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i 

Abstract 

 

Consider the following questions in the early stage of new product development. 

What should be the target market for proposed design concepts? Who will be the 

competitors and how fast are they moving forward in terms of performance 

improvements? Ultimately, is the current design concept and targeted launch date feasible 

and competitive? 

To answer these questions, there is a need to integrate the product benchmarking with 

the assessment of performance improvement so that analysts can have a risk measure for 

their R&D target setting practices. Consequently, this study presents how time series 

benchmarking analysis can be used to assist scheduling new product releases. 

Specifically, the proposed model attempts to estimate the “auspicious” time by which 

proposed design concepts will be available as competitive products by taking into 

account the rate of performance improvement expected in a target segment. 

The empirical illustration of commercial airplane development has shown that this 

new method provides valuable information such as dominating designs, distinct 

segments, and the potential rate of performance improvement, which can be utilized in 

the early stage of new product development. In particular, six dominant airplanes are 

identified with corresponding local RoCs and, inter alia, technological advancement 

toward long-range and wide-body airplanes represents very competitive segments of the 

market with rapid changes. The resulting individualized RoCs are able to estimate the 

arrivals of four different design concepts, which is consistent with what has happened 

since 2007 in commercial airplane industry. 
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In addition, the case study of the Exascale supercomputer development is presented to 

demonstrate the predictive use of the new method. The results indicate that the current 

development target of 2020 might entail technical risks considering the rate of change 

emphasizing power efficiency observed in the past. It is forecasted that either a Cray-built 

hybrid system using Intel processors or an IBM-built Blue Gene architecture system 

using PowerPC processors will likely achieve the goal between early 2021 and late 2022. 

This indicates that the challenge to improve the power efficiency by a factor of 23 would 

require the maximum delay of 4 years to reach the Exascale supercomputer compared to 

the existing performance curve. 
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I. MOTIVATION 

 

1.1 INTRODUCTION 

If the future unfolded as foretold, individuals and governments would get a great 

benefit from their actions taken in advance. In addition to handsome payoffs from Wall 

Street, semiconductor companies could perfectly meet their market demands with newly 

built fabs, and sportswear companies could get the maximum advertising effects by 

grasping rising sports stars with long-term contracts. However, in practice, black swan 

events often render our plans just plain useless or ineffective [1], [2]. Hence, the choice 

between alternative pathways under estimated future states may significantly alter 

competitive performance. Note that decision making is inseparable from how the future is 

expressed. Indeed, we explicitly or implicitly pay attention to the trends and ideas that are 

shaping the future which form the basis of our everyday decisions. 

Future research community theoretically differentiates prediction from forecasting. A 

prediction is concerned with the future that is preordained and no amount of action in the 

present can influence the outcomes. Therefore, it is an apodictic, i.e., non-probabilistic, 

statement on an absolute confidence level about the future [3]. Clearly, the goodness of a 

prediction lies in whether it eventually comes true. A forecast, on the other hand, is a 

probabilistic statement on a relatively broad confidence level about the future. 

Fundamentally, it aims to affect the decision making process by investigating possible 

signals related to the future events using systematic logic that forecasters must be able to 

articulate and defend [4]. Thus, except for particular purposes (e.g., benchmark study), a 

good forecast is determined not by whether it eventually came true but by whether it 
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could provide reasonable grounds to support an organization’s actions to anticipate 

identified uncertainties, thereby resulting in a better future than what was most likely 

without specific actions. This is consistent with a popular saying in Oriental philosophy: 

“The ultimate goal of forecasting is to make that forecast wrong.”  

Just as in other areas of forecasting, technological forecasting intends to improve the 

quality of decisions by providing specific pieces of information focused on technologies. 

Lenz identified six major roles of technological forecasting that can be summarized as 

follows [5]: 

1. To identify limits of current technology systems 

2. To establish rates of progress 

3. To describe technology alternatives  

4. To indicate the feasibilities of technology alternatives 

5. To provide a reference standard for the new product development plan 

6. To furnish warning signals 

Technological forecasting methods can be classified as either exploratory or 

normative by whether they extend present trends (exploratory) or look backward from a 

desired future to determine the developments needed to achieve it (normative) [6]. The 

correct assessment of the future environment and of the corresponding goals, 

requirements, and human desires can be better made when exploratory and normative 

components are joined in an iterative feedback cycle [3]. Here, it is crucial to have an 

accurate understanding of the technological inertia we have today so that exploratory 

methods extend the current rate of progress, while normative methods determine how 
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much the speed of such progress might need to be adjusted. However, as technology 

systems become more sophisticated, the rate of change varies more dramatically due to 

the maturity levels of component technologies [7]. This structural complexity makes 

today’s forecasting even more challenging, which leads to the question: What is the best 

way to combine growth patterns of the various attributes used to describe multi-objective 

technology systems? 

To answer the above question, two things must be considered: multi-attribute 

evaluation and technology segmentation. Multi-attribute evaluation strives to define the 

“goodness” of technology systems that consist of different levels of subsystems. Figure 1 

illustrates the difficulty of doing this. Technology B seems to have made a disruption in a 

high-end market, while technology A is overshooting the market in terms of technical 

capacity 1. However, technology 2 might have been superior and recently challenged by 

technology 1 on a different technical dimension. Possibly, different dynamics are taking 

place in other dimensions as well where the levels of market demands also vary. This 

implies that a single performance measure may be no longer capable of capturing 

advancement in a new direction, which makes the holistic assessment of technology 

systems difficult. Therefore, it is critical to examine not only which performance 

measures are playing a major role in current technological progress but also which 

alternate technologies show disruptive potential with respect to emerging performance 

measures. 

Technology segmentation is related to the identification of homogeneous technology 

clusters. Technologies belonging to the same cluster may have a similar mix of technical 

capabilities whereby they satisfy the similar target markets. From the technological 
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forecasting point of view, each technology cluster is expected to involve a particular 

progress pattern to which similar types of future technologies are subjected. Thus, it is 

imperative for a forecasting model to be able to identify distinct technological segments, 

if they exist, and treat them separately in the process of capturing the rate of change and 

estimating the future performance specifications and features. 

This dissertation aims to develop a new frontier analysis method for technological 

forecasting that can deal with foregoing two issues: multi-attribute evaluation and 

technology segmentation. 

 

 

Figure 1 Complexity of technology assessment 
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1.2 PROBLEM STATEMENT 

Technology growth curve (or life cycle) theory asserts that the accumulated 

performance of a technology forms an S-shaped curve when it is plotted over time, and 

the diminishing returns to effort is successively overcome by following growth curves 

that possess higher performance limits [8]–[11]. Although S-shaped growth patterns have 

been observed in numerous studies [12]–[14], a fact well known is that fitting some 

portion of cumulative data to a predefined S-curve function, i.e., predictive use of the 

curve, is susceptible to several technical assumptions such as engineering effort, is 

constant over time, and an upper limit is known in advance. 

Disruptive innovation theory integrates the technological growth patterns with 

different market acceptance levels to explain the process of new value network creation 

[15]. Even though disruptive innovation has contributed to the understanding of industry 

dynamics, the practical implications remain debatable [16]–[18]. In particular, the theory 

is criticized that it lacks the mechanism for the predictive use [19]. Christensen suggested 

a diagram that jointly portrays trajectories over time of performance demanded by 

different market segments and of performance provided by alternative technologies [20]. 

However, this comes down to the difficulties of employing a growth curve model as an ex 

ante analysis.  

The recent development of product categorization methods can be viewed as another 

stream of literature with regard to the topic of risk analysis for new product development 

[21]–[25]. However, although these approaches can shed light on the new product target 

setting practices, there remains a need to integrate the product benchmarking with the 
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assessment of performance improvement so that analysts can have a risk measure for 

their product launch strategy.  

The above mentioned problems can be summarized as below. 

Table 1 Research gap 1 

GAP 

#1 
 

Current technological innovation and new product development theories 

do not provide a quantitative framework to facilitate the predictive use of 

the theory. 

 

Frontier analysis models attempt to form a surface that can represent the same level 

of technology systems at given point in time. The evolution of surfaces is then monitored 

to capture the rate of change by which future technological possibilities can be estimated. 

In the case of parametric frontier methods, an iso-time frontier is constructed as a 

functional combination from individual growth curves. Specifically, actual observations 

are fitted to an a priori defined functional form, and those growth patterns are combined 

together to constitute an iso-time frontier. Therefore, it is difficult to identify distinct 

technological segments from the resulting frontier. 

Non-parametric frontier methods, on the other hand, have an advantage with regard 

to the technology segmentation since the frontier is directly constructed by dominating 

technologies that are located on the frontier. This enables the model not only to 

characterize each frontier segment but also to identify proper segments that dominated 

technologies belong to. However, current non-parametric frontier models don’t 

incorporate this property into the forecasting process. Instead, they simply aggregate rate 

of changes captured from the surpassed technologies to indicate the technological 

progress as a whole.  
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The above mentioned issues can be summarized as below. 

Table 2 Research gap 2 

GAP 

#2 
 

Current technological forecasting methods do not take into account 

technology segmentation. 

 

Non-parametric frontier methods reflect the distinct characteristics of the technology 

systems by directly adapting to observed data without relying on arbitrary functional 

assumptions [26]. However, this characteristic often leads to an infeasibility problem 

since it doesn’t generate the frontier facet for non-existent production possibilities in the 

past [27]. This becomes a critical problem when the model estimates the distance from 

the current frontier to forecasting targets. In other words, the model may fail to measure 

the goodness of future technologies if it has an unprecedented mix of technical 

capabilities. This issue can be summarized as below. 

Table 3 Research gap 3 

GAP 

#3 
 

Current non-parametric frontier analysis methods often suffer from 

concerns regarding infeasibility.  
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1.3 RESEARCH OBJECTIVE 

Based on the aforementioned research gaps, the objective of this research is specified 

as below. 

Table 4 Research objective 

Research 

Objective 
 

Develop a new frontier analysis method for technological forecasting 

that is capable of multi-attribute evaluation by considering technology 

segmentations with the corresponding rate of changes. 

 

The technology segmentation process can be understood as two procedural stages. 

First, it is required for the model to identify distinct facets on the frontier in which 

local rates of change can be obtained from the surpassed technologies. By doing so, each 

state-of-the-art technology will have a local rate of change which indicates how much 

progress has been observed by each technological segment represented by those 

technologies. This corresponds to the first research question as below. 

Table 5 Research question 1 

Research 

Question 

#1 

 How do we capture the local rate of change from past technologies? 

 

Once the local rates of change are ascertained with respect to each frontier segment, 

they can be utilized to obtain the individualized rate of change for each forecasting target. 

This procedure makes it possible for the model to apply the customized progress rate 

suitable for each forecasting target, thereby reflecting the characteristics of identified 

segments into the forecast. This leads to the second research question as below. 
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Table 6 Research question 2 

Research 

Question 

#2 

 
How do we determine the individualized rate of change for future 

technologies? 

 

As previously discussed, non-parametric features of identifying the technology 

segmentations come at a cost to the infeasibility problem. Therefore, a new model should 

be able to provide an alternative forecasting mechanism in a consistent manner, i.e., 

without violating a radial distance measure, for the case when the infeasibility problem 

occurs. This requires an assumption that the superiority of unprecedented types of 

technologies can be estimated by the consideration of how far the target technology is 

away from the closest technology segment as well as how good the target technology is 

from a perspective of the closest technological segment. The formulation of this 

procedure is subject to the following research question. 

Table 7 Research question 3 

Research 

Question 

#3 

 How do we deal with infeasible targets? 
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1.4 OVERVIEW OF DISSERTATION 

This dissertation is organized as follows. In Chapter II, critical literature reviews on 

technological innovation theories and technological forecasting methodologies are 

provided to address the objective of this dissertation. In Chapter III, the notion of 

segmented rate of change is illustrated using a numerical example as well as 

mathematical formulation to supply insight into the problem being discussed. In Chapter 

IV, a set of applications is provided to demonstrate and validate the proposed model. 

Finally, Chapter V summarizes contributions and suggests possible future research 

directions. 
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Figure 2 Overview of dissertation 
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II. BACKGROUND 

 

2.1 TECHNOLOGICAL INNOVATION THEORIES 

2.1.1 S-CURVE MODELS 

Beginning with Kondratiev’s early observation in 1925, technological innovation has 

been believed to exhibit a wave-like phenomenon that consists of life cycles of individual 

technologies [8]–[11]. According to this view, the accumulated performance of a 

technology forms an S-shaped curve when it is plotted over time, and the diminishing 

returns to effort is successively overcome by following growth curves that possess higher 

performance limits. In this belief, Cesare Marchetti once claimed that “Anything that 

begins and ends an existence will fit a logistic (also known as a Pearl curve)” during the 

conversation with Theodore Modis, who holds the Guinness Book of Records for carrying 

out the greatest number of logistic fits [28]. 

Simply speaking, an S-curve is a natural outcome which is a cumulative function of 

growth levels from typical evolution stages: introduction stage (slow acceleration), 

growth stage (speed up), and maturity stage (deceleration). Therefore, it may be worth 

understanding the reason why the rates of progress in each stage are different and 

especially what hinders the growth during introduction and maturity stages. 

In the introduction (or embryonic) stage, a new technological platform makes slow 

progress, mostly due to the insufficient interests of the research community [29]. A 

consensus between alternate ways of overcoming the bottlenecks is called for; however, 

there may be no measures for assessing the new technology properly, which makes the 

circumstances of the decision be based less on problem solving ability than on future 
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promise [30]. Therefore, until the new approach has gained established legitimacy as a 

worthwhile endeavor, great effort is often spent exploring different paths to identify 

meaningful and feasible drivers of advancement. For example, OLED (organic light 

emitting diodes) technology has been recently introduced as a new alternative to LCD 

(liquid crystal displays) in the flat panel industry. However, it requires a sufficient 

amount of time and effort to identify the direction of incremental innovation.  

In the growth stage, a new technological platform finally crosses a threshold with 

continuous engineering effort, which allows rapid progress [13]. The emergence of a 

dominant design, in particular, plays a key role not only to attract researchers to 

participate in its development but also to coalesce product characteristics and consumer 

preferences [12]. The cumulative efforts reap the greatest improvement per unit of effort, 

which creates a virtuous cycle by stimulating more attention devoted to the current 

technological platform. 

In the maturity stage, the progress slowly and asymptotically reaches a ceiling [10]. 

Utterback suggested that as a market ages, the focus of innovation shifts from product to 

process innovation [31]. Sahal also argued that technology has inherent limits of scale 

and/or complexity which restrict the steady growth of performance improvement [14]. As 

such, a marginal performance increase requires more cost and engineering efforts, which 

eventually deglamorize the current technological platform. As the current technological 

platform loses its luster, the research community searches for alternative paths and 

rapidly loses cohesion, which reduces the switching costs to the upcoming technology. 

Although the S-shaped growth pattern has been observed in a number of studies that 

conducted retrospective analysis on industry dynamics, it is well known that fitting some 
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portion of cumulative data into a predefined S-curve function is susceptible to several 

technical assumptions, which renders the predictive use of the curve ambiguous [32]. 

The first assumption is that the engineering effort is constant over time. 

Fundamentally, the S-curve reflects the level of technological capability relative to the 

cumulative effort invested in developing the technology [33]. However, engineering 

effort is rarely used as an abscissa in practical applications due to the difficulty in 

tracking the cumulative effort over an entire technology cycle. Instead, there are two 

alternative parameters that are often used in place of engineering effort: research and 

development investment or time. However, the problem arises when these proxy 

measures are not proportional to actual engineering efforts. Fig. 3 shows that the resulting 

curve can obscure the true relationship, which could appear to flatten out much more 

quickly, or not to flatten out at all when this assumption is not supported [34]. 
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Figure 3 Ambiguity of using time as a proxy for engineering effort (modified from [32]) 

 

The second assumption is that the upper limit of a growth curve, i.e., L, is given. 

However, it is rare that the true limit of a technology is known in advance, and there is 

often considerable disagreement about what the limits of a technology are. A well-known 

case of misperception can be found in the disk drive industry [35]. In 1979, IBM had 

reached what it perceived as a density limit of ferrite-oxide-based disk drives; therefore, 

the company moved to developing thin-film technology that had a greater potential for 

increasing density. Hitachi and Fujitsu, however, continued to ride the ferrite-oxide S-
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curve, and ultimately achieved densities that were eight times greater than the density that 

IBM had perceived to be a limit. 

Due to the lack of information, researchers often have no choice but to employ 

regression-based calculation to estimate the upper limits of technology growth curves [6]. 

However, this approach is controversial in the literature [36], [37]. Danner’s simulation 

showed that the accuracy of the resulting limit is highly sensitive to any error present in 

the segment of the available data [32]. Martino also argued that the productivity of early 

technology development is only minimally influenced by the upper limit because 

historical data from the early stages of development contain little information as to the 

location of the upper limit [38]. In this sense, he claimed that even a small error in the 

upper limit estimation can result in a fairly significant error in the forecast. 

The third assumption is that the appropriate growth model is predefined. However, 

similar to the estimation of upper limits, a growth curve should not be selected based on 

goodness of fit from historic data but on matching the behavior of the selected growth 

curve to the underlying dynamics of technology growth [39], [40]. In fact, there are 

various equations that represent S-shaped curves which can be categorized into two main 

groups: absolute and relative models. The former quantifies the technical capability, 𝑦𝑡, 

as a function of the independent parameter time, t, whereas the latter quantifies the rate of 

change in technical capability, 𝑑𝑦𝑡, as a function of the most recently achieved level of 

technical capability, 𝑦𝑡−1 (see Table 8) [32], [41]. 

Young’s study showed that relative models were more accurate than absolute models, 

and in particular both the Bass and Harvey growth models performed well under most 

circumstances [37]. Danner claims that this may be because the inherent characteristic of 
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the relative model that each new data point is anchored to the previous data point. That is, 

changes in the relative model are proportional to both the progress to date and the 

distance to the upper limit, whereas changes in the absolute model are only proportional 

to the distance from the upper limit [32]. 

 

Table 8 Commonly used growth models [32], [37] 

Type Name Equation 

Absolute Logistic (Pearl) [42] 
𝑦𝑡 =

𝐿

1 + 𝛼𝑒−𝑏𝑡
 

Gompertz [43] 𝑦𝑡 = 𝐿𝑒−𝛼𝑒−𝑏𝑡
 

Linear Gompertz [41] ln (− ln (
𝑦𝑡

𝐿
)) = 𝛽0 + 𝛽1𝑡 

Mansfield-Blackman [44] ln (
𝑦𝑡

𝐿 − 𝑦𝑡
) = 𝛽0 + 𝛽1𝑡 

Weibull [45] 
ln(ln |

𝑦𝑡

𝐿 − 𝑦𝑡
|) = 𝛽0 + 𝛽1 ln 𝑡 

Von Bertalanffy [43] 𝑦𝑡 = (1 − 𝛼𝑒−𝑏𝑡)3 

S-curve [43] 𝑦𝑡 = 𝑒𝑎−(𝑏/𝑡) 

Relative Bass [46] 𝑑𝑦𝑡 = 𝛽0 + 𝛽1𝑦𝑡−1 + 𝛽2𝑦𝑡−1
2 

Non-symmetric Responding 

Logistic [47] 
ln 𝑑𝑦𝑡 = 𝛽0 + 𝛽1 ln(𝑦𝑡−1) + 𝛽2 ln(𝐿 − 𝑦𝑡−1) 

Harvey [48] ln 𝑑𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2 ln(𝑦𝑡−1) 

Extended Riccati [49] 𝑑𝑦𝑡

𝑦𝑡−1
= 𝛽0 + 𝛽1𝑦𝑡−1 + 𝛽2 (

1

𝑦𝑡−1
) + 𝛽3 ln(𝑦𝑡−1) 

 

However, it should be noted that the underlying assumption of the relative model 

that future advancement is facilitated by technical capability already achieved may not 

always be true. In a similar context, Young’s finding, based on 46 historical data sets, 
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might not guarantee the most appropriate selection for the predictive problem at hand. 

Therefore, model selection should consider how the model’s behavior matches the 

process that generated the data rather than simply fitting the historical data [50]. 

The shape of a technology’s growth curve is neither set in stone nor given to the 

analyst. The limitation of the current architecture can be overcome by technological 

innovation which affects the growth rate and possibly allows a higher performance to be 

achieved than what had been perceived to be a limit. On the contrary, the lifecycle of a 

given technology could be terminated by the unexpected adoption of alternative 

technologies even before it passes the inflection point of the curve [51]. Therefore, fitting 

a portion of data into an a priori defined growth function should be accompanied by a 

deep understanding of the dynamics of the industry being investigated. 
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2.1.2 DISRUPTIVE INNOVATION
1
 

Christensen asserted his theory of disruptive innovation by integrating technological 

growth patterns with different market acceptance levels to explain the process of new 

value network creation [15], [52]. The core premises of his theory can be summarized as 

follows [17], [18]:  

a) A new technology consisting of off-the-shelf components put together in product 

architecture provides different values from mainstream technologies and initially 

underperforms the dominant one; 

b) Products based on disruptive technologies could, therefore, only serve niche 

segments without attracting attention of the leading firms; 

c) Disruptive technologies steadily improve in performance until it meets the 

standards of performance demanded by the mainstream market; 

d) Further development could raise the disruptive technology’s performance to a level 

sufficient to satisfy mainstream customers, while the established technology could 

have exceeded the demand of mainstream customers, resulting in performance 

overshoot. 

Although Christensen’s work on disruptive innovation has contributed to the 

understanding of industry dynamics, the mechanism and practical implications of his 

theory remain controversial. 

First of all, the theory lacks a clear-cut definition to determine whether or not a given 

technology is considered to be disruptive. Christensen explained that “disruptiveness” 

depends on whether it is consistent with their business model. For example, the Internet is 

                                                            
1 This section is adapted from a paper accepted in R&D Management [312] 



20 

sustaining to catalog retailers and discount brokers, but it is disruptive to department 

stores and full-service brokers [20]. Further he described the characteristics of disruptive 

innovation as being typically simpler, cheaper, and more reliable and convenient than the 

established one [53]. However, Danneels rebutted that these characteristics may be 

typical but not necessary characteristics of disruptive technology. He gave examples of 

Amazon.com, digital cameras, and digital video disk (DVD) that have had higher 

performance when they were introduced in the mainstream market [16]. Chesbrough also 

noted that Christensen’s studies used inconsistent terminology; in other words, they 

lacked common criteria to classify different types of technologies [54]. This ambiguous 

definition also raised a question: What determines whether incumbents fail or succeed in 

the face of disruptive technology? (see Table 9). 

In addition, the predictive use of disruptive innovation theory has been a controversial 

issue in managerial practice. Cohan contended in his book The Dilemma of the 

“Innovator’s Dilemma” that Christensen tried to support his theory using cherry-picked 

examples, i.e., only case studies of disruptive technologies that succeeded [19]. He urged 

that retrospective analysis is subject to bias, and the real challenge to any theory, 

especially if it is to be useful managerially, is how it performs predictively. Christensen 

responded to this by suggesting a diagram that jointly portrays trajectories over time of 

performance demanded by different market segments and of performance provided by 

alternative technologies [20]. For ex post case studies, using trajectory maps is fairly 

straightforward since the key performance dimension that resulted in a disruption has 

been identified and that data on performance demanded and supplied are available. 

However, ex ante analysis requires predicting what performance the market will demand 
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along various dimensions and what performance levels technologies will be able to 

supply [16].  

 

Table 9 Case studies on incumbents’ success 

Author (Year) Application area 
Did incumbents 

succeed? 

Cooper and Schendel (1976) [55] Videotape, Teleconferencing, etc. No 

Foster (1986) [10] Video game console No 

Tushman and Anderson (1986) [56] Competence destroying discontinuities No 

Henderson and Clark (1990) [57] Copy machine, Radio receiver, etc. No 

Henderson (1993) [58] Photolithographic alignment equipment No 

Utterback (1994) [11] Electric lamp, QWERTY, etc. No 

Christensen and Bower (1996) [52] Seagate, Control Data No 

Chesbrough (1999) [59] Hard disk drive (in U.S) No 

McKendrick et al. (2000) [60] Disk drive (transition to 5.25-inch) No 

Tripsas and Gavetti (2000) [61] Polaroid No 

Helfat and Lieberman (2002) [62] Canon and Nikon No 

Tushman and Anderson (1986) [56] Competence enhancing discontinuities Yes 

Chesbrough (1999) [59] Hard disk drive (in Japan) Yes 

Cohan (2010) [19] Charles Schwab, Kodak and Fuji Yes 

McKendrick et al. (2000) [60] Disk drive (transition to 8 & 3.5-inch) Yes 

King and Tucci (2002) [63] Disk drive Yes 

Danneels (2004) [16] Non-fossil fuel powered automobile Yes 

Klepper and Simons (2000) [64] Television sets Yes 

Chandy and Tellis (2000) [65] Office products and consumer durables Yes 

Tripsas (1997) [66] Mergenthaler Linotype Yes 

Rothaermel (2001) [67] Pharmaceutical industry Yes 

Darby and Zucker (2001) [68] Chemistry to biotechnology Yes 

 

Trajectory mapping has been employed in a wide range of applications. The most 

famous application of a trajectory map may be the hard disk drive case from 

Christensen’s original work [35]. He used disk capacity as a performance axis and 

interpreted the dynamics of industry that smaller disks have replaced bigger ones, 

improving their capacities over time. Schmidt later extended Christensen’s work by 

classifying the disk drive case as a low-end encroachment that eventually diffused 
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upward to the high-end [69]. Martinelli conducted patent analysis in the 

telecommunication switching industry to discover seven generations of technological 

advances from the different paradigmatic trajectories [70]. Kassicieh and Rahal also 

adopted patent publication as a performance measure in search of potential disruptive 

technologies in therapeutics [71]. Phaal et al. proposed a framework that has been tested 

by developing more than 25 diverse “emergence maps,” analogous to a trajectory map, of 

historical industrial evolution, building confidence that the framework might be 

applicable to current and future emergence [72]. Keller and Hüsig analyzed Google’s 

web-based office application to see if it can pose a disruptive threat to incumbent 

technologies, namely Microsoft’s desktop office application [73]. Barberá-Tomás and 

Consoli tried to identify potential disruptive innovations in the medical industry, 

especially for artificial discs, by counting the number of granted patents over time [74]. 

Husig, et al. (2005), conducted one of the rare ex ante analyses that mapped out 

trajectories of both the incumbent technology and a potential disruptive technology [75]. 

They made a forecast based on a trajectory map that wireless local area network (W-LAN) 

technologies would not be disruptive for incumbent mobile communications network 

operators in Germany. This is because the average growth rate of the bandwidth supplied 

by W-LAN had been overshooting the average growth rate of the bandwidth 

requirements of all customer groups. 

There are a few studies that used composite performance measures to draw the 

technology trajectories. Adamson plotted R
2
 values from the multiple regression analysis 

on the trajectory map to investigate the fuel cell vehicle industry [76]. The results showed 

that the subcompact vehicles’ R
2 

values were increasing over time while compact 
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vehicles’ were decreasing. The author used this information and identified key utility 

attributes that could command a significant premium before the product reaches the mass 

market. This study has significant implications for identifying key drivers of technology 

progress using the trajectory map. Letchumanan and Kodama mapped out the correlation 

between Revealed Comparative Advantage (RCA), which is generally used to measure 

the export competitiveness of a product from a particular country in terms of world 

market share, and R&D intensity to examine who was making the most disruptive 

advancement at a national level [77]. Even though Koh and Magee didn’t utilize any 

function to develop composite performance measures, their research has a significance as 

they took different trade-offs into consideration to draw a trajectory map [78]. Their 

results suggested that some new information transformation embodiment such as a 

quantum or optical computing might continue the trends given the fact that information 

transformation technologies have shown a steady progress. 

Few researchers have proposed the predictive approach of the disruptive innovation 

theory considering multidimensional aspects of technology systems. Schmidt suggested 

using part-worth curves in search of low-end encroachment [69]. Paap and Katz provided 

general guidance for ex ante identification of future disruption drivers [79]. Several 

authors have suggested using extant methods for technological forecasting to assess 

potential disruptive technologies [16], [17]. Govindarajan and Kopalle argued that 

capturing a firm’s willingness to cannibalize could be a sign of ex ante prediction of 

disruptive innovation [80]. Doering and Parayre presented a technology assessment 

procedure that iterates among searching, scoping, evaluating, and committing [81]. 
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Table 10 summarizes 40 studies that have employed the trajectory map to identify 

disruptive alternatives (technology, product, service, etc.). The majority of the studies 

adopted a single performance measure to draw the trajectory map. A trajectory map, 

however, should be able to take multiple perspectives into account not to miss potential 

disruptive indications. Many ex post case studies have shown that disruptions have 

occurred from an entirely new type of performance measure that hadn’t been considered. 

Furthermore, it was often observed that the new technology started below the prior one in 

performance on the primary dimension but was superior on a secondary one [18]. This 

implies that the current performance measure may no longer be capable of capturing 

advancement in a new direction. Therefore, it is crucial to examine not only which 

performance measures are playing a major role in current progress but also which 

alternate technologies show disruptive potential with respect to the emerging 

performance measures. 
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Table 10 Summary of the literature on the technology trajectory mapping 

Author (year) Application area Performance measure Plotting method 

Walsh (2004) Microsystems Critical dimension Growth curve 

Keller & Hüsig (2009) Office application Number of operations Data accumulation 

Martinelli (2012) Telecommunication Patent citation Data accumulation 

Phaal et al. (2011) S&T based industry Sales Data accumulation 

Padgett & Mulvey (2007) Brokerage market Service integration level Data accumulation 

X. Huang & Sošić (2010) General industry Capacity & Price Data accumulation 

Kaslow (2004) Vaccine Efficacy Data accumulation 

Kassicieh & Rahal (2007) Therapeutics Patent publication Patent mapping 

Christensen (1997) Disk drive Capacity Data accumulation 

Schmidt (2011) Disk drive Part-worth Data accumulation 

Rao et al. (2006) P2P and VoIP Data transfer Data accumulation 

Bradley (2009) Medical operation Noninvasiveness Data accumulation 

Lucas & Goh (2009) Photography Price, convenience, etc. Data accumulation 

Madjdi & Hüsig (2011) W-LAN Active Hotspot ratio Data accumulation 

Husig et al. (2005) W-LAN Data rates Data accumulation 

Walsh et al. (2005) Silicon industry Number of firms Data accumulation 

Figueiredo (2010) Forestry industry Novelty & complexity  Data accumulation 

Caulkins et al. (2011) General industry Market connection Skiba curve 

Adamson (2005) Fuel cell vehicle Utility coefficient values Data accumulation 

Belis-Bergouignan et al. 

(2004) 

Organic compound Environmental 

performance 

Data accumulation 

Ho (2011) General industry  Technology sources Data accumulation 

Werfel & Jaffe (2012) Smoking cessation 

products 

Patent Reduced form 

model 

No & Park (2010) Nano-biotechnology Patent Data accumulation 

Letchumanan & Kodama 

(2000) 

General industry 

 (High-tech) 

Correlation between 

Exports and R&D intensity 

Data accumulation 

Spanos & Voudouris 

(2009) 

Manufacturing SMEs  AMT Data accumulation 

Frenken & Leydesdorff 

(2000) 

Civil aircraft Diffusion rate 

(Entropy statistics) 

Data accumulation 

Watanabe et al. (2009) Printers Sales and price Price function 

Hobo et al. (2006) Service oriented 

manufacturing 

industry 

Sales, income, employees, 

and productivity 

Data accumulation 

Watanabe et al. (2005) Electrical machinery  Marginal productivity Data accumulation 

S.-H. Chen et al. (2012) Smart grid Average age Data accumulation 

Epicoco (2012) Semiconductor Devices per chip Data accumulation 

Funk (2005) Mobile phone Mobile subscribers Data accumulation 

Raven (2006) Renewable energy Energy Production Data accumulation 

Castellacci (2008) Manufacturing and 

service industries 

Labor productivity Data accumulation 

Kash & Rycoft (2000) Radiation therapy Capability Growth curve 

Arqué-Castells (2012) General industry Patent Poisson model 

W.-J. Kim et al. (2005) DRAM DRAM shipment and 

Memory density 

Data accumulation 

C.-Y. Lee et al. (2008) Home networking  New household/year Data accumulation 

Koh & Magee (2006) IT Megabits Data accumulation 

Barberá-Tomás & Consoli 

(2012) 

Artificial disc Patent Data accumulation 
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2.1.3 NEW PRODUCT TARGET SETTING  

Product target setting is one of the most essential practices in the early stage of new 

product development to ensure that the firm pursues the right markets and products from 

a strategic viewpoint [111]. This involves decisions about the target market, product mix, 

project prioritization, resource allocation, and technology selection [112]. It should be 

noted here that, unlike the traditional approach stipulating that the product concept be 

frozen before detailed product design commences, it may be optimal to pursue multiple 

product concepts and select the best design through an iterative process [113]–[115]. 

The body of literature relevant to this topic can be divided into four groups: market-

focused approach, organization-focused approach, operations management-focused 

approach, and engineering design-focused approach. 

The market-focused approach views customer utility as a function of product 

attributes, hence the emphasis is placed on collecting customers’ value propositions for 

product positioning and pricing by adopting various market research methods [116]–

[119]. Those classic approaches include brainstorming and Delphi [120], morphology (or 

morphological analysis) [121], and lead users analysis [122]. In addition, recent attempts 

such as the voice of the customer [123], probe and learn [124], empathic design [125], 

fuzzy cognitive map [126], and crowdsourcing [127], [128] have been used to derive 

promising product concepts from consumers’ perception as well as underlying behaviors. 

The key difference between the market-focused approach and engineering design-focused 

approach is that the former places more emphasis on product concept generation, whereas 

the latter is more concerned with product concept selection with the determination of 

specific attribute levels [129]. 
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The organization-focused approach is focused at a relatively aggregate level on the 

determinants of project success from the perspective that a product is an artifact resulting 

from an organizational process [111]. Consequently, typical subjects include 

development team organization (functional, project, or matrix) [130], [131], team staffing 

[132], [133], team performance measurement [134]–[136], arrangement of the 

development team [137]–[139], infrastructure and training [140]–[142], and development 

stage-gate [143]–[145]. Recently, the critical roles of leadership and of communication 

and conflict management training are receiving extensive attention as strategies for 

overcoming the challenges to team effectiveness in new product development [146], 

[147]. 

The operations management-focused approach can be viewed as a stream of literature 

with regard to the topic of financial and business environment analysis for new product 

development [148], [149]. This approach has a viewpoint that a product is a sequence of 

development and/or production process steps with the goal being to achieve “high 

efficiency” across the steps [111]. The topics, therefore, mainly focus on capacity 

utilization [150], process performance [151], development sequence and schedule [152], 

supplier and material selection [153], etc. Specifically, one of the most popular models is 

capital asset pricing model (CAPM), which attempts to optimize the level of return at the 

lowest possible level of risk within a product portfolio [154]. Failure mode and effects 

analysis (FMEA), similarly, provides a framework to identify actions that could eliminate 

or reduce the likelihood of the potential failure of a product or process [155], [156]. More 

recently, Markeset and Kumar’s study proposed the integrated model of RAMS, i.e., 

reliability, availability, maintainability and supportability employing the life cycle cost 
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(LCC) analysis within the stage gate model for project and work process management 

[157]. 

Much of the engineering design-focused approach is at a more detailed level of 

abstraction with the focus being the individual product or specific market [111]. The 

perspective of this approach is that a product is a complex assembly of interacting 

components [134]. Perhaps the most known method is conjoint analysis, which attempts 

to identify the ideal combination of product size, shape, configuration, function, and 

dimensions [158]. Furthermore, recent attention to the product categorization has been 

enhanced by benchmarking studies in an attempt to identify distinct combinations of 

product attributes. An initial work related to this product-focused approach may be found 

in Doyle and Green’s study which used a widely known benchmarking technique, data 

envelopment analysis (DEA), to identify homogeneous product groups, i.e., competitors, 

as well as market niches [21]. Specifically, they applied DEA to classify printers by 

ordering them from broad to niche based on the number of times each printer appears in 

others’ reference sets. In a similar vein, Seiford and Zhu developed measures for products’ 

attractiveness and progress by separating context-dependent frontiers [22]. Further, Po et 

al. showed how this product feature-based clustering can be used for decision makers to 

know the changes required in product design so the product can be classified into a 

desired cluster [23]. Amirteimoori and Kordrostami later extended this approach to take 

the size of products into account, thereby comparing products grouped by scale [24]. In 

addition, Amin et al. clarified the role of alternative optimal solutions in the clustering of 

multidimensional observations from the DEA approach [159]. Most recently, Dai and 
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Kuosmanen proposed a new approach that can take into account the cluster-specific 

efficiency rankings as well as stochastic noises [25]. 

 

Table 11 Summary of literatures on the new product target setting 

Classification Perspective on product Methods (or main topics of discourse) 

Market-

focused 

A product is a bundle 

of attributes 

 Brainstorming 

 Delphi 

 Morphology 

 Lead user analysis 

 

 Voice of customer 

 Probe and learn 

 Empathic design 

 Fuzzy cognitive map 

 Crowdsourcing 

Organization-

focused 

A product is an artifact 

resulting from an 

organizational process 

 Development team 

organization 

 Team staffing 

 Performance 

measurement 

 

 Team arrangement 

 Infrastructure and 

training 

 Development state-

gate 

 Leadership and 

communication 

Operations 

management-

focused 

A product is a sequence 

of development and/or 

production process 

steps 

 Capacity utilization 

 Process performance 

 Development 

sequence and schedule 

 Supplier and material 

selection 

 

 Capital asset pricing 

model (CAPM) 

 Failure mode and 

effects analysis 

(FMEA) 

 Reliability, 

availability, 

maintainability and 

supportability 

(RAMS) 

 Life cycle cost 

(LCC) 

Engineering 

design-

focused 

A product is a complex 

assembly of interacting 

components 

 Conjoint analysis 

 Data envelopment 

analysis (DEA) 
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2.2 TECHNOLOGY ASSESSMENT METHODS 

2.2.1 QUALITATIVE MODELS 

A. DELPHI AND EXPERT OPINION 

The Delphi technique was developed during the 1950s by workers at the RAND 

Corporation and became publicized by Dalkey and Helmer in 1963 [120]. Delphi’s 

consensus building process is derived by a series of intensive questionnaires interspersed 

with controlled opinion feedback. It is believed that as a result of contacting the panelists 

by letter (or electronic correspondence), the disturbing factors of group discussion such 

as bandwagon effect produced by the majority opinion can be minimized [3]. Delphi may 

ask experts about direct forecasts of technological parameters or likelihoods of future 

events; however, it was originally intended for use in judgment and forecasting situations 

in which pure model-based statistical methods are not practical or possible [160]. Thus, 

Delphi is applied to the most important task of setting up goals on higher levels such as 

social, national, and corporate goals. Recent applications include emerging infectious 

animal diseases [161], health and social care [162], Basque university systems [163], and 

essential drugs needed for quality care of the dying [164]. 

B. SCENARIO ANALYSIS 

Scenario analysis postulates a set of imaginative descriptions that can encompass the 

plausible range of future aspects [6]. This technique particularly attempts to set up a 

synoptic view of as many developments as can be grasped and as may appear relevant to 

an experimental simulation of a possible reality. Kahn asserted the importance of 

scenario mapping by saying that “a specific estimate, conjecture, or context, even if it is 
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later shown to have serious defects, is often better than a deliberate blank which tends to 

stop thought and research [165].” 

This technique is usually integrated with other forecasting models not only to identify 

a firm basis of possibilities but also to investigate the impact of technology interactions 

under the various conditions. Recent hybrid applications of scenario analysis include 

Nowack et al.’s Delphi-based model [166], Winebrake and Creswick’s analytical 

hierarchy process (AHP)-based model [167], Kok et al.’s participative back casting-based 

model [168], and Jetter and Schweinfort’s fuzzy cognitive map (FCM)-based model 

[169]. 

C. RISK ASSESSMENT AND ENVIRONMENTAL IMPACT ANALYSIS 

Risk analysis pays particular attention to the negative impact of technologies on 

social institutions and critical infrastructure [170]. Linkov et al. surveyed the comparative 

risk assessment (CRA), multi-criteria decision analysis (MCDA), and adaptive 

management methods applicable to environmental remediation and restoration projects 

and asserted that it is required to shift from optimization-based management to an 

adaptive management paradigm for the conservation of the ecosystem [171]. Recently, as 

an attempt to distinguish and categorize the potential risk in advance, more attention has 

been paid to developing the predictive models. As an example, Kolar and Lodge 

developed an ecological risk assessment model to evaluate the risk of alien species for 

nonagricultural systems [172].  

In a similar vein, environmental impact analysis (EIA) has become an important and 

often obligatory part of today’s technology assessment [173]. Ramanathan’s study 

applied a multi-criteria model to capture the perceptions of stakeholders on the relative 
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severity of different socio-economic impacts, which will help the authorities in 

prioritizing their environmental management plan [174]. Van der Werf and Hayo 

compared 12 indicator-based approaches to assess the environmental impact at the farm 

level and provided a set of guidelines for the proper application of EIA [175]. 

D. RELEVANCE TREES 

The notion of relevance trees was first proposed by Churman et al. in an attempt to 

aid decision making in general industrial contexts [3], [176]. The qualitative relevance 

trees are frequently employed in conjunction with scenario analysis to estimate the 

significance of criteria. The process can be simplified as follows. First, the relevance 

trees, namely hierarchical decision models, are constructed to assess missions, objectives, 

goals, strategies, activities, etc. From the scenario analysis, a number of criteria are 

derived for each level of the relevance trees. Then, the weights and significance numbers 

are estimated on the basis of the identified scenarios. Finally, the decision matrices are 

computed to provide a set of alternative actions for each scenario. 

The extended applications using relevance tree can be found in recent studies, 

including Ghiculescu et al.’s model integrating the decision structure with customer 

matrix (CM) [177] and Manuel and Pretorius’s model using criteria derived from 

relevance trees as inputs of neural network [178]. 
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E. MORPHOLOGY 

The morphology (or morphological method) was developed by Zwicky in 1962 [121] 

in an attempt to deduce all of the solutions of a given definite problem. The method 

proceeds as follows: 

1. The statement of the problem, i.e., the object of the morphological device, is 

made. 

2. The precise definitions of the class of devices are elaborated. 

3. Related parameters with sub-elements are grouped as matrices and listed for 

connection. 

4. The alternative solutions are obtained as chains of selected elements from each 

matrix. 

5. Determine the performance values of all of the derived solutions. 

6. Select the particularly desirable solutions and their realization. 

This process provides a framework for thinking in basic principles and parameters, which 

is growing in importance, even if practiced in a disordered or ad hoc fashion [3]. 

Recent developments of morphology technique tend to be in conjunction with data 

mining approaches with the current heavy interests on network analysis. Examples can be 

found in Feng and Fuhai’s study [179] and Jun et al.’s study [180] that used patent-based 

morphological mapping, and Yoon et al.’s study [181] that developed the text mining 

morphology analysis. 
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F. ANALOGY 

As a research technique, analogies have been mainly applied in the social sciences 

[3]. Nonetheless, it may improve the anticipatory insight, especially when quantitative 

methods suffer from the absence of sufficient data but there exist analogous events in 

history. The classic application can be found in Bruce’s study of “The Railroad and the 

Space Program-An Exploration in Historical Analogy” in 1965 [182]. The study sought 

to test the feasibility of using railroad development in a systematic way to forecast space 

program development. The historical analogy method, however, tends to neglect the 

political, social, and philosophical impact, thereby often providing unsatisfactory 

forecasts. A recent application of Goodwin et al. [183], which conducted a comparative 

analysis of four different forecasting methods using analogous time series data for a sales 

forecast of a new product, also concluded that using an analogy led to higher errors than 

the parameters estimated from small but actual data. 

G. CAUSAL MODEL 

A causal model considers the explicit cause-and-effect relationships that affect the 

growth of technology systems [6]. Therefore, this technique relies on the assumption that 

the relevant variables and their linkages are known and can be described in a structural 

model. However, due to the lack of information, the use of causal modeling is limited to 

forecasting adoption or diffusion of innovations where the related parameters can be 

measured [50], [184]–[188]. 
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2.2.2 QUANTITATIVE MODELS 

A. DECISION ANALYSIS 

Multi-criteria decision making (MCDM) methods have been widely applied to the 

technology assessment to integrate qualitative values into quantitative factors of 

technologies. The traditional applications of decision analysis may start from the check 

lists [189], expected value model [190], and stochastic success evaluation model [191]. 

Recent developments of decision analysis model on technology assessment are facilitated 

by more advanced multi-criteria decision theories. Ondrus and Pigneur investigated the 

potential of near field communication (NFC) as an upcoming technology for mobile 

payments [192]. Their study conducted comparative analysis on an expert panel and 

showed that the Swiss industry was enthusiastic about adoption of this technology. Daim 

et al. used an applied hierarchical decision model to identify the optimal design 

characteristics for the U.S. Northwest off-shore wind turbine [193]. As an application in 

the service industry, Tang and Tzeng applied a hierarchy fuzzy MCDM to examine 

critical environmental factors relevant to Internet commerce in changes in the 

international marketing environment from the perspective of business activity, socio-

economics, and information management [194]. 
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B. ECONOMIC ANALYSIS (COST-BENEFIT ANALYSIS) 

Economic analysis (or cost-benefit analysis), which is not confined to the technology 

assessment method, is frequently used to translate estimates resulting from technological 

forecasting into economic terms with the purpose of evaluating the impact of a 

technological innovation. This implies that it should be possible to quantify the forecasts 

in monetary terms, although this may be a challenge where qualitative aspects such as 

social goals or environmental impacts are mainly concerned. 

The application of economic analysis to technology assessment stems from the crude 

forms of a return on investment or a discounted cash flow to a gain factor considering 

technical feasibility or a project acceptability index considering past experience [195]. 

Moslehi and Kumar delineated the optimistic vision of the smart grid not only from its 

technical promises but also from the expected benefits that significantly outweigh the 

estimated costs [196]. Friedewald and Oliver analyzed the economic aspect of the 

ubiquitous computing and claimed that the cost barrier of RFID transponders and system 

integration should be overcome [197]. 

C. SYSTEM DYNAMICS 

System dynamics is defined as a simplified representation of the structure and 

dynamics of part of the real world [6]. As an attempt to apply dynamic modeling to 

technology assessment, Forrester proposed the concept of system dynamics for complex 

systems [198]. Therefore, system dynamics has been particularly popular for shaping the 

dynamic ecosystem of the future technologies and their diffusion patterns by taking 

feedback, i.e., non-linear behaviors among entities, into account. 



37 

Daim et al. applied system dynamics to the fuel cell industry and found that the 

adoption rate would be increased as a consequence of government policies and 

supply/demand relations [199]. Maier developed a new product diffusion model using 

system dynamics to incorporate competition and to map the process of substitution 

among successive product generations [200]. Suryani et al. constructed a system 

dynamics model to forecast air passenger demand and to evaluate some policy scenarios 

related with runway and passenger terminal capacity expansion to meet the future 

demand [201]. 

D. EXTRAPOLATION 

Extrapolation models employ mathematical and statistical techniques to extend time 

series data into the future under the assumption that the past conditions and trends will 

continue in the future more or less unchanged [6]. Since estimation is a data-based 

forecast, it requires a sufficient amount of good data to be effective. The next section 

provides a focused review on the frequently used extrapolation models that can deal with 

multi-attribute assessment. 

Figure 4 classifies various technology assessment methods in two dimensional plots. 

While the qualitative approaches tend to focus more on eliciting multiple perspectives 

from the knowledge sources (e.g., expert panels, history, etc.), the quantitative 

approaches place more emphasis on drawing meaningful findings by analyzing the 

numerical data. It is not surprising that technology focused approaches tend to be 

quantitative, whereas society focused approaches are mostly qualitative. 
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Figure 4 Technology assessment methods 
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2.3 FOCUSED REVIEW ON MULTI-ATTRIBUTE EXTRAPOLATION METHODS 

As technology becomes even more sophisticated, there are few technologies that 

truly possess only a single technical capability. The rate of change also varies over time, 

being affected by the maturity levels of component technologies. This structural 

complexity makes today’s forecasting even more challenging, which leads to the question: 

how to combine growth patterns of each attribute to describe the multi-objective 

technology systems? There are three different approaches to tackle this problem: intuitive 

modeling, parametric frontier modeling, and non-parametric frontier modeling. 

 

2.3.1 INTUITIVE MODELS 

The intuitive models are used to combine multiple technology attributes into a single 

technology measure, often where no physical basis exists to do so [38]. Therefore, these 

models are often technology specific, non-unique and highly subjective. 

A. SCORING MODEL 

Martino suggested distinguishing overriding variables, tradable variables, and 

optional variables to construct an appropriate scoring model [202]. His example of the 

fighter jet scoring model
2
 is shown below: 

𝑆𝑐𝑜𝑟𝑒 =  
𝑀𝑎𝑛𝑒𝑢𝑣𝑒𝑟 ∗ 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∗ 𝑅𝑎𝑛𝑔𝑒 ∗ 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 ∗ 𝑆𝑝𝑒𝑒𝑑 ∗ 𝐴𝑣𝑖𝑜𝑛𝑖𝑐𝑠2 ∗ 𝑊𝑒𝑎𝑝𝑜𝑛𝑠2

1 + 𝑇𝑎𝑘𝑒𝑜𝑓𝑓 𝑟𝑜𝑙𝑙
               (1) 

Once the scoring model is obtained, it becomes possible to estimate the overall score 

of the future technologies by extending the historical trend. However, while the scoring 

                                                            
2 The weights and the tradeoff coefficients were determined by an Air Force officer’s subjective judgment. 
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model provides a composite measure so that each technology system can be put on a 

common basis, it is not capable of capturing the necessary information to simultaneously 

evaluate each system attribute relative to the remaining attributes. 

B. TECHNOLOGY DEVELOPMENT ENVELOPE 

Technology development envelope (TDE) was originally developed by Gerdsri to 

identify an optimum technology development path as a roadmapping method [203]. The 

procedure consists of six steps: 

Step 1: Technology forecasting to identify emerging alternatives. 

Step 2: Technology characterization to establish evaluation criteria. 

Step 3: Technology assessment on identified alternatives based on criteria. 

Step 4: Hierarchical modeling to determine the relative importance of criteria. 

Step 5: Technology assessment to determine the relative value of alternatives. 

Step 6: Formation of TDE to establish an optimum development path. 

Within this process, TDE constructs a hierarchical decision model (HDM) to 

determine the relative importance of emerging technologies aligned with the 

organization’s objectives. Technologies having the highest value in each time period 

represent the most preferred technology alternatives. In this sense, the path connecting 

those technologies from one period to another becomes an optimal technology 

development roadmap.  

However, since the technology assessment process in TDE is predicated upon HDM, 

multiple perspectives on technology attributes are to be averaged within the process of 

obtaining a single ranking of technology alternatives for each period. That is, 
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combinatorial values derived from different levels of technology attributes are supposed 

to be represented by a single weighting scheme aggregated from a panel of experts’ 

opinions. This becomes a critical issue to identify the “better” technology when the 

market segments exist as having particular customers with differing value propositions on 

technology systems. 

 

2.3.2 PARAMETRIC FRONTIER MODELS 

The parametric frontier approach is characterized by being defined a priori with 

several assumptions on random noise and efficiency distribution in an attempt to 

approximate the ideal relationship between inputs and outputs. Since actual observations 

are to be compared with generalized production possibilities, the measurement is defined 

to be “functionally relative.” 

A. PLANAR FRONTIER MODEL (HYPER-PLANE) 

The planar frontier model (or hyper-plane method) was first introduced by 

Alexander and Nelson [204]. They assumed that the movement of the tradeoff surface is 

describable by a smooth and monotonic function. The function to be estimated by a 

multiple regression is given as: 

𝑡 = 𝐹(𝑃1, … , 𝑃𝑛)                                                                                 (2) 

where 𝑡is the introduction date of a system, and 𝑃𝑖 denotes the technical capabilities. 

Specification of the functional form and determination of the coefficients of the 

equation provide a measure of average technological trend over time. For example, Lim 
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et al. applied a planar frontier model to develop the wireless protocol forecasting model. 

The resulting equation is shown as follows [205]: 

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝑑𝑎𝑡𝑒 𝑜𝑓 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 1984.411 − 2.532 ∗ (𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑)𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ                  (3) 

+ 6.651 ∗ (𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑) 𝐵𝑖𝑡𝑟𝑎𝑡𝑒 

A major advantage of this approach is a simple implementation based on multiple 

regression analysis, which allows straightforward interpretation of the results. Also, 

regression diagnostics can be used to select significant parameters in explaining the 

technological progress. However, the linearity assumption underpinning this approach 

can be a disadvantage at the same time. In particular, the planar frontier assumes a 

constant rate of change without considering acceleration from increased engineering 

efforts or deceleration as the system approaches the physical limit. Therefore, this 

approach may result in an inaccurate forecast, particularly when the technological 

systems experience architectural transition. Furthermore, this approach may not be 

applicable to large systems, as there could be difficulties with the use of technical 

parameters arising from the tradeoffs between different component systems [206]. 

Presupposition of treating an ordinal index as a cardinal measure, i.e., using release date 

as a proxy for the level of technology, should also be justified to employ this approach 

[207]. 
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B. CORRECTED ORDINARY LEAST SQUARES 

Aigner and Chu introduced a corrected ordinary least squares (COLS) method to 

construct a deterministic and parametric production function by extending the ordinary 

least squares method [208]. This process first estimates unknown parameters 𝛽 using the 

ordinary least squares method: 

min
𝛽

∑(𝑦𝑘 − 𝑓(𝑥𝑘;  𝛽))2

𝑘

                                                            (4) 

where (𝑥𝑘, 𝑦𝑘) denotes actual k observations and 𝑓 is a production function. Then, the 

model finds the smallest possible correction by introducing an additional coefficient 𝛽00 

to ensure that all observations are placed below the production frontier with the 

maximum error term [209]: 

𝛽00 = max  { 𝑦𝑘 − 𝑓(𝑥𝑘;  �̂�)| 𝑘 = 1, … , 𝐾 }                                          (5) 

Once the production function is estimated, the efficiency measurement for each 

observed production can be made by comparing them to the maximum (minimum) 

possible output (input) for a given input (output) along with a desired directional distance 

function. 

Since COLS has its root in statistical principles, i.e., the maximum likelihood, the 

frontier is constituted to represent the general pattern of actual observations without 

taking noise into account [26]. That is, any variation in the dataset, including possible 

noise, is considered to contain significant information about the efficiency. Therefore, 

this method may not be appropriate when there is a need to identify the underlying 

pattern of production possibilities without the impact of the random noise. 
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C. STOCHASTIC FRONTIER ANALYSIS 

As another variation of the ordinary least squares method, stochastic frontier analysis 

(SFA) was introduced by Aigner et al. in an attempt to construct the stochastic and 

parametric production function [210]. That is, the SFA model includes both a stochastic 

error term and a parametric inefficiency term defined by a frontier curve. The basic 

model, simplified by Bogetoft [26], can be shown as follows: 

 𝑦𝑘 = 𝑓(𝑥𝑘;  𝛽) + 𝑣𝑘 − 𝑢𝑘, 𝑣𝑘~𝑁(0, 𝜎𝑣
2), 𝑢𝑘~𝑁+(0, 𝜎𝑢

2), 𝑘 = 1, … , 𝐾             (6) 

where 𝑣𝑘denotes the noise, 𝑢𝑘the inefficiency, and 𝑁+ a half-normal distribution. 

Compared to COLS, SFA distinguishes noise with inefficiency (see Fig. 5). 

Therefore, efficiency scores from SFA tend to be higher than COLS or other 

deterministic frontier models. This characteristic would be appropriate when the dataset 

suffers from random variations, and therefore outliers need to be detected in the process 

of frontier formation. On the other hand, this might restrict the perspective of identifying 

various tradeoffs that can represent the distinct production possibilities. 

 

 

Figure 5 Frontier models in input-output space (modified from [26]) 



45 

D. ELLIPSOID FRONTIER MODEL 

As a non-linear frontier model, Dodson proposed an ellipsoid frontier model to 

quantify the technological advance in relation to the state of the art (SOA) surface [211], 

[212]. This model attempts to fit the technology frontier into an ellipsoid functional form 

from which tradeoffs among attributes can be explained (see Fig.6). Dodson’s measure of 

technological advance is defined as (𝛾2 − 1), where 

𝛾 =  
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑜𝑟𝑖𝑔𝑖𝑛 𝑡𝑜 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡 𝑏𝑒𝑖𝑛𝑔 𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑜𝑟𝑖𝑔𝑖𝑛 𝑡𝑜 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑛 𝑆𝑂𝐴 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟
 

Martino later extended Dodson’s model to allow use of it in any order [213]. 

Martino’s generalized ellipsoid model is given as follows: 

∑ (
𝑋𝑖

𝑎𝑖
)

𝑛

= 1

𝑖

                                                               (7) 

where n is the order of the ellipsoid, 𝑋𝑖 the value of the ith technical capability, and 𝑎𝑖 the 

intercept of the ellipsoid on the ith axis. 

Martino also suggested using the mean absolute deviation rather than the mean 

squared deviation for the fitting procedure to reduce the effect of extreme values. This 

allows the fitted frontier surface to be located closer to the median of the observations 

instead of the mean. 

Although this approach can provide a measure to investigate the SOA formation 

process, the fundamental question remains to be resolved: why the technology tradeoff 

surface should be following the ellipsoid form? In detail, the ellipsoid frontier model 

presupposes that the tradeoff of one technical capability being relinquished for the 
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advancement of the others can be explained by adopting a predefined functional form 

rather than by adapting to the data. Dodson’s choice of an ellipsoid shape is analytically 

sound for the representation of a strictly convex surface but may not always be 

representative. 

In addition, the ellipsoid function is limited to explaining the tradeoff between 

outputs. This requires an assumption that the tradeoff surface is only applicable to the 

technical capabilities consuming the same amount of inputs such as engineering 

resources.  

 

 

Figure 6 Two-dimensional illustration of ellipsoid frontier (modified from [212]) 
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E. MULTI-DIMENSIONAL GROWTH MODEL 

To overcome the limitation of traditional S-curves, being able to deal with only a 

single attribute for any subject, Danner developed the multi-dimensional growth model 

(MDGM) to generate an iso-time frontier by combining individual technology growth 

curves [32]. This approach first decomposes technology systems into individual attribute 

levels to obtain a proper curve for each subsystem (see Fig. 7.) The iso-time frontier, at 

which the same levels of technology systems are to be located, is then formulated by 

combining identified individual growth curves. The resulting model makes it possible to 

either forecast technical capabilities at a certain point in time or estimate the time by 

which desired levels of technical capabilities will be operational. 

Similar to the planar frontier model, a major limitation to the utility of MDGM is the 

requirement that all dimensions of technical capability integrated must be statistically 

independent. This presupposes that the individual time spans required to advance each 

attribute towards corresponding upper limits can be linearly combined to explain the 

technology systems’ growth rate. However, the higher the complexity of technology 

systems under evaluation is, the more individual growth rates are likely to be interrelated, 

hence the generated iso-time frontier without consideration of concurrent advancement 

would not provide an accurate picture of the feasible combinations of technical 

capabilities.  

Interdependence between technology attributes might also require the modification 

of established upper limits. It has been frequently observed in highly complex systems 

that individual upper limits become more challenging to achieve as they tend to restrict 
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one another [214], [215]. Therefore, the progress of the iso-time frontier should be guided 

by adjusted upper limits with the consideration of the architectural complexity involved. 

 

 

Figure 7 Parametric frontier by MDGM (modified from [32]) 
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2.3.3 NON-PARAMETRIC FRONTIER MODELS 

The non-parametric frontier approach forms the “best practice” frontier without 

relying on arbitrary functional assumptions. Instead, it maximizes the flexibility to 

capture various production possibilities observed from the actual data. Since this 

approach doesn’t construct an averaged target with which data points are to be compared, 

the measurement is defined to be “empirically relative.” 

A. DATA ENVELOPMENT ANALYSIS 

The original data envelopment analysis (DEA) was proposed by Charnes et al. [216]. 

As the name of decision making units (DMUs) implies, the efficiency measure in DEA is 

defined as the ratio of the weighted sum of outputs to the weighted sum of inputs using a 

freely chosen weighting scheme for each DMU, and as such, the efficiency measure will 

show them in the best possible light. The ratio form of the dual (multiplier) input-oriented 

variable returns to scale DEA model can be presented as below: 
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where ℎ0 denotes the input-oriented efficiency of DMU being assessed, 𝑢𝑟  the weight 

assigned to output r, 𝑣𝑖 the weight assigned to input i, 𝑥𝑖𝑗 the ith input variable of DMU 

j, 𝑦𝑟𝑗 the rth output variable of DMU j, and w the returns to scale (RTS) parameter. 

The above input-oriented multiplier model can be readily translated to the primal 

(envelopment) model, which is shown below as a single-stage theoretical formulation: 
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where 𝜃0 denotes the technical input-oriented efficiency, 𝜆𝑗 the loading factor attached to 

DMU j, 𝑠𝑟
+ and 𝑠𝑖

− the slacks equal the reduced cost of 𝑢𝑟 and 𝑣𝑖respectively. Note that if 

the optimal value of 𝜃0 is less than 1, then 𝐷𝑀𝑈0 is inefficient in that the model (9) will 

have identified another production possibility that secures at least the output vector 𝑦𝑜 but 

using no more than the reduced input vector 𝜃𝑜
∗𝑥𝑜. Thus,  𝜃𝑜

∗ is a measure of the radial 

input efficiency of 𝐷𝑀𝑈0 in that it reflects the proportion to which all of its observed 

inputs can be reduced pro rata, without detriment to its output levels [209]. 

DEA studies have often examined the changing performance of units over time 

[217]–[221]. A shorthand notation for a DEA model can be defined as 𝜃0
𝑡 (𝑥0

𝑡 , 𝑦
0
𝑡 ) as the 

efficiency of the DMU o in time period t with input and output characteristics (𝑥0
𝑡 , 𝑦

0
𝑡 ), 

being measured against the frontier of peers also in time period t. A peer compared 

against units from the following period would then be  𝜃0
𝑡+1(𝑥0

𝑡 , 𝑦
0
𝑡 ) .  If the value 

of 𝜃0
𝑡+1(𝑥0

𝑡 , 𝑦
0
𝑡 )   is less than 1.0, then the unit in period t is inefficient relative to units from 

period t+1.  If the value of  𝜃0
𝑡+1(𝑥0

𝑡 , 𝑦
0
𝑡 ) is greater than 1.0, then the unit in period t 

outperforms units from period t+1 in some manner and is efficient.   

It would be expected that a particular unit’s efficiency scores such as  𝜃0
𝑡 (𝑥0

𝑡 , 𝑦
0
𝑡 ) and 

 𝜃0
𝑡+1(𝑥0

𝑡+1, 𝑦
0
𝑡+1) would vary over time, but separating an effect from improved operation of 

a unit from different conditions affecting all units cannot be determined simply from the 
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efficiency scores. Färe et al. introduced a DEA-based Malmquist productivity index (MPI) 

to measure the technical efficiency change (TEC) and the frontier shift (FS) over time as 

an extension of the original concept introduced by Malmquist [217], [222]. The input-

oriented MPI can be defined as 

𝑀𝑃𝐼𝑜 = 𝑇𝐸𝐶0 ∙ 𝐹𝑆0 =
𝜃0

𝑡(𝑥0
𝑡 , 𝑦0

𝑡)

𝜃0
𝑡+1(𝑥0

𝑡+1, 𝑦0
𝑡+1)

∙ [
𝜃0

𝑡+1(𝑥0
𝑡+1, 𝑦0

𝑡+1)

𝜃0
𝑡(𝑥0

𝑡+1, 𝑦0
𝑡+1)

𝜃0
𝑡+1(𝑥0

𝑡 , 𝑦0
𝑡)

𝜃0
𝑡(𝑥0

𝑡 , 𝑦0
𝑡)

]

1

2

                (9) 

where 𝜃0
𝑡 denotes DEA efficiency score and 𝑥0

𝑡 , 𝑦0
𝑡 input and output levels at given point 

in time t. Therefore, TEC indicates technical efficiency change between period t and t+1: 

improves (<1), remains (=1), and declines (>1.) In a similar sense, FS measures the 

amount of frontier shift: regress (>1), no shift (=1), and progress (<1). 

To extend the time-series application of DEA into technological forecasting, Inman 

developed a measure to quantify the rate of frontier expansion by which the arrival of the 

following DMUs can be estimated [223]. Specifically, his method, technology 

forecasting using data envelopment analysis (TFDEA), establishes the envelopment, i.e., 

SOA technology frontier, using the data points identified as relatively efficient from DEA 

(see Fig. 8). Note that the frontier is a set of convex combinations formed by SOA 

technologies, hence it’s not a curved surface but a piecewise linear combination. The 

tradeoffs between technical capabilities can be considered as a radial improvement within 

this frontier space. The TFDEA iterates the frontier formation process over time to track 

the rate of frontier shift. This momentum of progress is then used to make a forecast for 

the future technologies (DMUs.) 

Unlike the iso-time frontier from MDGM, the frontier constructed by TFDEA 

typically consists of multiple vintages of SOA technologies. This allows the model to 
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specify the individual timing, i.e., effective time, of any points on the frontier according 

to the corresponding tradeoff surface. This enables TFDEA to identify the starting point 

of each forecasting target from which their best forecast can be made. Lim et al. 

examined how this approach could improve the forecasting accuracy compared to a 

planar frontier model in which the constant baseline, i.e., the regression constant, is 

assumed for all forecasts [205]. 

 

 

Figure 8 Non-parametric frontier by TFDEA 

 

In spite of additional benchmarking information provided by DEA within TFDEA 

process, traditional TFDEA doesn’t utilize this information when it comes to a 

consolidation of rate of changes (RoCs) captured from the past technologies. In fact, it 

simply employs an average value to make a forecast for future technologies regardless of 

their unique characteristics. That being said, RoCs captured from the surpassed 

technologies are simply aggregated to represent the technological progress as a whole. 
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This might overlook the unique growth patterns captured from different tradeoff surfaces. 

Consequently, it was shown at times in previous applications that forecasting based on a 

single aggregated RoC did not consider the unique growth patterns of each technology 

segment, which resulted in a conservative or aggressive forecast [224], [225]. This issue, 

in particular, becomes more visible when the application area contains distinct progress 

patterns identified from multiple technology segments. Therefore, it is necessary to 

incorporate the notion of segmented RoC into the forecasting procedure so that each 

forecasting target can be subject to the individualized RoC that best reflects the potential 

growth rate of analogous technologies. 

It has been occasionally observed from the past applications that TFDEA may suffer 

from instances of infeasible super-efficiencies when variable returns to scale (VRS) was 

assumed. In theory, this is also a problem for the input-oriented decreasing returns to 

scale (DRS) model and output-oriented increasing returns to scale (IRS) model [27]. This 

problem results in failure to make a forecast for the target technology since the model is 

unable to measure the superiority of corresponding technology compared to current SOA 

technologies. Note that the constant returns to scale (CRS) model is also susceptible to 

this problem when zero data is included in any input variables [27]. However, this is rare 

in actual applications since it indicates heterogeneous DMUs or technologies [209]. 

The problem of infeasibilities in the super-efficiency model can be attributed to the 

inherent characteristics of a non-parametric frontier since this approach identifies the 

production possibilities without spanning unobserved regions. Especially under VRS, 

DEA constitutes the frontier purely based on observed DMUs and, therefore, tradeoffs in 

uncharted regions remain unknown. This renders forecasting targets subject to those 
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unknown regions impossible to be projected from the current SOA frontier in a radial 

manner. 

B. STOCHASTIC (CHANCE-CONSTRAINED) DATA ENVELOPMENT ANALYSIS 

Land et al. proposed a data envelopment analysis model that can deal with stochastic 

variability in inputs and outputs, which evolved from the earlier technique called chance-

constrained programming developed by Land et al. [226], [227]. The standard input-

oriented model is presented below: 

min 𝜃 − 휀 (∑ 𝑠𝑟
+

𝑟

+ ∑ 𝑠𝑖
−

𝑖

) 

𝑠. 𝑡.   𝐸 (∑ 𝜆𝑗

𝑗

∙ 𝑦𝑟𝑗 − 𝑦𝑟0) − 𝐹−1(1 − 𝐾)𝜎0 − 𝑠𝑟
+ = 0, 𝑟 = 1, … , 𝑠  

∑ 𝜆𝑗

𝑗

∙ 𝑥𝑖𝑗 + 𝑠𝑖
− = 𝜃 ∙ 𝑥𝑖0, 𝑖 = 1, … , 𝑚                                                         (10) 

𝑠𝑟
+,  𝑠𝑖

−,  𝜆𝑗  ≥ 0,    ∀𝑟, 𝑖, 𝑗 

𝜃 𝑢𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝑖𝑛 𝑠𝑖𝑔𝑛 

where 𝜃  denotes radial input contraction factor, 𝑠𝑟
+ and   𝑠𝑖

− slack variables, E the 

mathematical expectation, F the distribution function of the standard normal distribution, 

𝜎 the standard deviation of best practice output minus observed output, i.e., s.d. (∑ 𝜆𝑗𝑗 ∙

𝑦𝑟𝑗 − 𝑦𝑟0), 𝜆𝑗 loading factor, 𝑥𝑖𝑗 the ith input variable of DMU j, 𝑦𝑟𝑗 the rth output variable 

of DMU j, K threshold fraction allowing hyper-efficiency [228]. 

Formulation (10) minimizes the contraction factor  𝜃 , subject to two sets of 

constraints. 
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First, the observed outputs must not exceed best practice outputs more often than 

probability of K. For example, in the case of K = 0.01, only 1% or less of DMUs will do 

better than the DMU being assessed. That is, K indicates the fraction of DMUs being 

located above the frontier in Fig. 5. This constraint can be simplified as below [26]: 

𝑃 (∑ 𝜆𝑗

𝑗

∙ 𝑦𝑟𝑗 ≤ 𝑦𝑟0) ≤ 𝐾, 𝑟 = 1, … , 𝑠                                     (11) 

where P denotes the mathematical probability. 

Second, there is a deterministic constraint for inputs stating that the benchmark 

being compared must not use more inputs than the reduced inputs, 𝜃𝑥𝑖0. 

The efficiency score is determined by the above model for each DMU, where 𝜃∗ 

denotes optimum chance-constrained DEA efficiency score, such that sub-efficient (𝜃∗ <

1 𝑜𝑟 𝜃∗ = 1 𝑤𝑖𝑡ℎ 𝑛𝑜𝑛 − 𝑧𝑒𝑟𝑜 𝑠𝑙𝑎𝑐𝑘𝑠), efficient (𝜃∗ = 1 𝑤𝑖𝑡ℎ 𝑧𝑒𝑟𝑜 𝑠𝑙𝑎𝑐𝑘𝑠), and hyper-

efficient (𝜃∗ > 1) [226]. 

Similar to the difference between COLS and SFA, this approach is able to separate 

noise from inefficiency included in the traditional DEA. However, this procedure should 

be supported by statistical requirements such as input and output variables that are known 

to be normally distributed. Information about joint probability distributions of the random 

variables should also be justified to make the resulting efficiency reliable [229]. 
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2.4 SUMMARY OF CRITICAL REVIEW 

Table 12 summarizes technology assessment models that can take tradeoffs from 

multiple technology attributes into account. Aside from intuitive models, the primary 

difference between parametric frontier models and non-parametric frontier models is how 

much weight is put on uncertainty versus flexibility. The former approach places a higher 

importance on the uncertainty by being defined a priori except for a finite set of 

unknown parameters that are estimated from the data [26]. Therefore, a parametric 

approach tends to be robust to extreme points by filtering them with a predefined 

“general” pattern. The latter approach, in contrast, purely adapts the SOA frontier to data 

without being shaped a priori, which renders the resulting frontier to be a piecewise 

linear combination rather than a curved surface. This property makes it possible for the 

non-parametric approach to take full advantage of the distribution of the dataset without 

relying on statistical corrections. 

Among the investigated multi-attribute evaluation models, the non-parametric frontier 

approach shows the favorable features that make it possible to take account of 

technological segmentation by classifying generated frontier facets. In particular, the 

deterministic model may be preferred to the stochastic model in the practical sense that 

the flexible nature enables a versatile application by not being restricted to statistical 

conditions. It is worth noting here that, by definition, the shape of the SOA frontier 

indicates system tradeoffs among technical capabilities. That being said, while the 

parametric approach presupposes that the shape of SOA surface, namely system 

tradeoffs, would not change over time, the nonparametric approach attempts to elaborate 

its changes in each time period with the given data. One can argue that a lack of 
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stochastic estimations results in a mean structure of technological innovation degraded by 

random noises, i.e., extreme technologies. However, deterministic frontier analysis, 

which takes advantage of superior technologies rather than being averaged by mediocre 

or inferior technologies, has shown its usefulness in a wide range of technological 

forecasting studies [225], [230]–[232]. In addition, it is expected that robustness of the 

model can be partly compensated by the frontier segmentation approach by treating 

distinguished groups of technologies separately. Meanwhile, the infeasibility problem 

must be dealt with to guarantee the coherent and complete forecasting process.  

The subsequent sections will elaborate how the new approach is formulated with 

respect to identified research questions. 

 

Table 12 Summary of multi-attribute technology assessment models 

 Intuitive method 
Frontier analysis method 

Parametric frontier model Non-parametric frontier model 

Pros  High flexibility in 

model building 

 Capable of detecting 

outliers 

 Free from parametric 

requirements 

 Capable of identifying 

frontier segments 

Cons  Relies on 

subjective opinions 

 No consideration 

of multiple 

tradeoffs 

 Difficult to estimate 

required parameters 

 Sensitive to 

multicollinearity 

 Sensitive to noises/extremes 

 Susceptible to infeasibility 

Model  Scoring model 

 TDE (Technology 

Development 

Envelope)  

 Planar model 

(Hyper-plane) 

o COLS (Corrected 

Ordinary Least Squares) 

o SFA (Stochastic Frontier 

Analysis) 

 Ellipsoid frontier 

 MDGM (Multi-

Dimensional Growth 

Model)  

 TFDEA (Technology 

Forecasting using Data 

Envelopment Analysis)  

o SDEA (Stochastic Data 

Envelopment Analysis)  

 : Technological forecasting models o : Econometric models 
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III. MODEL DEVELOPMENT 

 

3.1 CONCEPTUAL FRAMEWORK 

3.1.1 SEGMENTED RATE OF CHANGE 

Since TFDEA has at its core the widely used technique of DEA, TFDEA inherits the 

ability to provide many of the same rich results. One of the key results yielded by DEA is 

the identification of targets and efficient peers [233]. Specifically, DEA constitutes the 

frontier of a production possibility set (PPS) based on “best practice” DMUs. Within this 

framework, relative efficiency is determined by comparing the performance of each unit 

against that of a (virtual) target formed by efficient peers. A practical interpretation is that 

efficient peers can serve as role models which inefficient DMUs can emulate so that they 

may improve their performances. In other words, those benchmarks have a mix of input-

output levels similar to that of DMUs being compared, which indicates that they are 

likely to operate in analogous environments and/or to favor similar operating practices 

[209]. 

The implementation of TFDEA relies on a series of benchmarking processes over 

time [223]. This is depicted in Fig. 9, assuming an output-oriented DEA model under 

variable returns to scale (VRS) [234]. The frontier year, T, is the point in time at which 

the analysis is conducted. Products G, H, and I are identified to be the most competitive 

at time T and therefore define the SOA frontier at time T. Products A~F, in contrast, were 

themselves SOA when they were first released but were superseded by subsequent 

products and hence are located below the frontier. Products J and K are future products, 
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i.e., sets of specifications used as forecasting targets that are placed beyond the current 

SOA frontier.  

 

 
Figure 9 Evolution of the SOA frontier 

 

The TFDEA process can be understood as three procedural stages. First, it iterates 

the DEA process to obtain efficiency scores of products both at the time of release and at 

the frontier year. Second, it estimates an RoC that represents how fast products have been 

replaced by the next generation products. In other words, the RoC indicates a potential 

growth rate of the SOA frontier in the future. Finally, the model makes a forecast of 

future products based on the average RoC.  

The original TFDEA process simply aggregates RoCs from the past products and 

uses the average RoC to make a projection without taking technological segmentation 

into account. However, as previously discussed, DEA provides pragmatic information 

regarding benchmarks, which enables an identification of distinct product clusters. This 
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information can be obtained either by reference sets in the envelopment model or by 

weighting schemes in the multiplier model.  

For example, two different product clusters are identified in Fig. 9. The first cluster 

can be characterized by an optimized weighting scheme, that is, a facet connecting 

products G and H. This can be interpreted that inefficient products from this cluster, 

namely B and E, may have similar mixes of input-output levels such that a corresponding 

weighting scheme will show them in the best possible light. This can also be recognized 

as a reference set in the envelopment model since their performances are compared 

against virtual targets constituted by efficient peers, namely products G and H. 

In the same manner, the second cluster can represent another weighting scheme, that 

is, a facet connecting products H and I. Even though the underlying products, A, C, D, 

and F, have less efficient input and output amounts, they must have similar ratios of the 

input-output levels that require the common weighting scheme to optimize their 

operations. The envelopment model, likewise, will constitute virtual products interpolated 

by products H and I for these inefficient products.  

The idea of segmented RoC arises when there is a need to draw a distinction 

between each cluster; hence, the growth potential should be explained by local RoCs 

rather than a universal RoC. In our example, one may notice that cluster 2 has observed 

faster RoCs than cluster 1. Specifically, products B and E did not show a large 

performance gap compared to the current SOA frontier even though the old product B, in 

particular, had stayed on the SOA frontier for a long time and only recently became 

superseded. This implies that the technological progress within cluster 1 has been neither 

fast nor frequent. In contrast, products pertinent to cluster 2 have shown successive 
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replacements with substantial performance advancement over time. This may imply that 

more engineering effort has been invested in cluster 2-type products, which results in 

more frequent introductions of advanced products over time. 

Once distinguishing clusters are identified with varying RoCs, it is readily possible 

to make a forecast using those local RoCs. For example, the estimated arrival of future 

product J can be determined by measuring how far it is from the current SOA frontier and 

then extracting the root of that distance using local RoCs from cluster 1 given the fact 

that it is projected to the frontier facet of cluster 1. In the same manner, the arrival of 

future product K can be estimated using local RoCs from cluster 2. One may expect that 

if both products were achievable with the same amount of engineering advances, the 

arrival of product K might be earlier than that of product J since faster progress is 

expected from cluster 2-type products. In other words, requiring the same amount of time 

to reach the technological level of product J would entail significant development risk. 

Figure 10 depicts how the local RoC and individualized RoC can be obtained. 

Product L had been located on the SOA frontier in the past but later became obsolete by 

the current SOA frontier formed by new competitive products: M, N, and O. As 

aforementioned, the fact that product L is compared to its virtual target, i.e., L’, 

constituted by its peers: M, N, and O indicates that product L may have a similar mix of 

input-output levels with those peers although the absolute level of attributes may vary, 

which can classify them as homogeneous products. Hence, the technological 

advancement, namely the performance gap between L and L’ during a given time period, 

can be represented by the peers as a form of local RoC. Consequently, each local RoC 
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indicates a growth potential for adjacent frontier facets based on the technological 

advancement observed from the related past products.  

 

 

Figure 10 Illustration of segmented rate of change 

 

Once the local RoC of current SOA products are obtained, it is straightforward to 

compute the individualized RoC for the new product concepts. Suppose product 

developers came up with a product concept Q. Note that by definition, a “better” product 

would be located beyond the current SOA frontier as superseded products are located 

below, namely enveloped by, the current SOA frontier. It is seen that the virtual target of 

Q, i.e., Q’, is subject to the frontier facet constituted by current SOA products N, O, and 

P. Thus, the individualized RoC of Q can be obtained by combining local RoCs with the 

reference information: how close Q’ is from N, O, and P respectively. It should be noted 

here that technological advancement observed from the product L may have affected the 

individualized RoC of Q as SOA product N and O are involved in both sides of the facets 
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by having intermediate technological characteristics. This information can give insight to 

the product developers not only about who the major players in a target market are but 

also about how competitive the proposed design concept is. In other words, this can 

provide a diagnostic if the proposed design concept is aggressive or conservative in terms 

of scheduled delivery to the market considering the current rate of technological progress 

expected in a target segment. One can also utilize this information to estimate the arrival 

of a competitor’s design targets as a post product launch strategy of their own. 

As we increase the dimension, i.e., the number of structural characteristics and/or 

functional features of the product being considered, the problem can be better handled by 

algebraic formulation than graphical analysis. The underlying formulation is introduced 

in section 3.2. 
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3.1.2 INFEASIBLE FORECASTING TARGET
3
 

It has been observed in past super-efficiency DEA applications that the infeasibility 

problem occurs when variable returns to scale (VRS) was assumed [27]. In theory, this is 

also a problem for an input-oriented decreasing returns to scale (DRS) model and output-

oriented increasing returns to scale (IRS) model. This problem results in failure to make a 

forecast in TFDEA since the model is unable to measure the super-efficiency, 

𝜃0
𝑡(𝑥0

𝑇>𝑡 , 𝑦0
𝑇>𝑡) , i.e., superiority of specified technical capabilities from the current 

frontier. Note that the constant returns to scale (CRS) DEA model is also susceptible to 

this problem when a zero value is included in an input variable [209]. However, this is 

rare in TFDEA applications since it indicates heterogeneous technologies. 

Figure 11 depicts possible occasions in which infeasible super-efficiency occurs 

under VRS. It is readily seen that target E and F are subject to infeasibility from the 

current frontier in the input-oriented (IO) model and output-oriented (OO) model 

respectively, whereas target D is infeasible in both orientations. Therefore, the arrivals of 

those targets in corresponding orientation from the current frontier are unable to be 

computed using the traditional TFDEA model.  

 

                                                            
3 This section is adapted from a paper accepted in International Transactions in Operational Research [313] 
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Figure 11 Regions of infeasible super-efficiency under VRS DEA model 

 

Alternate measures have been developed to deal with the infeasible super-efficiency 

problem. Lovell and Rouse suggested employing a user-defined scaling factor to make 

the VRS super-efficiency model feasible [235]. Cook et al. developed a radial  measure 

of super-efficiency with respect to both input and output direction so that one can derive 

the minimum change needed to project a DMU to a non-extreme position, and the other 

can reflect the radial distance of that shifted DMU from the frontier formed by the 

remaining DMUs [236]. In a similar vein, Lee et al. proposed a slack based super-

efficiency model that can consider both input savings and output surplus in cases where 

infeasibility occurs [237]. Lee and Zhu further extended this model to deal with the 

infeasibility problem caused by zero input values [238]. 

In this study, Cook et al.’s alternate super-efficiency measure is adopted for two 

main reasons: a) it returns bi-oriented L1 distances for infeasible targets and hence it 
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secures the existing RoC calculation; b) it returns the same radial distance as the standard 

super-efficiency measure [239] when the target is feasible. 

Cook et al. [236] defined the term “extremity” to indicate a minimum radial 

movement in either direction needed for a DMU to reach a non-extreme position. For 

example, in the input-oriented model, target E will have an extremity of 0.75 (=15/20), to 

bring it down to the closest feasible point, i.e., E’ (20, 15). The radial input augmentation 

is then applied, i.e., 1.25 (=25/20), from this shifted point E’ to the peer unit C. 

Consequently, the input-oriented super-efficiency of target E from the current frontier can 

be defined as 2.583 (=1.25+1/0.75). In a similar sense, the output-oriented super-

efficiency of target F from the current frontier is 4.5 (=2+1/0.4), and target D has 6.333 

(=5+1/0.75) and 12 (=2+1/0.1) from the input-oriented model and output-oriented model 

respectively. 

Once the super-efficiency score of each forecasting target from the current frontier is 

obtained, RoCs can be applied to the estimation of those target technologies’ arrivals. 

Note that targets that contain extremities in their super-efficiency scores require RoCs 

from both orientations. That is, the time period for the extremity can be estimated by the 

RoC from the opposite orientation model. In the case of target F, for example, the output-

oriented TFDEA model should be able to compute how long it will take to reduce the 

input from 10 to 5 based on the RoC that one would obtain from the input-oriented model 

as well as to augment the output from 2 to 5 based on the output-oriented RoC. This 

indicates that performing TFDEA in both orientations is required to deal with the 

infeasible forecasting targets. 
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3.2 FORMULATION 

I now turn to the TFDEA formulation incorporating the proposed approach under 

VRS. The entire process can be divided into four separate stages. 

The first stage iterates efficiency measurement in a time series manner so that the 

evolution of the SOA frontier can be monitored. As mentioned above, it is required to 

obtain RoCs in both orientations to make a forecast for targets containing extremities. 

Therefore, this stage computes radial efficiencies: 𝜙𝑘
ℎ∈{𝑅,𝐶}

from the output-oriented 

model shown by (12)-(18) and 𝜃𝑘
ℎ∈{𝑅,𝐶}

 from the input-orientation model shown by (19)-

(25). Note that the model can be formulated as a single large LP, it may also be 

formulated and solved as a series of equivalent, smaller LP models for the time of release 

(R) and models for the current frontier time (C) depending on the implementation 

algorithm. Specifically, 𝑥𝑖𝑗 represents the 𝑖th input and 𝑦𝑟𝑗 represents the 𝑟th output for 

each technology j = 1,…, n, and j = k identifies the technology to be evaluated.  

The objective functions for each orientation, (12) and (19), incorporate minimizing 

effective dates as well to ensure reproducible outcomes from possible alternate optimal 

solutions by distinguishing between Pareto-efficient technologies
4
 [240], [241].  

Constraints (15), (16), (22), and (23) limit the reference sets so that two types of 

efficiencies, one at the time of release (R) and the other at the current frontier time (C) in 

                                                            
4 Unlike the iso-time frontier from parametric frontier models, the technology frontier constructed by 

TFDEA typically consists of multiple vintages of SOA technologies. This allows the model to specify the 

individual timing, i.e., effective date, of any points on the frontier according to the corresponding tradeoff 

surface. Therefore, the issue of alternate optimal solutions occurs either due to weakly efficient technology 

or to an efficient but not an extreme technology, namely F type or E’ type in Charnes et al.’s classification 

[314]. Both cases can be dealt with by introducing the secondary objective to choose the reference 

technology presenting either in the farthest time horizon, i.e., maximum sum of effective date, or in the 

closest time horizon, i.e., minimum sum of effective date. Note that depending on the application area, 

slack maximization may be preferred to prevent weakly efficient technologies from setting the effective 

date. Further discussion can be found in [240], [315]. 
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which the forecast is conducted, are obtained. That is, 𝜙𝑘
𝑅  and 𝜃𝑘

𝑅  each measure the 

amount by which technology k is surpassed by the technologies available at the time of 

release since constraint (15) and (22) allow the reference set of technology k to only 

include technologies that had been released up to 𝑡𝑘 . Similarly,  𝜙𝑘
𝐶  and 𝜃𝑘

𝐶 can be 

interpreted as how superior technology 𝑘 is compared to the current SOA frontier by 

constraint (16) and (23).  

Note that the “current time” is defined as a fixed time T, which can be either the 

most recent time in the dataset or a certain point in time as a forecasting origin when the 

time series hold-out sampling is performed. The variable 𝜆𝑗𝑘
ℎ  describes how much of 

technology 𝑗 is used in setting a target of performance for technology 𝑘.  

Note that in the case of the VRS model, constraint (17) and (24) would allow 

replacing the denominator in the second term of (12) and (19) with a 1, making the 

objective functions linear. Here, it is imperative that the value of a non-Archimedean 

infinitesimal, 휀, not be implemented as a finite approximation to avoid inaccuracies and 

erroneous results [241]. Instead, the actual implementation is to use a two-stage 

preemptive linear programming to first identify the radial efficiency and then to either 

maximize (or minimize) effective dates or to maximize the slacks according to the need. 
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𝑚𝑎𝑥 ∑ ∑ [𝜙𝑘
ℎ − 휀 (

∑ 𝜆𝑗𝑘
ℎ𝑛

𝑗=1 ∙ 𝑡𝑗

∑ 𝜆𝑗𝑘
ℎ𝑛

𝑗=1

)]

𝑛

𝑘=1ℎ

 (12) 

𝑠. 𝑡. ∑ 𝜆𝑗𝑘
ℎ ∙ 𝑦𝑟𝑗

𝑛

𝑗=1

≥ 𝜙𝑘
ℎ ∙ 𝑦𝑟𝑘 , ∀𝑟, 𝑘, ℎ ∈ {𝑅, 𝐶} (13) 

𝑠. 𝑡. ∑ 𝜆𝑗𝑘
ℎ ∙ 𝑥𝑖𝑗

𝑛

𝑗=1

≤ 𝑥𝑖𝑘 , ∀𝑖, 𝑘, ℎ ∈ {𝑅, 𝐶} (14) 

𝑠. 𝑡. 𝜆𝑗𝑘
𝑅 = 0,  ∀(𝑗, 𝑘)| 𝑡𝑗 > 𝑡𝑘 (15) 

𝑠. 𝑡. 𝜆𝑗𝑘
𝐶 = 0, ∀(𝑗, 𝑘)| 𝑡𝑗 > 𝑇 (16) 

𝑠. 𝑡. ∑ 𝜆𝑗𝑘
ℎ

𝑛

𝑗=1

= 1, ∀𝑘, ℎ ∈ {𝑅, 𝐶} (17) 

 𝑠. 𝑡. 𝜆𝑗𝑘
ℎ ≥ 0, ∀𝑗, 𝑘, ℎ ∈ {𝑅, 𝐶} (18) 

   

𝑚𝑖𝑛 ∑ ∑ [𝜃𝑘
ℎ + 휀 (

∑ 𝜇𝑗𝑘
ℎ𝑛

𝑗=1 ∙ 𝑡𝑗

∑ 𝜇𝑗𝑘
ℎ𝑛

𝑗=1

)]

𝑛

𝑘=1ℎ

 (19) 

𝑠. 𝑡. ∑ 𝜇𝑗𝑘
ℎ ∙ 𝑦𝑟𝑗

𝑛

𝑗=1

≥ 𝑦𝑟𝑘 , ∀𝑟, 𝑘, ℎ ∈ {𝑅, 𝐶} (20) 

𝑠. 𝑡. ∑ 𝜇𝑗𝑘
ℎ ∙ 𝑥𝑖𝑗

𝑛

𝑗=1

≤ 𝜃𝑘
ℎ ∙ 𝑥𝑖𝑘 ,   ∀𝑖, 𝑘, ℎ ∈ {𝑅, 𝐶} (21) 

𝑠. 𝑡. 𝜇𝑗𝑘
𝑅 = 0, ∀(𝑗, 𝑘)| 𝑡𝑗 > 𝑡𝑘 (22) 

𝑠. 𝑡. 𝜇𝑗𝑘
𝐶 = 0, ∀(𝑗, 𝑘)| 𝑡𝑗 > 𝑇 (23) 

𝑠. 𝑡. ∑ 𝜇𝑗𝑘
ℎ

𝑛

𝑗=1

= 1, ∀𝑘, ℎ ∈ {𝑅, 𝐶} (24) 

𝑠. 𝑡. 𝜇𝑗𝑘
ℎ ≥ 0, ∀𝑗, 𝑘, ℎ ∈ {𝑅, 𝐶} (25) 
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The non-VRS models such as non-decreasing returns to scale (NDRS), non-

increasing returns to scale (NIRS), or CRS would render the objective function, (12) and 

(19), to no longer be linear as the denominator is not constrained to be equal to 1. For 

computational purposes, the same general secondary goal of minimizing effective years 

can also be approximated by subtracting the sum of reference vectors, ∑ 𝜆𝑗𝑘
ℎ𝑛

𝑗=1  and 

∑ 𝜇𝑗𝑘
ℎ𝑛

𝑗=1  respectively, in the objective function as seen in (26) and (27). While this 

substitution is not technically a numerical approximation, it is generally consistent with 

minimizing effective year and has the advantage of remaining linear [240]. 

 

𝑚𝑎𝑥 ∑ ∑ [𝜙𝑘
ℎ − 휀 (∑ 𝜆𝑗𝑘

ℎ

𝑛

𝑗=1

∙ 𝑡𝑗 − ∑ 𝜆𝑗𝑘
ℎ

𝑛

𝑗=1

)]

𝑛

𝑘=1ℎ

 (26) 

𝑚𝑖𝑛 ∑ ∑ [𝜃𝑘
ℎ + 휀 (∑ 𝜇𝑗𝑘

ℎ

𝑛

𝑗=1

∙ 𝑡𝑗 − ∑ 𝜇𝑗𝑘
ℎ

𝑛

𝑗=1

)]

𝑛

𝑘=1ℎ

 (27) 

 

The second stage, shown by (28)-(31), calculates the RoCs from each orientation, 

𝛾𝑘
𝐶(𝛽𝑘

𝐶), by taking all technologies that were efficient at the time of release, 𝜙𝑘
𝑅∗

= 1 

(𝜃𝑘
𝑅∗

= 1), but later superseded by new technologies at the current frontier time, 𝜙𝑘
𝐶∗

> 1 

(𝜃𝑘
𝐶∗

< 1). Having calculated RoCs of past technologies in (28) and (30), the idea of 

segmented RoC can then be implemented by taking the weighted average of RoC for 

each technology on the current SOA frontier. This leads to the calculation of local RoCs 

in (29) and (31), where 𝛿𝑗
𝐶(𝛽𝑘

𝐶) represents the local RoC driven by technology j at current 

time T. Note that technology j has an efficiency score of 1 at the current frontier; in other 
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words, it is one of the SOAs that constitutes the frontier onto which future technologies 

are to be projected. The numerator of (29) and (31) indicates the weighted sum of RoCs 

from past technologies that have set technology j as a (or one of) benchmark(s). The 

denominator indicates the accumulated contribution of technology j to the evolution of 

the SOA frontier. Consequently, 𝛿𝑗
𝐶(𝛽𝑘

𝐶) represents the local RoC that only counts RoCs 

in which SOA technology j has been used as a benchmark
5
. 

 

𝛾𝑘
𝐶 = (𝜙𝑘

𝐶∗
)

1

∑ 𝜆𝑗,𝑘
𝐶∗𝑛

𝑗=1 ∙𝑡𝑗

∑ 𝜆𝑗,𝑘
𝐶∗𝑛

𝑗=1

−𝑡𝑘

,  
 

 

∀𝑘 | 𝜙𝑘
𝑅∗

= 1,   𝜙𝑘
𝐶∗

> 1 
(28) 

𝛿𝑗
𝐶 =

∑ 𝜆𝑗,𝑘
𝐶∗𝑛

𝑘=1 ∙ 𝛾𝑘
𝐶

∑ 𝜆𝑗,𝑘
𝐶∗𝑛

𝑘=1,𝛾𝑘
𝐶>0

, ∀𝑗 | 𝜙𝑗
𝐶∗

= 1 (29) 

𝛽𝑘
𝐶 = (

1

𝜃𝑘
𝐶∗)

1

∑ 𝜇𝑗𝑘
𝐶∗𝑛

𝑗=1 ∙𝑡𝑗

∑ 𝜇𝑗𝑘
𝐶∗𝑛

𝑗=1

−𝑡𝑘

, 

   

∀𝑘 | 𝜃𝑘
𝑅∗

= 1,   𝜃𝑘
𝐶∗

< 1 (30) 

휁𝑗
𝐶 =

∑ 𝜇𝑗𝑘
𝐶∗𝑛

𝑘=1 ∙ 𝛽𝑘
𝐶

∑ 𝜇𝑗𝑘
𝐶∗𝑛

𝑘=1,𝛽𝑘
𝐶>0

,  ∀𝑗 | 𝜃𝑗
𝐶∗

= 1 (31) 

 

 

 

 

                                                            
5 A special case [316] was observed in which the RoC for one product, i.e., 𝛾𝑘

𝐶(𝛽𝑘
𝐶), exceeded 10.0 due to 

the short time period between the effective date and the actual release date. An RoC of 10.0 indicates that 

the technology is advancing at a rate of 1000% per time period (day, month, year). This greatly exceeds 

even the rapidly moving portions of the computer industry such as microprocessors and therefore is 

considered an unreliable estimate of RoC. The current implementation assumes the maximum acceptable 

RoC to be 10.0 and hence drops those having RoCs greater than this limit from the local RoC calculation. 

Exploring this further is a topic for future work. 
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The third stage solves super-efficiency models for the forecasting targets of future 

products. Since the purpose of this stage is to measure the super-efficiency of each 

forecasting target from the current frontier, the reference set is confined to the current 

SOA technologies by (35), (36), (41), and (42). M is a user-defined large positive number 

to give a preemptive priority to the identification of a minimum radial shift of inputs (or 

outputs) to render the model feasible. In the output-oriented model, shown by (32)-(37), 

radial output reduction and extremity are obtained as 1 − 𝜒𝑘
𝛰 and 1 + 𝜓𝑘

𝛰, respectively. 

Likewise, in the input-oriented model, shown by (38)-(43), radial input augmentation and 

extremity are defined as 1 + 𝜏𝑘
𝛰 and 1 − 𝜌𝑘

𝛰, respectively. 

 

𝑚𝑖𝑛 ∑ (𝜒𝑘 + 𝑀 ∙ 𝜓𝑘)

𝑘 | 𝑡𝑘>𝑇

  
(32) 

𝑠. 𝑡. ∑ 𝜆𝑗𝑘
𝐶 ∙ 𝑥𝑖𝑗

𝑛

𝑗=1

≤ (1 + 𝜓𝑘) ∙ 𝑥𝑖𝑘 , ∀𝑖, 𝑘 (33) 

𝑠. 𝑡. ∑ 𝜆𝑗𝑘
𝐶 ∙ 𝑦𝑟𝑗

𝑛

𝑗=1

≥ (1 − 𝜒𝑘) ∙ 𝑦𝑟𝑘 , ∀𝑟, 𝑘 (34) 

𝑠. 𝑡. ∑ 𝜆𝑗𝑘
𝐶

𝑛

𝑗=1

= 1, ∀𝑘 | 𝜙𝑘
𝐶 ∗

= 1 (35) 

𝑠. 𝑡. 𝜆𝑗𝑘
𝐶 = 0, ∀(𝑗, 𝑘)| 𝑡𝑗 > 𝑇 (36) 

𝑠. 𝑡. 𝜓𝑘 , 𝜆𝑗𝑘
𝐶 ≥ 0, ∀𝑗, 𝑘 (37) 
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𝑚𝑖𝑛 ∑ (𝜏𝑘 + 𝑀 ∙ 𝜌𝑘)

𝑘 | 𝑡𝑘>𝑇

  
(38) 

𝑠. 𝑡. ∑ 𝜇𝑗𝑘
𝐶 ∙ 𝑥𝑖𝑗

𝑛

𝑗=1

≤ (1 + 𝜏𝑘) ∙ 𝑥𝑖𝑘 , ∀𝑖, 𝑘 (39) 

𝑠. 𝑡. ∑ 𝜇𝑗𝑘
𝐶 ∙ 𝑦𝑟𝑗

𝑛

𝑗=1

≥ (1 − 𝜌𝑘) ∙ 𝑦𝑟𝑘 , ∀𝑟, 𝑘 (40) 

𝑠. 𝑡. ∑ 𝜇𝑗𝑘
𝐶

𝑛

𝑗=1

= 1, ∀𝑘 | 𝜃𝑘
𝐶 ∗

= 1 (41) 

𝑠. 𝑡. 𝜇𝑗𝑘
𝐶 = 0, ∀(𝑗, 𝑘)| 𝑡𝑗 > 𝑇 (42) 

𝑠. 𝑡. 𝜌𝑘 , 𝜇𝑗𝑘
𝐶 ≥ 0, ∀𝑗, 𝑘 (43) 

 

The last stage makes a forecast of the arrival of future technologies. The 

individualized RoC for each forecasting target k can be computed by combining the local 

RoCs of SOA technology j that constitutes the frontier facet onto which technology k is 

being projected. That is, in the case of the output-oriented (input-oriented) model, the 

estimated elapsed time for the extremity, if any, is computed using the individualized 

RoC from the input-oriented (output-oriented) model. For target F in Fig. 11, for example, 

the time span for the extremity, namely distance from F to F’, 2 (=10/5), from the output-

oriented model is estimated by individualized RoC combined with input-oriented local 

RoCs of its peers: A and B. In addition, the time span for radial output reduction, namely, 

distance from F’ to A, 0.4 (=2/5), is estimated by individualized RoC from its output-

oriented peer, A. Consequently, the forecasted arrival time of F is obtained by the sum of 

those estimated elapsed times and the reference time of the current frontier. Likewise, the 

forecasted arrival time of D under the output-oriented (input-oriented) model is obtained 
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by the sum of the estimated time span for the distance from itself to a radially shifted 

point, i.e., D’ (D’’), using input-oriented (output-oriented) local RoC of C (A) and 

estimated time span for the distance from the shifted point to its peer, A (C), using 

corresponding output-oriented (input-oriented) local RoC.  

 

𝑡𝑘
𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡_𝑂𝑂

=
𝑙𝑛 (

1

1−𝜒𝑘
𝛰)

𝑙𝑛 (
∑ 𝜆𝑗,𝑘

𝐶𝑂𝑛
𝑗=1 ∙𝛿𝑗

𝐶

∑ 𝜆𝑗,𝑘
𝐶𝑂𝑛

𝑗=1

)

+
𝑙𝑛(1 + 𝜓𝑘

𝛰)

𝑙𝑛 (
∑ 𝜇𝑗,𝑘

𝐶𝑂𝑛
𝑗=1 ∙𝜁𝑗

𝐶

∑ 𝜇𝑗,𝑘
𝐶𝑂𝑛

𝑗=1

)

+
∑ 𝜆𝑗,𝑘

𝐶𝑂𝑛
𝑗=1 ∙ 𝑡𝑗

∑ 𝜆𝑗,𝑘
𝐶𝑂𝑛

𝑗=1

,       ∀𝑘| 𝑡𝑘 > 𝑇     (44) 

𝑡𝑘
𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡_𝐼𝑂

=
𝑙𝑛(1 + 𝜏𝑘

𝛰)

𝑙𝑛 (
∑ 𝜇𝑗,𝑘

𝐶𝑂𝑛
𝑗=1 ∙𝜁𝑗

𝐶

∑ 𝜇𝑗,𝑘
𝐶𝑂𝑛

𝑗=1

)

+
𝑙𝑛 (

1

1−𝜌𝑘
𝛰)

𝑙𝑛 (
∑ 𝜆𝑗,𝑘

𝐶𝑂𝑛
𝑗=1 ∙𝛿𝑗

𝐶

∑ 𝜆𝑗,𝑘
𝐶𝑂𝑛

𝑗=1

)

+
∑ 𝜇𝑗,𝑘

𝐶𝑂𝑛
𝑗=1 ∙ 𝑡𝑗

∑ 𝜇𝑗,𝑘
𝐶𝑂𝑛

𝑗=1

,       ∀𝑘| 𝑡𝑘 > 𝑇     (45) 

 

Equations (32) and (33) yield the same solution, when the original TFDEA model is 

feasible, and provide results with consistent interpretation when the original TFDEA 

model is infeasible. The following proofs of theorem (32) and (33) guarantee that the 

proposed TFDEA extension returns a feasible and a finite solution.  

 

Theorem 1 (44) always yields a finite forecast. 

Proof If the target k is feasible from the original super-efficiency model in [239], this 

means that 𝜓𝑘
𝛰 = 0 by theorem 3 in [236]. This reduces (44) to the traditional output-

oriented TFDEA model in [223]. If the target k is infeasible from the original super-

efficiency model in [239], this means that 𝜓𝑘
𝛰 > 0 by theorem 3 in [236]. In both cases, 
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1/(1 − 𝜒𝑘
𝛰) > 0 by theorem 4 in [236]. Therefore, 𝑡𝑘

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡_𝑂𝑂
 is always feasible. This 

completes the proof. □ 

 

Theorem 2 (45) always yields a finite forecast. 

Proof If the target k is feasible from the original super-efficiency model in [239], this 

means that 𝜌𝑘
𝛰 = 0 by theorem 1 in [236]. This reduces (45) to the traditional input-

oriented TFDEA model in [223]. If the target k is infeasible from the original super-

efficiency model in [239], this means that 𝜌𝑘
𝛰 > 0 by theorem 1 in [236]. In both cases, 

1 + 𝜏𝑘
𝛰 > 0  by theorem 2 in [236]. Therefore 𝑡𝑘

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡_𝐼𝑂
 is always feasible. This 

completes the proof. □ 
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3.3 ILLUSTRATIVE EXAMPLE 

To illustrate the use of the proposed approach, this section revisits the TFDEA 

application to the LCD panel industry [232]. The dataset includes 389 models from 20 

manufacturers that have been introduced to the market from 1997 to 2012. For the sake of 

showing the comparative results, a hold-out sample test is conducted by dividing the 

dataset into two parts, a training set (1997~2007) and testing set (2008~2012), to validate 

the forecasting model using two input parameters: bezel size and weight and three output 

parameters: screen size, resolution, and contrast ratio.  

Table 13 summarizes the forecast results of those products which were infeasible in 

the traditional input-oriented VRS TFDEA model. That is, infeasibilities rendered the 

traditional TFDEA model unable to make a forecast for the listed 31 targets out of 95 

future technologies from the forecasting origin of 2007. This is shown by the value of 

extremities in the fourth column indicating the necessity of output reductions to be able to 

compute the radial input-oriented super-efficiency scores shown in the fifth column.  

As previously discussed, an infeasible target in the input-oriented TFDEA may occur 

when the output levels of the target technology are unprecedented in the past. In other 

words, there is no way a radial expansion in the inputs of the target technology, keeping 

outputs fixed, can cross the current SOA frontier. Therefore, one can interpret this large 

portion of infeasible targets as an indicator of active technological advancements, 

particularly in terms of output parameters that post-2007 LCD panels achieved. This is 

actually in line with the dynamics of the flat panel industry in which the manufacturers 

kept investing their engineering efforts toward a higher performance standard such as 

ultra-high definition (UHD) with lifelike contrast ratio. 



 

 

Table 13 Forecast results for infeasible targets  
DMU 

(k) 

LCD 

panel name 

Actual 

year of release 

(𝑡𝑘) 

Extremity 

(1 − 𝜌𝑘
𝛰) 

Radial distance 

(1 + 𝜏𝑘
𝛰) 

Individualized 

output-oriented RoC 

(
∑ 𝜆𝑗,𝑘

𝐶𝑂𝑛
𝑗=1 ∙ 𝛿𝑗

𝐶

∑ 𝜆𝑗,𝑘
𝐶𝑂𝑛

𝑗=1

) 

Individualized 

input-oriented RoC 

(
∑ 𝜇𝑗,𝑘

𝐶𝑂𝑛
𝑗=1 ∙ 휁𝑗

𝐶

∑ 𝜇𝑗,𝑘
𝐶𝑂𝑛

𝑗=1

) 

Effective date 

(
∑ 𝜇𝑗,𝑘

𝐶𝑂𝑛
𝑗=1 ∙ 𝑡𝑗

∑ 𝜇𝑗,𝑘
𝐶𝑂𝑛

𝑗=1

) 

Forecasted 

time of release 

(𝑡𝑘
𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡_𝐼𝑂

) 

165 T520HW01 V0 2008 0.9351 1.6236 1.1778 1.1972 2006.72 2009.82 

166 V562D1-L04 2008 0.9632 1.0035 1.1876 1.6580 2007.00 2007.16 

212 V460H1-LH7 2009 0.8183 1.3059 1.1932 1.1879 2006.86 2009.53 

218 LTA550HF02 2009 0.9151 2.0317 1.1708 1.1986 2006.70 2011.16 

248 V400H1-L08 2009 0.8508 1.2724 1.1984 1.1849 2006.90 2009.21 

265 LK460D3LA63 2010 0.9778 2.2312 1.1752 1.1941 2006.77 2011.43 

266 LTA460HM03 2010 0.9778 1.7685 1.1826 1.1941 2006.77 2010.11 

268 LTA460HQ05 2010 0.9778 2.0760 1.1824 1.1941 2006.77 2011.02 

271 P460HW03 V0 2010 0.9778 2.0760 1.1824 1.1941 2006.77 2011.02 

273 V460H1-L11 2010 0.8183 1.2929 1.1932 1.1879 2006.86 2009.48 

274 V460H1-LH9 2010 0.8653 1.4340 1.1900 1.1898 2006.83 2009.73 

276 LK601R3LA19 2010 0.6737 1.4558 1.1609 1.4553 2007.00 2010.27 

277 LTA550HJ06 2010 0.8159 1.7228 1.1738 1.1940 2006.77 2011.09 

282 P546HW02 V0 2010 0.9151 2.3603 1.1415 1.1986 2006.70 2012.11 

283 P645HW03 V0 2010 0.9674 1.8781 1.1413 1.2088 2006.56 2010.13 

284 P650HVN02.2 2010 0.9674 1.7607 1.1603 1.2088 2006.56 2009.75 

293 R300M1-L01 2010 0.7910 2.7735 1.1156 1.6838 2007.00 2009.52 

298 LTF320HF01 2010 0.9590 1.1092 1.2043 1.1817 2006.95 2007.79 

305 V315H3-L01 2010 0.9590 1.3354 1.2039 1.1817 2006.95 2008.91 

321 T400HW03 V3 2010 0.9018 1.2863 1.1955 1.1866 2006.88 2008.92 

325 V420H2-LE1 2010 0.8893 1.9215 1.1832 1.1877 2006.86 2011.35 

330 V370H4-L01 2010 0.9211 1.3982 1.1982 1.1849 2006.90 2009.33 

331 V400H1-L10 2010 0.9018 1.4399 1.1952 1.1866 2006.88 2009.58 

336 LTA460HN01-W 2011 0.9778 1.9895 1.1825 1.1941 2006.77 2010.78 

341 V500HK1-LS5 2011 0.9489 2.5756 1.1354 1.1962 2006.74 2012.43 

344 BR650D15 2011 0.8571 1.3431 1.1650 1.2028 2006.64 2009.24 

349 LK600D3LB14 2011 0.6012 1.5420 1.1686 1.1866 2006.88 2012.67 

350 LK695D3LA08 2011 0.8268 1.8865 1.1446 1.2050 2006.61 2011.42 

353 LTI700HA01 2011 0.9289 1.6223 1.1510 1.2110 2006.52 2009.56 

355 T706DB01 V0 2011 0.9060 2.8878 1.1286 1.2345 2006.56 2012.41 

357 V546H1-LS1 2011 0.8159 2.0305 1.1688 1.1940 2006.77 2012.06 

7
7
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The sixth and seventh columns both show the individualized output-oriented RoC 

and input-oriented RoC. The time span required for output reduction, i.e., extremity, was 

therefore obtained using corresponding individualized output-oriented RoC. Likewise, 

the time span required for input augmentation, i.e., radial distance, was computed using 

the corresponding individualized input-oriented RoC. 

The last column shows the forecasted year of release considering the superiority of 

each target technology compared to the 2007 SOA frontier. That is, the forecasted year of 

release was obtained by the sum of the optimal starting point of the forecast, i.e., 

effective date shown in the eighth column, and the estimated elapsed times for extremity 

and radial distance.  

 

 

Figure 12 Forecast deviation distributions 
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The accuracy of the proposed model can be readily shown by comparing those 

forecasted years with actual years of release. The deviation statistics contain this 

information. As seen from Fig. 12, forecast deviation distribution of 31 infeasible targets 

has a mean of -0.26 years with ±0.41 in a 95% confidence interval (CI). This is more 

accurate than a forecast of 64 feasible targets, i.e., mean deviation of +1.19 years (±0.53), 

which could improve the overall forecasting performance of a mean deviation of +0.72 

years (±0.40). Note that the proposed model yielded the forecast results equivalent to that 

of a traditional TFDEA model for feasible targets. Consequently, it is shown that the 

proposed model could make a reasonable forecast for formerly infeasible targets as well 

as a consistent forecast for feasible targets. 
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IV. VALIDATING THROUGH CASE STUDIES 

 

In this chapter, the proposed approach is applied to actual case studies. This is 

organized in two sections. The first section focuses on ex post analysis, which revisits the 

past applications to show how this approach can improve the forecasting accuracy using a 

hold-out sample technique. In particular, the case study of the commercial airplane 

industry is described in detail to fully explain the use of the proposed approach. To 

further validate the utility of the proposed approach, six past datasets are revisited and the 

comparative results are provided in comparison to the traditional approach.  

The second section focuses on ex ante analysis, which addresses how the proposed 

approach can be used to solve the actual forecasting problems in the supercomputer 

industry. Specifically, the case study aims to investigate technological progress of 

supercomputer development to identify the innovative potential of three leading 

technology paths toward Exascale development: hybrid system, multicore system and 

manycore system.  
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4.1 EX POST ANALYSIS: REVISIT EARLIER STUDIES 

4.1.1 RISK ANALYSIS: COMMERCIAL AIRPLANE DEVELOPMENT  

A. RESEARCH FRAMEWORK 

To illustrate the use of the proposed method, this section assumes a scenario in 

which commercial airplane developers are examining four design concepts in 2007. They 

have collected data, including 24 aircrafts introduced to the market in the last 40 years, 

and attempt to identify which market segment proposed design concepts are subject to 

and when the ideal delivery to the market would be as competitive products considering 

the rate of technological advancement observed until 2007. 

Note that the performance characteristics used in the earlier study by Lamb, Daim, 

and Anderson were adopted [225]. In the original study [242], they attempted to develop 

technology assessment models based on a multiple-regression analysis. However, the 

resulting model was confined to only two predictors due to the insufficient statistical 

significance, which resulted in a high unexplained variability. This study revisits and 

updates the dataset not only to incorporate the latest information but also to investigate 

the industry dynamics with a consideration of different SOA trends as suggested in the 

previous study (see Table 14).  
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Table 14 Commercial airplane dataset 

Airplane 
EIS 

(year) 

Travel 

range 

(1,000 km) 

Passenger 

capacity 

(3rd class) 

PFE 

(passengers*km/L) 

Cruising 

speed 

(km/h) 

Maximum 

speed 

(km/h) 

DC8-55 1965 9.205 132 13.721 870 933 

DC8-62 1966 9.620 159 16.646 870 965 

747-100 1969 9.800 366 19.559 893 945 

747-200 1971 12.700 366 23.339 893 945 

DC10-30 1972 10.010 250 18.199 870 934 

DC10-40 1973 9.265 250 16.844 870 934 

L1011- 500 1979 10.200 234 19.834 892 955 

747-300 1983 12.400 412 25.652 902 945 

767-200ER 1984 12.200 181 24.327 849 913 

767-300ER 1988 11.065 218 26.575 849 913 

747-400 1989 13.450 416 25.803 902 977 

MD-11 1990 12.270 293 24.595 870 934 

A330-300 1993 10.500 295 31.877 870 913 

A340-200 1993 15.000 261 25.252 870 913 

A340-300 1993 13.700 295 27.335 870 913 

MD-11ER 1996 13.408 293 24.939 870 934 

777-200ER 1997 14.305 301 25.155 892 945 

777-300 1998 11.120 365 23.713 892 945 

A330-200 1998 12.500 253 22.735 870 913 

A340-600 2002 14.600 380 28.323 881 913 

A340-500 2003 16.700 313 24.334 881 913 

777-300ER 2004 14.685 365 29.568 892 945 

777-200LR 2006 17.370 301 28.841 892 945 

A380-800 2007 15.200 525 24.664 902 945 

EIS: entry into service, PFE: Passenger fuel efficiency derived from passenger capacity, maximum travel range at 

full payload, and fuel capacity 

 

Table 15 Local RoC of SOA airplanes at the frontier year of 2007 

SOA Airplane Local RoC Dominated airplanes 

747-300 1.000949 DC8-55, 747-100/200, L1011-500 

747-400 1.001404 DC8-55/62, 747-100/200, L1011-500, A340-200 

A330-300 1.002188 767-300ER, A340-300 

777-300ER 1.002561 767-300ER, A340-200/300/600 

777-200LR 1.004606 A340-200/500 

A380-800 1.003989 A340-500/600 
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B. ANALYSIS OF THE CURRENT STATE-OF-THE-ART 

The commercial aircraft industry has important niches with segmented levels of 

competition from regional jets to jumbo jets. Following the scenario, Table 15 records the 

local RoCs of six SOA airplanes from the vantage point of 2007. The third column lists 

dominated airplanes, i.e., past airplanes that have appointed the airplane in the first 

column as a benchmark. As previously discussed, one can notice that airplanes are 

grouped together with similarities in their specifications, which characterizes distinct 

segments in 2007. While the frontier is five dimensional in this application, airplanes in 

the first column are equivalent to products B, C, D, and E from Fig. 10, and column 

three’s airplanes are obsolete airplanes such as A. 

The Boeing 747 series, as its nickname “jumbo jet” suggests, has been recognized as 

the most successful wide-body commercial aircraft [243]. In particular, despite their large 

bodies, the advanced aerodynamic design still allowed the 747-300 and 747-400 to reach 

a cruising speed of up to 902 km/h [244]. These characteristics can be identified from the 

dominated airplanes that include not only 747 predecessors (747-100 and 747-200) but 

also Douglas’ DC8 series and Lockheed L-1011 that were also known as fast-cruising 

airplanes. However, gradual technology advancement is observed from the relatively 

slow local RoC of the 747 aircrafts, which is consistent with the fact that they had been a 

dominant design for a long time until Airbus created a strong market rival [243]. 

The Airbus series (A3X0) can be best characterized as long-range airplanes. In fact, 

the company has primarily targeted the growing demand for high capacity and 

transcontinental flights. In addition, they have focused their effort at enhancing the 

structural design using advanced winglets and working on aerodynamic improvements 
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for higher fuel efficiency [245]. For example, recent long-range airplanes, the twinjet 

A330 and the four-engine A340, became popular for their efficient wing design [246]. 

Meanwhile, the Airbus A340-500 has an operating range of 16,700 km, which is the 

second longest range of any commercial jet after the Boeing 777-200LR (range of 17,370 

km) [247]. Therefore, it is not surprising that the A330-300 has been selected as a 

benchmark of not only the same family airplane A340-300 but also the Boeing 767-

300ER, which is also a relatively long-range (11,065 km) airplane with high passenger 

fuel efficiency (26.575 passenger*km/L). Additionally, the Airbus A380-800 became the 

world’s largest passenger airplane with a seating capacity of 525  [248]. One can also 

relate this feature to the reference set which consists of its predecessors: A340-500 and 

A340-600 with relatively higher passenger capacities as well. This long-range, wide-body 

airplane has emerged as a fast-growing segment as airlines emphasized transcontinental 

aircraft capable of directly connecting any two cities in the world [243]. This, in fact, has 

initiated a series of introductions of the A340 family for Airbus to compete with Boeing 

[249], which is consistent with the fast local RoCs, indicating a very competitive segment 

of the market with rapid improvement. 

The Boeing 777 series ranks as one of Boeing’s best-selling aircraft for their high 

fuel efficiency, which enable long-range routes [250]. In particular, the 777-300ER is the 

extended range version of the 777-300, which has a maximum range of 14,685 km, made 

possible by superior passenger fuel efficiency of 29.568 passenger*km/L. These 

exceptional characteristics made not only the preceding 767-300ER but also the Airbus 

series that pursued higher fuel efficiency (A340-200/300/600) appoint the 777-300ER as 

a benchmark for their performance evaluation. Likewise, the 777-200LR has been 
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selected as a benchmark for long-range airplanes that have relatively smaller passenger 

capacities: A340-200 and A340-500. Because of rising fuel costs, airlines have asked for 

a fuel-efficient alternative and have increasingly deployed the aircraft on long-haul 

transoceanic routes [251]. This has driven engineering efforts more toward energy 

efficient aircraft, which is reflected in the fast local RoCs of the Boeing 777 series.  

C. RISK ANALYSIS 

I now turn to the strategic planning for the proposed airplane concepts (see Table 16). 

In particular, the planning team would like to identify the relevant engineering targets for 

each design concept as well as the corresponding rate of technological advancement, i.e., 

individualized RoC, so that they can examine the feasibility of proposed design concepts 

in terms of their delivery target.  

As SOA airplanes at the frontier of 2007 represent different types of past airplanes, 

future airplanes, namely design concepts, can be classified by the characteristics of their 

reference airplanes identified on the 2007 frontier. This allows the model to compute an 

individualized RoC under which each future airplane is expected to be released. Figure 

13 summarizes the results. 

 

Table 16 Four airplane concepts in 2007 

Design 

concept 

Travel 

range 

(1,000 km) 

Passenger  

capacity 

(3rd class) 

PFE 

(passengers*km/L) 

Cruising 

speed 

(km/h) 

Maximum  

speed 

(km/h) 

Delivery 

target 

(year) 

1 14.816 467 28.950 917 988 2010 

2 15.750 280 34.851 913 954 2010 

3 15.000 315 34.794 903 945 2013 

4 14.800 369 35.008 903 945 2015 
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The first design concept aims for a large commercial aircraft carrying 467 

passengers while having the fast cruising speed of 917 km/h. As noted earlier, these 

characteristics are also reflected in its reference airplanes: 747-400, 777-300ER, and 

A380-800. That is, this design concept would compete with these three airplanes in the 

current (2007) market with given specifications. The individualized RoC of this design 

concept can therefore be obtained by interpolating local RoCs in conjunction with 

reference information. Here, the individualized RoC obtained was 1.002748, which 

suggests a more rapid technology development in its category compared to the average 

RoC of 1.002149. This is about 28% faster and resulted in an estimated entry into service 

(EIS) of the current design concept in 2011.49. Therefore, one may consider the delivery 

target of 2010 to be an aggressive goal that might encounter technical challenges by 

outpacing the rate of technological advancement of the past. 

In a similar manner, characteristics of the second design concept’s long range of 

15,750 km with outstanding passenger fuel efficiency of 34.851 passenger*km/L are 

consistent with the nature of its identified reference airplanes: A330-300 and 777-200LR. 

As implied in the local RoCs of 777-200LR (1.004606) with its reference information 

(0.67), this concept is subject to one of the fastest advancing technology clusters seeking 

a high fuel efficiency. Consequently, it was expected that the very fast individualized 

RoC of 1.003793 could achieve this level of specification by 2013.45. Similar to the first 

design concept, this indicates that the delivery target of 2010 may involve a significant 

technical risk since it requires exceeding the past rate of technological advancement. 
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Figure 13 2007 state-of-the-art frontier with regard to four design concepts
6 

 

The third design concept has features similar to the second design concept such that 

it also aims to be a long-range and fuel efficient aircraft; however, it pursues a larger 

passenger capacity of 315. This feature is reflected in the reference set that additionally 

includes 777-300ER, which has a large passenger capacity of 365. The relatively slow 

local RoC of the 777-300ER and the A330-300 may imply the difficulty of technological 

advancement with respect to the travel range and passenger capacity. As a result, the 

individualized RoC for this design concept was found to be 1.003494, giving a forecasted 

EIS of 2012.45. Given the delivery target of 2013, the current design concept might be 

regarded as a feasible goal; however, on the other hand this possibly entails a modest 

market risk of lagging behind in the performance competition. 

The last design concept is a variation of the third design concept, aiming for a much 

larger airplane but with a shortened travel range. Not surprisingly, this different blend of 

                                                            
6 This figure depicts conceptualized frontier facets relevant to the four design concepts under discussion. 
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the same three peers makes a virtual target of this design concept positioned closer to the 

777-300ER than to the 777-200LR and A330-300, which would result in a further 

conservative prospect based on the slow rate of performance improvement represented by 

the 777-300ER. Consequently, the individualized RoC was found to be 1.002568, giving 

a forecasted EIS of 2020.16. This indicates that the delivery target of 2015 may be an 

overly optimistic goal which could cause a postponement due to technical risks involved.  

D. PROOF OF CONCEPT 

I now come back to the present and validate the performance of the presented 

method (see Table 17). The first design concept was the Boeing 747-8, which began 

deliveries in 2012 [252]. In fact, this airplane faced two years of delays since its original 

plan of 2010 due to assembly and design problems followed by contractual issues [253].  

The second design concept was another Boeing airplane, 787-9, which made its 

maiden flight in 2013, and the delivery began on July 2014 [254], [255]. In line with the 

results, the originally targeted EIS of 2010 could not be met because of multiple delays 

due to technical problems in addition to a machinists’ strike [256].  

The third design concept was the initial design target of Airbus A350-900, which has 

been changed and rescheduled to enter service in the second half of 2014 [257], [258]. 

The delay was mainly imposed by a strategic redesign of the A350, the so-called XWB 

(extra-wide-body) program, that allows for a maximum seating capacity of 440 with a 10-

abreast high-density seating configuration as well as a reinforced fuselage design [259]. It 

is interesting to note that Airbus has made a strategic decision by delaying the A350-
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900’s delivery with improved specifications to compete with the Boeing 777 series in the 

jumbo jet segment, which was recognized in the analysis results seven years ago.  

Similarly, the last design concept was the Airbus A350-1000, whose EIS has also 

been rescheduled to 2018 [260]. This airplane is the largest variation of the A350 family 

and designed to compete with the Boeing 777-300ER, as is also seen from the reference 

information. Nevertheless, the postponed delivery target of 2018 may still be an 

aggressive goal considering the technological advancement observed in this segment. 

 

Table 17 Results summary 

Design 

concept 
Reference airplanes (competitors) 

Planned 

EIS 

Estimated 

EIS 

Delayed 

EIS 

1 (747-8) 747-400, 777-300ER, A380-800 2010 2011.49 2012 

2 (787-9) A330-300, 777-200LR 2010 2013.45 2014 

3 (A350-900*) A330-300, 777-300ER, 777-200LR 2013 2012.45 2014 

4 (A350-1000) A330-300, 777-300ER, 777-200LR 2015 2020.16 2018 

* Initial design 
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4.1.2 VALIDATION USING PAST DATASETS 

A. FORECASTING ACCURACY EVALUATION TECHNIQUES 

Fundamentally, the true accuracy of a forecasting model should be judged by the 

future events that were not known during the model building process. However, this so-

called “real time assessment” has practical limitations for practitioners, which makes a 

holdout sample test that measures how the model is able to reproduce data already known 

but not used in construction of the model commonplace in forecasting literature [261]. 

The resulting forecast deviations, i.e., the difference between estimated data and the held 

out data, can therefore provide an accuracy measure (or the goodness of fit) of the 

forecast model being considered. This is also useful to compare the performance of 

different models on the same data [262]. 

A holdout sample test requires the division of the historical data series into a fit 

period and a test period. The forecasting origin is defined as the point from which the 

forecasts are generated. In general, the practitioner can adopt either a single forecasting 

origin or multiple forecasting origins.  

Forecast statistics relying on a single forecasting origin, i.e., a fixed origin evaluation, 

often require a fairly long test period since they yield only one set of forecasts from a 

given forecasting origin. This necessarily renders the resulting summary statistics to be a 

mélange of near-term and far-term forecast errors [263]. In addition, practitioners must 

justify the reason to pick only one set of forecasts, which otherwise could raise a criticism 

such that the results are susceptible to corruption by occurrences unique to that origin 

[261]. 
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To overcome the aforementioned problems of using a single origin, a rolling origin 

evaluation successively updates the forecasting origin and accumulates forecasts from 

each new origin. This technique makes it possible not only to obtain a sufficient number 

of forecasts with the same historical data but also to desensitize the error measures to 

special events at any single origin [264]. Furthermore, a rolling origin evaluation 

produces multiple forecasts for every lead time, i.e., time period, between the origin and 

the time being forecasted, which allows one to assess the forecasting accuracy of an 

individual times series at each lead time [265]. 

 

 

Figure 14 Various forecast accuracy tests 

 

Swanson and White’s study discussed that forecasting accuracy may also be affected 

by an increase of the fit period when a rolling origin is employed [266]. To avoid this, 

they suggested a procedure called a fixed size rolling window to maintain a constant 
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length of the fit period. This technique can clean out old data in an attempt to update the 

forecasting model, thereby mitigating the influence of data from the distant past [261]. 

 

B. TEST RESULTS FROM EARLIER STUDIES
7
 

To validate the performance of the proposed approach, holdout sample tests using 

both constant RoC and segmented RoC on six datasets were conducted. Note that a 

rolling origin evaluation was implemented from the origin used in the original studies. It 

should be also noted here that the accuracy measure of root mean square error (RMSE) 

was adopted to represent forecasting errors since our forecast is the arrival of 

technologies, i.e., single scale with non-zero occurrence, estimated from their 

performance levels [267]. In addition, deviation distributions were tested to distinguish 

their differences from random variations with statistical significance. Table 18 

summarizes comparative results of forecasting accuracies.  

 

Table 18 Forecast accuracy comparisons 

Application area 

RMSE 

(Root mean square error) 

Deviation statistics 

(95% confidence interval) 
Paired t test 

Constant 

RoC 
Segmented 

RoC 

Constant 

RoC 
Segmented 

RoC 
t-stat p-value 

Commercial airplane [225] 11.9208 6.3084 -9.06(±5.18) -3.56(±3.65) -4.3653 0.0023 

Fighter jet [230] 7.8229 7.2524 -7.22(±3.38) -6.32(±3.17) -2.1274 0.0454 

Battle tank [224] 23.1312 16.7987 -15.57(±7.62) -9.30(±6.30) -5.3973 0.0001 

LCD [232] 2.3061 2.1508 +0.63(±0.27) +0.35(±0.30) 6.7182 0.0000 

HEV [268] 3.4176 3.3329 -2.33(±1.70) -2.26(±1.67) -3.2221 0.0105 

DSLR [269] 2.6333 2.6271 -0.43(±0.36) -0.15(±0.33) -3.8553 0.0002 

                                                            
7 This section is adapted from a paper accepted in proceedings of PICMET’14 [317] 
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In all cases, the segmented RoC showed not only smaller forecasting errors, i.e., 

𝑅𝑀𝑆𝐸𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑅𝑜𝐶 > 𝑅𝑀𝑆𝐸𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑅𝑜𝐶 , but also statistically significant distributions 

closer to zero than that of constant RoC, i.e., |𝜇𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑅𝑜𝐶
𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 | > |𝜇𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑅𝑜𝐶

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 | (𝑝 < 0.05).  

One may infer that forecasting accuracy improvement would be more significant if 

unique segments were identified with a greater local RoC contrast to one another, and 

future technologies were subject to those unique segments. This can be shown by 

comparing the constant RoC with individualized RoCs.  

Figure 15 contains this information. Note that RoCs were normalized to show their 

distribution in comparison to constant RoCs that were set to be 100% across the 

forecasting origins. It is seen that in the case of commercial airplane and battle tank 

applications, individualized RoCs for forecasting targets show skewed distributions from 

constant RoCs. That is, most of the forecasting targets were subject to relatively fast 

progressing segments such that constant RoCs had to yield fairly conservative forecasts 

as seen from the deviation statistics. On the other hand, the segmented RoC approach 

could reflect those variations by obtaining fast individualized RoCs from the distribution 

of local RoCs, which resulted in considerable accuracy improvements.  

In contrast, when the local RoC of a certain segment by which most future 

technologies are classified was close to the constant RoC, the impact of segmented RoC 

would be marginal even if a wide range of local RoCs was identified. This can be seen 

from the case of DSLR application in which a constant RoC could reasonably represent 

the variations of individualized RoCs as an average value.  
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Figure 15 Relative comparison of segmented RoC with constant RoC 

 

A special case can occur when the regions or clusters do not contain past products 

that have been surpassed.  In this case, a product may not have a local RoC. Graphically, 

this would occur in Fig. 9 if products B and E were not included, which would then result 

in G failing to have a local RoC. In such cases, G’s local RoC could be assumed to be the 

average RoC of all SOA products (H and I). Another approach would be to average the 

RoC for products that are on the same facet(s) of the efficiency frontier (simply H). 
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4.2 EX ANTE ANALYSIS: FOCUSED APPLICATIONS 

In the previous section, the proposed model was tested based on historical data. In 

contrast, this section provides a focused case study of supercomputer development to 

demonstrate how the model can be used in a predictive manner. 

 

4.2.1 EXASCALE SUPERCOMPUTER DEVELOPMENT
8
  

A. BACKGROUND 

Supercomputers have played a critical role in various fields which require 

computationally intensive tasks such as pharmaceutical testing, genomics research, 

climate simulation, energy exploration, molecular modeling, astrophysical simulation, etc. 

The unquenchable need for faster and higher precision analysis in those fields creates the 

demand for even more powerful supercomputers. Furthermore, developing an indigenous 

supercomputer industry has become a fierce international competition due to its role as a 

strategic asset for a nationwide scientific research and the prestige of being the maker of 

the fastest computers [270], [271]. While the vast majority of supercomputers have still 

been built using processors from Intel, Advanced Micro Devices (AMD), and Nvidia, 

manufacturers are committed to developing their own customized systems, e.g., 

interconnect, operating system and resource management, as system optimization 

becomes a crucial factor in today’s massively parallel computing paradigm [272].  

Advances in supercomputers have come at a steady pace over the past 20 years in 

terms of speed, which has been enabled by the continual improvement in computer chip 

manufacturing [273]. As of March 2014, the world’s fastest supercomputer is the Tianhe-

                                                            
8 This section is adapted from a paper accepted in Omega [318] 
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2 built by China’s National University of Defense Technology (NUDT) performing at 

over 33.86 Petaflops, i.e., 33.86× 1015 floating point operations per second. This is about 

273,000 times faster than the fastest machine from 20 years ago, the Fujitsu Numerical 

Wind Tunnel. On average, progress went from being measured by Gigaflops in 1990 to 

Teraflops in about 10 years, and then to Petaflops in another 10 years [274]. In line with 

this, the next milestone is to build an Exascale computer, a machine capable of doing a 

quintillion operations, i.e., 1018, per second, which had been projected to see light of day 

by 2018 [275]. However, there are significant industry concerns that this incremental 

improvement might not continue mainly due to several practical problems. 

The biggest challenge to build the Exascale computer is the power consumption 

[276]. Tianhe-2, which is currently not only the fastest but also the most power hungry 

supercomputer, uses about 18 megawatts (MW) of power. If the current trend of power 

use continues, projections for the Exascale computing systems range from 60 to 130 MW, 

which would cost up to $150 million annually [277]. Furthermore, few sites in the U.S. 

will be able to host such power hungry computing systems due to the limited availability 

of facilities with sufficient power and cooling capabilities [278]. Therefore, unlike past 

advancement mainly driven by performance improvement [279], power efficiency has 

now gone from being a negligible factor to a fundamental design consideration. To cope 

with these issues, current efforts are targeting the Exascale machine that uses electrical 

power of 20 MW using 100 million processors in the 2020 timeframe [276], [280]. 

Figure 16 illustrates this challenge. The rate of performance progress has been 

constant until a recent date, and this would envision the first Exascale computer in 2018. 
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However, this steady performance improvement has been made possible by meeting the 

exponentially growing power demands. Now that the 20MW of power consumption is set 

as a feasible limit, the engineering effort has to be focusing more on minimizing power 

consumption than on maximizing computational power. This implies that extrapolation 

relying on a single performance measure, i.e., computing speed, may overlook required 

features of future technology systems and could eventually result in an erroneous forecast. 

Specifically, the average power efficiency of today’s top 10 systems is about 2.2 

Petaflops per megawatt. This indicates that it is required to improve power efficiency by 

a factor of 23 to achieve the Exascale goal. It is therefore crucial to incorporate the power 

consumption and multicore characteristics that identify the power efficiency into the 

measure of technology assessment to have a comprehensive understanding of future high 

performance computing (HPC) [281]. This requires a multifaceted approach to 

investigate the tradeoffs between system attributes, which can tackle questions such as: 

How much performance improvement would be restricted by power and/or core 

reduction? What would be the maximum attainable computing performance with certain 

levels of power consumption and/or the number of cores? 

 

 

Figure 16 System tradeoffs to be considered for the future HPC trend 



98 

 

There are three leading technology paths representing today’s supercomputer 

development: hybrid systems, multicore systems, and manycore systems [282]. The 

hybrid systems use both central processing units (CPU) and graphics processing units 

(GPU) to efficiently leverage the performances [283]. The multicore systems maintain a 

number of complex cores, whereas the manycore systems use a large number of less 

powerful but power efficient cores within the highly parallel architecture [284]. 

Manufacturers and researchers are exploring these alternate paths to identify the most 

promising, namely energy efficient and performance effective, avenue to face challenges 

of deploying and managing Exascale systems [285]–[287]. The comparative analysis of 

these technology paths can, therefore, give insights into the estimation of the future 

performance levels as well as the possible disruptive technology changes.  

This study employs Technology Forecasting using Data Envelopment Analysis 

(TFDEA) to measure the technological progress considering tradeoffs among power 

consumption, multicore processors, and maximum performance so that supercomputers 

are to be evaluated in terms of both power efficiency and performance effectiveness. The 

resulting analysis then provides a forecast of Exascale computer deployment under three 

different development alternatives in consideration of the current business environment 

as well as emerging technologies.  
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B. ANALYSIS 

a) Dataset 

The TOP500 list was first created in 1993 to assemble and maintain a list of the 500 

most powerful computer systems [288]. Since the list has been compiled twice a year, 

datasets from 1993 to 2013 have been combined and cleaned up so that each machine 

appears once in the final dataset. The purpose of this study is to consider both power 

efficiency and performance effectiveness; therefore, lists up to 2007 were excluded due 

to the lack of information on the power consumption (see table 19). Variables selected for 

this study are as follows: 

 Name (text): name of machine 

 Year (year): year of installation/last major update 

 Total cores (number): number of processors 

 Rmax (Gigaflops): maximal LINPACK performance achieved 

 Power (Kilowatts): power consumption  

 Processor technology/family (text): processor architecture being used 

 Interconnect family (text): interconnect being used 

 

In the final dataset, there were a total of 1,199 machines, with the number of cores 

ranging from 960 to 3.12 million, power ranging from 19KW to 17.81MW, and Rmax 

ranging from 9 Teraflops to 33.86 Petaflops from 2002 to 2013. Note that a logarithmic 

transformation was applied to all three variables due to their exponentially increasing 

trends. 
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Table 19 TOP500 dataset from 1993 to 2013 

Data column 
1993 

~2007 

2008 

~2009 
2010-1* 2010-2* 2011-1* 

2011-2* 

~2013 

Rank Ο Ο O O O O 

Site O O O O O O 

Manufacturer O O O O O O 

Name × × × × × O 

Computer O O O O O O 

Country O O O O O O 

Year O O O O O O 

Total Cores O O O O O O 

Accelerator/Co-Processor Cores × × × × × O 

Rmax O O O O O O 

Rpeak O O O O O O 

Efficiency (%) × × × × × O 

Nmax O O O O O O 

Nhalf O O O O O O 

Power × O O O O O 

Mflops/Watt × × × × × O 

Measured Size × × O × × × 

Processor Technology/Family O O O O O O 

Processor Generation × × × × × O 

Processor O O O O O O 

Proc. Frequency O O O O O × 

Processor Cores × × O O O × 

Processor Speed (MHz) × × × × × O 

System Family O O O O O O 

System Model × O O O O O 

Operating System O O O O O O 

OS Family × × × × × O 

Cores per Socket × × × × × O 

Architecture O O O O O O 

Accelerator/Co-Processor × × × × O O 

Segment O O O O O O 

Application Area O O O O O × 

Interconnect Family O O O O O O 

Interconnect O O O O O O 

Region O O O O O O 

Continent O O O O O O 

O: Available, ×: Unavailable 
* ‘-1(2)’ denotes the first (second) list of corresponding years 
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b) Model building 

As discussed earlier, power consumption and the number of cores are key variables 

representing the power efficiency and therefore were used as input variables, while the 

maximum LINPACK performance (Rmax) was used as the output variable. This allows 

the model to identify “the better performing” supercomputer which has lower power, 

fewer cores, and/or higher performance if other factors are held constant.  

Orientation can be either input-oriented or output-oriented and can be best thought of 

as whether the technological progress is better characterized as “input reduction” or 

“output augmentation” [232]. While power consumption will be a key concern in the 

Exascale computing, the advancement of this industry has been driven primarily by 

computing performance, i.e., flops, improvement. In fact, the Exascale computing is a 

clearly defined development goal, and therefore an output orientation was selected for 

this application. It should be noted here that either orientation can deal with tradeoffs 

among input and output variables.  

As with many DEA applications, variable returns to scale (VRS) was selected for 

appropriate returns to scale assumption since doubling the input(s) doesn’t correspond to 

doubling the output(s) here.  

The main purpose of this study is to make a forecast of the Exascale computer 

deployment by examining past rates of progress, thus the frontier year of 2013 was used 

so as to cover the entire dataset. Lastly, minimizing the sum of effective dates was added 

as a secondary goal into the model to handle the potential issue of multiple optima from 

the dynamic frontier year [240]. Table 20 summarizes the model parameters used in this 

study. 
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Table 20 TFDEA model parameters 

Inputs Output Orientation RTS Frontier year Frontier type Second goal 

Power, Cores Rmax Output VRS 2013 Dynamic Min 

 

Figure 17 shows 13 supercomputers identified as SOAs from the analysis. Intel 

provided the processors for the largest share (62%) and, inter alia, GPU/Accelerator 

based systems showed impressive performances both in power and core efficiencies, 

while IBM’s Blue Gene, NNSA/SC and Blue Gene/Q showed comparable power 

efficiency as manycore based systems.  

 

 

Figure 17 13 State-of-the-art supercomputers considering system tradeoffs 
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As also seen from specifications of these supercomputers in Table 21, 

supercomputers in different sizes are characterized as being equally competitive in 

consideration of system tradeoffs. This enables the model to construct technology 

frontiers from which various production possibilities can be identified. This characteristic, 

in fact, differentiates the TFDEA process from a single dimensional measure such as the 

TOP500 list in which technological efforts to become energy efficient and/or core 

efficient are not taken into account. 

 

Table 21 Specifications of 13 SOA supercomputers 

Name Year Cores Power Rmax 
Technology Family 

Processor Interconnect 

Eurora Eurotech 

Aurora HPC 10-20 
2013 2,688 46.00 100,900 Intel InfiniBand 

Tianhe-2 TH-IVB-

FEP 
2013 3,120,000 17,808.00 33,862,700 Intel Custom 

HPCC 2013 10,920 237.00 531,600 Intel InfiniBand 

Titan Cray XK7 2012 560,640 8,209.00 17,590,000 AMD Cray 

Beacon Appro 

GreenBlade 

GB824M 

2012 9,216 45.11 110,500 Intel InfiniBand 

BlueGene/Q, Power 

BQC 16C 1.60GHz 
2012 8,192 41.09 86,346 IBM Power Custom 

iDataPlex DX360M3 2011 3,072 160.00 142,700 Intel InfiniBand 

NNSA/SC Blue 

Gene/Q Prototype 2 
2011 8,192 40.95 85,880 IBM Power Custom 

DEGIMA Cluster 2011 7,920 31.13 42,830 Intel InfiniBand 

BladeCenter QS22 

Cluster 
2008 1,260 18.97 9,259 IBM Power InfiniBand 

Cluster Platform 

3000 BL2x220 
2008 1,024 42.60 9,669 Intel InfiniBand 

Power 575, p6 4.7 

GHz, Infiniband 
2008 960 153.43 14,669 IBM Power InfiniBand 

BladeCenter HS21 

Cluster 
2007 960 91.55 9,058 Intel InfiniBand 
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Figure 18 illustrates performance trajectories based on 1,199 supercomputers from 

three dominant processor families: AMD, IBM Power, and Intel (IA-32/64, Core, 

Nehalem, Westmere, and Sandy Bridge). Since the Japanese supercomputer, Earth-

Simulator, was built in 2002 using a Nippon Electric Company (NEC) chip which was 

not adopted by other supercomputer manufacturers thereafter, Fig. 18 is drawn from 2005 

to focus on the main vendors of processors for today’s systems. The ordinate is the 

overall performance score from the DEA model. As such, each line indicates a 

performance trajectory of the top performing supercomputers from each year against the 

frontier year of 2013. A performance score of 100% indicates that the supercomputer has 

a superior performance enough to be on the SOA frontier in 2013. A performance score 

higher than 100% denotes super-efficiency from the DEA model, which can show how 

much the supercomputer is outperforming other SOA supercomputers.  

The trajectory of Many/Multicore systems shows that IBM Power (PC) processor 

based machines are outperforming AMD processor based machines. AMD processor 

based machines, however, showed surpassing performances over IBM Power (PC) based 

machines when they were adopted by Cray to build hybrid systems in 2011 and 2012. In 

fact, the successful development of Titan Cray XK7 using AMD Opteron CPUs coupled 

with Nvidia coprocessors has made Cray Inc. one of the leading supercomputer vendors 

to date. Interestingly, this is also consistent with the fact that Cray Inc. was awarded the 

$188M U.S. Blue Waters contract, which is a project funded by the National Science 

Foundation (NSF), replacing IBM, which had pulled out of the project prior to 

completion in 2011 [289]. 
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Figure 18 Performance trajectories of different processor families 

 

It is also interesting to point out that there was a distinct performance gap between 

Many/Multicore based machines and GPU/Accelerator based machines using AMD 

processors in 2011 and 2012. This can be attributed to the strategic partnership between 

Cray and AMD. In fact, Cray has been a staunch supporter of AMD processors since 

2007, and their collaboration has delivered continued advancement in HPC [290]. In 

particular, Cray’s recent interconnect technology, Gemini, was customized for the AMD 

Opteron CPUs Hyper-Transport links to optimize internal bandwidth [291]. Since 

modern supercomputers are deployed as massively centralized parallel systems, the speed 

and flexibility of interconnect become important for the overall performance of a 

supercomputer. Given that hybrid machines using AMD processors all use Cray’s 
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interconnect system, one may notice that AMD based supercomputers had a significant 

performance contribution from Cray interconnect as well as Nvidia coprocessors.  

One may notice that top supercomputers based on Intel processors have switched to 

hybrid systems since 2010. This is because combining CPUs and GPUs is advantageous 

in data parallelism, which makes it possible to balance the workload distribution as 

efficient use of computing resources becomes more important in today’s HPC structure 

[292]. Hybrid machines using Intel processors have all adopted InfiniBand interconnect 

for their cluster architectures regardless of GPUs/Accelerators: Nvidia, ATI Radeon, 

Xeon Phi, PowerXCell, etc. InfiniBand, manufactured by Mellanox and Intel, enables 

low processing overhead and is designed to carry multiple traffic types such as clustering, 

communications, and storage over a single connection [293]. In particular, its GPU-

Direct technology facilitates faster communication and lower latency of GPU/Accelerator 

based systems that can increase computing and accelerator resources, as well as improves 

productivity and scalable performance [294]. Intel acquired the InfiniBand business from 

Qlogic in 2012 to support innovating on fabric architectures not only for the HPC but 

also data centers, cloud, and Web 2.0 market [295]. 

As another possibility, recent attention is focusing on Intel’s next generation 

supercomputer, which will adopt Cray’s Aries interconnect with Intel Xeon Phi 

accelerator as Intel’s first non-InfiniBand based hybrid system after its acquisition of 

interconnect business from Cray [296]. Interestingly, this transition reflects the strategic 

decision of Cray, ending an association with AMD to facilitate an independent 

interconnect architecture rather than a processor specific one as AMD’s recent 

performance and supply stability fell behind competitors’ [291], [297]. 
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Unlike AMD or Intel processor based systems, the top performing supercomputers 

using the IBM Power (PC) processor were Many/Multicore systems. IBM initially 

developed the multicore architecture which later evolved to manycore systems, known as 

“Blue Gene” technology. The Blue Gene approach is to use a large number of simple 

processing cores and to connect them via a low latency, highly scalable custom 

interconnect [298]. This has the advantage of achieving a high aggregate memory 

bandwidth, whereas GPU clusters require messages to be copied from the GPU to the 

main memory and then from main memory to the remote node, whilst maintaining low 

power consumption as well as cost and floor space efficiency [299]. Currently, 

GPU/Accelerator based systems suggest smaller cluster solutions for the next generation 

HPC with its promising performance potential; however, the Blue Gene architecture 

demonstrates an alternate direction of massively parallel quantities of independently 

operating cores with fewer programming challenges involved [300]. 
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c) Model validation 

To validate a predictive performance of the constructed model, hold-out sample tests 

were conducted. Specifically, a rolling origin was used to determine the forecast accuracy 

by collecting deviations from multiple forecasting origins so that the performance of the 

model can be tested both in the near-term and far-term. This provides an objective 

measure of accuracy without being affected by occurrences unique to a certain fixed 

origin [261]. The comparative results with the planar model and random walk
9
 are 

summarized in Table 22. 

Since the first hybrid system, the Blade Center QS22, appeared in 2008 in the dataset, 

the hold-out sample test was conducted from the origin of 2009 for hybrid systems. For 

example, the mean absolute deviation of 1.58 years was obtained from TFDEA when the 

model made a forecast on arrivals of post-2009 hybrid systems based on the rate of 

technological progress observed from 2008 to 2009. The overall forecasting error across 

the forecasting origins was found to be 1.32 years, which is more accurate than the planar 

model and random walk. 

Although multicore systems showed successive introductions from 2007 to 2012, 

technological progress, i.e., expansion of SOA frontier surface, hasn’t been observed 

until 2010. This rendered the model able to make a forecast only in 2011. The resulting 

forecast error of TFDEA was found to be about a year, which is slightly greater than that 

of the planar model albeit still more accurate than the random walk. However, care must 

be taken to conclude which one was more accurate than the other since the result was 

                                                            
9 The random walk model simply predicts that the next period value is the same as the current value, i.e., 

the arrivals of forecasting targets = the forecasting origin [319]. 
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obtained only from a single forecasting origin in 2011. Therefore, the forecasting of the 

multicore Exascale system will be made using both TFDEA and the planar model in the 

following section. 

Consecutive introductions of manycore systems with a steady technological progress 

made it possible to conduct hold-out sample tests from the origin of 2007 to 2012. 

Notwithstanding a bigger average forecasting error of 1.49 years due to the inclusion of 

errors from longer forecasting windows than the other two systems, TFDEA showed 

outperforming forecast results compared to the planar model and random walk. 

 

Table 22 Model validation using rolling origin hold-out sample tests 

Forecast 

Origin 

Mean absolute deviation (unit: year) 

Hybrid systems Multicore systems Manycore systems 

TFDEA 
Planar 

model 

Random 

walk 
TFDEA 

Planar 

model 

Random 

walk 
TFDEA 

Planar 

model 

Random 

walk 

2007 N/A N/A N/A N/A N/A N/A 1.8075 2.8166 2.9127 

2008 N/A N/A N/A N/A N/A N/A 1.4470 2.5171 2.4949 

2009 1.5814 2.7531 2.1852 N/A N/A N/A 2.0060 2.3593 2.0509 

2010 1.1185 1.9956 1.5610 N/A N/A N/A 1.4996 2.0863 1.6016 

2011 1.8304 1.5411 1.2778 0.9899 0.7498 1.0000 1.2739 1.8687 1.3720 

2012 0.7564 1.2012 1.0000 N/A N/A N/A 0.8866 2.2269 1.0000 

Average 1.3217 1.8728 1.5060 0.9899 0.7498 1.0000 1.4867 2.3125 1.9053 

                                                                                                                                        N/A: insufficient data 

 

Overall, it is shown that the TFDEA model provides a reasonable forecast for three 

types of supercomputer systems with the maximum possible deviation of 18 months. In 
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addition, it is interesting to note that forecasts from TFDEA tended to be less sensitive to 

the forecasting window than the planar model or random walk.  

This implies that the current technological progress of supercomputer technologies 

exhibits multifaceted characteristics that can be better explained by various tradeoffs 

derived from the frontier analysis. In addition, a single design tradeoff identified from the 

planar model was shown to be vulnerable to the forecasting window: it showed a 

tendency to be less accurate as the forecasting window gets longer.  
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d) Forecasting 

I now turn to the forecasting of the Exascale systems. As previously noted, the 

design goal of the Exascale supercomputer is not only to have the Exaflops (1018 flop / 

second) computing performance but also 20MW power consumption and 100 million 

total cores considering the realistic operating conditions (see Table 23) [276], [280]. This 

set of specifications was set as a forecasting target to estimate when this level of system 

could be operational given the past technological progress identified from the relevant 

segments. 

 

Table 23 Exascale computer as a forecasting target 

Cores Power Rmax 

100 million 20 MW 1 Exaflops 

 

Table 24 summarizes the forecasting results from the three architectural approaches. 

Exascale performance was forecasted to be achieved earliest by hybrid systems in 

2021.13. Hybrid systems are expected to accomplish this with a relatively high 

individualized RoC of 2.22% and having the best current level of performance 

represented by Tianhe-2. Figure 19 depicts the identified individualized RoC with respect 

to the local RoCs. It is seen that the technology frontier of hybrid systems includes a wide 

range of progress patterns in terms of local RoCs, i.e., 0.27%~2.71%, and the Exascale 

target is subject to the relatively fast advancing segment. 

Considering the possible deviations identified in the previous section (±1.32 year), 

one could expect the arrival of a hybrid Exascale system within the 2020 timeframe. This 

promising future of hybrid systems is, in fact, acknowledged by many industry experts 
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claiming that GPU/Accelerator based systems will be more popular in the TOP500 list 

for their outstanding power efficiency, which may spur the Exascale development [282], 

[285].  

 

 

Figure 19 Individualized RoCs with respect to the local RoCs 

 

The forecasted arrival time of the first multicore based Exascale system is far 

beyond 2020 due to the slow rate of technological advancement: 1.19% as well as 

relatively lower performance of current SOA multicore systems. It is also shown from 

Fig. 19 that the technology frontier of multicore systems has relatively narrow ranges of 

local RoCs, i.e., 0.48%~1.86%, and, inter alia, the Exascale target is pertinent to the 

moderate segment. 

Note that projection from the planar model also estimated the arrival of multicore 

based Exascale system farther beyond the 2020 timeframe
10

.  

This result implies that innovative engineering efforts are required for multicore 

based architecture to be scaled up to the Exaflop performance. Even though the RIKEN 

                                                            
10 The arrival of the first multicore Exascale system was forecasted in 2061.62 from the planar model. 
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embarked on the project to develop the Exascale system continuing the preceding success 

of K-computer, IBM’s cancellation of the Blue Water contract and recent movement 

toward the use of a design house raises questions on the prospect of multicore based 

HPCs [301], [302]. 

The first manycore based system is expected to reach the Exascale target by 2022.28. 

This technology path has been mostly led by the progress of the Blue Gene architecture, 

and the individualized RoC was found to be 2.34%, which was the fastest of the three. It 

is interesting to note from Fig. 19 that this fast progress, however, belongs to the 

moderate region of the technology frontier where the local RoCs range from 1.09% to 

3.40%. 

Although this fast advancement couldn’t overcome the current performance gap with 

hybrid systems in the Exascale race, the Blue Gene architecture still suggests a promising 

pathway toward the Exascale computing by virtue of its stable configurations closer to 

the traditional design with fewer programming challenges [299]. 

 

Table 24 Forecast results of Exascale supercomputer 

 
Hybrid system Multicore system Manycore system 

Individualized 

Rate of change (RoC) 
1.022183 1.011872 1.023437 

Forecasted arrival of 

Exascale supercomputer 

2021.13 

(2019.81~2022.45) 

2031.74 

(2030.75~2032.73) 

2022.28 

(2020.80~2023.77) 

( ): Ranges of forecasts considering the possible deviations 
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C. DISCUSSION 

The analysis of technological RoC makes it possible to forecast a date for achieving 

Exascale performance from three different approaches; however, it is worthwhile to 

examine these forecasts with consideration for the business environment and emerging 

technologies to anticipate the actual deployment possibilities of the Exascale systems. 

The optimistic forecast is that, as seen from the high performing Tianhe-2 and Titan 

Cray XK7 system, there would be an Intel or AMD based system with a Xeon Phi or 

Nvidia coprocessor and a custom Cray interconnect system. However, given business 

realities it is unlikely that the first Exascale system will use AMD processors. Intel 

purchased the Cray interconnect division and is expected to design the next generation 

Cray interconnect optimized for Intel processors and Xeon Phi coprocessors [303]. 

Existing technology trends and the changing business environment would make a 

forecast of a hybrid Exascale system with a Cray interconnect, Intel Processors and Xeon 

Phi coprocessors. 

The 2.22% annual improvement for hybrid systems has come mostly from a 

combination of advances in Cray systems, such as their transverse cooling system, Cray 

interconnects, AMD processors and Nvidia coprocessors. It is difficult to determine the 

contribution of each component; however, it is worth noting that only Cray systems using 

AMD processors were SOAs. This implies that Cray’s improvements are the highest 

contributor to the RoC for AMD based hybrid systems. Furthermore, Intel’s recent 

decision to move production of Cray interconnect chips from TSMC to its more advanced 

processes will likely result in additional performance improvement. Thus, one may 
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expect that the Cray / Intel collaboration might result in a RoC greater than the 2.22% 

and reach the Exascale goal earlier. 

Another possibility of achieving Exascale systems is IBM’s Blue Gene architecture 

using the IBM Power (PC) processor with custom interconnects. This approach has 

shown a 2.34% yearly improvement building on the 3rd highest rated Sequoia system. 

The Blue Gene architecture, with high bandwidth, low latency interconnects and no 

coprocessors to consume bandwidth or complicate programming, is an alternative to the 

coprocessor (hybrid) architectures being driven by Intel and AMD. Given IBM’s more 

stable business structure, it may be more effective moving forward while Intel / Cray 

work out their new relationship. 

Who has the system experience to build an Exascale system? Cray, IBM and Appro 

have built the largest SOA original equipment manufacturer (OEM) systems. In 2012, 

Cray purchased Appro, leaving just two major supercomputer manufacturers [304]. 

Based upon the captured RoCs and the business changes, one can expect that the first 

Exascale system will be built by either Cray or IBM. 

As supercomputer systems become more complex and expensive, it is worth noting 

the funding efforts in a story about the future of HPC. The U.S. Department of Energy 

(DOE) recently awarded $425 million in federal funding to IBM, Nvidia, and other 

companies that will build two 150 Petaflops systems with an option on one system to 

build it out to 300 Petaflops [305]. The plan states that IBM will supply its Power 

architecture processors, while Nvidia will supply its Volta GPUs, and Mellanox will 

provide interconnected technologies to wire everything together [306]. In addition, the 

DOE and the National Nuclear Security Administration (NNSA) have announced $100 
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million to fund the FastForward2 project that will develop technologies needed for future 

energy efficient machines in collaboration with AMD, Cray, IBM, Nvidia and Intel [307]. 

One may notice that U.S. science funding will support both hybrid and manycore systems 

for producing the next leap toward the Exascale. 

Japan had earlier announced a goal to reach Exascale with the total project cost of 

$1.2 billion by 2020 [308]. However, the deputy director at the RIKEN Advanced 

Institute for Computational Science (RAICS) recently modified the goal and plans to 

build a 200 to 600 Petaflops system by 2020. Nonetheless, given the fact that RIKEN 

selected Fujitsu to develop the basic design for the system, there is a keen interest in how 

much the multicore system could be scaled up with a relatively low power efficiency of 

complex cores. 

Data driven forecasting techniques, such as TFDEA, make a forecast of technical 

capabilities based upon released products, so emerging technologies that are not yet being 

integrated into products are not considered. In the supercomputer academic literature, 

there is an ongoing debate about when the currently dominating large core processors 

(Intel, AMD) will be displaced by larger numbers of power-efficient, lower performance 

small cores such as ARM, much like what happened when microprocessors displaced 

vector machines in the 1990’s and ARM based mobile computing platforms are affecting 

both Intel and AMD desktop and laptop sales [282], [287]. Although there is no ARM 

based supercomputer in the TOP500 yet, the European Mont-Blanc project is targeting 

getting one on the list by 2017, and Nvidia is developing an ARM based supercomputer 

processor for use with its coprocessor chips [309]. Small cores are a potentially disruptive 

technology as power efficiency is becoming more important; therefore, further analysis is 
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needed to investigate when it will overcome the challenges of building interconnects to 

handle a larger number of smaller cores or when software developers will overcome the 

synchronization challenges of effectively using more cores.  

Another new kind of supercomputer attracting recent attention is the 

superconducting supercomputer (as one way to enable the quantum computing). Even 

though the exact financial and technical details with a timeframe were not disclosed, the 

Intelligence Advanced Research Projects Activity (IARPA) revealed that funding 

contracts have been awarded to IBM, Raytheon-BBN and Northrop Grumman 

Corporation focusing on the development of the Cryogenic Computer Complexity (C3) 

program [310]. Early research suggested that a superconducting supercomputer would be 

able to provide around 100 Petaflops of performance while consuming just 200 kilowatts 

[311]. If the mission of the C3 program can be achieved and the related technologies can 

be successfully transferred to practical usages, the next generation supercomputers could 

be far different from the ones of the past, and the Exascale goal could be achieved 

without concerns of power and cooling capacities. 

Lastly, this study set the Exascale target considering the realistic operating 

conditions: 20MW of power consumption and 100 million cores. If this set of 

specifications was relaxed at the manufacturers’ free will, the arrival of an Exascale 

computer could come earlier than current forecasts as China is believed to be targeting 

the 2018-2020 timeframe for continuing their gigantic design of Tianhe-2. 

 

 



118 

 

D. SUMMARY OF FINDINGS 

The HPC industry is experiencing a radical transition which requires improvement 

of power efficiency by a factor of 23 to deploy and/or manage the Exascale systems. This 

has created an industry concern that the naïve forecast based on the past performance 

curve may have to be adjusted. TFDEA is well suited to deal with multiple tradeoffs 

between systems attributes. This study examined comparative prospects of three 

competing technology alternatives with various design possibilities considering the 

complex business environment to achieve the Exascale computing so that researchers and 

manufacturers can have a better view of their development targets. In sum, the results 

showed that the current development target of 2020 might entail technical risks 

considering the rate of change toward the power efficiency observed in the past. It is 

anticipated that either a Cray built hybrid system using Intel processors or an IBM built 

Blue Gene architecture system using PowerPC processors will likely achieve the goal 

between early 2021 and late 2022. 

In addition, the results provided a systematic measure of technological change, 

which can guide a decision on the new product target setting practice. Specifically, the 

rate of change contains information not only about how much performance improvement 

is expected to be competitive but also about how much technical capability should be 

relinquished to achieve a specific level of technical capabilities in other attributes. One 

can also utilize this information to anticipate the possible disruptions. As shown in the 

HPC industry, the rate of change of the manycore system was found to be slightly faster 

than that of the hybrid system. Although the arrival of the hybrid Exascale system is 

forecasted earlier than a manycore system because of its current surpassing level of 
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performance, the fast rate of change of the manycore system implies that the performance 

gap could be overcome, and Blue Gene architecture might accomplish the Exascale goal 

earlier if the hybrid system development is unable to keep up with the expected progress.  
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V. CONCLUSION 

 

5.1 CONTRIBUTIONS TO APPLICATION AREA 

5.1.1 EXASCALE SUPERCOMPUTER DEVELOPMENT 

 Experts and recent literature commonly point out that technological progress of 

supercomputers needs to be re-examined since power consumption and effective 

parallelism are increasingly critical factors to build Exascale systems. Above all, 

improvement of power efficiency by a factor of 23 is required to deploy and operate the 

Exascale systems in practice. This unprecedented type of technology necessarily requires 

choosing a high-level implementation strategy with respect to the tradeoffs between 

system attributes. There are three leading architectures—hybrid, multicore, and manycore 

systems—to cope with related challenges, and manufacturers and researchers are 

exploring their expected potentials to have an accurate view of the technological 

advancement in high performance computing. 

The newly developed extensions to TFDEA are well suited to this application to deal 

with multiple tradeoffs between systems attributes. The results provide comparative 

prospects of those three competing technology alternatives with various design 

possibilities accounting for the business environment to achieve the Exascale systems. 

Specifically, the results indicate that the first Exascale system is likely to be built by Cray 

or IBM with their customized interconnects. Considering the recent business changes, it 

is more likely that the first Exascale performance can be achieved by Intel processors and 

Xeon Phi coprocessors as hybrid systems.  
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In addition, the identified rates of change can be used to give insights into the 

estimation of the future performance levels for new product development target setting 

purposes. Supercomputer manufacturers may have their own roadmaps based on past 

performance improvement, which has been mostly driven by the computation speed. 

However, as noted above, the transition toward Exascale demands considering both 

power and core efficiency. This would necessarily require the established roadmap to be 

modified. There are three alternatives, i.e., hybrid, multicore, and manycore systems, 

each heading toward the same goal. Who then do manufacturers bet on to win the race? 

In addition, how much performance improvement should be made by a certain point in 

time to meet the planned delivery of the Exascale computer? The rate of change contains 

information to better inform their decisions.  

One can also utilize rates of change to anticipate the possible disruptions. For 

example, the rate of change of manycore systems was found to be faster than that of 

hybrid system. Although the arrival of a hybrid Exascale system is forecasted earlier 

because of its current level of performance being superior to manycore systems, this 

indicates that the performance gap could be overcome, and the Blue Gene architecture 

might accomplish the Exascale goal earlier within the possible forecast deviation if Cray 

and Intel are unable to keep up with performance advancement expected from the given 

rate of change while they work out their new relationship.  
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5.2 CONTRIBUTIONS TO MANAGERIAL INSIGHT 

5.2.1 RISK ANALYSIS 

One of the motivations of this study stemmed from a practical question: “When 

might be the ideal timing to release the new product?” To answer this question, one may 

have to know not only what segments the current product concept is subject to but also 

how competitive corresponding segments are. This subject can be translated into the 

research topic of integrating product positioning with the assessment of performance 

improvement over time, which has rarely been addressed in both new product 

development and management science literature. The presented use of time series 

benchmarking analysis makes it possible to estimate the “auspicious” time by which 

proposed design concepts will be operational as competitive products by taking into 

account the rate of performance improvement expected in a target segment.  

The empirical illustration of commercial airplane development has shown that the 

new method provides valuable information such as dominating designs, distinct segments, 

and the potential rate of performance improvement, which can be utilized in the early 

stage of new product development. In particular, six SOA airplanes characterizing 

distinct segments were identified with corresponding local RoCs and, inter alia, 

technological advancement toward long-range and wide-body airplanes represented very 

competitive segments of the market with rapid changes. The resulting individualized 

RoCs were able to estimate the arrivals of four different design concepts, which is 

consistent with what has happened since 2007 in the commercial airplane industry.  

Similarly, the case study of Exascale supercomputer development showed that the 

current development target of 2020 might entail technical risks considering the rate of 
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change toward the power efficiency observed in the past. It is forecasted that either a 

Cray built hybrid system using Intel processors or an IBM built Blue Gene architecture 

system using PowerPC processors will likely achieve the goal between early 2021 and 

late 2022. This indicates that the improvement of power efficiency by a factor of 23 

would require the maximum delay of four years from the past performance curve. 

 

5.2.2 NEW PRODUCT TARGET SETTING 

Unlike market research methods or heuristic ideation techniques, this study employs a 

product feature-based clustering approach. This engineering approach can be used to 

identify homogeneous product groups by ordering products from broad to niche based on 

the number of times each product appears in others’ reference sets. This information can 

be very useful for decision makers to position their products by referring to product 

designs in other clusters, which provides a direction to adjust the combination of its 

product attributes so as to be assigned into a desired cluster. 

The rate of technological advancement identified in each market segment can further 

give insights into the target setting practices for a new product development planning. 

That is, manufacturers may position their products within the current SOA frontier and 

utilize the corresponding rate of change to see whether their design targets would be 

located on the estimated future frontiers. Similarly, one could also utilize this information 

for the pricing strategy if the price was included as an input variable. 
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5.3 CONTRIBUTIONS TO METHODOLOGICAL DEVELOPMENT 

5.3.1 IDENTIFICATION OF LOCAL RATE OF CHANGE 

As an answer to the first research question, a new model was developed to capture the 

local RoCs from homogeneous technologies in the past. This enables each SOA 

technology not only to characterize the corresponding segments but also to represent the 

unique progress patterns. The resulting segmented rate of change extensions to TFDEA is 

an objective data-driven process. 

 

Table 25 Answer to research question 1 

Research 

Question 

#1 

 How do we capture the local rate of change from past technologies? 

Answer 

to 

Research 

Question 

#1 

 

The efficiency changes of past products with respect to corresponding 

segments are aggregated by taking the weighted average using the 

reference information. Each local RoC therefore represents a growth 

potential of adjacent frontier facets based on the technological 

advancement observed from related past products. 

 

5.3.2 IDENTIFICATION OF INDIVIDUALIZED RATE OF CHANGE 

As an answer to the second research question, a new model was developed to identify 

the appropriate progress potential, i.e., individualized RoC, for each forecasting target. 

Similar to the process of calculating local RoCs from surpassed technologies in the past, 

individualized RoCs can be obtained from SOA technologies that present similar 

operating practices. Seven rolling-origin hold-out sample tests have shown that this 

approach improves the overall forecasting results in comparison to the original TFDEA 

model.  
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Table 26 Answer to research question 2 

Research 

Question 

#2 

 
How do we determine the individualized rate of change for future 

technologies? 

Answer 

to 

Research 

Question 

#2 

 

Reference information of each forecasting target is used to combine 

relevant local RoC(s) to identify an individualized RoC under which 

each forecasting target is expected to arrive. 

 

5.3.3 A FINITE FORECAST FOR AN INFEASIBLE TARGET 

As an answer to the third research question, a new model was developed to make a 

finite forecast for formerly infeasible targets. Specifically, this model identifies bi-

directional distances, i.e., extremity and standard radial distance, for infeasible targets, 

and therefore TFDEA computes both input-oriented and output-oriented RoCs and 

applies them to estimate the arrival of target technologies. By virtue of the adopted 

alternate super-efficiency measure, this approach yields the forecast results identical to 

those from the original TFDEA model when the target is feasible. Consequently, a new 

model can be fully integrated as an extension of the TFDEA model.  

 

Table 27 Answer to research question 3 

Research 

Question 

#3 

 How do we deal with infeasible targets? 

Answer 

to 

Research 

Question 

#3 

 

Bi-directional L1 distances are obtained and time spans for each 

distance are estimated using corresponding RoCs, i.e., current 

orientation RoC for standard radial distance and the opposite orientation 

RoC for extremity (if any), from both orientations. 
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5.4 LIMITATIONS 

This study adopts an engineering design perspective that a product is a complex 

assembly of interacting components. Consequently, the term “segment” is being used to 

indicate a set of engineering designs having a similar mix of product attributes. Note that 

the academic community in marketing uses this term with a broader implication of shared 

needs and value propositions determined by a meaningful number of customers. In this 

study, the identified targets and competitors are derived purely based on technical 

specifications. This attribute-based approach can be limited in its ability to represent the 

overall appeal of products especially those for which other holistic product features that 

are not reflected in technical specifications such as aesthetics are important.   

In a similar vein, the DEA measurement is based on the relative performance of the 

products, and therefore the state-of-the-art products may be the most advanced ones but 

may not be the most successful ones in the market. This indicates that the resulting rate of 

change is more likely to be reflected by the technological progress than market desires. 

In addition, the estimation of release date from the proposed model doesn’t take into 

account externalities such as strategic postponement, financial conditions, market 

acceptance levels, self-imposed delay due to the product portfolio management, etc. 

Therefore, the resulting release date should be understood as a baseline for implementing 

the tactical launch decision with respect to product attributes concerned rather than the 

bottom line of decision. This also suggests that the estimated release date may have to be 

further adjusted if the industrial market is less sensitive to the technological superiority 

than to market strategies. 
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5.5 FUTURE WORK DIRECTIONS 

This section suggests future work directions including methodological extensions of 

proposed model as well as its applications to the managerial decision makings. 

 

5.5.1 INNOVATIVENESS MEASURE 

One might make use of a presented risk analysis approach to develop a measure of 

innovativeness. When there is a need to quantify the innovativeness of products 

independent from market factors, this method can suggest how much a certain product 

has contributed to accelerating the rate of performance improvement or has moved up the 

product release compared to the expected arrival. Alternate approaches could also 

investigate the possible modifications in product designs to reduce the risk, thereby 

meeting the release date determined. 

 

5.5.2 ALTERNATE EFFICIENCY MEASURES 

A DEA measure is by definition an equiproportional ratio of how the DMU being 

assessed can either reduce its inputs or augment its outputs to reach its virtual target. This 

radial efficiency score may not account for all sources of inefficiency by having input 

and/or output slacks that are not reflected in the collective proportion. Further, the 

traditional DEA model is labeled as “radial” since it gives preemptive priority either to 

conservation of the input or to expansion of the output, depending on model orientation. 

This implies that the radial approach may not capture the technological advancement 

within structural characteristics or functional improvements, while the technology 

systems’ objective might often be the desire to change the mix of them. This suggests the 
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non-radial and/or non-oriented distance measures for estimating the frontier with 

consideration of the furthest target, closest target, restricted targets, scale-efficient target, 

or target located in a predefined direction that could set more realistic targets whereby 

diverse patterns of technological advancement can be explored. 

 

Table 28 Alternate non-radial efficiency measures 

Oriented measure Non-oriented measure 

 Russell measure 

 Geometric distance function model (GDF) 

 Hyperbolic model 

 Additive model 

 Range-adjusted model (RAM) 

 Slack-based model (SBM) 

 Proportional slack-based model (P-SBM) 

 Directional model 

 

 

5.5.3 WEIGHT RESTRICTIONS 

Another future research topic might consider exploring the product segmentation by 

imposing weight restrictions on the model. The current model doesn’t require an 

axiomatic weighting scheme on any attributes being considered. This might cause an 

overestimation of products having an extreme feature in certain attribute(s). To avoid this, 

one can establish the boundary of weights attached to certain attributes whereby 

significant value propositions of both extant and potential market segments can be 

reflected into the analysis. This includes determining how much certain attributes should 

be valued than others as well as how much maximum (or minimum) weight can be 

assigned to certain attributes. 
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5.5.4 TIME VARYING RATE OF CHANGE 

Another direction of future work could also investigate the varying RoCs over time. 

The local RoCs can provide information about the number of distinct segments within 

which differing rates of technological advancement have been captured. One can examine 

this information in conjunction with maturity curves so that market dynamics among 

identified segments can be studied. 

 

5.5.5 DIRECTION OF TECHNOLOGICAL PROGRESS 

Comparative results between the input-oriented model and the output-oriented model 

could provide insights regarding whether the direction of innovation has been switched. 

As previously discussed, an infeasible target in the input (output)-oriented model may 

occur when the output (input) levels of the target technology are unprecedented in the 

past. Hence, one might derive an indication of technological progress from an 

increasing/decreasing number of infeasible targets over time. In a similar manner, the 

magnitude of extremity may contain relevant information about the potential paths of 

technological progress. 

 

5.5.6 STOCHASTIC FRONTIER 

Lastly, incorporating stochastic variation into the model must be a matter for 

speculation. DEA is by definition a deterministic model which renders the presented 

method confined to capturing the rate of performance improvement from the evolution of 

the SOA frontier. This might provide an aggressive estimation unless the best performing 

products on the market are sought. Hence, stochastic measurements would be able to 
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complement this aspect such that the rate of performance improvement can be obtained 

from diverse levels of products, thereby yielding the risk distribution for each design 

concept instead of a point estimation. 
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Appendix. Model Building Guidelines 

 

Step 1: Selection of the input(s) and the output(s) 

The classification of product features into suitable input(s) and output(s) is difficult, 

but it is of vital significance. Theoretically, the inputs should capture all resources that 

significantly affect the outputs. The outputs should reflect all relevant outcomes on which 

one wishes to assess the technologies. A common pitfall of treating undesirable outputs 

as inputs should be avoided, and in such a case it is advised to construct the model with 

weak disposability. Moreover, any environmental factors that directly affect the 

transformation of inputs into outputs should also be reflected in the model either by 

including nondiscretionary factors or by normalizing the inputs and/or the outputs. 

 

Step 2: Selection of the orientation 

The orientation selection is purely based upon which direction one wishes to 

measure the technological progress. For example, the input-oriented model captures the 

technological progress in a way that it demonstrates how many input reductions have 

been made while attaining the same levels of outputs, whereas the output-oriented model 

captures the technological progress in a way that it demonstrates how many output 

augmentations have been achieved while maintaining the same levels of inputs. Note that 

non-oriented models could also be implemented by specifying the desired direction of the 

measurement. Thus, the analyst needs to articulate the purpose of the analysis, whether 

input reduction, output expansion or both. 
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Step 3: Selection of the returns to scale (RTS) 

The returns to scale assumptions determine the shape of the frontier by constructing 

the linear segments based on observed technologies. The simplest form is the constant 

returns to scale (CRS) assuming the ratio of output(s) to input(s) is not affected by scale 

size. Therefore, the CRS would be appropriate should the virtual technologies scaled up 

(or down) from the observed technologies be feasible. The increasing RTS (IRS or NDRS) 

assumes that it is possible to introduce virtual technologies scaled up but not down from 

the observed technologies. In contrast, decreasing RTS (DRS or NIRS) introduces virtual 

technologies scaled down from the observed technologies only. In a situation where 

virtual technologies generated as a mix of (or scaled from) observed technologies are less 

convincing as benchmarks than actually observed technologies, free disposal hull (FDH) 

would be suitable to construct the nonconvex set.  

 

Step 4: Selection of the frontier year (T) 

The frontier year determines the time in which the rate of change is obtained. This 

may be the most recent time in the dataset when the predictive analysis can benefit from 

updating the rate of change by up-to-date data or a certain point in time such as a 

forecasting origin where the time series hold-out sampling begins. In the latter case, the 

rule of thumb often recommends picking the forecasting origin in such a way that the 

training period can account for at least two-thirds of the dataset. 
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Step 5: Selection of the frontier type and second goal 

The current model has two options for the frontier type: static and dynamic. The 

static frontier fixes the time of the current frontier as a predefined frontier year. That is, 

the model treats all the technologies on the current frontier as being concurrent in the 

frontier year. In contrast, the dynamic frontier allows having varying points of time on 

the current frontier whereby each forecasting target would have a different starting point 

of forecast. Therefore, the practical decision factor may be influenced by whether the past 

technologies still located on the current frontier should be regarded as current 

technologies (in terms of frontier year). This choice necessarily affects the calculation of 

the rate of change as well as the arrival of the forecasting target since it determines 

elapsed time of technological progress.  

When the dynamic frontier is selected, a secondary objective function should also be 

specified to choose the individual target year (i.e., effective date) from multiple optima. 

In particular, the maximization option will choose the benchmark technology presenting 

in the farthest time horizon by identifying the maximum sum of effective dates, whereas 

the minimization option will choose the benchmark technology presenting in the closest 

time horizon by identifying the minimum sum of effective dates. As a result, the 

maximization (minimization) option tends to compute the rate of change more 

conservatively (aggressively) but makes more aggressive (conservative) forecasts than 

the minimization (maximization) option. Note that depending on the application area, 

slack maximization may be preferred to prevent weakly efficient (non-pareto) 

technologies from setting the effective date. 
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