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GENERATION CAPACITY EXPANSION IN RESTRUCTURED
ENERGY MARKETS

Vishnuteja Nanduri

ABSTRACT

With a significant number of states in the U.S. and countries around the world

trading electricity in restructured markets, a sizeable proportion of capacity expan-

sion in the future will have to take place in market-based environments. However,

since a majority of the literature on capacity expansion is focused on regulated market

structures, there is a critical need for comprehensive capacity expansion models tar-

geting restructured markets. In this research, we develop a two-level game-theoretic

model, and a novel solution algorithm that incorporates risk due to volatilities in

profit (via CVaR), to obtain multi-period, multi-player capacity expansion plans.

To solve the matrix games that arise in the generation expansion planning (GEP)

model, we first develop a novel value function approximation based reinforcement

learning (RL) algorithm. Currently there exist only mathematical programming based

solution approaches for two player games and the N-player extensions in literature

still have several unresolved computational issues. Therefore, there is a critical void

in literature for finding solutions of N-player matrix games. The RL-based approach

we develop in this research presents itself as a viable computational alternative. The

solution approach for matrix games will also serve a much broader purpose of being

able to solve a larger class of problems known as stochastic games.
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This RL-based algorithm is used in our two-tier game-theoretic approach for ob-

taining generation expansion strategies. Our unique contributions to the GEP litera-

ture include the explicit consideration of risk due to volatilities in profit and individual

risk preference of generators. We also consider transmission constraints, multi-year

planning horizon, and multiple generation technologies. The applicability of the two-

tier model is demonstrated using a sample power network from PowerWorld software.

A detailed analysis of the model is performed, which examines the results with re-

spect to the nature of Nash equilibrium solutions obtained, nodal prices, factors

affecting nodal prices, potential for market power, and variations in risk preferences

of investors. Future research directions include the incorporation of comprehensive

cap-and-trade and renewable portfolio standards components in the GEP model.
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CHAPTER 1

INTRODUCTION

Motivated by the success of deregulation in industries such as telecommunications,

airlines, and transportation, the electric power industry restructuring was introduced

in many parts of the U.S. as well as in many countries around the world. Electric-

ity market restructuring has spurred a significant amount of research to model and

subsequently improve our understanding of how various segments of the market per-

form and interact with one other. Due to the interactions of political, socioeconomic,

and technological forces, the deregulated electric power industries both in the United

States and abroad have undergone many structural transformations. Though signifi-

cant differences exist in the working of markets around the world, the common goals

of restructuring are the reduction of prices for the end-user, ushering in technological

innovation, and increase of social welfare.

Despite some major initial setbacks in California, successful deregulated markets

like Pennsylvania-New Jersey-Maryland (PJM) interconnection, New York Indepen-

dent System Operator (NYISO), Electric Reliability Council of Texas (ERCOT), and

several markets around the world, have reinvigorated the policy makers. Currently,

over a fourth of the states across the U.S., and several countries around the world,

notably UK, Nordic countries, and Australia trade electricity in a deregulated en-

vironment. Several insightful monographs ([1, 2, 3]) that deal with power system

economics and operation of restructured markets exist in the literature. Recently,

survey papers were presented to the power market literature by Ventosa et al. [4],
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Day et al. [5], Boucher and Smeers [6], and Nanduri and Das [7]. The survey in [4]

consists of an excellent overview of recent market modeling trends, and [5] and [6] dis-

cuss market equilibrium formulations respectively. However, the above monographs

and survey papers do not shed light on the model solution approaches, and certain

important issues like electricity auctions and solution approaches used to obtain op-

timal bidding strategies and Nash equilibria. These topics are discussed in detail in

[7].

1.1 Generation Expansion Planning

According to the National Energy Policy (NEP) developed in 2001 and the Annual

Energy Outlook 2007, energy demand in the U.S. is slated to increase sharply over the

next two decades [8, 9]. It is stated in the NEP that the United States will need about

393,000 MW of new generating capacity by 2020 to meet this growing demand. With

about fifteen States in the U.S. currently trading electricity in restructured markets, a

significant proportion of the aforementioned capacity expansion will have to take place

in a market based environment. Current literature is rich with research examining

capacity expansion under the regulated market paradigm. However, there is a critical

need for developing comprehensive capacity expansion models in restructured market

settings. This research aims to address this need.

1.1.1 Regulated Settings v/s Restructured Settings

GEP in traditional settings is formulated as a least cost optimization problem that

minimizes production and capital costs. GEP in restructured settings, on the other

hand, needs to be modeled as a non-cooperative profit maximization problem. This

is because GEP in restructured settings has multiple competing decision makers, as

opposed to a single decision maker in traditional settings. Therefore, the investment
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decisions made by a generator in restructured markets affect not only his/her profits

but the other generators’ profit as well, and hence the need to model it as a non-

cooperative game.

Generation expansion planning (GEP) in a restructured market is the challenge of

determining which type, where, and at what time periods new generation capacities

are likely to be installed by the competing generators in response to: expected demand

growth, changes in network conditions, and market design incentives. This research

addresses the above challenge by developing a comprehensive matrix game model

that subsumes electric power market features like multiple competing generators, a

multi-year planning horizon, transmission constraints, and demand stochasticity. The

model also explicitly considers risk due to volatilities in profit using a conditional

value-at-risk measure as well as using individual generator risk preferences. The

model has a two-tier matrix game construct that iteratively builds multi-year, multi-

player expansion strategies for the competing generators. The expansion strategies

from the model are obtained using a reinforcement learning based value function

approximation algorithm for solving matrix games, which we present in Chapter 5

(see [10]).

1.2 Research Objectives

The objectives of this research are the following. Each of these broad research

objectives are addressed in various chapters of the dissertation.

1. Develop a comprehensive matrix game model that addresses the challenge of

generation capacity expansion in restructured electric power markets

2. Develop a solution algorithm to solve the matrix games embedded in the two-

tier model
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3. Perform a detailed empirical analysis of the matrix game solution algorithm

4. Formulate an overall solution framework, which uses the matrix game solution

algorithm, to solve the GEP problem

5. Demonstrate the applicability of the GEP model using sample power networks

1.3 Research Contributions

This research makes some significant contributions in the advancement of the

state-of-the-art both in generation capacity expansion planning as well as in solu-

tion approaches to multiplayer matrix games. Our novel two-tier matrix game model

for generation expansion planning in restructured power market settings is the first

of its kind. The two-tier model considers investment competition at the upper tier

and the embedded supply function competition at the lower tier. The use of a rein-

forcement learning algorithm, as presented in Chapter 5 and in [10], shows promise

in solving matrix games of relatively higher dimensionality. The contributions also

include the incorporation of generator risk preferences and a measure of conditional

value-at-risk (CVaR), which makes the investment decisions more robust. The model

and its solution methodology are demonstrated on a sample network with five buses,

seven transmission lines, three generators, and four loads. The simultaneous consid-

eration of several important elements in expansion planning, such as, transmission

constraints, risk, demand variations, multi-period planning horizon, and multiple gen-

eration technologies is not found in the existing literature.

The novel value function approximation based reinforcement learning algorithm

for obtaining NE of n-player matrix games is a significant contribution to the litera-

ture. Extensive numerical experimentation is presented in Chapter 5, which demon-

strates the ability of the learning algorithm to obtain Nash equilibrium. This section
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includes sixteen matrix games with up to four players and sixty four actions for each

player, followed by an example of a restructured power network with competing gen-

erators. The numerical results indicate that the learning based approach presented

in this research holds significant promise in its ability to obtain NE for large n-player

matrix games. To our knowledge, the algorithm is the first of its kind that harnesses

the power of stochastic value approximation method that has been successfully used

in solving large scale Markov and semi-Markov decision process problems with single

decision makers ([11, 12, 13]). A formal proof establishing the convergence of the

algorithm to Nash equilibrium solutions is not fully developed yet, and is currently

being investigated. However, as discussed in Chapter 6, the empirical evidence clearly

indicates the algorithms’ ability to converge to NE solutions.

1.4 Dissertation Outline

A brief overview of power market equilibria and generation expansion planning

literature can be found in Chapter 2. Some fundamental concepts of game theory and

solution approaches to game theory problems as found in power market literature are

presented in Chapter 3. The comprehensive two-tier matrix game model addressing

GEP in restructured settings is developed in Chapter 4. To solve these embedded

matrix games, we develop a value function approximation based reinforcement learn-

ing algorithm, which is presented in detail in Chapter 5. An empirical analysis of the

performance of the RL algorithm is presented in Chapter 6. The solution framework

used to solve the two-tier GEP model is presented in Chapter 7. Chapter 8 consists of

a demonstration of the applicability of the model via a sample problem. The chapter

contains detailed examination of model results as to the nature of expansion plans,

generator payoffs, and nodal prices, for given demand growth. A regression model is

developed to identify the factors affecting nodal prices post-expansion. This chapter
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also examines consumer surpluses under strategic bidding, and choice of generator

expansion plans under varying risk preferences. Concluding remarks based on this

work are presented in Chapter 9 and some future research directions such as the inclu-

sion of cap-and-trade programs and renewable portfolio standards for CO2 emission

control are reserved for Chapter 10.
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CHAPTER 2

LITERATURE REVIEW

2.1 Generation Capacity Expansion Planning

Until the late nineties, a significant number of papers appeared in the literature

examining the generation expansion planning (GEP) process in regulated electricity

markets. Some of the key contributions are [14, 15, 16, 17, 18, 19]. An excellent review

paper by Zhu and Chow [20] discusses both mathematical programming based and

heuristic based techniques used to solve GEP problems in regulated settings. Most of

the papers listed above formulated the GEP problem with the objective of minimiz-

ing production and capital costs. On the other hand, GEP in restructured markets

needs to be modeled as a noncooperative game, where the generators compete to max-

imize their profits. In both cases, however, the constraints have to include capacity,

transmission, energy balance, investment, and system reliability. While commercial

software like Wien Automatic System Planning (WASP [21]) and Electric Generation

Expansion Analysis System (EGEAS [22]) exist to address GEP in regulated mar-

kets, GEP research in deregulated markets is still in its early stages. Hence, there is

a need and room for more research to fully explore and understand the GEP problem

in the current competitive environment. The current competitive environment has

introduced some rather new challenges in the already complex GEP problem. First

of which is the modeling of competitive behavior of generators. Second, the gener-

ators investing in the market have to consider individual risks due to volatilities in
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profits. Third, emissions and environmental regulations are set to become critically

important in the coming years, due to which, comprehensive models incorporating

cap-and-trade/carbon trading mechanisms will become necessary.

In the next few paragraphs, we focus our attention on some of the recent research

contributions addressing GEP in restructured markets. The papers that we have

chosen to review here, help to highlight the similarities that our model shares with

the literature, as well as the distinctions. Chuang et al. [23] presented one of the

initial GEP models in a restructured setting. They model GEP as a Cournot game

by making the following main assumptions: generators compete only in quantities,

new entries do not occur in the middle of the game, and all generators make invest-

ment decisions simultaneously. While we also make the latter two assumptions, we

use supply function competition instead of Cournot competition to more accurately

represent power market bidding. Chuang et al. compute the price and quantity al-

locations of generators using the California ISO/Power Exchange (PX) system, that

buys and sells energy through auctions. Finally, the solution of the GEP Cournot

game is obtained using a simple iterative search procedure. We use an optimal power

flow formulation to obtain price-quantity allocations and then compute the generator

profits. Thereafter, a value function approximation based learning algorithm is used

to find the solution of the game.

Murphy and Smeers [24] present three different GEP models. The first model,

which considers perfect competition, is developed to serve as a base line case for com-

parison against the other two models. The second model is an open loop Cournot

model where investment decisions and power dispatch occur simultaneously. The

third model is a 2-stage equilibrium problem with investments in stage 1 and power

dispatch in stage 2. This 2-stage model is an extension of the MPEC type problems,

which while realistic, are often extremely difficult to solve and are fraught with conver-
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Table 2.1. Important Modeling Attributes from GEP Literature
Authors Model Risk Emissions Transmission

Constraints
System
Relia-
bility

Multiyear
Horizon

Demand
Varia-
tions

Technology

Chuang et
al. [23]

Cournot
Game

No No No Yes No No Yes

Murphy and
Smeers [24]

Cournot
Game

No No No No No No Yes

Kaymaz et
al. [25]

Cournot
Game

No No Yes Yes No No No

Jirutitijaroen
and Singh
[26]

Optimization No No Yes Yes No No No

Kim et al.
[27]

Cournot
Game

No No No Yes Yes No Yes

Ng et al.
[28]

Cournot
Game

No No Yes Yes No No Yes

Ehrenmann
and Smeers
[29]

Cournot
Game

No No No No Yes No No

Ehrenmann
and
Smeers[29]

Stackelberg
Game

No No No No Yes No No

Botterud et
al. [30]

optimization Yes No No No No No No

gence related challenges [25]. In this research we adopt the strategy of simultaneous

investment and power dispatch, similar to the second model in [24].

One of the important features missing from the models in [23] and [24] is the

consideration of transmission constraints. Kaymaz et al. [25] include transmission

constraints and extend Hobbs’s LCP formulation [31] for power markets by incorpo-

rating GEP-related decision variables in the objective function. Their model results,

as expected, show that transmission constraints affect the capacity expansion de-

cisions. They also show that transmission constraints adversely affect the consumer

benefits, which often tend to reduce due to high electricity prices and congestion rents.

In this research we also consider transmission constraints. For the sake of brevity, we

summarize other relevant GEP literature and their key modeling attributes in Table

2.1.

2.2 Nash Equilibria of Multiplayer Games

Globalization has played a significant role over the last decade in transforming the

marketplace into one where most goods and services are transacted through multi-

party competition. Consequently, the study of game theoretic concepts and the de-
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velopment of effective methods for solving multiplayer games have gained increasing

attention in the research literature. Games occur in two primary forms: matrix games

and stochastic games. An n-player matrix game is characterized by n different re-

ward matrices (one for each player) and a set of action combinations characterizing

the equilibria (Nash-equilibria, in particular). Nash [32] defined equilibrium to be an

action combination from which no single player could unilaterally deviate to increase

profit. Stochastic games are comprised of finite or infinite horizon stochastic processes

with finite states and state transition probability structure, in which the players seek

equilibrium actions for every state so as to maximize their rewards from the overall

game. Therefore, stochastic games are construed as sequence of matrix games (one

for each state) connected with transition probabilities. Further classification of games

arises from the nature of reward structure: zero sum games and nonzero (general)

sum games. Rewards of stochastic games are classified as discounted reward, average

reward, and total reward.

Though the fundamentals of game theory are fairly well established ([32]), the

computational difficulties associated with finding Nash equilibria have constrained

the scope of the research literature largely to the study of bimatrix games with lim-

ited action choices. Even in the absence of sufficient tools to appropriately analyze

stochastic or matrix games, a majority of the marketplaces have evolved to incor-

porate transactions through competition. Therefore, to ensure healthy growth of

the current competition based economy, it is imperative to develop computationally

feasible tools to solve large scale stochastic and matrix games. In recent years, re-

searchers have been able to characterize equivalent matrix games for both discounted

reward and average reward stochastic games ([33, 34, 35, 36]). They also harnessed

the advances in reinforcement learning based techniques to construct these equivalent

matrix games ([33, 34]). However, obtaining the Nash equilibrium for these equivalent

10



matrix games has remained an open research issue, which is one of the foci of this

research.

As discussed in [37], the appropriate method of computing Nash equilibria of a

matrix game depends on whether it is required to find one or all equilibrium points,

the number of players in the game, and the importance of the value of the Nash

equilibrium. No computationally viable method addressing all of the above is avail-

able in existing literature. Nash equilibria of n-player matrix games can be obtained

by solving a nonlinear complementarity problem (NCP), which for a 2-player matrix

game becomes a linear complementarity problem (LCP) ([37]). Lemke and Howson

[38] developed an efficient algorithm for obtaining Nash equilibria for bimatrix games

by solving the associated LCP. Their algorithm was extended for finding Nash equi-

libria of n-person matrix games in [39] and [40]. However, these algorithms still have

unresolved computational challenges. Mathiesen [41] proposed a method of solving

NCP for n-player matrix games through a sequence of LCP approximations. A survey

by [42] summarizes these and other developments on this topic. It may be noted that

these methods are not guaranteed to obtain global convergence and often depend on

the choice of the starting point. To our knowledge, the only openly available software

that attempts to solve multiplayer matrix games is GAMBIT ([43]). However, as

observed by Lee and Baldick [44], this software takes an unusually long computation

time as the number of players and their action choices increase.

Game theoretic models have been studied extensively in examining market com-

petition in the energy and transmission segments of restructured power markets (as in

Pennsylvania-Jersey-Maryland, New York, New England, and Texas). These games

are characterized by multidimensional bid vectors with continuous parameters. Upon

suitable discretization of these bid vectors, many of these games can be formulated as

matrix games. The degree of discretization dictates both the computational burden
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and the probability of identifying the Nash equilibria. Almost all of the literature

studying power market games is devoted to optimization based approaches, such as

mathematical programming ([45, 46, 47]), co-evolutionary programming ([48]), and

exhaustive search ([49]). Even in a limited number of studies, where such games are

formulated as matrix games, numerical examples are converted to bimatrix games

and are solved using linear programming and LCP approaches ([44, 50, 51]).

Mathematical programming approach to finding NE of matrix games has two pri-

mary variants: mathematical program with equilibrium constraints (MPEC, [52]),

and equilibrium problem with equilibrium constraints (EPEC, [53]). MPEC is a

generalization of bilevel programming, which in turn is a special case of hierarchi-

cal mathematical programming (with two or more levels of optimization). MPECs

resemble Stackelberg (leader-follower) games, which form a special case of the Nash

game. In a Nash game each player possesses the same amount of information about

competing players, whereas, in Stackelberg type games, a leader can anticipate the

reactions of the other players, and thus possesses more information in the game. The

leader in a Stackelberg game chooses a strategy from his/her strategy set, and the

followers choose a response based on the leaders actions ([52]), while in a Nash game

all players choose actions simultaneously. When multiple players face optimization

problems in the form of MPECs, EPEC models have been used to simultaneously find

the equilibria of the MPECs ([47, 53, 54, 55]). MPEC, LCP, and EPEC problems are

discussed briefly in the next chapter along with some game theory fundamentals.
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CHAPTER 3

BASIC CONCEPTS

The objective of this chapter is to cover some fundamentals of game theory, rein-

forcement learning, and discuss equilibrium strategies from the perspective of power

market operations. We present a detailed review of some papers that develop method-

ologies to obtain power market equilibria.

3.1 Basic Concepts of Game Theory

Game theory examines the behavior of rational players in interaction with other

rational players. Players are considered to be rational if they maximize their objective

functions given their beliefs about the environment. In a game theoretic setting, play-

ers act in an environment where other players’ decisions influence their payoffs. The

concept of strategy as a complete plan of action provides an approach for modeling be-

havior that takes informational as well as dynamic characteristics of the environment

into account.

3.1.1 Zero Sum and Non-Zero Sum Games

Games can be classified based on payoff structure as zero sum games and non-zero

sum games. A two player zero-sum game is a game in strategic form such that

p1(s1, s2) + p2(s1, s2) = 0, ∀ s1 ∈ S1, s2 ∈ S2 (3.1)
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where p1, p2 are the payoff functions of two players and S1 and S2 are the pure strategy

sets of the two players.

From the above definition, it is seen that zero sum games are strictly competitive

which means that what one player gains the other loses. In non-zero sum games some

outcomes are more favorable to some players than others. Some outcomes may even

yield a positive payoff and others a negative payoff for every player. This introduces a

certain common interest among players to attain such more favorable outcomes even

if they are not the most favorable outcomes for everyone. Such games are non-strictly

competitive since they have both competitive and cooperative elements.

3.1.2 Pure and Mixed Strategy

The concept of strategy is fundamental to game-theoretic analysis as it provides

a complete plan to the player for how to play the game. When players play each

strategy with probability one, then the players are said to have a pure strategy. A

mixed strategy simply means that the players randomly choose a pure strategy. Thus

a mixed strategy is a probability distribution on the set of pure strategies. The set

of mixed strategies always includes all pure strategies because a pure strategy can be

considered as a special case of a mixed strategy in which the respective pure strategy

is played with probability one and any other pure strategy with probability zero.

3.2 Equilibrium in Power Market Games

Participants of the energy market attempt to maximize their benefits by seeking

optimal bidding strategies. A generic version of the bidding strategy formulation

problem in a power network can be given as follows. Let B denote the set of buses in

the network, and Bs ⊂ B denote the subset of supply buses (nodes). Let the number

of generators at a supply bus i ∈ Bs be denoted by Ni, and M denote the number
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of loads in the network. Let Gi = {1, 2, · · · , Ni} and L ={1, 2, · · · , M} denote the set

of generators at a supply bus i and the set of loads in the network respectively. Let

N =
∑

Ni, and G = ∪Gi. To keep the exposition simple, we consider only generator

side bidding in the market.

Let the state of the network at time t (Xt) be the vector of realized loads (demands)

qs
t and prices ps

t . Hence, Xt = {qs
t , p

s
t}, where qs

t = (q1
t , q

2
t , · · · , q

|B|
t ) and qs

t denotes the

realized hourly load quantity vector at the sth bus, s ∈ B. Also, ps
t =(p1

t , p
2
t , · · · , p

|B|
t ),

where ps
t represents the realized hourly price vector at bus s ∈ B.

Let the bid decision vector at the tth time be given by Dt = {Dl
t : l ∈ G}, where

Dl
t is the decision vector of generator l and Dl

t ∈ {Dl} and Dl denotes the set of

all bid parameters vectors for generator l. These bid parameters depend on the na-

ture of bids, for example, polynomial functions and piecewise linear functions, and

determine the offer prices corresponding to the generation quantities. The bidding

process involves selection of bid parameters by the generators, who seek to maximize

their individual profits for the forecasted state of the network Xt. The profits cor-

responding to a set of bids submitted at any time t by the generators are obtained

by solving the optimal power flow (OPF) model. The profit maximization problem

for generator j, as commonly presented in the literature, can be stated as a bi-level

problem as follows. Choose Dj
t , so as to maximize profit g(f j

t , P j
t ), subject to choice

of other bidders Dl
t : l ∈ G \ j and the OPF Problem and its constraints. Where, f j

t

and P j
t are the nodal clearing price (cost of power generation) and quantity allocation

for generator j as determined by the OPF model, which is provided next.

OPF models are formulated either to maximize social welfare or to minimize the

total cost of meeting the power demand of a network. The OPF model simultaneously

satisfies several system related constraints such as demand and supply constraints,

voltage constraints, thermal limit constraints, and the constraints of power flow. Sev-
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eral papers presented to the literature utilize a DC version of the OPF model to

curtail the computational complexity involved in solving an AC-OPF model. We

adopt a similar approach in our work. However, for the sake of completeness, we

provide below a generic mathematical formulation of the cost minimization version

of the AC-OPF model.

Let f j
t denote the cost of active power generation by supplier j at a decision epoch.

Also, let P j
t and Qj

t denote the active and the reactive power generation quantities

respectively.

min
∑
j∈Bs

f j
t (P j

t ) (3.2)

subject to:
∑
j∈Bs

P j
t − l − l(V, θ) = 0, (3.3)

∑
j∈Bs

Qj
t − l̃ − l̃(V, θ) = 0, (3.4)

Sy,z ≤ Smax
y,z ∀ y 6= z ∈ {B} (3.5)

V min
w ≤ Vw ≤ V max

w , ∀ w ∈ {B}, B = {set of buses}. (3.6)

P j
min ≤ P j

t ≤ P j
max, ∀ j ∈ {Bs} (3.7)

Qj
min ≤ Qj

t ≤ Qj
max, ∀ j ∈ {Bs} (3.8)

Constraint 3.3 in the OPF model ensures that all the active demand (l) and the

active transmission losses (l(V, θ)) are met by the generators selected for dispatch

at any given time (active power balance equation). The constraint 3.4 ensures that

all the reactive demand (l̃) and the reactive transmission losses (l̃(V, θ)) are met by

generators selected for dispatch (reactive power balance equation). The term Sy,z in

equation 3.5 denotes the flow limit for the power transmitted from Bus y to Bus z.

Constraint 3.5 ensures that the maximum flow limit constraints in both directions are

not violated. The constraint 3.6 is used to maintain the voltage limits for each Bus.
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Constraints 3.7 and 3.8 are used to maintain active and reactive power generation

limits.

3.3 Solution Strategies

Note that the bi-level bidding strategy problem is presented above from the per-

spective of profit maximization of generator j. But, the requirement of the knowledge

of bid choices of the other players, as stated in the constraint set, makes the bi-level

problem unsolvable in a deregulated market, where bid choices are not known a priori.

Thus, the optimal generator bids should be derived from the Nash equilibrium strate-

gies of the game. However, nonavailability of computationally viable tools to solve

for Nash equilibria of multiplayer games had motivated researchers to look for alter-

native approaches to obtain optimal bidding strategies. For the purpose of examining

the existing literature, we classify these contributions into two major categories: ap-

proaches that optimize individual strategies for given strategies of other players, and

approaches that seek equilibrium strategies.

3.3.1 Optimization of Individual Bidding Strategies

Several different optimization approaches have been used for this task including

genetic algorithms ([56], [57], [58]), evolutionary programming ([59]), Monte Carlo

simulation ([60]), dynamic programming ([61], [62]), and mathematical program with

equilibrium constraints ([52, 46]). In what follows, we review the key contributions

and limitations of the above papers.

The work presented in [56] offers a genetic algorithm (GA) approach to optimizing

profits of individual generators having multiple generating units. Solution of individ-

ual generator profits are obtained by assuming that the bids of other players are

known in the form of probability distribution functions. GA is used as a means to
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navigate through the large actions spaces Dj of the individual generators j ∈ G while

considering randomized bidding behavior of the other players. The solutions thus

obtained do not have any equilibrium properties, since in a noncooperative bidding

environment, no rational generator can be expected to behave randomly guided by

a probability density function. As a result, the expected generator profits calculated

by the algorithm are unlikely to be ever realized.

Attaviriyanapap et al. [59] present an evolutionary programming approach to

finding bidding parameters that maximize individual generators profits. The authors

attempt to obtain optimal bidding strategies of a supplier who owns multiple gen-

erating units. The clearing price f t
j is obtained using a PX-type market settlement

(simple matching of supply and demand curves) for 24 hours of the day. The role of

EP in this paper is to simply search through the decision space for profitable bids.

Due to lack of consideration of OPF and transmission constraints (like the Equations

3.3 - 3.8) the use of such models in real power markets is ineffective.

Wen and David use a Monte Carlo (MC) simulation method to obtain optimal

generator bidding strategies in [60]. In [60], the authors consider rivals bids (Dt
l : l ∈

{G \ j}) to be available in the form of probability density functions and subsequently

use MC simulation to obtain random samples from these bid pdf’s. These samples are

then considered to be fixed in the overall generator bidding strategy problem. Then,

an elementary search technique known as golden section method used in finding the

profit maximizing bid. However, it may be remarked here that the assumption of

probabilistic estimation of rivals bids affects the ability of this approach to attain

true optimality.

Rajaraman and Alvarado [61] present a deterministic nested dynamic program-

ming (DP) approach of finding optimal bidding strategies for multi period power

market problems. DP-based approaches are suitable for small scale problems where
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Table 3.1. Some Important Modeling Attributes from Bidding Strategy Literature

Solution
Methodology

Overall Problem
Structure

# of buses Market Clearing Type of Bids

Genetic algorithms
[56]

Two level
optimization

9-bus DC-OPF linear supply
functions

Genetic algorithms
[57]

Traditional
optimization

24-Bus PX-type linear supply
functions

MPEC [46] Bi-level
optimization

30-Bus DC-OPF linear supply
functions

Evolutionary pro-
gramming [59]

Traditional
optimization

10-Bus PX-type linear supply
functions

Monte Carlo simu-
lation [60]

Stochastic
optimization

6-Bus DC-OPF linear supply
functions

Dynamic program-
ming [62]

Two level
optimization

5-Bus PX-type step function bid
curve

decisions from one period affect the decisions and profits in subsequent periods (day

ahead auction markets). The authors in [61] present several cases with consideration

of hydro and thermal generators as well as cases with price making and price taking

generators. However, their study does not consider multiple competing generators

or transmission constraints. Also, the authors assume that the transition probability

matrices (TPMs) are readily available. However, it is well known that even for prob-

lems of relatively small sizes, determination of TPMs becomes almost impossible. As

a result of such computational and modeling limitations, the approach presented in

[61] cannot be applied to large transmission constrained networks having multiple

competing generators. Nevertheless, the DP model may serve as a guidance tool

for individual generators in determining profitable bidding strategies, for very small

networks with limited state spaces.

Hobbs et al. [46], present a mathematical program with equilibrium constraints

(MPEC) approach to finding optimal bidding strategies of generators in a power

network. The authors assume that while making their own bid all generators have

complete information about rival players’ bids. A bilevel optimization model is formu-

lated, where a generator’s profit maximization problem at the first level is subjected

to the OPF constraints at the second level. As part of the MPEC procedure, the
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OPF constraints are then replaced with equivalent KKT conditions resulting in a

linear complementarity problem framework (LCP). This 2-level problem, known as

MPEC, has a maximization problem in the first level and equilibrium constraints

in the second level. Such problem structures have been gaining significant attention

lately due to their widespread applicability in a variety of fields such as chemical

engineering, transportation science, and power system economics. For this reason, we

chose to present a generic formulation of an MPEC problem based on [63].

Maxx,y,zΠ(x, y, z)

Subject to:0 ≤ F (x, y, z)⊥x ≥ 0,

G(x, y, z) = 0,

z ∈ S,

x, y, z ∈ <,

(3.9)

where z represents first level variables and x and y represent second level variables,

which must satisfy an LCP with fixed values of z from the first level. In general,

0 ≤ x⊥y ≥ 0 is read as x ≥ 0, y ≥ 0,and xy = 0. In the power market context, the

first level variables are generator bids (similar to Dl
t) which serve as fixed parameters

in the second level OPF problem. The above MPEC problem is a non-convex opti-

mization problem, which has to be solved using special solution algorithms such as

the penalty interior point (PIP) method. Details of the PIP algorithm can be found

in [46]. Table 3.1 presents some important attributes of bidding strategy formulation

problems available in literature.
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3.3.2 Approaches Seeking Equilibrium Strategies

In a competitive power network with multiple participants, Nash equilibria (NE)

is that combination of strategies from which no market participant has the incentive

to unilaterally deviate. This can be mathematically stated as:

g(x∗j , x
∗
−j) ≥ g(xj, x

∗
−j) ∀j (3.10)

where, x∗j is the optimal bid of a participant j, and x∗−j are the optimal bids for

all other participants. As alluded to earlier, due to nonavailability of computation-

ally viable approaches to find NE strategies, many researchers have approached the

problem from two different viewpoints: 1) individual generators’ profit maximization

perspective (discussed earlier), and 2) methodologies that solve for equilibria of Nash

games by making assumptions about the competitive bidding behavior of generators

(explained next). Some of these assumptions are Nash-Cournot, Nash-Bertrand, and

Nash-supply function, where all players bid simultaneously. These assumptions are

explained next followed by a detailed discussion of the equilibrium seeking method-

ologies.

1. Nash-Cournot Competition: Under the Cournot assumption the generators

compete only with quantities. Each generator assumes that the opponents

quantity is fixed and then makes his/her own quantity decision. Then the

game is solved for a Nash-Cournot equilibrium, where no generator gains by

unilaterally deviating from his/her bid quantity.

2. Nash-Bertrand Competition: Under the Bertrand assumption the generators

compete with prices. Each generator assumes that the opponents price is fixed
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and then makes his/her own price bid. The NE obtained under such competition

is termed as Bertrand-Nash equilibrium.

3. Nash-Supply Function Competition: Supply functions are price-quantity curves

submitted by generators to the ISO. Supply function competition is often argued

to represent the working of ISO-type power markets more closely than Cournot

and Bertrand type competitions. The resulting equilibria are known as Nash-

supply function equilibria.

4. Stackelberg Competition: Unlike in the above three Nash games, in certain

oligopolistic situations, it is assumed that one of the players has more infor-

mation than the rest. Such an assumption leads to the so-called Stackelberg

game. In a Stackelberg game, a “leader” makes a decision first, and then the

“followers” make their decision knowing the leader’s decision. Such competi-

tion has been shown to be useful in modeling oligopolistic markets with a large

dominating firm and a few smaller competing firms.

Even though the above assumptions have been extensively used in bidding strat-

egy literature, it may be noted that the premise of complete information about

rivals bids before making one’s own bidding decision is not representative of non-

cooperative power market games. In the remainder of this section we briefly discuss

some approaches to find NE bidding strategies of power market games: linear com-

plementarity Problems (LCP), equilibrium problem with equilibrium constraints, and

reinforcement learning (RL) based approach.

3.3.2.1 LCP

A general formulation for linear complementarity problems (LCP) from [64] is

given here. The objective is to find variables w and z where w = (w1, · · · , wn)T , z =
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(z1, · · · , zn)T satisfy w − mz = q, and w ≥ 0, z ≥ 0 and wizi = 0 ∀i. Hobbs [31]

uses such a framework to identify market equilibria in a POOLCO setting. He de-

fines market equilibrium as those set of prices, supply, demand, and line flows that

simultaneously satisfy each market participants first order conditions for maximizing

profit while matching network demand and supply.

The LCP framework from [31] is presented here for exposition. For a constrained

optimization problem, as the one given below,

Max F (x, y),

Subject to :

G(x, y) = 0,

H(x, y) ≤ 0,

x ≥ 0,

(3.11)

the KKT conditions can be written as follows:

x : ∂F/∂x− λ∂G/∂x− µ∂H/∂x ≤ 0; x ≥ 0,

x(∂F/∂x− λ∂G/∂x− µ∂H/∂x) = 0,

y : ∂F/∂y − λ∂G/∂y − µ∂H/∂y ≤ 0,

λ : G(x, y) = 0,

µ : H(x, y) ≤ 0, µ ≥ 0, and µH(x, y) = 0.

(3.12)
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The equations associated with the non-negative variables are known as complemen-

tarity conditions, and λ and µ are the dual variables pertaining to the constraints G

and H [31]. Hobbs develops such KKT conditions and combines them with the mar-

ket clearing conditions. The first order KKT optimality conditions together with the

market clearing conditions form the LCP. An equivalent quadratic program can then

be written for the LCP and solved using standard solvers available in GAMS software.

Another paper which discusses power market games, [65], utilizes the well established

Lemke-Howson algorithm of solving LCPs. In [65], the LCP is formulated from a

bimatrix power market game. It may be noted that, while LCP’s have been shown

(both theoretically and computationally) to obtain NE of 2-player games, nonlinear

complementarity problem (NCP) frameworks have only been theoretically presented

to solve games with more than two players. The proposed approaches of solving

multiplayer games, such as ([39, 40]), still have unresolved computational challenges.

3.3.2.2 EPEC

The MPEC optimization approach presented earlier can be extended to a game

theoretic setting with multiple competing players, known as equilibrium problem with

equilibrium constraints (EPEC). In EPEC, each player is solving an MPEC problem

subject to a set of common OPF constraints. We adopt the same notation used in

the MPEC problem discussed earlier. Let all K players have the first level decision

variables zk, k = 1 · · ·K. The EPEC problem can now be stated as follows [63].

z∗k solves Maxx,y,zk
Πk(x, y, zk, z

∗
−k)

Subject to :

0 ≤ F (x, y, zk, z
∗
−k)⊥x ≥ 0,

G(x, y, zk, z
∗
−k) = 0,
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zk ∈ Sk, and

x, y, z ∈ <.

(3.13)

The variables z∗−k represent optimal and fixed values of opponents. According to [66],

there are two general methods to solve the EPEC problem: obtain the optimality

conditions (KKTs) for all the MPEC problems and solve them together as a com-

plementarity problem, or iteratively solve each of the MPECs using standard MPEC

algorithms (like PIP) until the equilibrium solution of the EPEC game is obtained.

The EPEC problem is extremely complicated and moreover does not guarantee an

NE solution. If a solution does exit, it is called a subgame perfect Nash equilibrium.

Some good applications of EPEC models have been presented in ([53, 47, 54, 55]).

3.3.2.3 RL Based Approach

Value function approximation based Reinforcement Learning (RL) approach, which

we develop in this research, to finding NE differs significantly from the mathematical

programming approaches like EPEC, NCP, and LCP. Unlike in the mathematical

programming approaches, where one assumes complete knowledge of rivals bids, in

our approach, all players compete simultaneously without knowledge of other play-

ers actions. Such a framework, we believe, represents the true noncooperative game

amongst power market participants. In Chapter 5, we use the well established value

approximation mechanism which was previously successfully employed in solving large

scale, Markov and semi-Markov decision process problems with a single player, [67],

to develop a reinforcement learning based algorithm that solves for NE of multiplayer

noncooperative games. We next present some basics of the reinforcement learning

approach.
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3.4 Brief Overview of Reinforcement Learning

The theory of RL is founded on two important principles: Bellman’s equation and

the theory of stochastic approximation ([68, 69]). Any learning model contains four

basic elements:

1. System environment (simulation model)

2. Learning agents (market participants)

3. Set of actions for each agent (action spaces)

4. System response (participant rewards)

Consider a system with three competing market participants. At a decision making

epoch when the system is in state s, the three learning agents that mimic the market

participants select an action vector (a = (a1, a2, a3) ε A). These actions and the

system environment (model) collectively lead the system to the next decision making

state (say s′). As a consequence of the action vector (a) and the resulting state

transition from s to s′, the agents get their rewards (r1(s, a, s′), r2(s, a, s′)), and

r3(s, a, s′)) from the system environment. Using these rewards, the learning agents

update their knowledge base (R-values, also called reinforcement value) for the most

recent state-action combination encountered (s, a). The updating of the R-values is

carried out slowly using a small value for the learning rate. This completes a learning

step. At this time the agents select their next actions based on the R-values for

the current state s′ and the corresponding action choices. The policy of selecting an

action based on the R- values is often violated by adopting a random choice, which

is known as exploration, since this allows the agents to explore other possibilities.

The probability of taking an exploratory action is called the exploration rate. Both

learning and exploration rates are decayed during the iterative learning process. This
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process repeats and the agent performances continue to improve until the process

converges to the optimal solution. For a detailed description of RL, its applications,

and recent advances, the readers are referred to the texts by Gosavi [70], and Sutton

and Barto [71]. In the next chapter, we present a two-tier matrix game-theoretic

model to obtain generation expansion plans for competing generators.
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CHAPTER 4

GENERATION EXPANSION PLANNING MODEL

4.1 Two-Tier Matrix Game Model for GEP

The generation expansion planning model that we propose in this research con-

sists of two tiers, as shown in Figure 4.1. The top tier of the model represents the

investment competition amongst generators. This competitive decision making sce-

nario is modeled as a matrix game and is henceforth referred to as investment game.

The bottom tier, on the other hand, represents the competition amongst generators

to supply electricity into the network. This scenario is also modeled as a matrix game

and is referred to as supply function game. It is called a supply function matrix game

due to the fact that the generators are assumed to compete with supply functions

(Cournot or Bertrand competitions can be used as well). Each strategy combination

of the investment game represents a possible generation capacity expansion alterna-

tive. Therefore, for each such alternative, there exists a corresponding supply function

game, which when solved allows the examination of the profitability of each expan-

sion alternative. We next present the investment matrix game model (top tier) and

supply function matrix game model (bottom tier) in detail. We also explain how the

payoff matrices of these matrix games are calculated, and how the two tiers interact

with each other in order to result in a multi-year, multi-player generation expansion

strategy.
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Figure 4.1. Schematic of the Two-Tier GEP Model for a Two Generator Scenario
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4.1.1 Top Tier: Investment Game

The investment matrix game is defined by a tuple < N,A1, . . . , AN , R1, . . . , RN >.

The elements of the tuple are as follows.

1. N denotes the number of generators.

2. Ak denotes the set of expansion alternatives available to generator k.

3. Rk : A1×. . .× AN → R is the payoff function for generator k, where an element

rk(a1, . . . , aN) of Rk is the risk constrained payoff (explained later) of generator

k.

Rk for all k, can be written in the form of N -dimensional matrices representing the

investment matrix game as follows

Rk =
[
rk(a1, a2, · · · , aN)

]
.
|A1|,...,|AN |
a1=1,...,aN=1 (4.1)

The generators select expansion alternatives from the set of available choices with the

goal of maximizing their payoffs which depend on all other generators’ selections. The

concept of Nash equilibrium is used to describe a strategy as being the most rational

behavior by the generators acting to maximize their payoffs. So, for the investment

matrix game, a pure strategy Nash equilibrium is a collection of expansion alternatives

a∗ = (a1
∗, · · · , aN

∗ ), for which rk(ak
∗, a

−k
∗ ) ≥ rk(ak, a−k

∗ ), ∀ak ∈ Ak, and k = 1, 2, · · · , N ,

where ak indicates the selection of a non-Nash equilibrium alternative by the kth

generator and a−k
∗ indicates the Nash equilibrium choice of all the other generators.

We developed a risk constrained profit calculation model for obtaining the payoff

matrices Rk. This model is presented next.
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4.1.1.1 Risk Constrained Profit Calculation Model

In electric power markets, the amount of revenue earned by a generator, depends

on the interaction of several factors such as strategic bidding behavior of the compet-

ing generators, transmission constraints, system contingencies (line failures, generator

outages), fuel price volatilities, and demand variations. For instance, in a transmis-

sion constrained power network, the generators may be able to use location in the

network to their advantage to bid strategically and make higher profits. On the other

hand, unforseen outages and fuel price volatilities may adversely affect the profits.

Conditional value at risk (CVaR), also known as expected shortfall (ES), is a risk met-

ric that can be used by generators to capture such variabilities for profit calculations.

As noted in the literature ([72, 73]), CVaR is gaining popularity in the finance and

insurance industries as a viable risk metric. Before we discuss CVaR, it is important

to describe how it is an extension of the traditionally used metric called value-at-risk

(VaR). In addition to our work, to our knowledge, the only other paper in open GEP

literature that uses CVaR to aid GEP investment decisions is [74]. The following

discussion about VaR and CVaR is based on [75].

Let Z be the random variable which indicates the return on an investment. Let

α = A% ∈ (0, 1) represent a percentage of worst case scenarios of the return on

the investment. Then the VaR with respect to the z(α) quantile of the of worst case

scenarios is given as,

V aR(α)(Z) = − sup{z|P [Z ≤ z] ≤ α}. (4.2)

However, VaR has two fundamental deficiencies: a) it is the threshold of losses

in the worst case scenarios, and does not provide any information about those losses

that may be significantly greater than VaR, and b) it does not satisfy the property
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of subadditivity, which states that the global risk of a portfolio is always less than or

equal to the sum of the risks of the individual assets (for more details see [72, 73]).

These weaknesses of VaR motivated researchers to develop a new, yet, related

metric called conditional value-at-risk (or expected shortfall, ES). In [75], CVaR has

been shown to address both the above weaknesses of VaR. While VaR is the minimum

of the A% worst case scenarios (losses), CVaR is the average of the A% worst case

scenarios. In other words CVaR is the expected value of losses given that the losses

are greater than VaR. In [75] an estimator for this measure was defined as follows:

CV aRα
n(Z) = −

∑w
i=1 Zi:n

w
, (4.3)

where, Zi:n are the order statistics of the return on investment random variable,

w = bnαc = max[m|m ≤ nα,m ∈ N ], n is the total number of scenarios, and

α ∈ (0, 1) is a probability value.

We use the equilibrium profit from the bottom tier supply function matrix game

to calculate the risk constrained profit for generator i as follows.

Πi = Ω∗
i − ζi (CV aR) , (4.4)

where Ω∗
i is the equilibrium profit for generator i from the supply function game. The

term ζi denotes the risk preference of generator i varying between 0 and 1, and CVaR

is as described in Equation 4.3.

4.1.2 Bottom Tier: Supply Function Game

The supply function game is denoted by the tuple: < N, Ã1, . . . , Ãn, R̃1, . . . , R̃n >.

The elements of the tuple are as follows.
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1. N denotes the number of generators.

2. Ãk denotes the set of supply function bid choices available to generator k.

3. R̃k : Ã1× . . .× ÃN → R is the payoff function for generator k, where an element

r̃k(b1, . . . , bN) of R̃k is the profit of generator k when the generators choose

supply function bids b1 through bN .

R̃k for all k, can be written in the form of N -dimensional matrices representing the

supply function matrix game as follows

R̃k =
[
r̃k(b1, b2, · · · , bN)

]
.
|Ã1|,...,|ÃN |
b1=1,...,bN=1 (4.5)

The generators select bids from the set of available supply function bid choices with

the goal of maximizing their payoffs which depend on all other generators’ bids. The

pure strategy Nash equilibrium for the supply function game is defined as that bid

choice profile b∗ = (b1
∗, · · · , bN

∗ ), for which r̃k(bk
∗, b

−k
∗ ) ≥ r̃k(bk, b−k

∗ ), ∀bk ∈ Ãk, and

k = 1, 2, · · · , N .

The generator profits r̃k(b1, b2, · · · , bN) constituting the supply function game are

calculated as follows [76].

r̃k(b1, b2, · · · , bN) = 1/2 [(pi − xi) + (pi − (xi + yi qi))] qi, (4.6)

where, pi and qi are the optimal price and quantity allocations for bid choices b1,

b2 ,· · ·, bN . These optimal price and quantity allocations are obtained by solving a

linearized DC-OPF model, which is presented next. Note that Ω∗
i in Equation 4.4 is

the equilibrium profit of the supply function game, obtained as

Ω∗
i = 1/2 [(p∗i − xi) + (p∗i − (xi + yi q∗i ))] q

∗
i , (4.7)
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where xi, yi are cost function parameters, and p∗i , q∗i are the equilibrium price and

quantity allocations of generator i.

4.1.2.1 Optimal Power Flow Model

The optimal power flow model used in this research is adopted from [76]. The

independent system operator (ISO) receives supply and demand functions from the

market participants and then solves a social welfare maximization problem. The

OPF computes optimal price and quantity allocations at each bus of the network,

while satisfying system security and transmission related constraints. The DC-OPF

model used here is rather simple and allows for easier economic interpretations than

nonlinear AC-OPF models.

We assume that generators submit linear supply functions to the ISO. The supply

functions have the following general form:

pi = xi + yiqi, ∀i ∈ G, (4.8)

where, G is the set of generators, pi ($/MWH) and qi (MWH) are the price and

quantity respectively, and xi, yi are the intercept and slope of the linear supply

function.

We assume that consumers submit decreasing linear demand functions to the ISO.

The demand functions have the following general form:

pj = xj − yjdj, ∀j ∈ C, (4.9)

where, C is the set of consumers, pj ($/MWH) and dj (MWH) are the price and

quantity respectively, and xj, yj are the intercept and slope of the demand function.
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As stated earlier, this DC-OPF formulation is adopted from Berry et al. [76].

Bh[ph] is the total benefit to the consumers and Ch[Ph] is the total cost to the gener-

ators (see [76] for details). Qh is the total amount of power supplied by all generators

and Dh is the total amount of power demanded by all consumers, at bus h. Rhk is

the reactance on the path from bus h to k, thk is the power flowing from bus h to k,

qi[ph] is the power supplied by supplier i at the price ph, and dj[ph] is the quantity of

power demanded at price ph. Assuming that supply and demand bids submitted by

the generators and consumers are linear, this becomes an optimization problem with

a quadratic objective function subject to linear constraints 4.11 - 4.16. Constraints

4.13 and 4.14 help to satisfy Kirchhoff’s current and voltage laws respectively, while

constraints 4.15 and 4.16 are used to satisfy transmission limits.

Max TW [P ] =
∑
h

Bh[ph]−
∑
n

Ch[ph] (4.10)

Subject to constraints :

Qh −
∑

i∈i(h)

qi[ph] = 0 ∀ nodes h (4.11)

Dh −
∑

j∈j(h)

dj[ph] = 0 ∀ nodes h (4.12)

Qh −Dh −
∑

k∈k(h)

(thk − tkh) = 0 ∀ nodes h (4.13)

∑
hk∈A(v)

Rhk(thk − tkh) = 0 ∀ voltage loops v (4.14)

thk ≤ Thk ∀ arcs hk (4.15)

thk ≥ 0 ∀ arcs hk (4.16)

The payoffs for each generator calculated from the solution of the OPF model are

used to populate the N-dimensional payoff matrices for the supply function game.

Then, the reinforcement learning algorithm, we develop in Chapter 5 (see [10]), is

used to obtain the equilibrium bids and corresponding price and quantity allocations.
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These allocations are used to compute the risk constrained profits, which, as explained

before, form the N-dimensional payoff matrices of the investment game. Then, the

reinforcement learning algorithm (Chapter 5) is used to obtain the equilibrium ex-

pansion plan for a given year for all generators. This process is repeated one year at

a time to obtain the multi-year, multi-player, generation expansion strategy.

In the next chapter we show how the matrix games (such as those encountered

in both tiers) are the fundamental building blocks of a much larger class of problems

known as stochastic games. We then develop a value function approximation based

learning algorithm to solve these matrix games. Later, the solutions obtained by

the algorithm are benchmarked against those obtained by a commercial matrix game

solver.
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CHAPTER 5

REINFORCEMENT LEARNING BASED SOLUTION ALGORITHM
FOR MULTIPLAYER MATRIX GAMES

5.1 Matrix Games

A matrix game can be defined by a tuple < n, A1, . . . , An, R̃1, . . . , R̃n >. The

elements of the tuple are as follows.

1. n denotes the number of players.

2. Ak denotes the set of actions available to player k.

3. rk : A1 × . . . × An → R is the payoff function for player k, where an element

rk(a1, . . . , an) is the payoff to player k when the players choose actions a =

(a1, · · · , an).

R̃k for all k, can be written as an n-dimensional matrix as follows

R̃k =
[
rk(a1, a2, · · · , an)

]a1=|A1|,...,an=|An|

a1=1,...,an=1
. (5.1)

The players select actions from the set of available actions with the goal of maxi-

mizing their payoffs which depends on all the players’ actions. The concept of Nash

equilibrium is used to describe the strategy as being the most rational behavior by the

players acting to maximize their payoffs. So for a matrix game, a pure strategy Nash

equilibrium is an action profile a∗ = (a1
∗, · · · , an

∗ ), for which rk(ak
∗, a

−k
∗ ) ≥ rk(ak, a−k

∗ ),

∀ak ∈ Ak, and k = 1, 2, · · · , n. The equilibrium values denoted by V al[·] for player
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k with payoff matrices R̃k is obtained as V al[R̃k] = rk(a1
∗, · · · , an

∗ ). The appealing

feature of the Nash equilibrium is that any unilateral deviation from it by any player

is not worthwhile. A mixed strategy Nash equilibrium for matrix games is a vector

(π1
∗, · · · , πn

∗ ), for which we can write

|A1|∑
a1=1

. . .
|An|∑
an=1

πk
∗(a

k)π−k
∗ (a−k)rk(ak, a−k) ≥

|A1|∑
a1=1

. . .
|An|∑
an=1

πk(ak)π−k
∗ (a−k)rk(ak, a−k),

(5.2)

where π−k
∗ (a−k) = π1

∗(a
1) · · ·πk−1

∗ (ak−1).πk+1
∗ (ak+1) · · ·πn

∗ (a
n).

A matrix game may not have a pure strategy Nash equilibrium, but it always

has a mixed strategy Nash equilibrium ([32]). There exist methods for solving Nash

equilibrium of finite nonzero-sum matrix games ([37, 40, 43]). Since in matrix games,

there are no transition probability functions, matrix games are static. Also matrix

games can be viewed as recursive stochastic games with a single state. On the other

hand, stochastic games can be viewed as extensions of matrix games from a single

state to a multi-state environment.

A general sum stochastic game has equivalent matrix games. Therefore, once the

equivalent matrix games are established, solution of a stochastic game reduces to

solving the set of matrix games (one for each state). Hence, matrix games play a

very critical role for solving this broad class of problems. The intent of the following

section is to provide a brief overview of the main results from the recent literature

concerning the existence of equivalent matrix games for both discounted reward (DR)

and average reward (AR) stochastic games.
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5.1.1 Equivalent Matrix Games for Discounted Reward Stochastic Games

A stochastic game can be defined by a tuple < n, S, A1, ..., An, P, R̃1, ..., R̃n >,

which differs from matrix games by having the following additional elements:

1. S: a finite set of states (s) of the environment, and

2. P : the set of transition probability matrices, where p(s′ | s, a) is the transition

probability of reaching state s′ as a result of a joint action a by all of the n

players.

In a stochastic game, the transition probabilities and the reward functions depend

on the choices made by all agents. Thus, from the perspective of an agent, the game

environment is nonstationary during its evolution phase. However, for irreducible

stochastic games, optimal strategies constitute stationary policies and hence it is suf-

ficient to consider only the stationary strategies ([36]). We define πk(s) as the mixed

strategy at state s for agent i, which is the probability distribution over available

action set, Ak(s), of player k. Thus πk(s) = {πk(s, a) : a ∈ Ak(s)}, where πk(s, a) de-

notes the probability of player k choosing action a in state s, and
∑

a∈Ak(s) πk(s, a) = 1.

Then π = (π1, ..., πn) denotes a joint mixed strategy, also called a policy. A pure ac-

tion a ∈ Ak(s, a) can be treated as a mixed strategy πk for which πk(a) = 1. Let the

cardinality of Ak(s) be denoted by mk(s).

Under policy π, the transition probability can be given as

p(s′ | s, π) =
m1(s)∑
a1=1

· · ·
mn(s)∑
an=1

p(s′ | s, a1, ..., an)πn(s, an) · · ·π1(s, a1). (5.3)
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The immediate expected reward of player k induced by a mixed strategy π in a state

s is given by

rk(s, π) =
m1(s)∑
a1=1

...
mn(s)∑
an=1

rk(s, a1, ..., an)πn(s, an)...π1(s, a1). (5.4)

Then the overall discounted value of a policy π to player k starting in state s can be

given as

V k
β (s, π) =

∞∑
t=0

βtEs(r
k
t ) =

∞∑
t=0

βt
∑
s′∈S

pt(s′ | s, π)rk(s′, π), (5.5)

where pt(.) denotes an element of the tth power of the transition probability matrix

P .

The discounted reward given in (5.5) can be rewritten in component notation in

terms of expected immediate reward and the expected discounted value of the next

state as follows

V k
β (s, π) = rk(s, π) + β

∑
s′∈S

p(s′ | s, π)Vk
β(s′, π), (5.6)

from which the definition of Nash equilibrium can be given as

rk(s, π∗) + β
∑
s′∈S

p(s′ | s, π)V k
β (s′, π∗) ≥ rk(s, π−k

∗ , πk) + β
∑
s′∈S

p(s′ | s, π−k
∗ , πk)

V k
β (s′, π−k

∗ , πk). (5.7)

Directly solving for Nash equilibrium using the inequality (5.7) is difficult, even

when the reward functions and transition probabilities are available. Filar and

Vrieze [36] combined the theories of discounted Markov decision processes and Matrix

games to develop an auxiliary bi-matrix game for two player discounted stochastic
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games. The above technique is extended in [34] to n-player games for constructing

n-dimensional equivalent auxiliary matrices Qk(.) for all players k = 1, ..., n.

The elements of the Qk(.) matrices are payoffs for all possible pure action sets

a, which take into account both the immediate reward and the future opportunities.

For s ∈ S, the matrix with size m1(s)×m2(s)× ...×mn(s) for the kth player is:

Qk(s) =

rk(s, a1, ..., an) + β
∑
s′∈S

p(s′ | s, a1, ..., an)V k
β (s′, π∗)

a1=m1(s),...,an=mn(s)

a1=1,...,an=1

(5.8)

where V k
β (s′, π∗) is the equilibrium value for the stochastic game starting at state s′

for player k. Note that this auxiliary matrix, Qk(.) captures the information from

the matrix game resulting from the pure strategies as well as the equilibrium payoff

of the stochastic game. This enables the establishment of the connection between

the matrix games and discounted reward stochastic games as given by the following

result of [34].

In the following, Theorem 1, items 1 and 2 are equivalent.

1. π∗ is an equilibrium point in the discounted reward stochastic game with equi-

librium payoffs (V 1
β (π∗), ..., V

n
β (π∗)).

2. For each s ∈ S, the strategy π∗(s) constitutes an equilibrium point in the

static n-dimensional matrix game (Q1(s), ..., Qn(s)) with equilibrium payoffs

(V al[Q1(s), π∗], · · · , V al[Qn(s), π∗]). The entry of Qk(s) corresponding to ac-

tions a = (a1, · · · , an) is given by Qk(s, a) = ri(s, a)+β
∑

s′∈S
p(s′ | s, a)Vi

β(s′, π∗),

for i = 1, ..., n, where a ∈
n∏

i=1
Ai(s).

We note that, the entries in this matrix game (5.8) have similar structure to the

Bellman’s optimality equation for discounted MDP. Well known algorithms to solve

Bellman’s discounted optimality equation are value iteration and policy iteration.
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An extension of the value iteration and redefinition of the value operator to solve

stochastic games was presented in [77]. There exist learning algorithms that attempt

to learn the entries of the Qk(·) matrices. The matrices are updated during each stage

and are expected to converge to their optimal forms. Minmax Q-learning algorithm

for discounted zero-sum games is presented in [78]. A Nash Q-learning for discounted

general-sum games is presented in [79]. Both Minmax Q-learning and Nash-Q learning

algorithms are extensions of the model-free reinforcement Q-learning [80, 71]. A

summary of the available stochastic game algorithms can be found in [81]. One

assumption that is inherent in the above literature is that once the equivalent matrices

Qk(·) are constructed, they can be solved using existing methods. However, the

existing methods for obtaining NE value (V al[Qk(s), π∗]) of n-player (n > 2) matrix

games are fraught with computational and convergence related challenges ([39, 40]).

Development of a computationally viable method of finding the NE value of a matrix

game (V al(Qk
t (s), (πt)∗)) is still an open challenge and is addressed in this research.

5.1.2 Equivalent Matrix Games for Average Reward Stochastic Games

Let V k
α (π∗) denote the gain equilibrium value, and hk(π∗) denote the bias equilib-

rium value of an average reward stochastic game. The above equilibrium values can

be defined as

V k
α (s, π∗) = lim sup

T→∞

1

T

T−1∑
t=0

pt(s′ | s, π∗)rk(s′, π∗). (5.9)

and

hk(s, π∗) = lim
T→∞

Es

T−1∑
t=0

[rk
t − gk(π∗)], (5.10)

where gk(π∗) is long-run expected average-reward, which can be given by

gk(π∗) = lim sup
T→∞

E(
1

T

T−1∑
t=0

rk
t ). (5.11)
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Similar to the discounted games, for n-player average reward games, it is shown in

[33] that n-dimensional equivalent auxiliary matrices Rk(.) for all players k = 1, ..., n

can be constructed. The elements of these matrices are payoffs for all possible pure

action sets a, which take into account both the immediate reward and the future

opportunities. For s ∈ S the matrix with size m1(s)×m2(s)× ..×mn(s) for the kth

player can be given by

Rk(s) =

rk(s, a1, ..., an)− V k
α (π∗) +

∑
s′∈S

p(s′ | s, a1, ..., an)hk(s′, π∗)

a1=m1(s),...,an=mn(s)

a1=1,...,an=1

(5.12)

The following theorem establishes the connection between average reward irreducible

stochastic games and the average reward matrix games ([33]).

In the following, Theorem 2, items 1 and 2 are equivalent.

1. π∗ is an equilibrium point in the average reward irreducible stochastic game

with bias equilibrium value hk(π∗) and gain equilibrium value V k
α (π∗) for k =

1, 2, · · · , n.

2. For each fixed s ∈ S, the strategy set π∗(s) constitutes an equilibrium point in

the static n-dimensional equivalent matrix game (R1(s), · · · , Rn(s)) with bias

equilibrium value hk(s, π∗) and gain equilibrium value V al[Rk(s), π∗] for k =

1, · · · , n.

So far, we have defined matrix games and presented a summary of the available

results from [34] and [33]. These results show that for both discounted and average

reward stochastic games, there exist equivalent matrix games, the solutions of which

provide the equilibrium strategies and values. Clearly, computationally feasible so-

lution methodologies for matrix games play a fundamental role in solving a large
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class of stochastic games. In what follows, we present a new algorithm that uses a

reinforcement learning approach to solve matrix games.

5.2 Finding NE of Matrix Games

In this section we present a new approach to obtain Nash equilibrium of n-player

matrix games. Let Rk(a) denote the reward matrix of the kth player of which

rk(a1, · · · , an) are the matrix elements. Define the value of an action ak to player

k as

V al[Rk(ak)] =
∑

{a1,···,an\ak}
p(a−k, ak)rk(a1, · · · , ak, · · · , an), (5.13)

where p(a−k, ak) denotes the probability of choice of an action combination a−k by

all the players while player k chose action ak. In decision making problems with

a single player (MDPs and SMDPs), there exist optimal values for each state-action

pair, which determine the optimal action in each state ([68]). Drawing an analogy, for

matrix games that have multiple players and a single state, we conjecture that there

exist optimal values for all actions of the players that can yield pure and mixed NE

strategies. However, the probabilities (p(a−k, ak)) needed to compute these values

are impossible to obtain for real life problems without prior knowledge of players’

behavior. Therefore, we employ a learning approach to estimate the values of the

actions as follows. We rewrite (5.13) as

V al[Rk
t+1(a

k)] = (1− γt)[R
k
t (a

k)] + γt

[
rk(a1, · · · , ak, · · · , an)

]
. (5.14)

The algorithm presented below utilizes the value learning scheme (5.14) to derive

pure and mixed NE strategies for n-player matrix games.
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5.2.1 A Value Iteration Algorithm for n-Player Matrix Games

We assume that the game has n-players and each player k has a set of Ak action

choices. Hence, n different reward matrices of size |A1|×|A2|×· · ·×|An| are available.

1. Eliminate rows and columns of the matrices associated with the dominated

strategies. A dominated strategy is one that will never be adopted by a rational

player irrespective of the choices of other players. A strategy a ∈ Ak for player

k is said to be dominated if r(k, a, a−k) ≤ r(k, ā, a−k), where ā ∈ Ak\a and a−k

denotes the actions of all other players.

2. Let iteration count t = 0. Initialize the R-values for all player and action

combinations R(k, a) to an identical small positive value (say, 0.001). Also

initialize the learning parameter γ0, exploration parameter φ0, and parameters

γτ , φτ needed to obtain suitable decay rates of learning and exploration. Let

Maxsteps denote the maximum iteration count.

3. If t ≤ Maxsteps, continue learning of the R-values through the following steps.

(a) Greedy action selection for pure strategy Nash equilibrium: Each player k,

with probability (1−φt), chooses a greedy action for which Rk(a) ≥ R(k, ā).

A tie is broken arbitrarily. With probability φt, the player chooses an ex-

ploratory action from the remaining elements of Ak (excluding the greedy

action), where each exploratory action is chosen with equal probability.

Probabilistic action selection for mixed strategy Nash equilibrium: Com-

pute the probabilities for the action choices using the ratio of R-values at

iteration t as follows. For each player k, the probability of choosing the

action a ∈ Ak is given by R(k,a)∑
b∈Ak

R(k,b)
.
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(b) R-Value Updating: Update the specific R-values for each player k corre-

sponding to the chosen action a using the learning scheme given below.

Rt+1(k, a)← (1− γt)Rt(k, a) + γt (r(k, a)) , (5.15)

where a denotes the action combination chosen by players.

(c) Set t← t + 1.

(d) Update the learning parameters γt and exploration parameter φt following

the decay scheme given by Darken et al. in ([82]):

Θt =
(

Θ0

1 + u

)
, where u =

(
t2

Θτ + t

)
, (5.16)

where Θ0 denotes the initial value of a learning/exploration rate, and Θτ

is a large value (e.g., 106) chosen to obtain a suitable decay rate for the

learning/exploration parameters. Exploration rate generally has a large

starting value (e.g., 0.8) and a quicker decay, whereas learning rate has a

small starting value (e.g., 0.01) and very slow decay rate. Exact choice of

these values depends on the application ([11, 12]).

(e) If t < MaxSteps, go to Step 3(a), else go to Step 4.

4. Equilibrium Strategy Determination: For each player k, the pure strategy is

action a for which R(k, a) ≥ maxb∈Ak
R(k, b). The pure strategies for all play-

ers combined constitute the pure strategy equilibrium. For each player k, the

mixed strategy is to select each action a ∈ Ak with probability R(k,a)∑
b∈Ak

R(k,b)
.
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CHAPTER 6

EMPIRICAL ANALYSIS AND PRACTICAL APPLICATION

6.1 Numerical Evaluation of the Learning Algorithm

In this chapter we present results from an extensive comparative numerical study

conducted with an objective of establishing the ability of the RL algorithm to obtain

Nash equilibrium for n-player matrix games. For this purpose, sixteen matrix game

examples with known Nash equilibria were solved by using both an openly available

software (GAMBIT) and the RL algorithm. To demonstrate the practical applicabil-

ity of the RL algorithm, we also solved a matrix game that models strategic bidding

in a restructured electric power market.

6.1.1 Matrix Games with Known Equilibria

Matrix games that were studied consisted of up to four players and sixty four

different action choices. Ten out of these sixteen examples have pure strategy Nash

equilibria, which were solved using the variant of the RL algorithm that seeks a pure

strategy. The remaining six games were solved using the mixed strategy version of

the RL algorithm.

Table 6.1 summarizes the matrix games specifying the number of players and their

available action choices. Some of these problems are adopted from GAMBIT library

of matrix games, for which the file names used in GAMBIT are used as identifiers.

The Nash equilibrium solutions obtained by both GAMBIT and RL algorithm are
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Table 6.1. Sample Matrix Games with Pure Strategy Nash Equilibria

Table 6.2. Pure Strategy Nash Equilibrium Results
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summarized in Table 6.2. The following observations can be made from the results.

For all ten games, the RL algorithm found a Nash equilibrium which coincided with a

GAMBIT solution. It may be noted that GAMBIT obtained multiple pure strategy

NE for six out of the ten games. For each of these games (except in Game #7), RL

algorithm chose the equilibrium with the highest player rewards. Though a formal

mathematical proof will be required to support this observation, we believe that, since

the RL algorithm learns the values for the actions and chooses actions based on these

values, the solution tends to converge to the NE with the highest player rewards.

Table 6.2 also presents the convergence time of the RL algorithm which was run

for 10,000 iterations for all the games on a computer with a 1.6 GHz Pentium M

processor. However, an accurate assessment of the convergence time will require

further optimization of the learning parameters of the algorithm, which could be

problem dependent. For example, many of the games that are presented in the

table converged much sooner than 10,000 iterations. Hence, the convergence times

presented here are intended only to provide a general idea of the computational efforts

required by the algorithm.

Table 6.3 presents the comparison of mixed strategies obtained by GAMBIT and

the RL algorithm for six matrix games. Though GAMBIT found multiple mixed NE

for most of these problems, for fairness of comparison, only those NE with maximum

player rewards obtained by GAMBIT are presented in the table. As evident from the

table, though the mixed strategies obtained by the RL algorithm are different from

the NE obtained by GAMBIT, player rewards from the RL algorithm in almost all

of the games are comparable. It can also be seen from the table that even when the

mixed strategy version of the RL algorithm is implemented, it yields a pure strategy

(if one exists, as in Games 4 and 5). It may be noted that for Games 4 and 5,

GAMBIT also finds the pure strategies. However, in this table we present only mixed
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Table 6.3. Mixed Strategy Equilibrium Results

strategy results obtained by both GAMBIT and the RL algorithm. In Game 6, where

the two players have 64 actions each, the mixed strategies for both players have large

support sets and thus could not be presented in the table. Therefore, we chose to

present only the player rewards as means for comparison. In the next subsection, we
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present a matrix game example from a real life marketplace that is settled through

multiparty competition on a periodic basis.

6.1.2 A Power Market Matrix Game

In restructured electric power markets, like in PJM (Pennsylvania- Jersey- Mary-

land), New York, New England, and Texas, power is traded in long term bilateral

market, day ahead market, and spot market. The generators and retailers compete

in the market by strategically bidding for price and quantity of power traded in order

to maximize profits. The market is settled by an independent system operator, who

matches the supply and demand and satisfies the network constraints while maxi-

mizing social welfare (total benefit minus total cost). This settlement yields price

and quantity allocations at all the network nodes. The generators strategize to raise

their prices above the marginal (base) costs, while the retailers’ strategies are aimed

at maintaining prices close to the marginal costs. The ability of the generators to

maintain prices above the marginal costs for a sustained period of time is defined as

market power. A market is said to be competitive when the prices are at or near the

marginal costs, which is one of the primary objectives of a restructured electricity

market design. A day ahead power market can be modeled as a repeated n-player

matrix game, of which the reward matrices can be constructed using the producer

surplus (for generators) and consumer surplus (for retailers).

We consider a four bus (two generators and two retailers) power network as shown

in Figure 6.1, which was studied in ([76]). The supply function bids of the generators

at nodes A and B and the demand functions of the retailers at nodes C and D are as

follows: pS1 = a1 + m1q1, pS2 = a2 + m2q2, pD1 = 100 − 0.52d1, pD2 = 100 − 0.65d2,

where q1 and q2 are the quantities (in megawatt-hour, MWh) produced by generators

S1 and S2 respectively, and d1 and d2 are the quantities demanded by the retailers D1
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and D2 respectively. The supply function has two strategic bid parameters (intercept

a in $/MWh and slope m) that the generators manipulate to maximize their profits.

Demand side bidding by the retailers is not considered and hence the demand function

parameters are maintained constant at their base values. As in ([76]), the reactances

are considered to be the same on all lines.

Figure 6.1. 4-Bus Power Network

In [76], the effects of strategic bidding are studied by imposing transmission con-

straints on lines AC and BD (one at a time) resulting in network congestion. Nash

equilibria for both slope-only and intercept-only bidding scenarios for each of the

transmission constrained cases (AC and BD) are separately examined.

Berry et al. [76] used an iterative algorithm to obtain NE of the above game. The

algorithm involves solving the ISO’s problem for a series of bid options of a generator,

while holding the bids of the other generator constant. The bid option that produces

maximum profit is then fixed, and the same procedure is repeated for the other

generator. This process is repeated until neither generator has an alternative bid to

further improve profit. The matrix game approach developed in this research differs
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from the above approach in that all generators select actions simultaneously without

any knowledge of the others actions.

In order to apply the learning algorithm, as a first step, the reward matrices for

the generators are constructed. To accomplish this, the feasible range of the bid

parameters are suitably discretized (which dictate the size of the reward matrices),

and the rewards for each combination of the generators bids are calculated. It may

be noted that generator reward is a function of the nodal prices and quantities,

which are obtained by solving a social welfare maximization problem. Details of the

mathematical formulation can be found in ([76]). The feasible ranges of slope and

intercept parameters are discretized to 250 values giving matrix sizes of 250×250. In

particular, the slope parameter ranged from 0.35 to 2.85 for S1 and 0.45 to 2.95 for

S2, both in steps of 0.01. The intercept bid parameter for both generators S1 and S2

ranged from 10 $/MWh to 260 $/MWh with a step length of 1 unit. The solution of

the social welfare problem and calculation of the generator rewards for all the above

bid combinations are accomplished using GAMS software. The results from ([76])

and those from the learning algorithm are presented in Table 6.4. It can be seen from

the table that the learning algorithm obtains better or comparable profits for both

generators in all cases.

We also extend the numerical experimentation by allowing generators to bid for

both slope and intercept together, instead of bidding for one parameter at a time as

in ([76]). The bid parameters in this experiment are discretized as follows. The slope

is varied in twenty five steps of 0.1 for both generators ranging from 0.35 to 2.85 for

S1 and 0.45 to 2.95 for S2. The intercept is varied in twenty five steps of 3 ranging

from 10 $/MWh to 85 $/MWh. Hence, each generator has 25 × 25 = 625 action

choices and the resulting reward matrices are of size 625 × 625. The RL algorithm

is run for 500,000 iterations, which took 770 seconds on a computer with a 2 GHz

53



Pentium IV processor. As shown in Table 6.4, in the AC-congestion case, bidding in

both slopes and intercepts lead to similar profits as in the cases of one parameter at

a time bidding. Whereas, in the case of BD-congestion, the profits obtained by the

players through joint bidding is much higher than bidding one parameter at a time.

Table 6.4. Results from the Study of 4-Bus Power Network

6.2 Some Remarks

Though the internet era has provided the technological infrastructure necessary

to invigorate market competition, lack of commensurate advancements in computa-

tional algorithms to solve multiplayer games has been a limiting factor in examining

the market behavior. Meteoric rise in computing power via tera and peta scale com-

puting (made possible by efficient harnessing of cluster computing) has created an

opportunity to break through perceived computational barriers of state space explo-

54



sion. This research presents a new computational approach to find Nash equilibrium

of multiplayer matrix games. The approach is founded on the value function learning

strategy that is being successfully used in solving large scale decision making prob-

lems modeled as Markov and semi-Markov decision processes. In the wake of recent

studies that link a large class of stochastic games to matrix games ([34, 33]), our

solution approach stands to impact a broad range of decision making problems.

The comparative numerical results presented for a large number of matrix games

help to demonstrate the validity of our conjecture (in Chapter 5, Section 5.2) on

value function guided NE determination. Though one might think that games gen-

erally involve a larger number of players than what is considered in the example

problems, in real life, applications of matrix games tend to have a limited number of

players. This oligopolistic structure of most contemporary markets naturally occurs

due to extensive market segmentation. Some examples of such oligopolistic markets

include retail sales, home and auto insurance, mortgage lending, service industries

like airlines, hotels, and entertainments.

In Chapter 5, we developed a solution algorithm to solve multi-player matrix

games and in the current chapter we benchmarked the solutions obtained from the

RL algorithm with those obtained from GAMBIT. In the following chapter, we present

a detailed solution framework for the overall two-tier model to obtain multiyear, mul-

tiplayer GEP strategies. The algorithm utilizes the RL based solution algorithm, de-

veloped here, to solve the matrix games embedded within the two-tier GEP model.
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CHAPTER 7

SOLUTION FRAMEWORK FOR TWO-TIER GEP MODEL

7.1 Solution Algorithm for the Two-Tier GEP Model

The following step by step algorithm is used to solve the two-tier matrix game

model for generation expansion planning. A schematic representation of the algorithm

is presented in Figure 7.1.

1. At the start of every year, potential investors (generators) assess the future de-

mand projections, profits from previous years, network conditions, and market

design incentives to develop a set of feasible generation expansion investment

alternatives (Box 1).

2. Let ai : i = 1, · · · , N denote the number of investment alternatives available to

generator i. Then, the investment matrix game A is an N -dimensional matrix

of size a1 × a2 × · · · × aN (Box 2).

3. For each element of matrix game A, there is a corresponding supply function

(SF) matrix game of size
∏N

i=1 bi, where bi denotes the number of supply function

bids of generator i (Box 3).

4. Profits for each element of the SF games (r̃k(b1, b2, · · · , bN)) are obtained after

solving the corresponding DC-OPF (Box 4). See Equation 4.6.

5. Once the profits for each element of the SF games are obtained, a value approx-

imation based reinforcement learning algorithm (Chapter 5) is used to find the
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equilibrium profits (Ω∗
i ) for the generators (Box 5). See Equation 4.7 for the

formula used to compute Ω∗
i .

6. Subsequently, these equilibrium profits and respective equilibrium bids are uti-

lized to compute the risk constrained profits (RCP, Πi) via a conditional value-

at-risk measure (Box 6). See Table 7.1 for the steps involved in computing the

CVaR and see Equation 4.4 for the formula to compute Πi.

7. These risk constrained profit values constitute the payoff matrices for investment

matrix game A. Finally, the reinforcement learning algorithm, developed in

(Chapter 5), is used on matrix game A to obtain the equilibrium solution. This

solution is the risk constrained generation expansion strategy for the year under

consideration (Box 7).

8. This procedure (Steps 1-7) is repeated one year at a time, until the generation

expansion strategy for the entire planning horizon is obtained for each generator.
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Figure 7.1. Schematic for Two-Tier GEP Model Solution Algorithm
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Table 7.1. Steps for Calculating CVaR

Step 1 Define contingency scenarios j = 1, · · · , n where n ∈ N is the
total number of scenarios.

Step 2 Use the equilibrium price-quantity bids from every SF game
and solve the DC-OPF problem for all contingency scenarios.

Step 3 Obtain profits βi
j for each contingency scenario j and genera-

tor i.

Step 4 β̂i
j is computed as the difference between the equilibrium prof-

its of the SF game and the profits (βi
j) from contingency

scenarios.
For example, if the equilibrium profit from the SF game is
$100 and the profit made due to a contingency scenario is
$70, the β̂i

j is -$30.

Step 5 Using β̂i
j values from all the scenarios, compute the order

statistics β̂i
(1:n),≤, · · · ,≤, β̂i

(n:n);∀i.
Step 6 For a pre-defined value of α ∈ (0, 1), calculate CV aR(α)

n , using
Equation 4.3.

Step 7 Depending upon the risk preference of each generator ζi, com-
pute the risk constrained profit using Equation 4.4.

Step 8 Repeat steps 1-7 for all
∏N

i=1 ai SF games.
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CHAPTER 8

NUMERICAL ANALYSIS

8.1 Numerical Experimentation and Analysis

To demonstrate how the two-tier model works, we chose a 5-bus network from

Powerworld software package [83]. The 5-bus network shown in Figure 8.1, consists

of four loads and seven transmission lines and is currently served by three generators.

There are two main reasons for choosing this particular network. First, we believe that

the number of buses and generators are adequate to demonstrate the applicability of

the two-tier model. Second, the relatively small size of the network allows for detailed

numerical experimentation and analysis. We next present the important features of

the sample problem.

Table 8.1 shows demand curve parameters for a four year planning horizon. The

intercept parameter (in column 2) is considered the same for all four years, while the

slope parameter is reduced each year indicating a growth in demand. Consistent with

industry standards and energy literature, we make appropriate assumptions about

marginal supply functions for coal, natural gas, nuclear, and petroleum fired plants,

as shown in Table 8.2.

To keep the problem exposition simple, we assume that Generator 1 (located

at Bus 1) and Generator 2 (located at Bus 4) compete against each other, while

Generator 3 (located at Bus 2) acts as the price-taker. In other words, Generators 1

and 2 submit strategic bids aimed at maximizing individual profits, while Generator
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Table 8.1. 4-year Demand Projections

Table 8.2. Supply Function Parameters of Generators

3 simply accepts the price set by the market. In order to maintain the dimensionality

of the sample network, we assume that generators do not bid strategically for newly

built plants, i.e., new generating plants, if and when added at Buses 3 and 5, act as

price-takers. While bidding, generators 1 and 2 hold their intercepts constant at their

base values (as shown in Table 8.2) and bid strategically only with respect to slopes.

We allow generators to bid in increments of 0.1 from their base values up to 10 steps,

which means that the supply function matrix game has a size of 10× 10. It may be

noted that the reinforcement learning based solution algorithm is capable of handling

much larger games (see [10]). That is, we could allow generators to bid strategically

in both slope and intercept. Limiting the supply function game to 10 × 10 is done

only for the ease of exposition.
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Figure 8.1. Five Bus Electric Power Network

Table 8.3. Line Failure Scenarios used in Computing CVaR

To demonstrate computation of CVaR, we subjected the sample network to signifi-

cant variability through hundred different demand and line failure scenarios. Columns

2 and 4 of Table 8.3 show the lines that are assumed to fail. The ten demand vari-

ability scenarios are shown in Table 8.4. Using the procedure shown in Table 7.1, we

compute the CVaR and subsequently use it to obtain the risk constrained profit.

62



Table 8.4. Demand Variations used in Computing CVaR

8.1.1 Computational Results

The objectives of the numerical experimentation are three-fold: to demonstrate

the ability of the model to obtain multi-year, multi-player, generation expansion plans,

to present a statistical analysis of the impact of demand variations and transmission

constraints on the nodal prices in the network before and after expansion, and to

demonstrate how risk preferences of generators affect the choice of expansion plans.

Table 8.5 presents results of the GEP model for a four year planning horizon for

the demand projection scenario depicted in Table 8.1. Generators are assumed to be

highly risk prone (ζ = 0.1) during the four year period. As presented in the Table 8.5

(Year 1, top segment), the current plants in the network are: a 50 MW natural gas

plant at Bus 1 owned by Generator 1, a 50 MW natural gas plant at Bus 4 owned

by Generator 2, and a 100 MW nuclear plant at Bus 2 owned by Generator 3. As

shown in the table, Generator 1 has the following investment alternatives: do nothing

(or post pone expansion), expand capacity of the existing natural gas plant at Bus 1

from 50 MW to 100 MW, or build a 50 MW coal plant at Bus 3. Similarly, Generator
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Table 8.5. GEP Decisions for Demands from Table 8.1 (ζ = 0.1)
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2 has the following investment alternatives: do nothing, expand capacity of existing

natural gas plant at Bus 4 from 50 MW to 150 MW, or build a petroleum fired plant

at Bus 5 with capacity of 50 MW.

The investment alternatives chosen here are somewhat arbitrary. In reality, fea-

sible expansion plans can be developed by considering one year of operation at a

time. Operating profits for potential expansion actions can then be calculated from

previous years dispatch and LMP results. Investment costs can be annualized based

on a risk-adjusted discount rate and subtracted from the operating profits. This gives

a ranking of technologies from which a selection of possible expansion actions could

be made. An expansion action can consist of a single plant or a portfolio of new

plants at different locations in the grid. A user-defined limit could be imposed on

the number of possible actions for each generator to reduce the dimensionality of the

problem. Note that we do not consider transmission investments as potential expan-

sion actions in the model. However, investments in new transmission can be specified

as an exogenous input to the model. Future retirements of existing generating plants

and transmission lines can also be included as a user-defined input. However, we do

not perform an investment analysis in this work. Our goal here is to demonstrate

how multi-year, multi-player generation expansion plans can be obtained by a set of

competing generators with given investment alternatives.

In the numerical example, the three investment alternatives for both Generators

1 and 2 give rise to an investment matrix game with nine (3 × 3) elements, each of

which is a potential expansion alternative. Each year, all the expansion alternatives

are analyzed as supply function matrix games and profits are calculated using OPF

and CVaR models. Thereafter, the equilibrium expansion plans are obtained using

the reinforcement learning algorithm. This procedure is repeated for each year of the

planning horizon.
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The equilibrium expansion plans obtained by the reinforcement learning algorithm

for year 1 are: Generator 1 builds a coal plant at Bus 3 and Generator 2 builds the

petroleum fired plant at bus 5. This expansion plan is shown in a gray shade in year

1 of the Table 8.5, indicating that it is a pure strategy Nash equilibrium solution.

The equilibrium solution of the two-tier model from year 1 is assumed to be part of

the existing network for the subsequent years.

The network configuration for year 2 is shown in Table 8.5. It shows both the

current plants in the network as well as the equilibrium plans chosen in year 1. The

expansion alternatives considered for Generator 1 for year 2 are: do nothing, expand

the natural gas plant at Bus 1 to 100 MW, and expand the newly built coal plant

further up to 100 MW. Generator 2 considers the following investment alternatives:

do nothing, expand natural gas plant at Bus 4 to 100 MW, or expand the petroleum

fired plant at Bus 5 to 100 MW. The two-tier model is solved again for year 2 giving

an equilibrium expansion plan for both generators. The equilibrium expansion plan

for year 2 is: Generator 1 expands the coal plant at Bus 3 and Generator 2 expands

the natural gas plant at Bus 4 to 150 MW. This is shown in a gray shade in the

Table. Similarly, the equilibrium expansion strategies are successively computed for

years 3 and 4. We present the nodal prices (p1 through p5) and quantity allocations

(q1 through q5) obtained from the two-tier model for the four year planning horizon

in Table 8.6.

The payoff matrices for the investment game for all the four years of expansion

are shown in Table 8.7, where the two elements in each cell represent the payoffs for

generators 1 and 2 respectively. Each element of the payoff matrix is the solution of

a supply function matrix game. The payoff matrices for the supply function matrix

games are not shown here for the sake of brevity. It may be noted from the pay-

off matrices that the reinforcement learning algorithm finds the pure strategy Nash
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Table 8.6. Price and Quantity Allocations for the Four Year Planning Horizon

equilibrium (NE) for each year of the expansion. NE is defined as that combination

of strategies from which no player will gain by unilaterally deviating. These pure

strategy NE solutions are highlighted in a gray shade in each of the four years in the

table.

8.1.1.1 Mixed Strategies and Multiple Equilibria

It is well known that matrix games may not always have a pure strategy NE but

will always have a mixed strategy NE. However, for problems such as GEP, a mixed

strategy solution is impractical from an application standpoint. Therefore, when

there is no pure strategy NE solution, the generators should consider other good

“out-of-equilibrium” [84] pure strategies generated by our RL algorithm. In some

other cases, a matrix game may have multiple pure strategy NE. In these cases, as

shown in Chapter 5 ([10]), our value based reinforcement learning algorithm identifies

the NE with the best value.

8.1.1.2 Generator Profits and Consumer Surpluses

Generators can examine their profits under perfect competition (where generators

bid at marginal costs) and under imperfect competition (strategic bidding), to gauge
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Table 8.7. Generator Payoff Matrices and Game Solutions for the Four Year Planning
Horizon (ζ = 0.1)
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Figure 8.2. Profits and Consumer Surpluses in Strategic Bidding and Perfect Com-
petition

the amount of additional profit they can make. The Figure 8.2 presents a plot of gen-

erator profits (primary Y-axis) and consumer surplus (secondary Y-axis) against the

planning horizon. It can be seen from the graph that the total profits made by both

generators under perfect competition are lesser than those under strategic bidding.

The difference in profit grew larger with increase in demand. This is expected, since

higher demand provides more opportunities for strategic bidding by generators. The

graph also shows consumer surplus along the 4-year planning horizon. By observing

the changes in consumer surplus, generators can assess how much of the overall sur-

pluses they are able to transfer to themselves. However, generators need to be wary of

bidding too high in the market, since higher bids may lead to higher profits, resulting

in eroding consumer surpluses, which may invite a potential regulatory intervention.
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8.1.2 Nodal Price Sensitivity Analysis

The objective of the following statistical analysis is to assess the effect that line

capacity and the slope of the demand curve have on the price at each bus post-

expansion. Line capacity was deemed an important factor to include in this analysis

due to its direct impact on transmission congestion and, as a result, on the price.

The slope of the consumer demand curve is included in the analysis because its price

elasticity is expected to have an impact on the type of expansion plan chosen by a

generator.

Understanding the influence that line capacity and demand exert over post ex-

pansion prices is beneficial for all stakeholders in the electricity market. It enables

generators to forecast how expansion plans will impact nodal prices. Likewise, the

ISO can assess the impact of line capacity restrictions and demand variations on the

nodal prices after a potential expansion decision. Finally, the consumers can also ben-

efit by examining what type of demand curve variations can help them to possibly

attain lower post-expansion prices.

For the sake of simplicity and to aid the visualization of potential effects, line

capacity was varied among three levels and only considered in lines 1− 3, 3− 4, 4− 5

(see Figure 8.1). The rationale behind selecting these lines lies in the fact that nodes

1, 3, 4, and 5 are considered for potential expansions. The demand slope is varied

among 5 values at nodes 2, 3, 4, and 5 (the same demand slope is used at all nodes

for each run). This yields a two factor mixed factorial experiment with the factors

at three and five levels respectively. Table 8.8 presents the levels for demand and

line capacity. After observing the prices before and after expansion for fifteen runs (3

levels of line capacity × 5 levels of slope of the demand curve) the difference in nodal

prices (for each bus) was captured as the response variable. An analysis of variance
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Table 8.8. Line Capacity and Consumer Demand Slope Levels

Table 8.9. F Statistic Values in 2-Factor Design

(ANOVA) for the factorial design was carried out whose results are presented in Table

8.9. Note that in Table 8.9 those values accompanied by ∗ were found to be significant

at the level of 0.05, whereas those with ∗∗ were significant at 0.1. Based on results

from Table 8.9, demand does not appear to play a significant role in bus 1 and neither

does line capacity in bus 2. Demand and line capacity appear to have a significant

effect on the price differential observed in bus 3, whereas the interaction between

them was the only significant factor at bus 5.

In accordance with the results from the factorial design, regression models were

fitted to measure the effect of each factor on the price differential (∆P = nodal price

after expansion - nodal price before expansion) at each bus. Table 8.10, presents the

coefficients obtained for a model with the general form,

y = β0 + β1xdem + β2xlinecap + β3xdemxlinecap. (8.1)

Since line capacity was the only significant factor affecting ∆P at bus 1 (see Table

8.9), the model at bus 1 was fitted considering only line capacity. The negative sign
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Table 8.10. Linear Regression Model Coefficients

in the line capacity coefficient implies that the higher the line capacity the higher

the reduction in price after the expansion plans are implemented. This result fits

within the framework of basic microeconomic theory. Reduced line capacity causes

congestion, generating less resource availability and thereby, increased prices. If line

capacity is reduced to 13.5 MW (54% of full capacity) the price differential is zero.

Smaller values of line capacity will increase the price post-expansion at that bus.

Only the slope of the demand was considered in the regression model for bus 2.

The resulting regression coefficient was positive implying that the steeper the demand

curve the higher the reduction of price at the bus. Flat demand curves (i.e. values

for the slope less than 0.26) will generate increments in price. A steep demand curve

corresponds to a comparatively more inelastic demand, hence capacity expansion will

have high impact on price reduction.

The models obtained for nodes 3 and 5 are more complex because they involve both

factors and in the case of bus 5 an interaction term is also present. These predictive

models are useful in examining network behavior. For example, the equation for bus

3: y = −82.66−18.92 xdem +1.49 xlinecap, can be used to show that for a line capacity

of 25MW, a negative price differential will occur only as long as the absolute value of

the slope of the demand curve is smaller than 2.4. That is, for less elastic consumer

demand (absolute value of slope higher than 2.4) the price differential will become

positive (increasing nodal price). Even though conducting a bus-by-bus analysis, as
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presented above, may become cumbersome for very large size networks, it can be

accomplished for those buses deemed “critical” in the network.

8.1.3 Impact of Risk Preference on GEP

We examined how GEP outcomes vary with respect to generator risk preferences

ζi (see Equation 4.4). For a given power network, this could serve to establish the ζi

values at which the generators begin to switch their investment choices. Figure 8.3

shows the different expansion plans chosen for different values of the risk preferences

for demand corresponding to year 1 of Table 8.1. Note that, higher values of risk

preference ζi indicates higher level of risk aversion. Results show that though gener-

ator 1’s expansion plan does not change, the investment decisions at a network level

vary with increasing risk aversion.

In the analysis above, the same ζi value was assumed for both generators. However,

we can also use our model to observe how different risk preferences of generators

can have an impact on the expansion plans. Generators or ISO can also examine

the changes in GEP pattern when the risk preferences change over the years. For

example, a generator who may have recently invested in a plant, might be averse to

risk in the subsequent few years. Such variations in risk preferences can be considered

by our model.
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Figure 8.3. Profits and Expansion Plans versus Risk Preferences
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CHAPTER 9

CONCLUDING REMARKS

Electricity market restructuring gave rise to a new realm of issues that needed

to be addressed, that were not seen in the research presented in the era of regulated

markets. A great amount of research has been devoted to issues like market de-

sign, market power assessment, financial transmission rights, capacity markets, and

ancillary markets, however, the research in generation expansion planning in restruc-

tured markets has significant room for exploration. This research presented a novel

methodology to aid this exploration.

9.1 Advances Made by this Research in GEP

As explained earlier, currently, over fifteen states in the US have restructured en-

ergy markets, where generators are required to compete in an open market to supply

power into the electricity grid. The Energy Information Administration (EIA) fore-

casts that several power plants are to be constructed in these restructured markets,

leading to investments of billions of dollars in the next two decades to satisfy the rising

demand for electricity. This issue, referred to as generation capacity expansion, has

been very well studied in regulated markets. However, models developed under regu-

lated settings had an optimization structure considering only a single decision maker,

and are rendered obsolete under the new restructured energy market paradigm. In

the restructured markets, this issue, as presented in this dissertation, needs to be

modeled as a game-theoretic problem since it requires the simultaneous consideration
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of several competing decision makers. One of the primary research contributions of

this dissertation is the development of a comprehensive game-theoretic model which

considers several important restructured market features like competitive behavior of

the generators, transmission line constraints, voltage & current related constraints,

multiple year planning horizon, power demand stochasticity, and risk due to volatili-

ties in profit. Such a comprehensive game-theoretic model with all the aforementioned

features is a significant advancement in the area of generation capacity expansion in

restructured electricity markets.

Our model examines the non-cooperative competition of generators at two tiers.

At one tier the generation investment game is examined and at another tier the supply

function game at the power network operational level is examined. We present a novel

solution algorithm for the two-tier model that shows how these tiers interact to obtain

a multi-year generation expansion plan. Using a sample electric power network the

applicability of the methodology is demonstrated. There are some important features

that can be included in the model to enhance its applicability. Features such as

reliability and capacity markets can be incorporated in the DC-OPF model, using

the strategy presented in [23, 85]. Furthermore, the OPF model that we adopt in this

research is a linearized DC-OPF version (ala Hobbs et al. [46, 76]), and was chosen

only to simplify the computation of supply function equilibria. The advantages of

using such linearized supply functions were discussed in great detail in [86]. One

could also replace the DC-OPF with AC-OPF model and step-function bidding, as

in our previous work ([87]).

The model presented in this research can be beneficial for all power market con-

stituents: generators, consumers, and ISO. The matrix game approach we adopt in

this research allows generators to assess the profitability of several investment alterna-

tives by incorporating risk preferences and CVaR. We believe that the consideration
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of risk preferences and CVaR makes the investment decisions generated by our model

more robust. Consumers can use our model to study how different expansion plans

adopted by generators will affect nodal prices, while the ISO can test different market

designs aimed at maximizing social welfare.

9.2 Practical Applications of Matrix Games

The multiplayer electric power market problem we solved in Chapter 5 as well

as the multiplayer GEP problem we solved in Chapter 8 serve as excellent examples

of real life application of matrix games. Outcomes of such games determine the

nature of hourly and daily power transactions as well as the ability of a market to

meet demand growth over several years. Hence, the ability to accurately obtain NE

for matrix games allows for better assessment of market performance and efficient

market design, which translate to stable power market operations with limited price

spikes. Solutions of relatively large matrix games (of size 625 × 625) resulting from

the sample power network problem indicate the algorithms potential to tackle real life

power networks, which can be magnitudes larger in size. Though the numerical results

are promising and encourage further exploration of our algorithms performance, a

theoretical proof of convergence and optimality is required. We believe that such

a proof can be constructed following the logic used in ([33]), and we are currently

working on developing such a proof.

Work in progress and future research directions include the theoretical convergence

analysis of the reinforcement learning algorithm. An interesting line of research will

be the application of the multiplayer matrix game approach in other fields that have

oligopolistic competition. Some examples of such oligopolistic markets include retail

sales, home and auto insurance, mortgage lending, service industries like airlines,

hotels, and entertainments.
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CHAPTER 10

FUTURE RESEARCH DIRECTIONS

The restructuring of the electricity industry has given rise to a new realm of excit-

ing as well as extremely challenging modeling issues at the intersection of operations

research, public-policy, economics, and risk management. Such modeling issues, due

to their inherent complexities with several dynamic elements can be best modeled

and solved using computational optimization approaches. Computational modeling

affords the distinct advantage of being able to handle extremely complex systems with

data-rich environments. Energy markets are noted by National Science Foundation

and in literature as complex systems that need to be modeled using computational

approaches to be able to comprehensively capture all the stochastic dynamics. More-

over, computational models help in furthering our fundamental understanding of the

complex interactions of multilevel, multi-scale systems such as energy markets, which

may not be possible via traditional modeling approaches

The research presented in this dissertation will help in jointly addressing two

emerging areas of critical national importance: generation capacity expansion in re-

structured (deregulated) energy markets to meet the growing energy demands (dis-

cussed so far), and environmental emission control via carbon cap-and-trade (CT)

programs and renewable portfolio standards (RPS), aimed at reducing the negative

impact of electric power generation on climate change. The objective of this chapter

is to briefly discuss how these areas are closely intertwined and explain the need for
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the development of a comprehensive stochastic optimization model to jointly address

these issues.

10.1 Cap-and-Trade Programs and Renewable Portfolio Standards

Electricity generators in the US are the single largest industrial contributors of

CO2 and are one of the leading causes of the climate change crisis. Due to the need

for a fierce urgency in reversing detrimental human effects on the earth’s climate,

countries around the world as well as some regions in the US have enacted carbon

cap-and-trade (CT) programs for emissions reductions.

Cap-and-trade systems have historically been used as an effective market mecha-

nism to limit the emission of pollutants like NOX and SO2 [88]. Since the inception

of such a program in the U.S. in 1995, there have been significant emissions reduc-

tions and far ranging environmental as well as human health benefits, at a lower than

expected compliance cost. Economists and policy analysts believe that implementa-

tion of a similar cap-and-trade system for CO2 should be a central element of any

emissions control policy [89]. A cap-and-trade system would establish CO2 emission

limits either at an upstream level for producers of fuels, or at a downstream level for

industrial consumers of fuels including electricity generators. Regulated entities will

buy allowances that will permit them to release a certain amount of CO2 within a

specified period of time. If the emissions exceed allowances, entities need to purchase

more allowances or pay a penalty in terms of increased price of allowance purchase

for the next period. On the other hand, if an entity does not use all of its allowances,

they can be banked for future or sold in an open secondary market [89, 90]. By

gradually lowering the cap on total emissions, regulated entities will be forced to in-

vest in cleaner sources of energy and greener technologies. Different variations of the

cap-and-trade system have been operational in Europe [91].
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Recently, the first CO2 CT program of US, the Regional Greenhouse Gas Initia-

tive (RGGI), became fully functioning in 10 Northeastern and Mid-Atlantic States.

Also, the Western Climate Initiative and the Midwestern Greenhouse Gas Accord,

comprising over a dozen states, are set to commence early next decade. With the

implementation of such initiatives, per World Resources Institute (WRI), almost 50%

of the population of US will reside in states with CT programs, out of which several

markets are restructured.

Renewable portfolio standards (RPS), per Energy Efficiency and Renewable En-

ergy division of Department of Energy, is a state policy that requires electricity

providers to obtain a minimum percentage of their power from renewable energy

resources by a certain date [92]. With the enforcement of renewable portfolio stan-

dards (RPS), electric utilities in over 24 states in the coming decade are required to

produce a significant percentage of electricity using renewable energy sources like bio-

fuels, solar, wind, and geothermal. Since carbon-based fuels are the current primary

sources for electricity generation, the implementation of CT and RPS is expected to

trigger a fundamental transformation in the technologies used to produce electricity

in the coming decades.

10.2 Joint Model for GEP and Emissions Control

Since electricity generation and climate change crisis are interrelated, the gener-

ation capacity expansion planning problem and environmental emission control are

closely connected. To address this critical societal challenge, similar to the model pre-

sented in this dissertation, a comprehensive stochastic optimization (game-theoretic)

model needs to be developed, which will capture at multiple interconnected tiers:

the competition among generators for capacity investments, the competition for al-

lowances in the CT markets, and the optimization of electric power flow while meeting
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RPS. Solving such complex models is almost impossible with traditional optimiza-

tion approaches. Therefore, to address the stochastic dynamics involved in solving

this problem, a simulation-based optimization computational solution methodology

similar to the one developed in this research must be formulated.

10.3 Further Policy Analysis and Planning Applications

Several issues presented below can be addressed based on the models presented in

this work.

1. Examining the effect of allowance prices on electricity market prices,

2. CO2 levels over a long term planning horizon,

3. effects of different allowance allocation methods: auctioning, grandfathering, or

hybrid models,

4. examining effects of different risk attitudes of investors on expansions,

5. examination of portfolio of generation plants over a long term horizon,

6. effect of RPS on generation expansion on a state by state basis, and

7. effect of large-scale introduction of microgrids as a potential expansion alterna-

tive.
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