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Abstract

This dissertation focuses on extending solution methods in the area of stochastic

optimization. Attention is focused to three specific problems in the field. First, a so-

lution method for mixed integer programs subject to chance constraints is discussed.

This class of problems serves as an effective modeling framework for a wide variety

of applied problems. Unfortunately, chance constrained mixed integer programs tend

to be very challenging to solve. Thus, the aim of this work is to address some of

these challenges by exploiting the structure of the deterministic reformulation for the

problem. Second, a stochastic program for integrating renewable energy sources into

traditional energy systems is developed. As the global push for higher utilization of

such green resources increases, such models will prove invaluable to energy system

designers. Finally, a process for transforming clinical medical data into a model to

assist decision making during the treatment planning phase for palliative chemother-

apy is outlined. This work will likely provide decision support tools for oncologists.

Moreover, given the new requirements for the usage electronic medical records, such

techniques will have applicability to other treatment planning applications in the

future.

vi



1 Introduction

Humans are decision makers. The number and complexity of these decisions is

perhaps one thing that sets us apart from the other animals of the world. Many of the

decisions we make are simple to answer: “Do I want cream in my coffee today?” Others

are much more complicated: “Given the current economic situation in the United

States and Europe, how should I invest my assets so that I can retire by the age of 60?”

The latter captures two elements that are the focus of this dissertation: stochasticity

and extended planning. Making decision subject to uncertainty often falls under

the purview of stochastic programming, which provides the framework for solving

optimization problems subject to randomness. Although this is a widely applicable

methodology, there is no archetypical example due to the large variety of problems

to which this framework applies [72]. There are however, certain classes of problems

that commonly are solved with stochastic optimization techniques such as two-stage

models and sequential decision (multistage) models. These models are discussed as an

introduction to modeling techniques and solution methods in stochastic programming.

1.1 Two-Stage Stochastic Programs

In two-stage stochastic programs decisions in the problem can be classified into two

categories. First, those decisions that must be made prior to any random information

being realized, and second, the decisions that are made after random information is

realized. Generally, the decisions from the first category will impact the decisions

that can be made from the second category. With this in mind, if ξ is a random

variable, then the general form for two-stage stochastic (linear) program depending
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on ξ is formulated as [13]:

min cx+ E {F (x, ξ)} (1.1)

subject to Ax ≥ b (1.2)

x ∈ Rn
+ (1.3)

where F (x, ξ) is given by

min fy (1.4)

subject to Hξy ≥ hξ −Gξx (1.5)

y ∈ Rm
+ . (1.6)

In the formulation of F (x, ξ), hξ is a random vector depending on ξ and Hξ and Gξ

are random matrices depending on ξ. Note that there is no restriction that x or y

need to be continuous. Each realization of ξ is referred to as a scenario. The problem

described by (1.1)-(1.3) is referred to as the first-stage problem and x is the first-stage

decision vector, while (1.4)-(1.6) is called the second-stage problem and y is called

the second-stage decision vector or the recourse decision vector. In problems such

as these, the first-stage decisions, x in this case, must be determined prior to the

realization of the random variable ξ while the second-stage decisions, y in this case,

are made given both a realization of ξ and also a fixed value of the first-stage decision.

If ξ has a finite distribution, i.e., P{ξ = k} = πk for k = 1, . . . , K with
∑K

k=1 πk = 1,

2



then (1.1)-(1.3) can be reformulated as a large-scale mixed integer program [72]:

min cx+
K∑
k=1

πkfyk (1.7)

subject to Ax ≥ b (1.8)

Gkx+Hkyk ≥ hk (1.9)

yk ∈ Rm
+ (1.10)

x ∈ Rn
+. (1.11)

Note that notation has switched from ξ to k since the distribution is completely

characterized by k. This formulation ensures that x is chosen to minimize the original

objective while maintaining feasibility of recourse decisions with the trade off that

the number of variables and constraints each grow like O(K).

Two-stage stochastic problems are in general NP-hard [13]. Coupling this with

the fact that their size rapidly becomes large as the number of scenarios increases,

it is not surprising that techniques have been developed in an attempt to solve two-

stage problems more effectively. Perhaps the most famous is Benders’ decomposition

[11]. This solution method capitalizes on features common to all stochastic two-

stage problems such as decomposability of the second-stage problem over scenarios

once first-stage decisions are fixed. Benders’ decomposition is discussed in detail in

Chapter 3.

1.2 Multistage Stochastic Programs (MSSPs)

Multistage stochastic programs could be considered an extension to the two-stage

programs discussed in the previous section. In this case, there are a series of decisions

to be made sequentially with only past information available; the realization of future

random variables impacting the system is not known during the current decision

epoch. Some notation is now given to describe MSSPs.
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Let {t | t = 1, . . . , T} be the set of decision epochs, Ξt be the set of instances of

a random variable, ξt, where the subscript t denotes the possible dependence on a

particular decision epoch, Xt(xt−1, ξt) the feasible space of decision vectors, xt, de-

pending on the decisions from the previous decision epoch and the current realization

of the random vector ξt, and ft : Xt(−,Ξt) × Ξt → R the cost function in epoch t.

The problem can be visualized in Figure 1.

decision(x1) -

realization(ξ2)

?

decision(x2) - · · ·

realization(ξT−1)

?

decision(xT−1)- -

realization(ξT )

?

decision(xT )

Figure 1: Depiction of a Multistage Decision Process

With this notation, the MSSP can be modeled as the following problem

min
x1∈X1(ξ1)

f1(x1, ξ1)+E

{
min

x2∈X2(x1,ξ̂2)
f2(x2, ξ̂2)+E

{
· · ·+E

{
min

xT∈XT (xT−1,ξ̂T )
fT (xT , ξ̂T )

}}}

where ξ̂t = (ξ1, . . . , ξt). It is noted here that an assumption is made in using minimum

rather than infimum in the above formulation. Specifically, the minimum for each

problem is obtained over the feasible space. This is not an overly restrictive assump-

tion, for instance requiring that Xt be compact and ft be continuous is sufficient.

Although the MSSP can look daunting to solve for even one-dimensional decisions,

it does not need to be solved as one single problem; it can be solved through the use

of Bellman’s Equation, which serves as a commonly employed solution method for

such dynamic programs. The strategy, developed by Bellman [9] in the 1950’s, allows

complex problems to be decomposed into a sequence of smaller problems. Let

VT (xT−1, ξT ) = min
xT∈XT (xT−1,ξT )

fT (xT , ξT )
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then for 1 ≤ t ≤ T − 1 write

Vt(xt−1, ξt) = min
xt∈Xt(xt−1,ξt)

{
ft(xt, ξt) + E

{
Vt+1(xt+1, ξt+1)

∣∣ξt−1

}}
.

Bellman’s Principal of Optimality ensures that solving these recursive equations yields

the optimal solution to a multistage stochastic problem. One case of the MSSP

of particular interest is when (ξ1, . . . , ξT ) is Markovian. For discrete distributions

Markovian means

P {ξt = j | ξt−1 = i, ξt−2 = it−2, . . . , ξ1 = i1} = Pij

for all i1, . . . , it−2, i, j, and t [64]. In this case, the problem described is a Markov

decision process [62]. The additional structure imposed on the probability distribution

of ξ allows for efficient solution algorithms such as policy and value iteration [58, 62].

Policy iteration will be presented in detail in Chapter 4.

1.3 Additional Comments Regarding Stochastic Optimization

Two-stage programs and multistage programs provide seemingly different frame-

works for modeling stochastic optimization problems. The reality is that these mod-

eling techniques in essence are the same; just presented in differing formats for ease of

solution. A problem modeled as a two-stage program can notationally be transformed

into a multistage program and vice a versa. A slightly different language is used for

each, but those fortunate enough to work with both modeling techniques can often

develop a sort of Rosetta Stone for the terminology associated with them. Although

this digression has no direct impact on the research presented in this dissertation,

it is certainly worth mentioning. By recognizing the threads that unite the area of

stochastic optimization, academicians and practitioners open many more avenues for

attacking problems they face. Returning to the task at hand, the next section ex-

5



plains the impact of the work to be presented on the field and provides an outline of

the remainder of the document.

1.4 Research Contributions

This dissertation will contribute to the body of knowledge in stochastic program-

ming specifically pertaining to two-stage models and multistage models. Although

the contributions will be discussed in detail in the next three chapters, they are first

mentioned here. For two-stage models, challenges relating to solution methods for

chance constrained mixed integer programs are addressed followed by a new appli-

cation of the two-stage model to energy system design. The latter problem resulted

in the development and implementation of an improved Benders’ decomposition al-

gorithm. The research relating to multistage models is more applied. It addresses

deficiencies in modeling chemotherapy treatment planning. This work outlines the

methodology for applying the stochastic multistage framework to this yet unexplored

area. Moreover, it promises to provide oncologists with a more robust decision making

tool that could impact the quality of care for cancer patients.

The remainder of this document is organized as follows. Chapter 2 discusses the

extension of the classic two-stage stochastic model to include probabilistic constraints

(also known as chance constraints) as well as a solution method for such problems.

Chapter 3 presents a new stochastic mixed integer programming model for the design

of an energy system consisting of traditional and renewable energies. Additionally, an

improved implementation of Benders’ decomposition is described as a solution method

for this challenging problem. Chapter 4 outlines the process of modeling palliative

chemotherapy as a Markov decision process. This includes the determination of the

model’s state space and reward function. Finally, an overall summary of work and

future research directions is given in Chapter 5.
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2 A Primal Heuristic for Chance Constrained Mixed Integer Programs

This chapter presents a solution method for mixed integer programs (MIPs) sub-

ject to probabilistic constraints. First, some background regarding probabilistic pro-

gramming is presented. This is followed by a description of a novel heuristic approach

developed for solving chance constrained MIPs. The chapter closes with some final

remarks and future research directions.

2.1 Introduction to Chance Constrained Mixed Integer Programs

Chance constrained mathematical programs (CCMPs) are a class of probabilistic

programs that incorporate uncertainty in the feasible space of the problem. CCMPs

can be formulated as

min {f(x) | P{x ∈ P (ξ)} ≥ 1− ε, x ∈ X ⊆ Rn}

where ξ is a random vector, P (ξ) ⊆ Rn, and ε is a confidence parameter chosen prior

to solving to the problem and is typically small, e.g., ε = 0.05. Although in general

there are no restrictions on f or X, this work will focus on problems where these are

linear. Specifically, attention is given to problems of the form

min {cx+ fy | P{Tξx+Gξy ≥ hξ} ≥ 1− ε, x ∈ X} , (2.1)

where x is a vector of integer variables and y is a vector of continuous variables. Such

problems are referred to as chance constrained mixed integer programs (CCMIPs).

CCMIPs are a versatile modeling framework, being utilized to model problems

relating to supply chain management [40], production planning [46], surface water

quality management [76], air quality management [6], and chemical processes [28].

7



2.2 Previous Research in Probabilistic Programming

Chance constrained mathematical programs were introduced by Charnes et. al

in the 1950’s and were applied to individual constraints [17]. Miller and Wagner ex-

tended this idea to include joint probabilistic constraints with independent right hand

side distributions [45]. Probabilistic programming with joint probabilistic constraints

and dependent right hand side distributions was pioneered by Prékopa beginning in

1970 [59]. Although this class of problems has been well studied, see for example [61],

there are two major challenges in solving problems with probabilistic constraints.

First, calculating P{Tξx+Gξy ≥ hξ} ≥ 1−ε can be computationally burdensome, for

instance it may require multidimensional integration. The second major challenge is

that the feasible region defined by the probabilistic constraint is generally not convex.

One notable exception to this is when x and y are continuous, Tξ and Gξ are deter-

ministic, and the distribution for hξ is log-concave, in which case the feasible region

is convex [59–61]. A non-convex feasible space is often the result of ξ having discrete

support. For this case, various methods have been developed to solve chance con-

strained mathematical programs given certain assumptions. Assuming deterministic

coefficient matrix and a linear program without the chance constraint, a branch and

cut strategy was developed using strengthened star inequalities [41, 42]. The method-

ology applies to problems that are MIPs without chance constraints, though it proves

far less effective. Tanner and Ntaimo also implemented a branch and cut strategy,

however their technique is based on combinatorial type Benders cuts generated from

irreducibly infeasible subsystems. Their work allowed for a random coefficient matrix

[77].

In this work, an algorithm is developed for solving CCMIPs with the assumption

that ξ has discrete finite support, i.e., P{ξ = k} = πk for k = 1, . . . , K. This

assumption allows (2.1) to be re-formulated as a deterministic MIP using “big-M”

constraints, provided Fξ = {x | Gξx + Hξyξ ≥ hξ} is “nice.” “Nice” here can mean

8



that Fξ is a compact set, though this stringent condition is not generally required.

However, given this provision, the problem can be formulated as

min cx+ E {fyk} (2.2)

subject to Gkx+Hkyk +Mkzk ≥ hk k = 1, . . . , K (2.3)

Ax ≥ b (2.4)

K∑
k=1

πkzk ≤ ε (2.5)

x ∈ Rn
+ (2.6)

xi ∈ Z+ i ∈ N (2.7)

zk ∈ {0, 1} k = 1, . . . , K (2.8)

yk ∈ Rm
+ k = 1, . . . , K (2.9)

where Mk is large enough that if zk = 1 then constraint k of the form (2.3) is satisfied

for all (x, y) ∈
{

(x, y) | Ax ≥ b, x ∈ Rn
+, xi ∈ Z+ for i ∈ N, y ∈ R+

n

}
[65]. Constraint

(2.5) ensures that any feasible solution to (2.2)-(2.9) fulfills the requirement expressed

by P{Gkx+Hkyk ≥ hk} ≥ 1− ε.

Even given this MIP formulation of a CCMIP, it is clear that in general this

can be a difficult problem to solve due in part to the presence of the the big-M

constraints; see [42] for a proof that the problem is in general NP-hard. In the

remainder of this chapter, a primal heuristic, dubbed the Probe, Explore, Rank,

and Cut Heuristic (PERC Heuristic), for solving the deterministic formulation of a

CCMIP is described. This is a significant step toward developing solution methods

for MIPs subject to chance constraints, since most existing work is aimed at linear

programs subject to chance constraints. The Heuristic is presented in detail in Section

2.3 and computational results are provided in Section 2.4.

9



2.3 Probe, Explore, Rank, and Cut Heuristic

This section begins with an assumption and some notation. Next, a general outline

for the PERC Heuristic is given followed by the pseudocode for the Heuristic. For

this Heuristic, it is assumed that πk = 1/K for all k. If this is not the case, then it

can be coerced with techniques such as increasing the number scenarios through over

sampling or the use of sample average approximation [54]. Next, let P = (P1, . . . , PK)

and set Pk = δ, 0 < δ ≤ 1, for all k. Let M(P ) be the problem described by (2.2)-(2.9)

with Mk replaced with PkMk. That is,

min cx+ Ek {fyk} (M(P ))

subject to Gkx+Hkyk + PkMkzk ≥ hk k = 1, . . . , n

Ax ≥ b

K∑
k=1

zk ≤ bKεc

x ∈ Rn
+

xi ∈ Z+ for i ∈ N

yk ∈ Rm
+

zk ∈ {0, 1}.

Notice that a solution for M(P ) is feasible for (2.2)-(2.9), so M(P ) is a restriction

of (2.2)-(2.9). Next, let M(P,m) be the problem M(P ) with the constraint that the

objective function should be at least as good as m. Notice that M(P,∞) = M(P ).

Let V ∗(M(P,m)) denote the optimal value of the problem M(P,m). Finally, let Mz

be the problem (2.2)-(2.9) subject to z = z, where z is a vector of 1’s and 0’s.

The general idea behind the PERC Heuristic is to start with a restricted prob-

lem that can be efficiently solved then intelligently expand the feasible space. The

algorithm starts by solving the restricted problem M(P,m). The optimal solution for

10



this problem is then used to expand the search space by increasing the value of some

Pk’s. This newly expanded region is explored by solving Mz where z is the optimal

solution from M(P,m). Recall that there is an assumption that Mz can be solved ef-

ficiently, so there is little computational burden associated with solving this problem.

Once the optimal solution is found in this expanded region, a cardinality constraint

is added to remove the extreme points in this region. This process is depicted in

Figure 2 below. The large outer hexagon represents the feasible scenario space of

M(1) while the smaller inner hexagon represents M(P ). The black dots indicate the

region currently being explored and the grey squares are the scenarios with zk = 1.

Identify region to explore 
Explore this region in full 

feasible region 

Add a cutting plane to 
exclude this region from 

further exploration 

Identify new 
region to explore 

Explore this region in full 
feasible region 

Add a cutting plane to 
exclude this region from 

further exploration 

Figure 2: Visual Representation of PERC Heuristic

Table 1 presents the pseudocode for the PERC Heuristic. In the actual imple-

mentation, additional steps can be taken to improve performance. In this work, such

steps included the addition of precedence constraints and variable fixing. These are

presented in greater detail in Sections 2.3.1 and 2.4.1, respectively.
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Table 1: Probe, Explore, Rank, and Cut Heuristic for CCMIPs

Line Code Description
1 Set t = 0, v = m = +∞, Value = True

2 while Value
3 Optimize M(P,m)
4 if M(P,m) is infeasible
5 Set Value = False

6 else
7 Step 1
8 Let (xt, yt, zt) be the optimal solution to M(P,m)
9 Set m = min{m,V ∗(M(P,m))}
10 for k = 1, . . . , K
11 if ztk = 1 and Pk < 1 : Set Pk = 1
12 end for
13 Step 2
14 Optimize Mzt

15 Let (x̂t, ŷt, ẑt) be the optimal solution
16 if V ∗(Mzt) < v
17 Set v = V ∗(Mzt) and (x∗, y∗, z∗) = (x̂t, ŷt, ẑt)
18 Add the constraint

∑
j : Pj=1 zj ≤ bKεc − 1 to M(P,−)

19 end if
20 t=t+1
21 end while
22 At termination, (x∗, y∗, z∗) is the best solution found.

It is important to note that the problem Mzt solved in line 14 of Table 1 is a

two-stage MIP. There is an assumption that this problem can be solved efficiently

through the use of a commercial solver or an existing algorithm. Before moving on,

a proposition regarding the finite termination of this algorithm is presented.

Proposition 1. The PERC Heuristic terminates in at most K + 1 iterations.

Proof. Notice that after at most K iterations the constraint
∑

k zk ≤ bKεc − 1 will

be added to M(P,m). Since in the best optimal solution M(P,m) thus far has∑
k ẑk = bKεc, the best optimal solution is no longer feasible. Therefore, M(P,m)

will be infeasible in iteration K + 1 and the algorithm will terminate.
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2.3.1 Precedence Constraints

Precedence constraints are those of the form zj ≥ zi for some i and j. Such

constraints can be very useful to improve performance, the challenge is effectively

identifying them. The following theorem provides some insights for identifying such

constraints for this class of problems.

Theorem 2. Let Sk(x̂) denote the second-stage cost for scenario k given a feasible

x̂. If Sj(x̂) ≥ Si(x̂) for every feasible x̂, then zj ≥ zi.

This is a very strict condition to satisfy. However, if the inequality holds for some

set of feasible solutions, then it is reasonable to include the associated precedence

constraint in the PERC Heuristic. Given this, the process of generating precedence

constraints to be added to M(P,m) during the PERC Heuristic is now presented.

Let Ŝtk = (S1
k , S

2
k , . . . , S

t
k) where Stk represents the second stage costs of scenario k in

iteration t, then consider a pair Ŝtj and Ŝti such that Ŝtj ≥ Ŝti , where the inequality

holds for each component. This means across t iterations of the PERC Heuristic the

costs associated with scenario j are higher than those of scenario i. Therefore, it is

reasonable to assume that scenario j should be ignored (i.e., zj = 1) before scenario i.

Mathematically, this can be written as the following precedence constraint: zj ≥ zi,

which says if scenario i is ignored (zi = 1) then scenario j is ignored as well (zj = 1).

Thus, beginning with the second iteration these constraints are generated after solving

Mzt in line 14 of Table 1. In this work, the inequality Ŝtj ≥ Ŝti is checked for all pairs

(i, j) in the implementation of the PERC Heuristic. Ignoring for a moment these

additional inequalities, an example is presented to provide further insight to the

mechanics of the PERC Heuristic.

2.3.2 Example of PERC Heuristic

Consider a CCMIP with ten scenarios (K = 10) and ε = 0.2. In such a problem,

(2.5) implies at most two zk are non-zero. A hypothetical implementation of the
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algorithm is presented in Table 2. As mentioned in the previous section, this example

does not incorporate precedence constraints since the objective is to provide the reader

with an overview of the process by which the Heuristic works.

Table 2: Example Implementation of the PERC Heuristic

Line Explanation
1 Step 0
2 Let Pk = δ < 1 for all k and t = 1
3 Iteration 1
4 Step 1
5 Suppose that z1 = (z1

1 , z
1
2 , z

1
3 , . . . , z

1
10) = (1, 1, 0, . . . , 0)

6 Update P = (1, 1, δ, . . . , δ)
7 Step 2
8 Solve Mz1 (i.e., (2.2)-(2.9) subject to z = z1)
9 Add the constraint z1 + z2 ≤ 1 to M(P,m)
10 Iteration 2
11 Step 1
12 Suppose that z2 = (z2

1 , z
2
2 , z

2
3 , z

2
4 , . . . , z

1
10) = (1, 0, 1, 0 . . . , 0)

13 Update P = (1, 1, 1, δ, . . . , δ)
14 Step 2
15 Solve Mz2 (i.e., (2.2)-(2.9) subject to z = z2)
16 Add the constraint z1 + z2 + z3 ≤ 1 to M(P,m)

17
...

18 Iteration 10
19 Step 1
20 Suppose that z10 = (z10

1 , z
10
2 , z

10
3 , z

10
4 , . . . , z

10
10) = (0, 1, 0, . . . , 1)

21 Update P = (1, 1, 1, 1, . . . , 1)
22 Step 2
23 Solve Mz10 (i.e., (2.2)-(2.9) subject to z = z10)
24 Add the constraint z1 + z2 + z3 + · · ·+ z10 ≤ 1 to M(P,m)
25 Iteration 11
26 M(P,m) is now infeasible so the algorithm terminates.

Generally, it will not be required to explore all scenarios as outlined in the example

above, though such an exploration does ensure the finite termination of the algorithm

as pointed out in Proposition 1. With the mechanics of the PERC Heuristic presented,

the computational experiments are now explained along with additional methods

utilized for improving the performance of the Heuristic.
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2.4 Computational Experiments

2.4.1 Variable Fixing and Other Improvements

Variable fixing is conducted prior to the implementation of the algorithm; it can

be thought of as a preprocessing step. The purpose of variable fixing is to reduce the

search space of M(P,m) and thereby decrease computation time in each iteration.

Two distinct methods were employed to perform variable fixing. All attention was

focused on finding zk’s to fix at zero. The first method is the following: Solve (2.2)-

(2.9) with constraint (2.8) relaxed, referred to as the relaxed CCMIP. If zk = 0 in the

relaxed CCMIP, then the constraint zk = 0 is added to M(P,m) in the algorithm.

The second method is slightly more complicated, but can be thought of as is a

“greedy” tactic that provides an initial relaxed region to explore. After the initial

exploration of this region, some zk’s can be fixed at zero. The first step in the

process is to construct two sets, one based on the ranking of second stage costs and

the other based on the values of zk in the optimal solution of the relaxed CCMIP.

Let {i1, i2, . . . , iK} be the rank of the second stage costs in increasing order and

U1 = {i1, i2, . . . , ibKεc}. Also, let {j1, j2, . . . , jK} be such that zj1 ≥ zj2 ≥ · · · ≥ zjK

and U2 = {j1, j2, . . . , jbKεc}. Next, set U = U1 ∪ U2 and for j ∈ U let Pj = 1. Now,

in the first iteration when the problem M(P,∞) is solved if zk = 0 and k ∈ U then

zk is fixed at zero for the duration of the algorithm. This process provides a method

for greatly reducing the search space through variable fixing.

Additional techniques were utilized for improving the Heuristic performance. Since

a high quality solution will provide insights regarding which scenarios to allow to be

violated completely, the problem solved in line 5 of Table 1 does not need to be solved

to optimality. Since Gurobi [53], a professional solver, was used to solve this problem,

we were able to adjust the default settings to decrease solution time. Specifically, the

relative optimality gap was relaxed from 10−4 to 10−3. Another tactic employed was

restricting the number of consecutive iterations allowed without an improvement to
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the best solution found. That is, if v does not decrease for r iterations, where r is

a (termination) threshold selected prior to implementation, then the heuristic ter-

minates. With these improvements, the Heuristic was tested on various randomly

generated two-stage stochastic mixed integer programs of the form (2.2)-(2.9). All

first stage variables are assumed to be integer valued. The process of generating the

test sets for the numerical experiments is now described.

2.4.2 Data Generation

The models tested all had the following format:

min cx+ E {fyk} (2.10)

subject to Gx−H1
kyk +M1

kzk ≥ 0 k = 1, . . . , K (2.11)

H2
kyk +M2

kzk ≥ hk k = 1, . . . , K (2.12)

Ax ≥ b (2.13)

K∑
k=1

zk ≤ bKεc (2.14)

x ∈ Zn+, zk ∈ {0, 1}, yk ∈ Rm
+ . (2.15)

The entries of c, f,G,H1
k , H

2
k , and hk were all nonnegative integers, while the entires

of A and b were general integer values. In total, two classes of datasets with various

numbers of scenarios were generated to test the performance of the PERC Heuris-

tic. Before providing the properties of the datasets, some notation is given. Let Nc

the number of continuous variables, Ni be the number of integer valued variables,

Ms the total number of second-stage constraints, and Mf the number of first-stage

constraints, then the tuple (Mf ,Ms, Ni, Nc) describes the general characteristics of a

class. The properties of the classes are provided in Table 3, where (a, b) indicates a

uniform distribution for integers between a and b inclusive. Five instances of each

class were generated with 250, 500, and 750 scenarios. Using this data, the PERC
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Heuristic was tested against the commercial solver Gurobi, with solution value and

time being of primary interest.

Table 3: Properties of the Datasets for Computational Experiments

Rows/Distribution Rows/Distribution
Characteristics G H1

k H2
k hk A b c f

(5,15,10,20) 6 6 9 9 5 5 10 20
(0,10) (0,3) (0,3) (10,100) (-25,25) (-50,50) (100,300) (5,10)

(10,25,15,35) 10 10 15 15 10 10 15 35
(0,10) (0,3) (0,3) (10,100) (-25,25) (-50,50) (100,300) (5,10)

2.4.3 Computational Results

Tables 4 and 5 provide the results for the numerical experiments conducted with

ε = 0.05 and ε = 0.1, respectively. A time limit of one hour was set for all trials.

Within the tables, “NA” indicates that the instance was proven infeasible. The

results in both tables utilized the improvements discussed Section 2.4.1. Also, Pk was

initialized with the value 1/25 for all k.
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Table 4: Computational Comparison of PERC Heuristic to Gurobi: ε = 0.05

Heuristic Solver
Scenarios Characteristics ID Value Time UB % Gap Time

1 3046.0 26.3 3045.9 0.0 47.0
2 2938.8 39.0 2938.8 0.0 64.8

250 5,15,10,20 3 2847.4 15.0 2847.4 0.0 24.0
4 2887.7 22.2 2887.7 0.0 49.4
5 3598.7 21.1 3598.0 0.0 33.9
1 3879.0 107.5 3877.9 0.0 1245.3
2 2832.5 71.3 2812.8 0.0 922.5

500 5,15,10,20 3 2440.4 56.8 2402.9 0.0 736.5
4 2750.0 68.8 2688.8 0.0 363.6
5 8739.3 6.4 8739.3 0.0 1.5
1 2261.0 136.3 2261.0 0.0 921.9
2 2891.5 74.3 2756.8 0.0 769.4

750 5,15,10,20 3 2644.6 130.7 2657.3 14.7 3600.1∗

4 1937.4 139.3 1891.2 0.0 888.7
5 NA 12.2 NA NA 14.4
1 3485.9 171.8 3485.5 0.0 1050.6
2 3740.0 128.5 3739.7 0.0 540.6

250 10, 25,15,35 3 3028.1 145.3 3028.1 0.0 360.3
4 3916.8 83.2 3916.0 0.0 3600.0∗

5 5724.5 67.5 5723.5 0.0 3600.3∗

1 3606.0 1028.9 3606.0 9.9 3600.0∗

2 5498.6 643.5 5498.4 0.0 3600.2∗

500 10, 25,15,35 3 2719.5 445.4 2774.1 3.0 3600.0∗

4 2549.2 672.5 2684.1 22.1 3600.0∗

5 8184.9 50.4 8184.8 0.0 59.6
1 NA 33.5 NA NA 33.5
2 9503.4 110.6 9503.0 0.0 141.3

750 10, 25,15,35 3 3438.4 1877.0 3631.3 31.5 3600.0∗

4 2623.2 1315.5 2717.8 22.1 3600.0∗

5 NA 61.5 NA NA 60.5

∗ indicates time limit met

With the exception of 6 instances out of 60, the PERC Heuristic terminates faster

than the commercial solver. For some small instances, the heuristic produces a so-

lution of lower quality than solver (e.g., 500 scenarios with ε = 0.05). Interestingly,

as the problem becomes harder for the commercial solver, the PERC Heuristic tends

produce better solutions in significantly less time. In particular, if the commercial

solver terminates due to the one hour time limit with a gap of at least 10%, then

the PERC Heuristic produces a better solution. Moreover, the time required is often

significantly less for these instances.
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Table 5: Computational Comparison of PERC Heuristic to Gurobi: ε = 0.1

Heuristic Solver
Scenarios Characteristics ID Value Time UB % Gap Time

1 2785.1 26.0 2783.8 0.0 86.1
2 2722.0 36.4 2717.5 0.0 140.4

250 5,15,10,20 3 2674.7 53.7 2674.7 0.0 152.2
4 2650.7 18.2 2650.7 0.0 81.0
5 3414.3 22.7 3412.7 0.0 228.9
1 3706.3 145.8 3726.3 8.1 3600.0∗

2 2648.2 105.5 2673.2 4.3 3600.0∗

500 5,15,10,20 3 2220.3 128.8 2205.1 0.0 1340.6
4 2668.3 50.8 2570.5 0.1 3600.1∗

5 8723.2 6.3 8723.2 0.0 1.5
1 2104.6 259.1 2204.8 10.5 3600.0∗

2 2605.3 292.2 2604.0 0.3 3600.1∗

750 5,15,10,20 3 2447.9 467.9 2516.1 24.3 3600.0∗

4 1816.5 270.4 1771.3 0.1 3600.0∗

5 NA 13.2 NA NA 12.1
1 3323.1 257.9 3322.6 0.0 2078.6
2 3500.4 138.0 3500.1 0.0 1685.2

250 10, 25,15,35 3 2966.7 119.3 2880.4 0.0 1328.9
4 3900.1 123.3 3898.0 0.1 3600.4∗

5 5707.8 85.2 5429.1 0.0 106.2
1 3482.6 1275.8 3618.0 27.4 3600.1∗

2 5141.3 678.9 5595.9 21.8 3600.5∗

500 10, 25,15,35 3 2702.5 661.2 2701.0 9.4 3600.0∗

4 2507.9 519.8 2592.7 28.7 3600.0∗

5 8170.3 60.9 8170.0 0.0 15.8
1 NA 2.8 NA NA 2.7
2 9487.5 92.8 9487.1 0.0 129.1

750 10, 25,15,35 3 3285.2 3031.1 3753.4 48.2 3600.0∗

4 2543.2 2858.7 2850.1 40.1 3600.0∗

5 NA 64.7 NA NA 64.8

∗ indicates time limit met

These results are quite promising. This algorithm was tested with problems having

no specific structure beyond being two-stage models. Given more insight to the nature

of the problem, addition techniques, such as variable fixing described in [70], could

be implemented within the algorithm (as opposed to only prior to the algorithm as

in this work). The implementation of such techniques would significantly improve

computational performance.

Another set of experiments was conducted to provide a more accurate comparison

of the performance of the algorithm to the commercial solver. After solving a test

instance with the PERC Heuristic, the instance was solved with the commercial

solver with a time limit equal to the time taken for the PERC Heuristic to terminate.

The results of these trials are given in Tables 6 and 7 with ε = 0.05 and ε = 0.1,

respectively.
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The column Relative Change in % Gap is computed in the following manner.

Given a lower bound on the optimal solution as determined in Tables 4 and 5, the

optimality gap is computed for the PERC Heuristic solution, GH , and the best feasible

solution found by solver, GS. The Relative Change in % Gap is then given by 1 −

GH/GS, with the convention that 0/0 = 1. Thus, a value close to 1 indicates the

PERC Heuristic found a much better solution than the commercial solver and a value

close to 0 indicates similar qualities produced.

Table 6: Comparison of PERC Heuristic to Gurobi with Time Limit: ε = 0.05

Heuristic Solver Relative Change
Scenarios Characteristics ID Value Value in % Gap Time

1 3046.0 3115.1 1.00 26.3
2 2938.8 2938.8 0.00 39.0

250 5,15,10,20 3 2847.4 2865.0 1.00 15.0
4 2887.7 2908.6 1.00 22.2
5 3598.7 3598.1 0.00 21.1
1 3879.0 4140.0 0.99 107.5
2 2832.5 3213.8 0.95 71.3

500 5,15,10,20 3 2440.4 2492.2 0.58 56.8
4 2750.0 2894.9 0.70 68.8
5 8739.3 8739.3 0.00 6.4
1 2261.0 2386.0 1.00 136.3
2 2891.5 3032.6 0.51 74.3

750 5,15,10,20 3 2644.6 4037.6 0.81 130.7
4 1937.4 1947.0 0.17 139.3
5 NA NA NA 12.2
1 3485.9 4238.9 1.00 171.8
2 3740.0 4088.4 1.00 128.5

250 10, 25,15,35 3 3028.1 3156.2 1.00 145.3
4 3916.8 4066.3 0.99 83.2
5 5724.5 5724.0 0.00 67.5
1 3606.0 3767.9 0.33 1028.9
2 5498.6 5865.6 1.00 643.5

500 10, 25,15,35 3 2719.5 2899.4 0.88 445.4
4 2549.2 2992.0 0.56 672.5
5 8184.9 8184.8 0.00 50.4
1 NA NA NA 33.5
2 9503.4 9506.4 0.74 110.6

750 10, 25,15,35 3 3438.4 4254.5 0.55 1877.0
4 2623.2 2876.6 0.39 1315.5
5 NA NA NA 61.5

From these trials, the computational improvement of the PERC Heuristic over the

commercial solver is more evident. First, the solution quality of the PERC Heuristic

is always at least as good as the commercial solver. Second, if the solver terminates

due to the time limit imposed from the PERC Heuristic, which is the case for all
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Table 7: Comparison of PERC Heuristic to Gurobi with Time Limit: ε = 0.1

Heuristic Solver Relative Change
Scenarios Characteristics ID Value Value in % Gap Time

1 2785.1 2821.2 0.96 26.0
2 2722.0 2828.3 0.96 36.4

250 5,15,10,20 3 2674.7 2719.1 1.00 53.7
4 2650.7 2814.9 1.00 18.2
5 3414.3 3540.7 0.99 22.7
1 3706.3 4317.2 0.70 145.8
2 2648.2 3212.7 0.87 105.5

500 5,15,10,20 3 2220.3 2403.8 0.92 128.8
4 2668.3 6709.3 0.98 50.8
5 8723.2 8723.2 0.00 6.3
1 2104.6 2230.5 0.54 259.1
2 2605.3 2818.7 0.96 292.2

750 5,15,10,20 3 2447.9 2563.8 0.21 467.9
4 1816.5 1966.2 0.76 270.4
5 NA NA NA 13.2
1 3323.1 3869.2 1.00 257.9
2 3500.4 3888.3 1.00 138.0

250 10, 25,15,35 3 2966.7 3203.5 0.73 119.3
4 3900.1 4129.9 0.97 123.3
5 5707.8 5707.3 0.00 85.2
1 3482.6 4030.6 0.46 1275.8
2 5141.3 7016.0 0.77 678.9

500 10, 25,15,35 3 2702.5 2802.0 0.30 661.2
4 2507.9 3395.0 0.64 519.8
5 8170.3 8170.0 0.00 60.9
1 NA NA NA 2.8
2 9487.5 9487.5 0.06 92.8

750 10, 25,15,35 3 3285.2 3753.4 0.38 3031.1
4 2543.2 2850.1 0.38 2858.7
5 NA NA NA 64.7

but 3 instances, then the solution from the PERC Heuristic is in general significantly

better.

2.5 Conclusions and Future Research in Chance Constrained Program-

ming

Chance constrainted MIPs are a widely applicable class of problems that are in

general quite challenging to solve. As such, it is important to identify/develop efficient

solution strategies that are independent of the particular application. With this

research, an attempt has been made to do just that. In this chapter, a novel approach

for solving CCMIPs was presented that is application independent. Although the

PERC Heuristic is not an exact solution method, it does tend to produce near optimal

solutions more quickly than a commercial solver. These results indicate that this new

solution strategy may be the right approach for this class of problems. For future
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research, we will look to convert the PERC Heuristic into an exact solution method.

This could be accomplished by coupling the Heuristic with a relaxation technique,

such as Lagrangian relaxation.
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3 Hybrid Energy System Design

This chapter, based on [38], relates to the integration of renewable energy into

existing energy systems in remote areas. The challenges of modeling and solving such

a problem are discussed. More specifically, the chapter is organized as follows: in

Section 3.2 the problem description and the mathematical formulation are provided.

Section 3.3 presents the details of the Benders’ decomposition algorithm developed

for solving the problem. Computational results for a set of test instances are given in

Section 3.4. Conclusions and future research directions are discussed in Section 3.5.

3.1 Introduction to Hybrid Energy Systems

Providing energy to remote or isolated areas can be extremely costly due to the

investment associated with transmission networks, land acquisition, control towers,

and construction materials. The issue of energy independence is also a concern given

that traditional configurations of power delivery depend heavily on energy or fuel

generated outside the target area. There are two typical ways to deliver energy to re-

mote areas, through transmission lines from places with excess capacity or large-scale

generating facilities, or by utilizing a local thermal generating facility. Establishing a

line to an offshore island is very expensive due to the complications associated with

laying underwater transmission lines. Power generation using local thermal systems

can be even more expensive due to high transportation and inventory holding costs

[21, 57, 71]. Moreover, both options unavoidably lead to environmental concerns, es-

pecially the latter which produces a large volume of green house gases and pollutants.

Technology advancements, especially relating to wind and solar energy, provide re-

mote areas with the option of renewable energy systems for reliable energy supply.
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Compared with traditional systems, renewable energy systems have a clear advantage

environmentally as well as on the energy independence aspect.

In 2009, the American Clean Energy and Security Act of 2009 [26], was passed by

the U.S. House of Representatives requiring the deployment of clean energy resources

and a reduction in pollutants that contribute to global warming. This act will aid in

the transition to a clean energy economy. However, the implementation of a reliable

clean energy system may be limited by the nature of wind and solar energy which

tends to be intermittent and highly variable [8, 57, 71]. To handle this challenge,

energy storage equipment including pump water [14], battery [49], and hydrogen

and a fuel cell [21], can be integrated into the system. Also, traditional thermal

generators and transmission lines can be utilized, in a less frequent fashion, to deal

with the random generation aspect of renewable energy/storage device systems, see

[47] and references therein for a recent review.

Various heuristics have been applied to this problem, including simulated anneal-

ing [23], genetic algorithm [71], and tabu search [37], to derive good solutions. To

capture the impact of randomness in system design, simulation based optimization

methods are among the most popular approaches due to their ability to evaluate the

system design in random environments, see [12] for a review on simulation optimiza-

tion study. One obvious drawback of heuristics and simulation based optimization

is that they cannot guarantee the quality of the solution. Therefore, these methods

yield little insight into optimal system configuration.

Stochastic programming models have also been applied to model the energy sys-

tem design problem and to derive the optimal configuration considering various prob-

abilistic scenarios. In [1], a stochastic mixed integer programming (SMIP) model

for optimal sizing of storage system is developed for an existing isolated wind-diesel

power system. The randomness for wind and load is described by a set of scenarios

where one scenario represents a 24-hour instance of wind and load. The model is
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solved using a mixed integer programming (MIP) solver through GAMS [75]. In [14],

a stochastic linear programming model is developed for optimal capacity design of

a pumped storage device in a hybrid system where thermal generators’ generation

level is known. Nevertheless, with the exception of storage capacity, little work has

been done using stochastic programming as a tool to study the larger scope system

design. This is most likely due to the limitation of solvers to efficiently deal with the

complexity of SMIP models for hybrid system design.

Clearly, if SMIP is employed to model a more comprehensive hybrid system de-

sign, instead of depending on professional MIP solvers, it is necessary to develop

customized solution procedures that can efficiently compute an optimal system con-

figuration. Currently, algorithms based on Benders’ decomposition method [11] have

been deemed most effective ones to solve various SMIP applications. Also, many en-

hancement strategies have been designed and implemented to make further improve-

ment. Among them, the idea of Pareto-optimal cuts by Magnanti and Wong [43] is

widely adopted. This method was recently modified and improved by Papadakos in

[55]. The motivation behind the Magnanti-Wong and modified Magnanti-Wong meth-

ods is to introduce high quality optimality cuts in an efficient manner. This allows the

algorithm to converge more quickly. Another modification that is worth mentioning

is introduced by Saharidis and Ierapetritou [67], which generates an optimality cut in

iterations where a feasibility cut is added to the Benders’ master problem. This strat-

egy, known as maximum feasible subsystem cut generation, can be highly effective

when there are a relatively large number of feasibility cuts generated by the Benders’

method. Obviously, the aforementioned methodological development provides a solid

basis for us to employ this analytical tool to study more comprehensive hybrid system

design problems, which should generalize or extend existing work that only computes

storage capacity.
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Specifically, in this chapter, we consider a hybrid system design problem for an

isolated area, which depends on a local thermal generator and expects an increase in

electric demand in the near future. The set of options considered for the configura-

tion include building a long distance transmission network or constructing renewable

energy facilities and a storage system as shown in Figure 3. For this problem, we

build a SMIP model to derive the optimal configuration with random renewable en-

ergy generation and demand. To address the computational challenges, we develop

an algorithm using Benders’ decomposition method with both maximum feasible sub-

system cut generation and the modified Magnanti-Wong strategies. We also improve

on the application of maximum feasible subsystem cut generation by taking advan-

tage of the scenario structure of decomposed subproblems in our SMIP formulation.

To our knowledge, this is the first time a stochastic discrete optimization model for

comprehensive hybrid system design has been developed as well as the first effective

computational tool.

Local Thermal 
Generator(s) 

Storage  
Device 

Renewable 
Energy Source 

Transmission  
Line 

Demand 
Source 

Figure 3: Transfer of Energy in a Hybrid System

3.2 Problem Description and Mathematical Formulation

In this section, we first describe the modeling background in the hybrid system

design. We then present the stochastic mixed integer programming model. Also,

by observing this model is equivalent to capacitated lot-sizing problem under special

circumstances, we show that this model is in general NP-hard.

26



We consider the system design problem for a remote area which currently has a

local thermal generator and must accommodate an increase in demand in the near

future. Thus, installation and capacity decisions for the renewable energy generation

(we will focus on wind generated energy, though the model is applicable to other forms

of renewable energy as well), the storage device, and/or the transmission network

must be made. In our study, as we focus on the long-term system configuration,

we do not model the local generator’s operations using the unit commitment model,

which could drastically increase the complexity of the problem. In fact, as the remote

areas generally may have large difference between their peak and minimum demands,

they may install low-load diesel generators or simply force thermal generators to work

with light loads [1], for which it is not necessary to incorporate the unit commitment

model. Under this situation, we use a binary variable to model the working status

of the local generator and to capture its fixed cost; a continuous variable is used to

capture the variable generation cost.

Note that the role of a storage device is similar to that of a warehouse. It is used

to store excess energy generated to meet future demands, along with just-in-time

generation from the renewable energy and the local generator. One difference from

classical inventory systems is that the energy loss from storage devices is often quite

significant, as energy efficiency ranges from 60% (hydrogen storage) to 90% (battery

storage). Although the energy loss can be high in storage devices, they are extremely

useful to deal with randomness in renewable energy generation and demand.

In Figure 4(a), three daily demand curves are shown for three consecutive days

(data from [50]). Figure 4(b) provides three daily wind speed curves for three consec-

utive days (data from [16]). From these figures, we see that the variability in hourly

demand and wind speed cannot be ignored (particularly for wind speed), doing so

could result in unmet demand or increased operating costs. Following the typical

strategy in stochastic programming, every possible random situation is represented
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by a scenario with the associated probability. Specifically, because demand (or gen-

eration) could change dramatically over seasons, one year is decomposed into a set

of “seasons,” denoted by I, during which daily demands (or wind speed) are reason-

ably consistent. Then, each season can be represented by a single day. One possible

demand curve (or wind curve) of a single day is represented by a scenario. The

randomness of daily demand (or generation, respectively) is represented by S, a set

of scenarios, and their associated discrete probabilities. Furthermore, for modeling

operations of each energy component, a single day is divided into a set of time slots

T (typically 24 slots for 24 hours). Typically, the system is designed such that for

every season and in every scenario: i) demand in all time slots must be met by the

sum of energy from various sources; ii) the “inventory level” in the storage device is

balanced with respect to inflow and outflow and energy efficiency; iii) the production

level of each component of the system must be less than or equal to the capacity of

that component. Tables 8 and 9 summarize the variables and parameters used in the

model to meet the objective.
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Figure 4: Daily Curves for Demand and Wind Speed
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Table 8: Decision Variables for Model

w number of storage capacity units purchased
g number of wind turbines purchased
` number of transmission line capacity units purchased
x 1 if storage device is constructed
y 1 if wind turbines are erected
z 1 if transmission network is installed
FOs

i,t 1 if local energy is used in (s, i, t)
Os
i,t amount of energy used to supply demand from local sources in (s, i, t)

OSsi,t amount of energy put into storage from local sources in (s, i, t)
Ssi,t storage level in (s, i, t)
SDs

i,t amount of energy used to supply demand from storage in (s, i, t)
Lsi,t amount of energy used to supply demand from transmission line in (s, i, t)
GSsi,t amount of energy put into storage from wind sources in (s, i, t)
GDs

i,t amount of energy used to supply demand from wind sources in (s, i, t)

Table 9: Parameters for Model

Cw cost of units of storage capacity
Cg cost of each wind turbine
C` cost of units of transmission line capacity
Fw fixed cost associated with construction of a storage device
Fg fixed cost associated with construction of a wind farm
F` fixed cost associated with construction of a transmission line
Ck cost associated with storage of energy per MW per time unit
Cp cost per MWh of energy from transmission line
CO operating cost of local generation facility
Kw size of capacity units of storage
Kg(W ) generation capacity of each wind turbine as a function of wind speed
K` size of capacity units of transmission line
KO capacity of local generation facility
Mw big-M constant for storage
Mg big-M constant for wind turbines
M` big-M constant for transmission line
P length of planning horizon
s element of S, the set of scenarios
i element of I, the set of seasons
t element of T , the set of time slots
γ conversion factor for energy put into storage
β conversion factor from cost of energy from transmission line

to cost of energy from local generation
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Using these parameters and variables, the stochastic optimization model is for-

mulated as follows:

min Cww + Cgg + C``+ Fwx+ Fgy + F`z+

+ P

[
Es

{∑
i,t

CkS
s
i,t + CpL

s
i,t + COFO

s
i,t + βCp

(
Os
i,t +OSsi,t

)}]
(3.1)

subject to Ds
i,t = Lsi,t +GDs

i,t + SDs
i,t +Os

i,t ∀s, i, t (3.2)

Ssi,t = Ssi,t−1 + γGSsi,t + γOSsi,t − SDs
i,t ∀s, i, t (3.3)

GSsi,t +GDs
i,t ≤ Kg

(
W s
i,t

)
g ∀s, i, t (3.4)

Ssi,t ≤ Kw w ∀s, i, t (3.5)

Lsi,t ≤ K` ` ∀s, i, t (3.6)

Os
i,t +OSsi,t ≤ KO FO

s
i,t ∀s, i, t (3.7)

w ≤Mw x (3.8)

g ≤Mg y (3.9)

` ≤M` z (3.10)

Os
i,t, OS

s
i,t, S

s
i,t, SD

s
i,t, L

s
i,t GS

s
i,t GD

s
i,t ∈ R+ ∀s, i, t (3.11)

FOs
i,t ∈ {0, 1} ∀s, i, t (3.12)

x, y, z ∈ {0, 1} (3.13)

w, g, ` ∈ Z+ (3.14)

The objective of the model is to minimize the sum of the building costs and

expected operating costs over a given planning horizon P . There is a fixed cost

associated with construction of a transmission line F`, a storage device Fw, and a

wind farm Fg as well as an incremental cost per unit of each purchased C`, Cw, and

Cg, respectively. The operating costs are the cost of storage per MW per time unit
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in the storage device Ck, the cost per MWh of energy from the transmission line Cp,

the fixed cost of operating the local energy source CO, and the cost per MWh of

energy from the local energy source which is captured as Cp multiplied by a factor

β (typically β ≥ 1). The expectation of these costs is taken over all scenarios in S.

Adding the fixed costs with the expected value of the variable costs gives the objective

function (3.1).

The first constraint (3.2) ensures that the demand Ds
i,t is met by the sum of the

energy from the transmission line Lsi,t, renewable energy GDs
i,t, energy from storage

SDs
i,t, and energy from local sources Os

i,t. The balance of the storage level Ssi,t with

inflow, γGSsi,t and γOSsi,t and outflow relative to the previous level is guaranteed by

(3.3). Note that two assumptions are made here: i) the level in storage is already

expressed in terms of dispatchable energy so that there is no loss in energy transfer

from storage to the grid; ii) the discharge capacity of the storage device is equal to

the capacity of the device. Constraint (3.4) gives the capacity for the total renewable

energy used as a function of wind speed Kg

(
W s
i,t

)
and the number of wind turbines

purchased g (in general, Kg(−) is a function describing the output of the renewable

energy system used). Figure 5 shows a typical wind power curve that defines the

function Kg (W ). Notice that for a given wind speed, Kg(W ) is a constant. The

storage level cannot exceed the number of storage units constructed w multiplied by

the size of a storage capacity unit Kw, by (3.5). The amount of energy from the

transmission line cannot exceed the number of transmission line units constructed `

multiplied by the capacity of a transmission line unit K`, by (3.6). FOs
i,t is a binary

variable equal to 1 if the local generating facility is used in (s, i, t) and (3.7) ensures

that local energy can be used only if the local energy production facility is operating at

that time and the total usage cannot exceed the facility’s capacity KO. Additionally,

x, y, and z are binary variables equal to 1 if construction of a storage device, a wind
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farm, or a transmission line occurs, respectively, and zero otherwise. These are linked

to w, g, and `, respectively, through big-M constraints (3.8) - (3.10).
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Figure 5: Wind Power Curve

Based on the role of the storage device in the whole system and the system flow

balance dynamics, we observe that the whole model has a strong connection to the

classical capacitated lot-sizing model [36]. In fact, we next show that the model, in

its general form, has a structure of the capacitated lot-sizing model and therefore is

difficult to solve.

Proposition 3. The problem described by (3.1)-(3.14) is NP-hard.

Proof. We consider its simplest case where |S| = 1 and |I| = 1, i.e. a single scenario

and a single season. When (i) the fixed cost of transmission line is very high, (ii)

little renewable energy is available, (iii) both the fixed cost and unit cost of storage

capacity are very low, it is clear that neither the transmission line will be built nor the

green energy generation facility will be constructed while a sufficient storage device

will be established. Therefore, the local generator will be the only generating source
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to meet demand. The original model is then reduced to

min Cww + Fwx+ P

[
Es

{∑
i,t

CkS
s
i,t + COFO

s
i,t + β

(
CpO

s
i,t +OSsi,t

)}]

subject to Ds
i,t = SDs

i,t +Os
i,t (3.15)

Ssi,t = Ssi,t−1 + γOSsi,t − SDs
i,t (3.16)

Os
i,t +OSsi,t ≤ KO FO

s
i,t (3.17)

w ≤Mw x (3.18)

Ssi,t, SD
s
i,t, O

s
i,t, OS

s
i,t ∈ R+ (3.19)

w ∈ Z+, x ∈ {0, 1} (3.20)

Combining (3.15) and (3.16), we obtain

Ssi,t +Ds
i,t = Ssi,t−1 + γOSsi,t +Os

i,t,

which is exactly the flow balance equation in lot-sizing model if γ = 1. With the

finite production capacity (3.17), this model is equivalent to the capacitated lot-sizing

problem, which is known to be NP-hard [36].

3.3 Solution Method

Given the structure of the problem defined by (3.1)-(3.14), we develop an algo-

rithm using Benders’ decomposition method [11], which is the most popular compu-

tation method in solving stochastic programming problems [13]. We first describe the

decomposition scheme of our problem. Then, we introduce Pareto-optimal cuts us-

ing a modified Magnanti-Wong method and maximum feasible subsystem generated

cuts along with their integration into Benders’ decomposition. Finally, we discuss

heuristic based performance improvement strategies and outline the algorithm imple-

mentation. To simplify our exposition, we do not give the scenario-wise primal and
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dual subproblem formulations until sections 3.3.2 and 3.3.3, although they can easily

be obtained from the aggregated subproblem formulation.

3.3.1 Benders’ Decomposition

Note that our model has a clear two stage structure: i) in the system design stage,

a small number of discrete decisions must be made, which are common to all seasons

and stochastic scenarios; ii) in the daily operation stage, many binary decisions for

local generator and continuous flow variables must be determined given the realization

of renewable energy generation. To take advantage of Benders’ decomposition method

and to balance the decomposed subsystems, we propose to incorporate all the local

generator decisions as well as capacity variables into the first stage in the solution

algorithm. Specifically, given values of w∗, g∗, `∗, x∗, y∗, z∗,
(
FOs

i,t

)∗
,
(
Os
i,t

)∗
, and(

OSsi,t
)∗

satisfying (3.7)-(3.14) we can reduce the model defined by (3.1)-(3.14) to the

following primal subproblem:

min P

[
Es

{∑
i,t

CkS
s
i,t + CpL

s
i,t

}]
(3.21)

subject to Ds
i,t ≤ Lsi,t +GDs

i,t + SDs
i,t +

(
Os
i,t

)∗ ∀s, i, t (3.22)

Ssi,t ≤ Ssi,t−1 + γGSsi,t + γ
(
OSsi,t

)∗ − SDs
i,t ∀s, i, t (3.23)

GSsi,t +GDs
i,t ≤ Kg

(
W s
i,t

)
g∗ ∀s, i, t (3.24)

Ssi,t ≤ Kw w
∗ ∀s, i, t (3.25)

Lsi,t ≤ K` `
∗ ∀s, i, t (3.26)

Ssi,t, SD
s
i,t, L

s
i,t GS

s
i,t GD

s
i,t ∈ R+ ∀s, i, t (3.27)

Let η = {ηsi,t ∈ R+ : ∀s, i, t}, λ = {λsi,t ∈ R+ : ∀s, i, t}, θ = {θsi,t ∈ R+ : ∀s, i, t},

δ = {δsi,t ∈ R+ : ∀s, i, t}, and α = {αsi,t ∈ R+ : ∀s, i, t} be the dual variables for

constraints (3.22)-(3.26), respectively (assuming each constraint is rearranged to be

of the form ≥, which can always be done). Then the dual of the primal subproblem,
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aptly named the dual subproblem, is formulated as:

max
∑
i,t,s

[
−`∗K`α

s
i,t − w∗Kwδ

s
i,t − g∗Kg

(
W s
i,t

)
θsi,t+ (3.28)

+
(
Ds
i,t −

(
Os
i,t

)∗)
ηsi,t − γ

(
OSsi,t

)∗
λsi,t
]

subject to ηsi,t − θsi,t ≤ 0 ∀s, i, t (3.29)

γλsi,t − θsi,t ≤ 0 ∀s, i, t (3.30)

λsi,t+1 − λsi,t − δsi,t ≤ P CkP{s} ∀s, i, t (3.31)

ηsi,t − λsi,t ≤ 0 ∀s, i, t (3.32)

ηsi,t − αsi,t ≤ P CpP{s} ∀s, i, t (3.33)

αsi,t, δ
s
i,t, θ

s
i,t, η

s
i,t, λ

s
i,t ∈ R+ ∀s, i, t (3.34)

Notice that the feasible set for the dual subproblem, Ω, does not depend on the values

of w∗, g∗, `∗, x∗, y∗, z∗,
(
FOs

i,t

)∗
,
(
Os
i,t

)∗
, and

(
OSsi,t

)∗
. These values only affect the

coefficients in the objective function of the dual subproblem.

Now the zero vector is in Ω, so the dual subproblem is always feasible though it

may be unbounded. Therefore, the primal problem is either infeasible or feasible and

bounded. Let PΩ and RΩ be the sets of extreme points and extreme rays of Ω, re-

spectively. Then, the dual subproblem is bounded (and hence the primal subproblem

is feasible and bounded) if

∑
i,t,s

[
− `∗K`α

s
i,t − w∗Kwδ

s
i,t − g∗Kg

(
W s
i,t

)
θsi,t+

+
(
Ds
i,t −

(
Os
i,t

)∗)
ηsi,t − γ

(
OSsi,t

)∗
λsi,t

]
≤ 0

for all (η, λ, θ, δ, α) ∈ RΩ. Moreover, if both problems are feasible and bounded,
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then they have a common value of

max
(η,λ,θ,δ,α)∈PΩ

{∑
i,t,s

[
−`∗K`α

s
i,t − w∗Kwδ

s
i,t − g∗Kg

(
W s
i,t

)
θsi,t+

+
(
Ds
i,t −

(
Os
i,t

)∗)
ηsi,t − γ

(
OSsi,t

)∗
λsi,t
]}
.

Let ζ be a free variable, then the Benders’ Master problem is formulated as:

min ζ + Cww + Cgg + C``+ Fwx+ Fgy + F`z+ (3.35)

+ P

[
Es

{∑
i,t

COFO
s
i,t + βCp

(
Os
i,t +OSsi,t

)}]

subject to
∑
i,t,s

[
−`K`α

s
i,t − wKwδ

s
i,t − gKg

(
W s
i,t

)
θsi,t+

+
(
Ds
i,t −Os

i,t

)
ηsi,t − γOSsi,tλsi,t

]
≤ 0 r̂ ∈ RΩ (3.36)

ζ ≥
∑
i,t,s

[
−`K`α

s
i,t − wKwδ

s
i,t − gKg

(
W s
i,t

)
θsi,t+

+
(
Ds
i,t −Os

i,t

)
ηsi,t − γOSsi,tλsi,t

]
ê ∈ PΩ (3.37)

Os
i,t +OSsi,t ≤ KO FO

s
i,t ∀s, i, t (3.38)

w ≤Mw x (3.39)

g ≤Mg y (3.40)

` ≤M` z (3.41)

Os
i,t, OS

s
i,t ∈ R+ ∀s, i, t (3.42)

FOs
i,t ∈ {0, 1} ∀s, i, t (3.43)

x, y, z ∈ {0, 1} (3.44)

w, g, ` ∈ Z+ (3.45)

ζ ∈ R, (3.46)

where r̂ = (η, λ, θ, δ, α) is an extreme ray of Ω and ê = (η, λ, θ, δ, α) is an extreme
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point of Ω. In general, this formulation can have a large number of constraints of the

form (3.36) and (3.37), known as feasibility cuts and optimality cuts, respectively.

A relaxed Benders’ reformulation consists of replacing PΩ and RΩ with sets P ′Ω and

R′Ω in the Benders’ Master problem such that P ′Ω ⊂ PΩ and Q′Ω ⊂ QΩ. In [11],

Benders describes an algorithm to iteratively add feasibility and optimality cuts to

a relaxed Benders’ reformulation for a mixed integer programming problem. The

key initial observations for this algorithm are that an optimal solution to the relaxed

Benders’ reformulation provides a lower bound (LB) on the optimal value of the

original problem and a feasible solution to the relaxed Benders’ reformulation provides

values of w∗, g∗, `∗, x∗, y∗, z∗,
(
FOs

i,t

)∗
,
(
Os
i,t

)∗
, and

(
OSsi,t

)∗
satisfying (3.7) - (3.14)

which serves as the input for the dual subproblem. Next, the dual subproblem is

solved. If it has a finite optimal value, then an optimality cut can be added to the

relaxed Benders’ reformulation and an upper bound (UB) for the original problem can

be found. If the dual subproblem is unbounded, then a feasibility cut can be added

to the relaxed Benders’ reformulation. Resolving the relaxed Benders’ reformulation

restarts the process. This continues until LB = UB, at which point an optimal

solution has been found.

There are a number of methods to improve the performance of Benders’ decom-

position. One commonly employed tactic for two-stage stochastic models is to de-

compose the dual subproblem over scenarios, since these problems are independent

once the first stage variables are fixed. Thus for each s ∈ S, we have a dual sub-

problem, denoted DSPs. In addition to this, there are two technical enhancements

and a combination of heuristics we utilize. These are described in the next three

sections along with pseudocode for our algorithm. Before this, we digress to com-

ment on some tactics not employed in this work that are never the less still worth

mentioning. The first two are cut generation strategies for the relaxed master prob-

lem. Saharidis et. al reviewed existing developments in Benders decomposition and
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proposed to strengthen the master problem [66] by adding valid inequalities for appli-

cations with the fixed-charge network structure, of which unfortunately our problem

lacks. Another method presented in Saharidis et. al [68] involves generating a bundle

of low-density cuts rather than a single low-density cut. For the application in this

paper, this effect was achieved for feasibility cuts through use of the decomposition

technique mentioned at the beginning of this section as well as noting that optimality

cuts were already high-density. Another set of strategies employed to improve the

performance of Benders is the use of heuristic techniques. Côté and Laughton devel-

oped a set of such techniques [19]. We were able to achieve similar effects through

the use of other heuristic based methods which are outlined in Section 3.3.4.

3.3.2 Generating Pareto-Optimal Cuts

Pareto-optimal cuts, introduced by Magnanti and Wong [43], are cutting planes

added to the Master problem that are not dominated by any other optimality cuts.

The process developed in [43], referred to as the MW method, is the following: the

dual subproblem is solved, then a core point from the Master problem replaces the

objective function coefficients in the subproblem and a constraint is added forcing

this new objective function to equal the optimal value from the subproblem. The

optimal solution to this problem generates a Pareto-optimal cut. The reliance on the

solution from the subproblem to formulate the problem used to generate the Pareto-

optimal cuts can be a major computational drawback. In [55], Papadakos develops a

method for generating Pareto-optimal cuts that does not rely on the solution to the

subproblem. In particular, he shows that any core point generates a Pareto-optimal

cut and the additional constraint forcing equality of the new objective function to the

optimal value of the subproblem is not necessary. Moreover, a method for updating

the core point is given that is computationally very efficient. We refer to this as the

modified Magnanti-Wong (MMW) method. For a single scenario in our application,
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the problem for the MMW method is formulated as

max
∑
i,t

[
−`0K`α

s
i,t − w0Kwδ

s
i,t − g0Kg

(
W s
i,t

)
θsi,t+ (PDSPs)

+
(
Ds
i,t −

(
Os
i,t

)0
)
ηsi,t − γ

(
OSsi,t

)0
λsi,t

]
subject to ηsi,t − θsi,t ≤ 0 ∀i, t

γλsi,t − θsi,t ≤ 0 ∀i, t

λsi,t+1 − λsi,t − δsi,t ≤ P CkP{s} ∀i, t

ηsi,t − λsi,t ≤ 0 ∀i, t

ηsi,t − αsi,t ≤ P CpP{s} ∀i, t

αsi,t, δ
s
i,t, θ

s
i,t, η

s
i,t, λ

s
i,t ∈ R+ ∀i, t

where w0, g0, `0, x0, y0, z0,
(
FOs

i,t

)0
,
(
Os
i,t

)0
, and

(
OSsi,t

)0
is a core point of the Master

problem. It is clear in the formulation of PDSPs that this problem is independent

of the dual subproblems and the solution from the Master problem. It relies only

on finding a core point from the feasible space of the Master problem. Finally, an

optimality cut is obtained by combining the Pareto-optimal cuts generated by each

PDSPs.

3.3.3 Maximum Feasible Subsystem Generated Cuts

The second strategy employed is maximum feasible subsystem generated cuts,

referred to as the MFS method. Saharidis and Ierapetritou introduce this method for

generating additional optimality cuts in [67]. Recall that if the dual subproblem is

unbounded, then the primal subproblem is infeasible. If we can identify a collection of

constraints to relax, then we are able to generate an optimality cut from the solution

generated by this relaxed problem. This is the concept behind the MFS method. We

now explain the process by which this collection of constraints is identified.
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Notice the formulation of a primal subproblem for a single scenario is given by:

min P

[
P{s}

(∑
i,t

CkS
s
i,t + CpL

s
i,t

)]

subject to Ds
i,t ≤ Lsi,t +GDs

i,t + SDs
i,t +

(
Os
i,t

)∗ ∀i, t

Ssi,t ≤ Ssi,t−1 + γGSsi,t + γ
(
OSsi,t

)∗ − SDs
i,t ∀i, t

GSsi,t +GDs
i,t ≤ Kg

(
W s
i,t

)
g∗ ∀i, t

Ssi,t ≤ Kw w
∗ ∀i, t

Lsi,t ≤ K` `
∗ ∀i, t

Ssi,t, SD
s
i,t, L

s
i,t GS

s
i,t GD

s
i,t ∈ R+. ∀i, t

If this problem is infeasible, a feasible subsystem is found by solving the feasible

subsystem problem:

min
∑
j,i,t

ωji,t (FSPs)

subject to Ds
i,t ≤ Lsi,t +GDs

i,t + SDs
i,t +

(
Os
i,t

)∗
+Mω1

i,t ∀i, t

Ssi,t ≤ Ssi,t−1 + γGSsi,t + γ
(
OSsi,t

)∗ − SDs
i,t +Mω2

i,t ∀i, t

GSsi,t +GDs
i,t ≤ Kg

(
W s
i,t

)
g∗ +Mω3

i,t ∀i, t

Ssi,t ≤ Kw w
∗ +Mω4

i,t ∀i, t

Lsi,t ≤ K` `
∗ +Mω5

i,t ∀i, t

Ssi,t, SD
s
i,t, L

s
i,t GS

s
i,t GD

s
i,t ∈ R+ ∀i, t

ωji,t ∈ {0, 1} ∀i, t, j

where M is a large constant such that if wji,t = 1 the corresponding constraint is

always satisfied. Notice that this problem is always feasible. Taking the optimal

solution from FSPs, {(ωji,t)∗}, we generate a relaxation of the primal subproblem,
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namely the maximum feasible subsystem problem

min P

[
P{s}

{∑
i,t

CkS
s
i,t + CpL

s
i,t

}]
(MFSPs)

subject to Ds
i,t ≤ Lsi,t +GDs

i,t + SDs
i,t +

(
Os
i,t

)∗
+M (ω1

i,t)
∗ ∀i, t

Ssi,t ≤ Ssi,t−1 + γGSsi,t + γ
(
OSsi,t

)∗ − SDs
i,t +M (ω2

i,t)
∗ ∀i, t

GSsi,t +GDs
i,t ≤ Kg

(
W s
i,t

)
g∗ +M (ω3

i,t)
∗ ∀i, t

Ssi,t ≤ Kw w
∗ +M (ω4

i,t)
∗ ∀i, t

Lsi,t ≤ K` `
∗ +M (ω5

i,t)
∗ ∀i, t

Ssi,t, SD
s
i,t, L

s
i,t GS

s
i,t GD

s
i,t ∈ R+ ∀i, t

Since MFSPs is feasible and a relaxation of the primal problem, we can solve the

dual of this problem to generate an optimality cut for the relaxed Master problem.

It is clear how the optimality cut is constructed if DSPs is unbounded for all s

(equivalently, if all the primal subproblems are infeasible), namely adding the resulting

cutting planes. Our contribution is dealing with the case where there is a set Ŝ ⊆

S such that DSPs is unbounded for s ∈ Ŝ and bounded for s ∈ S \ Ŝ. In this

case, we solve FSPs followed by MFSPs for each s ∈ Ŝ to generate a collection of

cutting planes, P̂ . Next, let P by the collection of cutting planes generated using

the traditional Benders’ method by solving DSPs for s ∈ S \ Ŝ. Adding the cutting

planes from P̂ and P results in a single optimality cut for the Master problem. Note

if Ŝ = ∅, then this results in a traditional Benders’ optimality cut being added to the

Master problem.

3.3.4 Heuristic Improvements and Outline of the Algorithm

In addition to the enhanced cut generation methods, two heuristics are used to

improve the computation time of our solution algorithm. Before we describe these

heuristics it is notable that the techniques mentioned in this section do not alter the
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convergence of the algorithm, only the rate. That is, the algorithm will converge to

the optimal value, but the time and number of iterations necessary most likely differs

from the time and number of iterations needed were these techniques not employed.

First, we obtain an initial feasible solution to the complete model by rounding

its linear programming solution to a closest feasible solution [48]. Then, the partial

solution for the master problem will be passed to the dual subproblem to generate

feasibility cuts or an optimality cut of a high quality. Also, its objective function

value provides a lower bound on the optimal value. Note that any values for the

Master problem variables can be used to initiate Benders’ decomposition, however

a partial solution from a solution feasible to the original problem will generate an

optimality cut rather than a feasibility cut. Moreover, the closer this solution is to

optimal, the higher the quality of the first cut generated. Since the rounded linear

programming solution can be obtained quickly and is often good quality, we use this

method for generating initial value for Benders’ decomposition.

Second, we observe that the master problem is a difficult mixed integer program-

ming problem and any of its feasible solutions can be used to generate optimality or

feasibility cuts. As a result, we use two techniques to speed up the initial iterations of

the algorithm. One is to relax the tolerance for a solution to be considered optimal by

the commercial solver until the relative gap for the algorithm is sufficiently small. In

this case, the default gap is 10−4, which we initially adjust to 10−1. Once the relative

gap for the algorithm is 10−2, the solver tolerance is returned to 10−4. Additionally,

a time limit is imposed on the Master problem. It is initially set at 60 seconds. Once

the relative gap for the algorithm is 10−2, an additional 30 seconds is added if the gap

for the Master problem is at least 0.0005. The best feasible solution from the Master

problem is always the one passed to the subproblems.

We conclude this section by providing the pseudocode for the Benders’ algorithm

implemented for this work in Table 10. We remind the reader of some notation used
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in the table. For scenario s, the dual subproblem is given by DSPs, the problem used

for the MMW method is denoted PDSPs, and FSPs and PFSPs are the feasible

subsystem problem and maximum feasible subsystem problem, respectively, used in

the MFS method.

Table 10: Pseudocode for Solution Algorithm

Line Code Description
1 Solve the LP relaxation of the original problem and
2 round integer variables up to obtain a feasible
3 solution for relaxed Master problem
4 while relative gap greater than ε
5 for s ∈ S
6 Solve DSPs and PDSPs
7 end for
8 if DSPs is bounded for all s ∈ S
9 Add a traditional Benders’ optimality cut to
10 relaxed Master problem
11 else
12 Let S ′ = {s |DSPs is unbounded}
13 for s ∈ S ′
14 Add feasibility cut for extreme ray from DSPs
15 Solve FSPs then MFSPs
16 end for
17 Use solutions from MFSPs′ and DSPs for s′ ∈ S ′
18 and s ∈ S \ S ′ to add a MFS generated
19 optimality cut to the relaxed Master problem
20 end if
21 Use solutions from PDSPs for s ∈ S to generate Pareto cut
22 end while

3.4 Computational Study and Management Insights

3.4.1 Data Description

Demand data were collected from [50] and the wind data from [16]. The demand

data used were specifically from England and Wales for 2009. The data were scaled

down by a factor of 10−3. The population of England and Wales is approximately

53M [25], so we have an estimated population of 53,000 for our rescaled demand data.

Twelve seasons were used, one for each month. Scenarios were created by perturbing
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the observed data. A total of 55 datasets were created for numerical study. We

summarize them into three categories based on their purpose. These categories are i)

comparison to professional solver, ii) impact of variance, and iii) impact of magnitude.

Within each dataset, there are an equal number of demand and wind scenarios. This

is indicated in the descriptions below by using the notation a×a for the total number

of scenarios in a dataset. The datasets in each category are described forthwith:

1. To compare the performance of our algorithm with a professional solver,

15 datasets of various sizes were generated. For demand scenarios, in a

given time slot scenario data were generated from a normal distribution

with mean equal to observed demand and standard deviation equal to 10

percent of the observed data. For the wind scenarios, in a given time slot

the scenario data were generated by multiplying the observed wind speed

by a random number drawn from a triangular distribution with parameters

(0.5, 1, 1.5). Within each dataset, an equal number of wind and demand

scenarios were used. There are five datasets with 5 × 5 scenarios (S1-S5),

five with 8× 8 scenarios (M1-M5), and five with 11× 11 scenarios (L1-L5).

S, M, and L indicate small, medium, and large dataset sizes, respectively.

2. To compare the system configuration in situations with different variance,

another 20 datasets were generated, all with 8 × 8 scenarios. Five dataset

(DV1-DV5) were generated similar to first 15, but with 25 percent rather

than 10 percent for demand standard deviation followed by five datasets

with 64 scenarios (LDV1-LDV5) with 5 percent for demand standard de-

viation. Five datasets (WV1-WV5) were generated similar to the original

15 datasets, but with the parameters for the triangular distribution being

(0.25, 1, 1.75), then another five datasets (LWV1-LWV5) with triangular

distribution parameters of (0.75, 1, 1.25). DV and LDV indicate high de-
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mand variance and low demand variance, while WV and LWV indicate high

wind variance and low wind variance.

3. To evaluate the effect of rescaling the magnitude of wind and demand an

additional 20 datasets with 8 × 8 scenarios were generated. Five datasets

(TD1-TD5) were created by doubling original observed demand data and

following the procedure for the original 15 datasets. Five datasets (TW1-

TW5) were created by doubling original observed wind data and follow-

ing the procedure for the original 15 datasets. Five datasets (HD1-HD5)

were created by multiplying original observed demand data by one half and

following the procedure for the original 15 datasets. Five datasets (HW1-

HW5) were created by multiplying original observed wind data by one half

and following the procedure for the original 15 datasets. TD and TW are

datasets with twice demand and wind speed, respectively. HD and HW are

datasets with half demand and wind speed, respectively.

The cost coefficients for our model were estimated based on information from

engineers at a local utility company, as well as [52] and [24]. We describe the method

by which they were determined here. A 600MW line was constructed from New Jersey

to Long Island for $600M, so to determine F` and C` we used this pricing information.

Specifically, it was assumed that a 60 MW line (large enough for our demand data)

would cost $60M. Assuming 75% fixed cost and K` (the size of capacity units) is 20

MW, we have F` = $45M and C` = $5M. A number of storage devices were build

in the United States for costs ranging from $0.16M to $0.65M per MW. Assuming

the capacity is 200MW (large enough to store roughly three times the maximum

demand) and the end cost is $0.5M per MW, then using the same method as above

with Kw = 5MW we have Fw = $75M and Cw = $0.625M. Finally, assuming a wind

turbine’s end cost is $1.5M and that 250 turbines are purchased, then Fg = $280M

and Cg = $0.38M. High fixed costs for storage and wind farm construction were used
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since we are considering pump storage, would require the construction of a reservoir,

and an offshore wind farm, which also has considerable construction costs. The cost

of storage Ck was set at $0.1 per MW per hour in storage. We assumed the hourly

operating cost of the local generating facilities CO to be $2000. The cost of energy

in Tampa is $100 per MWh, so this was the value used for Cp and energy from local

sources was assumed to be three times as much (β = 3). The conversion factor for

the energy placed into storage was taken to be 75% (γ = 0.75), and KO was set to be

75% of peak demand. Finally, each scenario was weighted equally. For a sufficiently

large number of scenarios, the true distribution will be approximated with little loss.

Therefore, this is not an unreasonable assumption.

3.4.2 Traditional vs. Enhanced Benders’ Decomposition

To see the benefit of utilizing Pareto-optimal cuts and MFS generated cuts in Ben-

ders’ decomposition, the following experiment was conducted. The problem described

by (3.1)-(3.14) with dataset M2 was solved using standard Benders’ decomposition,

Benders’ with MW, and Benders’ with MMW and MFS. In Figure 6(a), the upper

and lower bounds for all three algorithms are depicted as a function of iteration num-

ber. Figure 6(b) shows the bounds for these three algorithms versus time. These

figures depict how using MMW and MFS concurrently can vastly reduce the com-

putation time for this model as compared to traditional Benders’ and Benders’ with

MW. Therefore, in all our computation experiments, we implement MMW and MFS

within the Benders’ decomposition algorithm.

3.4.3 Experimental Results

The problem described by (3.1)-(3.14) was solved with datasets S1-S5, M1-M5,

and L1-L5 using Benders’ decomposition with Pareto-optimal cuts (BD) and with a

commercial solver. This was done on a computer running Windows 7 (64-bit) with a

3GHz processor and 4 GB of RAM. The solver used was Gurobi 4.5.1 (64-bit) [53],
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Figure 6: Progression of Bounds on Optimal Solution for Benders’ Decomposition
with and without Enhancements

one of the state-of-the-art solvers on the market, through Python 2.6.6. Table 11

summarizes the results of solving these 15 problems given the above configuration.

Table 12 provides the average values of the results with respect to problem size.

The percent gap is defined as 100(UB − LB)/LB. The algorithm tolerance was

set at 10−2%, which is the same value as Gurobi. We note that that Gurobi uses

100(UB − LB)/UB as default to define its percent gap, which is not the value given

in Table 11, both % Gap columns are 100(UB − LB)/LB. In general, it is true that

(UB−LB)/UB ≤ (UB−LB)/LB, so the gap utilized in our application of Benders’

decomposition is stronger than Gurobi’s. In all experiments, we set the computation

time limit to 1 hour.

For small instances (S1-S5), our algorithm was roughly twice as fast as the com-

mercial solver. As the problem size grows, the Benders’ decomposition algorithm

outperforms Gurobi by a larger margin. For medium size instances with 8×8 scenar-

ios, our algorithm generally is 5 times faster than Gurobi. For all large size instances

with 11× 11 scenarios, Gurobi fails to obtain an optimal solution within the 1 hour

time limit. In fact, Gurobi fails to close the gap to a reasonable value in all large

instances before its termination.
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Table 11: Summary of Results

Dataset Gurobi BD Gurobi BD Its. # Feas. # Opt.
% Gap % Gap Time (s) Time (s) Cuts Cuts

S1 0 0.0067 182.90 72.43 12 120 24
S2 0 0.0012 279.00 85.03 14 125 28
S3 0 0.0022 296.06 171.48 17 184 34
S4 0.0001 0.0049 176.97 161.94 15 174 30
S5 0 0.0022 183.92 96.05 15 181 30
M1 0 0.0056 1361.20 296.50 12 303 24
M2 0 0.0089 2631.15 306.49 11 256 22
M3 0.0001 0.0009 2351.80 551.20 17 512 34
M4 0 0.0061 1896.71 461.74 15 417 30
M5 0 0.0033 1596.27 347.02 15 366 30
L1 39.18 0.0023 3609.73∗ 1146.89 15 779 30
L2 39.13 0.0019 3610.35∗ 999.81 12 592 24
L3 38.36 0.0003 3610.62∗ 1576.71 17 858 34
L4 38.98 0.0036 3613.15∗ 1488.40 16 911 32
L5 36.44 0.0068 3610.40∗ 870.10 11 439 22

∗ indicates time limit met

Table 12: Average Values of Results by Problem Size

Dataset Gurobi BD Gurobi BD Its. # Feas. # Opt.
Size % Gap % Gap Time (s) Time (s) Cuts Cuts

S (5 × 5) 0.0000 0.0035 223.77 117.39 14.6 156.8 29.2
M (8 × 8) 0.0000 0.0050 1967.43 392.59 14 370.8 28

L (11 × 11) 38.42∗ 0.0030 3610.85∗ 1216.38 14.20 715.80 28.40
∗ indicates time limit met

A variety of situations were considered to determine the model’s sensitivity to

the data. We first considered the effects of variance in wind speed and demand on

the configuration of the system in the optimal solution. This was done through the

use of datasets WV1-WV5, DV1-DV5, LWV1-LWV5, and LDV1-LDV5. The results

are shown in Table 13. The columns of Table 13 are as following: Dataset is the

name of the dataset used, Obj. Val. is the objective value found, Iterations is the

number of iterations needed to terminate the algorithm, # Feas. Cuts is the number

of feasibility cuts added, # Opt. Cuts is the number of optimality cuts added, %
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Local is the percentage of demand met by using locally generated energy, % Line is

the percentage of demand met from the transmission line, and % Green is percentage

of demand met from renewable energy. The percentage used in the last three columns

is against all demand. For example, % Line is given by
(∑

s,i,t L
s
i,t

)
/
(∑

s,i,tD
s
i,t

)
,

and the other two are computed similarly.

Table 13: Effect of Variance on System Configuration

Dataset Obj. Val. Its. # Feas. # Opt. % Local % Line % Green
Cuts Cuts

WV1 705543364.38 21 398 42 0.00 18.37 81.63
WV2 711512366.08 19 329 38 0.00 18.45 81.55
WV3 697301448.26 19 379 38 0.00 16.70 83.30
WV4 708697031.69 27 575 54 0.00 17.91 82.09
WV5 714032794.20 18 331 36 0.00 100.01 -0.01
DV1 712356936.58 12 321 24 0.01 24.38 75.61
DV2 708987196.99 17 513 34 0.03 28.26 71.71
DV3 717145177.53 17 440 34 0.04 29.27 70.69
DV4 711156664.84 21 763 42 0.03 28.92 71.05
DV5 713030456.73 17 525 34 0.01 28.91 71.08

LWV1 693585938.08 13 361 26 0.00 26.69 73.31
LWV2 689887229.76 16 414 32 0.00 25.46 74.54
LWV3 694491197.06 17 555 34 0.00 26.45 73.55
LWV4 691217524.44 15 405 30 0.00 25.86 74.14
LWV5 692841574.63 14 435 28 0.00 26.29 73.71
LDV1 700641441.37 17 464 34 0.00 27.73 72.27
LDV2 705779582.41 15 571 30 0.00 27.95 72.05
LDV3 699731192.17 17 463 34 0.04 25.61 74.35
LDV4 703307059.40 12 244 24 0.00 28.73 71.27
LDV5 703804593.78 16 443 32 0.00 27.63 72.37

M1 705944101.51 12 303 24 0.00 28.79 71.21
M2 701134559.45 11 256 22 0.00 27.51 72.49
M3 710613595.89 17 512 34 0.00 28.92 71.08
M4 699706556.33 15 417 30 0.00 27.89 72.11
M5 701073419.76 15 366 30 0.00 26.93 73.07

There is little effect of variance on the optimal solution value, with the exception

of low wind variance in which case the optimal value was lowered slightly. As shown

in Table 13, the optimal configuration of system changes with variance. In particular,

high wind variance impacts the percent energy from various sources. This observation
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could be explained by the introduction of a storage device in the configuration of

the system. As a direct result, the percentage of demand met by green energy is

significantly higher than the other cases (with the exception of WV5). This indicates

that when there is enough wind at a higher speeds, it is worth while to store the

excess energy. High variance in demand does not change the mixture of energy

sources. Interestingly, local energy production is utilized in the presence of high

demand variance. This indicates that the local generator will be used as the backup

to mitigate the impact of variance. Overall, comparing variances in demand and

wind, the latter one has more significant impact on system design.

Table 14: Average Values of Effect of Variance by Data Type

Dataset Obj. Val. Its. # Feas. # Opt. % Local % Line % Green
Type Cuts Cuts
WV 707417400.92 20.8 402.4 41.6 0.00 34.29 65.71
DV 712535286.53 16.8 512.4 33.6 0.02 27.95 72.03

LWV 692404692.79 15.0 434.0 30.0 0.00 26.15 73.85
LDV 702652773.83 15.4 437.0 30.8 0.01 27.53 72.46

M 703694446.59 14.0 370.8 28.0 0.00 28.01 71.99

Datasets TW1-TW5, TD1-TD5, HW1-HW5, and HD1-HD5 were used to examine

the effects of rescaling the demand data and wind speed data on the optimal config-

uration of the energy system. Table 15 shows the results of these trials, and Table

16 provides the average values with respect to dataset type. Doubling the initial

wind speed data results in a significant cost savings and increases green generation.

Doubling the initial demand data creates variability in the optimal system configu-

ration, though renewable energy tends to remain a significant portion of generation

as reflected in Table 16. When demand is low, the transmission line could provide an

economic advantage. Nevertheless, with demand increases, renewable energy gener-

ation facilities will become economically beneficial. In fact, this benefit is clearer as

demand increases.
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Table 15: Effects of Rescaling on Optimal Solution

Dataset Obj. Val. Its. # Feas. # Opt. % Local % Line % Green
Cuts Cuts

TW1 489385804.37 15 419 30 0.00 11.68 88.32
TW2 487143119.92 15 403 30 0.00 11.89 88.11
TW3 487332862.21 14 438 28 0.00 11.39 88.61
TW4 485731271.35 8 192 16 0.00 11.58 88.42
TW5 489612058.43 19 692 38 0.00 11.73 88.27
TD1 1025436900.65 21 302 42 0.00 18.73 81.27
TD2 1026781075.16 23 391 46 0.00 99.58 0.42
TD3 1018100784.25 20 318 40 0.00 19.21 80.79
TD4 1021423266.13 20 351 40 0.00 17.91 82.09
TD5 1032086992.68 19 336 38 0.00 99.93 0.07
HW1 724589905.39 10 240 20 0.10 99.90 0.00
HW2 720368367.77 6 144 12 0.04 99.96 0.00
HW3 722067291.05 12 216 24 0.05 99.95 0.00
HW4 724059893.31 9 160 18 0.05 99.95 0.00
HW5 726309583.98 10 232 20 0.05 99.95 0.00
HD1 385781244.25 8 320 16 0.00 100.00 0.00
HD2 385084899.26 8 320 16 0.00 100.00 0.00
HD3 383586693.10 9 384 18 0.00 100.00 0.00
HD4 385436764.32 9 320 18 0.00 100.00 0.00
HD5 384947960.05 12 512 24 0.00 100.00 0.00
M1 705944101.51 12 303 24 0.00 28.79 71.21
M2 701134559.45 11 256 22 0.00 27.51 72.49
M3 710613595.89 17 512 34 0.00 28.92 71.08
M4 699706556.33 15 417 30 0.00 27.89 72.11
M5 701073419.76 15 366 30 0.00 26.93 73.07

Table 16: Average Values of Effect of Rescaling by Data Type

Dataset Obj. Val. Its. # Feas. # Opt. % Local % Line % Green
Type Cuts Cuts
TW 487841023.26 14.2 428.8 28.4 0.00 11.65 88.35
TD 1024765803.77 20.6 339.6 41.2 0.00 51.07 48.93
HW 723479008.30 9.4 198.4 18.8 0.06 99.94 0.00
HD 384967512.20 9.2 371.2 18.4 0.00 100.00 0.00
M 703694446.59 14.0 370.8 28.0 0.00 28.01 71.99

Finally, the numerical study shows that the changes in the magnitudes of wind or

demand changes the computational complexity as well. The larger the magnitude of

demand (or wind), the larger the number of Benders’ iterations required.
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3.4.4 Additional Insights

It is to be expected that the yearly average wind speed could provide some insight

to the expected number of wind turbines to purchase (if any). To explore this, wind

scenarios were eliminated from dataset M1. The wind in every time slot was then

replaced with values ranging from 1 to 18 for every season and scenario. The problem

defined by (3.1)-(3.14) was solved for each wind speed from 1 to 18. Figure 7(a) shows

the number of wind turbines purchased in the optimal solution versus wind speed. In

Figure 7(b), the percent of green, line, and local energy (as defined in section 3.4.3)

in the optimal solution are given as a function of wind speed. These figures indicate

there is a critical wind speed that determines whether wind turbines are purchased.

Additionally, there is a transition from energy delivered by the transmission line to

energy delivered by the wind farm.
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Figure 7: Effects of Average Wind Speed on Optimal Solution

3.5 Conclusions and Future Research in Energy

In this chapter, we developed a stochastic mixed integer programming model to

determine the optimal configuration of a hybrid system consisting of a renewable

energy facility, storage device, long distance transmission lines, and a local energy

facility. Additionally, an efficient algorithm utilizing Benders’ decomposition was
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created. It was found that the algorithm outperforms a solver (Gurobi) consistently

for all problem sizes tested. Although the model was applied to wind energy, it

is applicable to other forms of renewable energy such as solar and tides. To the

best of our knowledge, this is the first time that the comprehensive hybrid system

configuration problem is modeled by a stochastic integer program and solved by an

efficient algorithm. Possible areas for future work include expanding the model to

consider multiple renewable sources simultaneously, the unit commitment problem

for local generator(s), and allowing construction at different times in the planning

horizon along with associated lead times.
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4 Palliative Chemotherapy Planning

In this chapter, a process for determining the optimal sequence of treatment de-

cisions for palliative chemotherapy in late stage breast cancer patients is described.

This chapter is organized as follows: we begin with an introduction to breast can-

cer including information on the staging process and treatment options, Section 4.2

describes the process by which patient data was analyzed in order to link patient at-

tributes to response to treatment, next we describe a Markov decision process model

for palliative chemotherapy in Section 4.3, and finally the chapter concludes with a

discussion of the implications of this work as well as future research directions.

4.1 Introduction to Breast Cancer

Cancer is a term that describes a group of diseases. These diseases are all char-

acterized by the presence of abnormal cells in the body that divide without control

and invade other tissues. Broadly speaking, there are five categories of cancer:

1. Carcinoma - cancer that begins in the skin or in tissues that line or cover

internal organs.

2. Sarcoma - cancer that begins in bone, cartilage, fat, muscle, blood vessels,

or other connective or supportive tissue.

3. Leukemia - cancer that starts in blood-forming tissue, such as the bone

marrow, and causes large numbers of abnormal blood cells to be produced

and enter the blood.

4. Lymphoma and myeloma - cancers that begin in the cells of the immune

system.
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5. Central nervous system cancers - cancers that begin in the tissues of the

brain and spinal cord.

Tumors, on the other hand, are clusters of abnormal cells in the body. Not all

tumors are cancerous. Cancerous tumors are known as malignant, while noncancerous

tumors are referred to as benign. Certain types of cancer do not form tumors. For

example, in leukemia the abnormal cells do not cluster but rather travel throughout

the bloodstream.

As of January 1, 2008, nearly 12 million Americans had been diagnosed with cancer

at some point in their life [34]. That is approximately 3.8% of the total population.

Nearly a quarter of these individuals were women diagnosed with breast cancer [34].

Breast cancer most commonly develops in either the inner lining of milk ducts or the

lobules that supply the ducts with milk. It is referred to as either a ductal or lobular

carcinoma depending on the tissue of origin. Once cancer develops in the breast, it

can be carried to other parts of the body through the transmission of cancer cells that

first are passed to lymph nodes through lymph vessels in the breast. From the lymph

nodes, it is possible for cancer cells to enter the bloodstream and be transferred to

other tissues in the body.

Breast cancer is classified depending on the progress of the disease. By establishing

the primary tumor characteristics (T), nearby lymph node involvement (N), and the

metastatic status (M), the progress of the disease is determined [73]. Once the disease

is classified by the T, N, and M categories, it is put into a stage grouping, commonly

referred to as the stage. There are four stages, three of which have subcategories,

which are I, IIA, IIB, IIIA, IIIB, IIIC, and IV. An explanation of these classifiers

and their relationship to the stages is given in Table 17. One common measure of

the severity of these stages is the 5-year survival rate. This is the proportion of

patients that live at least five years from date of diagnosis. Table 18 provides the

5-year survival rate by stage and the proportion of the breast cancer by regional
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involvement. Notice that stage IV patients have an extremely low 5-year survival

rate, which is the reason we focus our attention on this group.

Table 17: Notation for Classification of Breast Cancer into Stages

Stage
Class Cat. Characteristics I IIA IIB IIIA IIIB IIIC IV

T

X Primary tumor cannot be assessed

√ √

0 No evidence of primary tumor
is Carcinoma in situ

√

1 Tumor is 2 cm or less across
√

X

2
Tumor is more than 2 cm but not

more than 5 cm across
X

√

3 Tumor is more than 5 cm across X
√

4
Tumor of any size growing into the

chest wall or skin - includes
inflammatory breast cancer

√

N

X
Nearby lymph nodes cannot be

assessed

√

0
Cancer has not spread to nearby

lymph nodes

√
X X

1

Cancer has spread to 1 to 3 axillary
(underarm) lymph node(s), and/or
tiny amounts of cancer are found in

internal mammary lymph nodes
(those near the breast bone) on

sentinel lymph node biopsy

√ √ √

√

2

Cancer has spread to 4 to 9 lymph
nodes under the arm, or cancer has

enlarged the internal mammary
lymph nodes

√
, X

3

involvement in at least 10 axillary
lymph nodes or in lymph nodes above
or under the clavicle with at least one
area larger than 2mm in either case

√

M

X
Presence of distant spread

(metastasis) cannot be assessed

0
No distant spread is found on x-rays
(or other imaging procedures) or by

physical exam

√ √
, X

√
, X

√
, X

√ √

1 Spread to distant organs is present
√

Table 18: Distribution of the Stages of Breast Cancer

Stage 5-year Survival Rate [74] Proportion [34]
I 88%

60%IIA 81%
IIB 74%
IIIA 67%

33%IIIB 41%
IIIC 49%
IV 15% 5%

Once a patient’s disease is staged, treatment is determined. There are five types

of treatment for breast cancer: surgery, targeted therapy, radiation therapy, hormone
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therapy, and chemotherapy [32]. Surgery can be breast-conserving, which consists of

lumpectomy where a tumor is removed along with a small amount of surrounding

healthy tissue or partial mastectomy where a portion of the breast is removed, or

it can be a total mastectomy, where the entire breast is removed. Targeted therapy

involves the use of drugs or substances that attack cancerous cells without harming

normal cells.

Before discussing the other treatment options, it is necessary to define the terms

neoadjuvant, adjuvant, and palliative. Neoadjuvant care is treatment given prior to

primary care to reduce tumor load. Adjuvant care is treatment given after primary

treatment to reduce the risk of relapsing. Last, palliative care is treatment given

without curative intent in order to reduce tumor load and increase the quality of life

in terminal patients. We now return to a description of treatment options.

Radiation therapy uses of high energy X-rays or other types of radiation to kill

cancer cells or keep them from growing. Hormone therapy is a treatment that removes

hormones or blocks their action and stops cancer cells from growing. Chemotherapy

is treatment that uses drugs to stop the growth of cancer cells, either by killing the

cells or by stopping them from dividing. These three treatments can each be given

as neoadjuvant, adjuvant, curative, or palliative care. Table 19 presents the typical

treatment options by stage, where “Neo/Adjuvant” indicates treatment can be either

neoadjuvant or adjuvant, “Primary” indicates this is the primary treatment intended

to eradicate the disease, and “Curative” indicates systemic treatment intended to

eliminate the disease. Targeted therapy is not mentioned in the table as it is a

treatment option for all stages, however it is dependent on the disease properties. For

instance, there is a type of breast cancer known as “triple-negative.” For this type of

breast cancer, there is a type of targeted treatment that uses PARP inhibitors, which

is a substance that blocks key enzymes in cancer cells to prevent cellular reproduction

[32].
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Table 19: Treatment Options for Breast Cancer Patients

Stage Surgery
Hormone Radiation Chemo-
Therapy Therapy therapy

I Primary Neo/Adjuvant Neo/Adjuvant Neo/Adjuvant
II Primary Neo/Adjuvant Neo/Adjuvant Neo/Adjuvant

IIIA Primary Neo/Adjuvant Neo/Adjuvant Neo/Adjuvant
IIIB Yes Curative As Needed Curative
IIIC

Primary Neo/Adjuvant Neo/Adjuvant Neo/Adjuvant
Operable

IIIC
No Curative As Needed Curative

Inoperable

IV Yes
Curative/

As Needed
Curative/

Palliative Palliative

Although stage IV breast cancer can be treated with curative intent, this is gener-

ally not the case since the 5-year survival rate is only 15%. Thus, treatment for this

stage is often systemic and can last for many years. Given that the human mind can

only track the effects of decisions so far into the future and the fact that each patient

reacts differently to chemotherapy, it is of vital importance to provide oncologists with

tools that incorporate the long-term effects and randomness associated with sequen-

tial treatment decisions like those present in palliative chemotherapy. This research

aims to develop such a mechanism using stochastic optimization with information

garnered from the identification of patient characteristics that can be used to predict

responsiveness to treatment.

4.2 Predicting Patient Response to Chemotherapy

To improve the quality of long-term chemotherapy care, it is necessary to classify

patients according to how they will respond to treatment. In addition, given that

chemotherapy works by killing cells that divide rapidly, including healthy cells that

grow rapidly under normal circumstances, such as bone marrow cells, digestive tract

cells, and hair follicles, it is of utmost importance to administer chemotherapy in a

manner which minimizes the risk to the patient. To that end, this research aims to
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develop a model for predicting a stage IV breast cancer patient’s response to palliative

chemotherapy based on information available in typical private oncology practice’s

electronic medical records (EMRs).

A line of chemotherapy, also known as a protocol or regimen, is defined by a

combination of drugs, dosage levels, a fine administration schedule, and a coarse

administration schedule. This coarse schedule consists of cycles which dictate the

beginning of each fine administration schedule. Ideally, these cycles are timed to

attack cancer cells when they are most vulnerable.

There are periods in between cycles that allow patients to recover from treatment.

At the beginning of each cycle, the patient must be evaluated to determine the best

course of action. That is, continue current line, switch to a new line, or stop treatment

altogether. For neoadjuvant and adjuvant chemotherapy, which are typically used for

early stages of breast cancer, a fixed number of cycles are administered, so the toxicity

effects, i.e., adverse reaction of healthy cells to treatment, are less of a concern than

in long-term treatment. Thus a patient receiving (neo)adjuvant chemotherapy will

typically finish all prescribed cycles, unless there is an extreme adverse reaction to

the treatment. On the other hand, the decision made at the beginning of each cycle

of palliative chemotherapy requires a more careful analysis.

Recall that palliative chemotherapy is reserved for patients with a terminal di-

agnosis, this is usually only stage IV. Thus, the purpose is to improve the patient’s

quality of life by reducing tumor load, but is not intended to eliminate the disease.

At this stage, palliative chemotherapy will be given as long as the patient’s benefits

out weight the side effects. The benefits of treatment are measured through tumor

response to treatment as defined by the RECIST guidelines [22], which involves mea-

suring present tumors and determining the relative change in size.

Given that this is a disease-oriented definition of response, it does not capture

any information about patient response to treatment. Therefore, we defined response
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to treatment from a clinical standpoint to incorporate both the disease and patient

responses. For example, due to the nature of chemotherapy, a patient may suffer

from toxicity in which case the patient would be considered as not responding to

treatment. Based on both, the disease and the patient response, treatment would be

stopped for one of two reasons: i) cancer is progressing with current line of treatment

(i.e., negative disease response); ii) the patient is experiencing significant side effects

from the current line of treatment (i.e., negative patient response).

According to a leading oncologist, if a patient remains on a line of treatment for at

least two months, neither of the above items occurred [20]. Based on this, we adopt

the convention that if first-line chemotherapy lasts at least 50 days, then this would

be classified as a positive response to treatment. From this point, patient response

to treatment is based on this definition.

This research focuses on identifying a subset of commonly collected vital signs

and laboratory results (collectively referred to as labs) that can be used to predict a

patient’s response to chemotherapy. This is accomplished through the use of logistic

regression.

Logistic regression is a powerful tool for predicting dichotomous outcomes as a

function with multiple inputs [29]. It can be particularly useful for predicting the

disease state of a patient as well as determination of yes/no decisions [7]. Logistic

regression has been a successful tool for classifications relating to cancer. In [18],

Chhatwal et al. developed two models for predicting breast cancer risk based on the

descriptors of the National Mammography Database. Moreover, the factors impacting

patient mortality and transferring were explored in [78] by Zhang et al. through the

use of logistic regression.

This work will provide insight to how late-stage breast cancer patients react to

long term treatment. Due to the low 5 year survival rate for stage IV breast cancer

patients, approximately 15% [33], adding to this body of knowledge is of substantial

60



importance. Moreover, the intent is to build on this work by developing tools to

improve the quality of palliative care through the use of stochastic modeling (see

Section 4.3).

4.2.1 Methods for Predicting Response to Chemotherapy

For this research, data were provided by a large medical oncology practice in

the mid-west. EMOL Health [27] manages the database that houses this practice’s

EMRs as well as text files of dictations prepared by the physicians. The company

has developed a number of tools to extract information from these dictations; using

these tools and data from the EMR a total of 1253 potential stage IV breast cancer

patients were selected for our study. This exploratory research focuses on stage IV

patients where chemotherapy is the sole method of treatment. Additionally, at the

practice supplying data, stage IV patients received a standard line of chemotherapy

(i.e., a standard dose on a standard schedule).

Patient selection was done in a two-step process described in Table 20. This

assumes the patient has only one type of cancer at a time.

Table 20: Process for Selecting Patients for Study

Line Description of Process
1 Step 1
2 Select patients with any history of breast cancer by checking for an
3 ICD-9 code of 174.X in the EMR
4 Step 2
5 Of those patients selected in Step 1, select those meeting any of the
6 following criteria:
7 1. Maximum stage entered by the doctor in the EMR was “IV”
8 2. An ICD-9 code indicating cancer has metastasized to another
9 location is present
10 3. Information in the doctor’s dictations indicated the cancer
11 had metastasized to another location

Patients that received any chemotherapy were selected from the group of 1253

potential stage IV patients; this resulted in 471 patients remaining. From this group,

we needed to identify the true first-line of chemotherapy treatment (at stage IV).

61



Since the treatment of stage IV breast cancer does not include adjuvant therapy, any

adjuvant therapy had to be identified and removed. This is due to the fact that, as

noted in Section 4.2, patients nearly always finish adjuvant therapy. Since there is

no field in the EMR to identify if a line a therapy is adjuvant, all commonly used

adjuvant lines of therapy were removed.

A list of the commonly used adjuvant therapy lines at the practice that provided

the data for this study is given in Table 21. A total of 209 patients remained after

removing all adjuvant lines of therapy from the stage IV patients that received any

chemotherapy. The first treatment a patient in this group received is considered to

be a true first-line of treatment since all possible lines of neoadjuvant and adjuvant

treatment were removed.

Table 21: List of Common Adjuvant Therapy Lines

Number Medications
1 Adriamycin, Cytoxan, Taxol
2 Adriamycin, Cytoxan, Taxotere
3 Adriamycin, Cytoxan
4 Taxotere, Carboplatin, Herceptin

The number of labs reported in varying frequencies for each patient totaled 47.

Due to the sparseness of data for certain labs, some were eliminated from considera-

tion. Specifically, labs reported less than 50% of the time were excluded. After this

exclusion, 29 labs were considered in the analysis, see Appendix A for a list of these

labs.

Before describing the process of model creation, we digress to discuss the format

of the data. EMRs are designed to store large amounts of data effectively and this

storage method may not be conducive to statistical analysis and modeling. Therefore,

it is vital that an efficient method for re-formatting EMR data be available for those

working with real EMR data. By working closely with a company that understands

oncology, oncology data, and are experts on EMR data extraction (EMOL Health
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in our case), we were able to understand the format that is used to store data and

reasons for using said format. Specifically, lab results are stored in the following

format (Patient ID, Lab Date, Lab Value, Lab Name). After re-formatting the data,

model construction was performed.

A variation of k-fold cross validation was used to create three consensus models

for predicting a patient’s responsiveness to therapy based on a subset of commonly

recorded lab results. This variation is designed to exploit as much of the data as

possible since our dataset is relatively small. Table 22 outlines this procedure.

We now outline the impacts of each step in the process of model construction in

one sample run, which was coded in R [63]. After Step 0, there were 96 patients

with all 29 lab results present. Six folds were used in Step 1 (K = 6 and |N i
0| = 16).

After Step 1, L0 consisted of 4 labs; AST, PLT, Temp (F), and Total Protein. Step

3 resulted in 104 patients with all labs from L0 present. In Step 3, 8 folds were used

with size 13 (K = 8 and |N i
1| = 13). The predictors used in the eight multivariate

regressions are given in Table 23 as well as the accuracy of each model against the

corresponding test set. Accuracy is defined by 1
N

∑N
j=1 |yi − ŷj|, where yj is the jth

observed outcome and ŷj the jth predicted outcome. Based on the results given in

Table 23, it is evident that changes in PLT, Temp (F), and Total Protein influence

a patient’s probability of successful first-line treatment.

Three methods for combining the k models generated by the cross-validation were

considered. These consensus models, created in Step 4, were obtained by averaging

the regression models found in Step 3 in various ways. Recall the classifier for a

logistic regression is obtained by the following formula

y = R

(
1

1 + e−z

)
, where z = β0 + β1x1 + · · ·+ βnxn. (4.1)

63



Table 22: Procedure for Model Construction

Line Description of Action
1 Let N and L be the initial set of patients and predictors (labs)
2 Step 0
3 Select the subset of patients, N0, from N with all predictors
4 in L present
5 Step 1
6 Divide N0 into K subsets (folds) of equal size, N1

0 , . . . , N
K
0

7 for i = 1, . . . , K
8 for ` ∈ L
9 Run a univariate regression with ` as the predictor and
10 N0 −N i

0 the training set
11 if p-value for ` is less than 0.05: Add ` to L0

12 end for
13 end for
14 Step 2
15 Select the subset of patients, N1, from N with all predictors
16 in L0 present
17 Step 3
18 Divide N1 into K subsets (folds) of equal size, N1

1 , . . . , N
K
1

19 for i = 1, . . . , K
20 for ` ∈ L
21 Run a univariate regression with ` as the predictor and
22 N1 −N i

1 the training set
23 if p-value for ` is less than 0.05: Add ` to Li1
24 Run a multivariate regression with Li1 as the set of predictors,
25 N1 −N i

i the training set, and N i
1 as the test set.

26 Call the resulting model Mi

27 end for
28 end for
29 Step 4
30 Create a consensus model M using {Mi}Ki=1

In (4.1), R(−) is the rounding function, the predictors are x1, . . . , xn, and the model

coefficients β0, . . . , βn are estimated by maximizing the log-likelihood for a given set

of observations.

Consensus model 1 (CM1) was created by averaging the coefficients of the logistic

regression models found in Step 3. Specifically, letting (βi0, . . . , β
i
n) be the coefficients
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Table 23: Sample Results from Multivariate Regressions

Model Variables Coefficient p-Value Accuracy

1
Intercept 1.898± 1.384 0.0067

0.6
PLT −0.00504± 0.00457 0.0289

2
Intercept 2.323± 1.459 0.0016

0.5
PLT −0.00578± 0.00484 0.0180

Intercept −7.310± 6.185 0.0188
3 PLT −0.00722± 0.00512 0.0053 0.3

Total Protein 1.454± 0.937 0.0021
Intercept −4.084± 5.231 0.1209

4 PLT −0.00595± 0.00476 0.0132 0.8
Total Protein 0.874± 0.758 0.0224

5
Intercept 66.436± 65.841 0.0459

0.3
Temp (F) −0.670± 0.671 0.0482
Intercept −3.942± 5.312 0.1401

6 PLT −0.00625± 0.00484 0.0107 0.5
Total Protein 0.895± 0.775 0.0221

7
Intercept −4.360± 4.966 0.0806

0.5
Total Protein 0.701± 0.706 0.0483

8

Intercept 77.049± 71.915 0.0340

0.3
PLT −0.00629± 0.00509 0.0143

Temp (F) −0.873± 0.752 0.0216
Total Protein 1.525± 0.913 0.0009

from model i in Step 3, define (β0, . . . , βn) for CM1 by

βk =
8∑
i=1

βik
8
, for k = 0, . . . , n.

Letting (xj1, . . . , x
j
n) be the set of observed predictors for patient j, then the predicted

outcome from CM1 for patient j is given by

ŷj1 = R

(
1

1 + e−zj

)
, where zj = β0 + β1x

j
1 + · · ·+ βnx

j
n.

Consensus model 2 (CM2) was generated by averaging the probabilistic outcome of
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the logistic regression models then rounding the result. That is,

ŷj2 = R

 8∑
i=1

1

8
(

1 + e−z
j
i

)
 , where zji = βi0 + βi1x

j
1 + · · ·+ βinx

j
n.

Finally, consensus model 3 (CM3) was generated by averaging the classifiers from the

logistic regression models:

ŷj3 = R

(
8∑
i=1

1

8
R

(
1

1 + e−z
j
i

))
, where zji = βi0 + βi1x

j
1 + · · ·+ βinx

j
n.

The performance of these models was compared to determine the best method for

creating a single classification model from the k models generated during the cross

validation procedure.

4.2.2 Prediction Model Results and Conclusions

Steps 3 and 4 in Table 22 were iterated 100 times. At the end of each iteration,

the consensus models were used to predict the outcome for the set of 104 patients

found in Step 3 of model construction. The accuracy for each was recorded along with

the sensitivity (true positive prediction rate) and specificity (true negative prediction

rate). The average and half-width of the 95% confidence interval for each performance

measure are given in Table 24 for each of the consensus models.

Table 24: Summary of Performance of Consensus Models

Model Accuracy (%) Sensitivity (%) Specificity (%)
CM1 71.96± 0.22 91.79± 0.51 36.05± 0.59
CM2 71.87± 0.22 91.60± 0.50 36.14± 0.53
CM3 71.03± 0.15 88.70± 0.25 39.05± 0.36

Since the accuracy of CM1 was superior to that of CM2 and CM3 (p = 0.02

and p < 0.001, respectively), the remainder of our discussion uses only this model.

Although the model had an average sensitivity above 90%, the specificity performance

was low. This indicates conservative model performance in the sense that a patient is
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classified as responding to treatment only if there truly is a high chance for success.

Thus, we can be confident in treating a patient if the model indicates they will

respond well to treatment. On the other hand, if the model indicates the patient will

not respond well to treatment, then the patient should be more carefully examined

before beginning treatment. These results are promising given the small dataset and

restricted number of covariates available for consideration.

In this section, we discussed the process of extracting data from an EMR at a

private oncology practice in order to create a model for predicting a stage IV breast

cancer patient’s response to chemotherapy. In particular, three models were con-

structed to predict a stage IV breast cancer patient’s response to first-line treatment.

Based on the results given in Table 23, we can see that as PLT or Temp (F) de-

crease, probability of successful first line treatment increases while an increase in

Total Protein causes an increased probability of success. This means that within

the range of observed values, it is desirable for a patient to have high Total Protein

and low PLT and Temp (F).

Although the accuracy of our best model was only 72%, this is in fact a promising

result. We were able to extract valuable information from a relatively small dataset,

indicating that further study is merited. This will include exploring more charac-

teristics of patients as predictors in our model. For instance, it is indicated in [39]

and [78] that various comorbities, diseases or disorders present in addition to the

primary disease, impact a patient’s response to chemotherapy. This data is often

available in the doctor’s dictations, but tools must be developed to accurately extract

it. Additionally, increasing the population size would allow for more robust modeling

techniques to be used, thereby improving model performance. It would also be ben-

eficial to validate our model’s performance with tumor size data and using RECIST

criteria as the measure of a patient’s response to treatment.
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4.3 Palliative Chemotherapy as a Markov Decision Process

This section outlines the process of modeling palliative chemotherapy as a Markov

decision process (MDP). The findings from Section 4.2 serve a platform for establish-

ing the state space and reward function of the MDP.

4.3.1 Optimization Models in Chemotherapy

Optimization of the within cycle administration schedule has received a good

deal of attention in the literature, however there is currently no research addressing

long term planning for chemotherapy. This work is worth explaining for two reasons.

First, it provides insights into modeling diseases, although the methodology used here

is not directly applicable. Second, since such a body work exists for the within cycle

treatment schedule, it is justified to ignore this portion of treatment while attempting

to determine the best long term treatment schedule.

The basic building block for most of this research is pharmacokinetic models

coupled with cell growth models. Pharmacokinetics is the study of determining an

external substance’s progression in a living organism. As applied to cancer treatment,

this means tracking the progression of chemotherapy drugs throughout the cells of

the body and any tumors that are present.

Bellman developed mathematical models for simple pharmacokinetics by viewing

the body as being composed of regions called compartments and determining the

concentration of a substance as a function of time in each compartment [10]. These

compartments can be real from a physiological stand point, e.g. blood, ear, or bones, or

they can be mathematical constructs that make model formulation more convenient.

The movement of a substance between regions is modeled using differential equations

(difference equations are used if time is treated discretely).

Consider the one compartment example by Bellman from [10]. Let x(t) be the

concentration of a substance at time t in the compartment, f(t) be the rate of infusion

of the substance into the compartment, and assume the rate at which the substance
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disappears from the compartment is proportional to the amount of the substance

present in the compartment. If the compartment has a volume v and the fraction

of reduction in the concentration level for a small amount of time, dt, is given by

k dt, where k is a constant, then the system can be described by v x(t + dt) =

(1 − k dt)v x(t) + f(t)dt. Assuming x(t) is “well-behaved,” for example it can be

expanded as a Taylor series, then this can be re-written as the differential equation

v x′(t) = −k v x(t) + f(t). Given an initial concentration, a closed form solution can

easily be found;

x(t) = x(0)e−kt +

∫ t

0

e−k(t−s)f(s)

v
ds.

Martin and Teo combined Bellman’s work of modeling substance concentration

in compartments with cell growth models [44]. Cell growth models are used to es-

timate the growth rate of a population of cells. For tumor growth, the objective is

to determine P (t), the cell population of a tumor at time t, assuming the tumor has

an initial cell population of P0, where P satisfies P ′(t) = F (P (t)) and P (0) = P0.

These equations say that the growth rate of a tumor is equal to some function of the

current cell population. The function F (−) is referred to as the growth function. By

estimating a tumor’s reaction to the concentration of chemotherapy drugs, the cell

population of the tumor is then modeled subject to cell death from chemotherapy

and natural cell replication. This work has been extended over the years to include

additional compartments [56], optimizing drug doses given a treatment schedule [31],

and cell-cycle specific treatments [2].

Although pharmacokinetic models coupled with cell growth models have a number

of strengths, such as providing very specific information about cellular response to

treatment since modeling is done on this level and including constraints regarding

toxicity levels by adding compartments corresponding to healthy tissues in the body,

these are deterministic models. This means that once the parameters of the model

are chosen, a given treatment scheme (schedule/dosage) always provides the same
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result. Thus, there is an assumption that every patient will have the same reaction to

treatment, which is certainly not the case. In spite of this restriction, this modeling

does provide a solid framework for the within cycle treatment scheduling. Therefore,

it is justified to turn attention to optimizing long-term treatment planning.

4.3.2 Markov Decision Processes in Medical Modeling

Before describing the process of modeling palliative chemotherapy as a MDP, a

brief overview of MDPs is provided along with previous medical applications. A MDP

consists of a collection of states that describe a system, actions that can be taken by

a decision maker along with rewards associated with those actions, the probability

the system transitions to a particular state subject to the current state and an action,

and a set of decision epochs [62]. They are applicable to cases where the transition

probabilities and reward function are history independent, meaning only information

regarding the current state is needed to determine the transition probabilities and

rewards. Many medical treatment decisions are sequentially made and are subject to

uncertainty. Such decision making environments are well suited to be modeled with

MDPs [69].

Successful applications of MDPs in medical decision making include drug infusion

plans for the administration of anesthesia [30], optimal acceptance for kidney trans-

plants [3], cost-benefit analysis of mammograms and treatment options in breast

cancer [35], and optimal acceptance of living-donor and cadaveric liver transplants

[4, 5]. Although, MDPs are well suited for modeling medical treatment planning,

there are disadvantages to using them. As the size of the problem grows, MDPs

become computationally intractable [69]. This means that using a large number of

dimensions to describe a patient’s state can cause the problem to be extremely dif-

ficult to solve, while it may be necessary to use many dimensions in the state space

in order to capture the true complexity of the treatment process in question. The

70



other challenge in applying MDPs to healthcare treatment decision making is the

availability and reliability of data.

4.3.3 Markov Decision Process Model for Palliative Chemotherapy

To solve the problem of determining the optimal sequence of treatment decisions

for a late stage breast cancer patient receiving palliative chemotherapy, a discrete-

time, infinite-horizon, discounted MDP model is formulated. The objective of the

model is to maximize the patient’s expected predicted response to treatment as de-

fined in Section 4.2 and [15]. There are three assumptions made in this model:

1. The “best” protocol has been selected by the physician and the patient will

remain on this protocol for the duration of treatment.

2. Stage IV breast cancer is terminal.

3. The transition probabilities and reward function are stationary.

The first assumption implies that we do not consider altering the medications a patient

is receiving, so the only decision options are treat or don’t treat. We note that this is

a strong assumption and in reality oncologists may adjust the medicines and doses to

fit a patient’s needs. Incorporating these options provides future research material.

Assumption two means that a patient remains in treatment until he/she dies. Since

the 5-year survival rate for stage IV breast cancer is 15%, this is not always the case,

but it is plausible. Finally, assumption three allows us to use steady state equations

when solving the model.

The notation for the model is now presented; a summary is provided in Table 25.

Let N = {1, . . . ,∞} be the set of decision epochs in the model, S be the patient state

space, and A be the action space. For a ∈ A, Ta is the transition probability matrix

with a single entry given by Ta(s, s′), where s, s′ ∈ S. For s ∈ S and a ∈ A, let V (s)

be the value of being in state s and r(s, a) the reward for taking action a while in
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state s. Since this process is modeled as an infinite horizon problem with stationary

transition probabilities and reward function, the value function for a given state can

be written as

V (s) = max
a∈A

{
r(s, a) + β

∑
s′∈S

Ta(s, s′)V (s′)

}
(4.2)

where β ∈ (0, 1) is the discount factor [62]. Letting V∗ = (V ∗(s))s∈S be the collection

of solutions to (4.2), our objective is to determine the optimal policy, a∗ = (a∗(s))s∈S

for this problem.

Table 25: Notation for Palliative Chemotherapy MDP Model

N time periods, {1, . . . ,∞}
S patient state space
st patient state at time t
A action space, {treat, don′t treat}
at action at time t
r(s, a) reward for action a when in state s
V (s) value of being in state s
β discount factor
Ta transition probability matrix for action a

4.3.4 Model Data

In the MDP model for palliative chemotherapy, the state space and reward func-

tion were selected based on the analysis conducted in Section 4.2 and [15]. Of the

nearly 50 labs reported (at various frequencies), it was found that only three were

required to predict a patient’s response to first-line chemotherapy: platelet count

(PLT), total protein (Total Protein), and temperature (Temp (F)). Further analy-

sis showed that after discretizing these labs a four levels, using only PLT and Total

Protein produced similar accuracies (71.8% average accuracy in Section 4.2 versus

68% for two discrete variables). Based on this, the state space selected is

S = {PLT level, Total Protein level, Status}
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where the possible levels for both PLT and Total Protein are 0, 1, 2, 3, and NA, and

Status can be either Alive or Dead. Not all combinations of PLT, Total Protein,

and Status are possible. In particular, if Status = Dead then PLT and Total

Protein are both NA. Also, if Status = Alive then at most one of PLT and Total

Protein can equal NA. With these restrictions, a patient has a total of 25 possible

states. Based on assumption 1 of the model, the set of possible actions consists of

{Treat, Don′t Treat}. That is, we do not consider changing protocols as a possible

action.

In this model, the reward function is generated in following manner. Let f : S →

(0, 1) be defined by

f (PLT, Total Protein) =
(
1 + e−β0−β1PLT−β2Total Protein

)−1
(4.3)

where βi are determined by performing a logistic regression as in [15], then define

r(s, a) as

r(s, a) =


f(s) if a = Treat

γ(1− f(s)) if a = Don’t Treat

(4.4)

with γ ∈ [0, 1]. This reward function is designed to keep patients in a state that has a

high probability of successful treatment. It should be noted that the value chosen for

γ can significantly affect the optimal policy. For instance, if γ = 0 then the optimal

strategy would be to always treat the patient. Hence, determination of this parameter

is extremely important. Note we will often write a = 1 to mean Treat and a = 0 to

mean Don’t Treat.

Finally, the transition probabilities were estimated using data from a large oncol-

ogy practice in the Midwest. Specifically, the levels of PLT and Total Protein along

with the action taken at the time of these observations were analyzed to estimate the

transition probabilities. There were 5065 observations used in this process. Presum-
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ably, the major drivers of the transitions between states are the treatment action and

random processes in the patient.

4.3.5 Solution Method and Optimal Policy

The problem was solved using policy iteration [58, 62]. For the sake of complete-

ness, Table 26 provides the details of policy iteration.

Table 26: Policy Iteration Solution Algorithm for MDP Models

Line Process Description
1 Select a policy π0, set n = 1 and value = True

2 while value
3 Compute Taπn−1

and r(s, aπn−1) for all s

4 Let Vn solve
(
I − βTaπn−1

)
V = r(S, aπn−1)

5 Let πn be the policy defined by
6 an(s) ∈ argmaxa∈S

{
r(s, a) + β

∑
s′∈S V (s′)Ta(s, s′)

}
7 if an(s) = an−1(s) for all s : value = False

8 end while

The general idea of policy iteration is to change actions based only on the current

state being considered. This process continues until the policy is consistent for all

states. This algorithm is known to converge to the optimal solution in finitely many

iterations [62].

The optimal policy and values are provided in Table 27. Recall that Action = 1

to means Treat and Action = 0 to means Don’t Treat.

The results in Table 27 confirm the suspicion that there are patient states in which

treatment should be withheld. Although there is no claim to the physiological drivers

of this, one possible explanation is that withholding treatment will allow patients to

recover from the toxic effects of chemotherapy permitting them to transition to a

state with a higher probability of successful treatment.

4.3.6 Conclusions and Treatment Insights

To assess the impact of different policies on treatment, a numeric experiment

was performed. Specifically, a pure treatment strategy was compared to the optimal
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Table 27: Optimal Policy for Palliative Chemotherapy MDP Model

State Tuple Action Value
0 {0, 0, Alive} 1 2.76
1 {0, 1, Alive} 1 2.87
2 {0, 2, Alive} 1 2.93
3 {0, 3, Alive} 1 2.95
4 {1, 0, Alive} 1 2.65
5 {1, 1, Alive} 1 2.76
6 {1, 2, Alive} 1 2.88
7 {1, 3, Alive} 1 2.99
8 {2, 0, Alive} 0 2.23
9 {2, 1, Alive} 1 2.52
10 {2, 2, Alive} 1 2.65
11 {2, 3, Alive} 1 2.91
12 {3, 0, Alive} 0 2.11
13 {3, 1, Alive} 0 2.29
14 {3, 2, Alive} 0 2.47
15 {3, 3, Alive} 1 2.54
16 {NA, 0, Alive} 0 2.43
17 {NA, 1, Alive} 1 2.64
18 {NA, 2, Alive} 1 2.81
19 {NA, 3, Alive} 1 2.41
20 {0, NA, Alive} 1 2.93
21 {1, NA, Alive} 1 2.68
22 {2, NA, Alive} 1 2.52
23 {3, NA, Alive} 0 2.38
24 {−,−, Dead} 0 0

policy shown in Tables 27. To do this, patient progression through treatment was

simulated first using the optimal policy then using a pure treatment policy and the

duration of treatment and number of treatment cycles were recorded. This was done

assuming the patient started treatment in each of the 24 living states, then repeated

100 times. Table 28 provides the impact of the two treatment policies on the duration

of treatment and the number of cycles.

The column headings of Table 28 are State which is the initial state of the simu-

lated patient, Opt. Pol. represents optimal policy and Dur./Trts. represents duration

and number of treatment cycles, and P.T. Pol. represents pure treatment policy and
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Table 28: Impact of Optimal Policy on Treatment

State Opt. Pol. P.T. Pol. State Opt. Pol. P.T. Pol.
Dur./Trts. Dur. Dur./Trts. Dur.

0 23.61 21.25 12 26.04 20.06
18.21 18.5

1 19.87 18.39 13 23.11 18.64
16.03 15.68

2 22.77 18.63 14 27.12 22.08
17.86 19.42

3 19.73 21.11 15 24.33 23.24
15.36 18.19

4 23.46 20.85 16 25.93 17.32
18.01 18.59

5 25.01 17.76 17 23.16 17.1
19.26 17.19

6 25.42 20.83 18 27.61 20.29
20.06 20.92

7 24.33 21.48 19 17.23 18.17
19.16 13.76

8 24.79 18.63 20 21.16 22.9
18.33 16.17

9 27.12 20.74 21 27.71 16.32
21.1 21.15

10 25.71 16.97 22 26.67 21.13
19.79 20.87

11 23.36 19.82 23 23.95 20.62
18.16 17.03

Dur. represents duration of treatment. Note that for the pure treatment policy the

duration of treatment equals the number of treatment cycles. In the Opt. Pol. column,

the first number is the average duration and the second number is the average number

of treatment cycles.

The most significant feature to notice is that the optimal policy provides a longer

duration of treatment with fewer treatment cycles than the pure treatment policy on

average with the exception of seed states 3, 19, and 20. The implications of this result

are actually quite significant. First, adopting the optimal policy results in longer life

for the patient based on the assumption that stage IV breast cancer is terminal.

Second, since in general less treatment cycles are needed to achieve longer life, the

overall cost of care should be less and the patient should experience less suffering.

The latter is based on the fact that chemotherapy is quite toxic, as noted in Section

4.2, and therefore has many side effects that cause patient suffering.

76



4.4 Conclusions and Future Research in Treatment Planning

Cancer is a group of complex diseases with a variety of complex treatment options,

nearly all of which are harmful to healthy tissue in addition to cancerous tissue. More-

over, for late-stage cancer patients, i.e. , stage IV, treatment is generally palliative.

One implication of this is that treatment will be long lasting. By developing treat-

ment plans that incorporate future information into current decisions, the quality of

patient care will certainly be improved. In this chapter, a framework was developed

for identifying patient attributes that are linked to patient response to treatment us-

ing clinical EMR data. The information provided by this methodology when applied

to stage IV breast cancer patients receiving chemotherapy served as the foundation

for constructing a stochastic optimization model to improve the timing of treatment

cycles. This will provide oncologist with a decision support tool while treating ter-

minally ill patients.

Some suggested directions for extending this work include: First, identifying the

physiological drivers of the patient attributes associated with response to treatment

as defined in Section 4.2 would be of great interest to the medical community. Such

an understanding could assist in the development of additional treatment options.

Second, this study focused on patients at a single practice and region. Expanding

the data used to include more practices and regions would help eliminate any bias

introduced by treatment style and regional factors. Third, it is crucial that the

models developed be validated against the medical response to cancer, the RECIST

guidelines. One possible method for this would be to pair with a research group that

has conducted clinical trials, since they would have access to complete data including

tumor response information.
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5 Concluding Remarks

In this dissertation, an effort has been made to expand the body of knowledge

pertaining to stochastic optimization. This began with an explanation of the threads

that connect the seemingly disparate areas of two-stage and multistage modeling

within the field. With these connections made clear, the task of pushing forward the

boundaries of methodology and applications of stochastic optimization was under-

taken.

The primary contributions of the work presented in this dissertation are:

1. Developing a novel solution method for CCMIPs. This class of problems

has received very little attention in the literature. Moreover, the solu-

tion method developed deviates from traditional branch and cut strategies

thereby exploiting the specific structure of the deterministic reformulation

of CCMIPs.

2. Applying stochastic modeling to the comprehensive hybrid energy system

design problem. This also led to an improved implementation of Benders’

decomposition which includes multiple cut generation strategies. In particu-

lar, the notion of maximum feasible subsystem generated cuts was extended

to a separable subproblem.

3. Developing a model to aid in long-term planning for palliative chemother-

apy. This involved identifying a methodology for linking clinical patient

data to patient response to treatment then translating this information

to a multistage stochastic decision model. More specifically, the palliative

chemotherapy treatment process was modeled as a Markov decision process.
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The information garnered from this model has the potential to provide clin-

ical oncologists with valuable information regarding patient treatment.

In spite of the impact of this research and the steps taken, there is a great deal left

to be done. More specifically, the following items will be addressed in future research:

1. Extension of the PERC Heuristic to an exact solution method through

the identification of lower bound information based on the current feasible

solution. One approach for this is to combine a relaxation technique, such

a Lagrangian relaxation, with the PERC Heuristic.

2. Extend the hybrid energy system design model to include multiple build-

ing periods. This will possibly require a revamping of the current solution

method to accommodate the new problem structure imposed by the multi-

stage nature of this extension.

3. Develop a chance constrained hybrid energy system design model. As man-

dates are passed requiring minimum usage levels for renewable energy, for

example Executive Order S-14-08 [51] in California requires 33% of energy

from renewable sources by 2020, generating capacity will need to be al-

tered. Given the stochastic nature of renewable resources, it is reasonable

to design a system that can meet such guidelines with high probability.

4. Validation of the model for predicting first line chemotherapy response in

stage IV breast cancer patients and the MDP model for palliative chemother-

apy with use of tumor response data. Such data could be obtained by

partnering with an organization that conducts clinical trials such as Moffitt

Cancer Center or the Southwest Oncology Group.

5. Expand the action space in the MDP for palliative chemotherapy to include

switching lines of therapy. This will require a large dataset in order to
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accurately estimate the transition probabilities between patient states. As

above, organizations with larger more complete datasets would be excellent

partners for this future research.

6. Attempt to identify and explain the physiological drivers of the factors

impacting response to treatment in stage IV breast cancer patients. This

will involve further collaboration with oncologists and other subject matter

experts.

These items will address a number of gaps in the literature not filled by the work

in this dissertation. Moreover, they all have results that will translate to solutions for

real problems decision makers are facing, which will ultimately improve the quality

of life for everyone. In the end, this is the true objective of the intellectual exercise

known as research. Although many will claim “knowledge for knowledge’s sake,” this

sentiment often overlooks the impact of more knowledge and its benefits to society.
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[65] A. Ruszczyński, Probabilistic programming with discrete distributions and precedence
constrained knapsack polyhedra, Mathematical Programming Series A 93 (2002),
no. 2, 195–215.

[66] G. Saharidis, M. Boile, and S. Theofanis, Initialization of the benders master problem
using valid inequalities applied to fixed-charge network problems, Expert Systems with
Applications 38 (2011), 6627–6636.

[67] G. Saharidis and M. Ierapetritou, Improving Benders’ decomposition using maximum
feasible subsystem (MFS) cut generation strategy, Computers and Chemical
Engineering 34 (2010), 1237–1245.

[68] G. Saharidis, M. Minoux, and M. Ierapetritou, Accelerating benders method using
covering cut bundle generation, International Transactions in Operational Research
17 (2010), 221–237.

[69] A.J. Schaefer, M. Bailey, S. Shechter, and M. Roberts, Modeling medical treatement
using Markov decision processes, Handbook of Operations Research/Management
Science Applications in Health Care, Kluwer Academic Publishers, 2004.

[70] M. Sellmann, G. Kliewer, and A. Koberstein, Lagrangian cardinality cuts and variable
fixing for capacitated network design, Tech. report.

[71] T. Senjyu, D. Hayashi, A. Yona, N. Urasaki, and T. Funabashi, Optimal configuration
of power generating systems in isolated island with renewable energy, Renewable
Energy 32 (2007), 1917–1933.

[72] A. Shapiro, D. Dentcheva, and A.P. Ruszczyński, Lectures on stochastic
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Appendix A Collection of Labs

Table 29: Complete Set of Labs Considered in Predicting Response to Chemotherapy

Name Description
ALP Alkaline Phosphatase
ALT Alanine Aminotransferase
AMGFR A Multiple of Glomerular Filtration Rate
AST Aspartate Aminotransferase
BSA Body Surface Area
BUN Blood Urea Nitrogen
Calcium Calcium
Chloride Chloride
CO2 Bicarbonate
Creatinine Creatinine
Diastolic Diastolic Blood Pressure
Glucose Blood Glucose Level
HCT Hematocrit
Height (in) Height in Inches
HGB Hemoglobin
MCH Mean Corpuscular Hemoglobin
MCHC Mean Corpuscular Hemoglobin Concentration
MCV Mean Corpuscular Volume
PLT Platelet
Potassium Blood Serum Potassium
RBC Red Blood Cell Count
Sodium Blood Serum Sodium
Systolic Systolic Blood Pressure
TBILI Total Bilirubin
Temp (F) Temperature in Degrees Fahrenheit
Total Protein Total Blood Serum Protein
WBC White Blood Cell Count
Weight (lb) Weight in Pounds
AGE Age in Years
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