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Error Equivalence Theory For Manufacturing Process Control 
 

Hui Wang 

ABSTRACT 

 

Due to uncertainty in manufacturing processes, applied probability and statistics 

have been widely applied for quality and productivity improvement. In spite of 

significant achievements made in causality modeling for control of process variations, 

there exists a lack of understanding on error equivalence phenomenon, which concerns 

the mechanism that different error sources result in identical variation patterns on part 

features.  This so called error equivalence phenomenon could have dual effects on 

dimensional control: significantly increasing the complexity of root cause identification, 

and providing an opportunity to use one error source to counteract or compensate the 

others.  

Most of previous research has focused on analyses of individual errors, process 

modeling of variation propagation, process diagnosis, reduction of sensing noise, and 

error compensation for machine tool. This dissertation presents a mathematical 

formulation of the error equivalence to achieve a better, insightful understanding, and 

control of manufacturing process.  

The first issue to be studied is mathematical modeling of the error equivalence 

phenomenon in manufacturing to predict product variation. Using kinematic analysis and 

analytical geometry, the research derives an error equivalence model that can transform 



 vii

different types of errors to the equivalent amount of one base error.  A causal process 

model is then developed to predict the joint impact of multiple process errors on product 

features.  

Second, error equivalence analysis is conducted for root cause identification. 

Based on the error equivalence modeling, this study proposes a sequential root cause 

identification procedure to detect and pinpoint the error sources. Comparing with the 

conventional measurement strategy, the proposed sequential procedure identifies the 

potential error sources more effectively.  

 Finally, an error-canceling-error compensation strategy with integration of 

statistical quality control is proposed. A novel error compensation approach has been 

proposed to compensate for process errors by controlling the base error. The adjustment 

process and product quality will be monitored by quality control charts. Based on the 

monitoring results, an updating scheme is developed to enhance the stability and 

sensitivity of the compensation algorithm. These aspects constitute the “Error 

Equivalence Theory”. The research will lead to new analytical tools and algorithms for 

continuous variation reduction and quality improvement in manufacturing. 
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Chapter 1 

Introduction 

The intense global competition has been driving the manufacturers to 

continuously improve quality in the life cycle of product design and manufacturing. Vital 

to the competition success is the product variation reduction to achieve the continuous 

manufacturing process improvement. However, variation reduction for the process 

improvement has been an extremely challenging issue because of the following reasons: 

 Prediction of quality performance with process variation. Due to the uncertain nature 

of the manufacturing process, probabilistic models and statistics have been widely 

applied to depict the process variation. However, there exists a lack of understanding 

on “error equivalence”, an engineering phenomenon concerning the mechanism that 

multiple error sources result in the identical variation pattern. This fact impacts 

almost every stage of variation control (e.g., process root cause diagnosis and error 

compensation). Therefore, to better predict the process performance, error 

equivalence has to be quantitatively modeled and analyzed.  

 Control of a varying process. Variation control strategies must be incorporated in the 

early stage of manufacturing process design. The control strategy involves statistical 

quality control (SQC), root cause identification and automatic process error 

compensation to reduce potential large variations. The dual effects of error 

equivalence on process control have not been well studied. For instance, the 

phenomenon of error equivalence could conceal the information of multiple errors 
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and thus significantly increase the complexity of root cause identification (diagnosis). 

It may provide an opportunity to purposely use one error source to counteract the 

others and thereby reduce overall process variations. Hence, the inclusion of error 

equivalence mechanism into quality control may create a new control paradigm of 

manufacturing process, i.e., information collection in support of process diagnosis, 

root cause identification, and SPC (statistical process control) integrated process error 

compensation. 

Therefore, the aforementioned issues entail an essential analysis of error 

equivalence for process improvement. The goal of this work is to model the error 

equivalence in traditional discrete manufacturing to achieve an insightful understanding 

of process variation and a better process control. 

 

1.1 Phenomena of Error Equivalence in Manufacturing Processes 

In a manufacturing process, product quality can be affected by multiple error 

sources. For example, the dominant root cause of quality problems in a machining 

process includes fixture, datum, and machine tool errors. A fixture is a device used to 

locate, clamp, and support a workpiece during machining, assembly, or inspection. 

Fixture error is considered to be a significant fixture deviation of a locator from its 

specified position. Machining datum surfaces are those part features that are in direct 

contact with the fixture locators. Datum error is deemed to be the significant deviation of 

datum surfaces and is mainly induced by imperfections in raw workpieces or faulty 

operations in the previous stages. Together the fixture and datum surfaces provide a 

reference system for accurate cutting operations using machine tools. Machine tool error 
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is modeled in terms of significant tool path deviations from its intended route. This 

dissertation mainly focuses on kinematic aspects of these three error types.  

A widely observed engineering phenomenon is that the individual error sources 

can result in the identical variation patterns on product features in manufacturing process. 

For instance, in a machining process, all aforementioned process deviations can generate 

the same amount of feature deviation x as shown in Fig. 1.1 (Wang, Huang, and Katz, 

2005; and Wang and Huang, 2006). This error equivalence phenomenon is also observed 

in many other manufacturing processes, e.g., the automotive body assembly process (Fig. 

1.2, Ding, et al., 2005). 
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Figure 1.1 Error Equivalence in Machining       Figure 1.2 Error Equivalence in Assembly 
 

The impact of such an error equivalence phenomenon on manufacturing process 

control is twofold. On the one hand, it significantly increases the complexity of variation 

control. As an example, identifying the root causes becomes extremely challenging when 

different error sources are able to produce the identical dimensional variations. On the 

other hand, the error equivalence phenomenon provides an opportunity to purposely use 
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one error source to counteract another in order to reduce process variation. In both cases, 

a fundamental understanding of this complex engineering phenomenon will assist to 

improve manufacturing process control. 

 

1.2 Related Work and the State of the Arts 

The study on error equivalence is, however, very limited. Most related research 

on process error modeling has been focused on the analysis of the individual error 

sources, e.g., the fixture errors and machine tool errors, how these errors impact the 

product quality, and thereby how to diagnose the errors and reduce variation by process 

control. This section reviews the related research on process errors modeling, diagnosis 

and control. 

1.2.1 Research Review for Modeling Process Errors 

Fixture error. Fixture error has been considered as one of crucial factors in the optimal 

fixture design and analysis. Shawki and Abdel-Aal (1965) experimentally studied the 

impact of fixture wear on the positional accuracy of the workpiece. Asada and By (1985) 

proposed kinematic modeling, analysis, and characterization of adaptable fixturing. 

Screw theory has been developed to estimate the locating accuracy under the rigid body 

assumption (Ohwovoriole, 1981). Weil, Darel, and Laloum (1991) then developed 

several optimization approaches to minimize the workpiece positioning errors. A robust 

fixture design was proposed by Cai, Hu, and Yuan (1997) to minimize the positional 

error. Marin and Ferreira (2003) analyzed the influence of dimensional locator errors on 

tolerance allocation problem. Researchers also considered the geometry of datum surface 

for the fixture design. Optimization of locating setup proposed by Weil, et al. (1991) was 
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based on the locally linearized part geometry. Choudhuri and De Meter (1999) 

considered the contact geometry between the locators and workpiece to investigate the 

impact of fixture locator tolerance scheme on geometric error of the feature.  

Machine tool error. Machine tool error can be due to thermal effect, cutting force, and 

geometric error of machine tool. Various approaches have been proposed for the machine 

tool error modeling and compensation. The cutting process modeling has been focused on 

the understanding of cutting forces, dynamics of machine tool structure, and surface 

profile generation (Smith and Tlusty, 1991; Ehmann, et al., 1991; Kline, Devor, and 

Shareef, 1982; Wu and Liu, 1985; Sutherland and DeVor, 1986; Altintas and Lee, 1998; 

Kapoor, et al., 1998; Huang and Liang, 2005; Mann, et al., 2005; Li and Shin, 2006; and 

Liu, et al., 2006). Machine volumetric error modeling studies the error of the relative 

movement between the cutting tool and the ideal workpiece for error compensation or 

machine design (Schultschik, 1977; Ferreira and Liu, 1986; Donmez, et al., 1986; 

Anjanappa, et al., 1988; Bryan, 1990; Kurtoglu, 1990; Soons, Theuws, and Schellekens, 

1992; Chen, et al., 1993; and Frey, Otto, and Pflager, 1997). A volumetric error model of 

a 3-axis jig boring machine is developed by Schultschik (1977) using a vector chain 

expression. Ferreira and Liu (1986) developed a model studying the geometric error of a 

3-axis machine using homogeneous coordinate transformation. A general methodology 

for modeling the multi-axis machine was developed by Soons, Theuws, and Schellekens 

(1992). The volumetric error model combining geometric and thermal errors was 

proposed to compensate for time varying error in real time (Chen, et al., 1993). Other 

approaches, including empirical, trigonometric, and error matrix methods were 

summarized by Ferreira and Liu (1986).  
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Machine tool thermal error. With the increasing demand for improved machining 

accuracy in recent years, the problem of thermal deformation of machine tool structures 

is becoming more critical than ever. In order to maintain part quality under various 

thermal conditions, two approaches have been studied extensively over the past decades: 

error avoidance approach and error compensation approach (Bryan, 1990). Thermal 

errors could be reduced with structural improvement of machine tools through careful 

design and manufacturing technology. This is known as the error avoidance approach. 

However, there are, in many cases, cost or physical limitations to accuracy improvement 

that cannot be overcome solely by production and design techniques. Recently, due to the 

development of sensing, modeling, and computer techniques, the thermal error reduction 

through real time machine tool error compensation has been increasingly considered, in 

which the thermal error is modeled as a function of machine temperatures collected by 

thermal sensors (Chen, et al., 1993).  

For most thermal error compensation systems, the thermal errors are predicted 

with temperature-error models. The effectiveness of thermal error compensation largely 

relies on the accuracy of prediction of time varying thermal errors during machining. 

Various thermal error modeling schemes have been reported in literature, which can be 

classified into two categories: time independent static modeling and time dependent 

dynamic modeling. The first category of studies, time independent static modeling, 

assumes that thermal errors can be uniquely described by current machine tool 

temperature measurements (Chen, et al., 1993; and Kurtoglu, 1990). It only considers the 

statistical relationship between temperature measurements and thermal deformations, 

while neglects the dynamic characteristics of machine thermoelastic systems. 
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Nevertheless, the information contained in the discrete temperature measurements, which 

only catches a subset of the whole machine tool temperature field (Venugopal and Barash, 

1986), is incomplete and therefore the problem is not uniquely defined. This motivates 

the second category of studies for modeling the dynamic effects of thermal errors 

(Moriwaki, et al., 1998) and the recent progress is to apply system identification (SI) 

theory to thermal error modeling (Yang and Ni, 2003). Both these two categories of 

studies reveal that the number of sensors, sensor location, temperature history, and lagged 

variable selection are critical to achieve high model prediction accuracy and model 

robustness to different working conditions. 

As a summary, the studies of process errors have been focused on the modeling of 

individual error sources, process variation monitoring, and variation reduction. 

Equivalence relationship between multiple errors has not been sufficiently addressed. 

Causality modeling. Models of predicting surface quality are often deterministic and used 

for a single machining station (Li and Shin, 2006). In the recent decade, more research 

can be found to investigate the causal relationship between part features and errors, 

especially in a complex manufacturing system. The available model formulation includes 

time series model (Lawless, Mackay, and Robinson, 1999), state space models (Jin and 

Shi, 1999; Ding, Ceglarek, and Shi, 2000; Huang, Shi, and Yuan, 2003; Djurdjanovic and 

Ni, 2001; Zhou, Huang, and Shi, 2003; and Huang and Shi, 2004), and state transition 

model (Mantripragada and Whitney, 1999). The results of the process error model can be 

summarized as follows. Denote by x the dimensional deviation of a workpiece of N 

operations and by u=(u1, u2, …, up)T the multiple error sources from all operations. The 

relationship between x and u can be represented by  
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x = =1Σ + = + ,p
i i iΓ u ε Γu ε                             (1.1) 

where Γi’s are sensitivity matrices determined by process and product design and 

Γ= 1 2 p⎡ ⎤⎣ ⎦Γ Γ Γ . ε is the noise term. This line of research (Hu, 1997; Jin and Shi, 

1999; Mantripragada and Whitney, 1999; Djurdjanovic and Ni, 2001; Camelio, Hu, and 

Ceglarek, 2003; Agapiou, et al., 2003; Agapiou, et al., 2005; Zhou, et al., 2003; Huang, 

Zhou, and Shi, 2002; Zhou, Huang, and Shi, 2003; Huang, Shi, and Yuan, 2003; and 

Huang and Shi, 2004) provides a solid foundation for conducting further analysis of the 

error equivalence. 

 

1.2.2 Research Review for Process Root Cause Diagnosis 

The approaches developed for root cause diagnosis include variation pattern 

mapping (Ceglarek and Shi, 1996), variation estimation based on physical models (Apley 

and Shi, 1998; Chang and Gossard, 1998; Ding, Ceglarek, and Shi, 2002; Zhou, et al., 

2003; Camelio and Hu, 2004; Carlson and Söderberg, 2003; Huang, Zhou, and Shi, 2002; 

Huang and Shi, 2004; and Li and Zhou, 2006), and variation pattern extraction from 

measurement data.  

Ceglarek, Shi, and Wu (1994) developed root cause diagnostic algorithm for 

autobody assembly line where fixture errors are dominant process faults. Principal 

component analysis (PCA) has been applied to fixture error diagnosis by Hu and Wu 

(1992), who make a physical interpretation of the principal components and thereby get 

insightful understanding of root causes of process variation. Ceglarek and Shi (1996) 

integrated PCA, fixture design, and pattern recognition and have achieved considerable 

success in identifying problems resulting from worn, loose, or broken fixture elements in 
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the assembly process. However, this method cannot detect multiple fixture errors. A PCA 

based diagnostic algorithm has also been proposed by Rong, Ceglarek, and Shi (2000). 

Apley and Shi (1998) developed a diagnostic algorithm that is able to detect multiple 

fixture faults occurring simultaneously. Their continuing work in 2001 presented a 

statistical technique to diagnose root causes of process variability by using a causality 

model. Ding, Ceglarek, and Shi (2002) derived a PCA based diagnostics from the state 

space model. 

However, the number of the simultaneous error patterns may grow significantly as 

more manufacturing operations are involved. The multiple error patterns are rarely 

orthogonal and they are difficult to distinguish from each other. Therefore, the 

manufacturing process may not be diagnosable. Ding, Shi, and Ceglarek (2002) analyzed 

the diagnosability of multistage manufacturing processes and applied the results to the 

evaluation of sensor distribution strategy. Zhou, et al. (2003) developed a more general 

framework for diagnosability analysis by considering aliasing faulty structures for 

coupled errors in a partially diagnosable process. Further studies are needed on the fault 

diagnosis for a general machining process where multiple types of errors occur. 

 

1.2.3 Research Review for Process Control 

The objective of process control is to keep the output as close as possible to the 

target all the time. Other than the traditional SPC where Shewhart, EWMA, and CUSUM 

control charts are the common techniques, automatic process control (APC) and its 

integration with SPC have gained more attention in recent decades.   
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Automatic process control. APC uses feedback or feedforward control to counteract the 

effects of root causes and reduce the process variation. Although SPC achieved great 

success in discrete manufacturing, APC is more likely to be used in continuous process 

industries where the process output has a tendency to drift away. The early research on 

APC can be tracked back to Box’s early research (Box, 1957; Box and Jenkins 1963, 

1970; Box and Draper, 1969; 1970; and Box and Kramer, 1992). In APC, the most 

theoretically discussed control rule is the minimum mean squared error (MMSE) control. 

It is based on the stochastic control theory (Åström, 1970) to find out the optimal control 

rule to minimize the mean square error of the process output. However, since MMSE 

control has unstable modes (Åström and Wittenmark, 1990; and Tsung, 2000), in some 

occasions, it causes the process to adapt to the disturbance changes and causes larger 

output response. In industries, proportional-integral-derivative (PID) control tuning is the 

most common control technique (Åström, 1988). Its purpose is to reduce the output 

variance as much as possible based on the PID controller. Compared with many MMSE 

controllers, PID controller is more robust in varying environments. 

Integration of APC and SPC. More recently, more research efforts are directed towards 

the approach combining SPC and APC to secure both the process optimization and 

quality improvement. MacGregor (1988) was among the first to suggest SPC charts to 

monitor the controlled process. The similarities and overlap between SPC and APC were 

described. The integration of APC and SPC has been reviewed by Box and Kramer 

(1992). In these early dissertations, a minimum cost strategy is suggested to adjust the 

process and SPC chart is used as dead bands or filtering device (English and Case, 1990) 

for feedback controlled process. This dead band concept was extended for multivariate 
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problems by Del Castillo (1996). Vander Wiel, et al. (1992) proposed an algorithmic 

statistical process control (ASPC), which reduces the process variation by APC and then 

monitors the process to detect and remove root cause of variation using SPC. Tucker, et 

al. (1993) elaborated on the ASPC by giving an overall philosophy, guidelines, 

justification, and indicating related research issues.  

Parallel to the integration work, research (MacGregor and Harris, 1997; Harris 

and Ross, 1991) has been implemented for correcting SPC procedures due to the effect of 

correlation and applying these procedures for monitoring a controlled process. Tsung 

(2000) proposed an integrated approach to simultaneously monitor and diagnose 

controlled process using dynamic principal component analysis and minimax distance 

classifier. 

In the early research of integrating APC and SPC, the only monitored variable is 

the controlled output. Output monitoring alone cannot provide sufficient information on 

the process change because it has been compensated for by controllers. MacGregor (1991) 

suggested monitoring the output of the controller. Messina, et al. (1996) then considered 

the monitoring controller output under an autoregressive moving average disturbance 

process and proposed jointly monitoring for process output and controlled signal. Tsung, 

et al. (1999) proposed a procedure for jointly monitoring the PID controlled output and 

controlled signal using bivariate SPC. The SPC robustness was also investigated. In 

addition, researchers also applied APC and SPC to run-to-run (RTR) process control, 

which refers to performing control action between runs instead of during a run (Del 

Castillo, 1996; Butler and Stefani, 1994; Mozumder, et al., 1994; Sachs, et al., 1995; and 
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Tsung and Shi, 1999). Del Castillo and Hurwitz (1997) reviewed research work on RTR 

control.  

Most of SPC integrated APC approaches have been mainly applied to continuous 

process. The adjustment in discrete process relies on the control of servo motor, 

interpolator and adaptive loop in the machine tools (Åström, 1970, 1990) or 

compensation of individual error sources. Little work discussed the potential application 

of APC in a discrete manufacturing process where the dominant control strategy is to 

construct control chart to identify the assignable cause. There is a lack of methodology 

that can compensate for the joint effect of multiple error sources. 

 

1.2.4 Summary of Literature Review 

 Process modeling. Previous research has been focused on the analyses of individual 

errors and causality modeling in manufacturing processes. The research on the 

variation reduction and process control has not studied the error equivalence 

phenomenon in manufacturing processes. There is a lack of physical model to 

describe the error equivalence so as to study its impact on process control. 

 Model based root cause diagnosis. Previous research has extensively studied the 

process sensing strategy, statistical process monitoring, diagnosability analysis, and 

diagnostic algorithms. Those studies did not address the challenges the error 

equivalence brings to the root cause diagnosis of manufacturing process with multiple 

error sources.  

 Error compensation. Previous research widely studied the SPC integrated automatic 

process adjustment in continuous manufacturing processes. The traditional error 
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compensation strategy for a discrete manufacturing process is to offset the process 

errors individually and may not be cost effective. Hence it is desirable to study the 

impact of the error equivalence mechanism on the error compensation. 

 

1.3 Dissertation Outline 

 The insightful understanding and full utilization of the error equivalence require 

advances in: mathematical modeling of the error equivalence phenomenon in 

manufacturing, error equivalence analysis for root cause identification, and error 

equivalence analysis for automatic process error compensation with integration of SPC. 

These research aspects constitute the error equivalence theory.  

The challenge for these research advances is the fusion of engineering science and 

statistics into the modeling of error equivalence and the life cycle of controlling process 

variations. The overall framework of error equivalence theory is shown in Fig 1.1. 

Chapter 1 describes phenomenon of error equivalence and reviews the related 

work for process modeling, diagnosis, and process control. 

Chapter 2 presents a tentative mathematical definition of error equivalence and 

models the error equivalence phenomenon through a kinematic analysis of workpiece and 

errors.  The error equivalence model has been verified by a real milling process. In 

addition, a state space model based on error equivalence is derived to study the variation 

stackup in the multistage manufacturing process. The procedure of variation propagation 

model based on error equivalence has been demonstrated via a case study. 

Chapter 3 intends to further explore the error equivalence mechanism and 

discusses its theoretical implication in root cause identification as well as automatic 
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process adjustment for time invariant errors. A sequential root cause identification 

procedure has been proposed to distinguish multiple types of errors in the machining 

processes. The diagnostic algorithm is experimentally validated by a milling process. The 

process adjustment based on error equivalence is illustrated with a simulation. 

Chapter 4 builds a dynamic model of process errors to study the dynamic error 

equivalence. In addition, statistical process control is introduced to monitor the dynamic 

equivalent errors. 

Based on the conclusion of Chapter 4, an automatic process adjustment algorithm 

using error equivalence is derived to compensate for dynamic errors in a discrete 

manufacturing process in Chapter 5. The performance of the adjustment rule, including 

stability and sensitivity has been evaluated. Furthermore, the adjustment algorithm is 

integrated with SPC so that changes in both adjustment algorithm and manufacturing can 

be detected. 

Chapter 6 concludes the dissertation. Prospects of future research are also 

discussed. 
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Figure 1.3 The Framework of Error Equivalence Theory 
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Chapter 2  

Error Equivalence Modeling and Variation Propagation Modeling Based on Error 

Equivalence* 

This chapter models the phenomenon of the error equivalence in the machining 

processes by considering how multiple errors (including fixture, and datum, and machine 

tool) generate the same pattern on part features. The equivalent transformations between 

multiple errors are derived through a kinematic analysis of process errors. As a result, 

error sources can be grouped so that root cause identification can be conducted in a 

sequential manner, which generally requires fewer feature measurements than the 

previous approaches. The case study demonstrates the model validity through a real 

cutting experiment. 

The chapter is organized as follows. Section 2.1 introduces some preliminaries 

and notations. Section 2.2 defines the error equivalence and overviews the methodology. 

Error equivalence model in machining processes is derived in Section 2.3. As an example 

of applying the error equivalence model, Section 2.4 presents a new variation propagation 

model for multi-operational machining processes. The case studies have been conducted 

in Section 2.5. Conclusions and future research work are discussed in Section 2.6. 

 

*The work in this chapter has appeared in Wang, H., Huang, Q., and Katz, R., 2005, “Multi-Operational Machining Processes 

Modeling for Sequential Root Cause Identification and Measurement Reduction,” ASME Transactions, Journal of Manufacturing 

Science and Engineering, 127, pp. 512-52. 
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2.1 Preliminaries and Notations 

This section introduces kinematic analysis of machining process, including 

representations of surface and its spatial transformation caused by process errors in a 

manufacturing process. The results will be used to derive error equivalence 

transformation. 

By vectorial surface model (Martinsen, 1993; and Huang, Shi, and Yuan, 2003), 

an M-surface part X is represented as a vector in the part coordinate system (PCS) 

 X = ( )1

TT T T
j MX X X… … ,  j=1, …, M,                                  (2.1) 

where Xj denotes the jth surface and it is represented as  

Xj = ( )TT T
j j jrv p = (vjx  vjy vjz  pjx  pjy  pjz  rj)T ,                         (2.2) 

where vj=(vjx  vjy vjz)T, pj=( pjx  pjy  pjz)T, and rj are orientation, location and size of surface 

j, respectively. Subscripts x, y, and z denote orthogonal directions in the coordinate 

system. M is determined by product design and process planning. The size of cylindrical 

hole can be represented by the radius of the hole and size of plane is zero.  

The nominal surface j and part are denoted as 0
jX  and X0, respectively. The 

deviation of Xj is denoted as xj=Xj- 0
jX = ( )TT T

j j jrΔ Δ Δv p as shown in Fig. 2.1, where 

Euler parameters and matrix H will be described in Eq. (2.4). Accordingly, the part 

deviation is denoted as x= ( )1

TT T T
j Mx x x… … . The feature deviation x of a workpiece can 

be represented as a function of multiple errors sources (u1, u2, …, up)T,  

x = =1Σ ( ) + ,p
i i if u ε                                  (2.3) 

where fi(.)’s are functions determined by process and product design. ε is the noise term. 

Process errors {ui} involved in machining mainly include those during setup and cutting 
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operations. Since the part is modeled as a vector, operations and their errors can be 

viewed as vector transformations. Therefore, homogeneous transformation matrix (HTM) 

is generally applied to model both operations and operational errors. For instance, HTM 

FHP is used to model the nominal setup at operation k. It transforms 0
jX  from the nominal 

PCS (denoted as PCS0) to the nominal fixture coordinate system (FCS0). Since setup 

error could be induced by fixture error and datum error, we use HTMs Hf and Hd to 

denote the additional transformation of 0
jX  in the FCS0 caused by fixture error and datum 

error, respectively.  
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Figure 2.1 Modeling of Part Feature Deviation 
 

To describe fixture error, the common 3-2-1 fixture locating scheme is adopted 

(Fig. 2.2). The fixture is represented by the positions of 6 locators in the FCS, i.e., (fix  fiy  

fiz)T, i=1,…, 6. Not losing generality, the FCS0 is established with f1z=f2z=f3z =f4y=f5y=f6x＝

0. The fixture error is denoted as deviations of locators, i.e., Δf=(Δf1z  Δf2z  Δf3z  Δf4y  Δf5y  

Δf6x)T
.. Cai, Hu, and Yuan (1997) nicely presented the relationship between Δf and Hf. 

Their key results are summarized in Appendix A.  
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Block workpiece

 
Figure 2.2 General 3-2-1 Locating Scheme and FCS0 

 

The datum error is included in the incoming workpiece x. For the surfaces used as 

the primary, secondary, and tertiary datum, their errors are denoted as xI, xII, and xIII, 

respectively. Datum error is then D I II III( )T T T T=x x x x . The relationship between datum 

error and Hd will be derived in Section 2.2 using the concept of equivalent fixture error. 

The datum error is first converted to the equivalent amount of fixture locator errors 

(denoted as Δd). Then the results in Cai , Hu, and Yuan (1997) can be directly applied to 

find Hd through Δd. 

The nominal cutting operation or the tool path can be modeled as MHF
FHP

0
jX , 

where MHF transforms a part surface from the FCS0 to the nominal machine tool 

coordinate system (MCS0). (When deriving the results, we choose the MCS0 to be the 

same as the FCS0, i.e., MHF= I8×8. Discussion is given in Section 2.4.3 when MHF is not 

identity matrix.) We use Hm to represent the transformation of tool path (from nominal to 

the real one) caused by machine tool error. Only geometric errors of machine tool are 

considered in this work. Fig. 2.3 shows the transformation due to process errors. As an 

example to show the form of HTM, Hm is given as  
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                         (2.4) 

where rotation matrix Rotm has the following form under small deviation assumption 

(Huang and Shi, 2003), 

3 2

3 1

2 1

1 -2 2
= 2 1 -2

-2 2 1

m m

m m m

m m

e e
e e
e e

δ δ
δ δ
δ δ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Rot  

and (δe1m  δe2m  δe3m)T are deviations of Euler parameters, representing deviation of tool 

path orientation. Rotm on the upper left corner of Eq. (2.4) transforms the orientation of 

surface, while the second Rotm transforms the surface position. (xm  ym  zm)T represents 

deviation of tool path in position. γm is the ratio of actual and ideal surface size. When 

γm=1, there is no size deviation due to the machine tool error. Accordingly, we define the 

machine tool error as ( T
mδq   γm-1)T, where δqm=(xm  ym  zm  δe1m  δe2m  δe3m)T. The 

equivalent fixture error due to machine tool is denoted as Δm. 

Notations δqd and δqf can also be introduced for the parameters in Hd and Hf in a 

similar way. Since datum and fixture errors have no impact on the surface size, we have 

γd= γf=1.  
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Figure 2.3 Modeling of Workpiece Positioning Error  
 

2.2 Mathematical Modeling of the Error Equivalence Phenomenon in Manufacturing 

Suppose p random error sources ui’s lead to dimensional deviation x as x = 

fi(ui)+εi, i=1,2,…,p. ui’s are assumed to be independent from one another and the noise 

term  has mean E(εi)=0, and covariance Cov(εi)= 2
iε

σ  I, where I is an identity matrix. A 

tentative definition of error equivalence is given as follows. 

Definition: Two error sources ui and uj are equivalent if expectation E[fi(ui)]= E[fj(uj)]. 

That is, the equivalence among random errors is evaluated by the resultant mean shift 

patterns in product features. 

It should be noted that errors might not be equivalent under all situations. For 

instance, the surface profile deviation caused by a machine tool might not be reproduced 

by a fixture. This study only focuses on the situations that error equivalence holds. 

If error sources ui and uj are equivalent, it is feasible to transform ui into 

equivalent amount of error in terms of uj without affecting the analysis of feature 

deviation x. This fact prompts error equivalence transformation to derive the error 

equivalence model.  
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Figure 2.4 Mathematical Modeling of Error Equivalence 
 

Fig. 2.4 outlines the basic idea of mathematical modeling of the error equivalence 

phenomenon. If p process errors ui’s are equivalent, the first step of modeling is to 

transform ui’s into a base type error u1 through * =i i iu K u . A significant advantage of this 

equivalent transformation is that the causal relationship between base error u1 and feature 

deviation, i.e., x=f1(u1), can be generally applied to other types of error sources.  The 

manufacturing operation (e.g., cutting or setup operation) can be represented by a HTM 

matrix H(δq), where the deviation of Euler parameters (δq) (see Fig. 2.3) are related to 

the operational error. The remaining modeling steps can therefore be focused on the 

causal model x=f1(u1) because the transformed errors *
iu ’s are to be grouped together 

into *
=1Σ p

i iu  with *
1u = u1. The process model presented by Eq. (2.3) can be rewritten as x= 

*
=1Σ ( )p

i i if u . Since *
iu ’s are treated as base error u1, the process model based on error 

equivalence modeling thus becomes  

x *
1 2 =1 1= ( , ,..., ) + = Σ ( )p

p i if u u u ε f u  + ε.                 (2.5) 

If function f1 could be approximated by a linear function Γ*, the model becomes 

x= *Γ u  + ε, with u= *
=1Σ p

i iu .                      (2.6) 
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The definition also shows the way to check the error equivalence condition. We can first 

estimate E( *
iu ) and Cov( *

iu ) from measurement data using maximum likelihood 

estimation (MLE) method. Then the definition of error equivalence can be directly 

applied. 

Transforming error sources into a base error implies the transformation of 

manufacturing operations into a base operation, i.e., the operation with base error only. 

Operations with other types of errors become flawless because all the process errors have 

been transferred to the base operation. 

The derivation of this dissertation is under the linearity assumption, under which 

equivalence transformation and quality prediction model assume linear form. The 

nonlinear deformation of products is not considered in this study. 

 

2.3 Error Equivalence Modeling for Machining Processes 

We first introduce the concept of equivalent fixture error, by which a variation 

propagation model is developed by grouping fixture, datum, and machine tool errors. 

Condition of error grouping is also discussed in this section. 

2.3.1 Concept of Equivalent Fixture Error 

In a general machining process, three major error sources are considered: fixture 

error Δf, machine tool error δqm, and datum surface error xD. The fixture error is chosen 

as the base error because of the following reasons: 

 Fixture error is simply represented by the deviation of fixture locators, while machine 

tool error is relatively complicated. The datum error is usually caused by fixture or 

machine tool errors. 
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 Fixture error has been well studied. Methods are readily available for the analysis of 

workpiece positioning error (Weill, Darel, and Laloum, 1991; Rong and Bai, 1996; 

Cai, Hu, and Yuan, 1997; Wang, 2000; and Marin and Ferreira, 2003), the resultant 

feature deviation, and fixture error diagnosis (Hu and Wu, 1992; Apley and Shi, 1998, 

2001; and Ceglarek and Shi, 1996). 

 Flexible fixtures have been available whose locators are adjustable for 

accommodating a product family. It is possible to adjust the locator lengths for the 

purpose of error compensation.  

The base error in terms of fixture error is called equivalent fixture error (EFE), 

which can be illustrated with a 2-D block workpiece (Fig. 2.5). 
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Δm2

Δm3
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(a)                                                           (b) 

Figure 2.5 Equivalent Fixture Error 
 

In Fig. 2.5(a), the dash line block with surfaces ( 0
1X   0

2X   0
3X   0

4X ) is in its 

nominal setup position. Due to datum error occurring on surface X1, the block has to be 

transformed to position (X1  X2  X3  X4)  (the solid line block) around the locating point f3. 

The workpiece position transformation is described by HTM Hd. The EFE due to datum 

error, denoted by Δd=(Δd1z  Δd2z  Δd3z  Δd4y  Δd5y  Δd6x)T, can be derived by finding the 

difference between actual (Hd FHP ( 0T
jX   1)T) and nominal datum surfaces (FHP ( 0T

jX  1)T), 

where {j}⊂ {I, II, III}. In Fig. 2.5(a), the equivalent fixture deviation is Δd1 and Δd2. In 

Fig. 2.5(b), EFE due to machine tool error can be derived in a similar way. The left panel 

X3 

X2 
X1 

X4 

f1 f2 

f3 

0
4X

0
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0
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Δd1 Δd2 

0
3X



 24

shows that the machined surface X3 deviates from designed position 0
3X  due to machine 

tool errors. The EFE transforms the workpiece from nominal position ( 0
1X   0

2X   0
3X   0

4X ) 

to dash line position shown in right panel. A nominal cutting operation can yield the same 

surface deviation as machine tool error does in the left panel. Therefore, the inverse of 

Hm transforms X3 to its nominal position 0
3X   in the FCS. The EFE due to machine tool 

error, denoted by Δm=(Δm1z  Δm2z  Δm3z  Δm4y  Δm5y Δm6x)T, can be uniquely determined 

by the difference between -1
mH FHP ( 0T

jX   1)T and FHP ( 0T
jX   1)T at the locating point, 

where {j}⊂ {I, II, III}. In this example, the equivalent fixture locator deviation Δm1 and 

Δm2 is determined by difference between surfaces 0
1X  and X1 at locating point 1 and 2. 

Δm3 can be computed by the difference between surfaces 0
2X  and X2 at locating point 3.  

 

2.3.2 Derivation of EFE Model 

The equivalent locator deviation caused by either datum error or machine tool 

error can be computed by the distance between two points where locators intersect the 

nominal datum 0
jX = 0 0 0 0 0 0(           )T

jx jy jz jx jy jzv v v p p p  and deviated datum surfaces Xj=(vjx  vjy  

vjz  pjx  pjy  pjz) (Fig. 2.6), where j=I, II, III represents three datum surfaces. nj is the 

normal vector of datum surface and it is equal to orientation vector vj when datum surface 

is planar. 

Let Δd=(Δd1z  Δd2z  Δd3z  Δd4y  Δd5y  Δd6x)T and Δm=(Δm1z  Δm2z  Δm3z  Δm4y  

Δm5y  Δm6x)T represent EFEs caused by datum and machine tool errors, respectively. 

Using analytical geometry, EFEs can be derived as 
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         (2.7) 

The orientation vector nj and position pj of the plane Xj can be further expanded 

by datum error xj or machine tool error δqm.  

 
Figure 2.6 EFE Derivation 

 

When computing Δd, deviated surface Xj can be determined by datum error plus 

the nominal, i.e., 0
j j j= +X X x . Eq. (2.7) is then linearized as:  
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The mapping matrix relating datum error to Δd is 
1

2 2

3

⎛ ⎞
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G 0 0
K 0 G 0

0 0 G
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( )3 6 60 1 0 0y zf f= −G . 

When deriving Δm, we use the relationship between Xj  and machine tool error 

δqm. Linearization of Eq. (2.7) using the first order of Tayler expansion then yields 
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Figure 2.7 Non-Planar Datum Surfaces 

 

This modeling is applicable for the case where datum surfaces are all planes. 

When the surface is not planar, we should use tangential plane of surface at each locating 

point as datum surface. Fig. 2.7 shows the setup of a 2-D part with non-planar datum 

surfaces. The datum surfaces are tangential planes T1, T2, and T3. The corresponding 

normal vectors are n1, n2, and n3, respectively. If the implicit form surface equation is 

represented by fj(xj, yj, zj)=0, nj and pj are determined by 

, 
, ( , , ) 0

T

j j j
j j jx jy jz

j j j

f f f
f p p p

x y z
⎛ ⎞∂ ∂ ∂

= =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
n , j=I,II,…,VI.           (2.10) 

The following is for a brief derivation on orientation v and position vector p of 

three datum surfaces. If the features j1, j2 and j3 that are selected as the first, second and 

tertiary datum surface are planar, orientation vector of three datum surfaces can be vI=vj1, 

vII=vj2, and vIII=vj3. However, if j2 and j3 are cylindrical holes where round pin and 

diamond pin reside respectively, such locating scheme is equivalent to a simplified 3-2-1 

T1 T2 
n2 n1 

n3 

T3 

(2.9) 
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fixture locating scheme as shown in Fig. 2.8. We can set the origin of fixture coordinate 

system at the point of pj2, and f1z=f2z=f3z=f4x=f4y=f4z=f5y=f5z=f6x=f6y=f6z=0. 

z

y

v I

v III

      

   
j 2

j 3

 

f 5
f 1 f 2

f f 3f 6

v j 3

v j 2

p j 3

p j

Second datum surface II
Primary datum surface I

Tertiary datum surface III

Locating point

z

y

v I

v III

      

   
j 2

j 3

 

f 5
f 1 f 2

f f 3f 6

v j 3

v j 2

p j 3

p j

Second datum surface II
Primary datum surface I

Tertiary datum surface III

Locating point  
Figure 2.8 Pin-Hole Locating Scheme 

 

The orientation vector for second datum surface is defined to be  

( )
2 2 3

3 2 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2

II ( )

= ,

j j j

j y j z j y j z j z j y j z j y j z j x j z j x j x j z j x j z j x j y j x j y j y j x j y j xv p v p v p v p v p v p v p v p v p v p v p v p

= × −

− + + − − + + − − + + −

v v p p
 (2.11) 

where orientation vj and position pj of holes are parameters that vary within infinitesimal 

range. The normal vector for the tertiary datum surface is  

( )2 3 2 3 2 3 2 3III - - -j j j x j x j y j y j z j zp p p p p p= − =n p p .                    (2.12) 

Deviation of normal vector is determined by differentiation and linearization of vI, vII, 

and vIII. The results are given as follows: 

If three datum surfaces are planar:  

ΔnI=Δvj1, ΔnII=Δvj2, ΔnIII=Δvj3 , and                                   (2.13) 

ΔpI=Δpj1, ΔpII=Δpj2, ΔpIII=Δpj3. 
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If j1 is plane, j2 and j3 are cylindrical hole: 

Δn1=Δvj1, 
2 3 3 3 2 3 2

3 2 3 3 2

3 2 3 2 3 3 2 3 3

II

II

II

( - ) ,

( - ) ,

( - ) ( - ) ( - ) ,

x j y j y j z j y j y j y j y

y j x j x j z j x j x

z j y j y j x j x j x j z j x j x j z

n p p v p p p p

n p p v p p

n p p v p p v p p v

Δ = Δ −Δ + Δ = −Δ + Δ

Δ = Δ + Δ −Δ

Δ = Δ + Δ = Δ

             

2 3

2 3

2 3

3

3

3

,

,

.

x j x j x

y j y j y

z j z j z

n p p

n p p

n p p

Δ = Δ −Δ

Δ = Δ −Δ

Δ = Δ −Δ

 

 

2.4 Variation Propagation Modeling Based on Error Equivalence for Multi-Operation 

Machining Process 

2.4.1 Background Review for Multi-Operational Manufacturing Process 

Due to the increasing complexity of products and the requirements of quick 

response and flexibility, manufacturing process has evolved into complex systems 

consisting of many stages, where the variation can be accumulated through multiple 

stages onto the final product. Such variation transmission has been widely investigated. 

Variation propagation modeling has been proved to be an effective way for 

variation reduction and design synthesis in multi-operational manufacturing processes. A 

brief review is given to the previously developed state space model. 

For an N-operation manufacturing process, the state of the kth operation x(k) is 

described as a linear combination of the previous state x(k-1), process input u(k), and 

natural process variation ζ(k). Quality characteristic y(k) is a linear transformation of state 

x(k) plus measurement noise η(k). Under small deviation assumption, the model has the 

following form  

 

(2.14) 
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x(k)=A(k-1)x(k-1)+B(k)u(k)+ζ(k),   k=1, 2, …, N,                             (2.15)  

y(k)=C(k)x(k)+η(k),  {k}⊂ {1, 2, …, N}. 

For machining processes, state vector x(k) represents the deviations of part 

features. The process deviation u(k) includes fixture and machine tool deviations, while 

the datum deviation is contained in x(k-1). State transition matrix A(k-1) and input 

coefficient matrix B(k) are constant matrices determined by product and process design. 

The matrix C(k) is determined by measurement design. Denote by y the quality 

characteristics of N operations and by u the process deviations from all operations. The 

relationship between y and u can be obtained by solving Eq. (2.15), which ends up with a 

linear model in the form y=Γu+ε or x=Γu+ε. Diagnosis and measurement synthesis can 

be performed by analyzing the rank of matrix Γ (Ding, et al., 2003; and Zhou, Huang, 

and Shi, 2003). The problem encountered, however, is that Γ is often not full rank for 

machining processes. One natural thought is to increase the dimension of quality 

characteristics y to increase the rank of Γ matrix. Nevertheless, this strategy cannot 

guarantee the full rank of Γ because datum, fixture, and machine tool errors could 

generate the same error patterns on part features. Previously developed approaches for 

machining processes (Huang, Shi, and Yuan, 2003; Djurdjanovic and Ni, 2001; and Zhou, 

Huang, and Shi, 2003), however, did not model the error equivalence. Consequently, it is 

difficult to distinguish error sources at each operation (Huang and Shi, 2004). 

The strategy proposed in this chapter is to formulate the variation propagation 

model using the proposed EFE concept. With this concept, datum error and machine tool 

error are transformed to equivalent fixture locator errors at each operation. As a result, 

the dimension of u can be reduced by properly grouping three types of errors together. 
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The rationale of the proposed methodology is to conduct measurement in a sequential 

manner for root cause identification. First, only necessary information is provided to 

identify whether there is any error in the process. If not, additional measurement is 

deemed as waste of resources. Second, if any error is identified, further measurement will 

be conducted to distinguish three types of errors. This methodology generally requires 

less feature measurements than the previous approaches. A detailed diagnostic algorithm 

will be presented in Chapter 3. 

 

2.4.2 Variation Propagation Model Derivation 

This section shows the derivation procedure for the surface deviation xj(k) (Fig. 

2.9). It can be easily extended for part deviation x(k) and establishing state space model. 

 
Figure 2.9 Model Derivation 

 

Step 1 models how feature quality is affected by faulty setup and cutting 

operation at the kth stage. Parameters δqd(k), δqf(k), and δqm(k) in HTMs are intermediate 

variables linking Δf(k) , Δd(k), and Δm(k) with feature deviation xj(k). Step 2 derives 

how fixture error Δf(k), EFE Δd(k) and Δm(k) affect δqd(k), δqf(k), and δqm(k), 

respectively. Step 3 describes how errors from previous operation (datum error) affect 

Δd(k). 

Δf(k) 

Δm(k) δqm(k) 

Δd(k)δqd(k) 

xj(k) δqf(k) 

Step 1 Step 3 Step 2

xI(k-1)  
xII(k-1)  
xIII(k-1) 
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Step 1. After setup operation, the part surface can be represented by FHP(k)( 0 ( )T
j kX  1)T. 

The machined surface j is represented as Hm(k)FHP(k)( 0 ( )T
j kX   1)T in the FCS0. After 

transforming the surface to the PCS0 (Huang and Shi, 2003), the actual surface Xj(k) is: 

( ) ( )-1 -1 -1 0( ) 1 ( ) ( ) ( ) ( ) ( ) ( ) 1 ,
T TT F F T

j P d f m P jk k k k k k kX = H H H H H X             (2.16) 

where 0 0 0 0 0 0 0( ) ( ( ) ( ) ( ) ( ) ( ) ( ))T
j jx jy jz jx jy jzk v k v k v k p k p k p k=X . By substituting Eq. (2.4) 

into Eq. (2.16), we can compute the actual machined surface Xj(k). After ignoring higher 

order error terms, Eq. (2.16) can be rewritten as: 

6 1
0

1 18

( ) ( ) ( )
( ) ( ) ( )( )

jd jf jm
j j

j

k k k
k k kr k δ×

×

−⎛ ⎞
= +⎜ ⎟⎜ ⎟
⎝ ⎠

A A A 0
x q ζ0

, and 

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 2 2
0 0 0 2 0 2
0 0 0 2 2 0

( ) ( ) ( )
1 0 0 0 2 2

0 1 0 2 0 2
0 0 1 2 2 0

jz jy

jz jx

jy jx
jd jf jm

jz jy

jz jx

jy jx

v v
v v
v v

k k k
p p

p p
p p

⎛ ⎞−
⎜ ⎟

−⎜ ⎟
⎜ ⎟−

= = − = ⎜ ⎟
− −⎜ ⎟
⎜ ⎟− −
⎜ ⎟
⎜ ⎟− −⎝ ⎠

A A A  if FHP(k)=I, 

where rank(Ajd)≤5 and ( )( )= ( ) ( ) ( ) ( ) 1
TT T T

d f m mk k k k kδ δ δ δ γ− −q q q q . ζ(k) is the modeling 

error for operation k. Index k is omitted within matrices Ajd(k), Ajf(k) and Ajm(k).  

The δq(k) can be grouped because of Ajd(k)=Ajf(k)=-Ajm(k). Eq. (2.17) is  

( )( )6 1 T
0

1 6

( )
( ) ( ( ) 0) ( ( ) ( )) ( )-1 ( )( )

Tjd T T
j d f m m

j

k
k k k k k kr k δ δ δ γ×

×

⎛ ⎞
= + − +⎜ ⎟⎜ ⎟
⎝ ⎠

A 0
x q q q ζ0 ,  (2.18) 

where the dimension of δq(k)  is reduced from 19 to 7. 

The expression for Ajd(k), Ajf(k) and -Ajm(k) in Eq. (2.17) is only given under the 

condition of FHP(k)=I. In Section 2.4.3, we will show that Ajd(k)=Ajf(k)=-Ajm(k) and error 

grouping still hold if FHP(k)≠I.  

(2.17) 
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Step 2. Relationship between δqf(k) and Δf has been given as 1 Δfδ −=q -J ΦE f  by Cai, et 

al., (1997) (refer to Appendix A for a brief summary of the result). By the concept of 

EFE, Δd and Δm are equivalent to Δf. Therefore, δqd(k) and δqm(k) can be determined 

accordingly by the same approach, i.e., 

1 Δdδ −=q -J ΦE d  and                                             (2.19) 

1 1( Δ ) Δ ,mδ − −= − − =q J ΦE m J ΦE m                                       (2.20) 

where matrix E is an 18×6 matrix (see Appendix A). Since 1
m
−H (not Hm) transforms the 

workpiece from nominal position to its real position in the FCS (refer to Fig. 2.5(b)), we 

add minus sign before 1 Δ−−J ΦE m  in Eq. (2.20). It turns out that Jacobian matrix J and 

orientation matrix Φ in Eqs. (2.19) and (2.20) are the same as those in Eq. (A.1). 

Therefore, we still can group errors after substituting Eqs. (A.1), (2.19), and (2.20) into 

Eq. (2.18),  

 ( )( ) ( ) Δ ( ) 0 ( ) ( ) ( )
TT

j j j jk k k k k k= + +x B d B u ζ ,                            (2.21) 

where 
-1

6 1
0

1 6

( ) ( ) ( )
( )

( )
jd

j
j

k k k
k

r k
×

×

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

-A J Φ E 0
B

0
 is the input coefficient matrix linking errors 

at the current operation with feature deviation, rank ( -1( ) ( ) ( )jd k k k-A J Φ E )≤ 5, and 

u(k)=((Δf(k) +Δm(k)) T, γm(k)-1) T. 

Step 3.   EFE Δd(k) in Eq. (2.18) becomes  

I

II
22 22

III7 22 22 22

22 1

( 1)
( 1)( )

,
( 1)1 1 1

1

k
kk
k×

× ×

×

⎛ ⎞−
⎜ ⎟

−Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟=⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎜ ⎟
⎜ ⎟
⎝ ⎠

x
xd Ψ 0 G 0

H
x0 0                         (2.22) 
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where matrix H transforms deviations of three datum surfaces from PCS0 to FCS0. It is 

defined as 
1 3

1 3

1 3

1 21

( 0)

( 0)

( 0)
1

F F F T
P P P

F F FF T
P P P P

F F F T
P P P

x y z

x y z

x y z

×

×

×

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

0

R 0

0
0

; where FRP= diag(FRotP  FRotP  γm  FRotP 

FRotP  γm FRotP 
FRotP  γm). FRotP is the rotational block matrix in FHP. (FxP FyP FzP)T are 

translation parameters. Matrix 
1

2

3

= 
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Ψ 0 0
Ψ 0 Ψ 0

0 0 Ψ

 maps the deviation of workpiece to 

the EFE with 
1 1

1 2 2

3 3

0 0 0 1 0
0 0 0 1 0
0 0 0 1 0

x y

x y

x y

f f
f f
f f

⎛ ⎞
⎜ ⎟

= −⎜ ⎟
⎜ ⎟
⎝ ⎠

Ψ , 4 4
2

5 5

0 0 1 0 0
0 0 1 0 0

x z

x z

f f
f f

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
Ψ , and  

( )3 6 60 1 0 0 0y zf f= −Ψ . Matrix G is introduced for computing deviation of 

orientation vector of datum surface under two conditions:  

• If all datum surfaces are planar: G=I;  

• If XI is plane, XII and XIII are cylindrical holes, G can be obtained by differentiating 

II II III( )× −v p p  and pII-pIII. Considering the results in Eq. (2.14), we have  

7 7

11 12

4 3 4 4 4 7

21 22

4 3 4 4 4 7

×

× × ×

× × ×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

0 0
I

G G
G 0

0 I 0
G G

0
0 I 0

, where 
2 3

3 2

11

0 0 0 0 1 0 0
0 0 - 1 0 0 0

0 - 0 0 0 0 0
j x j x

j x j x

p p

p p

⎛ ⎞−
⎜ ⎟

=⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

G , 

12

0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

G , 
21

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

G , 
22

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

−⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟−⎝ ⎠

G .  
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Substituting Eq. (2.22) into Eq. (2.21), state transition matrix Aj(k-1) can be 

obtained and we derive the variation propagation model for the surface j at operation k. If 

we assemble the model for all the features and datum surfaces, the equation in the form 

of the state space model can be obtained. The dimension of input vector u(k) is reduced 

from 13 to 7 because of error grouping. Thus the order of matrix Γ*TΓ* is greatly reduced. 

The dimension of output vector x(k) required to make Γ*TΓ* full rank is reduced as well. 

When FCS, PCS, and MCS coincide, and the orientation vectors of datum surfaces are    

(0 0 -1 0 0 0 0)T, (0 -1 0 0 0 0 0)T, and (-1 0 0 0 0 0 0)T in the FCS, we get input matrix 

*
jΓ  corresponding to the machined surface j ( )0 0 0 0 0 0 0

T

x y z x y zv v v p p p as  

* 1
j jd

−= −Γ A J ΦE ,                                          (2.23)  

which yields *
jΓ  matrix, i.e.,  
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G j
* =

i

k

f3 x H f4 z- f5 z L vy0+ f2 x H- f4 z+ f5 z L vy0+H f4 x- f5 xL H f2 y- f3 yL vz0
H f4 x- f5 xL H f3 x H f1 y- f2 yL+ f2 x H- f1 y+ f3 yL+ fx H f2 y- f3 yLL

f3 x H f4 z- f5 z L vy0+ f1 x H- f4 z+ f5 z L vy0+H f4 x- f5 xL H f1 y- f3 yL vz0
H f4 x- f5 xL H f3 x H- f1 y+ f2 yL+ f2 x H f1 y- f3 yL+ f1 x H- f2 y+ f3 yLL

H f2 x- f3 xL H f4 z vx0- f5 z vx0+H- f4 x+ f5 xL vz0L
H f4 x- f5 xL H f3 x H- f1 y+ f2 yL+ f2 x H f1 y- f3 yL+ fx H- f2 y+ f3 yLL

H fx- f3 xL H f4 z vx0- f5 z vx0+H- f4 x+ f5 xL vz0L
H f4 x- f5 xL H f3 x H- f1 y+ f2 yL+ f1 x H- f2 y+ f3 yL+ f2 x H f1 y- f3 yLL

- f2 y vx0+ f3 y vx0+H f2 x- f3 xL vy0
f3 x H f1 y- f2 yL+ f1 x H f2 y- f3 yL+ f2 x H- f1 y+ f3 yL

f1 y v1 x0- f3 y vx0+H- f1 x+ f3 xL vy0
f3 x H f1 y- f2 yL+ f1 x H f2 y- f3 yL+ f2 x H- f1 y+ f3 yL

- f2 x H f4 z- f5 z L H f6 y-py0L+ f3 x H f4 z - f5 zL H f6 y+py0L+H f4 x- f5 xL H f2 y- f3 yL H f6 z -pz0L
H f4 x- f5 xL H f3 x H- f1 y+ f2 yL+ f2 x H f1 y- f3 yL+ f1 x H- f2 y+ f3 yLL

- f1 x H f4 z- f5 z L H f6 y-py0L+ f3 x H f4 z - f5 zL H f6 y-py0L+H f4 x- f5 xL H f1 y- f3 yL H f6 z -pz0L
H f4 x- f5 xL H f3 x H f1 y- f2 yL+ f1 x H f2 y- f3 yL+ f2 x H- f1 y+ f3 yLL

H f2 x- f3 xL HH- f4 z+ f5 z L px0+ f5 x H f4 z-pz0L+ f4 x H- f5 z +pz0LL
H f4 x- f5 xL H f3 x H- f1 y+ f2 yL+ f2 x H f1 y- f3 yL+ f1 x H- f2 y+ f3 yLL

H f1 x- f3 xL HH- f4 z + f5 zL px0+ f5 x H f4 z +pz0L- f4 x H f5 z-pz0LL
H f4 x- f5 xL H f3 x H f1 y- f2 yL+ f1 x H f2 y- f3 yL+ f2 x H- f1 y+ f3 yLL

H- f2 y+ f3 yL px0+ f3 x H f2 y-py0L- f2 x H f3 y-py0 L
f3 x H f1 y- f2 yL+ f1 x H f2 y- f3 yL+ f2 x H- f1 y+ f3 yL

H f1 y- f3 yL px0- f3 x H f1 y-py0L+ f1 x H f3 y-py0L
f3 x H f1 y- f2 yL+ fx H f2 y- f3 yL+ f2 x H- f1 y+ f3 yL  

f2 x H f4 z- f5 z L vy0+ f1 x H- f4 z+ f5 z L vy0+H f4 x- f5 xL H f1 y- f2 yL vz0
H f4 x- f5 xL H f3 x H f1 y- f2 yL+ f2 x H- f1 y+ f3 yL+ fx H f2 y- f3 yLL

vy0
f4 x- f5 x

vy0
- f4 x+ f5 x

0
H fx- f2 xL H f4 z vx0- f5 z vx0+H- f4 x+ f5 xL vz0L

H f4 x- f5 xL H f3 x H f1 y- f2 yL+ f2 x H- f1 y+ f3 yL+ f1 x H f2 y- f3 yLL
vx0

- f4 x+ f5 x

vx0
f4 x- f5 x

0
- f1 y vx0+ f2 y vx0+H f1 x- f2 xL vy0

f3 x H f1 y- f2 yL+ f1 x H f2 y- f3 yL+ f2 x H- f1 y+ f3 yL
0 0 0

- f1 x H f4 z- f5 z L H f6 y-py0L+ f2 x H f4 z - f5 zL H f6 y-py0L+H f4 x- f5 xL H f1 y- f2 yL H f6 z -pz0L
H f4 x- f5 xL H f3 x H- f1 y+ f2 yL+ f2 x H f1 y- f3 yL+ f1 x H- f2 y+ f3 yLL

f6 y-py0

- f4 x+ f5 x

f6 y-py0

f4 x- f5 x
-1

H f1 x- f2 xL HH- f4 z + f5 zL px0+ f5 x H f4 z -pz0L- f4 x H f5 z-pz0LL
H f4 x- f5 xL H f3 x H- f1 y+ f2 yL+ f2 x H f1 y- f3 yL+ f1 x H- f2 y+ f3 yLL

f5 x-px0
f4 x- f5 x

f4 x-px0
- f4 x+ f5 x

0
H- fy+ f2 yL px0+ f2 x H f1 y-py0L- fx H f2 y-py0L

f3 x H f1 y- f2 yL+ f1 x H f2 y- f3 yL+ f2 x H- f1 y+ f3 yL
0 0 0

y

{  
 
where we can see that matrices *

jΓ  corresponding to three EFEs are the same. 

The structure of Eq. (2.17) proves our previous claim that it is hard to conduct 

root cause identification using previously developed models. It also reveals that fixture 

and machine tool cannot be distinguished without in-process measurements on either 

fixture locators or the machine tool at each operation. 

 

2.4.3 Discussion for Error Grouping in Machining Processes 

In Section 2.4.2, the model derivation is based on the assumption that 

transformation matrix FHM(k) is identity. In addition, the expression of Ajd
 (k), Ajf(k) and 

-Ajm(k) are given under the condition of FHM(k)=I. In this section, a necessary and 

sufficient condition for error grouping is discussed. 

, 
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Proposition 2.1 (Condition on grouping variables) The linear equation 

( ) ( )1 2 1 2= = ,T T
n mx x x u u u… …x Γ                           (2.24) 

where Γ={gij}n×m, i=1,2,…, n; j=1, 2,…, m; x1, x2, ..., xn and u1, u2, ..., um are variables, 

can be grouped into the following form 

( )1 2

T

np p p u=x  with 1 1 2 2 ... m mu k u k u k u= + + + .          (2.25) 

where pi and kj are certain coefficients, if and only if the rank of matrix Γ is one or zero. 

In our study, the coefficient matrices of Δd, Δf, and Δm are the same, (see Eqs. 

(A.1), (2.19), and (2.20)), which satisfies the sufficient condition for grouping.  

In the above discussion, we assume the transformation matrix FHP and FHM to be 

identities. If three coordinate systems do not coincide with each other, the coefficient 

matrices  for Δd, Δf, and Δm are still the same when FHP ≠I8×8 and FHM =I8×8. However, 

this is not true when FHM≠I8×8. We have the following conclusion. 

Corollary. MCS0 and FCS0 must coincide to perform error grouping in the proposed 

model. However, this requirement can be easily satisfied in modeling stage. The proofs of 

the proposition and corollary are listed in Appendix B.  

 

2.5 EFE Validation and Modeling Demonstration 

This section validates the EFE with a milling process and demonstrates the 

modeling procedures for a multi-operational machining process. 
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2.5.1 Experimental Validation of EFE 

We machine 6 blocks to validate EFE model. The first three parts are cut with 

only datum error, while the rest are cut with only machine tool error. The datum error and 

machine tool error are set in such a way that Δd=Δm=(1.105 0 0 0 0 0)T, i.e., their EFEs 

are the same based on Eqs. (2.8) and (2.9). Then we can measure the machined surface 

and compare the surface orientation and position.  

Fig. 2.10 shows the specification of raw workpiece and fixture layout. Only top 

surface X is machined and its specification is X0= (0 0 1 0 0 20.32 0) T.  Using Eq. (2.21), 

the deviated surface X is predicted as (0 -0.0175 0.9998 0 0 18.88)T. 

 

 
Figure 2.10 Raw Workpiece and Locating Scheme (Unit: mm) 

 

Table 2.1 shows the measurement of the machined surface. As can be seen, the 

discrepancies between two samples are very small. The measurement data are also 

comparable with the predicted results. Therefore, the experiment supports EFE model. 

 
 

Locating Point 

f1 

f2 f3 

f4 f6 

z 

y 

(a) (b)

22.86 0.01±

101.6 0.1±
76.2 0.1±

19.2 0.01±

57 0.01±

19 0.01± 63.3 0.01±

50.8 0.01±

8 0.01±

76.2 0.1±

X 

f5 

y 

x 

z 
x 

x Grooves 
38 0.01±

19 0.01±
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Table 2.1 Measurement Results (Under PCS0) 
X vx vy vz px py pz 

Sample 1 
(Datum Error) 

0 -0.0174 0.9998 0 0 18.880 
-0.0001 -0.0174 0.9998 0 0 18.882 

0 -0.0174 0.9998 0 0 18.881 
Sample 2 

(Machine Tool 
Error) 

0 -0.0172 0.9999 0 0 18.880 
-0.0001 -0.0173 0.9999 0 0 18.884 

0 -0.0163 0.9999 0 0 18.887 
 

 

2.5.2 Multi-Operational Variation Propagation Modeling With Grouped EFEs 

A machining process for V-8 cylinder head is employed to illustrate modeling 

procedure and the advantage of the modeling approach. The drawing of workpiece and 

the locating points are shown in Fig. 2.11. The surfaces chosen are marked as X1- X8. X1 

is the exhaust face, while X2 and X3 are two cup plug holes on the X1. X4 is spark plug 

tube hole and X5 is a hole for the exhaust lash adjuster. X4 and X5 are two angle holes and 

the specifications are given in section plots S1-S1 and S2-S2. Center of X7 is set to be the 

origin of nominal part coordinate system. Based on the dimensions shown in Fig. 2.11, 

the specification of each machined surface is listed in Table 2.2.  
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Figure 2.11 Workpiece and Locating  

 

The workpiece goes through two operations (Fig. 2.12): the first operation mills 

X1 and drills X2 and X3 using datum surfaces X6, X7 and X8; and the second operation 

drills X4 and X5 using datum surface X1, X2 and X3. The locator positions on the primary 

datum planes are given in Table 2.3. 

Table 2.2 Machined Features Specification  
Feature 

Component 
Part Features (In the PCS0, Unit: mm) 

X1 X2 X3 X4 X5 X6 X7 X8 
vx(k) 
vy(k) 
vz(k) 
px(k) 
py(k) 
pz(k) 
r (k) 

0 
1 
0 
0 

131 
0 
0 

0 
1 
0 

19.25 
131 

81.25 
7.5 

0 
1 
0 

319.25 
131 

81.25 
7.5 

0 
0.43 
0.90 
350 

52.69 
0 

4.6 

0 
0.28 
-0.96 

50 
44.41 
115.09 
16.92 

0 
0 
-1 
0 
0 
0 
0 

0 
0 
1 
0 
0 
0 
5 

0 
0 
1 

400 
0 
0 
5 

 
 

Table 2.3 Coordinates of Locating Points on the Primary Datum Surfaces (Unit: mm) 
 p1 p2 p3 

Operation 1 (-7, 109, 0) (407, 109, 0) (200, -11, 0) 
Operation 2 (19.25, 131, 61.25) (319.25, 131, 61.25) (169.25, 131, 11.25) 
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X6

X1

X6

X1

 
Operation 1                                     Operation 2 

Figure 2.12 Two Cutting Operations  
 

The state vector is x(k)= ( )1 2 3 4 5( ) ( ) ( ) ( ) ( )
TT T T T Tk k k k kx x x x x . Since diagnosis 

of feature size is relatively straightforward, we do not consider effect of size. In this case 

study, we also assume that the workpiece is perfect, i.e., (0)j =x 0 ,  j=1,2,…,5.  

As a comparison, before using the proposed methodology, we can check the 

number of necessary measurements for identifying errors via previously proposed model 

(Zhou, Huang, and Shi, 2003; Huang and Shi, 2004). It can be observed that there are 12 

error components (6 fixture and 6 machine tool error components) as input to the model 

for each operation and therefore, total 24 inputs entails 24 components in quality 

characteristic for root cause identification. Since each feature contains 6 components, at 

least 12/6=2 features are required for each operation. However, we have shown in Eq. 

(2.21) that the rank of block matrix -1( ) ( )jd k k-A J Φ E  in Bj(k) does not exceed 5. More 

features information is needed to identify all the errors. Therefore, the number of features 

identifying errors for each operation should be no less than 3. In this case study where 

only two operations are considered, total amount of measured features should not be less 

than 3×2=6 even if the purpose is to identify whether errors occur in the process. Using 

Eqs. (2.21) and (2.22), we calculate Aj(k) and Bj(k), based on which the model in the 

grouped form is formulated as follows. 
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Operation 1: Because the first operation only mills X1 and drills X2 and X3, input 

matrices for features 4 and 5 are zero. The results are: 

6 1
1

1 6

0 0 0 0.0025 0.0025 0
0 0 0 0 0 0

0.0042 0.0042 0.0083 0 0 0
0 0 0 0.3275 0.3275 1(1) ,
0 0 0 1 0 0

1.0748 0.1086 0.1833 0 0 0
0

×

×

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟− −
⎜ ⎟

− −=⎜ ⎟
⎜ ⎟−
⎜ ⎟
− −⎜ ⎟
⎜ ⎟
⎝ ⎠

0
B

0

6 1
2

1 6

0 0 0 0.0025 0.0025 0
0 0 0 0 0 0

0.0042 0.0042 0.0083 0 0 0
0.1963 0.1963 0 0.3275 0.3275 1(1) ,

0.3385 0.3385 0.6771 0.9519 0.0481 0
1.0283 0 1551 0.1833 0 0 0

7.5

×

×

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟− −
⎜ ⎟
− − −=⎜ ⎟
⎜ ⎟− − −
⎜ ⎟
− −⎜ ⎟
⎜ ⎟
⎝ ⎠

0
B

0

6 1 6 6
3 4 5

1 6

0 0 0 0.0025 0.0025 0
0 0 0 0 0 0

0.0042 0.0042 0.0083 0 0 0
0.1963 0.1963 0 0.3275 0.3275 1(1) , (1) , and (1)

4.60.3385 0.3385 0.6771 0.2019 0.7981 0
0.3036 0.8797 0.1833 0 0 0

7.5

× ×

×

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟− −
⎜ ⎟ ⎛ ⎞− − −= =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎜ ⎟− − −
⎜ ⎟
− −⎜ ⎟
⎜ ⎟
⎝ ⎠

0 0
B B B

0

6 6 .
16.92

×⎛ ⎞
= ⎜ ⎟
⎝ ⎠

0

 

The state equation for operation k can be assembled as: 

17 71

7 72

7 73

7 74

7 75

( (0) 1) ( (0) 1)( (1) 1)

(1)(1)
(1)
(1)
(1)
(1)

1 11
T TT T diag

×

×

×

×

×

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

Α xx

BΙ 0 0 0 0 0 0x
B0 Ι 0 0 0 0 0x

0 0 Ι 0 0 0 0x
0 0 0 Ι 0 0 0x
0 0 0 0 Ι 0 0x
0 0 0 0 0

1 1

2 2
2

3 3
3 35 1

4 4
4

5 5
5

6 6
1 35

2 1
( (1) 0)

(1) (1)
(1) (1)(1)
(1) (1)(1) (1)
(1) (1) ,(1) 0
(1) (1)(1)
(1) (1)

0

z z

z z

z z

y y

y y

x x

diag

f m
f m
f m
f m
f m
f m

×

×
×

Δ + Δ⎛ ⎞
⎛ ⎞⎜ ⎟Δ + Δ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟Δ + Δ⎜ ⎟ ⎛ ⎞⎜ ⎟

Δ + Δ⎜ ⎟ + ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎝ ⎠⎜ ⎟Δ + Δ⎜ ⎟⎜ ⎟
⎜ ⎟ Δ + Δ⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟

⎝ ⎠
B

B 0 ζ
B
B
0

0

 

 

where identity block matrix in A(0) represents that the corresponding features have not 

been machined. Since HTM is used to derive Δd(k) as shown in Eq. (2.22),  dimension of 

state vector has to be increased by using “1” as the last entry, i.e., (xT(k) 1)T. ζ(k) are the 

stackup of ζj(k), where j=1, 2,…,5. Zeros in the last row of the model are introduced to 

make the matrix dimension consistent.   

Operation 2: Since FHP(2)≠I, expression of Ajd(k) presented in Eq. (2.17) does not 

apply for the second operation. However, according to the corollary in Section 2.4.3, we 
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can still derive A(1) and B(2) by substituting non-identity matrix FHP in (2.16), followed 

by the same procedure for deriving Eqs. (2.17), (2.18), and (2.21). 

6 1
4

1 6

0.001 0.001 0 0.0023 0.0023 0
0.0038 0.0038 0.0075 0 0 0
0.0018 0.0018 0.0036 0 0 0
0.1892 0.1892 0 0.2025 0 2025 1(2) ,
0.6081 0.0248 1 5833 0 0 0

0.3263 0.3263 0.6526 0 1725 0.8275 0
4.6

×

×

− −⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟− −
⎜ ⎟
− − −=⎜ ⎟
⎜ ⎟−
⎜ ⎟

− − −⎜ ⎟
⎜ ⎟
⎝ ⎠

0
B

0

6 1
5

1 6

0.007 0.007 0 0.0024 0.0024 0
0.004 0.004 0.008 0 0 0
0.0011 0.0011 0.0023 0 0 0
0.2092 0.2092 0 0.0852 0.0852 1(2) ,
0.5961 0.2203 0.6242 0 0 0
0.3608 0.3608 0.7216 0.9225 0.0775 0

1692

×

×

− −⎛ ⎞
⎜ ⎟− −⎜ ⎟
⎜ ⎟− − −
⎜ ⎟
− − −=⎜ ⎟
⎜ ⎟−
⎜ ⎟

− − −⎜ ⎟
⎜ ⎟
⎝ ⎠

0
B

0

 

B1(2)= 07×7, and B2(2)=B3(2)=diag(06×6, 7.5). 

Since datum error is generated by the first operation, state transition matrix must 

be calculated. By Eqs. (2.21) and (2.22), rotational deviation of the surface caused by 

datum errors can be expressed by  
1

-1
2

3

(1)
( ) ( ) ( ) (1)

(1)

F
jd Pk k k

⎛ ⎞
⎜ ⎟

− ⎜ ⎟
⎜ ⎟
⎝ ⎠

x
A J Φ EΨ R G x

x

, where j=4, 5. For 

the convenience of displaying results, we can denote 

( ) -1
1 2 3 ( ) ( ) ( ) F

j j j jd Pk k k= −Λ Λ Λ A J Φ EΨ R G . The results are  

41 42

1 7 1 7

0.4305 0 0 0 0 0 0 0 0 0 0 09026 0 0
0 0 0.9026 0 0 0 0 0 0 0 0 0 0 0
0 0 0.4305 0 0 0 0 0 0 0 0 0 0 0

78.31 0 0 0 0 0 0 0 0 0 1 81 0 0, ,
331 0 81 0 1 0 0 0 0 0 0 0 0 0
0 0 78.31 0 0 0 0 0 0 0 0 331 1 0

× ×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
− −= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟

− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Λ Λ

0 0
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1 7

0 0 0 0 0.9026 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 81 0 0 ,
0 0 0 0 0 0 0
0 0 0 0 331 0 0

×

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Λ

0

 

 

51 52

1 7 1 7

0.2756 0 0 0 0 0 0 0 0 0 0 0.9613 0 0
0 0 0.9613 0 0 0 0 0 0 0 0 0 0 0
0 0 0.2756 0 0 0 0 0 0 0 0 0 0 0

86.59 0 0 0 0 0 0 0 0 0 1 34.09 0 0, ,
31 0 34.09 0 1 0 0 0 0 0 0 0 0 0
0 0 86.59 0 0 0 0 0 0 0 0 31 1 0

× ×

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
−= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− −
⎜ ⎟ ⎜ ⎟

− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Λ Λ

0 0

53

1 7

0 0 0 0 0.9613 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 34.09 0 0 ,
0 0 0 0 0 0 0
0 0 0 0 31 0 0

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

−= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Λ

0
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The translational deviation of surface can be calculated by  

-1
1 3 1 4 1 4( ) ( ) ( ) ( 0)F F F F F F F F F T

jd P P P P P P P P Pk k k x y z x y z x y z× × ×−A J Φ EΨ 0 0 0 . We 

denote this expression as a column vector 4jΛ . The calculation results are Λ54=Λ44=(01×3 

-19.25   -131 -81.25 0)T. 

The state equation can be assembled as 

7 7 7 11 1

7 7 7 12 2

7 7 7 13

41 42 43 7 7 7 7 444

51 52 53 7 7 7 7 545

( (1) 1)( (2) 1)

(2) (1)
(2) (1)
(2)
(2)
(2)

11
T T diag

× ×

× ×

× ×

× ×

× ×

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

= ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Ax

I 0 0 0 0 0x x
0 I 0 0 0 0x x
0 0 I 0 0 0x x
Λ Λ Λ 0 0 Λx
Λ Λ Λ 0 0 Λx
0 0 0 0 0

1 1
1

2 2
2

3 3
3 35 13

4 4
44

5 5
55

1 35

( (2) 1)( (1) 1)

(2) (2)(2)
(2) (2)(2)
(2) (2)(2)(1)
(2) (2)(2)(1)
(2) (2)(2)(1)

01
T T

z z

z z

z z

y y

y y

diag

f m
f m
f m
f m
f m

×

×

Δ +Δ
⎛ ⎞⎛ ⎞

Δ +Δ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ Δ +Δ⎜ ⎟⎜ ⎟

Δ +Δ⎜ ⎟+⎜ ⎟
⎜ ⎟⎜ ⎟ Δ +Δ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ Δ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

Bx

B
B
B 0
Bx
Bx
0 6 6

2 1

(2)
.

0

(2) (2)x xf m

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎛ ⎞⎜ ⎟
+⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟

⎜ ⎟
+Δ⎜ ⎟

⎜ ⎟
⎝ ⎠

ζ

0

 

Solving the state equation for two operations, the model for root cause identification is 

( )
( )

( )
( )

( )
( )

(1) 0 (1) 0 (1) 0(1)
given by (1) (1) (1)(2) 0 (2) 0 (2) 0

T T TT T T

T T TT T T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟= +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

y u ζB 0
y = C A B By u ζ

. 

Output matrix C is determined by the selection of measured features. An 

optimized selection of measured features for root cause identification must maximize the 

rank of matrix Γ, while minimize number of rows in matrix C, i.e., the minimum number 

of components in vector y. In this example, the number of errors to be determined is 12 

and the minimum number of feature components to be measured should be 12. Each 

feature component is selected as one entry in vector xj(k), e.g., vj(k) in xj(k) can be chosen 

as a feature component. Thus, the entry “1” appears at most once in each row of feature 

selection matrix C. The position of “1” is determined by non-zero entry in 

(1)
(1) (1) (2)

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

B 0
A B B

. For this case study, 4 features are selected and the output matrix C is 
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chosen as: 1 2
12 72

3 4
×

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

0 C C 0 0 0 0 0 0 0
C

0 0 0 0 0 0 0 0 C C
, where 

1 4

1 4 1 4 1 4 4 6 1

1 4

1 0

0 0

×

× × × ×

×

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

0
C 0 0 I 0

0
, 5 5

2 6 11
×

×

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

0
C 0 , 

1 4

3 4 1 4 1 4 4 6 1

1 4

1 0

0 0

×

× × × ×

×

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

0
C 0 0 I 0

0
, and 

5 5
4 6 21

×
×

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

0
C 0 . The size of other zero block matrices in C is 7×7. 

After removing the zero rows in u and corresponding columns in 

(1)
(1) (1) (2)

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

B 0
C A B B

, we obtain the equation 
(1) Δ (1) Δ (1)
(2) Δ (1) Δ (1)

+⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

y f m
y = Γ εy f m

 for 

diagnosis of errors that occur at each operation, where ε is the noise term composing of 

ζ(1) and ζ(2) in the first and second operations and  

*

0 0 0 0.0025 0.0025 0 0 0 0 0 0 0
0.0083 0.0042 0.0042 0 0 0 0 0 0 0 0 0

0 0.1963 0.1963 0.3275 0.3275 1 0 0 0 0 0 0
0.6771 0.3385 0.3385 0.9519 0.0481 0 0 0 0 0 0 0

0.1833 1.0283 0.1551 0 0 0 0 0 0 0 0 0
0.1833 0.3036 0.8797 0 0 0 0 0 0 0 0 0

0 0 0 0.678 0.6

−
− −
− − −

− − −
− −
− −

=
−

Γ
78 0 0 0.001 0.001 0.0023 0.0023 0

0.0036 0.0018 0.0018 0 0 0 0.0036 0.0018 0.0018 0 0 0
0 0.1963 0.1963 60.6183 60.6183 1 0 0.1892 0.1892 0.2025 0.2025 1

0.675 0.3375 0.3375 0.1725 0.8275 0 1.5833 0.6801 0.0248 0 0 0
0.4692 0

− −
− − − −
− − − − − −
− − − − −

− −

.

.702 0.1712 248.25 248.25 0 0.6526 0.3263 0.3263 0.1725 0.8275 0
0.5383 0.6675 0.2057 23.25 23.25 0 0.7216 0.3608 0.3608 0.9225 0.0775 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− − − −⎜ ⎟
⎜ ⎟− − − − − −⎝ ⎠

 

 

It can be observed that the rank of Γ* is 12. The least square estimation can thus 

be performed. Therefore, measuring 4 features makes it possible to identify 12 error 

components. Only 12 components in quality characteristic y are needed for identifying if 

there are errors. The proposed approach identifies location of root cause without having 

to find out every potential error. Compared with quality characteristic components (at 
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least 24) and 6 features measured based on the previous model, reduction on the model 

dimension and measurements by the proposed approach is significant. If fixture and 

machine tool errors should be further distinguished, the strategy of sequential root cause 

identification suggests that additional in-process measurement only needs to be taken on 

the faulty (equivalent) locator(s). Therefore, the proposed strategy generally requires less 

features and in-process measurement for root cause identification.   

 

2.6 Summary 

This chapter presents a mathematical formulation of error equivalence and 

prediction of process variations. The error equivalence formulation, based on a novel 

concept of error equivalence transformation, helps to understand and model the 

mechanism that different error sources result in the identical variation pattern on part 

features. The derived quality prediction model (causal model) embedded with error 

equivalence mechanism can reveal more physical insights into the process variation.  

As an application of error equivalence model in a multi-operational machining 

processes, this chapter presents a variation propagation modeling that facilitates root 

cause identification and measurement strategy. The benefit of introducing equivalent 

errors in the process modeling is that the process errors can be grouped with the base 

error (in the machining process, datum error and machine tool error can be grouped with 

fixture error). As a result, the dimension of model inputs is significantly reduced 

compared with previous modeling methodologies.  

The feasibility of error grouping is discussed. It is shown that the symmetry of 

HTM in the infinitesimal analysis is the key factor for error grouping since the coordinate 



 46

transformation may possibly violate the symmetry in HTM multiplication. The modeling 

results indicate that HTM between the PCS and the FCS does not affect the symmetry in 

HTM multiplication. This grouping approach requires merging the MCS and the FCS 

during modeling to satisfy the condition of grouping. The requirement can easily be 

satisfied in the modeling stage. 

The case studies demonstrated the validity of error equivalence model in the 

machining process, modeling procedure, and its implementation in measurement 

reduction. The modeling work presented in this chapter establishes the basis for root 

cause identification of multiple error sources and error-canceling-error automatic process 

adjustment. 

 
 
 
 
 
 
 
 
 
 
 



 47

 
 
 
 
 

Chapter 3  

Error Cancellation Modeling and Its Application in Process Control* 

Due to the error equivalence mechanism, the impacts of errors on part features 

may cancel one another. Error cancellation may hinder the error information from being 

identified and therefore increase the complexity of root cause identification. However, we 

can maneuver one error to cancel other errors and reduce process variation. By 

considering such dual effects of error cancellation, this chapter intends to study the 

implications of error cancellation based on the derived error equivalence model.  

Section 3.1 analyzes error cancellation and its theoretical implications from the 

perspectives of process monitoring and control, including root cause diagnosis and error 

compensation. Using error cancellation, a sequential root cause identification procedure 

and error-canceling-error methodology are developed to reduce the time invariant process 

errors. In Section 3.2, the proposed diagnostic procedure is demonstrated by a machining 

experiment and the error compensation is also illustrated with a simulation study. A 

summary is given in Section 3.3. 

 

*The work in this chapter has appeared in Wang, H. and Huang, Q , 2006, “Error Cancellation Modeling and Its Application in 

Machining Process Control,” IIE Transactions on Quality and Reliability, 38, pp.379-388. 
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3.1 Error Cancellation and Its Theoretical Implications 

It has been widely noted that the impact of multiple error sources on product 

features may cancel out one another.  This phenomenon may have the drawback that it is 

possible for it to conceal the fact that multiple errors have occurred in the process, 

however, there is the opportunity for us to purposely use one type of error to counteract 

or compensate another error and thereby reduce variation. 

Error equivalence can model the error cancellation and the impact of errors on 

feature deviation. By Eq. (2.6), we have  

E(x)=ΓE(u*)= Γ*E( *
=1Σ p

i iu )=Γ*E( =1Σ p
i i iK u ),  and                  (3.1a) 

Cov(x)= Γ*Cov(u*)Γ*T+ Cov( )ε = Γ*Cov[ =1Σ Cov( )p T
i i i iK u K ]Γ*T+ Cov( )ε ,    (3.1b) 

where E(.) and Cov(.) represent expectation and variance-covariance matrix of random 

variables in the parentheses. 

Eq. (3.1a) indicates that the cancellation effect of three types of errors can be 

modeled as a linear combination of mean shift of equivalent amount of base errors, i.e., 

*
=1(Σ )p

i iE u ,. Their impacts on feature deviation are described by mapping matrix Γ* in Eq. 

(2.6). For a special case that three types of errors completely cancel each other, i.e., 

*
=1(Σ )p

i iE u  is statistically insignificant, the mean of process output is within control. It 

should be noticed that the variances caused by three types of errors cannot be cancelled 

(see Eq. (3.1b)). In the machining process, Eq. (2.6) becomes  

x= ( )( )* * * +
TT T TΔ Δ ΔΓ Γ Γ d f m ε =Γ*(Δd+Δf+Δm)+ε        (3.2) 

and error cancellation is modeled by E(Δd+Δf+Δm). 
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Modeling of error cancellation has many theoretical implications on machining 

process control. This section discusses the implications on three issues: diagnosability 

analysis, root cause identification, and error compensation. 

 

3.1.1 Diagnosability Analysis of Manufacturing Process with Error Equivalence 

This chapter studies the diagnosability of the process that is governed by a general 

linear causal model as follows, which relates the errors to the feature deviation x,  

x ( )1 2 .
TT T T

p= + = +Γu ε Γ u u u ε                                        (3.3a) 

where matrix Γ is determined by the part specification. Its relationship with Γ* will be 

discussed in Proposition 3.1.  In the machining process, the model becomes 

x= ( )D .
TT T T

mδΔ +Γ x f q ε                                         (3.3b) 

Under a certain measurement strategy, diagnosability study aims to determine 

whether all the process errors ui’s are estimable. If the process is diagnosable, the least 

square estimation (LSE) can be performed, i.e., 

( )1 2

TT T T
pu u u =(ΓTΓ)-1Γx.                                      (3.4) 

The diagnosability depends on the rank of Γ (Zhou, et al., 2003). We can see that Eq. (3.4) 

requires ΓTΓ to be full rank, or equivalently, all the columns in Γ to be independent. 

Proposition 1 addresses the structure of Γ for a machining process.  

Proposition 3.1. If error equivalence holds for process errors  ( )1 2

TT T T
pu u u , the 

process will not be diagnosable with measurement of quality characteristic x. In the 

machining process, block matrices in matrix Γ (see Eq. (3.4)) corresponding to three 
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types of errors are dependent and matrix ΓTΓ is always not full rank, i.e., fixture, datum, 

and machine tool errors cannot be distinguished by measuring the part features only. 

Proof. If we use transformation matrices Ki to transform errors ui to base error u1, Eq. 

(2.6) becomes  

( )* * *
2 1 2= .

TT T T
p p⎡ ⎤ +⎣ ⎦x Γ Γ K Γ K u u u ε                      (3.5a) 

In the machining process, matrices K2 (from Eq. (2.8)) and K3 (Eq. (2.9)) transform 

datum error Dx  to Δd and machine tool error δqm to Δm, respectively. Eq. (2.6) becomes 

( )* * *
2 3 D=[ ] + .

TT T T
mδΔx Γ K Γ Γ K x f q ε                                 (3.5b) 

Comparing Eq. (3.5a) with Eq. (3.4), we obtain matrix Γ= * * *
2 p⎡ ⎤⎣ ⎦Γ Γ K Γ K . 

However, the columns corresponding to fixture and machine tool errors in matrix Γ are 

dependent because columns of Γ*Ki’s are the linear combination of columns of Γ*. 

Therefore, rank of Γ equals the rank of Γ*. This also implies that the system is not 

diagnosable.   

An implication of this proposition is that LSE of ( )1 2

TT T T
pu u u  in Eq. (3.4) 

cannot be obtained. However, the causal model (3.2) with error grouped eliminates the 

linearly dependent columns in matrix Γ and therefore Γ can be full rank. This fact leads 

to sequential root cause identification in Section 3.1.2. 

 

3.1.2 Sequential Root Cause Identification 

Using Eq. (3.2), the grouped errors u can be estimated as 

*( ) *( ) * * 1 * ( )
1

ˆ ˆ ( )pn n T T n
ii

−
=

= =∑u u Γ Γ Γ x , n=1, 2, …, N,                     (3.6a) 
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where *( )ˆ n
iu  is the LSE of ui for the nth replicate of measurement. In a machining process, 

*( )
1
ˆp n

ii=∑ u  becomes ( ) ( ) ( )ˆˆ ˆn n nΔ + Δ + Δd f m . Each row of Γ* corresponds to output feature 

while each column of Γ* corresponds to component of error vectors. Hence, the number 

of rows of Γ* must be larger than the number of its columns to ensure that sufficient 

features are measured for LSE. The mean and variance-covariance of the detected errors 

are  

1
ˆ ˆE( ) E( )p

i ii=
= ∑u K u  and 

1
垐Cov( ) Cov( ) .p T

i i ii=
= ∑u K u K                 (3.6b) 

Proposition 3.1 indicates that measurement other than quality characteristics x is 

necessary to distinguish error sources. However, it will not be economical to take the 

additional measurement if no process error occurs. A sequential procedure is thus 

proposed for root cause identification:  

• Necessary error information (e.g., off-line measurement on workpieces) is collected 

first to identify the occurrence of error sources using Eq. (3.6a). The process error 

information can be analyzed by conducting hypothesis test on ( )
1ˆ{ }n N

n=u . Since the 

estimated u is a mixture of noise and errors, a proper test statistic should be 

developed to detect the errors from process noise. Hypothesis testing for mean and 

variance can then be used to find out if the errors are mean shift or large variance.  

• Additional measurement (e.g., in-line measurement on process errors) is then 

conducted to distinguish different types of errors ( )1 2

TT T T
pu u u  . E( û ) and 

Cov( û ) will be estimated with the in-process measurement of (p-1) error sources. By 

Eq. (3.6b) the remaining unmeasured errors can be obtained. The detailed procedures 

for the machining process will be given in the Section 3.2.1. 
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3.1.3 Error-Canceling-Error Compensation Strategy 

We can use the effect of error cancellation to compensate process errors. An 

adjustment algorithm based on error equivalence mechanism can be designed to adjust the 

base error u1 to compensate the other process errors {ui} 2
p
i= . With the development of 

adjustable fixture whose locator length is changeable, it is feasible to compensate errors 

only by changing the length of locators. We use index i to represent the ith adjustment 

period. During period i, N part feature deviations {x(i), (n)} 1
N
n=  are measured to determine 

the amount of locator adjustment. Such compensation is only implemented at the 

beginning of the period. Denote c(i) as the accumulative amount of locator length adjusted 

after the ith period and the beginning of period i+1. The compensation procedure can be 

illustrated with Fig. 3.1. One can see that a nominal machining process is disturbed by 

errors Δd, Δf and Δm, and the observation noise ε. Error sources, noise, and machining 

process constitute a disturbed process, as marked in the dash line block. Using the feature 

deviation x(i) for the ith period as input (x(i) can be estimated by the average of N 

measured parts in the period i, i.e., ( ) ( )ˆ i i=x x ), an adjustment algorithm is introduced to 

generate signal c(i) to manipulate adjustable fixture locators to counteract the errors for the 

(i+1)th machining period. The amount of compensation at period i+1 should be c(i)-c(i-1). 

The error compensation model can then be  

x(i+1)=S(i+1)+Γ*c(i)    and   S(i+1)=Γ*u(i+1)+ε(i+1),                          (3.7) 

where S(i+1) is the output of the disturbed process for time i+1. This term represents the 

feature deviation measured without any compensation being made. 
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Figure 3.1 Error-Canceling-Error Strategy 

 

The adjustment using equivalent errors can be illustrated with an example in Fig. 

3.2, where a prismatic part is set up in a fixture with locators f1, f2, and f3. We expect to 

perform a parallel cutting on the top plane of the part. If the tool path tilts due to thermal 

effect, the yielded top plane will also tilt the same angle. However, under the adjustable 

fixture where the length of locator pin is adjustable, we may find out the adjustment 

amount (black bar in right panel of Fig. 3.2) for f1, f2, and f3 such that the part tilts the 

same angle as the deviated tool path. Obviously, a conforming part can still be obtained. 

Similarly, we can also adjust fixture locators to compensate the datum error. The amount 

of adjustment can be determined by EFE using Eq. (2.9). With this concept, the feature 

deviation caused by machine tool thermal error (tilted tool path) can also be generated by 

EFE (Δm1 Δm2 Δm3) alone. In order to compensate this error, we must apply the amount 

of adjustment (-Δm1 -Δm2 -Δm3) to these locating pins. 

 

Figure 3.2 Process Adjustment Using EFE Concept 
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In this chapter, the compensation focuses on time invariant error because they 

account for the majority of overall machining errors (Zhou, Huang, and Shi, 2003). The 

negative value of predicted equivalent errors can be used to adjust locators. From Eq. 

(3.7), it is clear that if we set Γ*c(i)=-Γ*u(i+1), then the adjustment can cancel out the 

process errors and deviation is x(i+1)= ε(i+1). The adjustment c(i) can be the LSE of u(i+1), 

i.e., 

c(i)= ( 1)ˆ i+u =-[ * * 1 * ( )( )T T i−Γ Γ Γ x -c(i-1)], and c(1)= * * 1 * (1)( )T T−− Γ Γ Γ x .               (3.8) 

 By solving the recursive Eq. (3.8), we derive an integral adjustment that can 

minimize mean square error (MSE) of the feature deviation, i.e.,  

 c(i)= * * 1 * ( ) ( ) ( ) ( )

1 1

ˆˆ ˆ( ) ( )
i i

T T t t t t

t t

−

= =

− = − Δ + Δ + Δ∑ ∑Γ Γ Γ x d f m .                   (3.9) 

Eq. (3.9) shows that the accumulative amount of compensation for the next period is equal 

to the sum of the LSE of EFE of all current and previous time periods of machining. The 

accumulative compensation c(i) is helpful for evaluation of adjustment performance such 

as stability and robustness analysis. The amount of compensation for the i+1th period is 

c(i)- c(i-1), 

( ) ( 1) * * 1 * ( )( )i i T T i− −− = −c c Γ Γ Γ x .                                          (3.10) 

The compensation accuracy can be estimated by x(i)-Γ*( *TΓ Γ*)-1 *TΓ x(i), i.e., the 

difference between x(i) and its LSE. Denote range space of Γ* as R(Γ*) and null space of 

*TΓ  as N( *TΓ ). Spaces R(Γ*) and N( *TΓ ) are orthogonal and constitute the whole vector 

space Rq×1, where q is the number of rows in x(i) (or Γ*). By the property of LSE, we 

know that the estimation error vector x(i)- Γ*( *TΓ Γ*)-1 *TΓ x(i) is orthogonal to R(Γ*). 

Therefore, the compensation accuracy of Eq. (3.9) can be estimated by projection of 
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observation (feature deviation) vector x(i) onto N( *TΓ ). This conclusion also shows the 

components of observation that can be compensated. The projection of observation vector 

x(i) onto space R(Γ*) can be fully compensated with Eq. (3.9) whereas the projection onto 

N( *TΓ ) cannot be compensated.  

In practice, the accuracy that the adjustable locator can achieve must be 

considered. Suppose the standard deviation of locator’s movement is σf. We can set the 

stopping region for applying error compensation with 99.73% confidence 

-3σf≤c(i)-c(i-1)≤3σf.                                                 (3.11) 

It should be noted that the error-canceling-error strategy in Eq. (3.9) is valid for 

compensation of time invariant process errors. Compensation strategy for dynamic errors 

will be studied in Chapter 5.  

 

3.2 Applications of Error Cancellation in a Milling Process 

Discussion in Section 3.1 implies the application of equivalent errors in sequential 

root cause identification and error compensation. The diagnostic algorithms are proposed 

in this section and demonstrated with a machining experiment. EFE compensation for 

process control is illustrated with a simulation. 

3.2.1 Diagnosis Based on Error Equivalence 

There are several diagnostic approaches (Ceglarek and Shi, 1996; Apley and Shi, 

1998; and Rong, Shi, and Ceglarek, 2001) that have achieved considerable success in 

fixture errors detection. The approach proposed by Apley and Shi (1998) can effectively 

identify multiple fixture errors. By extending this approach, we use it for sequential root 

cause identification: 
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Step 1: Conduct measurement on features and datum surfaces of raw workpiece to 

estimate error sources *( )ˆ nu  for the nth replicate by Eq. (3.6). The grouped error can be 

estimated by the average of ( )ˆ nu  over N measured workpieces, i.e., * *( )

1

1ˆ ˆ
N

n

nN =

= ∑u u , 

n=1,2, …N. As mentioned in Section 3.2, the error vector ( )ˆ nu  is the mixture of error 

sources and process noise. 

Step 2: To detect the errors from the process noise, we can use F test statistic introduced 

by Apley and Shi (1998): 

2

* * -1 2
,

ˆ
ˆ[( ) ]

i
i T

i i

SF
Sε

=
Γ Γ

, i=1, 2, …, 6,                            (3.12) 

where 2 ( ) 2

1

1ˆ ˆ[ ]
N

n
i i

n
S u

N =

= ∑ , and ( )ˆ n
iu  represents the ith component in vector û (n). * * -1

,( )T
i iΓ Γ  

is the ith diagonal entry of matrix * * 1( )T −Γ Γ . The estimator for variance of noise is 

2 ( ) ( )

1

1ˆ ˆ ˆ
( - 6)

N
n T n

n
S

N qε
=

= ∑ε ε , and ( ) ( ) * ( )ˆ ˆn n n= −ε x Γ u  is for noise terms. When Fi>F1-α(N, N(q-

6)), we conclude that the ith error significantly occurs with confidence of 100(1-α)%. By 

investigating { ( )ˆ n
iu } 1

N
n=  for mean ui (H0: ui=0 vs. H1: ui≠0), and variance σ 2

ui  (H0: σ 2
ui≤σ

2
0  

vs. H1: σ 2
ui >σ

2
0 ), one can determine whether the pattern of the errors is mean shift or 

variance. σ 2
0  is a small value. In the case study, we choose σ 2

0 =0.1mm2. Under the 

normality assumption of EFEs (Δd, Δf, and Δm), we can use the T test statistic 

( ) 2

1

1/ ( )
( 1)

N
n

i i i
n

T u u u
N N =

= −
− ∑  and compare it with t1-α/2(n-1) to test mean shift. 

2 ( ) 2 2
0

1

( ) /
N

n
i i

n

u uχ σ
=

= −∑  is used and compared with χ 2
1 α− (n-1) to test variance. α is the 
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significance level. If Fi<F1-α(N, N(q-6)), no errors occur at the ith locator, or the errors 

cannot be distinguished from process noise.  

Step 3: Apply the additional measurement on locators and datum surfaces to distinguish 

errors whenever errors are identified. Denote Δf ( )n
i , Δd ( )n

i , and Δm ( )n
i  as the ith 

component in vector Δf(n), Δd(n), and Δm(n), respectively. Locator deviation {Δf ( )n
i } 1

N
n=  

and datum surfaces {X ( )n
j } 1

N
n=  are measured. The EFE {Δd ( )n

i } 1
N
n=  caused by datum error 

can be calculated by Eq. (2.8). The mean shift of the errors can be estimated using the 

sample mean of Δd ( )n
i , Δf ( )n

i , and Δm ( )n
i =u ( )n

i -Δd ( )n
i -Δf ( )n

i . The variance can then be 

estimated by the sample variance for Δd ( )n
i , Δf ( )n

i , and Δm ( )n
i . If the errors turn out to be 

the mean shift (ui≠0 for certain i), machine tool error in terms of EFE is ˆ imΔ = ˆiu -Δdi-Δfi, 

where Δdi and Δfi are the average EFE over all N parts. Machine tool error δqm is then 

determined by the inverse of Eq. (2.9) 

δqm＝
1

3 .− ΔK m                                                        (3.13) 

The variance of grouped error (σ 2
ui ) can then be decomposed as 

2 2 2 2
ui di fi miσ σ σ σ= + + .                                                (3.14) 

If σ 2
ui >σ

2
0 , variances caused by three types of errors 2

diσ , 2
fiσ , and 2

miσ  can be estimated 

by the sample variance of {Δd ( )n
i } 1

N
n= , {Δf ( )n

i } 1
N
n= , and {Δ ( )ˆ n

im } 1
N
n= . The 100(1-2α)% 

confidence interval (CI) of Δm is ( ˆΔ ±m L ), where z1-α follows the cumulative standard 

normal distribution such that 
21 / 21 1

2
z ue duα α

π
− −

−∞
= −∫  and 

-1 -1
1 1,1 1 6,6

6 1
ˆ ˆ( ( ) ... ( ) )T T T

u u u uz zα ε α εσ σ− −
×

=L Γ Γ Γ Γ . The corresponding CI vector for δqm is 
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( 1 1
3 3
− −Δ ±K m K L ). The CI for Δd and Δf can be obtained by (Δdi 1 / 2 ( 1) /diS t n nα−± − ) and 

(Δfi 1 / 2 ( 1) /fiS t n nα−± − ), where Sdi and Sfi are the sample variance for {Δd ( )n
i } 1

N
n=  and 

{Δf ( )n
i } 1

N
n= . This approach can effectively identify the machine tool errors. 

Identification of error occurrence Decision-making on 
taking in-process 
measurement on 

certain 

Error decomposition and 
individual error identification

Diagnosability 
analysis

   

*( ) * * -1 * ( )ˆ = ( )n T T nu Γ Γ Γ x
2

* * -1 2
,

ˆ
ˆ[( ) ]

i
i T

i i

SF
Sε

=
Γ Γ

* *
2[ ]pΓ Γ K Γ K

( )
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i ii=
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Figure 3.3 Sequential Root Cause Identification Procedures 

 

Fig. 3.3 shows the sequential diagnostic methodology under the error equivalence 

mechanism. It can be seen that the sequential diagnostic methodology includes 

diagnosability analysis (Proposition 3.1) and sequential root cause identification. 

To demonstrate the model and the diagnostic procedure, we intentionally 

introduced datum and machine tool errors to mill 5 block workpieces. We use the same 

setup, raw workpiece, and fixturing scheme as Fig. 2.10. Coordinate system xyz fixed 

with nominal fixture is also introduced to represent the plane. Top plane X1 and side 

plane X2 are to be milled. All 8 vertices are marked as 1~8 and their coordinates in the 

coordinate system xyz are measured to help to determine X1 and X2. In this chapter, the 

unit is mm for the length and radian for the angle. Under the coordinate system in the Fig. 

2.9, surface specifications are X1=(0 0 1 0 0 15.24)T, and X2=(0 1 0 0 96.5 0)T. From 

model (3.2) and Eq. (2.23), we get 
*
1
*
2

( ) ,i i i i i⎛ ⎞
= Δ + Δ + Δ +⎜ ⎟
⎝ ⎠

Γ
x d f m ε

Γ
where 
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1

0 0.0263 0.0263 0 0 0
0.0158 0.0079 0.0079 0 0 0

0 0 0 0 0 0
,

0 0.1379 0.1379 13368 13368 1
0.0828 0.0414 0.0414 1.5 0.5 0
13033 0.8483 1.1517 0 0 0

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟

=⎜ ⎟
− − −⎜ ⎟

⎜ ⎟− −
⎜ ⎟⎜ ⎟− −⎝ ⎠

Γ
 

2

0 0 0 0.0263 0.0263 0
0 0 0 0 0 0

0.0158 0.0079 0.0079 0 0 0
.

0 0.2632 0.2632 1.2026 1.2026 1
0.158 0.079 0.079 1.5 05 0
0.2212 1.6106 0.3894 0 0 0

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟− −

=⎜ ⎟
− − −⎜ ⎟

⎜ ⎟− − −
⎜ ⎟⎜ ⎟−⎝ ⎠

Γ
  

The number of rows q in Γ is 12. We set fixture error to be zero (Δf=0). The primary 

datum plane I is pre-machined to be XI=(0 0.018 -0.998 0 0.207 -1.486)T and its 

corresponding EFE is Δd=(1.105 0 0 0 0 0)Tmm. The machine tool error is set to be 

δqm=(0 0.175 -1.44 0.0175 0 0)T by adjusting the orientation and position of tool path. 

Based on coordinates of the vertices 1~8 measured, the feature deviations are given in 

Table 3.1. Since X1 and X2 are all planes, the deviations Δrj’s of surface size are all zero. 

Following steps 1-3, the identified EFEs are given in Tables 3.2 and 3.3. 

Table 3.1 Measured Features (mm) 
 X1 X2 
n 1 2 3 4 5 1 2 3 4 5 
Δvx 
Δvy 
Δvz 
Δpx 
Δpy 
Δpz 

-0.001 
-0.033 
0.000 
0.000 
-0.145 
-3.877 

-0.000 
-0.034 
-0.000 
-0.000 
-0.163 
-2.749 

0.000 
-0.039
0.000 
0.000 
-0.119
-2.329

-0.000
-0.034
0.000 
0.000 
-0.185
-3.509

0.001 
-0.035
0.000 
0.000 
-0.153
-2.459

0.000
0.000
0.032
0.000
0.347
0.579

-0.000
0.000 
0.034 
0.000 
0.379 
0.358 

0.000 
0.000 
0.032 
0.000 
0.253 
0.479 

0.000
0.000
0.036
0.000
0.307
0.539

0.000
0.000
0.035
0.000
0.268
0.429

 
Table 3.2 Estimation of u for 5 Replicates (mm) 

û (1) û (2) û (3) û (4) û (5) û  T χ2 
2.937 
0.050 
0.002 
0.055 
0.047 
0.004 

2.133 
0.090 
0.090 
-0.031 
-0.031 
0.000 

1.775 
-0.064 
-0.0562 
0.003 
0.004 
-0.001 

2.697 
0.057 
0.057 
0.039 
0.039 
0.000 

1.902 
0.002 
0.020 
0.015 
0.018 
-0.001 

2.289 
0.027 
0.023 
0.016 
0.015 
0.001 

10.119 
- 
- 
- 
- 
- 

10.247 
- 
- 
- 
- 
- 

 
We choose α to be 0.01. The threshold value F0.99(5,5(12-6))=F0.99 (5,30) =3.699. 

In Table 3.2, we can see that F1>3.699, which indicates that error occurs at locator 1. 

Using the data in the first row of Table 3.2 to conduct T and χ2 tests for mean and 
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variance, respectively, we find that T>t1-0.01/2 (5-1)= t0.995(4)=4.604 and 

χ2<χ 2
1 0 01− (4)=13.277. Hence, we conclude that there is significant mean shift while the 

variance is not large. If we make the additional measurement, by Eq. (3.13), the 98% 

confidence interval for the detected mean shift of machine tool error is δqm=(0.006 0.167 

-1.540 0.018 -0.000 0.000)T± (0.008 0.001 0.000 0.000 0.001 0.000)T, which is consistent 

with the pre-introduced errors. The EFE causal model and diagnostic algorithm is 

experimentally validated. 

Table 3.3 Error Decomposition (mm) 
Locators û Fi Δf Δd Δm 

1 
2 
3 
4 
5 
6 

2.289 
0.027 
0.023 
0.016 
0.015 
0.001 

19.525
0.051 
0.005 
0.613 
0.073 
0.002 

0 
0 
0 
0 
0 
0 

1.105 
0 
0 
0 
0 
0 

1.184 
0.027 
0.023 
0.016 
0.015 
0.003 

 
 

 
Figure 3.4 Error Compensation for Each Locator 

 

3.2.2 Error Compensation Simulation 

Using the same machining process as in Section 3.2.1, we can simulate error 

compensation for 5 adjustment periods. Total 5 parts are sampled during each period. The 

fixture error is set to be Δf=(0.276 0 0 0.276 0 0)Tmm. The machine tool error is set to be 
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δqm=(-0.075 -0.023 0.329 -0.0023 0.0075 0)T and its EFE is Δm=(0 0 0.286 0 0 0)Tmm. 

We assume the measurement noise to follow N(0, (0.002mm)2) for displacement and N(0, 

(0.001rad)2) for orientation. The compensation values can be calculated by Eqs. (3.9) and 

(3.10). In this case study, the accuracy of the locator movement is assumed to be 

σf=0.01mm and the criterion for stopping the compensation is -0.03≤c(i)-c(i-1)≤0.03mm 

(see Eq. (3.11)). Fig. 3.4 shows the compensation (c(i)-c(i-1)) for locators f1~f4. The values 

of adjustment periods 2~5 are given by the solid line in the figure. The dash dot line 

represents the value of ± 3σf. The adjustments for locators f5 and f6 are all zero and not 

shown in the figure. One can see that the effect of compensation in the second period is 

dominant. The compensation for the subsequent periods is relatively small because no 

significant error sources are introduced for these periods. 
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Figure 3.5 Mean and Standard Deviation of Two Features 

 

The effect of error compensation can be illustrated with the quality improvement 

of two features, the plane distance along z axis (lz) and y axis (ly) as shown in Fig. 3.5. lz 

can be estimated by the mean and standard deviation of length of edges l15, l 26, l 37 and l 

48 and ly can be estimated by l14, l23, l67 and l58 for each machining period, where lmn is the 



 62

distance between the vertices m and n and is estimated by the edge length of 5 parts in 

each period. Milling of planes X1 and X2 impacts the plane distance along z and y axes. 

The nominal part should have the same length of edges along z and y directions (15.24 

and 96.5mm, see the dash line in Fig. 3.5), respectively. However, in the first adjustment 

period (i=1) without error compensation, the errors of edge lengths are beyond specified 

tolerance. In the periods 2~5 when compensation algorithm has been applied, deviation 

of lz and ly is significantly reduced.  

 

3.3 Summary 

This chapter investigates error cancellation among multiple errors (datum, fixture, 

and machine tool errors) for improving quality control in machining processes. As a 

summary, the implications of studying error cancellation are as follows: 

First, process errors may cancel one another and conceal the error information. It 

has been proved that a machining process with datum, fixture, and machine tool errors 

cannot be diagnosable by only measuring the part features. To overcome this problem, a 

sequential procedure is therefore proposed, i.e., first identify error occurrence based on 

measurement of product deviation x and an F test statistics, and then discriminate error 

sources using in-process measurements (not product features) and hypothesis test only if 

process error is detected. This procedure can detect the mean shift as well as the variance 

of process errors from the process noise. A case study for a milling process of block parts 

has shown that the proposed approach can effectively identify the error sources.  

Second, an error-canceling-error process adjustment strategy can be developed. 

Study of error cancellation also suggests that errors (machine tool and datum errors) can 
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be compensated by adjusting the base error (the length of fixture locators). An integral 

adjustment algorithm is presented in this chapter for compensation of time invariant error. 

It has been shown that the accumulative amount of compensation is equal to the sum of 

the LSE of EFE of all previous time periods of machining. The procedure has been 

demonstrated with a simulation study. 
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Chapter 4 

Dynamic Error Equivalence Modeling and In-Line Monitoring of Dynamic Equivalent 

Fixture Errors* 

This chapter studies the error equivalence of dynamic errors and thereby 

establishes a process model for the purpose of APC based on the dynamic equivalent 

errors. Considering process monitoring and data collection, this chapter presents a new 

concept, in addition to the widely recognized error avoidance and error compensation 

approaches, to control the effects of dynamic errors by in-line monitoring of process 

dynamic errors. This chapter selects the thermal effect of machine tool errors as an 

example to demonstrate the modeling and monitoring of dynamic equivalent errors.  

The remainder of the chapter includes 4 sections. Section 4.1 introduces the 

problems in dynamic process modeling. In Section 4.2, based on an experiment, latent 

variable modeling (LVM) method is applied to build an ARX model for dynamic errors 

(thermal errors). Variable selection strategy is also discussed for the situation that high 

accuracy is required for model prediction. Using the latent variable model, the in-line 

monitoring of thermal error and control chart design are presented in Section 4.3. Section 

4.4 discusses the isolation of lagged variables and sensors responsible for out-of-control 

signals. A summary is given in Section 4.5. 

 

*This work will appear in Wang, H., Huang, Q., and Yang, H., 2007, “Latent Variable Modeling and In-Line Monitoring of Machine 

Tool Thermal Errors,”  accepted by Journal of Manufacturing System. 
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Nomenclature 

N  number of observations 

A  number of latent variables 

p  number of part characteristics required by design specification 

c  number of thermal sensors mounted onto a machine tool 

t  time index 

l  time lag l 

ZT  transpose of matrix Z 

δp×1
(n)  thermal errors at time period n 

ΔN×p  thermal error history from t = 1 to t = N, [δ(1)  δ(2) … δ(N)]T  

sc×1
(n)  readings of c thermal sensors at time t, [s1

(n)  s2
(n) … sc

(n)]T  

SN×c  temperature history of machine tool from t = 1 to t = N, [s(1)  s(2) … s(N)]T 

XN×k  descriptor data 

YN×m  response data 

LV  latent variables of X and Y, [LV1 …LVA]T (A«k+m) 

TN×A  common scores of X and Y 

SLV  sample covariance matrix of latent variables LV 

Pk×A  X loadings 

Qm×A  Y loadings 
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Wk×A  weights of variables in X 

EN×k  X residuals 

FN×m  Y residuals 

q  back shift operator 

D(q) difference operator with dj = 1 or 2 (j=1,2,…,c or p), Diag[(1-q-1)d1,  

(1-q-1)d2,…] 

S(i,j)  a matrix [D(q)s(i)  D(q)s(i+1) …  D(q)s(j)]T 

Δ(i,j)  a matrix [(D(q)δ(i)  D(q)δ(i+1) …, D(q)δ(j)]T 

 

4.1 Introduction to Modeling of Dynamic Errors 

Since dynamic errors may have great impact on part quality, in-line monitoring of 

dynamic errors is a very important issue for quality improvement. For example, thermally 

induced errors account for a large percentage of machine tool errors and hence in-line 

monitoring and compensation of thermal errors are critical to reduce process variations.  

Although as shown in Chapter 1, the SI based dynamic modeling methodology 

shows significant advantages over the static one in terms of model accuracy and 

robustness, several barriers still remain when applying SI theory to the thermal error 

modeling: 

• how to determine the number of temperature measurements that is sufficient to build 

an adequate SI model, in order to avoid excess amount of sensors to be mounted onto 

a machine tool. 

• how to select appropriate lagged variables when a large number of thermal sensors 

are available. The stepwise regression is commonly applied for variable selection  
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(Chen, et al., 1993). However, this method has certain limitations when being applied 

to model strongly correlated historical data. Thus a systematic approach for the 

selection of appropriate lagged variables is necessary for determining the structure of 

the dynamic model.  

• how to effectively estimate machine thermal status and predict machine performance 

when the sensing resource is limited.  

The purpose of this chapter is to overcome aforementioned difficulties. It presents 

a new concept of controlling machining thermal effects by in-line monitoring of machine 

thermal status based on SPC. Limited number of thermal sensors are employed to track 

the temperature distribution of machine tools and to detect out-of-control machine 

thermal status as the results of environment change, machine degradation, or process 

parameters change. The recently developed LVM method (Shi and MacGregor, 2000) 

provides a powerful tool for variable selection and model order determination. This 

method will be employed in both dynamic modeling and in-line monitoring. 

 

4.2 Latent Variable Modeling of Machine Tool Dynamic Errors 

4.2.1 Description of Data 

In thermal error modeling, the collected information includes machine tool 

temperature and thermal error (provided by in-line probing system). Suppose c thermal 

sensors are mounted on a machine tool. Let sc×1
(n) = [s1

(n)  s2
(n) … sc

(n)]T denote the c 

sensor readings at time t and SN×c = [s(1)  s(2) … s(N)]T denote temperature history of 

machine tool from time t = 1 to t = N. Suppose p characteristics are probed and the 

measured readings for thermal error δqm
(n) are denoted by δp×1

(n). Then ΔN×p = [δ(1)   
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δ(2)  … δ(N)]T represents thermal error history. SN×c and ΔN×p are nonstationary 

multivariate time series data. This fact can be illustrated by an example. As shown in Fig. 

4.1, 11 sensors are mounted onto a CNC machine tool, where S #i denotes sensor i (i=1, 

2, …, 11). Under certain working conditions, the sensor readings over time index are 

shown in the left panel of Fig. 4.2. At the same time, in-line probing system provides the 

thermal errors in z direction of machine tool spindle (right panel of Fig. 4.2). The 

nonstationary nature of the data is obvious. 

 
Figure 4.1 Thermal Sensor Locations on a Machine Tool 

 

For engineering processes, the common treatment on nonstationarity is to take the 

first or second order difference on original data and check the first two moments for 

adequacy test (Box and Jenkins, 1970). Define a difference operator Dc×c(q) = Diag[(1-q-

1)d1, (1-q-1)d2,…, (1-q-1)dj, …], where dj = 1 or 2 (j=1,2,…,c or p) and q-1 is the back shift 

operator, i.e., (1-q-1)z(t)=z(t)-z(t-1). Therefore, to obtain stationary time series, the 

temperature and thermal error data are transformed as 
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D(q)(SN×c) = [D(q)s(1)  D(q)s(2) …  D(q)s(N)]T,                  (4.1) 

D(q)(ΔN×p) = [D(q)δ(1)  D(q)δ(2) …  D(q)δ(N)]T.   (4.2) 

For simplicity, denote [D(q)s(i)  D(q)s(i+1) … D(q)s(j)]T as S(i,j) and [D(q)δ(i) 

D(q)δ(i+1)… D(q)δ(j)]T as Δ(i,j) with i<j. 
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Figure 4.2 Machine Tool Temperature and Thermal Error Data 

 

 The order dj in D(q) is determined by the nature of data. For the example data in 

Fig. 4.2, we can take the first and second order difference of the temperature and thermal 

error data. The first and second order differences of the temperature and thermal error 

data are shown in Fig. 4.3. We can also compute the mean and variance of these data 

differences. Among the total 120 observations (Fig. 4.2), two segments are randomly 

selected. Segment 1 contains observation No. 5 to 45 and Segment 2 contains the 

observation No. 50 to 90. The mean and variance of differences of these two segments 

are shown Tables A.1 and A.2 in Appendix D. We can see that the second order 

differences in two segments are very small and it is not necessary to consider the second 

order difference in the model (Box and Jenkins, 1970). Therefore, the first order 

difference is sufficient for the temperature and thermal error data in this example. 
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Figure 4.3 Stationarity Treatment 

 

Rather than in a unique format presented in (Shi and MacGregor, 2000), 

construction of descriptor data X and response Y for the modeling study is depending 

upon whether in situ measurement of thermal deformation is sufficiently available during 

the process. There are commonly two situations. The first one is that thermal sensing 

information is sufficient and accurate model prediction can be achieved for real time 

thermal error compensation. Another situation is that thermal sensing information may be 

inadequate for model based compensation whereas in-line monitoring of machine thermal 

status and prediction of process degradation is important to continuous maintenance of 

product quality. 

If the in situ measurements of thermal error are available, for example, using 

process intermittent probing, the lagged variables both in temperature and thermal error 

histories can be included in screening procedure of lagged input variable, and 
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determining the model structure. Suppose the speculated maximum time lag is l, where l 

can be chosen as a number large initially, the input vector X and output vector Y can be 

represented as 

X = [S(1,N-l+1)  S(2, N-l+2) …  S(l,N)  Δ(1,N-l+1)  Δ(2, N-l+2) …  Δ(l-1,N-1)],   (4.3) 

Y = Δ(l,N).          (4.4) 

Here, block matrix S(i,N-l+i) is regarded as the data collection for variable difference t(i)- 

t (i-1), where t is the variable vector of temperature. Matrix Δ(i,Ν-l+i) contains data 

collection of the variable difference mδq (i)- mδq (i-1). Eq. (4.3) enables the screening 

procedure to consider the lagged variables both in temperature history and thermal error 

history.  

If the in situ measurement of thermal error is unavailable, the X can only be 

formed with time sequences of temperature measurements: 

X = [S(1,N-l+1), S(2, N-l+2),…, S(l,N)].   (4.5) 

When using data matrices (4.4) and (4.5), we can avoid stopping normal 

production and monitor thermal error in situ. 

 

4.2.2 Latent Variable Modeling of Machine Tool Dynamic Error 

Latent variable modeling is a method for constructing predictive models when the 

factors are many and highly collinear (Burnham, Viveros, and MacGregor, 1999). The 

general model structure is  

X = TPT + E,      (4.6) 

Y = TQT + F,      (4.7) 
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where P is X loadings and Q is Y loadings. X and Y are assumed to have the common 

underlying latent variables LV with LV= [LV1,…,LVA]T (A«k+m). LV reduces X and Y 

spaces into a low dimensional subspace spanned by LV. The subspace is expected to 

grasp the most relevant information and structures from X and Y spaces. LV has the nice 

property that its elements are orthogonal to each other. Each realization of LV forms the 

corresponding row of score matrix T, which can be directly computed from X as: 

T = X W(PTW)-1,    (4.8) 

where W is the weights of X. The unmodeled noise terms are E and F. 

Y can be expressed in a regression form as 

Y = XG + F       (4.9) 

with G = W(PTW)-1QT.  

Among different model fitting approaches, such as principal component 

regression (PCR), partial least squares or projection to latent structures (PLS), canonical 

correlation analysis (CCA), and reduced rank analysis (RRA), PLS chooses LV by 

maximizing the covariance between historical information in X and Y (Shi and 

MacGregor, 2000) and it has been widely applied in chemical processes for process 

calibration and process monitoring (Nomikos and MacGregor, 1995). The PLS algorithm 

(Westerhuis, Kourti, and MacGregor, 1998) is adopted in this research. A variable 

screening procedure is then implemented to choose the number of sensors and maximum 

time lag for the model. 

Training data matrices X and Y need to be mean centered and scaled to unit variance 

prior to fitting the model, while the new data matrices are still denoted as X and Y in this 

chapter. We add operator ~ on the top of the notation to represent the scaled variable or 
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data matrix (scale for each column). Hence, the input vector X  and output vector Υ  can 

be represented as 

X =[S (1,n-l+1) S (2, n-l+2) …S (l,n)  Δ (1,n-l+1) Δ (2, n-l+2) …Δ (l-1,n-1)],    (4.10) 

Υ =Δ (l, n). 

X  is an n-l+1 by rl+6(l-1) matrix consisting of the data collection of temperatures 

and thermal errors. Here, the block matrix S (i,n-l+i) contains n-l+1 scaled temperature 

data vectors for {s(i)~s(n-l+i)}i=1,2,…l and can be regarded as the data collection of the 

variable difference t (i)- t (i-1), i=1,2…l, over a period from i to n-l+I. Similarly, matrix 

Δ (i,n-l+i) includes n-l+1 scaled thermal error vectors for {δ(i)~ δ(n-l+i)} i=1,2,…l and is an 

(n-l+1)-period (from i to n-l+i) data collection of the variable difference mδq (i)- mδq (i-1). 

Temperatures will be used for input and thermal errors will be for autoregressive terms in 

the model. Υ  includes the data collection of thermal errors mδq (n). By LVM fitting 

procedure, we fit the regression coefficient G in Eq. (4.9) to the data in Eq. (4.10). Hence, 

the first order differences of errors at time period n can be represented as the function of 

error sources in the previous periods: 

1 2
( ) ( 1) ( ) ( ) ( 1) ( ) ( ) ( 1)

1 1

ˆ ˆ ˆ ˆ[ ] [ ]
p p

n n l n l n l l n l n l
m m m m

l l

δ δ δ δ− − − − − − −

= =

− = − − + −∑ ∑q q A q q Β t t ,             (4.11) 

where ( )lA  is a 6×6 square coefficient matrix and its non-zero entries come from the 

entries in G corresponding to autoregressive terms. ( )lB  is a 6×11 coefficient matrix and 

its non-zero entries come from the entries in G corresponding to the temperature 

variables (see the example of the coefficient matrices in the case study). p1 and p2 

represent the maximum time lag for temperature and thermal error in the model. Time lag 

p1 is for A  and p2 for B , n≥n0. n0 is the starting period when the adjustment applies.  
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Scaling the data back with the mean and variance from the training dataset, we have 

1 2
( ) ( 1) ( ) ( ) ( 1) ( ) ( ) ( 1) ( ) ( 1)

0 0
1 1

垐 垐[ ] [ ]
p p

n n l n l n l l n l n l n n
m m m m

l l

δ δ δ δ− − − − − − − −

= =

− =− − + − + −∑ ∑q q A q q Β t t D D ,         (4.12) 

where D0(n) is the intercept term that is the linear combination of the means of the 

original data. A(l) and B(l) are the coefficient matrices after scaling back the data. 

Considering Eq. (2.9), we get  

1

2

( ) ( 1) ( ) 1 ( ) ( 1)

1

( ) ( ) ( 1) ( ) ( 1)
0 0

1

[ ]

[ ] [ ].

p
n n l n l n l

l
p

l n l n l n n

l

− − − − −

=

− − − −

=

Δ −Δ =− Δ −Δ +

− + −

∑

∑

m m K A K m m

K B t t K D D
               (4.13) 

Denote q-1 as the backward operator, e.g., q-1Δm(n) represents Δm(n-1). Canceling (1-q-1) 

on both hand sides of Eq. (4.13) leads to  

1 2
( ) ( ) 1 ( ) ( ) ( ) ( )

0
1 1

p p
n l n l l n l n

l l

− − −

= =

Δ = − Δ + +∑ ∑m K A K m K B t K ,                  (4.14) 

where ( )
0
nK  is a matrix that is related to the initial condition t(n0), Δm(n0) and intercept 

term ( )
0
nD . Eq. (4.14) is the fitted model for the quasi-static EFE thermal error. It will 

predict the thermal error at the next period based on all the previous information such as 

the temperatures and thermal errors collected. It can also be applied to the equivalent 

error compensation (or automatic process adjustment) that has been discussed in Chapter 

3. Design of process adjustment algorithm will be discussed in the next chapter.  

Since the thermal errors in Fig. 4.2 are along z direction only, the equivalent 

amount of fixture error (EFE) is the same as thermal errors (see Fig. 4.4). We make the 

notations of EFE and thermal errors interchangeable in Section 4.3. 
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Figure 4.4 Equivalent Fixture Error of Fig. 4.2 

 

As to the situation one mentioned in Section 4.2.1, we fit the model to data for 

variable screening. Given the 120 observations in Fig. 4.2, suppose the maximum time 

lag is 6 (or a larger number) for δ(t)
1×1 and s(t)

11×1 (note: δ is one dimensional for this case). 

Using the first 94 observations as training set and construct X and Y by Eqs. (4.3) and 

(4.4), we can see that after first order difference, l=6-1=5. So, according to Eq. (4.3), total  

l×c+l-1=(6-1)×11+(6-1)-1=59 candidate variables in X90×59 need to be screened to fit 

the corresponding thermal error data Y90×1. The number of latent variables is determined 

by the percentage of variance they can explain. To start, just assume there are 30 latent 

variables and fit the model expressed by Eqs. (4.6) and (4.7). Based on the index of 

variable importance for projection (VIP: a variable with VIP greater than 0.8 is assumed 

to be significant) (Wold, 1994) and regression coefficients G, 29 input variables in X are 

screened out (Table A.3 in the Appendix E). 

Table A.3 suggests that sensor 9 seems to be insignificant in the thermal error 

model. However, in the experiment, sensor 9 is mounted onto the places near spindle 

motor and spindle bearing (Fig. 4.1), which appear to be major influencing heat sources. 

By further investigating the significant factors, (1-q-1)δ(t-2) and (1-q-1)δ(t-1), the lagged 

deformation information, which are related with temperature information from sensor 9,  

are found in the model.  
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The maximum time lag for temperature data and the thermal error is 5. The model 

could also be refitted with several larger time lags to be certain no significant lagged 

variables were missed. Sensors 1, 3, 4, 5, 7, 8, and 10 all appear at least 3 times with 

different lags in the model, which indicates that those 3 sensors might have more 

complicated thermal dynamic behaviors than the rest.  

Since in-line probing is usually not easily accessible during production, LV 

modeling with only lagged temperature variables is a main focus in this chapter. For the 

rest of this section, a latent variable model will be built for in-line monitoring of machine 

tool thermal errors, in the case no sufficient information is available for error 

compensation. 

We still use the first 94 observations for model fitting and assume 30 latent 

variables without autoregressive terms. The rest of data will be used for model testing. 

With the data matrices X90×55 (Eq. (4.5)) and Y90×1 (Eq. (4.4)), the model fitting 

procedure includes two steps, i.e.,  

• Screen sensors and find A latent variables;  

• Refit model with significant sensors and A latent variables. 

The screening procedure remains the same and the result is given by Table A.4. 

Based on the percentage of variance explained by the latent variables (Table A.5 in 

Appendix E), choose 9 latent variables out of 30, i.e., A = 9, which explain 86.954% of 

variation in X and 96.6966% of variation in Y (see the ninth latent variable in Table A.5). 

Therefore, 24 input variables (denoted as x 24 1× ) in Table A.4 are used to refit the model to 

get LV9×1= xTW(PTW)-1, W, T, P, Q and G.  
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To test model accuracy, first, we can use the temperature observations No. 95 to 

No. 119 as input for predicting thermal errors. After taking the first order difference, the 

new 25 observations are mean centered and scaled with the mean and variance obtained 

from training dataset. Denote the pre-processed data as Xnew. By Eq. (4.8), the new score 

Tnew is obtained as Tnew = XnewW(PTW)-1. By Eq. (4.9), the predicted Y is Y = 

XnewW(PTW)-1QT and the residuals are F=Y- Y . The first 60 observations in another 

experiment are used to predict the thermal errors in a similar manner. 

Y  needs to be added with mean and scaled back with the variance from the 

training dataset. Given the first new initial thermal error, we integrate the post-processed 

Y  and compare it with the observed thermal errors (Fig. 4.5). As can be seen, the 

residuals are small and this result is satisfactory. 

If sensing information is sufficient, the prediction power of the model developed 

by SI theory is normally higher than the one obtained from LVM method. If not, LVM 

method is expected to have better performance. The reason is that LVM method is to 

model the underlying structure in X and Y, rather than to model the impact of X on Y. 

Therefore, reduced sensing information does not limit LVM’s capability to find out some 

basic structures from the data, i.e., getting T = XW(PTW)-1 from X and Y. The heat 

sources in a machine tool are abundant and more sensors are needed to well describe the 

temperature field. Thus LVM based in-line monitoring method is more appropriate for 

the given situation. 
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Figure 4.5 Model Prediction and Residuals 

 

4.3 In-Line Monitoring of Dynamic Equivalent Errors of Machine Tool  

The first step of in-line monitoring is to obtain historical temperature and thermal 

error data collected from a machine tool under normal working conditions. Then these 

data are used to fit a model using the same technique as introduced in Section 4.2. Its 

basic idea is to fit a latent variable model (Eqs. (4.6) and (4.7)) and monitor the process 

based on latent structures captured by utilizing the process information (e.g. temperature) 

and historical product information (e.g. thermal error) (Kourti and MacGregor, 1996). 

This section demonstrates the method to build control charts and to monitor machine tool 

thermal error.  

 

 

 



 79

We still use the data in Fig. 4.2 as an example. Suppose the first 94 observations  

on temperature and thermal error data are available for the training stage. During 

production, only temperature measurements are available. We need to find out whether 

the thermal behavior of the machine tool is changed to increase thermal errors.  

With the model fitted in Section 4.2.2 (the second situation), we have T, P, Q and 

LV9×1. If the 24 variables are denoted as vector x24×1, then LV9×1 can be expressed as 

LVT = xTW(PTW)-1,    (4.15) 

with W(PTW)-1 given in Table A.7 in Appendix E. 

Use ta to denote the one realization of LV (or one row in matrix T) and ta = [t1, 

t2,…, tA]T with A = 9 in the example. Define a Hostelling’s T2 statistic in terms of latent 

variables as 

2
2

2
1

A
a

a a

tT
s=

= ∑ ,     (4.16) 

where 2
as  stands for the variance of ta. It can be estimated from eigenvalues of the sample 

covariance matrix of T, i.e., SLV. Since t1, t2,…, tA are orthogonal to each other, SLV is a 

diagonal matrix and the estimator of 2
as  is given by 

2 [ ]a aas diag= LVS .     (4.17) 

The control limit can be set by the F distribution (Johnson and Wichern, 1998), 

 
2

2
,

( 1) ( )
( ) A n A

A nT F
n n A

α−

−
≤

−
,                                          (4.18) 

where FA, n-A(α) is the upper 100(1-α)% critical point of F distribution with degree of 

freedom of (A, n-A). 
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In the example, Diag[SLV] = [7.6719, 3.1620, 2.5583, 1.0428, 1.0312, 1.2627,  

0.3845, 0.2626, 0.5375], i.e., 2
1s = 7.6719 and 2

9s = 0.5375. 
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Figure 4.6 Ellipse Format Chart 

 

We can see from Table A.5 that latent variable 1 accounts for the majority of the 

variance for the dependent variables. If only first two latent variables are considered, the 

elliptic control chart can be employed to monitor the stability of the machine tool. To 

build phase I control chart, the 2T  statistic is approximated by χ2 distribution with 2 

degrees of freedom (Johnson and Wichern, 1998), i.e.,  

2 2
2 21 2

22 2
1 2

( )t tT
s s

χ α= + ≤ ,    (4.19) 

where 2
2 ( )χ α  is the upper 100(1-α)% critical point of χ2 distribution with 2 degrees of 

freedom. 

For level α = 0.05 ( 2
2 (0.05) 5.9915χ = ), the ellipse format chart for the 90 

observations is shown in Fig. 4.5 (after the first order difference, 90 data points are left 

for charting). In Fig. 4.6, points 10, 33, and 56 are beyond the limit. The scores of those 3 
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points need to be eliminated from T (not from X) before building phase II control chart. 

After the elimination, Diag[SLV] = [7.7625, 2.4835, 2.6186, 1.0622, 1.0390, 1.1998, 

0.3514, 0.2604, 0.5361]. This will be used for constructing phase II control limits. 
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Figure 4.7 Control Ellipse for Future Observations 

 

By Eq. (4.18), the phase II control chart is designed as 

2 2 2
new,1 new,22

2, 22 2
1 2

t t 2( 1) ( )
( 2) n
nT F

s s n n
α−

−
= + ≤

−
,   (4.20) 

where n is the number of observations for constructing the control limits (n = 90-3 = 87 

in the example). 2
1s  and 2

2s  are computed from phase I, i.e., 2
1s  = 7.2636 and 2

2s  = 2.3244. 

2
new,1t  and 2

new,2t  come from the future observations and they are the first two entries of tnew. 

For a new observation (xnew)24×1 

(tnew)T= (xnew)TW(PTW)-1.    (4.21) 

Suppose observations No. 95 to No. 119 are new measurements. The control ellipse 

based on Eq. (4.18) is shown in Fig. 4.7 (α = 0.05, and F2, 85(0.05)=3.1038), which 

suggests that the machine tool thermal condition is stable. 
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4.4 Isolation of Lagged Variables and Sensors Responsible for the Out-of-Control Signal  

Although the control charts can identify out-of-control signals, they are unable to 

determine the root causes. Contribution plots have been suggested to isolate the variables 

responsible for the out-of-control signals (Kourti and MacGregor, 1996). The idea is to 

check the standardized scores (i.e., ta/sa) with high values and to further investigate the 

variables that have the large contributions to those scores. 

In Section 4.3, points 10, 33, and 56 are identified to be out-of-control. The scores 

of these 3 points (the rows in T corresponding to these points) are listed in Table A.8. For 

each realization of LV (or each point), plot ta/sa with a = 1,2,…,9 on the same graph (Fig. 

4.8). 

With 95% confidence of type I error, the Bonferroni limit for the graph in Fig. 4.8 

is ±2.7 (Alt, 1985). We can see that the second score component (i.e., the second latent 

variable) of those 3 points is the main contributing factors to the out-of-control signal. 
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Figure 4.8 Standardized Scores in Points 10, 33, and 56 

 

Since tT= xTW(PTW)-1 (refer to Table A.7 for W(PTW)-1), we can further 

investigate the contributions of lagged variable in x and contributing sensors responsible 

for the signals. For each realization of LV, the contribution of variable xj (the jth 

component in x 24 1× , j=1,2,..,24 and t=10, 33, and 56 for this example) to the score of the 

ath score component is defined to be (Kourti and MacGregor, 1996) 

Contributiona,j=xjeaj,                                            (4.22) 

where eaj is the jth component in the ath column (corresponding to ath score component) 

of matrix W(PTW)-1.  

To the second latent variable in points 10, 33, and 56, the contributions of 24 

variables (see Table A.4 for the variables) are shown in Fig. 4.9. Clearly, variable No.21, 

i.e. (1-q-1)s7
(t), makes the largest contributions to the signals.  
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Figure 4.9 Lagged Variable Contributions to Score Component 2 

 

Since the 24 lagged variables are from 10 sensors (sensor 9 is excluded by the 

screening procedure), study on the aggregated contributions from each sensor might 

provide valuable information for root cause determination, i.e., finding out the main heat 

sources that lead to thermal errors. The aggregated contribution can be found by 

summing up the contribution of lagged variables corresponding to each sensor (see the 

correspondence in Table A.6). Fig. 4.10 shows the contributions of 10 sensors to the 

second latent variable of points 10, 33, and 56. Although this latent variable is the main 

contributing factor to the out-of-control signal in these 3 points, the patterns in terms of 

sensor contributions are quite different. In these points the heat sources at sensors 3, 4, 

and 7 are the main factors causing the changes of machine tool thermal condition. Further 

investigation should be taken to find out the physical reasons, such as spindle bearing 
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overheating or coolant not functioning. All the sensor contributions for point 56 for score 

component 2 take negative values because the data was sampled at cooling down cycle.  
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Figure 4.10 Sensor Contributions to Score Component 2 

 

If more latent variables are beyond limits in Fig. 4.8, we can study the overall 

average lagged variable contribution and sensor contribution. The procedure of 

computing the overall average variable contribution is similar to that in Kourti and 

MacGregor (1996). 

 

4.5 Summary 

This chapter models the error equivalence for the dynamic process errors and 

develops the in-line monitoring of the equivalent dynamic process errors and process 

degradation caused by thermal errors. Machine tool thermal errors are selected as an 

example to demonstrate the dynamic error equivalence modeling and process monitoring 
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in machining. The thermal sensors and maximum time lag are chosen according to a 

screening procedure applied to results of LVM. The in-line monitoring of dynamic 

equivalent errors is achieved by theories of statistical quality control: first T2 control chart 

is built to detect out of limit signal; then bar plots of normalized scores and contribution 

are created to identify the major contributing latent variables, the contribution of each 

lagged variable and sensor to the thermal errors. These procedures show that LVM 

method provides interesting results in variable screening, model prediction, and 

especially in in-line monitoring and root cause identification. LVM method is especially 

appropriate for multivariate measurements and ill-conditioned data, and it could also 

provide a benchmark to judge whether the sensing information is sufficient to perform 

dynamic error compensation. 

The success of applying LVM method in monitoring is due to the property of LV 

model, i.e., finding out the latent variables that maximize the covariance between process 

variable (e.g., temperature) and product variable (e.g., thermal errors). LVM method 

captures the thermal patterns from the historical data collected from an in-control 

machine tool. Future observation is assumed to be out-of-control signal if the pattern 

changes are detected. Once an out-of-control signal is detected, the study shows that the 

lagged variable and sensor contribution plots are very helpful to determine the root 

causes. 
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Chapter 5 

Error Compensation Based on Dynamic Error Equivalence for Reducing Dimensional 

Variation in Discrete Machining Processes* 

Traditional SPC technique has been widely employed for the process monitoring 

in discrete manufacturing. However, SPC does not consider any adjustment that prevents 

the process drifting from the target. Furthermore, many in-line adjustment approaches, 

such as thermal error compensation and avoidance, are designed only for machine tool 

error reduction. This chapter intends to fully utilize the engineering process information 

and propose an alternative compensation strategy that could automatically reduce the 

overall process variations. Based on the model of dynamic equivalent errors developed in 

Chapter 4, a SPC integrated error-canceling-error APC methodology is derived to 

compensate for both time invariant and dynamic errors by adjusting the base error. The 

performance of the adjustment algorithm such as stability and sensitivity is then 

evaluated. A self updating scheme for the adjustment algorithm has been proposed to 

track the latest process information as well. This process adjustment has been simulated 

using the data collected from a real machining process. The results show that this 

algorithm can improve the machining accuracy and reduce the process variations.  

 

* The work in this chapter has appeared in Wang, H. and Huang, Q., 2007, “Using Error Equivalence Concept to Automatically 

Adjust Discrete Manufacturing Processes for Dimensional Variation Reduction,” ASME Transactions, Journal of Manufacturing 

Science and Engineering, 129, 644-652. 
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In Section 5.1, an error equivalence adjustment algorithm is derived to counteract 

the machining process variation. Its integration with SPC is discussed in Section 5.2. The 

adjustment algorithm is implemented via a case study in Section 5.3. Section 5.4 

evaluates the performance of the APC methodology such as stability and sensitivity when 

a change in the dynamics of process occurs. Conclusions are given in Section 5.5. 

 

5.1 Automatic Process Adjustment Based on Error Equivalence Mechanism 

For a manufacturing process with causal relationship x = f(u1, u2,…,up) + ε, the 

traditional error compensation strategy is to minimize individual process errors ui’s so as 

to reduce output deviation u. As pointed out in Chapter 3, since error equivalence also 

implies the cancellation among process errors, this allows us to develop a new 

compensation strategy, i.e., treating all process error sources as a system and using one 

error to compensate for the others. For instance, with the development of flexible fixture 

whose locator length is adjustable, it is feasible to compensate for the overall process 

errors in the machining process by changing locator length. In this new strategy, the 

outputs of the adjustment algorithm and process will be monitored using SPC methods. 

The main purpose is to monitor unexpected events such as adjustment device failure. 

It should be noted that compensation cost is a critical factor to be considered in 

real applications. It is not discussed in this study because cost issue is often case 

dependent. 

Using the observed feature deviation x(n) at time period n as input, the proposed 

error equivalence based algorithm 
1uG  generates adjustment c(n) to counteract *( 1)

2
p n
i i

+
=Σ u  

for the (n+1)th time period. Let c(n) be the cumulative amount of adjustment. x(n+1) is  
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x(n+1) = Γ*c(n) + Γ* *( 1)
2

p n
i i

+
=Σ u +ε(n+1).                      (5.1) 

The adjustment c(n) should be able to cancel E(x) and reduce the process variation. The 

adjustment algorithm can be designed to reduce the mean squared deviation of product 

feature, i.e., min E ( 1) 2[ ]n+x . As proposed by Capilla, et al., (1999), we can treat a simpler 

problem of minimizing an instantaneous performance index, min ( 1) 2ˆ[ ]n+x . Taking the 

first derivative of ( 1) 2ˆ[ ]n+x  and equaling it to zero, the adjustment rule can be summarized 

as follows.  When the process errors *
iu ’s are all static, the adjustment to reduce the mean 

shift of the process output is  

( ) * * * 1 * ( )
1

ˆ ( ) .nn T T k
jj S k

−
∈ =

= − = −∑ ∑c u Γ Γ Γ x                                        (5.2) 

where S is the set for the static errors. Eq. (5.2) is in fact the same as Eq. (3.9). 

Considering static and dynamic process errors, the process adjustment c(n) using error 

equivalence turns out to be 

( ) * *( 1) * *( )
{ | }ˆ ˆ ˆ ˆ({ } ),n n k

j i j i k k nj S i D j S i D
g+

<∈ ∈ ∈ ∈
= − − = − −∑ ∑ ∑ ∑c u u u u  

*( ) ( 1) * * 1 * ( ) *ˆ ( )n n T T n
i ji D j S

− −
∈ ∈

= − + −∑ ∑u c Γ Γ Γ x u ,                             (5.3) 

where D is the set for dynamic errors. *ˆ jj S∈∑ u  and *( 1)ˆ n
ii D

+
∈∑ u  are the process static and 

dynamic equivalent errors based on the least square estimation, respectively. Dynamic 

errors can be represented by *( 1) *( )ˆ ˆ({ } )n k
i i ki D i D

g+
∈ ∈

=∑ ∑u u , where g(.) is the fitted 

dynamic model of process errors. Since the process will compensate for the same amount 

of error *
2

ˆp
jj=∑ u  at each time period, the proposed sequential root cause identification 

procedure can be applied to identify the error sources. 
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In the machining processes, the dynamic machine tool error can be represented by 

an ARX model with the temperatures of machine tool as input (see Eq. (4.13)). 

Substituting process model (4.13) into Eq. (5.1), the prediction for feature deviation at 

period n+1 is 

1 2( 1) * ( ) * ( ) 1 ( ) * ( ) ( ) * * ( )
3 3 01 0

ˆ ˆ[ ]p pn n l n l l n l n
jl l j S

+ − − −
= = ∈

= − Δ + + +∑ ∑ ∑x Γ c Γ K A K m Γ K B t Γ u K .    (5.4) 

The adjustment rule for machining process is then 

c(n) 1 2( ) 1 ( ) ( ) ( ) * ( )
3 3 01 0

ˆp pl n l l n l n
jl l j S

− − −
= = ∈

= Δ − − −∑ ∑ ∑K A K m K B t u K , c(n0)=0, and 

 ( ) ( 1) * * 1 * ( ) *ˆ ˆ( )n l n l T T n l
jj S

− − − − −
∈

Δ = − + −∑m c Γ Γ Γ x u .                        (5.5) 

Static error is obtained by direct measurement or by equation 

 * * * 1 * *ˆ ( )T T
j ij S i D

−
∈ ∈

= −∑ ∑u Γ Γ Γ x u ,                                       (5.6) 

where x and *
ii D∈∑ u  are the measurements of feature deviation and dynamic errors 

when fitting the error model g(.). 

Applicable conditions of compensation strategy. The base error u1 is not random because 

of the adjustment. Although the adjustment c is expected to compensate for the remaining 

process errors *
2=Σ i

p
i x , it becomes a new random error source because of the variability in 

the actuator. Therefore, the adjusted total process error *
au  has  

*
2ˆ ˆE( ) E( ) E( )p

a i i i== + Σu c K u  and *
2ˆ ˆCov( ) Cov( ) Cov( )p T

a i i i i== + Σu c K u K .    (5.7) 

1xG  normally aims to keep the process output x on the target and with the minimum 

variation. The commonly used adjustment algorithm is to let E(c) =− 2 ˆE( )p
i i i=Σ K u  or 

*ˆE( )u = 0. However, the generalized variance of error *
au  or Det( *ˆCov( )au ) is not 

necessary to be smaller than the one without adjustment, where Det(.) represents the 
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determinant of the matrix in the parentheses. Cleary, if Det( Cov( )c ) ≤ Det( 1ˆCov( )u ), the 

new compensation strategy will uniformly reduce process variation. If Det( Cov( )c ) > 

Det( 1ˆCov( )u ) but the increase of total process variation (Det( *ˆvar( )au )-Det( *ˆCov( )u )) 

/Det( *ˆCov( )u ) is insignificant, the compensation might be acceptable as well. For 

instance, the precision of fixture is usually much higher than the workpiece and machine 

tool. An adjustable fixture equipped could have lower precision or larger Det( Cov( )c ). 

The minor percentage of fixture variation in the tool process errors might justify the 

application of error compensation because it brings the process on the target. 

Compensation is normally not effective if Det( Cov( )c )>Det( 1ˆCov( )u ) and 

(Det( *ˆCov( )au )-Det( *ˆCov( )u ))/Det( *ˆCov( )u )  is appreciable. 

The conventional compensation strategy aims to offset ˆE( )iu  and reduce ˆCov( )iu  

individually. It will be effective if there are only a few process errors dominating in ˆE( )u  

and ˆCov( )u . Otherwise, a large number of adjustments are needed to compensate for all 

error sources in order to keep the process output x on target.  Under this condition, these 

two compensation strategies can be applied complementarily. The error sources with the 

largest variations can be counteracted using conventional methods to reduce ˆCov( )u , 

whereas the new compensation strategy is to achieve *ˆE( )au = 0. 

 

5.2 SPC Integrated Process Adjustment Based on Error Equivalence  

In real application, process adjustment as shown in Eq. (5.5) has to consider the 

following practical problems: 
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Over Adjustment. Over adjustment may increase the production cost and process 

variation. However, the adjustment does not need to be implemented in the periods when:  

• The process errors are not significant compared to the assigned tolerance of base 

errors (denoted by *
1

σ±
u

). We can predict the process errors in the next period and test 

if the predicted errors are within tolerance.  

• The adjustment is beyond the accuracy limit of the device. Therefore, in the early 

stage of adjustment system design, we should choose the device whose accuracy limit 

matches the assigned tolerance of base errors.  

Fast varying errors. The adjustment in Eq. (5.5) only compensates for the slow varying 

dynamic errors (quasi-static errors), which are relatively constant between the adjacent 

periods. Large process variation within one period can lead to large adjustment errors in x. 

In order to identify such process change, the samples of outputs {x(n)} of the 

manufacturing process within one period can be monitored by quality control charts.  

Unexpected process errors. On some occasions, unexpected process errors (e.g., variation 

of adjustable fixture locator, hot chips during machining) have not been considered in {ui} 

and thus the adjusted process could show a large variation. Integration of SPC and APC 

is an economic way to reduce the variation of adjusted process though it has been rarely 

applied in a discrete manufacturing process. Monitoring the estimated noise, i.e., 

( )ˆ nε =x(n)- * *( )
2

p n
i i=ΣΓ u -Γ*c(n-1) can help to detect if unexpected errors impact the process 

output. When the unexpected errors take place, we can also update the process error 

model to track the latest information about errors and make a closer prediction. With the 

updating scheme, the coefficients in function g(.) also change with period n. In the 

machining process, suppose we measure the temperature and thermal error every period, 
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and the measurement data are available at the period 1~n0. The updating adjustment 

procedure can be proposed as follows: 

 At the beginning of period n0+k, data, including part features (measured by CMM) 

{x(n0+k-l)}, thermal errors (measured by in-line probes) {δqm
(n0+k-l)}, and temperatures 

(measured by thermal sensors) {t(n0+k-l)}, are collected to compute the locator 

adjustment c(n0+k-1)-c(n0+k-2). k=1, 2, 3,…(Eq. (5.5)). Then cut the parts after the 

adjustment. With the updating scheme, the fitted coefficient matrices {A(l)} and {B(l)} 

in Eq. (5.5) also change with period n (or equivalently, updating iteration). So, it is 

reasonable to denote them as {An
(l)} and {Bn

(l)}.  

 At the end of period n0+k, measure the parts and take the average of measurement 

results to estimate x(n0+k).  

 Increase k and repeat the above procedures. 

Since SPC is an effective tool to enhance the process robustness, we can develop 

a SPC strategy for the adjusted process by collecting the information of process output x(n) 

and adjustment output c(n) for each sample product. Then we can do the following: 

 Monitor samples of feature deviation x within one period to determine whether the 

period length is appropriate for quasi-static error assumption. Shorter period duration 

might be necessary when quality control chart signals an alarm. 

 Monitor the part features x(n) by multivariate control charts, c(n) by multivariate 

EWMA chart and the noise estimation ( )ˆ nε  for all the samples to identify whether 

unexpected errors or process change occurs.  

 Update the adjustment algorithm when the control chart indicates out-of-control of 

x(n), c(n), or systematic trend of ( )ˆ nε .  
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 Within the device accuracy limit, the incremental adjustment c(n)-c(n-1) should be 

applied (to compensate for the quasi-static errors) only when cumulative adjustment 

c(n) exceeds control limits determined by the tolerance of the base error *
1u  and 

meanwhile incremental adjustment c(n)-c(n-1) exceeds device accuracy limits. Both 

error tolerance and device accuracy limits define a dead band for the adjustment.  

The SPC integrated adjustment based on error equivalence can be shown by Fig. 

5.1. To simplify the representation, the figure only shows the adjustment scheme for 

compensating static errors. 
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Figure 5.1 Adjustment Based on Error Equivalence  

 

5.3 Simulation of Error Equivalence Process Adjustment 

We use the same single stage milling process to implement the process adjustment 

as in Chapter 2. The process performs cutting on two planes X1 and X2 as shown in Fig. 

2.9 in Chapter 2. Thickness along the z direction lz and y direction ly are the part features 

to be controlled (the nominal thickness of the finished part is lz =15.24 ± 0.1mm and 

ly=96.5 ± 0.1mm).  
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In this simulation, we use the data (Fig. 5.2(a)) from the experiment. There are 11 

thermal sensors mounted on the CNC milling machine to collect data (r=11). The thermal 

deviation is measured along two directions: the angular deviation α around x axis and 

translational deformation along z direction of the tool head (see Fig. 5.2(b)). The left 

panel of Fig. 5.2(a) shows the readings from 11 thermal sensors. The middle and right 

panels show the measurement of thermal errors. The data are collected in each adjustment 

period. 
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Figure 5.2 (a) Machine Tool Temperature and Error Data  

 
 

 

 

 

Figure 5.2 (b) Thermal Error Measurements 
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We have derived Γ* in Chapter 3 to be: 

0 0.0263 0.0263 0 0 0
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                                    (5.8) 

Suppose the maximum time lag in the model is 5, and N=95, the fitted coefficient matrix 

G is  
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where vi(l) and ai(l) are fitted coefficients. Then coefficient matrices )(~ lA  and )(~ lB  are 
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The static kinematic errors, after being transformed to equivalent fixture error, are 

assumed to be *ˆ jj S∈∑ u =[0.4 0 0.35 0 0 0]T mm. The measurement noise ε(n) is assumed 

to follow N(0, (0.002mm)2) for displacement and N(0, (0.001rad)2) for orientation. For 

each adjustment period, 5 parts go through the cutting operation. We use average of 5 
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measurements to estimate the real feature deviation for each period. Thermal error and 

temperature for 95 periods (So, n0=95) are available before the adjustment is applied. The 

measurements of temperature from i~95+i periods and thermal error from i~94+i are used 

to estimate the adjustment of locator pins for the (95+i)th period, i=1,2,…,20. The 

adjustment algorithm is updated after measuring the parts at the (95+i)th period.   

The accuracy of the locator movement is assumed to be σf=0.003mm and the 

criterion for stopping the compensation is -0.01≤c(n)-c(n-1)≤0.01mm. The values of 

adjustments for 6 locators are given by the solid line in the Fig. 5.3. The dash dot line 

represents the value of ± 3σf. The adjustments for locators 4, 5, and 6 are zero since the 

EFEs of errors introduced on these locators are zero in this example. 
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Figure 5.3 EFE Adjustment 

 

The effect of the automatic process adjustment can be evaluated by monitoring 

the thickness of the part ly and lz. The mean of such distance (in each period) is estimated 

by the average of 4 edge lengths along y and z directions at that period. The variance in 

each period is estimated by the variance of the 4 edge lengths. 
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Figure 5.4 Monitoring Thickness and Standard Deviation of Edge Length 

 

Fig. 5.4 shows the mean and standard deviation of the thickness for 20 adjustment 

periods (periods 95~114). There is no adjustment applied in period 95. We can see that, 

after the process adjustment, the mean of the thickness is within specification limit 

( ± 0.01mm) and variance is greatly reduced. We conclude that the proposed adjustment 

algorithm can significantly increase the product quality. It should be noticed that the 

thickness ly has less mean shift than that lz. This is because plane X2 tilts around x axis 

and the distances between edges ly are smaller along z direction. Such edge layout leads 

to edge lengths with less variance and mean shift. 

 

5.4 Adjustment Algorithm Evaluation 

Since the adjustment algorithm may have unstable modes, it is necessary to 

estimate the performance such as stability and sensitivity. The stability of the adjustment 

algorithm means that an error in the output can be cancelled by an adjustment sequence 

that converges to zero. One can obtain the stability of the algorithm by inspecting the 

poles of the transfer function of Eq. (5.5). Sensitivity refers to how the quality could be 
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affected whenever moderate changes occur in the algorithm parameters. This can be 

analyzed by differentiating Eq. (5.5) with respect to coefficients in function g(.).  

Introducing backward operator q-1, Eq. (5.5) can be represented as 

1

1 2 1

( ) 1 ( )
3 31

( ) 1 * * 1 * ( ) ( ) ( ) ( ) 1 * * ( )
3 3 3 01 0 1

[ ]

ˆ ˆ( )

p l l l n
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p p pl T T l n l l n l n
n n n j jl l l j S j S
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q q

− − −
=

− − − − −
= = = ∈ ∈

+

= − − − −

∑
∑ ∑ ∑ ∑ ∑

I K A K c

K A K Γ Γ Γ x K B t K A K u u K
   (5.10) 

The stability of the algorithm is governed by the entries in 6×6 matrix 

1 ( ) 1 1 1
3 31

[ ]p l l
nl

q− − − −
=

+ ∑I K A K . If the roots of denominator of each entry contain the poles 

inside the unit circle in q plane, the algorithm is stable. 

It clear that the adjustment algorithm is always stable if the thermal error model 

does not contain autoregressive term, i.e., An
(l)=0. When autoregressive terms are 

included in the model, the algorithm may be unstable though the prediction accuracy may 

increase. The designed algorithm at certain periods may contain unstable poles (poles 

outside unit circle). This may cause the adjustment exhibit fluctuation and large output if 

the parameters An
(l) and Bn

(l) in the algorithm had been unchanged as n increase. The 

solution for unstable output can be to use the model without autoregressive term since 

such algorithm is always stable. Another solution is to introduce the updating scheme 

which makes the adjustment output capture the latest process information. In this case, 

Eq. (5.10) is not strictly proper to evaluate the stability for only one adjustment period 

because model for Δm(n-l-1) is different from Δm(n-l). In practice, the proposed algorithm 

can achieve satisfactory results. This has been validated by the results from the 

simulation study in Section 5.3. 

 



 100

Another important issue is the sensitivity of the algorithm to the modeling errors 

that can feasibly occur. If there are moderate changes of modeling parameters (entries in 

matrices A ( )l
n ) and B ( )l

n ), we are more interested in how the quality of the product could 

be affected. Such change may be due to several reasons, including sensor reading errors 

and change of lubrication condition. To study sensitivity, expand Eq. (5.5) as  
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                 (5.11) 

 

where hi is the function of fixture coordinates f1, …, f6. Differentiating both hand sides of 

Eq. (5.11) leads to 
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Δm(n-l) is only related to the previously fitted model and is not affected by the fitting error 

of An
(l) and Bn

(l). It can be considered as a constant when we conduct the sensitivity 

analysis. For the example in Section 5.3, substituting the values of coordinates yields 
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To simplify the representation, time indices (n-l) and l are dropped in this 

equation. We can conclude the following about the adjustment algorithm at time period n, 

• There is no adjustment on the locator 6. 

• Deviation of coefficients a1
(n-l) and vi

(n-l) does not affect the adjustment c4
(n) and c5

(n); 

and a1
(n-l) has the same effect on the adjustment of c1

(n), c2
(n), and c3

(n). 

• The adjustment for locators 2 and 3 are more likely to be affected by the fitting errors. 

Locators 4 and 5 are less sensitive to the fitting error. This is because the thermal 

error occurs is only around z and along x directions. The EFEs on locators 1, 2, and 3 

have more impact on the feature deviation than on locators 4 and 5. Locator 6 never 

affects feature deviation along these two directions.  
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Figure 5.5 Effect of Parameters Change in Process Adjustment Algorithm 
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The updating scheme can effectively enhance the sensitivity robustness of the 

adjustment algorithm. We have simulated the feature deviation when there are changes of 

50%, 200%, 350% and 500% in the coefficients v6
(0) and w6

(0) in matrix B105
(0). Fig. 5.5 

shows an example when there are changes up to 500% in the coefficients. We can notice 

a large variation of feature lz at period 104 and 105. Feature ly is not too much affected. 

After period 105, the feature lz falls within the specification limit since the adverse effect 

of the fitting error has been counteracted by the updated model.  

 

5.5 Summary 

  APC and its integration with traditional SPC have not been sufficiently 

addressed in discrete machining processes. Regarding the error compensation, the 

conventional method in machining processes is to compensate for the multiple errors 

individually. Based on the dynamic error equivalence model developed in Chapter 4, this 

chapter derives a novel SPC integrated error-canceling-error APC methodology to 

compensate for joint impact of errors in the machining process. As an alternative strategy, 

an APC methodology by using one type of error to compensate for others has been 

proposed. The method shows an advantage that it compensates for the overall process 

variation without interrupting production in the machining processes. The applicable 

condition of this new compensation strategy is also discussed. 

This chapter first develops an error equivalence adjustment method based on the 

engineering process causal model and statistical model of dynamic equivalent errors. It 

uses prediction from the statistical process error model to compensate for the errors in the 

future periods. Second, SPC is applied to the adjusted process to identify the unexpected 
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process errors. When SPC signals an alert, the fitted model is updated to obtain the latest 

information of the dynamic process. The adjustment algorithm is implemented using the 

data collected from a milling process. It has been shown that the error equivalence 

adjustment can effectively improve the machining accuracy and reduce the variation. In 

addition, a discussion on the applicable condition of compensation strategy shows that 

the variation of adjustment to the base error must be relatively small compared with that 

of the base error itself. Finally, the performance of designed adjustment algorithm is 

analyzed. It has been demonstrated that the proposed updating scheme is effective to tune 

the parameters and stabilize its output. The sensitivity of adjustment output to the change 

of model parameters is also studied. It helps to find out the parameters that contribute 

most to the deviations in the adjustment outputs. 
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Chapter 6 
 

Conclusions and Future Work 

6.1 Conclusions 

Process quality improvement usually relies on the modeling of process variations. 

Models that can reveal the physics of fundamental engineering phenomena could provide 

better insights into the process and significantly enhance the quality. The work in this 

dissertation aims to improve the understanding of error equivalence phenomenon, that is, 

different types of process errors can result in the same feature deviation on parts. The 

implication of error equivalence mechanism can greatly impact the prediction and quality 

control in manufacturing processes. The major contributions of this dissertation are 

summarized as follows 

 Error equivalence modeling. A rigorous mathematical definition of error equivalence 

is introduced. An error transformation is proposed to establish the mathematical 

formulation of error equivalence phenomenon. By the kinematic analysis, equivalent 

errors are transformed into one base error. In machining processes, the base error is 

chosen to be fixture deviation and other types of errors, including datum and machine 

tool errors, are transformed to the fixture error. A process causal model is derived to 

depict how the base errors affect the features of parts. The error equivalence is 

investigated for both static and dynamic process errors. The model serves as the base 

for quality prediction and control. 
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 Sequential root cause diagnosis strategy. Due to the error equivalence mechanism, 

errors may cancel each other on the part features and may conceal the process 

information for process diagnosis. The proposed sequential diagnostic methodology 

based on error equivalence overcomes the difficulty by conducting diagnosability 

analysis, identifying the existence of process variations, and distinguishing the 

multiple error sources. 

 Error-canceling-error compensation strategy integrated with SPC. The error 

cancellation is further explored and a novel error-canceling-error APC strategy is 

proposed, i.e., treating all error sources as one system and using the base error to 

automatically compensate or adjust the others for process variation reduction. An 

error equivalence adjustment algorithm is designed to compensate both time invariant 

and dynamic errors. By monitoring outputs from the manufacturing process as well as 

adjustment algorithm, SPC could enhance the robustness of the controlled process. 

In this dissertation, the studies and analyses are based on a machining process. 

However, error equivalence methodology for process control is generic and can be easily 

extended to other discrete manufacturing processes. 
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6.2 Future Work 

This study aims to establish error equivalence theory and obtain insights into this 

fundamental phenomenon for improved process variation control. In addition to the 

results obtained in the modeling, diagnosis and error compensation, we can further 

expand the impact of error equivalence on the life cycle of product design and 

manufacturing. The error equivalence can facilitate tolerance synthesis and optimal 

tolerance allocation in a complex manufacturing process. For example, process tolerance 

can be allocated only to the total amount of equivalent error at the initial design stage. 

This would lead to reducing the dimension of design space. Then the tolerance would be 

further distributed for individual error sources at late stages of process design when more 

process information becomes available.  

Furthermore, since error equivalence phenomenon widely exists in different types 

of manufacturing processes, it could be expected to develop error equivalence based 

quality control strategy for certain advanced manufacturing processes such as 

micromachining.  
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Appendix A: Infinitesimal Analysis of Workpiece Deviation Due to Fixture Errors 

If there are small deviations on these 6 locators as (f1z  f2z  f3z  f4y  f5y  f6x)T, the 

change of orientation and position of rigid workpiece in the 3-D space can be analyzed by 

(Cai, et al., 1997).  

1 Δfδ −=q -J ΦE f ,                                                     (A.1) 

where for prismatic workpiece, Jacobian Matrix J is 

J =

i

k

-vIx -vIy -vIz -2 I- f1 z vIy + f1 y vIz M -2 H f1 z vIx - f1 x vIzL -2 I- f1 y vIx + f1 x vIy M
-vIx -vIy -vIz -2 I- f2 z vIy + f2 y vIz M -2 H f2 z vIx - f2 x vIzL -2 I- f2 y vIx + f2 x vIy M
-vIx -vIy -vIz -2 I- f3 z vIy + f3 y vIz M -2 H f3 z vIx - f3 x vIzL -2 I- f3 y vIx + f3 x vIy M

-vIIx -vIIy -vIIz -2 I- f4 z vIIy + f4 y vIIz M -2 H f4 z vIIx - f4 x vIIzL -2 I- f4 y vIIx + f4 x vIIy M
-vIIx -vIIy -vIIz -2 I- f5 z vIIy + f5 y vIIz M -2 H f5 z vIIx - f5 x vIIzL -2 I- f5 y vIIx + f5 x vIIy M
-vIIIx -vIIIy -vIIIz -2 I- f6 z vIIIy + f6 y vIIIz M -2 H f6 z vIIIx - f6 x vIIIzL -2 I- f6 y vIIIx + f6 x vIIIy M

y

{  

where vj=(vjx  vjy  vjz)T is the orientation vector of datum surface j and the index k is 

dropped in the equations in Appendix A. The Jacobian matrix J is definitely full rank 

because the workpiece is deterministically located. The inverse of Jacobian therefore 

exists. Matrix Φ is 

f=

i

k

jjjjjjjjjjjjjjjjjjjjjjj

vIx vIy vIz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 vIx vIy vIz 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 vIx vIy vIz 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 vIIx vIIy vIIz 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 vIIx vIIy vIIz 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 vIIIx vIIIy vIIIz

y

{

zzzzzzzzzzzzzzzzzzzzzzz
 

When it is clear in the text, index k is dropped in the above equation. E is an 18×

6 matrix, that is, 
1

1

1

2

2

3 18 6×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

E 0 0 0 0 0
0 E 0 0 0 0
0 0 E 0 0 0
0 0 0 E 0 0
0 0 0 0 E 0
0 0 0 0 0 E

, where E1=(0  0  1)T, E2=(0  1 0)T, and E3=(1  0  

0)T. 

 

(A.2) 

(A.3) . 

, 
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Appendix B: Proof for Proposition in Chapter 2 

Proof.  If the variables u1, u2, ..., um can be grouped to Eq. (2.25), we can expand Eqs. 

(2.24) and (2.25) and make them equal. Then we get kjpi=gij. Substituting it into Γ yields 

1 1 2 1 1

1 2 2 2 2

1 2

...

...
=

...
...

m

m

n n m n

k p k p k p
k p k p k p

k p k p k p

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Γ  whose rank is not larger than 1. On the other hand, if 

rank(H) is less than 1, there exists at most one row that is linearly independent. The 

conclusion is obvious. 
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Appendix C: Proof for Corollary in Chapter 2 

Proof. This can be proved by substituting Eq. (2.4) into the expression 

( ) ( )-1 -1 -1 1 01 1
T TT F F F F T

j P d f M m M P j
−X = H H H H H H H X  and conducting a lengthy 

computation. It can be found that equalities among the coefficient matrices are 

determined by the symmetry of matrix -1 -1 1 1F F
d f M m M

− −H H H H H . Since Hd, Hf, and Hm are 

skew-symmetric, -1 -1 1 1F F
d f M m M

− −H H H H H  is also skew-symmetric if FHM=I8 × 8. Non-

identity matrix FHM can affect the symmetry of -1 -1 1 1F F
d f M m M

− −H H H H H ,  which yields 

different coefficient matrices for Δd, Δf, and Δm. Therefore, the MCS and the FCS must 

coincide with each other for the proposed grouping method.  
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Appendix D: Determine Difference Order for D(q) 

Table A.1 First Order Difference 

 Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 

Mean Segment 1 0.046 0.257 0.111 0.107 0.089 -0.003 
Segment 2 0.042 0.078 0.072 0.004 0.053 0.018 

Variance Segment 1 0.007 0.126 0.080 0.035 0.045 0.007 
Segment 2 0.007 0.137 0.056 0.030 0.038 0.006 

Table A.1 First Order Difference (Continued) 
 Sensor 7 Sensor 8 Sensor 9 Sensor 10 Sensor 11 Thermal Error 

Mean Segment 1 0.194 0.059 0.030 0.039 0.000 0.481 
Segment 2 0.049 0.025 0.027 0.023 0.019 0.378 

Variance Segment 1 0.140 0.001 0.003 0.009 0.005 9.053 
Segment 2 0.106 0.001 0.003 0.015 0.004 9.191 

Table A.2 Second Order Difference 
 Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 

Mean   Segment 1 -0.0041 -0.0093 0.0003 -0.0079 -0.0025 0.0069 
Segment 2 -0.0003 -0.0003 -0.0054 0.0042 -0.008 -0.0013 

Variance Segment 1 0.0019 0.04 0.0764 0.043 0.0306 0.005 
Segment 2 0.0031 0.0353 0.0425 0.0331 0.0161 0.0051 

Table A.2 Second Order Difference (Continued) 
 Sensor 7 Sensor 8 Sensor 9 Sensor 10 Sensor 11 Thermal Error 

Mean Segment 1 -0.0317 0.0002 0.0024 0.0019 0.0066 -0.1921 
Segment 2 0.0107 -0.0008 -0.0007 -0.0018 -0.001 0.0716 

Variance 
Segment 1 0.1275 0.0006 0.0003 0.0056 0.0018 7.6983 
Segment 2 0.0763 0.001 0.0004 0.0045 0.0018 5.9466 
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Appendix E: Screened Variables 

Table A.3 Screened Variables With Autoregressive Terms 
No. Predictor B VIP  No. Predictor B VIP 
1 (1-q-1)s1

(t-4) -0.01305 0.86065  16 (1-q-1)s8
(t-1) -0.09953 1.16198

2 (1-q-1)s4
(t-4) -0.03241 0.81609  17 (1-q-1)s10

(t-1) 0.02845 0.92829
3 (1-q-1)s5

(t-4) -0.00634 0.83828  18 (1-q-1)s1
(t) 0.08247 1.59173

4 (1-q-1)s8
(t-4) 0.09179 0.86482  19 (1-q-1)s2

(t) -0.02080 0.83598
5 (1-q-1)s10

(t-4) -0.02364 0.80570  20 (1-q-1)s3
(t) -0.06807 2.47004

6 (1-q-1)s3
(t-3) -0.34848 0.80145  21 (1-q-1)s4

(t) 0.05154 2.25059
7 (1-q-1)s3

(t-2) 0.07769 0.95171  22 (1-q-1)s5
(t) -0.13403 1.91569

8 (1-q-1)s4
(t-2) -0.27098 0.90617  23 (1-q-1)s6

(t) -0.10494 1.22256
9 (1-q-1)s7

(t-2) 0.56576 1.18210  24 (1-q-1)s7
(t) 0.74162 2.85025

10 (1-q-1)s1
(t-1) -0.07559 0.87789  25 (1-q-1)s8

(t) -0.09977 1.86957
11 (1-q-1)s3

(t-1) -0.37920 1.63392  26 (1-q-1)s10
(t) 0.05774 1.22009

12 (1-q-1)s4
(t-1) -0.21441 1.51635  27 (1-q-1)s11

(t) -0.05022 1.06204
13 (1-q-1)s5

(t-1) -0.04998 1.05582  28 (1-q-1)δ(t-2) -0.20495 1.07594
14 (1-q-1)s6

(t-1) -0.49069 0.93271  29 (1-q-1)δ(t-1) -0.66046 1.80827
15 (1-q-1)s7

(t-1) 0.38506 1.79123  
 

Table A.4 Screened Variables Without Autoregressive Terms 
No. Predictor B VIP  No. Predictor B VIP 
1 (1-q-1)s1

(t-4) 0.07546 0.87825  13 (1-q-1)s8
(t-1) 0.01998 1.16039

2 (1-q-1)s5
(t-4) -0.14213 0.84481  14 (1-q-1)s10

(t-1) -0.06269 0.91400
3 (1-q-1)s8

(t-4) 0.06449 0.86229  15 (1-q-1)s1
(t) 0.05278 1.61400

4 (1-q-1)s3
(t-2) 0.13863 0.94842  16 (1-q-1)s2

(t) 0.07197 0.83951
5 (1-q-1)s4

(t-2) -0.20317 0.88582  17 (1-q-1)s3
(t) -0.13796 2.45840

6 (1-q-1)s7
(t-2) 0.37119 1.21801  18 (1-q-1)s4

(t) -0.02998 2.24474
7 (1-q-1)s1

(t-1) -0.09405 0.85471  19 (1-q-1)s5
(t) -0.04362 1.94720

8 (1-q-1)s3
(t-1) -0.28725 1.64462  20 (1-q-1)s6

(t) -0.24511 1.22009
9 (1-q-1)s4

(t-1) -0.22753 1.54242  21 (1-q-1)s7
(t) 0.75227 2.84803

10 (1-q-1)s5
(t-1) 0.00147 1.06443  22 (1-q-1)s8

(t) -0.13120 1.88072
11 (1-q-1)s6

(t-1) -0.59538 0.92221  23 (1-q-1)s10
(t) 0.24731 1.23607

12 (1-q-1)s7
(t-1) -0.03143 1.80960  24 (1-q-1)s11

(t) -0.03777 1.06831
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Appendix F: Results of Partial Least Square Estimation 

Table A.5 Percentage of Variance Explained by Latent Variables 
Number of 

Latent Variables 
Model Effects (%) Dependent Variables (%) 

Current Total Current Total 
1 15.5917 15.5917 76.1821 76.1821
2 20.1072 35.6989 7.7077 83.8898
3 9.3684 45.0672 6.9591 90.8489
4 12.616 57.6833 1.4366 92.2855
5 13.0862 70.7695 1.3161 93.6016
6 7.6245 78.394 0.8509 94.4525
7 2.5189 80.913 1.3834 95.836
8 5.0934 86.0064 0.2656 96.1016
9 0.9476 86.954 0.595 96.6966
10 0.9948 87.9488 0.395 97.0916

 

Table A.6 Regression Coefficient B 
No. Predictor B  No. Predictor B 

1 (1-q-1)s1
(t-4) -0.00295  13 (1-q-1)s8

(t-1) -0.03124

2 (1-q-1)s5
(t-4) -0.07369  14 (1-q-1)s10

(t-1) 0.05272

3 (1-q-1)s8
(t-4) 0.04627  15 (1-q-1)s1

(t) 0.09544

4 (1-q-1)s3
(t-2) -0.02239  16 (1-q-1)s2

(t) 0.03551

5 (1-q-1)s4
(t-2) -0.14135  17 (1-q-1)s3

(t) -0.25085

6 (1-q-1)s7
(t-2) 0.19833  18 (1-q-1)s4

(t) -0.07654

7 (1-q-1)s1
(t-1) -0.06708  19 (1-q-1)s5

(t) -0.14277

8 (1-q-1)s3
(t-1) -0.00332  20 (1-q-1)s6

(t) -0.03152

9 (1-q-1)s4
(t-1) -0.13779  21 (1-q-1)s7

(t) 0.63287

10 (1-q-1)s5
(t-1) 0.00365  22 (1-q-1)s8

(t) -0.15118

11 (1-q-1)s6
(t-1) 0.05853  23 (1-q-1)s10

(t) -0.02636

12 (1-q-1)s7
(t-1) 0.13353  24 (1-q-1)s11

(t) -0.00588
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Appendix F: Results of Partial Least Square Estimation (Continued) 
 

Table A.7 Matrix W(PTW)-1 
0.0981 0.1184 -0.2937 -0.0671 0.1614 0.0115 -0.1211 -0.1543 -0.2777 
0.0853 0.1030 -0.3320 -0.1636 -0.0416 -0.2867 -0.2415 0.0031 -0.1945 
0.0915 0.1248 -0.3311 -0.1683 0.0010 -0.1158 0.1513 0.4230 0.1306 
-0.0976 0.2586 -0.1109 -0.2005 -0.1183 0.1166 -0.0912 -0.0588 0.2703 
0.0797 -0.2724 -0.1579 -0.0732 -0.2737 -0.7027 0.0143 0.1231 0.1023 
0.1446 -0.1463 0.0200 0.4585 0.4373 0.2628 0.3876 0.0295 -0.0456 
-0.0982 0.2468 -0.1376 -0.0260 -0.0408 -0.0275 -0.0757 -0.3548 -0.7202 
-0.2310 0.1041 0.1130 0.2678 -0.0693 -0.0939 0.1550 -0.0113 -0.2258 
0.2093 -0.1019 -0.3140 -0.4380 -0.1832 -0.2984 -0.2134 -0.1396 0.1070 
-0.1242 0.2688 -0.0965 -0.1842 -0.1653 -0.0548 0.0829 0.2448 0.3003 
-0.0906 0.1443 0.3645 0.0643 0.1818 -0.0501 -0.0926 0.1017 -0.2684 
0.2656 0.0230 -0.1141 0.1265 0.4077 0.4207 -0.0419 -0.3707 -0.1089 
-0.1548 0.2160 0.0510 0.1519 -0.1224 -0.2794 -0.0759 -0.1968 0.1371 
-0.0765 0.2734 0.3562 0.2578 0.2401 -0.2263 -0.4808 -0.1649 -0.0098 
-0.2389 0.0403 -0.1355 0.1708 0.3586 0.5769 0.3515 0.1920 0.0056 
-0.1083 0.0747 -0.1138 -0.0946 0.0687 -0.2293 0.3266 0.3766 0.5756 
-0.3585 -0.3941 -0.3279 0.0025 0.0572 0.0339 -0.1391 -0.1223 -0.0245 
0.3242 0.3285 0.0280 -0.2948 -0.5396 -0.7230 -0.1123 -0.5779 -0.4749 
-0.2946 -0.0201 -0.1390 -0.0745 -0.2116 -0.2126 0.1252 0.0170 0.1537 
-0.1731 -0.1173 0.0282 -0.2887 0.1699 0.2162 0.4279 0.0117 0.0748 
0.3942 0.5384 0.4333 0.6301 0.6588 0.7654 0.4969 0.3907 0.4897 
-0.2819 -0.1268 -0.1118 0.1892 0.1004 -0.0881 -0.1786 -0.3599 -0.0845 
-0.1728 0.0233 0.1074 -0.0166 0.2916 -0.0056 -0.0537 -0.1426 -0.0017 
-0.1526 -0.0162 0.1654 -0.1552 0.2400 0.1773 0.2017 -0.0706 -0.2082 

 
Table A.8 Scores for Points 10, 33, and 56 

t10
T 1.4300 4.4685 -0.5961 0.6465 -0.1329 -0.7059 1.2548 -0.1687 -0.3506

t33
T 1.3451 4.3501 0.7506 0.1393 -0.6887 -0.9764 0.0422 0.1284 -1.2530

t56
T -3.3721 -5.3679 -1.2482 -1.0136 1.3881 2.7800 1.5272 -0.9628 0.1017
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