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Modeling and Analysis of Cooperative Search Systems 

 
 

Carlos A Portilla 
 
 

Abstract 

 

The analysis of performance gains arising from cueing in cooperative search 

systems with autonomous vehicles has been studied using Continuous Time Markov 

Chains; where the search time distributions are assumed to follow the exponential 

distributions. This work proposes the use of Petri Nets to model and analyze these 

systems. The Petri Net model considers two types of autonomous vehicles: a search-only 

vehicle and n search-engage vehicles. Specific performance metrics are defined to 

measure system’s performance. Through simulation, it is shown that the search time with 

stationary targets and cues that provide exact target location follows a triangular 

distribution. A methodology for approximating general distributions and incorporating 

them into the Petri Net model for performance analysis is presented. 
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Chapter 1 

Introduction 

 

1.1 Search Theory 

Search theory is one of the oldest areas of operations research and encompasses 

all the models and algorithms that refer to the problem of finding a hidden target (L. D. 

Stone 1992). It uses the principles and methods of operations research to resolve search 

problems.  The search scenarios that have been studied in search theory are: single 

searcher, cooperative search and coordinated search.  In single searcher, there is basically 

one entity performing the search or the exploration. Cooperative and Coordinated search 

involve more than one entity working toward a goal in which there is a common interest 

or reward (Cao, Fukunaga and Kahng 2004). Coordinated search implies that there is 

collaboration between the entities.   The scenario studied in this research involves 

cooperative search.  The entities work together to cover the search area faster but there is 

no coordination among them to search and engage targets. 

 

1.2 UAV Applications and Cooperative Search Systems 

The entities that will be considered throughout this research are unmanned 

autonomous vehicles (UAVs). UAVs are robots which can perform tasks without 

continuous human guidance. UAVs are becoming increasingly prevalent; their use has 

increased exponentially over the last decade (Oracle Corporation 2007). UAVs have 
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applications on land, in sea, and in the air. They are used for a broad range of 

applications, including police observation of civil disturbances, for work and 

measurement in radioactive environments, and reconnaissance support in natural 

disasters. 

Some missions are better performed by a team of UAVs instead of only one single 

agent. For instance a dangerous and/or extensive mission, where it is unlikely that a 

single UAV survives to complete the task, a team is more suitable to perform it. In 

addition, research has shown that searching a particular area can be completed more 

quickly using multiple UAVs (Cole, et al. 2009).   In all cases, cooperation among the 

UAVs is required for efficient and/or successful completion of the mission. 

 

1.3 Cueing 

The type of cooperation that will be studied in this research is cueing.  In 

cooperative search applications, cueing is defined as any information that provides focus 

to a search; such as limiting the search area or providing a search heading (D. Jeffcoat 

2004). Research has shown that cueing can significantly improve the probability of 

locating targets in cooperative search applications over a fixed period of time (Jeffcoat, 

Krokhmal and Zhupanska 2007). In addition, experience in Kosovo showed that cueing 

enhances battle space awareness by making UAVs much more efficient and survivable. 

The information transmitted in the cue let a UAV know where to look and thus decrease 

wasted surveillance time. In addition, it reduces the exposure to point air defenses of the 

UAVs, making them more survivable (Bingham 2001). 
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1.4 Motivation  

There are many situations in which search processes might be facilitated via 

cueing.  For example: a person, choosing from the menu in a restaurant, can receive 

additional information from the waiter to find the desired food. Or a student, looking up 

an article, can be helped by a librarian who points out the correct database. Or a team of 

UAVs, looking for survivors after a hurricane, might receive data about the possible 

location of the targets from another vehicle with superior capabilities. All these search 

processes have something in common. First there is an entity looking for something, and 

then it either finds it or receives additional information that will expedite the search 

process (cueing). The motivation of this work comes from the need to easily characterize 

these search processes and to measure system’s performance. 

The existing research in quantifying the performance gains arising from cueing 

utilizes continuous time Markov chains (CTMC) to model and analyze the system under 

study (Alexander and Jeffcoat 2007). CTMCs are a state orientated modeling formalism 

which requires the modeler to determine the state space of the complete system and 

assign transition probabilities between each of these states as a part of the modeling 

effort. This is viable for small cooperative search systems (Jeffcoat, Krokhmal and 

Zhupanska 2007); however, it is not practical for large systems due to the difficulty in 

visualizing apriori the interaction among all the components and determining its state 

transition probabilities. In addition, the sojourn time in CTMC is restricted to the 

exponential distribution.  

This work proposes the use of Petri Nets to model and analyze search processes. 

Petri Net formalism allows us to visualize the structure of the rules-based system, making 
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the model easier to understand, and to express the behavior of the system in mathematical 

forms (Lundell, Tang and Nygard 2005). Finally, Petri Nets and its extensions (general 

stochastic PNs (GSPN), extended SPNs (ESPNs) and deterministic SPNs (DSPN)) offer 

an activity-oriented formalism that facilitate the use of discrete event system analysis 

tools, including simulation and numerical analysis, to study the performance of systems. 

 

1.5 Research Objective 

In this thesis, we: 

• Develop a Petri Net model to quantify the performance gains from cueing in 

cooperative search systems. 

• Define and analyze system’s performance measures for the proposed model 

 
1.6 Proposal Organization 

The rest of the proposal is organized as follows: Chapter 2 reviews the previous 

work in literature concerning search theory and performance gains due to cueing in 

cooperative search systems. Additionally, it introduces the theoretical foundations of 

Petri Nets. Chapter 3 describes the specific problem to be addressed and defines the 

performance measures to be used. Chapter 4 argues the relevance of general distributions 

in the problem addressed, and Chapter 5 shows how to analyze them in the proposed Petri 

Net model. Chapter 6 introduces software to analyze Petri Net models. Finally, Chapter 7 

summarizes the contributions and outlines the future research directions.  
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Chapter 2 

Literature Review 

 

This chapter is divided into two sections. Section 2.1 defines search theory and 

presents several problems that have been addressed in this area throughout the years. In 

addition, it presents the research done concerning the performance gains due to cueing in 

cooperative search systems. Section 2.2 introduces the theoretical foundations of Petri 

Nets and its extensions. 

 

2.1 Search Theory 

Research in search theory was initiated during the Second World War by Bernard 

Koopman; who derived the probability of detection as a function of time, and studied the 

optimal allocation of search effort to detect a stationary target (Verkama 1996). Many 

applications of search theory have been orientated towards research with autonomous 

vehicles (Cole, et al. 2009), (Schultz, Parker and Schneide 2002), (Chandler and Pachter 

2002). Depending on the level of human interaction, there are three types of autonomous 

vehicles (Committee on Autonomous Vehicles in Support of Naval Operations 2005): 

• Scripted autonomous systems: use a preplanned script to accomplish the mission 

objective. These systems do not have human interaction after they are deployed. 

As an example consider guided rockets.  
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• Supervised autonomous systems: do most of the functions of planning, sensing, 

and networking to carry out activities. Human operators, via communication link, 

make decisions based on the data sensed by the vehicle.  

• Intelligent autonomous systems: use intelligent technology to embed attributes of 

human intelligence in the software of autonomous vehicles and their controlling 

elements.  

This research focuses on intelligent autonomous systems. Throughout the thesis, 

they are referred to as unmanned autonomous vehicles (UAVs). Some advantages of 

UAVs over manned aircraft systems include: no casualties, easier to store and ship, less 

expensive per aircraft and can fly longer missions. 

Three different scenarios have been studied in search problems: single searcher, 

cooperation, and coordination. Uryasev et al. formulated the single searcher problem as a 

stochastic program. Their objective function was to minimize the expected search time 

before a target is found (Uryasev and Pardalos 2001). The total search area was divided 

in sub-regions and determined the average time that a searcher would require spending in 

a specific sub-region (assuming x targets within the search region). The work was 

extended into a cooperative search concept in which the search was concurrently 

performed by more than one vehicle. It was found that cooperative searching is not only 

dividing search effort among each agent; particularly when the target is able to detect and 

evade searchers. The cooperative search problem was approached with two opposing 

objectives: maximize the effectiveness of a single searcher and maximize the 

effectiveness of the group with multiple searchers.  
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The second scenario studied in search problems is cooperative search. Some 

missions are better performed by a team of UAVs instead of only one single agent. For 

instance a dangerous and/or extensive mission, where it is unlikely that a single UAV 

survives to complete the task, a team is more suitable to perform it (Cole, et al. 2009). 

Several authors concentrated on cooperative search. Polycarpou et al. developed and 

evaluated the performance of strategies for cooperative search with autonomous vehicles 

that seek to gain information about the environment (Marios, Yang and Liu Yang 2003). 

The vehicles share the information that they have to enable cooperation.  No vehicle tells 

another what to do nor are there any negotiations among them. Each seeks to enhance a 

global goal, not only its own goal.  

Chandler and Pachter looked at cooperative rendezvous and cooperative target 

classification and attack in a hierarchical distributed control system (Chandler and 

Pachter 2002). The vehicle doing path planning and trajectory generation is at Decision 

Level 1. At Decision Level 2 is the sub-team that coordinates the activities of 

classification and attack.  When more than one vehicle is used to search and attack, the 

decision whether to continue the search or go attack previously found targets has to be 

made. This decision making process leads to the work done in optimal stopping. The 

theory of optimal stopping studies the problem of choosing a time to take a particular 

action, in order to maximize an expected reward or minimize an expected cost. In this 

work, optimal stopping is not considered. However, a good direction for future research 

on the problem addressed in this thesis might come from this area.  

The third and last scenario studied in search problems is coordinated search. 

While cooperation entails more than one entity working toward common goal, 
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coordination implies a coupling between entities that is designed to achieve the common 

goal (Hsieh, et al. 2007). An example of coordinated task execution is provided in 

(Schultz, Parker and Schneide 2002). A robot should not start analyzing a rock until two 

others have moved into place to provide assistance. Thus, a distributed executive 

facilitates one robot monitoring the execution of another robot and helps it recover from 

faults.  

The search problem scenario studied in this research is cooperation. The effects of 

cueing in cooperative search system have been studied in (Alexander and Jeffcoat 2007). 

It is demonstrated that cueing increases significantly the probability of detection over a 

fixed period of time and that its effect on system’s effectiveness is bounded. Continuous 

time Markov chain is used to model the cooperative search system and Kolmogorov 

equations are solved to determine the effects of cueing on the system’s effectiveness. 

This is viable for small cooperative search systems; however, it is not practical for large 

systems due to the difficulty in visualizing apriori the interaction among all the 

components and determining its state transition probabilities. Hence, this work proposes 

the use of Petri Nets to model and analyze search processes.  

 

2.2 Petri Nets 

2.2.1 Motivation for the Use of Petri Nets to Model and Analyze UAV Systems 

Petri Nets have proven to be very useful in the modeling, analysis, simulation, and 

control of UAV systems (Cao, Fukunaga and Kahng 2004), (Palamara, et al. 2009). They 

provide very useful models for the following reasons: 
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• Petri Nets capture the precedence relations and structural interactions of 

stochastic, concurrent, and asynchronous events. In addition, the graphical 

interface helps to visualize such complex systems (Desrochers and Al'Jaar 1995).  

• Petri Net models represent a hierarchical modeling tool with a well-developed 

mathematical and practical foundation.  

• Petri Nets and its extensions (general stochastic PNs (GSPN), extended SPNs 

(ESPNs) and deterministic SPNs (DSPN)) allow for both qualitative and 

quantitative analysis of performance measures (Ajmone, et al. 1994). 

• The analysis of timed Petri Nets can be automated and several software tools such 

as SPNP and TimeNET are available for this purpose.  

• Finally, Petri Net models can also be used to implement real-time control systems 

for UAVs (Cao, Fukunaga and Kahng 2004). 

2.2.2 Formal Definition and Basic Terminology of Petri Nets 

A Petri Net is graphically represented by a directed graph with two kinds of 

nodes: places and transitions. Place nodes model states or conditions, while transition 

nodes model events of functions of the system (Ajmone, et al. 1994).  Petri Nets (PNs) 

are intended to visualize the dynamics of a system. The state of a Petri Net is called 

marking, and is defined by the number of tokens in each place. Each place may be 

considered as a local state of the system; it describes the condition of a resource. Places 

and transitions are connected by arcs. According to certain rules, the transition can move 

the tokens from one place to another, and thus change the state of the system. Formally, a 

Petri Net can be defined as follows: 
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• PN = (P, T, I, O, Mo); where 

• P = {p1, p2,…, pm} is a finite set of places, 

• T = {t1, t2,…, tn} is a finite set of transitions, P U T ≠ Ø places, and P ∩ T ≠ Ø, 

• I:  (P x T) → N is an input function that defines the arcs from places to 

transitions, where N is a set of nonnegative integers, 

• O:  (P x T) → N is an output function which defines directed arcs from transitions 

to places, and 

• Mo: P → N is the initial marking. It gives the numbers of indistinguishable tokens 

which are initially in each place. 

In the graphical representation places are drawn as circles, transitions are drawn 

as rectangles, and arcs have an arrowhead at their destinations. Tokens are drawn as black 

dots; larger number of tokens in a place is represented by their number. A simple 

example of a Petri Net is shown in Figure 1.  

 

Figure 1 - Petri net example 

The occurrence of events or execution of operations in a Petri Net model changes 

the distribution of tokens in places. Thus, one can study dynamic behavior of the modeled 

system.  
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The following rules are used to govern the flow of tokens: 

• A transition t is said to be enabled in marking M, if at least one token is in all 

input places. 

• An enabled transition t can fire by removing a token from each input place and 

putting one token in each output place.  

2.2.2.1 Reachability Set and Reachability Graph 

 The firing rule defines the dynamics of Petri Net models. From initial marking is 

possible to determine the set of all markings reachable from it and all the paths that the 

system may follow to move from marking to marking. The initial state must be 

completely specified for the computation of the set of reachable markings. The 

representation of all reachable markings (state space of the net) is called reachability 

graph.  

2.2.2.2 Stochastic Timed Petri Nets (STPN) 

 STPN are Petri Nets in which stochastic firing times are associated with 

transitions. The transitions times are allowed to be random variables. 

2.2.2.3 Generalized Stochastic Petri Nets (GSPN) 

 A GSPN is an extension of an SPN. The Petri Net contains two types of 

transitions: immediate transitions and timed transitions.  

• Timed transitions are associated with random, exponentially distributed firing 

delays. 
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• Immediate transitions fire in zero time with firing probabilities. 

 In the graphical representation, timed transitions are drawn as thick bars and 

immediate transitions as thin bars. When a new marking is reached, it can be classified 

into two types. A marking that enables only timed transitions is called tangible, whereas a 

marking that enables at least one immediate transition is called vanishings. Markings of 

the latter type have zero sojourn time. An example of a GSPN is discussed in  

Section 3.2.  
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Chapter 3 

Problem Description 

 

This chapter is divided into 4 sections. Section 3.1 discusses the basis of the work 

in this thesis. The problem addressed in this section was first introduced in (Jeffcoat, 

Krokhmal and Zhupanska 2007). Section 3.2 presents the Petri Net model proposed to 

model the system studied. Section 3.3 shows how to analyze the system using the Petri 

Net model. Finally, Section 3.4 introduces the performance indices used to evaluate the 

system’s performance. 

 

3.1 System’s Description 

The cooperative search mission that is considered throughout this thesis presents a 

search and engage scenario. It includes two types of UAVs: (i) a dedicated search-only 

vehicle and (ii) n-search-engage vehicles. The job of the search-only vehicle is to provide 

cues to all search-engage vehicles. It is assumed that the search-only vehicle has better 

search capabilities than the search-engage vehicles; thus, it has a higher detection rate. 

The search-engage vehicles can engage one target only and it is assumed that search-

engage vehicles do not cue each other. The mission is completed when the n-search-

engage vehicles have engaged n targets. Therefore, it is assumed that there are at least n 

targets within the search area.  



 

 

The search-engage vehicle search

it is cued. If it is cued, it orientates its search toward

will find a target at the location provided by 

and 3 illustrate all the possible states of each type of UAV. As show

search-only vehicle has two 

cueing search-engage vehicles. 

detection function to model and analyze search processes

which the search-only vehicle detects and cues search

cues a search-engage vehicle, it starts over to look for new targets. 

As shown on Figure 3

search uncued, (ii) search

uncued and then it either engages a target with a 

vehicle and starts searching 

θu of the detection function comes from an exponential distribution. The rate in which the 

search-engage vehicle goes from

that there are n search vehicles and cues are 

14 

engage vehicle searches (uncued) for a target until either it

it orientates its search towards the specified location. Eventually, it 

the location provided by cue from the search-only vehicle.

the possible states of each type of UAV. As shown 

has two possible states: (i) it can be either searching for targets or 

engage vehicles. Traditionally the exponential distribution is used as 

detection function to model and analyze search processes (L. D. Stone 1983)

only vehicle detects and cues search-engage vehicles is 

engage vehicle, it starts over to look for new targets.  

 

Figure 2 - Search-only vehicle states 

As shown on Figure 3, the search-engage vehicle has three possible states: (i)

(ii) search cued or (iii) detect and engage a target.  Initially, it is searching 

nd then it either engages a target with a rate θu or it is cued by the search

starts searching based on this cue. Similar to the search-only vehicle, the rate 

of the detection function comes from an exponential distribution. The rate in which the 

ehicle goes from searching uncued to searching cued is λ

vehicles and cues are equally distributed). From the search cued 

for a target until either it finds it, or 

the specified location. Eventually, it 

only vehicle. Figures 2 

n in Figure 2, the 

it can be either searching for targets or (ii) 

the exponential distribution is used as 

(L. D. Stone 1983). The rate at 

engage vehicles is λ. As soon as it 

s three possible states: (i) 

Initially, it is searching 

is cued by the search-only 

only vehicle, the rate 

of the detection function comes from an exponential distribution. The rate in which the 

λ/n (It is assumed 

distributed). From the search cued 



 

 

state, the vehicle engages a target with a rate 

the target’s location in the search cued state, the 

 

3.2 Petri Net Model 

To develop a Petri 

components of the search team are modeled individually. The Petri 

search-only vehicle is shown in Figure 4

search-only vehicle. The time transition T0 represents the search

target. Finally, the immediate transitions t0 correspond

only vehicle returns to the search state after it cues a search

Similarly, the Petri 

this model, immediate transition t1

transitions T1 and T2 represents detection of a target 

Note the similarity in the structur

representation of the vehicles in F
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state, the vehicle engages a target with a rate θc. Since there is detailed information about 

ocation in the search cued state, the rate θc > θu.  

 

Figure 3 - Search-engage vehicle states 

To develop a Petri Net model for the system described in Section 3.1

components of the search team are modeled individually. The Petri Net

nly vehicle is shown in Figure 4. Place P0 represents the search state of the 

only vehicle. The time transition T0 represents the search-only vehic

immediate transitions t0 corresponds to the event where the search

only vehicle returns to the search state after it cues a search-engage vehicle.

Similarly, the Petri Net model for a search-engage vehicle is shown i

s model, immediate transition t1 represents the cueing of this vehicle, and the time 

transitions T1 and T2 represents detection of a target before and after cueing respectively. 

the structure of the two Petri Net models with

resentation of the vehicles in Figures 2 and 3.   

. Since there is detailed information about 

ection 3.1, the two 

Net model for the 

. Place P0 represents the search state of the 

only vehicle detecting a 

to the event where the search-

engage vehicle. 

engage vehicle is shown in Figure 5. In 

represents the cueing of this vehicle, and the time 

and after cueing respectively. 

with the conceptual 
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Figure 4 - Petri net search-only vehicle 
 

Figure 5 - Petri net search-engage vehicle 
 

Transition t0 in Figure 4 and transition t1 in Figure 5 represent the same event, 

namely cueing of a search-engage vehicle. Through this common event (transition), the 

component models are merged. In addition, a second search-engage vehicle can be 

integrated by adding an identical model to the one shown in Figure 5. Following the same 

approach, the Petri Net model of a system with several search-engage vehicles can be 

readily created. Figure 6 shows a Petri Net model for a system with two search-engage 

vehicles.  
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Figure 6 - One search-only vehicle and two search-engage vehicles 

 
The complete model allows obtaining performance measures for a system of n 

search-engage vehicles and one search-only vehicle. An advantage of the proposed Petri 

Net is that the same model can be used to obtain system’s performance measures with 

cueing or without cueing. If the token on P0 is removed, there is no cueing in the system. 

Thus, the same model structure can be used to quantify the effect of cueing in the 

performance of the system. The next sections explain the numerical analysis of the 

proposed model and introduce the performance indices of interest.  
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3.3 Analytical Solution 

A GSPN describes an underlying stochastic process, captured by the reachability 

graph (RG). The analysis of a GSPN is, in principle, the analysis of its underlying 

process, which has been shown to be reducible to a CTMC. To make the reachability 

graph isomorphic, with a transition rate diagram of a CTMC, the vanishing markings 

have to be eliminated (Ajmone, et al. 1994). 

3.3.1 Eliminating the Vanishing Markings 

The following procedure is based on a system composed by one search-only 

vehicle and two search-engage vehicles (Figure 4). Table 1 shows the specification firing 

rates of the transitions in the GSPN of Figure 6. 

Table 1 – Transition rates/weights of Figure 6 

Transition Rate/Weight 

T0 λ 

T1 = T4   θu 

T2 = T3 θc 

t0 α 

t1 1− α 

  

The RG (Figure 7) contains 18 markings. The label on the arcs connecting two 

markings represents the time distribution to go from one marking to another one. There 

are only two types of distributions in the RG: exponential with rate µi , µi = λ, θu, or θc. 

and constant with k0= 0. In addition, the label in square brackets corresponds to the 

probability that the arc is traversed. The markings represented with a dashed line are 

vanishing markings.  
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Figure 7 – Reachability graph of the GSPN of Figure 6 

 
From the 18 marking of the reachability graph, there are 13 tangible markings and 

5 vanishing markings.  The vanishing marking can be eliminated by determining the 

equivalent rates of moving between two tangible markings with intermediate vanishing 

markings. The rate of moving from the marking (10110000) to the vanishing marking 

(01110000) is λ. The probability of leaving the vanishing marking to the marking 

(10011000) is α. Hence, the equivalent rate of moving from the (10110000) to 

(10011000) is: 

         (1) 
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Using the same procedure for each pair of tangible markings with intermediate 

vanishing markings, the reachability graph of the GSPN can be converted to a transition 

rate diagram of a CTMC (Figure 8).    

 

Figure 8 – CTMC rate diagram of the GSPN of Figure 6 

 
The CTMCs allow obtaining system’s performance measures such as mean time 

to complete a mission or probability of engaging a target by time t. The procedure of 

going from the reachability graph to the CTMC can be automated and is computationally 

acceptable as long as the number of vanishing marking is small compared to the number 

of tangible markings (Ajmone, et al. 1994). In addition, other procedures that reduce 

computational complexity have been studied (Miner 2001), (Allmaier, Kowarschik and 

Horton 1997). 
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3.4 System’s Performance Measures 

There are many situations that require performing a task or completing an 

objective in a certain amount of time. As an example, consider a boat that sank in cold 

water with 3 fishermen. The targets of the mission are the three possible survivors and 

they can die from hypothermia in a few hours. Thus, it is imperative to determine the 

probability that a specific team of UAVs can find the fishermen by time t. The 

performance measures will allow us to obtain the probability that a team of one search-

only vehicle and n-search-engage vehicles engage m targets by time t (m ≤ n). 

 The performance indices that are going to be defined to be able to measure the 

system’s effectiveness with one search-only vehicle and n search-engage vehicles are: 

• Expected time to engage n targets with n search-engage vehicles; one target for 

each vehicle.  

• Expected numbers of targets engaged by the system as a function of time. 

 In both cases, it is assumed that there is at least n number of targets and that each 

search-engage vehicle can engage one target only. 

 

3.4.1 First Passage Times in CTMCs  

The first passage times in CTMCs is used to calculate the expected time to engage 

n targets with n search-engage vehicles (Kulkarni 1999). Let {X(t), t ≥ 0} be a CTMC 

with state space  S={1,…,N} and rate matrix R. The first passage time into state N is 

defined to be: 

T = min {t ≥ 0: X (t) = N}  
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let,  

mi =E(T | X0 = i)  ;     mn = 0     

The next theorem gives a method of computing mi, 1 ≤ i ≤ N – 1. Theorem 21: (First 

Passage Times) · {mi, 1 ≤ i ≤ N – 1} satisfy the following: 

���� �  1 � ∑ ��,
�
 ,            ��
� 1 �  � �  � � 1       (2) 

Theorem 2 can also be extended to the expected time to reach a set of states. The 

transition rate matrix of the CTMC for one search-only vehicle and two search-engage 

vehicles is shown in Figure 9.  

 S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 
S0  θu λ (1- 

α) 

λ 

(α) 

θu         

S1      λ      θu  

S2     θc θu  λ      

S3  θc      λ θu     

S4         λ   θu  

S5       λ     θc  

S6             θc 
S7      θc   θc  λ   

S8          λ  θc  

S9             θc 
S10       θc   θc    

S11             λ 
S12              

 

Figure 9 – Transition rate matrix of the CTMC for one search-only vehicle and                   
two search-engage vehicles 

 

                                                           
1 For a proof of Theorem 1 see (Kulkarni 1999).  
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All the search-engage vehicles engage a target as soon as the CTMC visits the set 

of states {11, 12}; which is the markings [10000011] and [01000011], respectively. 

Then, Theorem 2 needs to be extended to the case of reaching a set. The first passage 

time to reach a set of states, A is:   

T = min {n ≥ 0: X (t) � A}  

Let, mi (A) be the expected time to reach the set A starting from state i � A. Then, 
������� �  1 � ∑ ��,
�
���,    
��  � �  �      ;   ����� �  0  for  � � �   (3)  

From the transition rate matrix (Figure 9) and Theorem 2 extended to the case of 

reaching a set of states (3), the following can be obtained:  

��� �   �1 � !� �  �!� � �� ��" � 1 � ��� �   �1 � !��# �  �!��$ � ���% (4) 

� � �� �� �  1 �   �&        (5) 

��' � �� �    ��# �  1 � �'�% � ���& �  �(     (6) 

��' �  � �� ��$ �  1 � �'� �  �( � ���)     (7) 

� � �� ��% �  1 �   �)        (8) 

� � �'  ��& �  1 �   �*        (9) 

��'  ��* �  1         (10) 

��' � �' �   ��( �  1 � �'�& � �'�) �  �"     (11) 

� � �'��) �  1 �   �+        (12) 

��'  ��+ �  1         (13) 

��' � �'��" �  1 � �'�* � �'�+      (14) 
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Table 2 summarizes the cueing and detection rates for the system; the same rates 

were used in (Jeffcoat, Krokhmal and Zhupanska 2007).  

Table 2 – Detection rates and cueing weight 

Rate Value 

λ 1.5 

θu 0.10 

θc 0.19 

α 0.5 

 
 
When the set of equations 4 – 14 are solved, the following values for the expected time to 

absorption from state mi are obtained:  

m0 = 8.353, m1 = 5.559, m2 = 8.058, m3 = 8.058, m4 = 5.559, m5 = 5.263, 

m6 = 5.263, m7 = 7.895, m8 = 5.263, m9 = 5.263, m10 = 7.895 

Thus, on average it takes 8.353 time units to engage two targets with one search-

only vehicle and two search-engage vehicles. Table 3 summarize the average time for 

different values of λ, θu, and θc. The value of α was held constant at 0.5; which means 

that each of the two search-engage vehicles is equally likely to be cued.  

Table 3 – Expected time to engage n targets with one search-only vehicle and two search-
engage vehicles 

 θu =0.10 

θc = 0.19 

E[T] 

 λ = 1.5 

θu =0.10 
E[T] 

 λ = 1.5 

θc = 0.19 
E[T] 

λ = 1.5 8.353 θc = 0.19 8.353 θu =0.10,  8.353 

λ = 2.5 8.174 θc = 0.29 5.814 θu =0.12,  8.246 

λ = 3.5 8.095 θc = 0.39 4.583 θu =0.14,  8.142 

λ = 4.5 8.051 θc = 0.49 3.859 θu =0.16, 8.041 

λ = 5.5 8.023 θc = 0.59 3.383 θu =0.18, 7.943 
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Results on Table 3 imply that increments on the rate θc have a greater impact on 

the system’s effectiveness than improving the cueing rate of the search-only vehicle 

(λ) or the individual uncued detection rates (θu). In other words, if resources were to be 

allocated toward decreasing the mean time to engage n targets, it is better to improve 

(increase) the rate θc; at least for the scenarios defined in the table.  

The rate θc can be increased by: 

• Improving the quality of the information provided in the cue. For example, if the 

search-only vehicle provides the exact location of the target to the search-engage 

vehicles. 

• Cueing the closer search-engage vehicle to the location of the target. In the 

proposed model, the search-only vehicle chooses randomly among the search-

engage vehicle to be cued. Choosing the vehicle that is closer to the target will 

increase the rate c because it will decrease the time to engage the target after 

cueing.  

 
3.4.2 Transient Analysis: Uniformization 

The uniformization analysis in CTMCs is used to calculate the expected number of 

targets engaged by time t. Let {X(t), t ≥ 0} be a CTMC with state space S = {1,…,N} and let R = 

{ri.j} be its rate matrix. A CTMC spends an Exp(ri) amount of time in state i  (ri = ∑ ��.
�
� ), and 

if ri > 0, jumps to state j with probability pi.j= ri.j / ri.  

Now, let r be any finite number satisfying r ≥   - � - �./0 1234 . 
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Define a matrix P = [pi.j] as follows: 

        pi.j =51 � 232    if � � 7 23.82        if � 9 7 :  
Finally, the transition probability matrix P(t)=[pi.j (t)] is given by: 

P(t)= ∑ ;�2< �2<�=!
= ?=∞=�"                    (15) 

Using the detection rates in Table 3, we can obtain the following transition rate 

matrix of the CTMC for one search-only vehicle and two search-engage vehicles (Figure 

10).  

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

S0 0.10 0.75 0.75 0.10 
S1 1.50 0.10 
S2 0.19 0.10 1.50 
S3 0.19 1.50 0.10 
S4 1.50 0.10 
S5 1.50 0.19 
S6 0.19 
S7 0.19 0.19 1.50 
S8 1.50 0.19 
S9 0.19 
S10 0.19 0.19 
S11 1.5 
S12 

 

Figure 10 – Transition rate matrix of the CTMC for one search-only vehicle and two 
search-engage vehicles (rates Table 2) 

 
Then r1=1.7, r2=1.6, r3=1.79, r4=1.79, r5=1.6, r6=1.69, r7=0.19, r8=1.88, r9=1.69, 

r10=0.19, r11=0.38, r12=1.5, r13=0 

hence, r = 1.88 
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Then, the P matrix is: 

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

S0 0.1 0.05 0.40 0.40 0.05 0 0 0 0 0 0 0 0 
S1 0 0.15 0 0 0 0.80 0 0 0 0 0 0.05 0 
S2 0 0 0.05 0 0.10 0.05 0 0.80 0 0 0 0 0 
S3 0 0.10 0 0.05 0 0 0 0.80 0.05 0 0 0 0 
S4 0 0 0 0 0.15 0 0 0 0.80 0 0 0.05 0 
S5 0 0 0 0 0 0.10 0.8 0 0 0 0 0.10 0 
S6 0 0 0 0 0 0 0.9 0 0 0 0 0 0.1 
S7 0 0 0 0 0 0.10 0 0 0.10 0 0.8 0 0 
S8 0 0 0 0 0 0 0 0 0.10 0.8 0 0.10 0 
S9 0 0 0 0 0 0 0 0 0 0.9 0 0 0.1 
S10 0 0 0 0 0 0 0.1 0 0 0.1 0.8 0 0 
S11 0 0 0 0 0 0 0 0 0 0 0 0.20 0.8 
S12 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

Figure 11 – P matrix for one search-only vehicle and two search-engage vehicles         
(rates Table 2) 

 
Finally, P(t) can be computed by: 

  @�A� � ∑ ;�.))< �.))<�B=!C=�"  ?=       (16)  

In numerical computations,  P(t) is approximated by using the first M terms of the 

infinite series. We compute P(t) by using the rule to choose the value of M proposed in 

(Kulkarni 1999): 

M  D �EF1�A � 5 H √�A, 204 
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P(0.5) = 

M = 20 

 

 

 

 

 

Figure 12 – P matrix for one search-only vehicle and two search-engage vehicles at t =0.5 
(rates Table 2) 

 
From the first row of the P matrix in Figure 12, it can be seen that after 0.5 time 

units and starting at S0 which is marking [10110000], there is a probability of 0.43 that 

the system is still on the same state. In addition, there is a 0.03 probability that the system 

has transitioned to state 1; which means that one of the search-engage vehicles has 

engaged a target by itself (no cue received). Using the probabilities provided by the 

matrix and the numbers of targets engaged in each state, we proceed to calculate the 

expected numbers of targets engaged by a specific time. For example, the expected 

number of targets engaged at 0.5 time units is: 

Let X(t) be the number of targets engaged at time t, then: 

E(X(0.5) = 0.43 * 0 + 0.03 * 1 + 0.16 * 0 + 0.16 * 0 + 0.03 * 1 + 0.02 * 1 + 0.01 * 1          

+ 0.11 * 0 + 0.02 * 1 + 0.01 * 1 + 0.03 * 0 + 0.0 * 2 + 0.0 * 2 = 0.1129 

 
Following the same approach, we obtain a graph with the expected number of 

targets engaged as a function of time (Figure 13). 

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

S0 0.43 0.03 0.16 0.16 0.03 0.02 0.01 0.11 0.02 0.01 0.03 0.00 0.00 
S1 0.00 0.45 0.00 0.00 0.00 0.33 0.16 0.00 0.00 0.00 0.00 0.04 0.02 
S2 0.00 0.00 0.41 0.00 0.04 0.04 0.02 0.30 0.03 0.01 0.15 0.00 0.00 
S3 0.00 0.04 0.00 0.41 0.00 0.03 0.01 0.30 0.04 0.02 0.15 0.00 0.00 
S4 0.00 0.00 0.00 0.00 0.45 0.00 0.00 0.00 0.33 0.16 0.00 0.04 0.02 
S5 0.00 0.00 0.00 0.00 0.00 0.43 0.48 0.00 0.00 0.00 0.00 0.04 0.05 
S6 0.00 0.00 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.00 0.00 0.00 0.09 
S7 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.39 0.04 0.04 0.44 0.00 0.00 
S8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43 0.48 0.00 0.04 0.05 
S9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.91 0.00 0.00 0.09 
S10 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.08 0.83 0.00 0.01 
S11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.47 0.53 
S12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 
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Figure 13 – Expected number of targets engaged with two search-engage vehicles 

 
Figure 14 shows how the curve of the expected number of targets shifts to the left 

if one of the original rates is increased. The original rates were changed one at a time 

with an increment of 50%. The 50% is an assumption, and it can represent an 

improvement on the search capabilities, the speed of the vehicle, or any other factor that 

affect the rate at which targets are engaged.   

 

 

Figure 14 – Expected number of targets engaged with two improved search-engage 
vehicles 

 
The results from Figure 14 agree with the findings of the previous section. 

Increments on the rate θc have a greater impact on the system’s effectiveness than 

improving the cueing (λ) or the individual detection rates (θu).   
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Chapter 4  

General Distributions 

 

This chapter is divided into 3 sections. Section 4.1 describes the simulation 

developed with one search-only vehicle and one search-engage vehicle. Section 4.2 

presents the results of the simulation and argues the relevance of general distributions in 

the problem addressed. Finally, Section 4.3 presents how to incorporate general 

distributions into the Petri Net model proposed.  

 

4.1 Simulation Description 

In Section 3.1 all the time distributions in the model follow an exponential 

distribution. A simulation was developed to determine whether this assumption is valid 

for systems with stationary targets and cues that provide exact target location. Since 

there is precise information about a target’s location, better fits may come from bounded 

distributions. A cue with the precise location of a stationary target eliminates the need 

for any additional search by the search-engage vehicle and simplifies the process to 

traveling from one location to another. Arguably, this no longer is a search process; 

however, to preserve the association with the general cooperative search model 

introduced in Chapter 3, this process is still referred to as cued search in the rest of the 

thesis.  
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The environment in which the vehicles are searching is shown in Figure 15. The 

region simulated is a grid of m by n cells; the values of m and n are inputs. There are two 

vehicles in the simulation: one search-only vehicle, shown as a “2”; and one search-

engage vehicle, shown as a “1”. There is only one target, and it is represented as a “-1”. 

It is assumed that the search-only vehicle covers more area than the search-engage 

vehicle; the area of coverage is represented by the shaded region around the vehicle and 

it is an input of the simulation. The search-engage vehicle has to be in the same cell with 

the target to find it. The initial positions of the vehicles and the target are randomly 

selected, between each replication, with a uniform distribution over the region of the 

search environment. Once the simulation starts, both vehicles look for targets until either 

the search-engage vehicle finds it, or the search-only vehicle detects it. If the search-only 

vehicle detects the target, it transmits the target’s location to the search-engage vehicle. 

Then, the search-engage vehicle moves to specified position. The simulation ends when 

the search-engage vehicle finds the target. 

 

Figure 15 – Simulation environment 
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The vehicles do not follow any pattern nor have memory of the places they have 

visited. They are free to move in any direction within the limits of the search 

environment. However, once the search-engage vehicle receives the information about 

the target’s location, it moves directly to the specified location via the fastest way to 

reach that position.    

4.1.1 Assumptions for the Model  

• The search-only vehicle provides the exact target’s location to the search-engage 

vehicle. 

• The time to move between cells is the same regardless of the direction. For 

example: moving to the north direction takes the same time as moving to the 

north-east direction. 

• Both vehicles move at the same speed. Constant speed 

• Target is stationary. 

• Both vehicles can be in the same cell at the same time. 

 
4.2 Simulation Results 

The simulation was constructed to analyze the time distribution of the three search 

processes. Table 4 shows the histograms of the time distribution associated with each 

search process and vehicle. The results are based on 5,000 replications. From Table 4, it 

is seen that the assumption of the exponential distribution is valid for the time of the first 

two search processes. However, the histogram of the third search process (cued search) 

indicates that the exponential distribution is not a good fit. The exponential distribution is 

a good fit for the first two search processes because there is no information about the 
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target’s location. In the third search process, once the target’s location is known, the time 

to engage a target is a function of the distance between the target and the search-engage 

vehicle, and its speed. 

Table 4 – Histograms of the distributions of the time associated with each search process 

 
 Vehicle Search Process 

Histogram 

 

1 Search-Only Search and Cue 

 

 

 
 
2 Search-Engage Uncued Search 

 

 

 
 
3 Search-Engage Cued Search 

 

 
 

Table 5 shows the p-values of the chi-square test for the time of the cued search 

process. Corresponding p-values less than 0.05 indicate that the distribution is not a very 

good fit; larger p-values indicate better fits. It can be seen from Table 5 that the 

exponential distribution is not a good fit. In contrast, the triangular, the weibull and the 

normal distributions are better suited to model the underlying process time. Since the 
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search time is a positive and bounded value, the triangular distribution is the most 

appropriate distribution to model the time of the cued search process.  

Table 5 – P-values of the chi square test for the time of the cued search process   

Functions p-value 

Triangular > 0.75 

Normal  0.473 

Weibull 0.454 

Erlang 0.0092 

Gamma 0.0869 

Lognormal < 0.005 

Uniform < 0.005 

Exponential < 0.005 

 
 

The simulation results indicate that the time of the cued search process is better 

represented with a triangular distribution. The time to engage a target once the vehicle 

receives a cue is the distance traveled to the location provided times the speed (the cue 

transmitted gives the exact location). Thus, the time distribution of the cued search 

process is basically the distribution of the distance between two random points times a 

constant (the speed). It can be proven, using Manhattan metrics, that the distance between 

two uniformly distributed random points within a rectangle follows a triangular 

distribution.  The proof is shown in (Gaboune, et al. 1993) and it is summarized below.  

Denote (Xi, Yi) a point in a rectangle. Consider two random points and define X = 

|X1–X2|, Y = |Y1–Y2|. Also let L denote the average distance between two uniformly 

randomly distributed points in the rectangle. For 0 ≤ x ≤ a, the distribution function of X 

is given by: 

                             KL�F� � @�|N � N#| � F�       
                        � 1 � O @�N# P  N �  F� �  @�N# P N �  F�Q 
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                                � 1 � RS S T�U
LVWL

U�L
" F, F#� XF#XF � S S T�LV�L

"
U

L F, F#� XF#XFY, 
 

where f (x1, x2), the joint probability function of X1 and X2, is defined by:     

          T�F, F#� � Z U[         �T  0 � F � E      E\X         0 � F � E0         ]A^;�_�`;                                                     : 
since X1 and X2 are independent. Therefore 

    KL�F� � ab
c 0                                       �T F � 0
1 � �F � E�#E#                          �T 0 � F � E1                                     �T F P 0

:                        

hence, the density function of X is triangular over [0, a]: 

    TL�F� �  d2E e1 � FEf                   �T �   F  �  E0                                       otherwise   :  
The next chapter discusses how to incorporate general distributions such as the 

triangular distribution to the proposed Petri Net model and calculate performance 

measures.  
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Chapter 5  

General Distributions Analysis in the Petri Net Model 

 

It has been demonstrated that cueing increases the performance of a cooperative 

search system and that the proposed Petri Net model captures the interactions among the 

vehicles in the system. Performance indices are defined and computed to measure 

system’s performance. In addition, these indices can be used to decide how to best 

allocate resources to improve the system’s performance. Finally, the cued search process 

time is shown to be accurately represented by a triangular distribution.  

The feasible techniques to obtain performance measures in Petri Nets with general 

distributions are simulation and approximation (Van der Aalst, Van Hee and Reijers 

2000). Simulation will not be addressed in this thesis. This chapter discusses how to 

approximate general distributions. Section 5.1 derives a general expression for the 

coefficient of variation for the general distribution using the search area dimensions to 

determine the type of approximation. Section 5.2 discusses how the triangular 

distribution can be incorporated into the proposed Petri Net model.  

 

5.1 Analysis of General Distributions 

Agner Erlang conceived the notion of decomposing general distributions into 

phase-type distributions (Yee and Ventura 2000). He showed that a distribution with a 

coefficient of variation (CV) less than one can be represented by a series of k ≥ 2 
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exponential stages; this is known as an Erlang-k distribution. On the other hand, a 

distribution with a CV greater than one can be represented by k ≥ 2 parallel exponential 

stages; this is known as the hyper-exponential distribution (Chen, Bruell and Balbo 

1989). This procedure will be used to approximate a triangular distribution to an Erlang-k 

or hyper-exponential distribution (depending on the CV) and incorporate it into the 

proposed Petri Net model.  

The density function of the distance between the target and the search-engage 

vehicle was derived in Section 4.2 as function of the size of the search environment. The 

density function is: 

    TL�F� �  d2E e1 � FEf                   �T �   F  �  E0                                       otherwise   :  
 Then, the expected value E(X) and the variance V(X) can be computed to obtain a 

general expression for the coefficient of variation. 

lONQ �  S F TF XF � S F m2E e1 � FEfnXF �  U
"  S 2FE  XF � S  2F#E#  XFU

"
U

"
C

�C   

� :2F#E o"
U � :2F$3E#o"

U �  E � 2E3 �  13 E 

E[X] refers to the expected distance traveled along the x axis. The same way can 

be computed for the y axis.  

lOqQ �  13 r 
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Hence,  

l�s� � l � N � q � � l �N� �  l�q� �  E3 � r3 �  �E � r�3  

tONQ � lOF#Q – �lONQ�# 

lOF#Q � S F# TF XF � S F#  m2E e1 � FEfnXF �  U
"  S 2F#E  XF � S  2F$E#  XFU

"
U

"
C

�C   

� :2F$3E o"
U � : F%2E#o"

U � 2E#3 � E#2 �  16 E# 

�lOFQ�# � eE3f # � E#9     
tONQ � E#6 � E#9 � E#18 

V[X] refers to the variance on the distance traveled along the x axis. The same 

way can be computed for the y axis.   

tOqQ � r#6 � r#9 � r#18 

tOsQ �  tON � qQ � tONQ �  t OqQ �  2 y]z �F � {� 
X and Y are independent; thus, cov (x + y) = 0 

tOsQ �  E#18 � r#18 �  E# � r#18   
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Hence, the coefficient of variation is: 

|}OsQ �  tOsQlOsQ �  E# � r#18  �E � r�3 �  E# � r#6 �E � r� 
The general expression of the coefficient of variation allows for associating the 

type of approximation needed for the general distribution of the cued search process to 

the search boundaries. The next section discusses how to approximate general 

distributions and to incorporate the approximation into the proposed model. 

 

5.2 Incorporating General Distributions into the Proposed Model 

Any type of general distribution with support on [0, ∞) can be approximated by a 

phase-type distribution (Asmussen, Nerman and Olsson 1996).  Phase-type distributions 

have been successfully used for modeling non-exponential activities due to their 

versatility and relative ease of numerical implementation (Shaked and Shanthikumar 

2006).  

Several methods have been utilized for approximating general distributions. A 

general statistical approach called the EM algorithm is presented in (Asmussen, Nerman 

and Olsson 1996). EM algorithm can be used to approximate incomplete data and 

continuous distributions with support on [0, ∞). Approximating a continuous distribution 

by a phase-type distribution is similar to fitting a phase-type distribution to a sample. In 

parametric estimation, the methods that minimize the divergence between the assumed 

model density and the true density underlying the data, include maximum likelihood, chi 

squared methods based on families of chi-squared distances and Hellinger distance, 
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among others (Basu, et al. 1998). A benchmark for phase-type estimation algorithms is 

presented in (Bobbio and Telek 1994). 

To illustrate how a triangular distribution is approximated by a phase-type 

distribution and incorporated into the proposed Petri Net model, let us assume the 

following parameters for a triangular distribution (2, 10, 18). First, the coefficient of 

variation is estimated: 

 

The standard deviation and the mean of a triangular distribution are defined as: 

~ � �mE# � r# � y# � Er � Ey � ry18 n �   3.27 
� �  E � r � y3 � 10 

Hence, the coefficient of variation is: 

|t � 3.2710 �   0.327 � 1 
            

The CV is less than 1; thus, the triangular distribution can be approximated by a 

series of k ≥ 2 exponential stages (Erlang-k distribution).  Then, we proceed to estimate 

the number of stages (k) and the mean time of each one (u). EasyFit software 

(Technologies, 2004) is used as a tool for estimating the parameters and performing the 

goodness of fit tests. The following describes how the tool is used.  
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Initially, a sample set of 5,000 was simulated from the triangular distribution (2, 

10, 18). This data was used to estimate the parameters of the Erlang distribution. The 

larger the sample size the more power2 the statistical test has (Montgomery and Runger 

2002). Thus, with a large sample size the test is more likely to reject the null hypothesis 

that the Erlang distribution is the true distribution of the data. A second sample of size 

200 was simulated to compare the results of the goodness of fit tests. 

Figure 16 shows the histograms of the simulated data and the probability density 

functions of the fitted Erlang distribution for the two samples. 

 

Figure 16 – Erlang-k approximation of the triangular distribution (2, 10, 18) 

 
The parameters estimated for the Erlang distribution are k = 9 and u = 1.0093 and 

k = 9 and u = 1.0681 with the sample size of 200 and 5,000, respectively. Table 6 

summarizes the results for the Kolmogorov-Smirnov, Anderson-Darling, and Chi-

Squared tests. For the sample set of size 5,000, all the statistical tests reject the null 

                                                           
2
 The power of a statistical test is the probability of rejecting the null hypothesis Ho when the alternative 

hypothesis is true. 
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hypothesis that the data follow an Erlang distribution. However, for the set of size 200, 

the Chi-Squared test fails to reject the null hypothesis (α ≤0.05). 

Table 6 – Goodness of fit tests 

  n = 200 n = 5,000 

Kolmogorov-Smirnov                 

Sample Size 200 5000 

Statistic 0.13325 0.09453 

P-Value 0.00148 0 

α 0.05 0.02 0.01 0.05 0.02 0.01 

Critical Value 0.09603 0.10734 0.11519 0.0192 0.02147 0.02304 

Reject? Yes Yes Yes Yes Yes Yes 

Anderson-Darling           

Sample Size 200 5000 

Statistic 5.8211 90.929 

α 0.05 0.02 0.01 0.05 0.02 0.01 

Critical Value 2.5018 3.2892 3.9074 2.5018 3.2892 3.9074 

Reject? Yes Yes Yes Yes Yes Yes 

Chi-Squared           

Deg. of freedom 7 12 

Statistic 13.694 298.38 

P-Value 0.05691 0 

α 0.05 0.02 0.01 0.05 0.02 0.01 

Critical Value 14.067 16.622 18.475 21.026 24.054 26.217 

Reject? No No No Yes Yes Yes 

  

Even though the results from the goodness of fit tests may indicate that the Erlang 

distribution is not consistent with the data, the approximation is widely used to do 

numerical analysis in Petri Nets with general distributions (Ajmone, et al. 1994), (Yee 

and Ventura 2000).  

The proposed Petri Net model is adjusted to incorporate the approximation of the 

triangular distribution with a phase-type distribution. The Erlang distribution (9, 1.0093) 

is used for depicting what the proposed model looks like with a phase-type distribution. 
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The series of exponential distributions can be incorporated into the model by adding a 

series of places and time transitions. Figure 17 shows the Petri Net model for a search-

engage vehicle with the Erlang (9, 1.0093). The 9 transient states (the phases) are 

represented in the model with transitions {T2, T3, T4, T5, T6, T7, T8, T9, T10}. The 

average time of firing each transition is 1.0093.  The Petri Net model for a search-engage 

vehicle with the Erlang-k approximation can be incorporated into the system model to 

obtain system’s performance measures (Figure 18). The next chapter introduces software 

that allows analyzing more complex systems such as the one depicted in Figure 18. 

 

Figure 17 - Petri net model for a search-engage vehicle with Erlang-k approximation 
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Figure 18 - One search-only vehicle and two search-engage vehicles with Erlang-k 
approximation 
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Chapter 6 

Stochastic Petri Net Package (SPNP) 

 

It has been demonstrated that cued search processes with stationary targets and 

cues that provide the exact target’s location are better represented with triangular 

distributions, and it was shown how to incorporate them into the proposed model. This 

chapter introduces software that allows rapid development of stochastic reward nets 

(including GSPN) to evaluate performance measures. The name of the software is 

Stochastic Petri Net Package (SPNP) 3.  

 

6.1 SPNP Description 

SPNP is a modeling tool for performance analysis of complex systems. The 

model type used for input is a stochastic reward net (SRN) and they are specified using 

CSPL (C based SRN Language) which is an extension of the C programming language 

with additional constructs for describing the SRN models.  

The SRN models are automatically converted into a Markov reward model which 

is then solved to compute a variety of transient, steady-state, cumulative, and sensitivity 

measures. For SRNs with absorbing markings, the mean time to absorption and the 

expected accumulated reward until absorption can be computed.  

                                                           
3 A full description of the software and its capabilities can be found at: 

http://people.ee.duke.edu/~chirel/MANUAL/manual.pdf 
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6.2 SPNP and Petri Net Model Validation 

The same cooperative search system studied in (Jeffcoat, Krokhmal and 

Zhupanska 2007) was used to replicate its results and consequently validate the proposed 

Petri Net Model and the output of the software; before using the software to obtain 

performance measures. The cooperative search system consists of one search-only 

vehicle and five identical search-engage vehicles. Table 7 summarizes the transitions 

rates/weights. 

Table 7 - Transition rates/weights of Figure 19 

Transition Rate/Weight 

T0 λ 

T1 = T3 = T6 = T8 = T10 θu 

T2 = T4 = T5 = T7 = T9 θc 

t0=t1=t2=t3=t4 α 

 
 

The transition T0 represents the event where the search-only vehicle detects a 

target and cues one of the search-engage vehicles. The rate at which this event occurs is 

λ. The transitions T1,T3,T6,T8,T10  represent the event where a search-engage vehicle 

searches and engages a target without receiving any information from the search-only 

vehicle (no cue transmitted). The rate at which this event happens is θu. The transitions 

T2,T4,T5,T7,T9  represent the event where a search-engage vehicle detects and engages a 

target with information about its location; the rate is θc. This event only occurs if the 

search-engage vehicle receives a cue from the search-only vehicle. A parameter k (cueing 

effectiveness) was defined in (Jeffcoat, Krokhmal and Zhupanska 2007) to associate the 

increase in the detection rate due to the information transmitted in the cue; hence, θc = k  

x θu. The cues are distributed equally; thus, the probability of firing each immediate 
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transition (t0,t1,t2,t3,t4) is the same. The Petri Net model for one search-only vehicle and 

five search-engage vehicles in SPNP is depicted in Figure 19.   

 

Figure 19 - Petri net model with one search-only vehicle and five search-engage vehicles 
in SPNP 

 
Jeffcoat et al. measured the system’s effectiveness by the probability that all 

search-engage vehicles have engaged targets by time t. They analyzed two different 

scenarios and presented their results in two graphs. Both scenarios have the initial 

detection rate θu of the search-engage vehicles equal to 0.1, but the search rate λ of the 

search-only vehicle varies in the first scenario and the cueing effectiveness k is varied in 

the second scenario. Figures 20 and 21 show the results for the two scenarios studied, 

respectively.  
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Figure 20 – Probability of detection of all search-engage vehicles varying λ  

 

 

Figure 21 – Probability of detection of all search-engage vehicles varying k 

 
In the proposed Petri Net model, all the search-engage vehicles have engaged 

targets by time t when the places P12, P13, P14, P15, and P16 have a token. The marking 

of interest is shown on Figure 22. 
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Figure 22 – Marking with targets engaged by all search-engage vehicles  

 
SPNP allows obtaining the probability of reaching this marking as a function of 

time. The initial detection rate θu of the search-engage vehicles is held equal to 0.1, but 

the search rate λ of the search-only vehicle is varied according to the results presented in 

(Jeffcoat, Krokhmal and Zhupanska 2007). Figures 23 and 24 show the results obtained 

using SPNP and the Petri Net model for the two scenarios studied.  
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Figure 23 - Probability of detection of all search-engage vehicles varying λ (Petri net )  

 

 

Figure 24 - Probability of detection of all search-engage vehicles varying k (Petri net)   

  
From the comparison of the respective figures, it is clear that the Petri Net model 

and the results from SPNP are equal to the results in Figures 20 and 21 from (Jeffcoat, 

Krokhmal and Zhupanska 2007) verifying the correctness of the proposed modeling 

methodology. The next chapter summarizes the contributions of this thesis and outlines 

the future work that can be done in this research.  
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Chapter 7 

Contributions and Future Research Directions 

 

7.1 Contributions 

This thesis presents a Petri Net based modeling approach to model the interaction 

among autonomous search vehicles in a cooperative search system. The cooperation 

among the vehicles involves cueing. Both in previous studies and in this thesis, it was 

demonstrated that cueing increases system performance. However, the concept of cueing 

has not been explored in detail and there is a lack of system models and modeling 

approaches that involve cueing.  

The proposed modeling approach based on Petri Nets brings with it the well 

documented advantages associated with using Petri Net models, such as modularity, 

hierarchical modeling, well developed mathematical foundation, and a wide range of 

software available for model development and analysis. 

In addition, the approach allows the analysis of similar systems using the same 

Petri Net structure greatly decreasing model development and verification effort. For 

example, in Figure 25 by removing the token from place P0, the search-only vehicle 

becomes inactive in the model (transition T0 is not enabled) eliminating the cueing 

capability of the system. The transition T0 will not fire and the search-engage vehicles 

will never be cued. This is an advantage that the Petri Net model has over CTMC because 

the same model can be easily modified to quantify the performance gains from cueing. 
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Figure 25 – Petri net model with cueing and without cueing 

 
In the same manner, a subset of search-engage vehicles can be deactivated by 

removing their corresponding tokens from the Petri Net model. Figure 26 shows a Petri 

Net model with four search-engage vehicles but only two of them are active 

corresponding to marked places (P2, P11).  Such a modification allows the system 

modeler to evaluate alternative scenarios with varying number of search-engage vehicles 

and analyze system's performance measures without constructing a new model for each 

scenario. The number of vehicles can also change during a mission due to vehicle break-

downs or the nature of the mission which may necessitate re-evaluation of the expected 

system performance.  
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Figure 26 – Petri net model with 2 actives search-engage vehicles 

 
In this thesis, it was demonstrated both through simulation and analytically that 

the time distribution of the cued search process follows a triangular distribution when the 

target is stationary and the cues provide the exact target location. Methods to approximate 

general distributions such as the triangular distribution with phase-type distributions are 

discussed and Petri Net models incorporating phase-type distributions are developed. 

Finally, a cooperative search system example from (Jeffcoat, Krokhmal and Zhupanska 

2007) is modeled and analyzed to verify the proposed modeling methodology.  

The contributions of this thesis can be summarized as follows: 

• A novel Petri Net based modeling methodology for modeling cooperative search 

systems involving cueing is introduced. 

• The cued search process for stationary targets is shown to follow a triangular 

distribution when the cue provides the exact target location. This process is 
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similar to traveling from one random location to another, namely from the 

location of the cued search-engage vehicle and the location of the stationary 

target. 

 
7.2 Future Research Directions 

Intelligent cueing is an immediate and natural future research direction to 

incorporate intelligent target assignment into the proposed Petri net model. The proposed 

Petri net model assumes that cues are assigned randomly among the vehicles available.  

However, the decision of what vehicle to cue could be based on several factors such as 

proximity to the target or elapsed uncued search time. In the case of a system with 

heterogeneous search-engage vehicles, the decision of what vehicle to cue would also 

depend on vehicle capabilities. Considering these factors may decrease the time to 

engage a target after receiving the cue, or may increase system effectiveness by selecting 

the vehicle(s) with appropriate capabilities for a particular mission.  

Controlled Petri Nets are an extension of standard Petri nets in which binary 

control inputs can be applied as external conditions for enabling transitions in the net. 

The markings of the external input places can be used to restrict the firing policy on the 

Petri Net. In the proposed Petri Net model, the status of a search-engage vehicle can 

enable a transition to make it eligible to be cued.  

The theory of fuzzy logic (Carlsson and Fullér 2002) resembles human reasoning 

in its use of imprecise information to generate decisions. Fuzzy logic does not need exact 

equations and precise numeric values, it allows expressing the states of the system with 

subjective concepts which are mapped into exact numeric ranges. Thus, fuzzy logic can 
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be used to classify the status of the search-engage vehicles and consequently determine if 

eligible to be cued.  

Another extension of this research involves modeling cooperative search systems 

with moving targets and imprecise cues. This extension would not impact the structure of 

the proposed Petri Net model, however it is anticipated that the cued search time would 

not follow the triangular distribution since there is still a search process that has to take 

place once the search-engage vehicle reaches the cued location since the target may have 

moved and/or an imprecise cue requires the search-engage vehicle to search for the exact 

location of the target.  
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