)  ≤ ɛ+ ξ

i
    

                        	�w∙∅(x)+b� - y
i
 ≤ ɛ+ ξ

i
*
   

   ξ
i
, ξ

i
*
  ≥0   

  for i=1,2,…, l 

Equation 8 

 

The objective function in Eq. 8 shows a trade-off between the 

flatness of the solution through the regularization term 
1

2
 ‖w‖2, and the 

amount of training errors through the empirical risk represented by 

C∑ (ξi+	ξi
*
)l

i=1 . In turn, the data points that fall inside of the ɛ-

insensitive region are considered with an error equal to 0 (i.e. ξi=0  

and ξi
*
=0), thus, they are not penalized. In the same way, if the error 

is greater than ɛ (i.e. the data point falls outside of the ɛ-insensitive 

region), a penalty C is assigned. The data points that fall in the border 

or outside of the ɛ-insensitive region are SVs which define the function 

(Figure 8). 

Eq. 8 can be transformed into a dual problem after applying the 

Lagrange Multiplier method (LMM). The use of the LMM is due to its 

quadratic objective function and linear constraints. After solving the 

dual problem the parameters w and b for the linear and the RBF 

kernels can be determined.  
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Source: Own creation 

Figure 8 Support Vector Regression (SVR) 

 

The SVR approximation function, thus, can be re-written as 

shown in Eq. 9, where αi
*≥0 and αi≥0 are Lagrange Multipliers, and vi 

are the SVs. 

 

 f�x�= � 
αi
*- αi�K�vi, x�+b

l

i=1
 Equation 9 

 

The flatness and the training errors of the solution are directly 

associated with the hyperparameters ɛ (ɛ-insensitive loss function) and 

C (cost). They must be specified in advance for the linear and the RBF 

kernels, as well as the hyperparameter Г, which is specific for the RBF 

kernel.  

The hyperparameters C, Г and ɛ are determined using the Grid 

Search Method, which is performed using the function tune() of the 

package e1071 in R (Team, 2008). Grid Search Method performs 
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exhaustive analysis of the possible combinations of the 

hyperparameters values. The selection of the values of the 

hyperparameters, and therefore, the selection of the model(s) is based 

on the Mean Square Error (MSE) after 10-fold cross validation. 

To analyze the effect of different sizes of the ɛ-insensitive region 

over the MSE, three values of the parameter ɛ are preliminarily 

utilized: 1, 0.1, and 0.01. These values are used for both, linear and 

RBF kernels. Once the hyperparameters C and Г are defined, they are 

fixed to tune the hyperparameter ɛ.  

To find the appropriate hyperparameter C for the linear kernel, 

two ranges were analyzed per each input/output combination totaling 

2000 trials: [0.001, 1] increasing by 0.001, and [1, 1000] increasing 

by 1. Two more iterations were performed for the second range to 

obtain a more accurate value. The second iteration has 11 trials that 

were performed using a range of ±0.5 over the best values in the first 

iteration. The third iteration has 11 trials from the best value in the 

second iteration in a range of ±0.05. Table 11 summarizes the ranges 

of iteration for the linear kernel. 

The first iteration for the RBF kernel has the same range for both 

hyperparameters: C and Г: from 1 to 40 increasing by 1, totaling 1600 

trials. The second iteration has a range of ±0.5 from the best value in 

the first iteration. The third iteration has a total of 121 trials in a range 
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of ±0.05 from the best value in the second iteration. Figure 9 shows 

an example of one of the combination with three iterations for the RBF 

kernel. 

 

Table 11 Grid Search method: ranges for the linear kernel 

LINEAR  

Range 

1 

Hyperparameter Iteration 1 

C (0.001,1) 

ɛ 
1 

0.1 
0.01 

Range 

2 

Hyperparameter Iteration1 Iteration2 Iteration3 

C (1,1000) Cost1 ±0.5 Cost2 ±0.05 

ɛ 
1 

0.1 
0.01 

1 
0.1 
0.01 

1 
0.1 
0.01 

Cost 1: Best cost obtained in the iteration 1 

Cost 2: Best cost obtained in the iteration 2 

 

 

  

Source: Own creation 

Figure 9 Example of relationship among Г, C and MSE of a RBF. First iteration 
with 1600 trials (up) second iteration with 121 trials (left) third iteration with 121 
trials (right). 
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A second range is analyzed for the RBF kernel from 0.001 to 1 

increasing by 0.001 for the hyperparameter C, and from 0.1 to 1 

increasing by 0.1 for the hyperparameter Г. To obtain a more accurate 

value of Г two more iterations are performed, where the 

hyperparameter C is fixed according to the value obtained in the first 

iteration, Г ranges ±0.05 over the best value in the first iteration. The 

third iteration is performed over the best value of the second iteration 

in a range of ±0.005. The summary of the ranges used for the RBF 

kernel are shown in Table 12. 

 

Table 12 Grid Search method: ranges for the RBF kernel 

RADIAL 

Range 

1 

Hyperparameter Iteration1 Iteration2 Iteration3 

C (1,40) Cost1±0.5 Cost2±0.05 

ɛ 
1 

0.1 
0.01 

1 
0.1 
0.01 

1 
0.1 
0.01 

Г (1,40) Gamma1±0.05 Gamma2±0.05 

Range 

2 

 

Hyperparameter Iteration1 Iteration2 Iteration3 

C (0.001,1) Best Cost Best Cost 

ɛ 
1 

0.1 
0.01 

1 
0.1 
0.01 

1 
0.1 
0.01 

Г (0.1,1) Gamma1±0.05 Gamma2±0.005 
Cost 1: Best cost obtained in the iteration 1 

Cost 2: Best cost obtained in the iteration 2 

Gamma 1: Best gamma obtained in the iteration 1 

Gamma 2: Best gamma obtained in the iteration 2 

 

The results of the Grid Search Method (Appendix C) show that 

the MSEs are similar when comparing the values for C less than 1 and 

C greater than 1. On the other hand, the iterative process fails to 



41 

 

improve the MSE in any of the input/output combinations. Basically, 

the iterations do not find a better value for the parameter C and Г that 

considerably decreases the MSE.  

According to the MSE criterion the best model for the linear 

kernel corresponds to the percentage of recovery measured after the 

4th week of treatment, i.e. the DPTM4 (Table C2). This model 

corresponds to a ɛ-insensitive loss function equal to 1, the number of 

SVs is 6, and the value of the hyperparameter C is equal to 0.94. The 

MSE after 10-fold cross validation is 0.052.  

If the parameter C is fixed at 0.94, and ɛ is tuned in the range 

[0.5, 1] increasing by 0.001, the MSE decreases slightly to 0.051 at ɛ 

equal to 0.99. Since the MSE does not have a significant improvement, 

and the value of C is virtually unchanged, the hyperparameter ɛ is set 

at 1 to find w and b. 

The linear model is obtained by replacing the linear Eq. 6 in Eq. 

5, as shown in Eq. 10.  

 

 f�x�=	� 
αi
*-	αi� vi

T xj+b
l

i=1
 Equation 10 

 

The parameter w is defined for the linear kernel, as the 

summation of the multiplication between the Lagrange Multipliers and 

their SVs. Table 13 shows the Lagrange Multipliers for the 6 SVs of the 

linear case.   
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Table 13 Patient ID, Lagrange Multipliers, and Support Vectors of the best linear 

model 

Patient ID Lagrange Multiplier Support Vector 

6 0.94 -1.05 

9 0.94 -1.02 

23 0.36 0.46 

37 -0.94 -1.05 

38 -0.94 -1.12 

45 -0.36 -1.05 

 

SVR gives better results standardizing the variables to mean 

zero and to unit variance as this procedure equalize the data variability 

and the ranges and avoids calculation problems related to range 

variability (Bao & Liu, 2006; Hsu et al., 2003). The input variable 

DPTM4 is Z-score scaled according to Eq. 11, where 0.313 is the mean 

of the input variable, and 0.297 is the standard deviation. The SVR 

approximation for the linear kernel with ɛ = 0.1 and C = 0.94 is shown 

in Eq. 12, where 0.638 is w and -0.139 is b. 

 

 DPTM4'=	DPTM4- 0.313

0.297
 Equation 11 

   

 DPTF' = 0.638 * DPTM4'- 0.13 Equation 12 
 

Note that the fitted values obtained using Eq. 12 are scaled due 

to the standardization of the variables before solving the optimization 

problem. In turn, the parameters w and b are also affected by the 

standardization of the variables. Therefore, it is necessary to scale 

back the fitted values calculated through SVR (Eq. 12). The scale back 
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formula for the fitted values is shown in Eq. 13, where 0.036 is the 

mean of DPT variable (observed values) and 0.517 is its standard 

deviation.  

 DPTF = DPTF' * 0.337 + 0.517 Equation 13 
 

The final linear model is obtained by re-writing the Eq. 12 using 

the scale back formula Eq. 13 and replaced the DPTM4’ by Eq. 11. Eq. 

14 illustrates the final linear model and Figure 10 depicts the observed 

and fitted values using the linear model. 

 

 DPTF = 0.724 * DPTM4+ 0.337 Equation 14 

 

 
Black instances: observed values 

Red instances: fitted values 

Source: Own creation 

Figure 10 Linear model with the lower MSE: DPT observed/DPT fitted of each 
patient  
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On the other hand, the values of the RBF parameters (Appendix 

C) point out that ɛ = 0.1 and ɛ = 0.01 have the smaller MSE (0.045). 

In both scenarios the DPTM3 is considered as the best input variable. 

In this case the model that has fewest numbers of SVs has been 

chosen  

The hyperparameter C and Г are fixed to the values 1.25 and 

15.74, respectively and ɛ is tuned in the range [0.05, 0.5] increasing 

by 0.001. For an ɛ equal to 0.483, slight improvement can be obtained 

(0.043 MSE) by cross validation. For simplicity we will continue using 

the value of ɛ = 0.1 for the analysis of the RBF model. 

The equation for the best RBF is obtained by replacing Eq. 7 in 

Eq. 5 as shown in Eq. 15. Eq. 16 shows the RBF model with the lower 

MSE, where 0.450 is the parameter b and 15.74 is the parameter Г.  

 

 f�x�= � 
αi
*- αi�e(-Г�vi-x�2)+b

l

i=1
 Equation 15 

   

 DPTf
'= � 
αi

*- αi�e(-15.74 * ‖vi-DPTM3'‖2)+0.450
l

i=1
 Equation 16 

 

The input variable DPTM3 is also scaled according to Eq. 17, 

where 0.271 is the mean of the input variable and 0.282 is its 

standard deviation.  

 

 DPTM3' = 
DPTM3 - 0.271

0.282
 Equation 17 
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In this case is not possible to calculate the parameter w explicitly 

since the SVs must be handled in the RBF kernel before multiplying 

them by the Lagrange Multipliers αi
* and 	αi. Table 14 shows the 40 

Lagrange Multipliers and the SVs for the RBF model. 

 

Table 14 Lagrange Multipliers and Support Vectors for the best model of RBF 
kernel 

Patient 

ID 

Lagrange 

Multiplier 

Support 

Vector 

Patient 

ID  

Lagrange 

Multiplier 

Support 

Vector 

3 -1.250 -0.853 29 1.250 -0.959 

4 1.250 -0.782 30 -0.695 0.210 

5 -1.250 -0.711 31 0.270 1.166 

6 1.250 -0.959 32 1.250 -0.747 

9 1.250 -0.959 33 -1.250 -0.959 

10 1.250 0.883 34 -1.250 0.812 

11 1.250 0.599 35 1.250 0.210 

12 0.308 2.016 36 -1.250 -0.959 

13 -1.250 1.308 37 -1.250 -0.959 

15 -1.250 -0.888 38 -1.250 -0.959 

16 0.519 1.662 39 0.274 0.706 

17 -1.166 -0.215 40 1.250 1.272 

18 -1.028 -0.286 41 0.652 2.371 

19 0.716 -0.782 43 -1.031 -0.393 

21 -0.604 0.103 44 -0.069 1.449 

23 1.250 -0.003 45 1.250 -0.215 

24 -0.858 0.918 46 -0.294 -0.959 

25 -0.743 -0.959 47 1.250 -0.959 

26 -1.250 -0.959 48 1.250 -0.959 

28 1.250 -0.357 49 -1.250 0.458 

 

Since Eq. 15 gives a fitted value scaled, it must be scaled back 

according to Eq. 17, where 0.524 is the standard deviation and 0.337 

is the mean of the DPT variable. Eq. 15 can be re-written as shown in 
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Eq. 18. The observed and fitted values for the sample are depicted in 

Figure 11.  

 

 DPTF= DPTF 
'  * 0.337 + 0.524 Equation 18 

   

 

DPTF=  

0.337 *[� 
αi
*- αi�e(-15.74 * �vi- (

DPTM3 - 0.271
0.282

��
2

)
]+0.676

l

i=1
 

Equation 19 

 

 
Black instances: observed values 

Red instances: fitted values 

Source: Own creation 

Figure 11 RBF model with the lower MSE: DPT observed/DPT fitted of each 
patient  
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CHAPTER IV: 

RESULTS AND DISCUSSION 

 

Results 

The analysis developed in the previous chapter indicates that 

after applying the SVR approach, the models based on DPTM4 and 

DPTM3 have the lower MSE after 10-fold cross validation for linear and 

RBF models, respectively.  

Below are some general considerations of both the linear and the 

RBF models. Also there are specific considerations for each model. 

 

General Considerations of the Models 

The RBF model is optimum using as the input variable week 3 

(DPTM3), whereas the linear model uses week 4 (DPTM4). Since it is 

desirable to predict the expected recovery (DPT), as early as possible, 

the RBF model could be more advantageous. 

The RBF model, on the other hand, is a more complicated 

calculation since it requires handling the SVs and the Lagrange 

multipliers each time that a new input data point is considered. The 

linear model is simpler than the RBF model, since the form resembles 
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a simple linear regression. However, both SVR models have the 

disadvantage that the parameters do not have a direct and intuitive 

interpretation. 

Negative input variables or negative output results are possible, 

but unexpected. Figure 12 shows three patients who present negative 

values at different points in their rehabilitation: the squares represent 

a patient who had a negative value after the first week of treatment, 

the circles a patient with a negative value in the middle of the 

rehabilitation, and the diamonds a patient that had a negative value at 

the end.  

 
Source: Own creation 

Figure 12 Examples of trajectories of the patients with negatives values 

 

The negative values may be due to the effect of some factors 

external to the treatment received. These factors can be caused by 

adverse reactions to medication; the genetic, physical, and cognitive 

18161412108642

0.75

0.50

0.25

0.00

-0.25

-0.50

Week

D
P
T
M
m
 (
P
a
ti
e
n
t 
1
, 
2
, 
3
)



49 

 

characteristics of the patient; or by the evaluator, e.g. error in the 

application of the metrics, an error in recording information in the 

database, or an error in collecting the data.  

 

Considerations for the Linear Model 

According to the linear model, the fitted values DPTF is -0.39 

when DPTM4=-1 and 1.06 when DPTM4=1. Therefore, a potential 

output range is -0.39 ≤ DPTF ≤ 1.06, note however, that the upper 

limit exceeds the allowed value 1. On the other hand, the linear model 

fits better in the interval -0.02 ≤ DPTM4 ≤ 0.94 since this is the input 

range of the dataset. In turn, the range of fitted values according to 

the previous input range is 0.32 ≤ DPT ≤ 1.02, which also exceeds the 

upper limit allowed (Table 15). 

 

Table 15 Output ranges for the linear model 

 Input Range Output Range 

Potential input range -1 ≤ DPTM4 ≤ 1 -0.39 ≤ DPTF ≤ 1.06 

Input range of the sample -0.02 ≤ DPTM4 ≤ 0.94 0.32 ≤ DPT ≤ 1.02 

 

As it has been shown previously, the linear model presents an 

“inconvenience” with the upper limit since the measurement of the 

input and the output variables is a “percentage”, and thus the 
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predicted values should not be more than 1. On the other hand, the 

linear SVR model can predict values in the interval -∞, +∞.  

There are some alternatives to deal with this situation. These 

include rescaling the DPTF to a proper interval (e.g. [-0.39, 1] for the 

potential input range or [0.32, 1] for the input range of the sample) or 

truncate the data at 1, i.e. fitted values over 1 are considered as 1. 

The first option is problematic since modifying the upper value implies 

a change in all the values of the interval as shown Figure 13. The 

second option is considered more appropriate for this situation since 

the values that go beyond the upper limit are close to 1, and there are 

just a few cases. 

 
Circles: Observed values 

Squares: Fitted values 

Diamonds: Fitted values scaled 

Source: Own creation 

Figure 13 Rescale the data in the interval [-0.39, 1] 
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A linear model better fits the premise that the expected result 

after treatment is that the patient improves. However, the linear SVR 

model does not predict if a patient with a lower probability of recovery 

at week 4 maintains the same condition nor if he/she will have a 

significant improvement at discharge. This situation could mean an 

under-fitted linear model (Figure 14). Unfortunately, it is possible to 

confirm or reject this postulate only if there is a validation dataset for 

testing. As mentioned before, since the sample used is small, it was 

not feasible to separate the data into training and test sets and cross 

validation was employed. This will assess repeatability but does not 

fully evaluate systematic error in the model. 

 
Circles instances: Observed values 

Squares instances: Fitted values 

Source: Own creation 

Figure 14 Scatterplot DPTM4 vs. DPT observed and DPT fitted 
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Considerations for the RBF Model 

The fitted value DPTF, according to the RBF model is 0.68 for 

DPTM3=-1, and 0.78 for DPTM3=1. However, the RBF model works 

better for the range of input data points: 0 ≤ DPTM3 ≤ 0.94, since it 

corresponds to the input range of the sample analyzed. The output 

fitted values, DPTF, for this input interval is 0.03 for DPTM3=0 and 

0.95 for DPTM3=0.94 (Table 16). 

 

Table 16 Output ranges for the RBF model 

 Input Range Output Range 

Potential input range -1 ≤ DPTM3 ≤ 1 
DPTF (-1)=0.68 
DPTF (1)=0.78 

Input range of the sample 0 ≤ DPTM3 ≤ 0.94 
DPTF (-1)=0.03 
DPTF (1)=0.95 

 

The results establish that the output interval 0.68 ≤ DPTF ≤ 0.78 

cannot be considered as the wider output range of the RBF model 

since there are other input values (e.g. DPTM3=0) in the range -1 ≤ 

DPTM3 ≤ 1 that estimate lower final percentages of recovery (e.g. 

DPTF (0)= 0.03). In this sense, the fitted values computed using the 

RBF model may not be “as expected” due to the radial curves of the 

model. As shown Figure 15, the RBF model predicts improvement in 

over 90% of patients in whom the percentage of recovery in week 3 is 

close to 30%, while the DPTF is about 60% for a patient close to 40% 

of recovery in week 3. 



53 

 

 
Source: Own creation 

Figure 15 RBF model 

 

The DPTF estimated could point out a possible problem of over-

fitting in the RBF model, which means that the RBF model adjusts the 

instances of the sample fairly well but could not fit properly a new data 

point (Figure 16). Since the sample used is too small to create a 

testing set, it is not possible to confirm or reject this postulate. 

 
Square instances: Observed values 

Circle instances: Fitted values 

Source: Own creation 

Figure 16 Scatterplot DPTM3 vs. DPT observed and DPT fitted 
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Comparison of Delta Transformed and Not-Transformed 

After defining the best input variables to predict DPT using a 

linear and a RBF model, it is analyzed if the transformation of the delta 

generates significant improvement than a delta no transformed in term 

of MSE. Thus, a new linear and RBF models were created considering 

the Delta Pathway Not-transformed (DP) as output variable and the 

Delta Pathway Not-transformed Measurement 4 (DPM4) and Delta 

Pathway Not-transformed Measurement 3 (DPM3) as input variables for 

the linear and RBF model, respectively.  

The parameters ϵ and C for the linear model and the parameters 

ϵ, C and Г for the RBF model are determined using the Grid Search 

method considering the same ranges used for the delta transformed 

(Table 11 and Table 12). The parameters that define the linear model 

with the lower MSE is shown in Table 17, and the parameters that 

define the lower MSE for the RBF model is shown in Table 18. 

 

Table 17 Comparison between linear model using Delta No-Transformed (DP 
and DPM4) and Delta Transformed (DPT and DPTM4)  

 LINEAR 

Delta Transformed 
LINEAR 

Delta No-Transformed 

Input DPTM4 DPM4 

Output DPT DP 

Epsilon 1 0.1 

Cost 0.94 881.45 
Min Observed Value -0.018 102 
Max Observed Value 1 -1 

MSE 0.052 509 

NRMSE 0.22 0.21 

 



55 

 

Table 18 Comparison between RBF model using Delta No-Transformed (DP and 
DPM3) and Delta Transformed (DPT and DPTM3)  

 RBF  

Delta Transformed 
RBF 

Delta No-Transformed 

   

Input DPTM3 DPM3 

Output DPT DP 

Epsilon 0.1 1 

Gamma 15.74 0.1 

Cost 1.25 0.573 
Min Observed Value -0.018 102 
Max Observed Value 1 -1 
MSE 0.045 523 

NRMSE 0.21 0.22 

 

Since the MSE of the Deltas Transformed and Deltas Not 

Transformed have different units, the comparison cannot be done 

directly between the MSEs, it is necessary to normalize them before 

making a conclusion. In this case the Normalized Root Mean Square 

Error (NRMSE) technique was used (Eq. 20). 

According to Table 17 and 18, the values of the NRMSE are the 

same in variables transformed and variables not-transformed. This 

indicates that for this sample the use of a delta transformed does not 

improve the accuracy of the prediction. Again, a larger sample could 

provide more information if the transformation of the variables has a 

significant effect over the prediction. 

 

 NRMSE = 
√MSE

Yobs, max- Yobs, min
 Equation 20 
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Discussion  

Predicting accurate clinical outcomes in patients with TBI is a 

challenge, particularly in patients returning from the OEF or OIF with 

multiple, sever injuries (polytrauma), since the rehabilitation process 

is complex and slow. Although it is true that the data used are not 

sufficient to say that a model is robust, this work has shown that it is 

possible to find patterns in this type of patients, despite the different 

ranges in the rate of the progress of each one.  

Since a metric used to measure outcome requires validation in 

terms of responsiveness, reliability and validity, it could indicate that 

there is an additional “task” related to the CP which seems to have not 

been “quantified” previously. The literature is devoid of studies 

validating the use of CP as a tool to measure outcomes. The CP metric 

was not validated in the work presented above because it requires a 

much larger sample size to reflect the use of the metric by different 

personnel and at different times. It was assumed that the CP is an 

appropriate metric to assess outcomes, as a result of the similarity 

between CP and FIM, where the latter has been widely studied. Thus, 

although face validity can be reasonably accepted, responsiveness and 

reliability of CP must be studied further. 

On the other hand CP has an advantage over FIM, since it is 

measured weekly. A weekly metric provides a larger input set to 
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choose the possible input variables. Assessing data from points other 

than admission (first measurement) allows incorporating the effect 

that the treatment has had for the patient. 

On the other hand, even though a model that uses DPT as 

outcome presents similar NRMSE to a model that uses Delta as output, 

the use of DPT as a measure of the clinical outcome better 

communicates the significance of the patient’s progress to all involved. 

Consequently, interested parties, such as the family, do not need a 

working knowledge of the CP metric. In turn, the clarity and simplicity 

in the information that the families may receive address two of their 

needs: the need to make sense of the experience and the need to 

know. Furthermore, the variable used as “clinical outcome” is based on 

the individual potential recovery, which will help in better determining 

the necessary resources and staff when setting personalized objectives 

for a patient.  

On the other hand, it is possible that the models created using 

SVR are influenced by confounding variables since the data do not 

come from a controlled experiment. Other variables, such as age, 

marital status, damage area of the brain, psychological problems (e.g. 

PTSD), physical and genetic conditions, among others, can also affect 

the recovery of the patient. Ideally these could be controlled in a 

randomized experiment. However, such an experiment is not realistic 
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when it involves people in circumstances where the effect of the 

“natural recovery” is unclear (Paolucci et al., 2000; Roth & Harvey, 

2000). 

The models proposed in this study should be validated using a 

testing set to make a better decision about which model is more 

appropriate and to further explore the possibility of over or under 

fitting the models. This requires a larger sample of patients who 

completed their rehabilitation in the PRCs. The present study suggests 

that recording of CP has to be emphasized in the first, third, fourth and 

last week of rehabilitation since the models ware optimum at based on 

those 4 weeks. 

Lastly, this study is retroactive and it is the first one that uses 

CP as a predictor of clinical outcomes. It sets a precedent for future 

research related to this metric given the advantage of the CP over FIM, 

the assessment of continuous improvement and the accountability of 

the processes that are carried out. 
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CHAPTER V: 

CONLUSIONS AND FUTURE WORK 

 

Conclusions 

The use of the CP as a tool to measure the clinical outcome in 

rehabilitation has positive effects for prediction since the metric is 

weekly. This allows having a wider range of alternatives as potential 

model inputs. In turn, the selection of a measurement other than to 

the admission (first measurement), but at the same time close to this 

first measurement, allows for the inclusion of the progress of the 

patient before predicting the possible clinical outcome. 

The output used to measure the clinical outcome, DPT (Delta 

Pathway Transformed), is the potential recovery achieved by the 

patient, and it is based on the fact that a patient with lower 

functionality makes considerable progress over the rehabilitation time 

as opposed to the patients that arrive to the PRCs with higher 

functionality. However, for the sample analyzed, DPT fails in improving 

the accuracy of the model in comparison with the widely used output 

“delta”. The use of either of them is a good outcome variable since 

they have the same NRMSE. Though, the variable DPT, conceptually, is 



60 

 

meaningful and easier to understand which contributes to a better 

communication with the stakeholders, especially the family. A bigger 

sample can address better the advantage of a transformation in terms 

of accuracy of the prediction. 

The input variables analyzed DPTMm are based on the same 

foundations as DPT. The correlation of the first 7 measurements 

studied shows that all of them are related to the output variable, DPT. 

However, the correlation is stronger from measurement 3.  

The machine learning technique, SVR (Support Vector 

Regression) has been used to determine both a linear and a non-linear 

model and has intrinsic properties of robustness and generalizability. 

For the non-linear case, the RBF (Radial Basic Function) kernel was 

used because of the good results in small samples. In turn, the 

parameters ϵ, C, and Г for the linear and RBF cases were defined using 

the Grid Search Method, which is the most widely used method to 

optimize the parameters.  

The linear model has a MSE around 4.5% when DPTM4 is the 

input variable. The RBF model, on the other hand, has a lower MSE 

when the input variable is the measurement done after the 3rd week of 

treatment (DPTM3). More data to validate the models are required. 

The rehabilitation process for individuals with TBI that have been 

exposed to blast injury in OIF and OEF is prolonged and complex. The 



61 

 

recovery of the patients is influenced by additional unmeasured factors 

such as: support of the family in the rehabilitation process; genetic, 

physical and psychological conditions; and the severity and location of 

the injury. These factors, although critically important in assessing 

patient rehabilitation, are very difficult to measure and incorporate in a 

predictive model.  

Finally, the necessity of clear information to support decision 

making, communication with the family and preparation for discharge, 

highlights the importance of determining outcomes as early as 

possible. This approach is the first study that uses the weekly metric 

CP in an attempt to predict the clinical outcome of patients with TBI. 

 

Future Work 

Increase the sample data: Additional data should be collected 

from the 5 PRCs over a larger range of years (e.g. 2001 – 2013 These 

data will allow validating the CP metric and the models.  

Validation of the CP metric: CP metric must be validated as a 

tool to measure clinical outcomes. The validation will measure the 

ability of the metric in detecting changes, the ability in quantifying 

motor and cognitive progress, and the consistency of the metric when 

it is used by different evaluators and in repeated measures.  
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Validation of the linear and RBF models: The linear and the RBF 

models should be validated using the CP scores of the new patients 

incorporated. The methodology used in this work could then be applied 

to a larger sample. 

Resources required: once a model is validated, it will assist in 

determining the resources required to achieve the maximum 

improvement of each patient. These resources refer to the amount and 

type of procedures that the facility should emphasize for the efficient 

and effective provision of treatments. 

Create cooperative links with other rehabilitation centers: 

extending the use of CP scores to other centers of rehabilitation 

(private) will help to more fully analyze the methodology used in this 

study in other type of patients and diseases, collecting more data, 

more quickly since the patients in the private sector, with less complex 

injuries/illnesses, typically have more rapid progress. 
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Appendix A: Nomenclature 

 
ADL: Activities of Daily Living  
CP: Clinical Pathways  
CT: Computed Tomography  
DFT: Delta FIM Transformed  
DoD: Department of Defense 
DP: Delta Pathway  
DPMm: Delta Pathway Measurement m 
DPT: Delta CP Transformed  
DPTMm: Delta Pathway Measurement m 
FIM: Functional Independence Measure  
FY: Fiscal Year  
GCS: Glasgow Coma Scle  
GWOT: Global War on Terror  
JAHVAH: James A. Haley Veterans' Hospital  
MRI: Magnetic Resonance Imaging  
MSE: Mean Square Error  
mTBI: mild TBI (mTBI) 
NRMSE: Normalized Root Mean Square Error 
OEF: Operation Enduring Freedom  
OIF: Operation Iraqi Freedom  
OND: Operation New Dawn  
PCS: Post-Concussion Syndrome  
PNS: Polytrauma Network Sites  
PPOC: Polytrauma Point of Contact  
PRC: Polytrauma Rehabilitation Center  
PSC: Polytrauma/TBI System of Care  
PSCT: Polytrauma Support Clinic Teams  
PTE: Post-Traumatic Epilepsy  
PTSD: Post-Traumatic Stress Disorder  
RBF: Radial Basic Function 
SM(s): Service Member(s)  
SV(s): Support Vector (s) 
SVR: Support Vector Regression 
TBI: Traumatic Brain Injury  
TCMm: Total Cognitive Measurement m  
TMMm: Total Motor Measurement m  
VA: Department of Veterans Affairs  
VAH: Veteran Affair Hospital 
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Appendix B: Pathway Components Scale 

 
Table B1 Pathway component “eating” 

Scale Description 

1 Independent. 

2 
Feeds self with extra time safety, or needs assistive device, wears 
dentures, or needs modified food consistency 

3 
Needs supervision for safety or to help cut food, open containers, pour 
liquids, butter bread or apply orthosis 

4 Needs occasional help to scoop food or place utensil in hand 

5 Feeds self about half the time but needs help to complete meals. 

6 Feeds self-less than half the time or less than half the meals.  

7 
Unable to feed self, needs helper to hold utensil, bring food/liquid to 
mouth or needs total assistance with tube feeding 

 

Table B2 Pathway component “grooming” 

Scale  Description 

1 No issues / needs related to grooming, grooming problems or needs 

2 
Grooming requires and assistive device, takes more than reasonable time, 
or there are safety considerations 

3 

Requires no more help than standby assistance, verbal cueing, or coaxing, 
without physical contact, or helper sets up needed items or applies 
orthosis. 

4 
Expends 75% or more the effort and requires no more than touching or 
hands-on assistance. 

5 
Expends 50% to 74% of the effort and requires more help than touching 
assistance. The assistance of only one person is required 

6 
Expends 25% to 49% of the effort. The assistance of only one person is 
required. Is able to direct another person to perform the task. 

7 

Expends less than 25% of the effort. Can require assistance of one or 
more persons or in the clinician's judgment, the subject would be put at 
risk for injury if the task was performed 

 

Table B3 Pathway component “bathing” 

Scale  Description 

1 Complete independence  

2 
Modified independence. Requires adaptive or assistive device, or extra 
time. 

3 Supervision or setup 
4 Minimal contact assistance. Performs 75% or more of tasks 
5 Moderate assistance. Performs 50% to 74% of tasks 
6 Maximal assistance. Performs 25% to 49% of tasks 
7 Total assistance. Performs less than 25% of tasks, or is not bathed 
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Appendix B (continued) 

Table B4 Pathway component “dressing - upper body” 

Scale  Description 

1 Complete independence  

2 
Modified independence. Requires adaptive or assistive device, or extra 
time 

3 Supervision or setup 
4 Minimal contact assistance. Performs 75% or more of tasks 
5 Moderate assistance. Performs 50% to 74% of tasks 
6 Maximal assistance. Performs 25% to 49% of tasks. 
7 Total assistance. Performs less than 25% of tasks, or is not dressed 

 

Table B5 Pathway component “dressing - lower body” 

Scale  Description 

1 Complete independence  

2 
Modified independence. Requires adaptive or assistive device, or extra 
time 

3 Supervision or setup 
4 Minimal contact assistance. Performs 75% or more of tasks 
5 Moderate assistance. Performs 50% to 74% of tasks 
6 Maximal assistance. Performs 25% to 49% of tasks. 
7 Total assistance. Performs less than 25% of tasks, or is not dressed 

 

Table B6 Pathway component “toileting” 

Scale  Description 

1 Complete independence  

2 
Modified independence. Requires equipment or extra time, or there are 
safety considerations.  

3 Supervision or setup 
4 Minimal contact assistance. Performs 75% or more of toileting tasks 
5 Moderate assistance. Performs 50% to 74% of toileting tasks 
6 Maximal assistance. Performs 25% to 49% of toileting tasks. 
7 Total assistance. Performs less than 25% of toileting tasks 
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Appendix B (continued) 
 

Table B7 Pathway component “bladder management” 
 

Scale  Description 

1 
Complete independence. Controls bladder completely and intentionally 
and is never incontinent 

2 
Modified independence. Requires a device or medication for control; 
device is used independently. No accidents. 

3 
Supervision or setup to maintain voiding pattern or external device. Has 
accidents less often than every two weeks. 

4 Minimal contact assistance. Has accidents less often than weekly 
5 Moderate Assistance. Has accidents less often than daily 

6 
Maximal assistance. Wet almost on a daily basis, needs diaper or other 
device. 

7 Total assistance. Wet on a daily basis, needs diaper or other device.  
  

Table B8 Pathway component “bowel management” 

Scale  Description 

1 
Complete Independence. Controls bowel completely and intentionally and 
is never incontinent 

2 
Modified independence. Requires a device or medication for control. 
Device is used independently. No accidents 

3 
Supervision or setup. To maintain bowel pattern or external device. Has 
accidents less often than every two weeks. 

4 Minimal contact assistance. Has accidents less often than weekly. 
5 Moderate assistance. Has accidents less often than daily.  

6 
Maximal assistance. Incontinent almost on a daily basis, needs diaper or 
other device 

7 
Total assistance. Incontinent or a daily basis, needs diaper or other 
device.  

 

Table B9 Pathway component “bed mobility” 

Scale  Description 

1 
Can be left alone to perform the activity safety and within a reasonable 
length of time 

2 Uses equipment or needs extra time 

3 
Cannot be left alone to perform the activity safely. May require set-up, 
cueing or stand-by assist 

4 
Perform 75% or more of the task. May require hands-on or "contact" 
guard 

5 
Performs 50% to 74% of the task. Only one person is required for 
physical assistance. 

6 
Performs 25% to 49% of the task. Only one person is required for 
physical assistance.  

7 
Total assistance. Performs less than 25% of the task. One or more 
persons may be required. 
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Appendix B (continued) 

 

Table B10 Pathway component “locomotion” 

Scale  Description 

1 
Walks 150 feet + (50 meters) without devices. Does not use a wheelchair. 
Performs safety 

2 
Walks 150 feet + (50 meters) but uses a device, needs extra time or 
there are safety considerations 

3 

Requires standby supervision, cueing, or coaxing to walk 150 feet + (50 
meters). Or requires standby supervision, cue, or coax to go a minimum 
of 150 feet (50 meters) in wheelchair.  

4 
Performs most of locomotion effort to go a minimum of 150 feet (50 
meters) 

5 
Performs approximately half of locomotion effort to go a minimum of 15o 
feet (50 meters) 

6 
Provides lees than half of locomotion effort to go a minimum of 50 feet 
(17 meters). Requires assistance to one. 

7 
Makes little effort, or needs assistance of two people, or does not walk or 
wheel a minimum of 50 feet (17 M) 

 
Table B11 Pathway component “transfer” 

Scale  Description 

1 Complete independence 

2 
Requires device, takes more than reasonable time or there are safety 
considerations 

3 Requires supervision (e.g. standing by, cueing, or coaxing) or set-up 
4 Performs 75% or more of transferring tasks 
5 Performs 50% to 74% of transferring tasks 
6 Performs 25% to 49% of transferring tasks 
7 Performs less than 25% of transferring tasks 

 
Table B12 Pathway component “language comprehension” 

Scale  Description 

1 Participation in activities is not limited by spoken language comprehension 
2 Understands complex messages. Rarely requires minimal cueing 

3 
Understands structured conversations. Occasionally requires cueing for 
complex messages. 

4 
Occasionally understands simple directions and conversations about 
routine daily activities without cues. 

5 
Answers simple yes/no questions and follows simple directions with 
moderate cues. 

6 
Follows simple directions and answers simple yes/no questions with 
maxima cues. 

7 
Alert, but does not follow simple direction or responds to yes/no questions 
, even with cues. 
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Appendix B (continued) 
 

Table B13 Pathway component “expression” 

Scale  Description 

1 
Independent participation in activities is no limited by expressive 
language/speech skills 

2 Rarely requires minimal cueing to produce complex sentences 

3 
Communicates successfully in structured conversations. Occasionally 
requires cueing for complex sentences. 

4 
Communicates in simple conversations in routine daily activities with 
familiar communication patterns. 

5 
Produces words and phrases that are appropriate and meaningful in 
context with moderate cues 

6 
Occasionally produces automatic or imitative words/phrases, rarely 
meaningful 

7 
The individual attempts to speak, but verbalizations are not meaningful at 
any time 

 
Table B14 Pathway component “attention” 

Scale  Description 

1 
Independent functioning but may occasionally include the use if 
compensatory strategies 

2 
Maintains attention within complex activities and attends simultaneously 
to multiple demands with rare minimal cues 

3 
Maintains attention within simple living activities with occasional minimal 
cues within distracting environments 

4 
Maintains attention during simple living task with consistent minimal 
cueing 

5 
Maintain attention to complete simple living tasks of short duration with 
consistent moderate cueing. 

6 
Can attend with consistent maximal stimulation, but not long enough to 
complete even simple living tasks 

7 
Attention is nonfunctional. The individual is generally unresponsive to 
most stimuli.  
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Appendix B (continued) 

 
Table B15 Pathway component “memory” 

Scale  Description 

1 
Independent in recalling or using strategies for complex information and 
planning future events in all activities 

2 
Recalls or uses strategies for complex information and planning events 
most of the time or with rare minimal cues. 

3 
Consistently requires minimal cues to recall or use strategies for 
complex/novel information 

4 
Requires minimal cues to use aids for simple information. Requires 
maximal cues to use aids for complex information 

5 
Occasionally requires maximum cues to recall or use external aids for 
simple routine and personal information 

6 
Consistently requires maximal verbal cues or uses external aids to recall 
personal information 

7 The individual is unable to recall any information regardless of cueing 
 

Table B16 Pathway component “social language” 

Scale  Description 

1 
Consistently and independently able to modify behaviors in response to 
feedback from the environment 

2 
Socially appropriate in most settings or situations with occasional minimal 
cues. Responds to subtle feedback 

3 
Socially appropriate in unfamiliar settings and with unfamiliar partners 
with consistent minimal cueing 

4 
Adheres to simple rules of social communication is structured settings, but 
needs maximum cues in unfamiliar situations 

5 
Rarely uses common and simple social communication without cues even 
in structured settings  

6 
Pragmatics are functional in familiar and structured settings with familiar 
people and maximum cueing  

7 
Cannot initiate appropriate responses and is unaware of the need and 
feedback of the communication partner 
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Appendix B (continued) 
 

Table B17 Pathway component “problem solving” 

Scale  Description 

1 
Initiates and completes complex tasks. Acknowledges deficits and need to 
use compensation as appropriate 

2 
Initiates and completes complex tasks with occasional prompting. Repair 
errors with minimal cues. 

3 
Initiates complex tasks with prompting and consistently completes certain 
multi-step tasks. Responds impulsively 

4 
Initiates routine tasks; requires repeated prompts to complete multi-step 
tasks. Recognize errors when pointed out. 

5 
Requires prompt to initiate tasks, but completes them with no prompting. 
May trouble with perseveration or switching. 

6 
Requires prompt to initiate simple tasks, but may be able to complete 
some of them without  constant prompting 

7 
Initiates only with physical prompting; requires repeated prompts. Is 
automatic, reflexive, or perseverative. 

 
Table B18 Pathway component “safety” 

Scale  Description 

1 Can be left alone indefinitely and/or can pursue all normal activities alone 

2 
Can be left alone for an entire day but may need supervision with new or 
complex activities 

3 
Needs daily supervision and/or some help in the community. Can be left 
alone for short periods 

4 
Independent only within the hospital. Could not be left alone, due to 
safety considerations. 

5 
May go to therapies, but must to be supervised in all other areas. Client 
could not be left alone. 

6 
Needs supervision in all settings. Off the ward only when accompanied by 
staff or trained family 

7 Requires close supervision (poseyed or one on one supervision) 
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Appendix C: SVR Parameters 

 
The results of Grid Search for linear kernel and for RBF kernel 

include the SVs, the best hyperparameter C, the best hyperparameter 
Г (for RBF kernel), and the MSE after a 10-fold cross validation for the 
three iterations of the combination DPT/M1 and DPT/DPTMm 
(m=1,…,6). 
 

Table C1 Linear kernel-range 1: C (1,1000) 

INPUT M0 DPTM1 DPTM2 DPTM3 DPTM4 DPTM5 DPTM6 

OUTPUT DPT DPT DPT DPT DPT DPT DPT 

Epsilon 1 1 1 1 1 1 1 

SVs 14 20 9 12 6 6 9 
Cost 307 1 1 630 6 4 5 
MSE 0.081 0.099 0.067 0.069 0.052 0.055 0.057 
SVs 16 0.5 9 12 6 5 9 
Cost 306.6 20 0.9 630 5.5 4.5 4.5 
MSE 0.085 0.099 0.065 0.069 0.052 0.054 0.062 
SVs 16 20 9 11 6 5 9 
Cost 306.6 0.45 0.86 630.04 5.55 4.55 4.45 
MSE 0.082 0.099 0.067 0.069 0.052 0.054 0.058 
Epsilon 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

SVs 47 47 43 44 42 42 40 
Cost 7 203 866 3 968 2 1 
MSE 0.085 0.110 0.075 0.069 0.066 0.062 0.068 
SVs 47 47 43 44 42 42 38 
Cost 6.7 202.5 866.3 2.7 967.5 1.7 0.5 
MSE 0.093 0.103 0.075 0.070 0.067 0.068 0.061 
SVs 47 47 43 44 42 42 38 
Cost 6.75 202.55 866.31 2.68 967.48 1.75 0.45 
MSE 0.102 0.106 0.074 0.066 0.068 0.069 0.077 
Epsilon  0.01 0.01 0.01 0.01 0.01 0.01 0.01 

SVs 49 49 49 48 46 45 43 
Cost 449 1 4 250 2 1 1 
MSE 0.088 0.109 0.072 0.070 0.066 0.065 0.071 
SVs 49 49 49 48 46 45 43 
Cost 993.5 1.4 4.4 249.8 2.5 1 0.6 
MSE 0.103 0.106 0.071 0.073 0.065 0.068 0.062 

SVs 49 49 49 48 46 45 43 
Cost 993.53 1.38 4.43 249.83 2.51 0.45 0.57 
MSE 0.102 0.106 0.073 0.068 0.070 0.074 0.078 
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Appendix C (continued) 
 

Table C2 Linear kernel-range 2: C (0.001, 1) 

INPUT M0 DPTM1 DPTM2 DPTM3 DPTM4 DPTM5 DPTM6 

OUTPUT DPT DPT DPT DPT DPT DPT DPT 

Epsilon 1 1 1 1 1 1 1 

SVs 14 20 10 12 6 6 8 
Cost 0.829 0.247 0.319 0.264 0.94 0.746 0.782 
MSE 0.083 0.097 0.066 0.062 0.052 0.055 0.058 
Epsilon  0.1 0.1 0.1 0.1 0.1 0.1 0.1 

SVs 49 49 49 47 47 44 43 
Cost 0.064 0.624 0.658 0.093 0.096 0.124 0.058 
MSE 0.083 0.109 0.072 0.068 0.057 0.059 0.065 
Epsilon 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

SVs 47 47 43 42 41 39 38 
Cost 0.117 0.081 0.545 0.103 0.158 0.14 0.078 
MSE 0.083 0.109 0.074 0.070 0.057 0.057 0.065 

 

Table C3 RBF kernel-range 1: C (1.40), Г (1,40) 

INPUT M0 DPTM1 DPTM2 DPTM3 DPTM4 DPTM5 DPTM6 

OUTPUT DPT DPT DPT DPT DPT DPT DPT 

Epsilon  1 1 1 1 1 1 1 

SVs 13 16 9 8 9 7 8 
Cost 27 21 30 3 9 4 4 
Gamma  5 2 1 1 1 1 1 
MSE 0.075 0.075 0.063 0.062 0.059 0.063 0.062 
SVs 11 16 10 9 8 8 7 
Cost 27.3 20.8 29.7 3.2 8.7 4.2 4.5 
Gamma 5.5 1.6 0.5 0.5 0.5 0.7 0.5 
MSE 0.074 0.076 0.058 0.058 0.057 0.062 0.066 
SVs 11 16 10 9 8 7 7 
Cost 27.26 20.8 29.67 3.17 8.67 4.23 4.55 
Gamma  5.45 1.64 0.46 0.45 0.45 0.65 0.53 
MSE 0.080 0.073 0.062 0.057 0.057 0.060 0.063 
Epsilon  0.1 0.1 0.1 0.1 0.1 0.1 0.1 

SVs 45 46 45 40 38 38 35 
Cost 2 1 1 1 4 40 1 
Gamma 1 3 1 16 0.1 1 3 
MSE 0.082 0.077 0.055 0.047 0.049 0.060 0.044 
SVs 45 44 46 40 38 37 33 
Cost 2.5 0.6 0.6 1.2 4.3 39.8 1.2 
Gamma 0.5 2.8 1.3 15.7 1 0.9 3.2 
MSE 0.083 0.079 0.061 0.046 0.049 0.056 0.048 
SVs 45 45 45 40 39 37 33 
Cost 2.55 0.65 0.65 1.25 4.35 39.77 1.15 
Gamma 0.55 2.85 1.34 15.74 0.99 0.91 3.24 
MSE 0.082 0.072 0.059 0.045 0.047 0.062 0.049 
Epsilon  0.01 0.01 0.01 0.01 0.01 0.01 0.01 

SVs 49 48 49 49 46 43 42 
Cost 2 2 1 1 1 1 1 
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Appendix C (continued) 
 

Table C3 (Continued)  RBF kernel-range 1: C (1.40), Г (1,40) 

Gamma 1 1 1 19 1 1 3 
MSE 0.085 0.075 0.055 0.047 0.050 0.061 0.046 
SVs 48 49 47 48 47 45 43 
Cost 2.4 0.5 0.9 0.6 1.5 1.5 0.5 
Gamma 0.7 1.9 0.6 19.5 0.6 0.5 2.5 
MSE 0.086 0.076 0.059 0.046 0.051 0.059 0.052 
SVs 49 49 48 48 47 45 43 
Cost 2.39 0.55 0.95 0.65 1.55 1.46 0.55 
Gamma 0.65 1.95 0.61 19.54 0.65 0.45 2.55 
MSE 0.083 0.072 0.055 0.045 0.046 0.061 0.055 

 
Table C 4 RBF kernel-range 2: C (0.001,1), Г (0.1,1) 

INPUT M0 DPTM1 DPTM2 DPTM3 DPTM4 DPTM5 DPTM6 

OUTPUT DPT DPT DPT DPT DPT DPT DPT 

Epsilon  1 1 1 1 1 1 1 

SVs 13 20 10 11 6 6 6 
Cost 0.857 1 1 0.833 1 1 0.914 
Gamma  0.3 1 0.9 0.3 0.3 0.2 0.2 
MSE 0.082 0.083 0.063 0.061 0.058 0.061 0.062 
SVs 12 20 10 11 6 6 6 
Cost 0.857 1 1 0.833 1 1 0.914 
Gamma 0.25 1.05 0.9 0.35 0.25 0.22 0.2 
MSE 0.088 0.082 0.061 0.060 0.056 0.062 0.063 
SVs 12 20 10 11 6 6 6 
Cost 0.857 1 1 0.833 1 1 0.914 
Gamma  0.253 1.055 0.85 0.345 0.255 0.217 0.205 
MSE 0.086 0.080 0.064 0.061 0.057 0.060 0.061 
Epsilon  0.1 0.1 0.1 0.1 0.1 0.1 0.1 

SVs 44 44 44 44 40 39 39 
Cost 0.489 0.765 0.668 0.464 0.93 0.274 0.547 
Gamma 0.5 1 0.9 1 0.6 0.5 1 
MSE 0.075 0.080 0.055 0.046 0.048 0.053 0.049 
SVs 44 43 44 44 40 40 39 
Cost 0.489 0.765 0.668 0.464 0.93 0.274 0.547 
Gamma 0.53 1.04 0.95 0.99 0.6 0.55 1.05 
MSE 0.080 0.080 0.062 0.053 0.052 0.057 0.050 
SVs 44 43 44 44 44 40 39 
Cost 0.489 0.765 0.668 0.464 0.93 0.274 0.547 
Gamma 0.535 1.045 0.954 0.995 0.605 0.55 1.055 
MSE 0.088 0.077 0.060 0.052 0.050 0.060 0.057 
Epsilon  0.01 0.01 0.01 0.01 0.01 0.01 0.01 

SVs 48 47 48 49 48 45 43 
Cost 0.35 0.59 0.656 0.382 0.235 0.228 0.322 
Gamma 0.9 1 0.9 0.9 1 1 0.9 
MSE 0.073 0.078 0.053 0.045 0.047 0.052 0.049 
SVs 48 47 48 49 47 45 43 
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Appendix C (continued) 
 

Table C4 (Continued)  RBF kernel-range 2: C (0.001,1), Г (0.1,1) 
 

Cost 0.35 0.59 0.656 0.382 0.235 0.228 0.322 
Gamma 0.94 1.05 0.88 0.85 1.05 0.95 0.85 
MSE 0.078 0.078 0.059 0.053 0.053 0.054 0.052 
SVs 48 48 48 49 47 45 43 
Cost 0.35 0.59 0.656 0.382 0.235 0.228 0.322 
Gamma 0.935 1.055 0.876 0.845 1.055 0.955 0.855 
MSE 0.082 0.078 0.056 0.048 0.052 0.059 0.061 
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