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ABSTRACT

In this dissertation, we leverage predictive and prescriptive analytics to develop deci-

sion support systems to promote the use of renewable energy in society. Since electricity

from renewable energy sources is still relatively expensive, there are variety of financial in-

centive programs available in different regions. Our research focuses on financial incentive

programs and tackles two main problem: 1) how to optimally design and control hybrid

renewable energy systems for residential and commercial buildings given the capacity based

and performance based incentives, and 2) how to develop a model-based system for policy

makers for designing optimal financial incentive programs to promote investment in net zero

energy (NZE) buildings.

In order to customize optimal investment and operational plans for buildings, we de-

veloped a mixed integer program (MIP). The optimization model considers the load profile

and specifications of the buildings, local weather data, technology specifications and pric-

ing, electricity tariff, and most importantly, the available financial incentives to assess the

financial viability of investment in renewable energy. It is shown how the MIP model can

be used in developing customized incentive policy designs and controls for renewable energy

system.
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CHAPTER 1: INTRODUCTION

Renewable energy (RE) driven electricity generation has become a fast-growing and

opportunity-rich segment of energy industry over the past few years. Since the renewable

green energy generation is still relatively expensive, there are federal, state and utility in-

centives to increase penetration of distributed renewable energy generation. In this regards,

there are two key challenges, on the investor side and on the policy makers side. For elec-

tricity consumers (buildings/investors) it is critical to investigate the financial viability of

investing in on-site renewable energy systems, or otherwise keep satisfying all their energy

needs from the utility companies. It is important to investigate the viability of a system that

is customized for that particular building. In the other hand, policy makers has a limited

budget and so it is imperative to optimally allocate budget in different types of financial

incentive programs to achieve the long term goals in participation of buildings in investment

in renewable energies. Such a market condition must be supported by more efficient tools

providing 1) optimal design and operation services to the buildings, 2) optimal design of

financial incentive programs to promote investment in renewable energies.

In the first chapter of this dissertation we have developed a decision support tool to find

an optimal level of investment in a green hybrid power system (HPS), along with optimal

operational strategies, to satisfy energy and reliability requirements while saving more money.

Based on available incentives, consumer characteristics, technologies’ specifications and local
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weather data, a mixed integer program (MIP) is solved in order to find optimal design and

control strategy to yield a minimum annual cost of energy. This model is particularized

for wind and solar energy sources and applicable for either grid-connected or stand-alone

microgrids. The financial incentive programs considered in the model are loan, rebate,

performance based incentives, tax credits, renewable energy certificates, and net metering.

A time-of-use (TOU) pricing structure for electricity is assumed to be in effect. Higher

level of distributed renewable energy generation and storage via microgrids will lead to a

significant reduction in carbon emission and also reduced cost of electricity in the grid,

especially during peak times. An extended analysis has been done to examine the impact

of different incentive and rebate policies within a certain budget limit on the green power

generation. Thus, this MIP model may serve as a policy design aid at the local, state, and

federal government levels.

Promoting net zero energy buildings (NZEB) is among the key carbon emissions re-

duction approaches widely adopted by policymakers in recent years in the U.S. and the EU

countries [3]. Due to the relatively higher cost of electricity generation from renewable en-

ergy (RE), federal, state, and local governments offer various financial incentive programs to

promote NZEB. Chapter 2 presents a model-based framework for the policymakers to design

suitable incentive programs. The model in the core of this framework is the mixed integer

program (MIP) that is presented in Chapter 1 of this dissertation in addition to some new

constraints. The MIP model finds an optimal design for a NZEB. The optimal design and the

cost of NZEB is then used to design incentive programs. The incentive programs considered

2



includes loans, production tax credit, and net metering, among others. A time-of-day pricing

is assumed to be in effect. The model is implemented on commercial buildings in Tampa,

Florida, U.S.A. For a given region, the framework provides policymakers two reports, 1) a

set of optimal portfolios of incentives for different classes of commercial buildings (based on

credit rating, expected return on investment (ROI), and building type), 2) for a specified

portfolio of incentives, determines which classes of commercial buildings will be willing to

invest in RE.

To illustrate the financial and environmental benefits of using optimization to design

and operate a renewable energy system, we conducted a case study which is presented in Ap-

pendix A of this dissertation. In this case study, we aim at finding, 1) the impact of thermal

energy storage (TES) on the annual energy generation in a concentrating solar powerplant

(CSP), and 2) the optimal hourly operational decisions in the CSP-TES system to maximize

the revenue from the output electricity to the grid. We examined this approach for the

MicroCSP plant at the University of South Florida (USF). The solar field is simulated using

SAM software (by NREL). The results of the simulation are fed into a Mixed Integer Linear

Programming (MIP) model in order to analyze different sizing of the TES and hourly oper-

ational decisions. The results show, having at least one hours of TES capacity, significantly

increases the electricity output from the power block. Moreover, an optimal operation plan

increases the revenue under a time of day (TOD) price of electricity tariff.

The key input parameter to renewable energy system operation optimization model

is the forecasted weather data and in particular solar energy, as solar energy production is

3



getting more and more popularity recently. While solar energy’s advantage over fossil fuels

is its positive environmental aspects, its dependency on weather condition makes it hard

to confidently rely on it. In the project presented in Appendix B of this dissertation, we

developed a numerical model based on GBM to predict the short term daily solar electricity

generation of a set of solar farms in Oklahoma. The goal was to minimize the Mean Absolute

Error (MAE) in predicting solar generation of all the locations. Our proposed model, results

and some discussions are provided in the Appendix B.
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CHAPTER 2: RENEWABLE ENERGY INVESTMENT AND

OPERATIONAL DECISION MODEL

2.1 Introduction

Green energy industry has become a fast-growing and opportunity-rich market over the

past few years globally. The U.S. market, in particular, is experiencing an increasing growth

in the number of new photovoltaic capacity installations. In 2013, there was around 4.8 GW

of PV installation in the U.S., which was 3.4 GW and 1.9 GW in 2012 and 2011, respectively

[4]. Wind energy industry also experienced a massive growth from 2005 to 2012. New

capacity installation has been for 1.1 GW, 13.1 GW, and 6.7 GW in 2013, 2012 and 2011,

respectively [5]. The cost of PV system design and customer acquisition for residential PV

installers was $0.48/W in 2012. That is 9.2% of the average system price. This cost is from

$0.03/W (0.7%) to $0.13/W (2.6%) for commercial PV systems [6]. Such a market condition

must be supported by more efficient tools providing optimal design and operation services.

To aid and motivate consumer communities to widely invest and participate in green power

generation, we need to develop a comprehensive decision making model enabling economic

capacity design and operational planning. We aim at fulfilling this need.

In this chapter, we present a mathematical model and demonstrate its use for design of

on-site renewable energy system as an economically viable option for residential, commercial,

or governmental buildings. The model optimizes the total cost of investment as well as

5



operation, and thus yields optimal operational strategies of the building with regard to their

generation, storage, and trade with the grid.

Distributed renewable energy generation and storage (DREGS) will directly contribute

to a number of expected benefits of smart grid, such as reduction in peak and overall electric-

ity demand, improvements in outage management and reliability, improvements in system

efficiency, and reductions in environmental emissions. To create the necessary infrastructure

for microgids, power grids in the U.S. are being enhanced to enable two-way flow of electricity

and information between the utilities and the consumers[7],[8].

On the other hand, there are some uncertainties in investment in renewable energies.

Risks and uncertainties for PV investment have been categorized to: 1) Interannual solar

variability, 2) PV performance costs, and 3) Market restructuring risk [9]. Investment in

wind energy also deals with these uncertainties.

Uncontrolled variability of distributed green generation such as wind and solar are 10

% /min and 10%/s respectively. Non-renewable energy generation like coal and natural gas

has rare uncontrolled variability.[10] A PV system itself has some drawbacks too, such as:

1)variation of output power with solar irradiance level causes disturbance for the utility.

2)obviously there would not be any generation during nights [11].

Considering the uncertainties in RE investment, it is very critical to decide based on all

available information on incentives and regulations to ensure an acceptable payback period.

We consider six main categories of incentive programs available in the U.S. such as loan

program, rebate, investment tax credit, production tax credit (PTC, i.e., performance based
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incentive(PBI)), renewable energy certificate (REC), and net metering. Rebate programs,

federal tax credit and loan programs are incentives for installation. PTC, REC, and net

metering is a production based incentive. Rebate programs that are available in some regions

are intended to reduce the initial investment costs. The federal government in the U.S. is

offering 30% tax credit for investment in RE and energy efficiency through Dec 31, 2016.

Moreover, some states (e.g., New York) in the U.S. have their own state tax credit programs

for RE investments. U.S. department of energy (DOE) provides loan guarantee for the

purchase of renewable energy or energy efficient systems or equipment. PTC is a form of

tax credit based on the amount of power generated by a RE system. Performance-based

incentives (PBIs), provide cash based on the amount of power generated by a renewable

energy system. REC is a benefit to a building based on the amount of electricity it generates

from RE, and customers may sell RECs back to the utility.

In addition to the above incentive programs, we also consider in our model net metering

as an incentive for buildings, when there is flow of electricity both to and from the building.

We consider that the RE generation by building that exceeds its usage flows back to the grid.

This offsets electricity consumed from the grid by the building. If there remains an annual

rollover balance, building is paid based on the avoided cost of the local utility company. In

some regions, rollover is calculated monthly and is paid at the full retail rate of electricity.

Net metering is required by law in most states in the U.S. A complete list of incentive

programs in the U.S. can be found in the database of state incentives for renewable energy

and efficiency (DSIRE) [12].
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Since the photovoltaic (PV) systems have high initial cost, they must be efficiently

operated and maintained to deliver the expected benefits. This requirement serves as a

barrier and pushes interested owners of residential and commercial buildings to participate

in programs offered as third party ownership (TPO) solar finance companies. TPO allows

the building owners to avoid the risk of investment while still reaping some of the rewards.

TPO companies offer two main options: power purchase agreement (PPA) and solar lease

[13]. In the PPA option, a customer is only charged upon electricity generation. In the

lease option, a customer pays rent for the equipment irrespective of the amount of electricity

generated. The MIP model presented in this paper can also be used by TPO companies to

evaluate profitability of adding a new customer.

Current capacity designs for microgrids do not exploit incentives for green investment

and generation [2], [14], [15], [16], [17], [18]. Some of the developed optimization models,

design a HPS consist of both renewable and non-renewable generators[18]. Although having

non-renewable generators, such as diesel, in the HPS may increase reliability of the system

with a lower cost but is not a good start to move toward an environmentally responsible

smart grid. The reliability issues for hybrid wind-solar system is addressable by minimizing

cost within a required reliability level for the system [19]. In general a HPS can be grid-

connected ([20], [18]) stand-alone ([21], [16]) or a microgrid, in a switchable mode between

the two.

For an optimal operational strategy of the system, one strategy by the end user might

be rescheduling flexible loads to minimize the cost[22], but this strategy only addresses the

8



flexible loads. The most common control strategy is optimally charge and discharge batteries,

if available[11], [14], [23], [24].

Our developed MIP model will help making DREGS viable in view of economic feasi-

bility and operating efficiency. We are developing a comprehensive and user friendly system

with models at two levels. The upper level model will guide DREGS participants with eco-

nomic capacity design, and the lower level model will support real-time operational planning

using capacity design as input. The capacity design component of the system is a MIP

model that seeks optimal capacities for generation technologies, storage batteries, inverters

,and rectifiers for the participant. The model will aim to minimize the annual cost of en-

ergy to the participant subject to the constraints of demand, weather impact on generation,

technology, investment costs and incentives, and time-based rates of grid power.

For a given typical meteorological data (i.e. sunlight , ambient temperature and wind)

and other energy availabilities in the region, the model will obtain an optimal capacity design

incorporating the number and types of green generators, converters and power storage facil-

ities. Thereafter, for a given capacity design, the operational planning model will take into

account the daily weather forecast, time-based rates of the grid, and the demand response

guidelines, to optimize real-time operational plan. The plan would comprise optimal rates

for battery charging/discharging, demand response actions, and optimal quantities of power

bought from and sold back to the grid under net-metering policy.

We believe that our system, with CPLEX implementable solution strategies for its

underlying models, will empower households and businesses across the world, with or without

9



smart grid infrastructure, to assess potential to build and operate a green HPS. Expected

proliferation of DREGS, assisted by our system, would allow an increased realization of the

broad range of benefits of smart grid. We have already developed a single investor model for

capacity design and operation control, which is presented later in this document.

2.2 Problem Statement

In building a design and control optimization model, there are multiple issues that

are important to address. Some regarding to the physical system components, such as the

generators, batteries and converters. Other considerations pertain to the regulations and

economic aspects of the design and operation. In this section we go over these aspects and

how we address them in the model. Solar and wind energy are the most popular renewable

energy sources and we are focusing on these sources for the design of the hybrid system.

The orientation of the photovoltaic (PV) panel determines the incidence angle of the

solar radiation and the resulting output power. The literature provides that a general opti-

mum tilt of the solar panel is a slope close to the latitude and orientation toward south/north

for northern/southern hemisphere [25]. The conversion efficiency of PV system decreases as

module temperature goes higher. For example, the temperature coefficient of heteromodule,

c-Si module, and p-Si module was −0.3%/ ◦C,−0.4%/ ◦C,and−0.4%/ ◦C, respectively [26].

We considered the tilt angle and the variable efficiency of PV in the section 2.3.2.

Wind generator’s power output depends on the local wind speed profile. Also wind

generators have different power output performance curves. The most common model to

simulate wind energy generation is a non-linear model. So we simulate the wind profile in a
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data pre-processing phase and before the MIP model (look section 2.3.2). Also, the height

of the wind turbine can largely effect the wind speed profile[27], so we considered the option

of selecting height of the wind turbine by type of installation in the MIP model.

Battery storage is used as a backup to meet the demand and hedge against the renew-

able energy volatility. It is highly crucial for a stand-alone microgrid to be supported by

storages, specially for night hours that it may only have the wind energy as a source of power

and even may not. For a grid-connected microgrid, energy storage can increase reliability

of the system when the grid power is not available for any reason. Selecting the right size

for the battery to meet the required reliability is an economic imperative. Battery’s lifetime

is much shorter than generator so it needs replacement multiple time during the system

lifetime.

Connecting the solar and wind generators along with storages to the grid requires

appropriate conversions. It is technically feasible to use only one inverter to connect both

storages and the PV array to the AC node [11]. The size/number of inverters need to satisfy

the system requirements and also be cost effective.

In a restructured electricity market, generators submit bids to the system operator

and the clearing price for electricity will be established[28]. However as a single member

microgrid, we assumed the generator is not an active bidder and price is based on net-

metering with local utility.

This chapter presents a mixed integer programming (MIP) model that determines

for microgrids (buildings) the optimal levels of investment in renewable energy technology
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including wind and solar generators, converters and storage capacities. The model assumes

that a number of incentive programs are in place, including lower loan interest rate, rebate,

PTC, REC, net metering, and time-of-use (TOU) pricing. The MIP minimizes the total cost

of meeting the energy needs over a planning horizon by minimizing the average annual cost.

The cost minimization approach also yields an optimal operational strategy for electricity

storage and trade with the grid. The objective function comprises the cost of capital, cost

of operation and maintenance, net metered electricity bill, tax credits, rebates, PTC, and

REC. The MIP model offers the ability to conduct sensitivity analysis for a wide range of

variables related to incentive programs, technology, weather, and grid electricity prices. We

have presented, in a later section, results from such a sensitivity analysis on the incentive

program parameters and electricity rate structure.

To our knowledge, our model is new as it offers a means for evaluating the impact of a

wide array of incentive programs. From several aspect of our modeling approach, here some

of them are highlighted: 1) it considers incentive programs offered by federal, state, and

local agencies, 2) it considers the option to buy from or sell back to the grid at hourly prices

(TOU price of electricity), 3) it takes into account equipment maintenance schedules and

weather changes, and 4) it yields both the capacity investment decision and the corresponding

operational strategy.
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2.3 Model Formulation

In this section we introduce the nomenclature and the mathematical model.

2.3.1 Nomenclature

The notation used for the model is presented in Table 1.

Table 1: Nomenclature used in chapters 2 and 3

Symbol Meaning
Indices

k Types of RE generators (k1 for AC and k2 for DC, where {k} = {k1} ∪ {k2})
p Types of converter (= 1 for inverter, = 2 for rectifier)
` Types of generator installation (e.g., height of wind turbine tower, roof or

ground mount solar panels)
n Age of the RE power system in years, n ∈ {1, . . . , N}
t Hour of the year, t ∈ {0, . . . , 8760}

Decision Variables
xk`G ∈ Z+, Number of generators of type k`
xB ∈ Z+, Number of energy storages (battery)
xpC ∈ Z+, Number of converters of type p
qt ∈ R, Electricity trade with the grid at t (Wh)

Calculated Variables
w ∈ R, Annual net metering credit ($)
u ∈ R+, Loan amount used for investment in RE ($)
rk ∈ R+, Rebate received for investment in type k ($)
ak ∈ R+, State tax credit for type k ($)
h ∈ R+, Annual electricity bill ($)
gk`t ∈ R+, Total power output of generators k, ` at t (Wh)
et1 ∈ R+, DC Power sent to battery at t (Wh)
et2 ∈ R+, AC Power sent to battery at t (Wh)
et3 ∈ R+, Power received from battery at t (Wh)
zt ∈ R+, Power level of battery at t (Wh)
µt ∈ {0, 1}, 1 if batteries are being charged at t
yk`G ∈ {0, 1}, 1 if invested in generators type k`
yB ∈ {0, 1}, 1 if invested in batteries

Incentive Parameters
γF The federal tax credit rate for RE (%)
γks The state tax credit rate for generator k (%)
ak State tax credit cap for generator k ($)
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Table 1 (continued)
Symbol Meaning
J Customer renewable energy certificates (REC)($)
Ik PTC rate for generator k ($/Wh)
Rk Rebate for investment in generator k, for solar energy ($/W ) and for wind

energy ($/kWh)

R
k

Rebate cap for investing in generator k ($)
α Interest rate for loan program (%)
nu Loan term for RE installation (years)

U
k

1 Loan cap for investing in generator k, ($)
U2 Loan cap proportional to the total investment (%)
λ Local utility’s annual rollover compensation,($)

Input Parameters
β Annual discount rate (the value of money) (%)
β
′

Hourly discount rate (= 8760
√

1 + β − 1) (%)
H t Grid electricity price at t ($/Wh)
h0 Annual basic service charge on grid electricity ($)
h1 Peak billing demand on grid electricity ($)
h2 Billing demand on grid electricity ($)
F k`
G Fixed cost of investment in generator type k` ($)
V k`
G Variable cost of investment in generator type k` ($/W )
FB Fixed base cost of investment in battery ($)
VB Variable cost of investment in battery ($/W )
Cp
C Purchase cost of converter type p ($/W )

ψ Operation and maintenance costs coefficient (%)
Γk`G Nominal capacity of generator type k, ` (W )
ΓpC Power input capacity of converter type p (W )
ΓB Nominal capacity of battery (Wh)
N Expected lifetime of the hybrid power system, (years)
nB Expected lifetime of battery, (years)
npC Expected lifetime of converter type p, (years)
GHI t Global horizontal solar irradiance at t (W/m2)
Et Module solar irradiance at t (W/m2)
νtl Wind speed installed at height ` at t (m/sec)
νci Cut-in wind speed (m/sec)
νco Cut-out wind speed (m/sec)
νr Wind speed at the rated power (m/sec)
ωk`t Output power of a generator type k` at t (Wh)
Gmax A big number relative to the total generation (W )
Bmax A big number relative to the total storage (Wh)
ε1 Charging efficiency rate of battery (%)
ε2 Discharging efficiency rate of battery (%)
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Table 1 (continued)
Symbol Meaning
θ1 Nominal charging rate of battery (%)
θ2 Nominal discharging rate of battery (%)
φ1 Hourly decay rate in charge level in battery (%)
φ2 Min. sustainable charge level ratio in battery (%)
ηp The efficiency rate of the converter p (%)
ηk`t The efficiency rate of generator k` at t (%)
ηkR Reference efficiency rate of generator k (%)
ζk Temperature coefficient of generator k (/◦C)
T t` Temperature at t around ` (◦C)
TR Temperature at reference conditions,(◦C)
Dt
AC Demanded AC load at t (kWh)

Dt
DC Demanded DC load at t (kWh)

∆ Load reduction ratio through efficiency improvement
Dt

1 Billing demand at t (kWh)
D2 Peak billing demand (kWh)
M Minimum power supply (reliability) (hour)
Ak` Area occupied by generator k` (m2)

A
k`

Total available area for installation ` of k (m2)
LDC Derate factor for DC wiring (%)
LAC Derate factor for AC wiring (%)
LkM Derate factor for mismatch of generator type k (%)
LkR Derate factor for nameplate DC rating of type k (%)
LkS Derate factor for soiling of PV (k = 1) (%)
LkV Derate factor for system availability of type k (%)
LkD Derate factor for shading of PV (k = 1) (%)
LkA Derate factor for age/degradation of PV (k = 1) (%)
LkC Derate factor for diodes and connections (%)
LkT Derate factor for sun-tracking of PV (k = 1) (%)

2.3.2 Other Model Preliminaries

In order to make the input data ready for the MIP model the following data pre-

processing steps have been performed.

• PV module (k = 1) efficiency is calculated as a function of the operating temper-

ature as follows [29]: ηk`t = ηkR − ζk(T t` − TR).
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• Solar radiation incident on a PV module surface, tilted by ρ◦ at latitude σ◦, is

calculated by Et = GHIt sin(υ+ρ)
sin(υ)

, where υ = 90◦ − σ + δ, and δ, the solar declination,

equals 23.45◦ + sin(360
365

(284 + day)) [30].

• PV (k = 1) output power (DC) is calculated based on the hourly efficiency of solar

installation ` as follows: ωk`t = ηk`tEtAk`LkML
k
RL

k
SL

k
DL

k
AL

k
CL

k
T , ∀`, t

• Output power of the wind turbine has a non linear relation to the wind speed.

ωk`t =


a(νt`)3 − bΓk`G νci ≤ νt` ≤ νr,

Γk`G νr ≤ νt` ≤ νco,

0 o/w,

where a =
Γk`
G

ν3r−ν3ci
and b =

ν3ci
ν3r−ν3ci

, ∀i, t.

Figure 1: Output power versus wind speed [2]

2.3.3 MIP Model

We have developed a Mixed Integer Programming (MIP) model and solved using

CPLEX solver in GAMS. The goal is to find optimal level of investment and optimal con-

trol strategies to yield a minimum annual cost of energy. Here we presented the objective
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function and constraints of the MIP model for both investment and operational decisions.

The investment MIP model is able to find the optimal system design for two modes of the

microgrid, grid-connected and stand-alone modes. These models will be presented in the

following sections.

2.3.3.1 Investment Model (System Design) for Design of a Grid-Connected

HPS

For a grid-connected mode, we assumed the microgrid is under a net-metering policy.

The system components for a grid-connected microgrid are shown in Figure 2.

Figure 2: Design of the DC/AC for a grid-connected HPS

minZ = [
nu
N

(
αu

1− 1
(1+α)nu

) +
β N
nB

(yBFB + xBΓBVB)

1− 1
(1+β)N

+
β(
∑

k[
∑

`(y
k`
G F

k`
G + xk`GΓk`GV

k`
G )− rk]− u)

1− 1
(1+β)N
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+
β
∑
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C
Cp
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CΓpC

1− 1
(1+β)N

+ ψ{(yBFB + xBΓBVB) +
∑
k`

(yk`G F
k`
G + xk`GΓk`GV

k`
G ) +

∑
p

Cp
Cx

p
CΓpC}

−
∑
k

ak − γF
1

N

N

nB
(yBFB + xBΓBVB)− γF

1

N

∑
k

(
∑
`

(yk`G F
k`
G + xk`GΓk`GV

k`
G )− rk)

−γF
1

N

∑
p

N

npC
Cp
Cx

p
CΓpC ]/(1 + β)

+
12{D1h1 +

∑
tD

t
2

8760
h2}

1 + β
2

+
h0 + h+ λw

1 + β
2

−
∑
t

∑
k I

k
∑

` g
k`t

(1 + β ′)t
−
∑
t

J
∑

k` g
k`t

(1 + β ′)t
(2.1)

gk`t = ωk`txk`GL
k
V ∀k, `, t (2.2)

xk`G ≤ yk`GGmax ∀k, ` (2.3)

xB ≤ yBBmax (2.4)

ε1(et1 + et2) ≤ xBΓBθ1 ∀t (2.5)

et1 + et2 ≤ µtBmax∀t (2.6)

ε−1
2 et3 ≤ xBΓBθ2∀t (2.7)

et3 ≤ (1− µt)Bmax∀t (2.8)

η1[
∑
k1`

gk
1`t + (et3 − et1)]LDCLAC − η1(1−∆)Dt

DCLDC

+
∑
k2`

gk
2`tLAC + qt = (1−∆)Dt

AC +
1

η2

et2 ∀t (2.9)

zt = xBΓB∀l, t = 1 (2.10)

zt = (1− φ1)z(t−1) − ε−1
2 et3 + ε1(et1 + et2)∀t ≥ 2 (2.11)

zt ≥ φ2xBΓB∀t (2.12)

zt ≤ xBΓB∀t (2.13)
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∑
k`

gk`t + (et3 − et1)− (1−∆)Dt
DC ≤ xpCΓpC∀t, p = 1, k ∈ k1 (2.14)

1

η2

et2 ≤ xpCΓpC∀t, p = 2 (2.15)

Dt
2 ≥ qt ∀t (2.16)

D1 ≥ Dt
2 ∀t (2.17)

h ≥
∑
t

qtH t (2.18)

w =
∑
t

qtH t − h (2.19)

∑
k`

t+M∑
t′=t

gk`t
′
+ zt ≥

t+M∑
t′=t

(1−∆)(Dt′

AC +Dt′

DC)∀t (2.20)

Ak`xk`G ≤ A
k` ∀`, k = 1 (2.21)

Ak`yk`G ≤ A
k`∀`, k = 2 (2.22)∑

`

yk`G ≤ 1 k = 2 (2.23)

rk ≤ Rk
∑
`

xk`GΓk`G k = 1 (2.24)

rk ≤ Rk
∑
`t

gk`tk = 2 (2.25)

rk ≤ R
k ∀k (2.26)

u ≤ U2[
∑
p

xpcC
p
CΓpC + xBVBΓB + yBFB +

∑
k

(
∑
`

[yk`G F
k`
G + xk`GΓk`GV

k`
G ]− rk)] ∀k (2.27)

u ≤ U
k

1 ∀k (2.28)

ak ≤ γks
∑
`

(yk`G F
k`
G + xk`GΓk`GV

k`
G ) ∀k (2.29)

ak ≤ ak ∀k (2.30)
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xk`G , x
p
C , xB ∈ Z+ ∪ {0}, qt, w ∈ R, yk`G , yB, µt ∈ B

gk`t, u, rk, zt, et, D1, D
t
2h, a

k ∈ R+ ∪ {0} (2.31)

The investment and financing time horizon considered in the model are 30 years. All

capital costs and credits are depreciated over 30 years in addition to other annual costs and

revenues. We annualized all costs and revenues in the MIP model in the objective function,

aiming at minimization of the overall cost of electricity in a building for a typical year.

The positive elements of the objective function (2.1) represent equivalent annual cost

and the negative elements indicate yearly revenue or credits. The seven cost elements in-

dicate, in order presented in (2.1), the loan annual payment, depreciated annual cost of

capital used for technology procurement and installation (including fixed and variable costs

of batteries, generators, and converters), annual operation and maintenance costs, and billing

demand and peak billing demand charges. The last positive element of the objective func-

tion represents the basic service charge of the utility company in addition to the cost of net

electricity purchase from utility (when h ≥ 0) or revenue from annual rollover compensation

(when ω < 0). The revenue/credits comprise rebates, state tax credit, federal tax credit

for capital investment (in batteries, generators, and converters), the production tax credit

(PTC), and renewable energy certificate (REC).

The constraints are as follows. Constraint (2.2) calculates electricity generation by

each type of generator based on the corresponding weather data and the derate factor of

availability. Constraints (2.3,2.4) are to include fixed cost associated with the installation of
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the system, i.e., if xk`G takes a positive value, the inequality forces yk`G to take one as well, and

similar for yB. Constraints (2.5) and (2.6) show the rate of charge of the batteries considering

charging efficiency and nominal charging rate. Constraints (2.7) and (2.8) show the rate of

discharge of the batteries considering discharging efficiency and nominal discharging rate. In

(2.6) and (2.8), µt ensures that a battery is not charged and discharged at the same time t.

Balance constraint (2.9) ensures that the energy input to a microgrid equals its output, both

for DC and AC, at all times. Constraints (2.10) through (2.13) accomplish hourly updates of

the battery capacities. Power conversion from DC to AC and vice versa is always limited by

the capacities of inverters (2.14) and rectifiers (2.15). It is considered that the utility gives

credit to the microgrids for selling electricity back to the grid. As practiced by many states

in the U.S., if total yearly sales credit exceeds total purchase of a building, the utility pays for

the excess credits to the consumer. The constraints (2.16) and (2.17) calculates annual peak

and base demand of the building for electricity from the grid. The constraints (2.18) and

(2.19) calculate annual electricity payment to the utility company, if any, and sales credits,

respectively. To ensure that the customer has power during blackouts for at least M hours

(reliability), we added constraint (2.20) to the model. The installation capacity limits for

generating devices are handled by (2.21) through (2.23). Constraints (2.24) through (2.30)

accounts for the rebate, loan, and state tax credit amounts resulting from the investment

plan.
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2.3.3.2 Investment Model (System Design) for Design of an Stand-alone HPS

The system components for an stand-alone microgrid are shown in Figure 3. Basically,

the same MIP model can be used to design an stand-alone (not connected to the main grid)

HPS with some modifications. To enforce the system to run independently without the grid,

we need to add the following constraint: qt = 0 ∀t Since the system might have amount of

not needed power; now st,the dumped power, may get positive values for some t times.

Figure 3: Design of the DC/AC for a stand-alone HPS

2.3.3.3 Operational Model (System Control)

For a stand-alone HPS, the only way that the user can optimize the energy efficiency is

by scheduling flexible power load [22], which requires a separate optimization modeling. In

grid-connected mode, the Operational model takes xkilGEN , x
j
BAT , x

j
CNV as input parameters

along with other inputs and this time decision variables is qt. This model assumes a net-

metering policy in the grid.
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s.t. {(2.2)− (2.20)}

2.4 Model Implementation

We tested the renewable energy investment and operational planning MIP model for

two residential buildings in the U.S., in different climates, one in Tampa, FL, and the other

one in Long Island, NY. We provide the input data, and show the results of the MIP model

for optimal investments and operations of the buildings. Later in this section, we illustrate

our observations on sensitivity analysis of the investment level in renewable energy in the

studied building in Tampa, Fl, with respect to different incentive programs.

2.4.1 Data

2.4.1.1 Customer Data

The customer characteristics used in the MIP model are 1) building characteristics,

and 2) residential hourly load data. The above data were obtained from “Building America

House Simulation Protocols-NREL [31].” Based on this protocol, the residential buildings

are classified as one of the following categories: 1) low load profile, 2) base load profile, and

3) high load profile. Residential load profile and building characteristics for a hot-humid and

mixed-humid climates were used for Tampa, Fl, and Long Island, NY, respectively. The size

of the buildings for different load profiles and climates are given in Table 2.
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Table 2: Residential load profiles

Load profile Size, mixed-humid Size, hot-humid
Low Load (LL) 1273ft2(118.3m2) 1011ft2(93.9m2)
Base Load (BL) 2546ft2(236.5m2) 2023ft2(187.9m2)
High Load (HL) 3819ft2(354.8m2) 3034ft2(281.9m2)

A summary of a typical customer’s characteristics for a low load profile electricity

consumer is provided in Table 3.

Table 3: The low load profile customer characteristics

PV area (mixed-humid) 118.3m2 (1273ft2) roof area for PV installation
PV area (hot-humid) 93.9m2 (1011ft2) roof area for PV installation
Wind area 50m2 (538.2ft2) available for wind turbines
Demand hourly demand data from OpenEi.org [32]
Beta 5 % (personal fund ROI)

2.4.1.2 Incentives/Regulations

In Table 4, we have listed all currently available incentives and regulations for resi-

dential customers for renewable energy installations in Tampa, FL. Table 5 contains similar

data for Long Island, NY.

Table 4: Incentive and regulations in Tampa, Fl

Tax credit 30% of total investment
TOU price On-peak: 18.436 (¢/kWh)

Off-peak: 5.698 (¢/kWh)
Peak hours Nov-Mar (Winter) : 6:00AM-10:00AM

: 6:00PM-10:00PM
Apr-Oct (Summer) : Noon-9:00PM

2.4.1.3 Technology Options

We have considered four different models (i = 1, .., 4) of PV solar panels (k = 1) to

be available in the market. The representative cost of each PV model (obtained from [33])
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Table 5: Incentive and regulations in Long Island, NY

Federal tax
credit

30% of total investment

State tax
credit

25% of PV investment up to $5000

Wind
rebate

Rebate = Min{60% of installed cost, $3.50 per expected kWh}

Max rebate = Min{60% of installed cost, $56,000}
Max size = Min{105% prior 12 months energy usage, 25 kW}

PV rebate Rebate = $1.00/W
Max size = Min{25 kW, 110% of energy usage}

TOU price
Jun-Sep On-peak: 27.35 (¢/kWh)

Off-peak: 5.78 (¢/kWh)
Oct-May On-peak: 8.88 (¢/kWh)

Off-peak: 4.37 (¢/kWh)
On-peak
hours

10 AM-8 PM Weekdays

Off-peak
hours

8 PM-10 AM Weekdays and all day weekends

also includes cost of the required racking and wirings. We have assumed the PV panels are

installed at a tilt angle almost equal to the latitude of the location (28 degrees for Tampa

and 41 degrees for Long Island). Table 6 shows the solar panel model options.

Table 6: Representative solar panel models

Model Price($) Capacity (W) Efficiency (%) Size m2

PV1 285 274.5 0.157 1.944
PV2 339 243 0.161 1.593
PV3 171 171 0.149 1.277
PV4 295 247.5 0.164 1.593

Also, our MIP implementation considered three models (i = 1, 2, 3) of wind turbines

(k = 2). The cost of each model includes the costs of mount and wirings. Table 7 shows

some of the wind turbine technology options for the customer.
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Table 7: Representative models for small wind turbines

Model Price ($) Rated Power (W ) Cut in Cut out
at 12 (m/s) (m/s) (m/s)

W1 419 600 2.5 15
W2 300 400 3.0 25
W3 355 600 3.0 15
W1 225 300 2.5 18

We also considered four different models of batteries (Table 8) and five models of

inverters (Table 9).

Table 8: Representative models for batteries

Model Price ($) Capacity (Wh) Size m2

B1 96 600 0.03
B2 370 2400 0.108
B3 223 1320 0.057
B4 64 420 0.026

Table 9: Representative models for inverters

Model Price($) Input Cap(W) Output Cap(W) Efficiency(%)
INV1 1485 3200 3000 96
INV2 205 250 240 96
INV3 1869 4750 3800 96
INV4 164 300 250 96
INV5 150 265 250 96

2.4.1.4 Local Weather Data

The hourly historical data on solar radiation and wind speed level for the two areas

(Tampa and Long Island) are imported from the System Advisor Model (SAM) software

[34].
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2.4.2 Results

We used CPLEX to solve the MIP model on a standard desktop computer with 16 GB

RAM and Intel i7 processor @2.93 GHz. The station took 112 and 244 seconds, to solve each

load scenario for Tampa and Long Island, respectively. The solution gap was set to 0.5%.

2.4.2.1 Residential Building in Tampa, Fl

For a low load profile residential building in Tampa, Fl, the MIP model produced the

following results. The proposed investment decision are:

• x13
G = 73 (solar panels of model type 3)

• x11
C = 1 and x13

C = 2 (inverters of model types 1 and 3).

The proposed operational plan is that, with no batteries per investment decision, to

consume electricity from solar panels, when needed, and sell any excess to the grid (similar to

Figure 5). Investment and its operational plan yielded the following benefits for the building.

• Annual electricity cost reduced to $ 1420 compared to the current electricity bill

of $ 1550

• Annual generation of 22.65 MWh green energy, which is equivalent to about 15.6

MT/yr (34,400 lbs/yr) reduction of carbon emissions and the building is now a NZEB.

• Total tax credits received is equal to $6878

2.4.2.2 Residential Building in Long Island, NY

For a low load profile residential building in Long Island, NY, results obtained by the

MIP model are as follows. The proposed investment decision are:

• x11
G = 1 (solar panels of model type 1)
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Figure 4: 24 hours of net metering in January for the NZEB in Long Island, NY.

• x13
G = 26 (solar panels of model type 3)

• x23
G = 5 (wind turbine of model type 3)

• x13
C = 1 (inverters of model types 3).

Again with no batteries chosen by the investment plan, typical 24 hours operational

plans are shown for the designed NZEB (with hybrid system of wind and solar) are shown

for the months of January (Figure 4) and July (Figure 5). The above investment and its

operational plan yielded the following benefits for the building.

• Annual electricity cost reduced to $394 compared to the current utility bill of $892.

• Annual generation of 7.2 MWh from solar energy and 1.9 MWh from wind energy,

equivalent to a reduction of 6.3 MT/yr (13,900 lbs/yr) of carbon and the building is

now a NZEB.

• Federal Tax Credit : $1124

• NY State Solar Tax Credit: $1183

• Wind energy rebate: $1775

• Solar energy rebate: $4720
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Figure 5: 24 hours of net metering in July for the NZEB in Long Island, NY.

2.4.3 Sensitivity Analysis

In the rest of this chapter we demonstrate how the MIP model can be used to under-

stand investors’ (building owners) behaviour in response to changes in the available incentives

in Tampa, FL. To examine the impact of change in incentive programs on different residential

customers, the sensitivity analysis was conducted for customers (buildings) with low, base,

and high load profiles. As PBI, TOU pricing structure, and rollover compensation, in most

areas in the U.S., are directly administrated by the local utilities commissions [12], several

combinations of these incentive programs have been examined.

2.4.3.1 Effect of Loan Interest Rate

The optimal investment levels in renewable energy based generation for different loan

APR are shown in Figure 6. We assumed PBI of 0, time of use (TOU) price of electricity,

and return on investment (ROI) of 5%. Results show that for the given technology, cost,

and weather conditions, the APR of up to 1.4% makes it economically feasible to invest in

renewable (solar) energy for residential customers with different load profiles in Tampa area.
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Figure 6: Sensitivity of renewable energy investment to the loan interest rate - under TOU
price of electricity and PBI=0

Note that since the APR threshold for each type of energy source should be guided by its

levelized cost of electricity (LCOE) generation, it is independent of the customer load profile.

The APR threshold for investment depends on the green energy source availability, price of

technology, other incentives and regulations. As shown in Figure 6, the level of investment

depends on the load profile and the loan cap (which in this study is taken as $20K). An

interesting observations that we made in the sensitivity analysis was if the loan cap is high

enough, the optimal investment level in renewable energy may rise to the net zero energy

level (NZE/NZEB level). NZE level is the level of annual generated on-site electricity where

it satisfies the load and the losses in the system under a net metering policy. In this analysis

at such point, the annual electricity bill or rollover credit is close to zero. (see, for example,

the low load level). For BL and HL levels, loan cap keeps the RE investment lower than

NZEB levels.

2.4.3.2 Effect of Performance Based Incentive (PBI)

For different PBI rates, optimal investment levels in renewable energy based generation

are presented in Figure 7. We assumed TOU price of electricity, no loan, and 5% ROI for the
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Figure 7: Sensitivity of renewable energy investment to PBI - under TOU price of electricity
and self fund interest rate of 5%

investors. Note that the area available for PV deployment could become a limiting factor for

solar installed capacity. Results show that a PBI rate of 1.6 ¢/kWh or more makes it feasible

for residential customers (in Tampa, Fl) with different load profiles to invest in RE. Similar

to analysis on loan, as demonstrated in Figure 7, customers with all load profiles reached

their full NZE levels at different PBI values. Investment levels can be seen to change in steps

at different PBI values. This can be attributed to the integer optimal solutions of the MIP

model for all system components. At PBI of 5.2 ¢/kWh or more, buildings are found to

invest in more than their net zero needs, as it is profitable (see low and base loads in Figure

7). The customer with high load profile, was found to be constrained by the available area

for PV deployment and thus could not invest beyond NZE level. At present, there is no

PBI in Tampa area, but in the closest city (with similar climate conditions), Orlando, the

utilities commission (OUC) pays a PBI of 5 ¢/kWh [12]. This rate is clearly (see Figure 7)

in the range that encourages RE investments.
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2.4.3.3 Joint Effect of TOU Price and PBI

Effect of different TOU pricing schemes were examined for some PBI levels. Knowing

that under current TOU tariff, a minimum PBI of 1.6 ¢/kWh is necessary to encourages

investment in RE, three PBI levels (0, 1.5, 3.0 ¢/kWh) were studied. TOU pricing schemes

given in Table 10 were designed such that for a base load profile (BL) the annual bill for

electricity is constant for all off-peak and on-peak price combination. This helped us to

assess the effect of TOU pricing scheme on the investment behaviour without any influence

from the varying cost of buying electricity from the grid. We assumed a ratio of 0.3 for

rollover compensation to retail price in net metering, as it was the prevailing value in 2013

in Tampa, Fl. We also assumed that no loan is available and the ROI for the investors is

5%.

When PBI is 0, Figure 8 shows no investment in RE except at a standard flat rate of

electricity (i.e., off-peak/on-peak price ratio = 1). If the utility commission would like to en-

courage buildings to switch to a TOU price structure to enforce change in electricity demand

patterns, and at the same time wants to promote buildings to a higher RE investment, then

some additional PBI makes it viable as described next. With PBI=1.5 ¢/kWh, the utility

commission is flexible to set the off peak price of electricity anywhere from 42% to 100% of

peak price. For all load profiles and PBI of 1.5 ¢/kWh, investment in renewable energy did

not occur for any price ratio of 31% or less. The flexibility to set the TOU price is shown

to be higher (see Figure 8) for PBI rate of 3.0 ¢/kWh. In this case, TOU of 10% or higher

yields investment close to NZEB level.
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Recall from Table 10, that we have examined a number of ratios from 0.02 to 1.0. For

each ratio, we have selected a unique combination of off-peak and on-peak prices so that

for all ratios the utility cost for base load is constant. Clearly, at higher ratios, the off-peak

prices are higher, which encourage buildings to invest in RE. We have also seen earlier (in

Figure 7) that a higher PBI promotes higher investment in RE. Hence, as seen in Figure 8,

when the PBI is higher, even a smaller TOU ratio yields investment in RE. Thus, presence

of a PBI gives more flexibility for the utilities to set TOU pricing while making it feasible

for buildings (microgrids) to invest in RE based electricity generation.

Table 10: TOU pricing scheme scenarios for Tampa, Fl

scenario Off Peak On Peak Ratio
(¢/kWh) (¢/kWh)

1 0.698 30.900 0.02
2 1.698 28.408 0.06
3 2.698 25.915 0.10
4 3.698 23.422 0.16
5 4.698 20.930 0.22

Current 5.698 18.436 0.31
7 6.698 15.945 0.42
8 7.698 13.452 0.57
9 8.698 10.959 0.79

10 9.198 9.713 0.95
11 9.345 9.345 1.00

2.4.3.4 Joint Effect of Annual Rollover Compensation Rate and PBI

As per existing electricity regulation in Florida, the annual net metering rollover is

compensated based on the annual avoided cost of a utility company. This rate is unknown

for the coming years and depends on the variable costs of the company. In Figure 9, we

have shown the RE investment levels at each load profile for different ratios of compensation

33



Figure 8: Sensitivity of TOU price of electricity for PBI= 0, 0.75, 1.50¢/kWh

(0.1-1) and PBIs (0-2.5 ¢/kWh). The avoided cost paid by the utility company in Tampa in

2013 was about 30% of the standard rate for residential customers. We assumed a flat price

of electricity of 9.345 (¢/kWh). Results presented in Figure 9 show that, for all load profiles

and nonzero PBIs, for compensation ratios up to 0.7, the investment in RE is somewhat

close to NZEB level and is not sensitive to the compensation ratio. Since the annual rollover

compensation is rather low, the investment in solar energy generators did not rise higher

than the customer’s own energy needs, i.e., NZEB level. For some compensation ratios
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Figure 9: Design of the annual rollover compensation rate with different PBI levels - under
flat price of electricity, for low, base, and high load profile buildings

(more than 0.7), the investment level increased beyond NZEB levels. At the higher levels

of compensation, it is profitable for customers to invest in RE beyond their own needs and

earn significant revenue at the end of the year. As shown in Figure 9, higher PBI makes it

cost optimal to invest beyond NZEB level at relatively lower compensation ratios.

2.5 Conclusions

We have developed a mixed integer program model that yields optimal design of gener-

ating systems for buildings by considering the local weather data, load profile, available RE

technology and cost, existing incentive programs, electricity tariffs, and minimum accepted

ROI. The MIP model minimizes the total cost of investment and operation, and thus also

yields optimal operational strategies for storage and trade with the grid.
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The proposed model can be used by households, business sectors or investors to decide

the most profitable portfolio of renewable generators and batteries to invest and operate.

This decision support tool aims to optimally benefit from the available incentives and tax

credits for green energy, and reducing the share of current power supply from fossil fuels thus

reducing carbon dioxide emission and increasing social welfare in the long run. Also incentive

and regulations sensitivity tool may be used by regulators to find the best combinations of

incentives to maximize penetration of the distributed green power generation.

Numerical results show that incentive program parameters have threshold levels that

promote different levels of investments in RE. The thresholds depend on the levelized cost

of electricity (LCOE) for different RE sources, and, hence, are independent of the customer

load profiles. Results show that as the incentives increase, the LCOE from RE decreases,

eventually reaching below the average price of electricity from the grid. This makes it viable

to invest in on-site electricity generation from RE sources to satisfy their own electricity

needs. It is also shown that if the incentives continue to increase, buildings could invest in

capacities beyond NZEB levels to earn a revenue.

Implementation of the model for buildings in different climates and load profiles demon-

strates its utility as a tool to determine critical levels of incentives that are required to invest

in a financially viable renewable energy system. In the next chapter, we have extended the

work presented here to the development of a comprehensive model capable of optimizing

over the joint parameter space of different incentive programs in a region. Our focus will be

on design of financial incentive programs to promote net zero energy buildings. The model
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can yield optimal incentive strategies comprising vectors of parameters. However, as the

incentives considered here are offered by different government entities (federal, state, and

local), a joint strategy would only be meaningful only if all entities can come together and

implement it.
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CHAPTER 3: DESIGN OF FINANCIAL INCENTIVE PROGRAMS TO

PROMOTE NET ZERO ENERGY BUILDINGS1

3.1 Introduction

3.1.1 Background

Renewable energy (RE) driven electricity generation has become a fast-growing and

opportunity-rich segment of energy industry over the past few years. The U.S. market, in

particular, is experiencing an increasing growth in the number of new photovoltaic capacity

installations. In 2014, there was around 6.2 GW of PV installation in the U.S., which is

higher than 4.8 GW, 3.4 GW, and 1.9 GW in 2013, 2012, and 2011, respectively [4]. Wind

energy industry has experienced a massive growth from 2005 to 2012 as well. New capacity

installation has been 4.9 GW, 1.1 GW, 13.1 GW, and 6.7 GW in 2014, 2013, 2012, and 2011,

respectively [5].

The aforementioned growth in electricity generation from RE installation can be at-

tributed in part to both economic incentives offered by governments at all levels and also

carbon emissions control strategies of the industrialized nations incorporating promotion of

net zero energy buildings (NZEB) [3]. There are efforts both in the U.S. (Energy Indepen-

dence and Security Act (EISA) of 2007 [35], [36]) and in Europe (the recast of the Directive

on Energy Performance of Buildings, EPBD, adopted in May 2010 [37]) for implementing

1This chapter was partially published in [1]. Permission is included in Appendix C.
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NZEB. The EISA 2007 sets the goal for NZEB to 50% of U.S. commercial buildings by 2040

and for all U.S. commercial buildings by 2050 [38]. In Europe, the EPBD established the

target of reaching net zero status for all buildings that are either public owned or occupied

by public authorities by 2018, and from 2020, all new buildings are to be net zero status

[37].

In this paper, we present a mixed integer programming model and demonstrate its use

for design of incentive programs (e.g., choice of production tax credit) that can make RE

investments leading to NZEB status an economically viable option for commercial buildings.

The MIP model obtains the RE investment strategy for given incentive levels while optimiz-

ing the total cost of meeting energy demand. The optimal cost strategy also results in an

operational strategy for the building with regard to the RE generation, storage, and trade

with the grid.

Despite the recent growth, there remain uncertainties in the investment in renewable

energies. Risks and uncertainties for PV have been categorized into: 1) interannual so-

lar variability, 2) photovoltaic technical performance uncertainty (PV degradation, inverter

lifetime), and 3) market uncertainties. The two main sources of market uncertainty which

can impact net revenues of PV are: 1) future electricity rate escalations and 2) future rate

structures that could significantly modify the value of PV-generated electricity [9].

Investment in wind energy also must reckon with uncertainties from wind speed, equip-

ment reliability, and market variabilities. Uncontrolled variability of electricity generation

from wind and solar can be 10%/min and 10%/s, respectively [10]. Given the uncertainties
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in renewable energy investment, any efforts to achieve NZE status for a building must care-

fully consider all incentives and regulations to ensure a discount rate based on an acceptable

ROI. We consider six main categories of incentive programs available in the U.S. such as

loan program, rebate, production tax credit (PTC), investment tax credit, renewable en-

ergy certificate (REC), and net metering. U.S. department of energy (DOE) provides loan

guarantee for the purchase of renewable energy or energy efficient systems or equipment.

Loan interest rate for commercial RE installations is based on the U.S. Treasury rate, the

Federal Financing Bank (FFB) liquidity spread and project credit ratings[39]. Loan terms

for commercial buildings are 90% of lifetime of the RE system. Rebate programs that are

available in some regions are intended to reduce the initial investment costs.

PTC is a form of tax credit based on the amount of power generated by a RE system.

The federal government in the U.S. is offering 30% tax credit for investment in RE and

energy efficiency through Dec 31, 2016. Moreover, some states (e.g., New York) in the U.S.

have their own state tax credit programs for RE investments. REC is a benefit to a building

based on the amount of electricity it generates from RE, and customers may sell RECs back

to the utility [12].

Finally, in our model we consider net metering as an incentive for buildings when there

is flow of electricity both to and from the customer. We consider that the RE generation

by buildings that exceeds its usage flows back to the grid. This offsets electricity consumed

from the grid by the buildings. If there remains an annual rollover balance, the building

is paid based on the avoided cost of the local utility company. In some regions, rollover is
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calculated monthly and is paid at the full retail rate of electricity. Net metering is required

by law in most states in the U.S. A complete list of incentive programs in the U.S. can be

found in the database of state incentives for renewable energy and efficiency (DSIRE) [12].

Since the photovoltaic (PV) systems have high initial cost, they must be efficiently

operated and maintained to deliver the expected benefits. This requirement serves as a

barrier and pushes interested owners of residential and commercial buildings to participate

in programs offered as third party ownership (TPO) solar finance companies. TPO allows

the building owners to avoid the risk of investment while still reaping some of the rewards.

TPO companies offer two main options: power purchase agreement (PPA) and solar lease

[13]. In the PPA option, a customer is only charged upon electricity generation. In the

lease option, a customer pays rent for the equipment irrespective of the amount of electricity

generated.

We recognize the fact that NZEBs are also a class of microgrids. Henceforth, in this

paper, we will use the terms NZEB and microgrid interchangeably. Some of the openly

available optimization models design hybrid power systems (HPS) consisting of both renew-

able and non-renewable generators [18]. In general, a microgrid can be grid-connected [18],

Stand-alone [16], or in a switchable mode between the two. A common operational strategy

for microgrids considers optimal charging and discharging of energy storage devices, when

available [14], [11], [23], [24].
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Figure 10: Modeling framework to design financial incentive programs
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3.1.2 Contributions of This Chapter

Our MIP model is in essence similar to the distributed energy resources - customer

adoption model (DER-CAM [40]). However, the key difference lies in how the model is

purposed. Instead of the focus being on optimal design and operations (as in DER-CAM),

our model is used to elicit incentives strategy design guidelines for policymakers promoting

NZE status for commercial buildings. A broad range of incentives is considered explicitly in

the model. The model use is demonstrated via exploration of answers to a number of key

questions: What level of incentive might encourage a commercial building owner to invest in

electricity generation from RE to seek NZE status? How do factors such as size and electricity

load of a building, expected discount rates, and grid electricity price influence RE investment

decisions in commercial buildings for a given incentive policy? Under current conditions,

are commercial buildings likely to attain NZE status? Due to the page limitation of this

exposition, we have presented samples of our analysis that generally addresses the above

questions. Some of the key insights obtained from the model application are highlighted.

One such insight is that given the current constraints of RE technology, installation area, and

business, commercial buildings in general would need a significant load reduction through

efficiency improvements in order to become NZEB through on-site RE generation. In fact,

DOE recommends improving efficiency in the building as the first step towards being NZEB,

before investing in RE technologies [41].

The schematic presented in Figure 10 shows the overall framework which consists of

two main steps towards design of incentives, 1) the MIP model, 2) the economic model to
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find optimal portfolio of incentives. First, the MIP is solved for the given type of building,

assuming an arbitrary set of incentives at which the building type is encouraged to invest

in RE up to the NZE level. This set of incentives can be found by trial and error with the

MIP model. The MIP yields an optimal design of RE system. The RE system capacity

may be lower than NZE if the installation area is limited. Knowing the optimal design of

the RE system, we develop a cost equation using engineering economic principles. The cost

equation incorporates the incentive parameters, loan interest rates, and the expected ROI.

This equation is used to obtain the threshold of incentives and loan rate for a range of ROI.

This threshold is a hyperplane. For each point on the hyperplane, the annual cost of the

RE system is equal to the annual cost of buying electricity only from the grid as usual (“do

nothing cost”). An example of such a threshold is depicted via a three dimensional plane in

Figure 16.

For a given region, the following data is needed as input to the model: buildings’

energy load profile for that climate, local weather data, current incentive programs, and

electricity tariffs. We implemented the model for multiple building types, and different

efficiency improvement levels. Experimental results are aimed at helping the policymakers

to predict building owners’ behaviors and find incentive levels that would stimulate more

potential investors.

3.2 Model Formulation

3.2.1 Nomenclature

The notation used for the model is presented in Table 1 in chapter 2.
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3.2.2 Other Model Preliminaries

In order to make the input data ready for the MIP model the following data pre-

processing steps have been performed.

• PV module (k = 1) efficiency is calculated as a function of the operating temper-

ature as follows [29]: ηk`t = ηkR − ζk(T t` − TR).

• Solar radiation incident on a PV module surface, tilted by ρ◦ at latitude σ◦, is

calculated by Et = GHIt sin(υ+ρ)
sin(υ)

, where υ = 90◦ − σ + δ, and δ, the solar declination,

equals 23.45◦ + sin(360
365

(284 + day)) [30].

• PV (k = 1) output power (DC) is calculated based on the hourly efficiency of solar

installation ` as follows: ωk`t = ηk`tEtAk`LkML
k
RL

k
SL

k
DL

k
AL

k
CL

k
T , ∀`, t

• Output power of the wind turbine has a non linear relation to the wind speed. As

per [2], for each wind turbine (k = 2) with installation type `, we have the following,

where a =
Γk`
G

ν3r−ν3ci
and b =

ν3ci
ν3r−ν3ci

, ∀i, t:

ωk`t =


a(νt`)3 − bΓk`G νci ≤ νt` ≤ νr,

Γk`G νr ≤ νt` ≤ νco,

0 o/w,

In the model, we assume that NZEBs (microgrids) are grid-connected and operate

under a net metering policy. The system components for a grid-connected NZEB are shown

in Figure 11.
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Figure 11: Elements of a grid-connected NZEB (microgrid) with PV and wind generation

3.2.3 MIP Model

Presented below is the complete MIP model that yields an optimal RE investment

strategy for a building (microgrid) toward achieving a net zero energy status.
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S.t. gk`t = ωk`txk`GL
k
V ∀k, `, t (3.2)

xk`G ≤ yk`GGmax∀k, ` (3.3)

xB ≤ yBBmax (3.4)

1 ≤ 1−
∑

t q
t∑

t(
(1−∆)Dt

AC

LAC
+

(1−∆)Dt
DC

LACLDCη2
)
≤ 1 + τ (3.5)

ε1(et1 + et2) ≤ xBΓBθ1 ∀t (3.6)

et1 + et2 ≤ µtBmax∀t (3.7)

ε−1
2 et3 ≤ xBΓBθ2∀t (3.8)

et3 ≤ (1− µt)Bmax∀t (3.9)

η1[
∑
k1`

gk
1`t + (et3 − et1)]LDCLAC − η1(1−∆)Dt

DCLDC

+
∑
k2`

gk
2`tLAC + qt = (1−∆)Dt

AC +
1

η2

et2∀t (3.10)

zt = xBΓB∀l, t = 1 (3.11)

zt = (1− φ1)z(t−1) − ε−1
2 et3 + ε1(et1 + et2)∀t ≥ 2 (3.12)

zt ≥ φ2xBΓB∀t (3.13)

zt ≤ xBΓB∀t (3.14)∑
k`

gk`t + (et3 − et1)− (1−∆)Dt
DC ≤ xpCΓpC∀t, p = 1, k ∈ k1 (3.15)

1

η2

et2 ≤ xpCΓpC ∀t, p = 2 (3.16)

Dt
2 ≥ qt ∀t (3.17)

D1 ≥ Dt
2 ∀t (3.18)
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h ≥
∑
t

qtH t (3.19)

w =
∑
t

qtH t − h (3.20)
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k`

t+M∑
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Ak`xk`G ≤ A
k` ∀`, k = 1 (3.22)

Ak`yk`G ≤ A
k`∀`, k = 2 (3.23)∑

`

yk`G ≤ 1 k = 2 (3.24)
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∑
`
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`

(yk`G F
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G + xk`GΓk`GV

k`
G ) ∀k (3.30)

ak ≤ ak ∀k (3.31)

xk`G , x
p
C , xB ∈ Z+ ∪ {0}, qt, w ∈ R, yk`G , yB, µt ∈ B gk`t, u, rk, zt, et, D1, D

t
2h, a

k ∈ R+ ∪ {0}

(3.32)

The investment and financing time horizon considered in the model are 30 years. All

capital costs and credits are depreciated over 30 years in addition to other annual costs and
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revenues. We annualized all costs and revenues in the MIP model in the objective function,

aiming at minimization of the overall cost of electricity in a building for a typical year. The

positive elements of the objective function (A.1) represent equivalent annual cost and the

negative elements indicate yearly revenue or credits. The seven cost elements indicate, in

order presented in (A.1), the loan annual payment, depreciated annual cost of capital used

for technology procurement and installation (including fixed and variable costs of batteries,

generators, and converters), annual operation and maintenance costs, and billing demand and

peak billing demand charges. The last positive element of the objective function represents

the basic service charge of the utility company in addition to the cost of net electricity

purchase from utility (when h ≥ 0) or revenue from annual rollover compensation (when

ω < 0). The revenue/credits comprise rebates, state tax credit, federal tax credit for capital

investment (in batteries, generators, and converters), the production tax credit (PTC),and

renewable energy certificate (REC).

The constraints are as follows. Constraint (3.2) calculates electricity generation by

each type of generator based on the corresponding weather data and the derate factor of

availability. Constraints (3.3,3.4) are to include fixed cost associated with the installation

of the system, i.e., if xk`G takes a positive value, the inequality forces yk`G to take one as well,

and similar for yB. Constraint (3.5) is the NZEB constraint, which one may include in the

model only if imposing NZE status. It forces the building to invest in RE generators at NZE

level regardless of the extra costs. It is useful to find the extra cost of achieving NZE status

comparing to do nothing cost. The constraint forces the ratio of demand satisfied by on-site

49



RE to one. Setting the constraint as an inequality helps to avoid infeasibility of forcing the

RE level to be exactly equal to one. Giving the constraint a tolerance of τ lets the building

go beyond the NZEB a little if needed in optimal case. Constraints (3.6) and (3.7) show

the rate of charge of the batteries considering charging efficiency and nominal charging rate.

Constraints (3.8) and (3.9) show the rate of discharge of the batteries considering discharging

efficiency and nominal discharging rate. In (3.7) and (3.9), µt ensures that a battery is not

charged and discharged at the same time t. Balance constraint (3.10) ensures that the energy

input to a microgrid equals its output, both for DC and AC, at all times. Constraints (3.11)

through (3.14) accomplish hourly updates of the battery capacities. Power conversion from

DC to AC and vice versa is always limited by the capacities of inverters (3.15) and rectifiers

(3.16).

It is considered that the utility gives credit to the microgrids for selling electricity

back to the grid. As practiced by many states in the U.S., if total yearly sales credit

exceeds total purchase of a building, the utility pays for the excess credits to the consumer.

The constraints (3.17) and (3.18) calculates annual peak and base demand of the building

for electricity from the grid. The constraints (3.19) and (3.20) calculate annual electricity

payment to the utility company, if any, and sales credits, respectively. To ensure that the

customer has power during blackouts for at least M hours (reliability), we added constraint

(3.21) to the model. The installation capacity limits for generating devices are handled by

(3.22) through (3.24). Constraints (3.25) through (3.31) accounts for the rebate, loan, and

state tax credit amounts resulting from the investment plan.
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3.2.4 Key Outputs from the MIP

• Annual extra cost of NZEB (CNZEB,%)

CNZEB = 100(Z
?

Z0
− 1), Where Z0 is “Do Nothing” cost.

• Percentage of demand satisfied by on-site RE (RE,%)

RE = 100(1−
∑

t q
t∑

t(D
t
AC(1−∆)/LAC+Dt

DC(1−∆)/(LACLDCη2))
)

• Overnight cost of installed RE system (CRE, $/W )

Ck
RE =

Fk
Gy

k
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∑
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k
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G −rk∑
` x

k`
G Γk +
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k` x

k`
G Γk

G

• Overnight cost of installed energy storages (CB, ¢/Wh)

CB = yBFB+VBxBΓB

xBΓB

3.2.5 Incentive Program Design

The required input parameters for the incentive design formulation are optimal NZEB

design (x?k`G and x?pC ). In case of considering energy storages in the NZEB, x?B and q?t

(optimal operation of NZEB) are needed as well.

Given the optimal design (and operation), i.e., assuming xk`G = x?k`G , xpC = x?pC , xB = x?B,

(and qt = q?t), the followings can be calculated:

gk`t from (3.2), y?k`G and y?B from (3.3) and (3.4) respectively, Dt
2 (billing demand) and

D1 (peak billing demand) from (3.17) and (3.18) respectively, h and w (netmetering bill or

credit) using (3.19) and (3.20) respectively, rk (rebates) via (3.25) through (3.27), u (loan

amount) using(3.28) and (3.29), and ak (state tax credit) via (3.30) and (3.31).
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Considering PTC is the same for different energy sources, we have PTC = Ik,∀k.

Having calculated all the above mentioned variables, the annual cost of the NZEB in (A.1)

is now only a function of the following parameters: loan interest rate (α), discount rate (β),

and production tax credit (PTC). We define such a function as Λ(α, β, PTC), which can be

used to obtain the annual cost of NZEB for given set of α, β and PTC values.

Calculating “Do Nothing” cost can be done with a similar approach. Setting xk`G = 0,

xpC = 0, xB = 0 makes the defined Λ function, only dependent to β, i.e., the net present

value of the annual electricity bill is only a function of discount rate. So let Λ◦(β) be the do

nothing cost for the building.

Then the threshold for the portfolios of incentives at which the NZE status becomes a

financially viable option for the building, could be found by solving the following equation:

Λ(α, β, PTC) = Λ◦(β)

Any combination of α, β, and PTC that satisfies the equation would be a solution. The

set of solutions forms a three dimensional hyperplane which represents the optimal threshold

for the incentive parameters. The example of such a hyperplane can be seen in Figure 16).

In this paper we investigated PTC selection for the Tampa area (in the state of Florida) for

buildings with different financial status.

However the model can be generalized for a higher number of incentives including

investigate rebates (Rk, R), state tax credit(γks , a
k), federal tax credit (γF ), and PTC (Ik)

all together and find optimal threshold for the combinations of these incentive programs for
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buildings in a region. In that case, an eight dimensional hyperplane for the threshold of

incentives can be found using the following equation:

Λ(α, β, PTC,Rk, R, γks , a
k, γF ) = Λ◦(β)

Note that solving the MIP model is a necessary step as it estimates an optimal NZE

portfolio of technology (x?k`G , x?pC , x?B, and q?t) that a building type in a region would choose

to invest in, if it is financially viable. In case of not having enough area to be optimally

NZEB via on-site RE generation, the size of the portfolio would be up to the physical limits

of the building.

3.3 Model Implementation

We have examined the impact of financial incentive programs using the MIP model

in the context of transforming three categories of commercial buildings in Tampa-Florida

into NZEBs. We first provide the description and values of the different categories of input

parameters to facilitate understanding the results. We then present the results in two parts:

1) the optimal investment level in RE generation of a building under an arbitrary set of

incentives at which the building will be encouraged to invest in RE, and 2) use the results

from the MIP model to determine the critical threshold values of financial incentive programs

that promote NZE status. We used CPLEX to solve the MIP model on a standard desktop

computer with 16 GB RAM and Intel i7 processor @2.93 GHz. The station took on average

30 seconds to solve the MIP model for different building types and incentive combinations.

The solution gap was set to 0.2%.
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3.3.1 Data

3.3.1.1 Building Data

The characteristic features of the buildings that are used as input for the MIP model

are the available area for on-site installation, and hourly electricity load data. The buildings

used in the computational study are from the U.S. Department of Energy (DOE) commer-

cial reference buildings [42]. The electricity load data were obtained from building energy

analysis data developed using EnergyPlus simulation software [32]. DOE developed 16 com-

mercial reference building types and three construction categories, in 16 climate zones, which

represent approximately 70% of the commercial buildings in the U.S.

In Figure 12, we present an overview of the 16 building types in Tampa in terms of

their annual electricity load (with and without 40% load reduction via increased efficiency)

and their estimated potential on-site solar energy generation. Potential annual on-site solar

energy generation in Tampa buildings is calculated based on the following assumptions: 1)

capacity factor of 20%, 2) ground coverage ratio of 0.8, and 3) power density value of 193 W
m2 .

Figure 12 illustrates that the available area for RE installation could pose a barrier for some

of these buildings to become NZEB using on-site RE generation.

Clearly there are three groups of commercial buildings in the figure:1) buildings with

abundant roof area for solar installation, thus no physical constraint to be NZEB, 2) buildings

with limited roof area that are required to reduce their load through efficiency improvements

in order to attain NZE status with on-site RE generation, and 3) buildings that even with 40%

reduction in load cannot be NZEB due to their very limited roof area for solar installation
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Figure 12: Potential to be NZEB using on-site solar energy generation in Tampa, Fl

in comparison with their load. The buildings in group 3 may attain NZE status using off-

site RE generation. Since a significant portion of off-site RE generation cost is the price of

land which varies significantly even within a certain region, we did not consider off-site RE

generation in designing financial incentive programs to promote NZEB.

3.3.1.2 Incentives/Regulations

In Tables 11 and 12, we have listed all of the currently available incentives and regu-

lations for commercial RE installations in Tampa, FL.
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Table 11: RE incentive programs for commercial buildings in Tampa, FL

Item Amount

Business Energy Investment
Tax Credit

30% of total investment

RE Production Tax Credit 1 ¢/kWh up to $1M
DOE Loan Program Loan term = Min{30 years, 90% projected life of fi-

nanced assets}
Sales Tax Incentive All sales tax on solar energy system, no limit
Regulatory Policy REC and Net-Metering at avoided cost rate (3.067

¢/kWh in 2014 [43])

Table 12: Time-of-day general service demand (GSDT) in Tampa, FL

Item Amount

Basic service charge 30 ($/month)
Demand charge 4.63 ($/kW) of billing demand & 6.10 ($/kW) of peak

billing demand
Time of Day price On-peak: 7.417 (¢/kWh) & Off-peak: 5.223 (¢/kWh)
Peak hours Nov-Mar (Winter) : 6:00AM-10:00AM & 6:00PM-

10:00PM
Apr-Oct (Summer) : Noon-9:00PM

3.3.1.3 Technology Options

The technology options considered in our model are PV panels, wind turbines, batteries,

inverters, and rectifiers. Tables 13 and 14 provide specifications of these options and their

corresponding costs, respectively [44].

We have assumed the PV panels are installed at a tilt angle 26.5◦ based on the latitude

of the location (28◦). The cost of each model includes the costs of mount and wirings. For

both wind and solar generators and inverter, the MIP model finds the optimal capacity to

invest with increment of 100 W . For investment in the battery (energy storage), capacity

increment of 100 Wh is considered.
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Table 13: RE generation technology specifications

Technology

Specifications PV Wind Battery Inverter Rectifier

Life (yrs) 30 30 5 10 10
Size (W) 100 100 100 100 100
Implementing area (m2) 0.516
efficiency (%) 20
Wind Tower base area (m2) 18
Cut in (m/s) 3
Rated power speed (m/s) 12.5
Cut out (m/s) 25
θ1(%) 30
θ2(%) 50
ε1(%) 90
ε2(%) 90
CEC Efficiency 96 99.9

Table 14: Non-residential turnkey system installed costs

Technology Fixed Cost ($) (based on 200kW system) Variable Cost ($/W , $/Wh)

Solar 65k 1.72
Wind 20k 2.00

Battery 5k 0.25
Inverter included in solar fixed costs 0.15
Rectifier included in battery fixed cost 0.02

Per information made available in [44], solar installation costs are based on a 200-kW

DC rooftop system with standard crystalline silicon modules and flat roof with minimal

obstructions. We assume the cost components of design, engineering, permitting, and direct

labor to be part of the fixed cost, which remain constant for systems of size 150kW to

250kW. The variable costs for each technology consist of electrical balance of system (BOS),

structural BOS, supply chain, overhead, and margin, in addition to the cost of the equipment.

Figure 13 demonstrates the relationship between total cost and the size of they system.

57



Figure 13: RE installation cost vs. capacity

Particularly, due to the impact of fixed cost, as the size of the system increases, the total

cost will decrease. Besides these costs, an O&M cost with a coefficient of 2% is considered

in the model.

3.3.1.4 Local Weather Data

The hourly historical data on solar radiation, wind speed level, and ambient tempera-

ture for Tampa-FL are considered based on typical meteorological year 3 from NREL [45].

3.3.2 Computational Study

In the rest of this paper we demonstrate how the results of the MIP model can be

used to design incentive programs that promote RE investment and likely NZE status for

commercial buildings. The annual on-site electricity generation of NZEBs satisfies the load

and the losses in the system under a net-metering policy. To examine the impact of incentive

program design on different types of commercial buildings, we chose to analyze buildings from

each of the three groups mentioned in Figure 12. We selected Stand-alone retail, medium
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office, and outpatient health care building from groups 1, 2, and 3, respectively. Among the

financial incentive programs available in Tampa for commercial buildings (listed in Table 11

and 12), we used the given values for the sales tax incentive, business energy investment 30%

tax credit (ITC), REC, and net-metering in all scenarios. The experiments were conducted

for all three buildings, assuming investors’ acceptable cash flow discount rates in the range

of 0.001 - 10%, and with and without load reduction through efficiency improvement.

3.3.2.1 Model Calibration

We calibrated the MIP model using the data based on the “Do Nothing” case. Setting

xk`G = 0, xpC = 0, and xB = 0. That is, we computed the cost of the “Do Nothing” case, where

the hourly purchase of electricity from the grid should match the load profile of the building.

The “Do Nothing” cost is equal to the total electricity bill paid to the utility company.

3.3.2.2 Energy Storage in Tampa, Fl

The results showed that investing in energy storages is not an optimal decision, which

can be explained as an effect of the existing net-metering policy. However, if the profit from

storing power during off-peak hours is assumed to be higher, then investment in battery

storage becomes financially viable.

3.3.2.3 MIP Solution for Different Input Incentives

As depicted in Figure 10, in step 1 we obtain the optimal RE system design, (xk`G , x
p
C)

for which we need as input a set of incentives that promotes RE investment. In order to

obtain such a set of incentives, we solved the MIP for numerous combinations of loan rate

and PTC (see Figure 14). We observed three zones of incentive combinations: do nothing
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Figure 14: Stand-alone retail building’s RE investment level (as % of load)

(0% RE), invest at NZEB (100% RE), and invest beyond NZEB (> 100% RE). Any of the

incentive combinations corresponding to 100% RE could be used in step 1. Note that for

buildings with insufficient area, maximum RE level achievable would be below NZE level

(< 100% RE). In such cases, any incentive combinations promoting RE investment could be

used as input to step 1. However finding a suitable set of incentive combination for step 1

can be done via trial and error. Different incentive combinations can be evaluated until we

obtain one that promotes the NZEB investment or one that promotes RE below NZEB level

and up to the installation area limit.

3.3.2.4 Investment vs. “Do Nothing” Case

Figures 15 illustrates the cost burden resulted by forcing NZE status, based on a 2%

discount rate on the cash flow.
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Figure 15: Stand-alone retail building’s extra cost due to forced NZE status compared to
“Do Nothing” case

The figure can be interpreted as follows. Consider a Stand-alone retail building with

discount rate of 2%, project credit rating of A+ (eligible for a loan of an interest about

3.33%), and at current PTC in Tampa, FL of 1 ¢/kWh. Per Figure 15, this building will

have about 6.3% increase in its annual cost of energy comparing to “Do Nothing” cost. This

extra cost should be compensated through other incentive forms if NZE status is sought.

3.3.2.5 Optimal Threshold of Incentive Portfolios

Stand-alone retail building has an annual energy load of 412.1 MWh and has enough

rooftop area to install solar panels to satisfy all its own needs. As can be seen in Figures 14-

18, the viability of investment depends on both incentives, especially the loan interest rate

(project credit rating). Since the threshold for the incentive parameters are not easily deci-
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pherable from the three-dimensional plots (Figures 16), we have provided the two dimensional

threshold curves, for all building types, for investors’ discount rate of β = 2% in Figure 17.

Similar two dimensional images of the higher dimensional policy threshold hyperplane can

be produced using other discount rate values. Figure 17 demonstrates the financial viabil-

ity threshold for NZEB status for different loan rate and PTC combination at 2% discount

rate for different types of commercial buildings. As can be seen, different buildings respond

similarly to the incentive programs. This observation makes it easier for the policymaker to

design a set of incentive programs that can appeal to a greater audience.

In Figure 18, plot A shows for a Stand-alone retail building in Tampa, how a 30%

reduction in load changes the optimal threshold of the incentive program in the same building

comparing to the base load. A reduction in load changes the threshold in two ways: 1)lower

load results in a lower ”do nothing cost”, 2)a lower load requires lower RE capacity to achieve

the NZEB level, which imposes a higher $/W cost of investment (see Figure 13). Both of

the above reasons make the investment less attractive for the building compared to the “Do

Nothing” case. Hence a higher level of incentive is required to make NZEBs financially viable

after efficiency improvement.

Figure 18 plot B shows the optimal threshold of PTC and loan rates for Stand-alone

retail building for two levels of discount rates, 2% and 7%. This illustrates an increment in

PTC can significantly increase the ROI of the RE project for the building.

Medium office building has an annual energy load of 786.4 MWh and insufficient roof

area to install solar panels to be NZEB. However, with about 46% load reduction through
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Figure 16: NZE attainable combinations of loan rate, PTC, and return on investment (stand-
alone retail without efficiency improvement)

efficiency improvement and load management, it would be capable of reaching NZE status

through on-site RE generation. The efficiency improvement does not have a significant

impact on its investment size and just slightly decrease it from 257.4 kW to 248 K. Outpatient

health care unit building has an annual energy load of 1495.3 MWh. Due to its high load

relative to the roof area, it cannot turn to NZEB through on-site RE generation even with

50% reduction in load and invest in a 196.5 kW system in both cases. In medium office

and outpatient health care unit buildings in Tampa, FL, we observed an impact of the load

reduction and discount rates on optimal thresholds of incentives, similar to the one discussed

for the stand alone building.
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Figure 17: NZE attainable combinations of loan rate and PTC, at 2% return on investment
for three commercial buildings from three categories (buildings without efficiency improve-
ment)

Figure 18: NZE attainable combinations of loan rate and PTC, for Stand-alone retail build-
ings in Tampa, FL: Graph A- with and without 30% load reduction (with ROI=2%), Graph
B- with expected ROI of 2% and 7% and no load reduction
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Table 15: Who will invest with PTC = 1.5 ¢/kWh in Tampa, FL?

Discount Rate: DR; Buildings; R: Retailer; O: Office; H: Health Unit

DR = 2% DR = 4% DR = 6%
Project Credit Rating APR (%) R O H R O H R O H
AAA 3.25 + - + - - - - - -
AAA- 3.25 + - + - - - - - -
AA+ 3.25 + - + - - - - - -
AA 3.25 + - + - - - - - -
AA- 3.29 + - + - - - - - -
A+ 3.33 + - + - - - - - -
A 3.37 - - + - - - - - -
A- 3.44 - - - - - - - - -
BBB+ 3.52 - - - - - - - - -
BBB 3.59 - - - - - - - - -
BBB- 3.78 - - - - - - - - -
BB+ 3.98 - - - - - - - - -
BB 4.18 - - - - - - - - -
BB- 4.38 - - - - - - - - -
B+ 4.55 - - - - - - - - -
B 4.73 - - - - - - - - -
B- 4.88 - - - - - - - - -

3.3.2.6 Now Who Will Really Invest in RE?

The financial status of a commercial building is the key to answer this question. We

determined the financial classes for commercial buildings via two measure, credit rating and

expected ROI (discount rate on cash flow). We have shown through our analysis the optimal

threshold for the incentive portfolios to encourage NZEB. Now, policymaker can evaluate

the impact of a choice of portfolio of incentives on several classes of commercial building in

the given region, such as Tampa.

Results show, at current level of PTC incentive in tampa, 1¢/kWh, investment in RE

is not cost effective for the three building types we have examined for discount rates of 2, 4,
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Table 16: Who will invest with PTC = 2.0 ¢/kWh in Tampa, FL?

Discount Rate: DR; Buildings; R: Retailer; O: Office; H: Health Unit

DR = 2% DR = 4% DR = 6%
Project Credit Rating APR (%) R O H R O H R O H
AAA 3.25 + + + + - + - - -
AAA- 3.25 + + + + - + - - -
AA+ 3.25 + + + + - + - - -
AA 3.25 + + + + - + - - -
AA- 3.29 + + + + - + - - -
A+ 3.33 + + + + - + - - -
A 3.37 + + + + - + - - -
A- 3.44 + + + + - + - - -
BBB+ 3.52 + + + + - + - - -
BBB 3.59 + + + + - + - - -
BBB- 3.78 + - + - - - - - -
BB+ 3.98 + - + - - - - - -
BB 4.18 - - - - - - - - -
BB- 4.38 - - - - - - - - -
B+ 4.55 - - - - - - - - -
B 4.73 - - - - - - - - -
B- 4.88 - - - - - - - - -

and 6%. These results are based on the aforementioned assumptions on costs of technologies

and installation, electricity tariff, and typical weather data, etc.

The same evaluation has been done for higher PTCs of 1.5, 2, and 2.5 ¢/kWh. Tables

15, 16, and 17 demonstrate the response of different classes of commercial buildings to a

given incentive level, where if a class of building invest in RE shown as (+) and otherwise

as (-).

Using this evaluation tool, the impact of incentive programs is now more clear to

the authorities. Ideally, with actual number of buildings in each class in Tampa area, the

policymaker can even have a richer tool to evaluate the impact. The Tables illustrate that

an increase in PTC level can significantly increase the number of classes of commercial
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Table 17: Who will invest with PTC = 2.5 ¢/kWh in Tampa, FL?

Discount Rate: DR; Buildings; R: Retailer; O: Office; H: Health Unit

DR = 2% DR = 4% DR = 6%
Project Credit Rating APR (%) R O H R O H R O H
AAA 3.25 + + + + + + + + +
AAA- 3.25 + + + + + + + + +
AA+ 3.25 + + + + + + + + +
AA 3.25 + + + + + + + + +
AA- 3.29 + + + + + + + + +
A+ 3.33 + + + + + + + + +
A 3.37 + + + + + + + + +
A- 3.44 + + + + + + + + +
BBB+ 3.52 + + + + + + + - +
BBB 3.59 + + + + + + + - +
BBB- 3.78 + + + + + + + - +
BB+ 3.98 + + + + - + - - -
BB 4.18 + + + + - + - - -
BB- 4.38 + - + - - - - - -
B+ 4.55 + - + - - - - - -
B 4.73 + - + - - - - - -
B- 4.88 - - - - - - - - -

buildings who can invest in RE at NZEB level or up to their limits (below or above NZEB).

Given the results from our analysis, one can come up with different policy-design approaches.

For example, for a RE loan application from a commercial building, the bank can evaluate

financial viability of the RE installation in that building and guide the applicant.

The bank determines the proper loan interest rate based on the applicant’s risk and

other market considerations as follows: Interest Rate = Applicable U.S. Treasury Rate for

the tenor of the loan + 37.5 basis points (0.375%, the Federal Financing Bank (FFB) liquidity

spread) + Credit-Based Interest Rate Spread (A range of 0.0% to 1.625% for project credit

ratings of range AAA to B-, see Table17 for credit ratings and estimated interest rates).

U.S. treasury rate varies daily, the mean and median of the 30 years rate is 2.83% and 2.89%
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respectively. In this study we considered 2.89% as U.S. treasury rate for the tenor of the

loan. Also a 20% down payment for loans is assumed. Ultimately, given the interest rate, the

authority may investigate the financial viability of a RE project using optimal thresholds.

In addition, our model can provide investment consultation services to commercial

buildings that are interested in satisfying a portion, if not all of, their demand through

renewable energies. Knowing their credit rating, expected ROI and local incentives for RE

such as PTC, we can help the buildings decide for their energy supply methods.

3.4 Conclusions

This paper presents an economic framework that can be used by the policymakers to

determine the appropriate levels of incentive programs that would foster growth in renewable

energy investment in commercial buildings in support of NZEB policy goals. Numerical

results of implementation of the model for commercial buildings with different characteristics

show that incentive program parameters have threshold levels that promote NZEB. The

thresholds depend on the annualized cost of the RE system and the cost of do nothing case

(when all electricity comes from the utility).

Even though we investigated policy design based on the building types, we have shown

later in the results that even within a given type of buildings, each building may have

a different potential to invest in RE based on owner’s financial status (credit rating and

expected ROI). The presented framework can be used by the policymakers to measure the

potential number of classes of commercial buildings for which RE investment is financially

viable for given incentives and regulations.
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An extension of this framework can be done where more data on the aforementioned

classes of commercial buildings is available for a region. This data should include the annual

load and available area for RE installation for buildings in each class. The load and area

can be used to determine the potential RE investment in a building given enough incentives.

Hence, instead of a table of positive and negative indications in response to the available

incentives (see Table 17), we will have a table of potential total RE investment (in MW)

in each class of commercial buildings in a region. With that, the policymaker can select

incentive level to maximize the total amount of RE investment in that region, given their

budget limit on RE incentives.

Investigating levelized cost of electricity (LCOE) is another possible approach to find

the optimal threshold for incentive parameters for a building. Obviously, the LCOE of

the on-site generated power decreases where more incentive is provided. At a point where

the LCOE equals electricity price in the grid (grid parity), the building will invest in RE

generation up to NZE level.

While RE investment has many long term advantages, if the policymakers’ goal is to

increase the number of buildings that reach NZE status, they should prioritize the classes

of buildings to incentivize based on their potential to reach NZE status. Our modeling

framework can be used to identify the desirable building types and classes through which

RE investment can be maximized.
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Appendix A An Optimization Model for Operation of Concentrating Solar

Power Plant: A Case Study2

A.1 Background and Problem Statement

Uncontrolled variability of distributed green energy generation from solar power is

10%/s. Where as the non-renewable energy generation like coal and natural gas has rare

uncontrolled variability.[10]. TES systems are being considered as a viable option to hedge

against the intermittency of the solar power resource. In the other hand, the variable (Time

Of Day) price of electricity in the grid may make the TES even a profitable option to invest

as the system can save thermal power and generate electricity during peak hours. If the

CSP is directly used to support local demand and is the only power generator on site, then

having a TES would be necessary to satisfying the reliability, i.e., meet the demand whenever

sun light is not available. Although having non-renewable generators, such as diesel, may

increase reliability of the system in the stand alone micro grid with a lower cost but is not

an environmentally responsible solution.

The proposed approach will help making CSP viable in view of economic feasibility and

operating efficiency. Based on weather data and time-based rates of grid power, the model

optimally sizes the TES and how to operate it hourly. The model aims at maximizing the

annual profit of the CSP. The optimal operation decisions by our model are as follows; 1)

Time and level of charging and discharging the thermal energy storages, 2) Time and amount

of thermal power to send to the power block. System Advisor Model (SAM) software, version

2This work is partially a course project for Dr. Goswami’s class, Solar Energy and Applications, in Fall
2014.
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2014.11.24 developed by NREL [46], is being used to simulate output thermal power of the

USF microCSP. The simulation is based on typical meteorological data of Tampa-Fl (hourly

solar radiation and ambient temperature) in addition to the characteristics of the solar field,

solar collectors, heat collection elements (receivers), and the power block.

We have developed a MIP model in GAMS (The General Algebraic Modeling System,

a high-level modeling system for mathematical programming and optimization). The MIP

model is based on the model developed by R Sioshansi and colleagues [47], [48]. The MIP

model uses the data output from SAM as input parameter to do the optimization on TES.

The output of the MIP model is the annual generated electricity of the power block given

the capacity of the TES. There are two methods to measure the capacity of TES, 1- Size of

the TES in kWh, 2- Number of hours that the TES can support the power block running

in its full capacity. In this project we used the second way, number of hours, for the size of

the TES. The optimal hourly operation of a CSP is found by the MIP model for different

sizes of the TES. Knowing the capital cost of the TES, one can determine the optimal size

of the TES from the MIP results. For a given optimal size of the TES, now we can use the

MIP outputs as the operation plan of the system under fluctuating solar radiation and real

time price of electricity. We believe that our system, with CPLEX implementable solution

strategies for its underlying models, will empower the CSP across the world, with or without

smart grid infrastructure, to increase the profitability of their current powerplants. In the

section A.2, the MIP problem formulation is being presented. In section A.3, we provided

the computational results of the model based on the USF microCSP.
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A.2 Mathematical Formulation

A.2.1 Nomenclature

Table A.1: Nomenclature used in appendix A

Symbol Meaning
Indices

t Time in hours , t ∈ {0, .., 8760}
j Auxiliary indices for time (t)

Decision Variables
et Electric energy sold in hour t (kWhe)
lt Storage level of TES at end of hour t (kWht)
st Energy charged into TES in hour t (kWht)
dt Energy discharged from TES in hour t (kWht)
τ Energy put into power block in hour t (kWht)

Calculated Variables
rt Binary, rt = 1 if power block is started in hour t
ut Binary, ut = 1 if power block is on in hour t
µt Auxiliary binary variable used for linearized constraints number (A.7-A.11)
νt Auxiliary variable used for linearized constraints number (A.7-A.11), νt = τtµt

Input Parameters
η Capacity of TES (hours of storage)
φ Roundtrip TES efficiency (%)
ρ Hourly energy retain in TES (%)
c Operating cost estimate for generated electricity ($/kWhe)

d TES discharge limit (kWht)
s TES charge limit (kWht)
eSU Power block startup energy usage (kWht)
eSF Thermal energy output from the solar field (kWht)
τ− Min. operating level of power block (kWht)
τ+ Max. operating level of power block (kWht)
τK Minimum thermal power to the power block that can generate electricity based

on the heat curve(kWht)
u− Minimum up time of power block (hr)
Mt Grid electricity price ($/kWhe) at t
B A relatively very large number
γ Parasitic proportional load of the power block(%)
a Coefficient in the power block heat rate linear function (a constant based on

the power block)
b Intercept in the power block heat rate linear function (a constant based on the

power block)
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A.2.2 Problem Formulation

We have developed a Mixed Integer Programming (MIP) model and solved using

CPLEX solver in GAMS. It is solved in order to find optimal level of hours of TES and

optimal control strategies to yield the maximum annual revenue. Hereby we provided the

objective function and constraints of the MIP model.

max
∑
t

(Mt − c)et (A.1)

s.t. lt = ρlt−1 + st − dt ,∀t (A.2)

lt ≤ ηs ,∀t (A.3)

st ≤ s ,∀t (A.4)

dt ≤ d ,∀t (A.5)

st − φdt + τt + eSUrt ≤ eSF , ∀t (A.6)

νt ≤ τt ,∀t (A.7)

νt ≤ Bµt ,∀t (A.8)

νt ≥ τt − (1− µt)B , ∀t (A.9)

et ≤ (1− γ)(aνt − bµt + (1− µt)B , ∀t (A.10)

et ≤ µtB , ∀t (A.11)

τt ≤ τ+ut ,∀t (A.12)

τt ≥ τ−ut ,∀t (A.13)

rt ≥ ut − ut−1 ,∀t (A.14)
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ut ≥
t∑

j=t−u−
rj ,∀t (A.15)

lt, st, dt, τt, νt ∈ R+, et ∈ R, rt, ut, µt ∈ {0, 1} (A.16)

The objective function (A.1) is the revenue from sale of electricity minus the estimated

operating cost. The constraint in (A.2) hourly updates the TES storage level. Constraints

(A.3,A.4,A.5) set limit on storage level and also on charging and discharging of the TES. In

(A.6) we ensure that the total thermal energy flow in the system at any time is always less

than the thermal power output of the solar field in addition to the discharged energy from

the TES. We assumed a piecewise linear function for the power block heat rate function.

In order to have it in the set of MIP constraints, we made it linear by defining constraints

(A.7-A.11). In general, if the heat rate function is piecewise linear, we have,

et =


0 τt ≤ τK

aτt + b τt ≥ τK

Constraints (A.12,A.13) determine the acceptable range for thermal power input to

the power block. Since there is a startup energy consumption in the power block, constraint

(A.14) defines the power block startup hours. We can also enforce a minimum up-time

requirement on the power block by the constraint (A.15).
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A.3 Computational Study

A.3.1 CSP Characteristics

Using the model, we optimized the size and hourly operation of a TES for the microCSP

(parabolic solar trough CSP) at USF. Different characteristics of the site has been measured

by visiting the plant and also gathered from the CERC members. The CSP properties has

been used as inputs to the SAM software to simulate the solar field. Simulation’s result

are hourly thermal energy output of the solar field and the hourly output electricity from

the power block. Some important measures of the site, i.e. ,solar field and power block

characteristics, are given in Table A.2 and A.3, respectively.

Table A.2: Solar field characteristics

Number of Troughs per Row 14
Number of Rows 14

Row Spacing Center to Center 2.4m
Distance Between Troughs in a Row 0.25m

Solar Collector Assembly (SCA) Length 52m
SCA Aperture 1.65m

SCA Aperture Reflective Area 80m2

Solar Field Reflective Area 1120m2

Average Focal Length 0.65m
Heat transfer fluid (HTF) Water-Glycol
Solar Field Inlet Temp. 26◦C

Solar Field Outlet Temp. 97◦C

Table A.3: Power block characteristics

Type of Power Cycle Organic Rankine Cycle (ORC)
Gross Electricity Output 65 kW-e

Estimated Gross to Net Conversion 0.9
Min. Thermal Input 400 kW-t
Max. Thermal Input 825 kW-t

Startup thermal power 50 kWht
Rated Cycle Conversion Efficiency 8.3%
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A.3.2 Local Weather Data

The hourly historical data on incoming solar radiation and ambient temperature is

available on SAM Weather Data (by NREL).Given the location of the site, we used the

typical meteorological year (TMY) data for Tampa, FL.

A.4 SAM Simulation Outputs

Provided the input parameters of this case study, SAM simulated the CSP. Among

different outputs of the simulation, we care the most for the following results. These data

has been used to find the power block heat rate function (see the next subsection). This

function as well as the thermal energy available form the solar field (eSFt ) are used as inputs

to the MIP model.

• Hourly thermal energy output from the solar field (kWht)

• Hourly gross electricity generation in power block kWhe)

A.5 Heat Rate Curve Function of the Power Block

Given the SAM simulation results, the following hourly data has been used in order to

estimate the heat rate curve function of the power block, 1-Thermal energy available from

the solar field (eSFt , kWht), 2- Gross electric production from the solar resource (et, kWhe).

So we are looking for f(.) such that, et = f(eSFt ) .

R data analytics language is used to analyze heat-power data and to find the function

for the heat curve. First, the zero power output has been eliminated. Because we know that

the thermal input to the power block is in the range of 400-820 kWt . Also there is a 50

kWh of thermal energy as power block startup energy. So we just need to find the function
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Figure A.1: Electricity output of the power block vs input thermal energy

for those hours without startup power loss. The next step is ANOVA. It showed that we can

fit a linear model on the data (Fig.A.2).

Then the linear regression is fitted (Fig.A.3) and the heat rate linear function of the

power block is et = 0.0938eSFt − 6.9743.

From this function, we can also estimate capacity of the TES to make the power block

working operate at its maximum load using energy from storage alone for one hour. Let’s

assume that the TES system has the same power capacity for charging (s) and discharging

(d). That is equivalent to one hour capacity of TES.

65 = 0.0938s− 6.9743 ∴ s, d = 767.32 kWht
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Figure A.2: R software outputs: ANOVA and linear regression summary on thermal energy
and output electricity data

A.6 Optimal Sizing of the TES

At this point, we want to find the impact of different capacity of the the thermal

energy storage (TES) ,in terms of number of hours of storage, on the revenue. The required

parameters, as described in section A.2, are fed into the MIP model in GAMS to be solve

the problem by CPLEX solver. The MIP model is being solved for different number of hours

of TES from zero,i.e., CSP without TES, to nine hours of TES capacity.

The results of sizing the TES are shown in Fig.A.4-A.7. In Fig.A.4 we can see the

useful thermal energy input to the power block is doubled by having at least one hour of

TES comparing to the CSP without TES. The reason is, the power block rejects any amount

of thermal energy below the τ−(400kWht) level. We can also observe from Fig.A.4 that

having 2 hours of TES or more does not make a meaningful improvement in the amount of

input power to the power block for this CSP. So consequently electricity output from power
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Figure A.3: Heat rate curve of the power block

block will not increase if 2 hours or more of TES is used comparing to just 1 hour capacity

(Fig. A.5).

Although the total electricity output of the plant is not changing for different TES sizes

(of 1 hour or more), annual revenue is increasing with increasing the capacity of TES (Fig.

A.6 and Fig. A.7). The additional revenue given the same annual thermal energy input is

because of the more flexibility in operation that a larger TES gives to the controller. More

details on operation are provided in the next subsection.

The ultimate decision on the size of the TES is based on the capital costs of the TES

system and its physical characteristics. If the price and properties of TES optins is being

provided, the MIP model can be updated to find the optimal TES size. For this project,

we compromised the physical and economic constraints, we picked 4 hours as the size of the
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Figure A.4: Energy to power block

Figure A.5: Electricity output (kWhe)

TES. That is only because there is still a meaningful additional annual revenue by adding

the 4th hour of capacity to the TES system (Fig. A.7).

A.7 Optimal Operation Plan

The electricity output from this microCSP can be used at USF or sold back to the

main grid under NetMetering policy. In other words, USF needs to satisfy its demand by

purchasing power from the local utility company, TECO, or a combination with the output

power from its CSP. Let’s assume the electricity price is under the time of day price tariff

(Look at Fig.A.8). In this case generating electricity during hours with on-peak price may
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Figure A.6: Revenue

Figure A.7: Marginal revenue for added TES hour

lead to higher revenue or higher cost savings. The MIP model considers all the constraints on

energy flows in the system and the results are feasible hourly control actions. As an example,

a snapshot of a week of operation of the microCSP with TES (capacity of 4 hours) is shown

in Fig.A.9. For the first week of January, Fig. A.9 shows a typical energy circulation in the

system. The thermal power is being charged to the TES during the weekend, because it is

off-peak hours and the price is low.

As there is a start up thermal energy usage by the power block, the optimal operations

tends to minimize the number of startups as well. System discharges the TES and generates
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Figure A.8: Time of day price of electricity

Figure A.9: A typical optimal operation plan (1st week of January)

electricity in power block during peak hours and charges thermal energy the rest of the hours,

given the TES capacity (Fig.A.10).

A.8 Conclusion and Future Work

The proposed model can be used by a CSP controller to optimally operate the hybrid

system of CSP and TES. The results show, MIP optimization of the operation of the system

significantly increases the revenue from the power sale. This model is also easily expandable
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Figure A.10: Level of thermal energy stored in the TES

to use for a stand-alone micro grid to support a local electricity/theraml power demand.

The next step to extend the model is including stochastic parameters of prices and solar

resources. We want to consider uncertainty in the electricity price and short term solar

radiation. Also the life time of the system can be considered as a variable dependent to its

activity. As the parabolic trough can be turned down during low radiation periods, the model

may consider this as an operation decision opportunity. The optimal operation strategy aims

at maximizing the lifetime of the CSP as a second objective as well.
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Appendix B A Predictive Model for Daily Solar Energy Using Gradient Boost-

ing Method: AMS 2013-2014 Solar Energy Prediction Contest3

B.1 Introduction

Renewable energy sources have gained a significant popularity recently. A typical

example is solar power which is the conversion of sunlight into electricity, either directly using

photovoltaics (PV), or indirectly using concentrated solar power (CSP). Solar energy has a

high potential to cover our electricity needs, according to [49] The amount of sunlight that

falls on the United States in one day has more than twice the annual energy consumption.

Moreover, renewable energy sources have many environmental advantages over fossil

fuels in electricity generation. While combustion of fossil fuels results in large volume of

green gas emissions, renewable energy source are very much clean.

However, the green energy generation is very uncertain by nature and depends a lot

on the weather conditions. This might affect their reliability. Electric utility companies

that put renewable energy in their source portfolio need to have accurate forecasts of energy

production in order to plan ahead and manage the renewable and fossil fuels and possibly

other sources available. The inaccurate forecast affects the unit commitment and dispatch

problems in the utility companies and could lead to large expenses for the utility.

Numerical weather prediction models are commonly used for power forecasts. And, re-

cently, statistical and machine learning techniques are increasingly being used in conjunction

with these models for more accurate forecasts [50]. In order to develop models and tech-

niques to accurately predict the renewable power generation, the American Meteorological

3This work is a project done in collaboration with Anna Danandeh and Mehrnaz Abdollahian.
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Society organized a competition. Three Committees of Artificial Intelligence Applications to

Environmental Science, Probability and Statistics, and Earth and Energy of this society were

involved in the “2013-2014 Solar Energy Prediction Contest” and $10000 worth of prizes are

sponsored by EarthRisk Technologies, Inc. The competition was on Kaggle website and open

for public. We chose this problem due to the high applicability of it as our course project.

This report contains our ideas and the methodologies that we applied for this project

and is organized as follows: Section B.2 describes the problem and provides a simple presen-

tation; section B.3 explains the solution approaches that we took; the model results, along

with some discussion on the successful and unsuccessful approaches are shown in Section

B.4; and finally section B.5 summarizes the project and talks about what we learnt during

the project to conclude the report.

B.2 Problem Statement

B.2.1 Problem Overview

The objective in this project is to discover the best statistical and machine learning

techniques that can predict short term solar energy production. The scope of the project is

Oklahoma state. In particular, we are interested in predicting the solar power generation of

98 solar farms with an uneven distribution though out the state. Here we call these solar

farms Mesonets. The Mesonet sites all have the same instrumentation for measuring solar

radiation and are regularly inspected and calibrated, therefore the only differences between

them should be due to environmental factors and weather forecast. For each Mesonet we

know the daily electricity generation and its geographical location.
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The numerical weather prediction data comes from the NOAA/ESRL Global Ensemble

Forecast System (GEFS) Reforecast Version 2. This Data include 11 ensemble models and

provides 15 weather factors including precipitation, long/ short wave radiation, air pressure,

humidity, and total cloud cover. For the complete list of please refer to Table B.4. The

forecast timesteps are 12, 15, 18, 21, and 24 global time which is equivalent to 6AM-6PM

central time. More information about the data will be provided in the next subsection.

Figure B.11 depicts the relative distance between locations of the Mesonet sites and the

GEFS points and provides a visualization of the grid.

Table B.4: Weather condition variables included in the ensemble models

Variable Description Unit

apcp sfc 3-Hour accumulated precipitation at the surface kg m-2
dlwrf sfc Downward long-wave radiative flux average at the surface W m-2
dswrf sfc Downward short-wave radiative flux average at the surface W m-2
pres msl Air pressure at mean sea level Pa
pwat eatm Precipitable Water over the entire depth of the atmosphere kg m-2
spfh 2m Specific Humidity at 2 m above ground kg kg-1
tcdc eatm Total cloud cover over the entire depth of the atmosphere %
tcolc eatm Total column-integrated condensate over the entire atmos. kg m-2
tmax 2m Maximum Temperature over the past 3 hours at 2 m above the

ground
K

tmin 2m Mininmum Temperature over the past 3 hours at 2 m above the
ground

K

tmp 2m Current temperature at 2 m above the ground K
tmp sfc Temperature of the surface K
ulwrf sfc Upward long-wave radiation at the surface W m-2
ulwrf tatm Upward long-wave radiation at the top of the atmosphere W m-2
uswrf sfc Upward short-wave radiation at the surface W m-2

For the competition, contestants were supposed to submit predictions of the total

solar daily incoming solar radiation at 98 Oklahoma Mesonet sites for each day. The Mean
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Figure B.11: Mesonets & GEFS station maps

Absolute Error (MAE) was the evaluation metric. This metric is commonly used in regression

problems and by the renewable energy industry to compare forecast performance. Unlike

Root Mean Squared Error, MAE does not excessively punish extreme forecasts.

MAE =
1

SE

S∑
s

E∑
e

| Fse −Ose | (B.17)

It’s important to note that there were no station-by-station comparison, so although

the developed model for each station might be different from the other station, we can not

see how good or bad we have done for any specific Mesonet.

B.2.2 Handling Data

Most of the contest data were provided in NetCDF4 file format. NetCDF stands for

Network Common Data Form and is a set of interfaces for array-oriented data access and

afreely distributed collection of data access libraries for R, C++, Java, and other languages.

In order to work with the data, we used ncdf package in R and wrote some functions to

read, manipulate and write data in that format [51].
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Training data come from 1994-2007 and were separated into 3 files. There were two

files containing all of the GEFS training data. The data are in netCDF4 files with each

file holding the grids for each ensemble member at every time step for a particular variable.

Each netCDF file contains the latitude-longitude grid, the timestep values and metadata

listing the full names of each variable and the associated units.

Each netCDF4 file contains the total data for one of the model variables and are

stored in a multidimensional array. The data includes the date, the ensemble member that

the forecast comes from (As mentioned before the GEFS has 11 ensemble members with

perturbed initial conditions), the forecast hour, which runs from 12 to 24 hours in 3 hour

increments, and finally the latitude and longitude uniform spatial grid. There is another file

that contains the total daily incoming solar energy in (J m-2) at 98 Oklahoma Mesonet sites

that have been in continuous operation since January 1, 1994. The solar energy was directly

measured by a pyranometer at each Mesonet site every 5 minutes and summed from sunrise

to 23:55 UTC of the date listed in each column.

The third file contains the latitude, longitudes, and elevation (meters) of each Mesonet

station. There were discussions about usability of elevation, and, therefore, elevation was

later added to the information. Figure B.12(a) depicts hoe elevation can change the distance

interpretation. Since there are up to 300 meters difference in the elevations, using one instead

of the other could have an impact on the model. Public testing data will be from 2008-2012

and private testing data for a more recent period will be used for the final evaluation.
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(a) Mesonets & GEFS three-dimension maps (b) Elevation and solar energy output

Figure B.12: Elevation significance

An interesting aspect of most of data sets were the seasonality in the variables. The

Figure B.13 presents the values of each weather forecasting variable for a random GEFS point

from 1994 to 1996. Obviously, the seasonality comes more from the nature of the variable,

since the locations are not much different, therefore, the variables in the other GEFS show

similar behaviour.

The problem is a BigData analysis with having more 650M data cells in the training and

220M data cells in the test set. One of the ways we tried to for reducing the dimensionality

of the data was taking average on ensemble models, i.e. instead of having 11 forecasts for

each variable, we worked with only one value which was the average of the 11 forecasts.

At that point we wanted to start with a simple model and then build on that. Later, we

realized that this approach might not be a good one especially considering the evaluation

metric. Taking weighted averaged based on argmin(MAE) can be a better approach which

emphasized on the models that can reduce the MAE. We’ll consider this idea in future.
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B.3 Solution Approach

We tried two approaches, in the first approach we performed more data engineering and

worked with a fewer variables in our prediction model, and then we applied LASSO method

to select the most important variables in prediction. This approach was not very successful,

so we did some studies and came to conclusion that it’s better not to manipulate data, and

instead used much higher number of variables in the prediction model which was based on

GBM model which performed much better. both approaches are explained in the following

subsections. In each subsection we first explain the data pre-processing steps and then for

completeness, we provide a brief and general overview of the method, and then elaborate on

how we utilized that method.

B.3.1 LASSO Approach

For simplicity, here we summarize the data pre-processing approach in Algorithm 1.

For each Mesonet station:
Step 1: Choose the closest 10 GEFS points with respect to the elevation and then
choose the 4 closest ones based on lon/lat distance
Step 2: for each predictive variables of the Mesonet take weighted average of the
selected 4 GEFS
Step 3: for each predictive variables take average of the 5 time instances in a day (6,
9, 12, 15, 18) to prepare for daily prediction
Step 4: use the resulted 15 GEFS features as covariate matrix for the given Mesonet

Algorithm 1: First data pre-processing

After preparing the variables, we applied LASSO method to choose the most significant

features in the model. LASSO stands for the Least Absolute Shrinkage and Selection Opera-

tor. This method minimizes the usual sum of squared errors, with a bound on the sum of the

absolute values of the coefficients [52]. LASSO is an automated feature selection like AIC
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(Akaike information criterion), BIC (Bayesian information criterion) and MDL (minimum

description length). The reason we picked LASSO was mainly its faster computational time

for model selection. LASSO formulation is provided in B.18-B.21.

Find β̂LASSO = argminβ{RRS(β) + L1(β)|D} (B.18)

s.t. L1(β) = λ
∑
j

|βj| (B.19)

RSS(β) ≡
∑
i

(yi − βXi)
2 (B.20)

λ ≥ 0 & D = {(Xi, yi)}ni=1is the training set (B.21)

We used LARS package in R to use LASSO. This software computes the entire LAR,

LASSO or Stagewise path in the same order of computations as a single least-squares fit.

In order to provide an example, variable selection for Mesonet station 1 is provided in

Figure B.14. Figure B.14(a) represents the piece-wise linear profiles of lasso coefficients, as

the tuning parameter β/max β is varied. A vertical line is drawn at 0.96 which is chosen by

cross-validation. Figure B.14(b) demonstrates the 10-fold cross-validation that minimizes the

Mean Squared Error (MSE). Based on this cross-validation, 0.96 (shown by the red vertical

line) had the lowest MSE and therefore the coefficients chosen at this shrinkage level by

LASSO were picked as the best ones. It can be seen that, using LASSO which minimizes the

MSE, was not the best approach, especially because it was not aligned with the evaluation

metric of this competition which was MAE. Therefore we switched to another model. Next,

we explain our improved approach.
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B.3.2 GBM Approach

Based on our experience in the first approach, we learned the importance of minimizing

feature engineering. Therefore, we attempted at adding more variables to our model instead

of reducing the dimensionality of the problem. Here, we briefly describe the updates we had

in our data preparation:

• Instead of taking the average of hourly-weather prediction, we used them directly

as part of covariate matrix, e.g. instead of taking the average of short-wave radiation

in times 12, 15,18,21,24, we create short-wave-12, short-wave-15, ..., short-wave-24

and included them as variables in the model. With this change, (Number of weather

features=15)×(Number of forecast hours=5)=75 new variables were created.

• Instead of taking average of the 4 closest stations, we created two sets of covariates.

The first set includes all those values (75×4=300) and the second one was calculated

by taking the distance-weighted average of 4-closet stations (75). Therefore, we added

another 375 variables to the model.

• We also used other variables such as month of the year, latitude difference (be-

tween mesonet and 4-gefs stations), longitude difference (between mesonet and 4-gefs

stations) and elevation difference (between mesonet and 4-gefs stations).

We should also mention that we applied two versions of GBM. Algorithm 2 describes

the data engineering for the first one, and in the second model, we removed the variables

created as the distance-weighted average of 4-closet stations. All the parameter setting were

identical for the both version.
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After being done with data processing, we chose Gradient Boosting Method (GBM) as

the method. Here we briefly talk about boosting and gradient boosting method. Boosting

is an ensemble technique in which learners are learned sequentially. Gradient boosting is an

extension of boosting for regression convert a sequence of base (weak) learner to a complex

overall predictors. In general, The GBM iteratively learns a simple regression from the data,

computes residual error and then creates a new model to predict this error residual. The

accuracy of the model gets better at each step for the training data. The mathematical

representation of this explanation is gathered in the following algorithm:

While the error is big Step 1: make a set of predictions ˆy[i] = mean(y)

Step 2: find the residual error MAEj(.) =
∑
|y[i]− ˆy[i]|

Step 3: adjust ŷ to reduce the error ˆy[i] = ˆy[i] + αf [i] where f [i] ≈ gradient of the
loss function
Step 4: use the resulted 15 GEFS features as covariate matrix for the given Mesonet

Algorithm 2: GBM algorithm

We used GBM with the following parameters: Number of terminal nodes in trees

whichcontrols the maximum allowed level of interactionbetween variables in the model was

set to 10. Increasingnumber of treeswill reduce the error on training set however setting it

too high may lead to overfitting. So it’s very important to pick the right number. In this

model, we set the number of trees to 3000. Table B.5 and Figure B.15 demonstrate the

improvement from 2000 trees to 3000, but also shows that increasing this number will not

benefit that much, but will increase the computation time. Empirically using small learning

rates yields dramatic improvements in model’s generalization but results in an increase in

the computational time. We set the Shrinkage level at 0.005.
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Since our were dealing with time-series data, we could not randomly select the data

sets for cross-validation. Our approach was to use a 3-fold contiguous validation with the

following portions: 1) 1994-1998, 2) 1999-2003, and 3) 2004-2007.

Table B.5: Choosing the appropriate number of trees for GMB method

distance-averaged removed
# of trees 4000 3000 2000
MAE-test set 1 2,069 2,068 2,078
MAE-test set 2 1,970 1,971 1,973
MAE-test set 3 2,154 2,154 2,156
Average MAE 2,064 2,064 2,069

∗ All the MAE numbers should be scaled by 1000

B.4 Results

In this section we’ll present the results from both models and provide a comparison

and some insights.

B.4.1 Parallel Computing

Traditionally, software has been written for serial computation on a single computer

having a single CPU. Running large-scale problems in this way can be really time-consuming

and does not make efficient use of the resources available. Nevertheless, simultaneous using

multiple compute resources or processors to solve a computational problem can overcome

this disadvantage. As we mentioned in section B.2, the problem that we are solving is a

Big Data Analysis problem. Especially, in the second approach where we had much more

variables, solving the problem regularly would take really long time and in some cases would

freeze the computer. In order to overcome this challenge, we used parallel computing. We

ran the instances on a computer with Intel core i7 with 8 processors. Table B.6 shows the
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average computation time for each instance. Running all the instances took 220 min when

parallel computing was used vs 1274 min without it.

Table B.6: Computation time from parallel computing

Task Time per station
Making the covariate matrix for the train set 20 min
Making the covariate matrix for the test set 13 min
Fitting gbm on train set 13 min

B.4.2 LASSO Approach

Since plotting the predictions for all 98 mesonets would not help much and moreover

the plots are not much different, Figure B.16 presents a prediction plot for mesonet number

one. The important variables given this approach were presented in Table B.7.

Table B.7: The significant variables based LASSO feature selection model

Variable Coefficient
surface-temp -2060958.316
max-temp -1620213.734
Precipitable Water -146226.1274
min-temp -82820.01747
long-wave -73202.42836
short-wave-surface -2691.428577
Air pressure -520.2017723
Total cloud 0
top-longradiation 29761.59149
short-wave 46586.61346
precipitation 111919.4944
surface-longradiation 335431.0835
Current-temp 2419263.312
condensate 2891440.81
Humidity 137972464
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B.4.3 GBM Approach

Data cleaning and GBM development were described in section B.3.2. In this section we

present the output of the model for mesonet number 1 in Figure B.17. The rest of mesonets

show a similar behaviour. For this particular mesonet, 301 variables from 333 had non-zero

influence in GBM approach. Tabel B.8 summarizes the main ones and their influence on the

prediction. As you see, the variables chosen by this model make more sense comparing to the

variables chosen by LASSO. The main variables are short waves radiation in different hours,

which is another interesting fact that proves out second approach in considering the weather

variables in all the time steps instead of simply taking an average was a correct decision.

As mentioned before, considered two versions of GBM: one with 414 variables and one with

fewer variables. Table B.9 represents the MAE for the three set we used for cross-validation.

In each case, we tried different seeds (from one to three). We can see that the model with

fewer variables outperformed the original model and also takes short computation time.

Table B.8: Variable significance based on GBM

Variable name Relative influence
short.wave 21 st4 1
short.wave 24 st4 0.3712
short.wave 18 st4 0.2313
short.wave.surface 21 st4 0.0953
short.wave.surface 18 st4 0.0657
short.wave.surface 18 st3 0.0495
short.wave 18 st3 0.0412
short.wave.surface 15 st4 0.0397
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Table B.9: Dimension reduction in GBM

all 414 variables distance-averaged removed
Seeds 1 2 3 1 2 3
MAE-test set 1 2,060∗ 2,061 2,061 2,065 2,068 2,063
MAE-test set 2 1,963 1,976 1,975 1,967 1,971 1,969
MAE-test set 3 2,170 2,172 2,172 2,158 2,154 2,160
Average MAE 2,064 2,070 2,069 2,063 2,064 2,064

∗ All the MAE numbers should be scaled by 1000

B.4.4 Approach Comparison

In order to evaluate the efficiency of the different models we developed, we compared

the evaluation metric, MAE, in each case and provided the improvement percentage at each

step. The results are presented in Table B.10. As you see, using GBM compared to LASSO

improved our performance drastically. This can be explained with many facts. First of

all, LASSO would minimize MSE while our evaluation metric was MAE. Moreover, the data

engineering that we performed in the first approach manipulated the result. Therefore, when

we considered much more variables and let the model decide which variables are playing much

more important role we got a better result. We can see that variable reduction was effective,

but didn’t drastically improved the prediction.

Table B.10: Approach comparison

Method Score Marginal improvement
Lasso 3E+06 -
Gbm-414 variable 2E+06 20%
Gbm-333 variable 2E+06 0.30%

B.5 Conclusion

In this report, we presented the numerical model we developed for short term prediction

of solar energy generation. There were 98 solar farms (mesonets)in state of Oklahoma and
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we were interested in predicting their solar energy generation. The prediction will be based

on the weather condition on 144 weather stations (GEFS). For each mesonet we know the

generation hisoty and geographical location and for each GEFS point, we know the location

as well as 15 weather variables predicted by 11 ensemble models.

The problem is a Big Data analysis with time-series data, therefore we used parallel

computing to handle such a large-scaled problem. We have tried different data engineering

approaches and tested LASSO and GBM on our data. The results indicate that on this data

set, we should have minimized the data manipulation, and included all the data points as

variables so the model can choose the ones that have higher influence on the generation.

GBM proved to be a good approach, however, there is still room for improvements.

For the future work we plan to work on our weighted averages and assign weights in a

way that minimizes MAE. Also, we want to explore other prediction methods.
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Figure B.13: 1994-1996 values of the 15 weather forecasting variables of a random GEFS
point
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(a) LASSO coefficients plot (b) Cross-validation

Figure B.14: LASSO figures

Figure B.15: Number of iterations

Figure B.16: A typical prediction plot- LASSO prediction for Mesonet #1

105



Figure B.17: A typical prediction plot- GBM prediction for Mesonet #1
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