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Abstract

The concept of derivations on I' —rings, prime T —rings and semi-prime T —rings is being studied here.
A generalization to these concepts was also introduced, the conditions that makes these rings commutative
were also studied. Finally, the T™M left R. modules were introduced as well as the concept of derivations on

left T™ modules.
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Introduction

An extensive generalized concept of classical ring is the notion of a gamma ring. As an emerging
field of research, the research work of classical ring theory opposed to the gamma ring theory has been
drawn interest of many algebraists and prominent mathematicians over the world to determine many basic
properties of gamma ring and to enrich the world of algebra. The different researchers on this field have
been doing significant contributions to this field. In recent years, a large number of researchers are engaged
in increasing the efficiency of the results of gamma ring theory over the world.

The concept of a T"—ring was introduced by Nobusawa [15] as a generalization of ring in 1964.
Barnes [4] slightly weakened the conditions in the definition of I"—ring in the sense of Nobusawa. After the
study of I'—rings by Nobusawa [15] and Barnes [4] many researchers have done a lot of work and have
obtained some generalizations of the corresponding results in ring theory ( see [5],[10],[13],[22] and

references therein ). They obtain large number of important basic properties of I"—rings in various ways and
determined some more remarkable results of I"—rings. We start with the following necessary definitions.

In this thesis M denotes a I"—ring in the sense of Barnes [4].

This thesis consists of five chapters: in chapter one we have reviewed some known definitions, some
necessary lemmas and theorems which will be used in the next chapters, some basic definitions are
presented which can be found in the indicated reference, we start our study with definition of a I"—ring,
several examples on I"—rings, definition of subring and definition of center of I"—ring. In section two we
give some results on ideal of I"—ring. In section three we give the definition of prime ideal and prime I"—
rings, some theorems and some lemmas about prime I'—rings. In section four we give the definition of
semi-prime ideal and semi-prime I"—rings, some theorems and some lemmas about semi-prime I"—rings.
In section five we introduce and study the notion of modules over a fixed I'"—ring.

Chapter two consists of three sections: in section one we define a derivation on a I"—ring, Jordan
derivation on a I"—ring, generalized derivation on I"—ring, Jordan generalized derivation on a I"—ring and
some theorems and results on Jordan generalized left derivations in T"—rings. In section two we define a
I" — semi-derivation, generalized inner derivation, I"—homomorphism and projective product of T"—rings,
some theorems and results on T"—derivations in the projective product of T"—rings. In section three we
define reverse derivation on I" —ring, generalized reverse derivation on I"—ring, Jordan generalized reverse
derivation on I"—ring and Jordan generalized triple reverse derivation on I"—ring, several examples and
theorems on Jordan generalized reverse derivations on I"—rings.

Chapter three consists of three sections: in section one we prove that a prime I'—ring M is
commutative if f is a generalized derivation on M with an associated non-zero derivation D on M such
that f is centralizing and commuting on a left ideal J of M. In section two we define a permuting tri-
additive and the trace of a permuting tri-additive mapping, some theorems and results on permuting tri-
derivation in prime I'—rings. In section three we introduce the concept of triple higher derivation on a
prime I'—ring Mand prove that every Jordan triple higher derivation on a prime I'—ring M of
characteristic different from two is a triple higher derivation on M and finally, it is shown that every Jordan
triple higher derivation is a higher derivation on M.



Chapter four consists of four sections: in section one, the purpose of this section is to notions of
generalized | —derivation and generalized reverse | —derivation on I"—rings and to prove some remarkable
results involving these mapping. In section two we presents the definition of orthogonal reverse derivations;
some characterizations of semi-prime I"—rings are obtained by using of orthogonal reverse derivations. We
also investigate conditions for two reverse derivations to be orthogonal. In section three we extend the
existing notions of derivations and generalized derivations in semi-prime I"—ring. In section four we study
and investigate some results concerning a permuting tri-derivation D on non-commutative 3-torsion free
semi-prime I'—rings M. Some characterizations of semi-prime I'—rings are obtained by means of
permuting tri-derivations.

Chapter five consists of two sections: in section one we present and study the concepts of a left
I'M —module, left derivation of a left M —module. In section two we will define generalized left
derivation and generalized Jordan left derivation.



Chapter One

Preliminaries

In this chapter we present some definitions and theorems on I'—rings, ideal of I"—rings, prime
ideal, prime I"—rings, semi-prime ideal, semi-prime I"—rings and gamma modules which will be needed in
the next chapters.

1.1 r-Ring

The concept of a I'—ring (was first introduced by Nobusawa [15]) as a generalization of rings.
Barnes [4] weakend slightly the conditions in the definition of I"—ring in the sense of Nobusawa. Barnes

obtain large number of important basic properties of I"—rings in various ways and determined some more
remarkable results of T"—rings. We start with the following necessary definitions.

Definition 1.1.1: [4] Let M and I" be additive abelian groups. If there exists a mapping (x,a,y) — Xay
of MxI'xM — M, satisfying the following conditions:

Q) Xay € M;
(i)  (x+y)az=xaz+yaz,x(a+p)z=xaz+Xxpz; Xa(y+1)=xay+xaz
(i)  (xay)Bz=xa(ypz) forall x,y,zeMand a, BT,

then M is called a T" —ring.

Every ring M is a I'—ring with M =TI". However a I"—ring need not be a ring and many notions on the
ring theory are generalized to the T"—ring. i.e. gamma rings are more general than rings.

Examples 1.1.2:

1. Let R be an integral domain with the identity element 1. Take M =M, (R) and
nl
= {[ 0 j:n IS an integer} . Then M isa I"—ring. If we assume that N = {(a,a) ‘ae R} cM,

then it is easy to verify that N isalsoa I"—ring(in fact, N is a subring of M).
2. (Matrix Gamma Ring): Let M be a I'—ring. We denote the set of mxn matrices with entries from

M and the set of nxm matrices with entries from T by M and I, , respectively, then M, . is

a I'. ,, —ring with the multiplication defined by

(%;)(e )(v5)=(c; ) where ¢; = Zplzq:xipapq Yy -

a X
I 0 m
For example, let R beanyring, andlet M=<|b y|:a, b, ¢ X, ¥,zeR ,Fz{o 0 Oj:l,meR}.
c z

Then M,, isa I', ; —ring.



Remark 1.1.4: If m=n ,then M isa I', - ring.

Definition 1.1.5: [28] An additive subgroup S ofa I'—ring M is called I"—subring of M if SIS cS.

Example 1.1.6:
ab c 0 0 «

Let R beanyring, M=<|0 0 O|:a,b,ceR;andT'=<|{0 0 O |:azeR; then M and I' are both
0 00 0 0O

abelian groups under matrix addition.

Now it is easy to show that M is a I" —ring under matrix multiplication, also we can prove that I" is
subring of M.

Definition 1.1.7: [4] A I'—ring M is said to be commutative if xay =yax forallx,yeM and aeI.

Definition 1.1.8: [27] Let M be a I"—ring. Then the set
Z(M)={xeM:xay=yaxforallyeM and o €T} is called the center of the I'—ring M .

Remark 1.1.9: If M isa I"—ring, then Z(M) isa I'—subring of M.

Definition 1.1.10: [27] Let M be a I"—ring. Then [x, y]a = Xay —YyaxX is called the commutator of X and

y with respectto «, where x,yeM and a¢ T .

The following commutator identities follow easily from the above definition

(i) [xary, z]ﬂ =[x, z]ﬁ ay+x[a, B, y+xaly, z]ﬂand
iy [x yaz]ﬁ =[x, y]ﬂ az+y[a, ], z+ya[x,z]ﬂ ,forallx,y,zeM and a, B <T.

Remarks 1.1.11:

1) Under the assumption:
(*) xayBz=xpyaz forallx,y,zeMand , BeT .
The above two identifies reduce to
[xary, z]ﬂ =[x, z]ﬂ ay+xaly, z]ﬂ and [x, yaz]ﬂ =[x, y]ﬂ az+ya[x, z]/j ,

which we shall use extensively.

2) M is called a I"—ring with unit, if there exist element 1e M and «, I’ such that for any
yeM, loy=y=yal.
3) If A and B are subsets of the I'—ring M and AcTI', we denote by AAB the subset of M

consisting of all finite sums of the form > a,b, where (a,7.b )€ AxAxB .

i=1



For singleton subsets we abbreviate this notation, for example {a} AB =aAB.

1.2 Ideal of r-Ring
In this section, we introduce the notions of ideals and nilpotent T"—rings.

Definition 1.2.1: [22] Let M bea I'—ring. A subring | of M is an additive subgroup which is also a I"—
ring. An additive subgroup | of M is called a left(right) ideal of M if MI'l c | (IFMg I), where

Ml :{xaa:XEM,aeF,ae I}. If 1 is both a left and a right ideal, then 1 is called an ideal of M, or
I'—ideal | of M.

We denote an ideal | in M byl <M. An ideal | <M is called a proper ideal, if | cM. For each subset

S of the T"'—ring M, the smallest ideal containing S is denoted by (S) and is called the ideal generated
by S.

If S isfinite, (S) is called finitely generated .

For each a of a I'—ring M the smallest left ideal containing a is called the principal left ideal
generated by a and is denoted by (a), or

<a|={ma+zn;xjaja:mez+U{O},neZ+,xj €S, a; el‘}.
=

Similarly, we define the principal right ideal generated by a, by (a)ror

|a>={ma+znlaﬂiyi tmeZ'U{0},neZ"y, €S,B er} :

The principal two-sided ideal generated by a is denoted by (a), and is defined by
p S q

(a) ={ma+2ayk zk+Za)t§ta+Zujﬂjaijj :meZ"U{0},p,5,qeZ",7,,u,,v, €S and y,,8, 4, 4, el"}
k=1 t=1 j=L

where 7" is the set of all positive integers.

Let | be anideal ofa I'—ring M. If for each a+1,b+1 in the factor group M/1,and each ¢ €T,
we define (a+1)a(b+1)=aab+1, then M/I is al'—ring which we shall call the T —residue class ring
of M with respectto | .

Example 1.2.2: Let R be a ring and (Z,+) be the group of integer numbers, we put M=M,,(R) and
['=M,,(Z),then M isa I —ring. We use the usual addition and multiplication on matrices of MxI'xM.

ab
Let | ={(0 O]:a,be R}, clearly I isaright I'—ideal of M but not a left I"—ideal of M .

5



Definition 1.2.3: [25] Let M be a I"—ring. An element x of M is called nilpotent if for some y €T, there
exists a positive integer n=n(y) such that (xy)" x=(Xyxy...yxy)x=0.

n—times
Definition 1.2.4: [25] An ideal A of a TI'—-ring M is called nilpotent if 3IneZ” st
(AT)" A=(ATAT...TAI)A=0.

n—times

Theorem 1.2.5: [26] Let M be a I'—ring and let N; and N, be two nilpotent left (right) ideals. Then
N, + N, is a nilpotent left (right) ideal.

Proof: Let M be a I'—ring. Let N, and N, be two nilpotent left ideals of M. Then there exist two least
positive integers g and n such that

(NL)'N, =(NINT..TN,L)N, =0

g-times

and

(N,I)" N, =(N,I'N,I"...T'N,I')N, =0

n-times

g+n+1 (

Then N;+N, is also a left ideal of M. Every element of {(N1 + NZ)F} N, +N,) is a sum of products

XY Xy¥ v oee-¥Xqgni2 N Which either at least (s+1)factors belong to N, or (r+1) factors belong to N,. In
the former case, the above product may be written as
()(17/X2)/. e )]/(Xi1+1yxil+27' ~TX )7(Xi2+17xi2+z7- VX, )7’--~7(Xi5+17xi5+27- VX, )7/ ...,Where

X%, .- % €N, and s+1>n+1. Each group in parenthesis belongs to N, , since N, is a left ideal of M.

However, the product of any s+1 elements of N, is 0 and so the above product is 0. A similar argument

holds when at least (r+1) factors belongto N, .

Thus [N+ N)TE™ (N + N, ) = {(N + N, )TN, + N, )T D (N, + N, )TH(N, + N, ) = OHence

(s+n+1)—times

(N, +N,) is nilpotent. Thus the theorem is proved. o

Corollary 1.2.6: Let M be a T'—ring and let N;,N,,...,N be nilpotent left (right) ideals in M. Then
DN, isanilpotent left (right) ideal in M .

Theorem 1.2.7 : [26] Let A be a nilpotent left (right) ideal in a I'—ring M. Then AI'M (MFA) is a
nilpotent ideal inM .



Proof: Since A is a left ideal, so is ACM, and since M is a right ideal then so is AT'M.

ideal in M. If (AT')" A=0, then{(ATM)T'}" (ATM)

= (AM)T(ATM)T .. T (ATM)T (ATM)

_AF[MFA (MFA)F .T(MIA)T [M

(
AT {(MTA)T)"™ (MTA)TM
AT {(AD)}" ATM
=(Ar)” Ar'M
=0rM
=0

Hence AI'M is nilpotent . ©
1.3 Prime Ideal And Prime I'-Ring
In this section we present some definitions and theorems on prime ideal and prime

" —rings.

Thus AI'M is an

Definition 1.3.1: [27] Anideal P of a I'—ring M is said to be prime if for any ideals A and B of M,

AI'Bc P implies AcP or BcP.

Definition 1.3.2: [14] A I'—ring M is said to be prime if the zero ideal is prime .
Theorem 1.3.3: [14] If M is a I" —ring, the following conditions are equivalent:

(i) M isaprime I'—ring.
(i) if abeMandaIMI'b={0}, thena=0orb=0.

(iiiy  if (a) and (b) are principal ideals in M such that (a)I"(b)={0}then a=0orb=0.
(iv) If A and B are right ideals in M such that AI'B = {0}, then A={0} or B={0}.
(v) If A and B are leftideals in M such that ATB ={0}, then A={0} or B={0}.

Proof: (i)— (ii)

Assume that a,b are non-zero elements in M therefore the ideals generated by a and b are non-

zero ideals, thus (a)I'(b) = {0}. But alMI'b = (a)IMI'(b) = (a)I'(b) = {0}.
Therefore, alMI'b = {0}, but alMI'b={0},Va,be M. >« .

Thus, either a=0orb=0.



(i) — (iii)

Since (a)I'(b)={0}. But alrMI'b = (a)’MI'(b) = (a)I'(b) = {0}.

Then al'MI'b={0},va,beM. by (ii) either a=0 or b=0.

(iii) = (iv)

Let ac A and beB then al'bc AIB={0}. Therefore al'’b={0}. Now, since A is right ideal, then

AIMI'B c AlB={0}, then alMI'b={0},va,beM. Now we claim that (a)I'(b)={0}. Assume not
(a)T'(b) = {0}. But aI'b = (a)I'(b) = {0} .

Therefore al'b {0}, contradiction
With (i). Then (a)T'(b) = {0} and by assumption (iii) either a=0, A={0}
or b=0,B={0}.

(iv)— (v)

Let acA, beB and aI'b={0}. Suppose that (a)I'(b)={0}. If not, then (a)I'(b)={0}, but
al'b = (a)I'(b) = {0}, we get al'b= {0}, which contradiction with (i), but (a), (b) are right ideal, then by
(iv), we get either (b) ={0} =b=0,B ={0} or (a)={0} =>a=0,A={0}.

(v)— (i)
We want prove that {0} is prime ideal.

Let A and B be ideals in M with ATB={0}, but A and B are left ideal, then by (v) either A={0} or
B:{O}. o

We say that an element a in a '—ring M centralizes a non-zero right(left) ideal I of M if
[a,x]a eZ(M) xel,Vael.

Lemma 1.3.4: [18] Let M be a prime I" —ring and suppose that aM centralizes a non-zero right ideal of
M.Then aeZ(M) .

Proof: Suppose that a centralizes a non-zero right ideal A of M. If xeM,r e A, then raxe A for every

ael’, hence aa(rpx)=rpxaa, for a,pecl. But aar=roa, for ael’, we thus get that

ra(afx—xpa)=0 which is to say that ra[a,x]ﬂ =0,forall xeM and o, B€eT.

Since M is prime and A0, we conclude that [a, x]ﬁ =0 forall xeM,Berl, hence acZ(M). o

8



Lemma 1.3.5: [18] Let M be any I'—ring satisfying the condition aabgc=apgbac for all
a,b,ceM and a,B I, and let ueM. Then the set V :{aeM:aa[u,x]ﬂ =0, forall xeM and a,ﬂer}

is an ideal of M .

Proof: It is clear that V is a left ideal of M. Now, we show that V also is a right ideal. Let aeV and
x, reM. For all a,p,5el’, we have aa|upB(réx)—(rox)Bu]=0. The Jacobi identity for the

commutators gives, aa[uBréx—réxpu]=(upBr—rpu)sx+rp(usx—xsu), then using the condition, we
get

0=aa[up(rox)—(rox) pu|=aalu,r], Bx+aarplu,x|,
Thatis, aarf[u,x], =0, forany «, 3,5 eT". Hence aar €V and V is a right ideal of M. o

Definition 1.36: [28] Let M be a I'-ring and | be a subset of M. The subset
Ann, (I)={aeM:al'l =0} of M is called a left annihilator of I . A right annihilator Ann, (1) is defined
similarly. If 1 is a non-zero ideal of M then Ann, (1) = Ann, (1) and we denote it by Ann(1).

Lemma 1.3.7: Let M beaprime I'—ring satisfying the condition aabfBc =apbac forall a,b,ceM and
a, BT, and suppose that 0= U eM satisfies aa[u,x]ﬁ =0, forallxeM and @, BT, Then ueZ(M) .

Proof: By Lemma 1.3.5,

V:{aeM:aa[u,x]ﬂ:O, for all xeM and a,,BeF} is an ideal of M. Since, M is prime and

uax—xau € AnnV we have uax—xau =0, forall xeM,ael", hence ueZ(M). o

Note: Let G be an additive group. We shall denote by G, the additive group of all mxn matrices over the
group G. For 1<i<m, 1<j<n, and aeG, let aE; denote the matrix having a at the ithrow and jth

column, and 0 elsewhere.

Theorem 1.3.8: [14] If M is a I'—ring, the matrix ring M, isaprime I', —ringifandonly if M isa

n

prime I" —ring.

is not prime. If M is not prime, there exist non-zero

n

elements a and b of M such that alMI'b =0. Then, we have, for example, aE I’ M I'  bE =0 with

Proof: Let us prove that if M is not prime, then M

aE,, and bE,, non-zero elements of M,, . Hence, M, , is not prime. Conversely, suppose that M, , is not

prime, and hence that there exist non-zero matrices > a,E and > bE;, such that
ij i

(Z a,E; jl‘n’mMm,nFnym (Zb”. E; j =0. Let p,grands be fixed positive integers such that
i,] 1]
a,, #0and b, = 0. As a special case of the preceding equation, we find that for each xe M, each y, nel,

9



(;aﬁ E; j(7Eqp )(XE,, )(nE,, )[ZJ b, E; J =Y a,yxib,E, =0.

In particular, the (p,s) element must be zero, that is, a,,yxnb, =0.

Since this is true for every xeM and every y,neI", we have a,'MI'b =0, and M is not prime.

This completes the proof. o

Definition 1.3.9: [14] (I'—homomorphism). Let M; be a I';—ring for i=1, 2,an ordered pair(¢p,¢) of

mappings is called a homomorphism of M, onto M, if it satisfies the following properties :

1. ¢ isagroup homomorphism from M, onto M, .

2. ¢ isagroup isomorphism from I'; onto T, .

3. Forevery x,yeM,, yel, ¢(ny)=(p(x)¢(y)<o(y)-
Remarks 1.3.10: [14]

1. The kernel of the homomorphism (g, 4) is defined to be K ={xeM:¢p(x)=0}.

2. ltiseasy to show that K isan ideal of M.
3. If ¢ is a group isomorphism, that is, if K =0, then (¢,¢) is called an isomorphism from the I, -

ring M, onto the I', —ring M, .
4. In the special case where T, =", =", a I'—homomorphism from M, to M, is a map
@ from M, to M, such that ¢(x+Yy)=g¢(x)+¢(y) and
o(xry)=0(x)yp(y) forall x,yeM, and all y eT", where the second map ¢ is taken to be the
identity.

Example 1.3.11: Let ¢ be a homomorphism from a ring R into itself . Let M=MM(R) and
F:{[rgj:m IS an integer number}. Then M is I"—ring, where we use usual addition and multiplication
on matrices of MxI'xM. Let ¢: M — M be the additive map defined by

#((a,b))=(¢(a),¢(b)), forall (a,b)eM, then ¢ is a I'—homomorphism on the I"—ring M .

Example 1.3.12:[14] Let M be a I'—ring, and | be an ideal in M. Then the ordered pair (¥,i)of
mappings, where W:M — M/ defined by ¥ (x)=x+1 forall xeM , and i is the identity mapping of T,

is a I'—homomorphism called the natural homomorphism from M onto M/1 .

Theorem 1.3.13: If (¢,4) is a homomorphism from a I', —ring M, onto a I',—ring M, with kernel K,
then M, /K and M, are isomorphic.

10



Proof: Define an ordered pair ( f,#) where f:M,/K—>M, , by f(x+K)=¢(x) forall xeM,. Then f
is will defined and,

(1) f is group homomorphism, since
f((x+K)+(y+K))=f(x+y+K)=p(x+y)=0(x)+o(y)=f (x+K)+ f (y+K).

(2) f isonto since if we pick zeM, then as ¢ is onto, there exists X € M,, such that go(x) = Z then there

exists X+ K eM,/Ksuchthat f(x+K)=¢(x)=z .

(3) f is one-one since for x+K e Ker(f)wherexeM, then 0= f (x+K)=g(x), thenx e Ker(¢) =K,

i.e. X+K=K,thus f isone-one.
@) F((x+K)y(y+K))= T (xry+K)=o(xry)=0(x)o(r)e(y)
= f(x+K)o(y) f(y+K). o

Lemma 1.3.14:[14] Let (i) be a homomorphism of a T —ring M onto a I'—ring N, with kernel K.
Then each of the following is true:

(1) If 1 isanideal (right ideal) inM , then IV is an ideal (right ideal) in N .

(2) If J is an ideal (right ideal) in N, then JW¥™ is an ideal (right ideal) in M which contains
K.

(3) If 1 is an ideal (right ideal) in M which contains K, then 1 =(1'¥)¥™.
(4) The mapping | — I'Y defines a one-one mapping of the set of ideals (right ideals) in M
which contains K onto the set of all ideals (right ideals) in N .

Theorem 1.3.15:[14] If P is an ideal in the I'—ring M, then the I"—residue class ring M/P is a prime
I'—ring if and only if P isa prime ideal in M.

Proof: Let M/P be prime and A, B be ideals of M such that ATB< P. Let (p,i) be the natural
homomorphism from M onto M/P. Then by Lemma 1.3.14 , A¥ and BY are ideals of M/P such that
AYTBY = {0} . Since M/P is prime, it follows that A¥ ={0}or B¥ ={0}, that is Ac P or B P. Thus

P isaprimeideal in M.

Conversely, let P be a prime ideal in M. Lemma 1.3.14 shows that each ideal in M/P is of the
form A/P, where A is an ideal in M which contains P . Thus we may assume that A/P, B/P to be

ideals of M/P such that (A/P)I'(B/P)={0}, which implies ALB < P. Then by the primeness of P we
have AcP or BcP.Hence A=P or B=P and so A/P={0} or B/P={0}. This completes the proof.

O
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Lemma 1.3.16: If | isanideal inthe I'—ring M, then the matrix "  —ring (M/I )mn is isomorphic to the
Lo.—ring M, /1.

Proof: Let ¢ be a mapping of the T, —ring (M/I )m‘nto the T', , —ring M, /1, such that
(xij +|)(0:(Xij)+ ... Clearly, ¢ is a group isomorphism from (M/I)m’n onto M, /1. .Leti bean

identity mapping from I' | onto I', . By the definition of multiplication of the I"—residue class ring, we

have that

(%5 +1)(7) (v 1) Jo=(2 + 1), where (z,)=(x,) (7 ) (%)
= (%) (73 ) (¥ ) + T
=[(Xij)+ 'm,nJ(%J)[(yu)Jr Im,n]

=(x +1)e(7)i(v +1)e.
This shows that (g, i) is an isomorphism of (M/1) onto M, /I, .. O

Definition 1.3.17: A T'—ring M s said to be right(left) strongly prime if for each 0a M, there exist
finite subsets Fand H of M and I respectively such that for any b eM,aa f gb=0(ba f fa=0) for all

a,feH,f eF implies b=0.
A T'—ring M is said to be strongly prime if it is both left and right strongly prime .

Example 1.3.18: Let M=M,,(Z), T =M,,(7Z) and (a,b)=0eM .

Choose c,d,e,f,gand leZ such that ac#-bd and eg=-fl. Consider F:{(e,f)} and

{50

Then it can be easily checked that M is right and left strongly prime I"—ring .

Therefore M is a strongly prime I" —ring .
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1.4 Semi-Prime Ideal And Semi-Prime - Ring

In this section we present some notions and known results which will be used in the

sequel.

Definition 1.4.1: [27] A T'—ring M is said to be 2-torsion free if 2x=0 implies x=0 for all xeM. A
I"'—ring M is n-torsion free, where n is a positive integer, if nx=0=x=0,VxeM.

Definition 1.4.2: [27] An ideal | of a I'—ring M is said to be semi-prime if for any ideal A of M,
ATrAc | implies Ac| .

Definition 1.4.2: [27] A T'—ring M is said to be semi-prime if alMI'a={0}, aeM implies a=0.

Lemma 14.3: [11] Suppose M is a  semi-prime I'-ring such  that
xayBz=xpyaz, forallx,y,zeM, and «, B I". And suppose that the relation aaxpgb-+baxAc =0 holds
forall xeM, some a,b,ceM and «,<I". Then (a+c)axﬂb=0 is satisfied forall xeM and «, B el .

Proof : Putting x = xgbay in the relation aaxfb+baxpc=0 (1.4.2)
We have aaxpfbaypb+baxpbaypc=0 (1.4.2)
On the other hand, a right multiplication by ayb of (1.4.1) gives
aaxBoay b +baxpeayBb=0 (14.3)
Subtraction (1.4.3) from (1.4.2), we have
baxB(baypc—caypb)=0 (14.4)
Putting x = yScax in (1.4.4)gives
bary fecaxp(baypc—caypb)=0 (14.5)
Left multiplication by cayp of (1.4.4) gives
caypbaxp(baypc—caypb)=0 (1.4.6)

Subtracting (1.4.6) from(1.4.5), we obtain(baysc—caypb)axp(baypc—caypb)=0, which
gives

baypc=caypb,yeMand o, Bl (14.7) Therefore,
bax e can be replaced by caxpb in(1.4.1), which gives acxfb+caxpb=0

i.e. (a+c)axpb=0. Hence, the proof is complete. o
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The following lemmas will be used in proving theorem 4.3.5.

Lemma 1.4.4: [7] Let M be a 2-torsion free semi-prime I" —ring. If xax=0 forall xeM and « T, then
Xxel (M)

Proof : We have Xxax=0 forall xeM and a <I". Replacing x by x+V, we get xay+ yax=0 for all
X, YEM, ael.

Right-multiplying by gx we obtain xaypx=0 forallx,yeM,«, I . Replacing y by yyz and
right-multiplying by ay we get xayyzpBxay=0 for allx,y,zeM,a, B,y €T". Since M is a semi-prime
I"'—ring, we obtain xay=0 for allx,yeM,ael'". By the same method, we get yax=0 for all

X,y eM,a T, subtracting we obtain [x,y] =0, for allx, yeM, ael". Then xeZ(M) for all xeM

and ael’. O

Lemma 1.4.5: [6] Let M be a 2-torsion free semi-prime I'—ring. If abeM such that
al'mI’b+bI'ma=0 forall meM, then al'mI’b =bI'ml'a=0.

Proof : Let m and m' be two arbitrary elements of M. Then by usingal'mI'b=—bI'ml"a, we obtain
(armI’b)I'm'T(almlb)=—bIl"(mIal'm’)Falmlb

=al’(mrar'm’)TbI'mI’b
=—(armrb)mT (armr’b).
Therefore, we get 2((aFmFb)Fm’F(aFmFb)) =0.

Since M is a 2-torsion free semi-prime I"—ring, then al'mI’b=0forall meM. o

Lemma 1.4.6: [29] Let M be a semi-prime I"—ring and | a non-zero ideal of M. Then Ann,I = Ann I .

Proof : Ann, 1 ={aeM:IT'a=0}is a right ideal of M, that is, (Ann 1)IM < Ann.1 . Similarly for Ann!
we can write MI"(Ann,1) = Ann,1 . Since M is a semi-prime T"—ring, (Ann, )Tl ={0}, so Ann,| < Ann|l
. In the same manner IT'(Ann1)TIT(Ann1)={0} give usthat IT'(Ann1)={0} as M is a semi-prime I —

ring. Thatis, Annl < Ann,l.So Annl =Ann, I . o
Lemma 1.4.7: [29] Let M be a semi-prime I"—ring and | a non-zero ideal of M. Then

Q) Annl is an ideal of M.
(i) (Annl )1 ={0}.

Proof : (i) Let aeAnnl. So by Lemma 146 all=0=ITa. If abeAnnl, then
Xa(a—b):Xaa—Xab:O and (a—b)ax:aax—bax:o for all xeland ae<I’. So we have
a—beAnnl.

14



For all ae Annl, xel, meM and a,fel, (aom) Bx =aa(mpBx)=0and

xS (aam)=(xpa)am=0am=0, and so we get(Annl )T'M < Annl . Similarly we get MI'( Annl ) < Annl

(ii) Since (Annl)N1 is an ideal of Mand ((Annl)N1)T((Annl)N1)< IT(Annl)={0}, we
have ((Annl)N1)T((Annl)N1)={0} and since M is a semi-prime T"—ring we get (Annl )1 ={0}. o

Lemma 1.4.8: [29] Let M be a 2-torsion free semi-prime I"—ring, | a non-zero ideal of Mand a,beM.
Then the following are equivalent ,

Q) aaxpb=0 forall xel and a,B<T.
(i) baxpa=0 forall xel and «,BeT.
(iii)  aaxpb+baxpa=0 forall xel and o, B el.

If one of the conditions is fulfilled and Ann,1 ={0}, then acb=0=bca for all o €I", moreover if M is
aprime I'—ring then a=0 or b=0.
Proof : (i) — (ii)

Suppose that aaxpb=0 for all xel and «,BIl". Then baxBayyp’baxpa=0for all x,ye!l and
a, By, T . By writing yy'm for y, we get baxBayyy'mp’baxpa=0 where meM and y' T, hence
baxpBayyy'mp’baxBayy =0. Now since M is a semi-prime I'—ring we have baxBayy=0forall x,y el

and «,B,yel. That is baxpBae Annl. Therefore baxpae(Ann1)N1={0} by Lemma 1.4.6 and
Lemma1.4.7 .

(i))— (i) This can be done similarly .

(iii)—> (i) Suppose that aaxpb-+baxpBa=0 for all xel and «,Bel. In the above equation,
writing xpBba’'mp'aax for X, then

aa (xpba'mp'acx) b = —ba (xBba’'mpB'aax) fa

— —(ba(xpba'm) Faaxpa)
= aa (xpba'm) B’ (baxBa)
=—(aaxpb)a'mp’(aaxpb)

Then we have 2aa(xpba'mpfaax)pb=0. Since M is 2-torsion free , we get
(aaxpb)a'mp’ (aaxpb)=0 for all xel,a,p,a/,p' el and meM. Next, since M is semi-prime I'—
ring, then aaxpb =0 forall xel,a,BeT.
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If al'lTh={0}, then we also have (bI'a)I'IT'(bl'a)={0} and (aI'b)I'IT(al'b)={0}. Hence baafx=0
and acbpBx=0 forall xel,a,B eI, since Mis a semi-prime I —ring and | is a non-zero ideal of M.
This says that acb,baa e Annl. Since Ann| ={0}, we have al'b=0=bra. Finally if al'lTh={0}, then
a=0orb=0as Misaprime I'—ring.c

Theorem 1.4.9: [14] If | isanideal ina I"—ring M, all the following conditions are equivalent:

(i) | is a semi-prime ideal .
(i) If aeM suchthat alMI'ac |, then ael .

(iiiy  If (a)isaprincipal ideal in M such that (a)['(a)c |, then ael .
(iv)  IfU isarightideal in M suchthat UTU | ,thenU I .
(v) If V isaleftideal in M suchthat VIV <l ,thenV c I .

Proof : (i)—> (i)
Let aeM and (a) is a principal ideal in M, suppose that (a)['(a)z|. But

alMlac(a)lMI'(a). Now since (a) is an ideal of M, therefore by (i), we get
(a)TMI'(a)c(a)I'(a) & I, then (a)IMI'(a) & I, contradiction.

Thus (a)T'(a)c |, but | isasemi-prime ideal. Therefore (a)e | andael.
(i) — (iii)
Since (a) is a principle ideal in M such that (a)['(a)cl. Therefore
alMI'ac(a)I'MI'(a)c(a)I'(a)c | . Thus, alMI'ac |, then by (i) we get, ael.
(iii)— (iv)
Let acU andagl. Now let (a) be a principal ideal generated by a, then (a)I'(a) I. If

(a)T(a)cl, then we get ael—>« . Therefore alac(a)l(a)z |, then alagzl. But
allacUT'U c|.Wehave al'ac | —>«. Therefore ael.

(iv)—= (v)
If aeV, then al'acV . Therefore (a) is a principal ideal in M generated by a. Suppose that

(a)T'(a) z |, then al'a z | <. So (a)['(a)c |, but (a) is a right ideal, then by assumption of (iv) we

have, ael.

V)= (1)

Let A be anideal ofa I'—ring M such that ACAc | . Since A is a left ideal, then by (v), we have
Ac | thus | issemi-prime ideal. O
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Theorem 1.4.10: [25] Anideal Q ina I'—ring M is a semi-prime ideal in M if and only if M/Q contains
no non-zero nilpotent ideals.

Proof : Let f be the natural T"—homomorphism of M onto M/Q, with kernel Q. Suppose Q is a semi-
prime ideal in M and U is a nilpotent ideal in M/Q, say (UI')"'U =0.

n

Then f‘l((UF)”U):Q and it follows that (f *(U)T) f*(U)< f‘l((UF)nU):Q and hence U ={0} .

Conversely, suppose that M/Q contains no non-zero nilpotent ideals and that Ais an ideal in M
such that ATAcQ . Then f(A)If (A)=f(ATA)=0.Hence f(A)=0and AcQ. o

Lemma 1.4.11: [7] Let M be a semi-prime I" —ring. Then M contains no non-zero nilpotent ideal.

Proof: Let | be a nilpotent ideal of M. Then (Il“)n | =0 for some positive integer n. Let us assume that
n is minimum. Now suppose that n>1. Since ITMc|l, we then have (Il“)"_l IFMF(IF)HI

c(IT)"1(1I0)" 1 =(IT)" 1 (IT)"* 1 =0. Hence by the semi-primeness of M we get (IT)" " 1=0, a
contradiction to the minimality of n. Therefore n=1. Thus IT'l1 =0.

Then ITMI'l c IT'1 =0.
Since M is semi-prime, it gives | =0. This completes the proof. o

Remark 1.4.12: The above lemma gives that every prime I' —ring has no nilpotent ideals.

Lemma 1.4.13: Let G,,...,G, be additive groups, and M a semi-prime I —ring. Suppose that the mappings
f:Gx..xG,->M and 0:Gx..xG,—>M are additive in each argument. If
f(a,...,a,)Tmrg(a,...,a,)=0"for all meM and aeG ,i=1...,n, then
f(a,....a,)I'mrg(b,....b,)=0 forall meM and a,b G, ,i=1...,n .

Proof : It suffices to prove the case n=1. The mappings are then f:G, >M and g:G, > M such that
f(a)Imrg(a)=0and f(b)I'mIg(b)=0 forall a,b G, and meM. Thus, we have

0= f(a+b)I'mIg(a+b)
=f(a)l'mrg(a)+ f (a)fmrg(b)+ f (b)I'mIg(a)+ f (a)mIg(a)
=f(a)'mrg(b)+ f (b)Imrg(a).

Let m"e M. Then by the assumption, we get
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(f(a)rmrg(b))rmT(f (a)Imrg(b))=—f (a)(mI'g(b)ImTf (b)Tm)Ig(a)=0.Hence, by the

semi-primeness of M, we have f(a)I'mI’g(b)=0. This completes the proof of the lemma. o

Definition 1.4.14: [22] A subset N of a I'—ring M s said to be an n—system if N=¢ orif aeN
implies (a)T'(a)(\N = ¢.

Lemma 1.4.15: [22] Let M be a I'—ring. Then an ideal Q in M is semi-prime if and only if Q¢ isan n—

system, where Q° is the complement of Q.

Proof : Suppose that Q is a semi-prime ideal and let a € Q®, then a¢ Q. Since Q is semi-prime, it follows
from Theorem 1.4.9 that (a)I"(a) Q.. This implies that (a)I"(a)Q = ¢, so that Q° is an n—system .

Conversely, suppose Qis an n—system and let a¢Q. We shall prove that (a)I"(a) = Q. Since
Q%is an n—system, (a)I'(a)NQ° =¢. Take ze(a)l'(a)N1Q° so that ze(a)I'(a)and zQ. Hence
(a)T'(a) Q. Thus Q is a semi-prime ideal . o
Definition 1.4.16: [15] Let M be a I'—ring. If for any non-zero element a of M there exists such an
element y (depending on a) in T" such that aya=0, we say that M is semi-simple. If for any non-zero

elements a and b of M there exists y (dependingon a and b) in I" such that ayb =0, we say that M is
simple.

Theorem 1.4.17: [22] Let M bea I'—ring. Then M is semi-simple if and only if M is semi-prime.

Proof: Suppose that (a)I'(a)={0} for any aeM. Since al'ac(a)I'(a),al'a={0}. Since M is semi-

simple, al'a={0} implies that a=0. Hence (a)=0, so that M is semi-prime.

Conversely, suppose al'a={0} for any aeM. Since alMI'ac al'a,alMI'a={0}. Since M is
semi-prime, it follows that a=0. Hence M is semi-simple. o

Corollary 1.4.18: [22] M is semi-prime if and only if for any ideals U,V in M, UT'V ={O} implies that
unv ={o}.

Proof: Suppose that M is semi-prime. Let U,V be ideals in M such that UTV ={0} and let xeU NV .
Since xI'xcUT'V, xe:{O} . Since M is semi-prime, M is semi-simple by Theorem 1.4.17. hence
xI'x = {0} implies that x =0 and consequently U NV ={0}.

Conversely, suppose UT'U ={0} implies U NU ={0} by hypothesis. Hence U ={0}, so that M is

semi-prime. o
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Definition 1.4.19: [17] An element a of a I'—ring M s called strongly nilpotent if there exist a positive

integer n such that (al')’a=(alal'al..al')a=0. A subset S of M is strongly nil if each of its elements

is strongly nilpotent. S is strongly nilpotent if there exist a positive integer n such that (Sl“)n S=0.

Clearly a strongly nilpotent set is also strongly nil.

Definition 1.4.20: The strongly nilpotent radical, denoted by S,; of a T'—ring M is defined as the sum of
all strongly nilpotent ideals of M.

Theorem 1.4.21: Every prime gamma ring is simple.

Proof: Let M be a prime T"—ring. We show M is simple. If possible, let M be not simple. Then there
exists two non-zero elements X,y € M such that, xyy=0 forall yeI". Let A=(x) and B=(y). Then A

and B are ideals of M. Let ac AI'B be any element. Then ae(x)I'(y) since xyy=0 forall yeT, so
a=0. Thus we get, ATB={0}.

Since M s a prime I'—ring, so AI'B={0} = A={0} or B={0}.
Without loss of generality, let A={0}. Then (x) =0=> x=0, which contradicts that x is non-zero.

Thus M is simple. o
Remark 1.4.22: Every prime gamma ring is semi-simple.

Theorem 1.4.23: [17] Every simple gamma ring is a prime gamma ring.

Proof: Let M be a simple T"—ring. Then for any two non-zero elements x,y e M, there exist y eI" such
that xyy =0.

Let U,V be two ideals of M such that TUV ={0}. We show U ={0} or V ={0}. If possible let
U ;t{O} and V ;t{O}. Then there exist 0= xeU and 0= yeV . Since M is simple so there exist y eI’
such that xyy #0.

Now xyyeT'UV ={0} = xyy =0, which is a contradiction. So our supposition is wrong. So we

must have U ={0} or V ={0}. Hence M is a prime I"—ring.c

Definition 1.4.24: [22] Let M be a I'—ring. Then a left ideal 1 of M is said to be essential if I 1J = {0}
for all non-zero left ideals J of M.
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Definition 1.4.25: [12] Let M be a I"—ring. Then the mapping |1 :M —M is called an involution if

(i) ll(a)=a ;
iy I(a+b)=I(a)+I(b);
(i) I(aab)=1(b)al(a).

Forall a,beM and a<cTI .

Example 1.4.26: Let M be a ['—ring. Define M,={(a,b):a,beM} and T,={(a,a):aeT}. The

addition and multiplication on M, are defined as follows:
(a,b)+(c,d)=(a+c,b+d) and (a,b)(a,a)(c,d)=(aac,dab).
Under these addition and multiplication M, isa I', —ring.
Define 1:M, > M, by 1((a,b))=(b,a). Then
1 ((2b)=1((b.2))=(ab)
I((a,b)+(c,d))=1((a+c,b+d))

—(b+d,a+c)
~(ba)+(d,c)
—1((2b)+1((c.d))
| ((2b)(@)(c.d) =1 ((aac,dab))
~ (dab, acc)
~(.0)(cvcr)(b.)
= 1((c.0))(@a)1((ab)

Therefore, | is an involution of the I', —ring M,.o

20



1.5 Gamma Modules

In this section we introduce and study the notion of modules over a fixed I" - ring.

Definition 1.5.1: [2] Let R be a T'—ring. A (left) R.—moduleis an additive abelian group M together
with a mapping . :RxI'xM —M ( the image of (r,»,m) being denoted by rym), such that for all
m,m,m, eMand y,7.,7, €L,1,1,r, €R the following hold :

@ ry(m+m,)=rym+rym,;
(i) (n+r)ym=nym+rym
(iiy  r(n+y)m=rym+ry,m;

(iv) r171(r27/2m):(r171r2)72m-
A right R. —module is defined in analogous manner.

Definition 1.5.2: [2] A (left) R. —module M is unitary if there exist elements, say 1 in Rand 7, €I, such

that, Iy;m=m for every meM . We denote 1y, by 1, ,so L, m=m forall meM.
Remark 1.5.3:[2] If M is a left R. —module then it is easy to verify that Oym=rOm=ry0=0,, .

If R and S are T—rings then an (R,S).—bimodule M is both a left R.—module and right
S —module and simultaneously such that (ram) s =ra(mpgs), vmeM, VreR, VseSand o, Bel .

Example 1.5.4: If R is a I"—ring, then every abelian group M can be made into an R.—module with
trivial module structure by defining rym=0,vVreR,Vyel,VmeM .

Example 1.5.5: Let R be an arbitrary commutative I'—ring with identity. A polynomial in one
indeterminate x with coefficients in R is an expression P(x)=a,x"+a,X"" +..+a,x* +ax+a, with

a, eR. The set R[x] of all polynomials is then an abelian group. Now R[x] becomes an R.—module

under the mapping -: RxTxR[x]>R[x], (r,y, f(x))>ryf(x)= Zn:(r;/ai X

i=1
Example 1.5.6: If Ris a T'—ring and M is an R.—module. Set M[x]:{Zaix‘:aieM}. For
i=0

f(x)=> bx! and g(x):zm:aix‘, define  the  mapping  .:R[X]xI'xM[x]—>M][x]
-0 i~0

(9(x). 7, f (X)) g(x) 7 f(x)=D(arb )x . Itis easy to verify that M[x] is an R[x]. —module .

k=1
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Example 1.5.7: Let | be an ideal of a T'—ring R. Then R/l is an R.—module, where the mapping
:RxT'xR/I - R/1 is defined by (r,7,r'+ 1) (ryr')+1.

Example 1.5.8: Let M be an R. —module, meM . Letting T(m)={teR:tym=0Vy L} . Then T(m)is

an R. —module.

Proposition 1.5.9: [2] Let R be a I'—ring and (M,+,.) be an R. —module. Set Sub(M)={X :Xc M},
then Sub(M) isan R. —module.

Proof : Define ®:(A,B) > A®B by A®@B=(A\B)U(B\A) for A,BeSub(M). Then (Sub(M),®) is
an additive group with identity element ¢ and the inverse of each element A is itself. Consider the mapping
ol RxeSub(M) - Sub(M)

(r,y,X)>royeX =ryX  where ryX ={ryx:xe X} . Then we have

(i) oy (X, ®@X,)=rp. (X, ®X,)=rp.((X,\ X, )U(X,\ X,))
=ryfaiae(X\ X, )U(X,\ X))} ={rraae(X,\ X, )U(X,\ X,)} .

And

FreyoX,®royoX, =ryX, @ryX,=(ryX\ry.X,)U(ry.X,\ry.X,)

={ryx:xe(X
X

AX)U{ryxixe(X,\ X))}
={ryx:xe(X,\X,

JU(X\ X))
(i) (h+6)eyo X =(n+16)yX ={(r+n)yX:xe X} ={ryX+ryx:xeX}
=Ly X+hLyX=heyoX+loyoX
(i) re(r+7,)° X =r.(r+7,). X ={r.(,+7,)x:xe X}
={ryX+rpy,X:Xxe X} =rpX+ry,X=roy X +rey, X,
(V) Gero(h oy, o X)=005.(n 0y, o X) ={t.( 0 7, 0 X)X e X} ={n31.(17,.X) X € X}

= {('1-71-r2)-7/2-x ‘X € X}:(rl%-rz)-?/z-x .0
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Example 1.5.10:Let (R,<) bea I'—ring. Then R®Z={(r,s):r eR,seZ}isaleft R.—module, where
@' addition operation is defined by (r,n)®'(r’,n")=(r+4 r’,n+, n") and the product
RxI'x(R®Z)—R®Z is defined by r'.y.(r,n) > (r'oy,rn).

Example 1.5.11: Let (R,.)and (S,°) be " rings. Then
I. The product RxS isa I' —ring, under the mapping
(('1’51)'7!(r2'52)) '_)('1-7-r2’51 O7/052) .

r 0 o
i ForA={(0 sj:reR,seS}thereeXiStamapping RXS*A'S“Chthat(r’S)H(o sj e

A isa I'—ring. Moreover, A isan (RxS)r—moduIe under the mapping .:(RxS)xI'xA— A .

r, O r.y.r. 0
(rlisl)'%(z j H(lﬂ/z j
0 s, 0 sopes,

Definition 1.5.12: [2] Let (M, +) be an R-—module. A nonempty subset N of (M, +) is said to be a (left)
R —submodule of M if N isa subgroup of M and RN ¢ N, where RTN ={ryn:y eI, reR,ne N},

that is for all n,n"e N and forall yeT',reR;n—n"e Nand ryne N . In this case we write N <M .

Remark 1.5.13: (i) Clearly {0} and M are two trivial R —submodules of an R. —module M called the

trivial R- —submodules.
(ii) Consider R as R- —module. Clearly, every ideal of ' —ring R is a submodule of R.

Theorem 1.5.14: [2] Let N be an R —submodules of M . Then every R —submodule of M/N is of the

form K/N , where K isan R.—submodule of M containing N .

Proof : Forall X,y e K,x+N,y+N eK/N;(x+N)-(y+N)=(x-y)+N eK/N, we have x-yeK,
and VreR,Vy eI, vxeK , we have ry(x+N)=ryx+NeK/N=ryxeK . Then K isa R.—

submodule of M . Conversely, it is easy to verify that N = K <M then K/N is R.—submodule of M/N .
This complete the proof. o

Proposition 1.5.15: Let M be an R.—module and | be an ideal of R. Let X be a nonempty subset of M

. Then IT'X :{Zaiyixi g el el x eX,n EN} isan Rp—submodule of M.
=1
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m+n

Proof : For elements X:Zaiocixi and y=Za},Bjyj of IT'X , we have x—y:Zbk;/kzk e I'X . Now we
i=1 j=1 k=1
consider the following cases:

Case (1): If 1<k <n then b, =a,7 =,z =X .

Case (2): If n+1<k<m+n then b, =-a, . =L Z =Yir .

n

Now, Vr e R,Vy eI, Vx=> ayx € ITX , we have ryx=>ry(ayx)=> (rra )% . Thus ITX isan

i=1 i=1 i=1

R —submodule of M. o

Definition 1.5.16: [2] Let M be an R.—module and @ # X =M. Then the generated by X R.—
submodule of M, denoted by (X) is the smallest R.—submodule of M containing X, i.e.
(X)=N{N:N <M}, X is called the generator of (X); and (X)is finitely generated if |X|<o. If
X ={X,.... X, | we write (X;,...,X,) instead of ({X,....x,}). In particular, if X ={x} then (x) is called the

cyclic submodule of M, generated by X .

Definition 1.5.17: [2] Let M and N be arbitrary R —modules. A mapping f:M — N is a homomorphism

of R.—modules (or an R —homomorphism) if forall x,yeM and Vr e R,Vy eI' we have
@) FOy)= 00+ 1 (y);
iy  f(rpx)=ryf(x).

A homomorphism f is monomorphism if f is one-to-one and f is epimorphism if f isonto. f is called
isomorphism if f is both monomorphism and epimorphism . We denote the set of all R. —homomorphisms
from Minto N by Hom, (M, N) or shortly by Hom(M,N) . In particular if M =N we denote
Hom(M,N) by End(M).

Remark 1.5.18: If f:M — N isan R —homomorphism, then Kerf ={XEMZ f(x)=0} isan R.—
homomorphism of M and Imf ={yeN:3xeM;y= f(x)} isan R.—submodules of N .

Example 1.5.19: For all R —modules A, B, the zero map 0: A— B is an R. —homomorphism .
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Example 1.5.20: Let R be a I'—ring. Fix I, €I" and consider the mapping

¢:R[x] > R[x]by f > fy,x.Then ¢ isan R.—module homomorphism, because Vr eR,Vy eI and
vf,geR[x];

¢(f+9)=(f+9)rx=Trx+gyx=¢(f)+4(g) and
d(ryf)=ryfyx=ryp(f) .

Proposition 1.5.21: Let R bea I'—ring. If f :M — N isan R. —homomorphism and C < Kerf , then
there exists a unique R. —homomorphism f :M/C — N, such that for every xeM ; Kerf = Kerf /C and
Imf =1Imf | and f(x+C)=f(x),also f is

an R —isomorphism if and only if it is an R —epimorphism and C = Kerf . In particular M/Kerf = Imf ,

Proof : Let bex+C then b=x+c forsome ceC,also f(b)=f(x+c).
We know f is R. —homomorphism , therefore f(b)=f (x+c)=f(x)+f(c)=f(x)+0=f(x) (since
C <Kerf )then f:M/C —N is well defined function.
Also VX+C,y+CeM/C and Vr eR,y eI" we have
(i) f((x+C)+(y+C))=F((x+y)+C)=f (x+y)=f(x)+ f(y)=f(x+C)+f(y+C)

iy  F(ry(x+C))="f(ryx+C)=f(ryx)=ryf(x)=ryf(x+C).

Then f is a homomorphism of R- —modules, also it is clear Imf = Imf and

V(x+C)eKerf;x+CeKerf < f(x+C)=0< f(x)=0<> xeKerf |, then Kerf =Kerf /C .

The definition of f depends only on f , then fis unique.

f is an epimorphism if and only if f is an epimorphism. f is a monomorphism if and only if Kerf is a
trivial R —submodule of M/C .

Actually if Kerf =C then M/Kerf = Imf . o

25



Chapter Two
Derivations On r- Rings

2.1 Jordan Generalized Left Derivations On T - Rings

Throughout the following, we assume that M is an arbitrary I'—ring and F a generalized Jordan
derivation on M. Clearly, every generalized derivation on M is a Jordan generalized derivation. The
converse in general is not true. In the present section, it is shown that every Jordan generalized derivation on
certain I"—rings is a generalized derivation.

Definition 2.1.1: [27] An additive mapping D:M —M s called a derivation (I"— derivation) on a I'—

ring M if D(xay)=D(x)ay+xaD(y) holds forall x,yeM ,and ael .

Definition 2.1.2: [27] An additive mapping D:M — M s called a Jordan derivation ona I'-ring M if
D(xax)=D(x)ax+xaD(x) holds forall xeM,and a el

Definition 2.1.3: [5] An additive mapping F:M —M is called a generalized derivation (generalized I" -
derivation) on a TI'—-ring M if there exists a derivation D:M—>M such that
F(xay)=F(x)ay+xaD(y) forall x,yeM , and ael .

Definition 2.1.4: [5] An additive mapping F:M — M s called a Jordan generalized derivation ona I'—

ring M if there exists a derivation D:M —M such that F(xax)=F(x)ax+xaD(x) forall xeM, and

ael .

Example 2.1.5: Let f:R—R be a generalized derivation on a ring R. Then there exists a derivation
d:R—>R such that f(xy)=f(x)y+xd(y) for all x,yeR. Taking M=M,,(R) and

nl : )
r :{( 0 ]: nisan mteger}.

Then Mis a T'—ring. If we define the map D:M—M by D((x,y))=(d(x).d(y)) then D is a
derivation on M. Let F:M —M be the additive map defined by F((x,y))=(f (), f(y)).

Then F is a generalized derivation on M. Let N be the subset {(x X):Xxe R} of M. Then N isa I'—-
ring, and the map F :N — N defined in terms of the generalized Jordan derivation f:R—R on R by
F((x,x))=(f(x), f(x)) is ageneralized Jordan derivation on N .
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Definition 2.1.6: [27] Let M be a I'-ring and D:M —>M be an additive map. D is called a left
derivation if forall x,yeM,ael’

D(xay)=xaD(y)+yaD(x).

A right derivation is defined similarly.

Definition 2.1.7: [23] Let Mbe a I'—ring and D:M —M be an additive map. D is called a Jordan left
derivation if forall xeM,a e’

D(xax)=2xaD(X) .

Definition 2.1.8: [23] Let Mbea I'—ringand D:M —M be an additive map. D is called a Generalized

left derivation if there exist a left derivation d :M — M such that for all x,yeM,a e’
D(xay)=xaD(y)+yad(X) .

Definition 2.1.9: [23] Let Mbe a I'—ring and D:M — M be an additive map. D is called a Generalized

Jordan left derivation if there exist a Jordan left derivation d :M — M such that for all xeM,a T”
D(xax) = xaD(x)+xad (X) .

Proposition 2.1.10: Let M be an arbitrary I'—ring, D:M —M be a generalized Jordan left derivation
and d :M — M be its associated Jordan left derivation. Then for all x,y e M, eT", we have

D(xay+ yax)=xaD(y)+xad (y)+yaD(x)+yad ().
Proof : By Definition 2.1.9, we have
D((x+Y)a(x+y))=(x+y)aD(x+y)+(x+y)ad(x+y)
=(x+y)a(D(x)+D(y))+(x+y)a(d(x)+d(y))
= xaD(X)+ xaD(y)+yaD(x)+yaD(y)
xad (X)+ xerd (y) + yard (x) + yed (y). (2.1.1)

Also,
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D((x+y)a(x+Y))=D(xax+(xay+yax)+yay)
=D(xax)+D(xay+yax)+D(yay) .

By using Definition 2.1.9, we get
D((x+y)a(x+y))=xaD(x)+xad (x)+D(xay+yax)+yaD(y)+yad(y) . (21.2)

In view of (2.1.1) and (2.1.2), we get
D(xay+ yax)=xaD(y)+xad (y)+yaD(x)+yad (x) .

This completes the proof. o

Corollary 2.1.11: Let M be an arbitrary I'—ring and d :M —M be a Jordan left derivation. Then for all
X,yeM,a eI, we have

d(xary+yax)=2xad (y)+2yad(X) .

Proposition 2.1.12: [23] Let M be a 2-torsion free I'—ring and Xayfz =xpByaz holds forall x,y,zeM
and «,Bel’. Let D:M —>M be a Generalized Jordan left derivation and d :M —M be an associated
Jordan left derivation. Then the following statements hold for all x,y,zeM and «,BeT.

(i)  D(xaypBx)=xayBD(x)+(2xay-yax)Bd(x)+xaxpd(y) .
(i)  D(xayBz+zaypx)=xayBD(z)+zaypfD(x)+(2zay—yaz)pd(X)
+(2xary — yax) Bd (2)+(xaz +zax) Bd (y) .

Proof : In view of Proposition 2.1.10, consider the following
D(xBY+yBx)=xBD(y)+xpd(y)+yBD(x)+ypd(x) .

The replacement of y by Xay+ yaX in the last relation yields
D(xB(xary +yax)+(Xay +yax) Bx)

= XBD(xay+ yax)+x£d (xay + yax)+(xay + yax) fD(x)+(xay + yax) fd (X).
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By using Proposition 2.1.10 and Corollary 2.1.11 in the last relation, we get
D(xB(xary +yax)+(Xay +yax) Bx)
= xB{xaD(y)+xad (y)+yaD(x)+yad (X)} +xB{2xad (y)+2yad (X)}
+(Xary + yax) BD(X)+(xay + yax) Bd (X).

That is,
2D (xaryBx)+ D(xBxary + yax3x)
= xBxaD(y)+xBxad (y)+xByaD(x)+xByad (X)+ 2xBxad (y)
+2xByad (X)+ XaryBD(X)+ xayd (X) + yaxBD(x) + yax3d (x).

or,
2D (xayBx)+(xBX)aD(y)+(xAx)ad () + yaD (xBx) + yad (xX)
= xBxaD (y)+xBxad (y)+xByaD(x)+xByad (x)+ 2xxad (y)
+2xyad (X)+xay BD(X)+ Xy Bd (X)+ yaxBD(x)+ yaxAd (x) .

In view of Definitions 2.1.7 and 2.1.9, the last expression becomes
2D (xayBx)+(xpx)aD(y)+xBxad (y)+ ya {xBD(X)+xBd (x)} +2yaxBd (x)
= xBxaD(y)+xpBxad (y)+xByaD(x)+xByad (x)+2xByad (x)
+2xSxad (y)+xayBD(X)+ xayBd (X)+ yaxBD(x)+ yaxBd (x) .

By canceling identical terms and using the given condition Xaypfz=xpyaz for all x,y,zeM and
a,fel’, we get

2D(xaypx)+xBxaD(y)+xpxad (y)+ yaxBD(x)+ yaxpd (x)+2yaxAd (x)
=xBxaD(y)+xpxad (y)+xByaD(x)+xpyad (x)+2xByad (x)

+2xxad (y)+xay SD(X)+xayfd (x)+ yaxSD(x)+ yaxpd (x)
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Consequently,

2D(xaypx)+2yaxpd (x)=2xaySD(X)+4xayfd (x)+2xaxpd (y)
As M is a 2-torsion free T"— ring so,

D(xaryx)=xayBD(x)+(2xay —yax) fd (x)+xaxpd (y).
This completes the proof of (i).

(ii) The replacement of X by x+z in (i), gives
D((x+2)ayp(x+2))
=(x+2)aypD(x+2)+(2(x+2)ay - ya(x+2)) d (x+2)+(x+2)a(x+2) fd(y) ,
D(xayBz +zayfx+xaypx+1aypz)
= (x+2)ayp(D(x)+D(2))+{2xay+2zay - yax—yaz} A(d (x)+d(z))
+xexd (y)+xazid (y) + zaxpd (y)+ zazfd (y) |
or,
D(xaypfz +zaypx)+D(xaypx)+D(zaypfz)
= Xa'yfD(X)+ XayiD(z)+ 2ayfD () + zary fD (2) + 2xary fd (x)
+2xayfd (2)+ 2zarypd (x) + 2zay fd (2) - yarx fd () - yarxfd (2)
—yazfpd (x) - yazfid (2)+ xaxd (y) + xazfd (y) + zaxfyd (y) + zazpd (y).
The application of Proposition 2.1.12 (i) in the last relation, gives
D(xay/iz+zaryfx) + xary fD(x) + 2xary fd (x) - yax fd (x) + xarx3d (y)
+2aryD(X)+ 220y d (2) - yazfpd (2)+ 2azpd (y)
= XaryfD(X)+ XayfD(z)+ 2aryfD(X)+ zary fD(2) + 2xary fd (x)
+2xayfd (2)+ 2zarypd (x) + 2zary d (2)
—yaxpd (x) - yaxpd (2) - yazd (x) - yazd (z)+ xaxpd (y)
+xazfd (y)+zaxpd (y)+ zaz2fd (y) |
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Consequently,
D(xayfz+zaypx)=xayBfD(z)+zayBD(X)+2zaypd (x)+2xaypd(z)
—yazd (x) - yaxpd (2)+xazfd (y)+ zaxpd (y),

or
D(xay/z+zayfx) = xayfD(z)+ 2ty SD(x)+(2zary - yaz) fd (x)

+(2xay — yax) Bd (z)+(xaz+zax)Bd(y).
This completes the proof of (ii) . o

Corollary 2.1.13: [23] Let M be a 2-torsion free I'—ring and XayfBz=xpyaz hold for all x,y,zeM
and a, el . Let d:M —M be Jordan left derivation.

Then the following statements hold for all x,y,zeM and o,B T
(i) d (xayBx)=xaxpd(y)+3xaypd(x)—yaxpd(x).

(i)  d(xaypz+zaypx)=(xaz+zax)pd(y)+(3xay-yax)pd(z)
+(3zay - yaz) pd(x).

Proposition 2.1.14: [23] Let M be a 2-torsion free I'—ring and xayfz=xpgyaz hold for all X,y,zeM
and a,fel’. Let D:M—>M be a generalized Jordan left derivation and d :M —M be an associated
Jordan left derivation. Then the following statements hold for all x,y,zeM and a,f I

(i) (xary — yax) Bxad (x) = xa (xay — yax) fd (x) .
(i)  (xay-yax)B{d(xay)-xad(y)-yad(x)}=0.

2.2 Gamma-Derivations On The Projective Product Of - Rings

This section highlights many enlightening results on various gamma-derivations in the projective
product of gamma-rings.

Definition 2.2.1: [16] Let M be a I'—ring, then an additive mapping d :M —M s called a T"— semi-
derivation associated with a function g:M — M ifforall x,yeM and ael’,

d(xay)=d(x)ag(y)+xad(y)=d(x)ay+g(x)ad(y) and d(g(x))=g(d(x)) .

If g =1 i.e. the identity mapping on M, then all I" — semi-derivations associated with g are merely
ordinary I" — derivations.
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If g is an endomorphism of M, then other examples of semi-derivations are of the form

d(x)=x-g(x).

Definition 2.2.2: [16] A T'—derivation D is said to be inner if 3aeM st D(xax)=aax—xaa. A

mapping XaX— aax+Xab , where a,b are fixed elements in M and for all & €T is called a generalized
inner derivation .

Definition 2.2.3: [16] Let S be a nonempty subset of M and let d be a I'—derivation on M. If
d(xay)=d(x)ad(y) [ or d(xay)=d(y)ad(x)], for all x,yeS,acl", then d is said to be a '—

homomorphism [ or an anti I'—homomorphism]on S .

Definition 2.2.4: [16] Let M, a I', —=ringand M, a I', —ring. Let M=M, xM, and I'=T'; xI', . Then we
define addition and multiplication on M and T by, (X, %, )+(¥.,¥,)=(%+ Y. % +,),

(o, 0)+(B.B)=(ev+ B, + B,) and (X% ) (. @,) (V) ¥a ) = (Xau Y1, %0y, ) for every
(%,%).(Y.¥,)eM and (e, a,).(B.5B,) el

With respect to this addition and multiplication M is a T"—ring. We call this I'—ring the Projective
product of T"— rings.

Since M,;, M, and I';, I', are additive abelian groups, so obviously M =M, xM, and I'=I",xI', are
additive abelian groups. To show M isa I'—ring, we need to show the following properties:

Let X=(%,%),y=(¥.¥,),.2=(2.,2,)eMand a=(a,,), B=(8..5,),7 =(7.7,) €T be any elements .
Property (i) :
vx,yeM,a el we have xay=(x,%)(, o) (Y, Y,)
= (XY, %2,Y,)
as Xxay, eM,;, X,a,Y, €M, [since M, isa I', —ringand M, isa I', —ring] then xay e M.
Property (ii) :
(x+y)az:((xl,x2)+(yl,yz))(al,az)(zl,zz)

=((X1 + yl)’(XZ + yz))(a1’a2)(zl’ Zz)
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=((%+ )@z, (% +Y,)a, 22)
= (X0 Z,+ Y, 2, %0, Z,+ Y,0, Z,)
= (x4 2, %0,2,)+( V4. 2,, ¥,0, Z,))
= (% % ) ()21, 2,)+ (Yo Vo ) (0 2, ) (20, 2,) = Xz + yaz
Thus we get, (X+Y)az=xaz+yaz . Similarly, X(a+8)z=xaz+xfz and Xa(y+2)=xay+xaz.
Property (iii) :
(Xay)ﬂz:((Xl’Xz)(al’az)(yl’yz))(ﬂl’ﬁz)(zvZz)
:(Xialyl’X2a2y2)(ﬁ1’ﬁ2)(zl’ZZ):((Xlalyl)ﬂlzl’(XZaZyZ)ﬂZZZ)
= (% (¥,82,). %2, (¥,5,2,)) [since M, is al’, —ring and M, isa I, - ring]
= (%%, ) (4,2, ) (MWBZ, Yo 2,)
=(x1,xz)(al,az)((yl,yz)(ﬂl,ﬂz)(zl,zz)):xa(yﬁz)
Thus we get, (xay) Bz =xa(yBz). Similarly, xa(ypz)=x(ayp)z.
Let xay=0Vx,yeM=(x,%,)(, &, )(y.,y,)=0
= (XY, %a,Y,)=0=(0,0)
=xaY,=0,%a,Yy,=0,VX,y,eM, and x,,y, eM,
=a,=0,a,=0 [since M, isa I', —ringand M, isa I', —ring]
=(a,2,)=(0,0)=>a=0
Thus we get, Xay=0Vx,yeM=a=0.

Hence M is a gamma ring which is known as the projective product of gamma rings.
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Theorem 2.2.5: [16] Let M, a I', —ring and M, a I', —ring and T" be their projective product. Then we
get the following results :

Q) Every pair of I'—derivations D, and D, on M; and M, respectively give rise to a I'—
derivation D on M.
(i)  Two I'—semi-derivations d, and d, on M, and M, respectively give rise to a I"— semi-

derivation d on M.

(iii)  For every generalized I"— derivations f, and f, on M, and M, respectively give rise to a
generalized I"— derivation f on M.

(iv)  Two inner I'—derivations d, and d, on M, and M, respectively give rise to an inner T —

derivation d on M.
(V) Every two Jordan derivations J, and j, on M, and M, respectively give rise to a Jordan

derivation j on M defined by J, and J, .
(vi) Every two generalized Jordan derivations J, and J, on M, and M, respectively give rise to a
generalized Jordan derivation j on M constructed with the help of J;, and }J,.

(vii)  Every two generalized inner derivations on M, and M, respectively give rise to a generalized
inner derivation on M.
(viii) If ¢ and ¢, be two homomorphisms on M, and M, respectively, then there exist a

homomorphism on M constructed with the help of ¢, and ¢, .

Proof : (i) We define a mapping D:M —M by D(x)=D((%,%,))=(D,(x).D,(x,)). Clearly, Dis well
defined mapping. We show that D is a derivationona I"—ring M..

Let X=(X,%), y=(y.¥,)eM and a=(a,a,)el be any  elements.  Then
D(X+ y) = D((X1’X2)+(y1’ yz)) = D((X1+y1)’(xz + yz))z(Dl(X1+ yl)' Dz(xz +y2))

=(D,(%)+D;(¥:),D,(x,)+D,(y,))[since D, and D, are additive mappings]

(D.(%) Dy (%)) +(D: (%) Dz (¥2)) = D((¥1: %))+ D((¥:,¥2)) =D (x)+D(y)

Thus, D(x+Yy)=D(x)+D(y) V¥x,y €M which implies that D is additive.

Again, D(XQY) = D((Xi’ Xz)(aliaz)(yp Y, )) = D((X1a1y11 Xz“zYz)) :(Dl(x1051y1)1 D, (Xzazyz ))

=(Dy (%)@Y, + %D, (), D, (%, )Y, +%,a,D,(Y,)) [since D, and D, are gamma-derivations
on M, and M, respectively]
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=(D104) @i Dy (%) @2¥z )+ (%eaDs (1), %D (1))
=(Du(%), D, (%)) (e ) (Yo, Y2 ) + (%% ) (.02 ) (D1 (), B, (1))
= D(X)ay+xaD(y)
Thus, D(xay)=D(x)ay+xaD(y) Vx,yeM and aeI". So D is a gamma-derivation on M .

(i) Let d, be a I"— semi-derivation on M, associated with the function g,:M, M, and d, bea I'-

semi-derivation on M, associated with the function g,:M, > M, .
We define the functions d:M —M and g:M —>M by
d(x)=d((x.%,))=(d;(x).d,(x,)) and

g(x)= g((xl’XZ)):(gl(Xl)’gz(Xg)) forall x=(x,%,)eM

Then clearly d and g are well defined as well as d is additive. Let x=(x,%,),y=(y.,¥,)eM
elements. Then,

and a=(a,a,)el be any

d (Xay) =d ((Xl’ Xz)(ayaz)(yl: Y, )) =d ((Xialyy Xzazyz)) = (dl(x1a1y1)'d2 (Xzazyz ))

=(dl()(i)algl(yl)+Xlaldl(yl)’dZ(Xz)azgz(y2)+x2a2d2(y2)) [since d, and d,are I'—

semi-derivations on M, and M, respectively].

(d1(xl)a191(Y1)1d2 (Xz)azgz (yz ))+(Xlaldl(yl)’x2a2d2 (Y2 ))

(%), 0, (%)) (@0 ) (91 (%), B2 (V) + (%0 % ) (@22 ) (A (1), 0 (v,))
=d((%%))(ew @) (¥ ¥ )+ (%% ) (2 )d (%1, ¥2)
=d(x)ag(y)+xad(y)

Thus, d (xay)=d(x)ag(y)+xad(y) forall x,yeM and e el .

Similarly, we can show that, d (xay)=d(x)ay+g(x)ad(y) forall x,yeM and a <l .

Again, d(g(x))=d(g((%.%)))=d((9: (%), 9, (%)) = (e (8: (%)), 4, (9 (%))
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:(gl(dl(xl)),gz(dz(xz))) [Since d, and d, are semi-derivations on

M, and M, respectively ]

=9((d,(x).d,(%)))=9(d((x.%,))) =g (d (x))
Thus we get,d (g(x))=g(d(x)) , VxeM
Hence d isa I'— semi-derivation on M associated with the function g and hence the required result.
(iii) using same method in part (ii).

(iv) Let d, be an inner I"— derivation on M, with respect to the element a€M, and d, be an inner T —
derivation on M,  with respect to the element beM,. We defined a mapping d:M—>M by
d(x)=d((%.%))=(d,(%).d,(x,)) , Vx=(%.X%,) €M . Then, d is well defined as well as additive.

Let Xx=(%,%)eM and a=(a,a,)el be any two  elements.  Then
d (Xax) =d ((Xl’ XZ)(al’ az)(xv X, )) =d ((X10‘1X11 X0, X, )) = (dl (X1a1X1)1d2 (X2a2X2 ))

= (axyx, — xaa,ba,x, —%,a,b) [Since d, and d, are inner derivations on M, and M, w.rt a and

b respectively ]
:(aalxl’baZXZ)_(Xlala’ X2a2b)=(a1’a2)(al’a2)(xl7XZ)_(XUXZ)(al’aZ)(ai’aZ)
=Max—xam where m=(a,a,) eM

Thus d is an inner derivation on M with respect to the element meM . Similarly we can show

(v),(vi),(vii) and (vii).o

Theorem 2.2.6: [16] For every derivation D on M, there exist derivations D, and D,on M; and M,

respectively, where M is the projective product of M, and M, .

Furthermore, if D is semi-derivation/ generalized T — derivation /inner I"— derivation/ Jordan derivation/
generalized Jordan derivation, then D, and D, are also so.

Proof : Let D be a derivation on M. Let X, be any element of M, and let D((><1,0))=(u1,u2)

We define a map D;:M; >M, by D,(x)=u,, ie. by D,(x)=fD((x,0)) [i.e. the first component of
D((x,0))]. We shall show that D; is a derivation on M,.
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Let X, X% €M, be any two elements and &; €Ty, then D, (X, +X,) = fD((X +x,,0))= fD((X, +X,,0+0))
= 1D((%,0)+(x,,0)) = f[ D((%,0))+D((x,,0))] [since D is additive]
= fD((%,,0))+ fD((%,,0)) =D, (%, )+ D, (x,)

Thus we get, D, (X +%,)=D,(%)+D,(X,) vX,X, €M, i.e. D isan additive.

Now, D, (X%, )= fD((xaX,,0))= fD((xxx,,02,0)),a, €T,

= D((x,0)(ey,@,)(x,,0)) = fD(xay) where x=(x,,0),y=(%,,0)anda =(a,a,),

= f[D(x)ay+XaD(y)] [since D is a derivation on M ]

= 1[D(x)ay]+ f [xaD(y)]=  [D((%,0))(e,) (%, 0) ]+  [(%:0) (e, ) D((x,.0))]
= f[D(x)ay |+ f[xaD(y)|= D(x) fafy+ txf a fD(y) =D, (¥, ) X, + XD, (X, )

Thus we get, D, (xaX,) =D, (X)X, + XD, (X,) VX, % €M, and &, €T,
So D, is aderivation on M, defined by the derivation D on M.

Similarly defining a mapping, D,:M, ->M, by DZ(X)=SD((0, X)) where S represents the second
component of D((0,X)), we can show that D, is a derivation on M, .

Thus for every derivation D on M there exist derivations D, on M, and D, is on M, and hence
the desired result. o

Remark 2.2.7: [16] The above results can be extended to the projective product of n number of Gamma-
rings.

2.3 Jordan Generalized Reverse Derivations On - Rings

In this section we introduce and study the concepts of reverse derivation, generalized reverse
derivation, Jordan generalized reverse derivation, higher reverse derivation and generalized higher reverse
derivation of I" —ring.

Definition 2.3.1: [8] Let M be a I'-ring and d:M—>M be an additive mapping then d is called

reverse derivation if d(xay)=d(y)ax+yad(x) ,forall x,yeM,aecl.
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Let D=(d,)_, be additive mappings on aring R then D is called higher reverse derivation of I'—

ring M if d (xay)= > d(y , VX, yeM,aeT andneN.

i+j=n

D is called a Jordan higher reverse derivation of '—ring M if
XaX Zd , VxeM,aeT andneN.

i+j=n

D is called a Jordan triple higher reverse derivation of r-ring M if
d, (xaypx)=d, (X)Bxay + i d (x)pd;(y)ad, (x) , vx,yeM,a,feT andneN.

i+j+r=n

Remark 2.3.2: [8] If M is commutative, then both a derivation and the reverse derivation are the same.

Example 2.3.3: Let R be an associative ring with 1, d :R — R be a reverse derivation. By Example 2.1.5
define D:N—>N by D((x,x))=(d(x),d(x)). If a=(x,%),b=(%,,%,) and a:(n(ﬂel“. Then we

have
o(aas) [ (5,5 o)
= D (XM, X%, ) = (d (%;), d (1, ))

(d (%)%, +x,nd (x,),d (X, )X, +X,nd (Xl))

(d (%)X, d (%, )nx ) +(x,nd (%), %,nd (x,))

SCICORTES)) (g ERARERS) (g CERRTES)

=D((%,, %, ))aa+baD((x,x))=D(b)aa+baD(a).

Hence D is a reverse derivation on the I'—ring N .

X
Example 234: Let R be a ring and M:{(O gj:x,yeR}, where R*%#0, and

n o0 . .
= nisan integer ;.
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0
Then M isa I'—ring. Let d :M —M defined by d(A):dﬁ(; gnz(o gj . It is easy to show that d

is derivation but not reverse derivation.

0 x vy z
) 0 0O
Example 2.3.5: Let R be a ring and M= 00 0 X, Y,2eR , and
0 00 O
0 00O
0O n OO . . . . .
= 0 0 0 ‘nisaninteger,. Then M is a I'-ring. Let d:M—>M defined by
n
0 0 0 n
0 x vy z 0 0 0 -z
0 0O 0 0O
d(A)=d Y= . It is easy to show that d is a reverse derivation but not a
0 0 0 —x 0 0 0 —x
0 00 O 0 00 O
derivation.

Definition 2.3.6: [21] Let M be a I'— ring and f:M—>M be an additive mapping then f is called
generalized reverse derivation on M if there exists a reverse derivation d:M—M such that
f (xay)= f(y)ax+yad(x) forevery x,yeM,a el .

f is said to be a Jordan generalized reverse derivation of M if there exists a Jordan reverse derivation

such that f (xax)= f (X)ax+xad (x) forevery xeM,a T .

f is said to be a Jordan generalized triple reverse derivation of M if there exists Jordan triple higher
reverse derivation of M such that:

f (xaypBx)=f(x)Bxay+xpd(y)ax+xpyad(x) forevery x,yeM,a, Bel .

Remark 2.3.7: As shown in the examples above, the reverse derivation is not a derivation in general, but it
is a Jordan derivation .

Remark 2.3.8: Every generalized reverse derivation of a I'—ring M is Jordan generalized reverse
derivation of M.

Lemma 2.3.9: [8] Let M bea I'—ringand let f bea Jordan generalized reverse derivation of M then for
all x,y,zeM and «, B €I, the following statements hold:

40



(i) f (xay+yax)=f(y)ax+yad(x)+ f (X)ay+xad(y)

(i) f (xaypx+xpyax)= f (x)Bxay+xpd(y)ax+xpByad (x)+ f (x)axBy
+xad (y) Bx+xayfd (x)

(iii)  f(xayax)=f(x)axay+xad(y)ax+xayad(x)

(iv)  f(xayaz+zayax)=f(z)axay+zad(y)ax+zayad(x)+ f (x)azay
+xad (y)az+xayad ()

(v) f (xayBz)=f(z)Bxay+zpd(y)ax+zByad(x)

(vi)  f(xayBz+zaypx)=f(z)pxay+zpd(y)ax+zpyad(x)+ f (x)Bzay
+xpd (y)az+xpyad(z).

Definition 2.3.10: [21] Let f be a Jordan generalized reverse derivation of a I'—ring M, then for all
X,yeM and a<I" we define:

5(xy), = f(xay)—f(y)ax—yad(x)

Lemma 2.3.11: If f is a Jordan generalized reverse derivation of I'—ring M, then for all x,y,zeM and
a,fel’ weget:

(i) 5(xy), ==6(y.x),

(i) Oo(x+y.z) =6(x2) +6(y.2),
iy  o(xy+z) =5(xy), +5(x2),
(iv)  3(xy),,,=d(xy), +5(xy),

Proof: (i) By Lemma 2.3.9 (i) and since f is additive mapping of M we get :
f (xay+yax)=f(y)ax+yad(x)+ f (X)ay+xad(y)
f (xary)+ f (yax)=(f (y)ax+yad(x))+(f(x)ay+xad(y))
f (xay)—f(y)ax—yad(x)=—f (yax)+ f (x)ay+xad(y)
f (xay)-f(y)ax—yad(x)=—(f(yax)-f(x)ay-xad(y))

Then we get 5(x,y), ==5(Y,X), .
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(i) 5(x+.2), = ((x+y)az)=(f (2)a(x+y)+zad (x+Y))
= f (xaz+yaz)—(f (z)ax+f (2)ay+zad (x)+zad (y))
Since f is additive mapping of the T — ring
= f(xaz)- f (z)ax—zad (x)+ f (vaz)- f (z)ay -zad(y)
=d(x2),+6(y.2),
(iii) 5(x, y+2), = f (xa(y+2))~(f (y+2)ax+(y+2)ad ()
= f (xay)-f(y)ax-yad(x)+ f (xaz)- f (z) ax-zad(x)
=5(xy),+6(x2),
(V) 5(xY),,, = f(x(a+B)y)=(f(y)(@+B)x+y(a+p)d(x))
= f (xay+xBYy)—(f(y)ax+f(y)Bx+yad(x)+ypd (X))
Since f is additive mapping of a I"— ring.
= f (xay)-f(y)ax-yad(x)+ f(xBy)-f(y) Bx-ypd(x)
=6(xy),+6(xY),. o

Remark 2.3.12: Note that f is generalized reverse derivation of a I'—ring M if and only if 5(x, y)a =0
forall x,yeM,ael.

Theorem 2.3.13:[21] Let f be a Jordan generalized reverse derivation of M then &(x,y) =0 for all

Xx,yeM,ael.
Proof: By Lemma 2.3.9 (i) we get:

f (xay+yax)=f(y)ax+yad(x)+ f (X)ay+xad(y) (2.3.1)
on the other hand, since f is additive mapping of the T'—ring M we have:

f (xay+yax)=f(xay)+f (yax)=f (xay)+f (x)ay+xad(y) (2.3.2)

Comparing (2.3.1) and (2.3.2) we get
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f(xay)=f(y)ax+yad(x)= f(xay)—-f(y)ax—yad(x)=0 by Definition 2.3.10 we get ,
5(X’ y)a :O o

Corollary 2.3.14:[21] Every Jordan generalized reverse derivation of I"—ring M is generalized reverse
derivation of M.

Proof: By Theorem 2.3.13 we get 6(X,y), =0 and Remark 2.3.12 the proof done. o

Proposition 2.3.15:[21] Every Jordan generalized reverse derivation of a 2-torision free I — ring M where
Xayfz = XByaz is Jordan generalized triple reverse derivation of M .

Proof: Let f be aJordan generalized reverse derivation of M, replace y by (X,By+ yﬂX) in Lemma
2.3.9 (i) we get f(xa(xBy+ypx)+(xBYy+ypx)ax)=f (xa(xBy)+xa(ypx)+(xBy)ax+(ypx)ax)

= f ((xax) By +(xay) Bx+(xBY)ax+(ypx)ax)

= f (y) Bxax+ypd(xax)+ f (x) B(xay)+xBd (xay)+ f (X)a(xBy)+xad (xBY)

+f (X)a(ypx)+xad (ypx)
= f(y) Bxax+ypd(x)ax+ypxad (x)+ f (x) fxay+xp8d (y)ax+xByad (x)+ f (x)axpy
+xad (y) Sx+xaypd (x)+ f (X)ayfx+xad (x) By +xaxpd (y) (2.3.3)

On the other hand:

f (xar(xBY+YBx)+(XBY+ypx)ax) = f (XaxBy+Xxaypx+xByax+ypxax)
= f((xaxBy+ypxax)+(xaypx+xpyax)). (2.3.4)
Comparing (2.3.3) and (2.3.4), and since xayfz =xByaz we get
f (xarypx+xaypx)=2f (xaypx)=2(f (x)Bxay+xpd(y)ax+xpyad(x))
Since M is a 2-torision free then we have
f (xaypx)=f (x) Bxay+xpd (y)ax+xpyed(X).

Definition 2.3.16:[20] Let M be a T'—ring and F =(f;)._. be a family of additive mappings of M such
that f, =id,, then F is called generalized higher reverse derivation of M if there exists a higher reverse

derivation D=(d,),_,, of M such that for all n€ N we have :
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2 (xay)= > fi( (2.3.5)

i+j=n
Forevery x,yeM,ael.

F is called a Jordan generalized higher reverse derivation of M if there exists a Jordan higher reverse
derivation D =(d; ), of M such that for all n€ N we have :

(xax) Z fi( (2.3.6)

i+j=
Forevery xeM,a el .

F is said to be a Jordan generalized triple higher reverse derivation of M if there exists a Jordan triple
higher reverse derivation D=(d;),, of M such that forall neN we have :

f,(xerypx) = 1, (x) pray + z £ (x)d, (y)ad, (x) (237)

Forevery x,yeM,a,fel.

Example 2.3.17: Let F = (f ) be a generalized higher reverse derivation on a ring R then there exists a
higher reverse derivation d =(f;), . of R such that

= 2. fi(y)d;(x)

i+j=n

Then by Example 2.3.3 we define D=(D,),

ieN

D, (a,b)=(d,(a),d, (b)) then D is higher reverse derivation of M.

be a family of additive mappings of M such that

Let F=(f,)., be a family of additive mappings of M defined by F,(a,b)=(f,(a),f, (b)) then F isa
generalized higher reverse derivation of M.

It is clear that every generalized higher reverse derivation of a I'—ring M is Jordan generalized
higher reverse derivation of M, but the converse is not true in general.

Lemma 2.3.18:[20] Let M be a T'—ring and let F=(f)_. be a Jordan generalized higher reverse
derivation of M then forall x,y,zeM and «, B8 €I, the following statements hold:

i<n

(i) f,(xay+yax)= > f(y (x)+ f, (X)ad, (y)

i+]j=n
In particular if yezZ(M).
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i<n

f,(xaypx+xByax)=f, (x)Bxay+ > f(x)Bd,(y)ad, (x)+ f,(x)axpy

(ii) P
£ 3 f(x)ad, (v) A4, (x)

(iii)  f,(xayax)=f, (x)axay+ Z fi(x)ad; (y)ad, (x)
V), (xayaz+zayax) = §,(2)axay+ 3 §,(2)ad,(y)ad, (x)+ 1, (x)azay
£ 5 (x)ad,(y)ad, (2)
0 LOeys)=f(@pay s 3 ()80 (y)ad ()
V) (xayprezaypi) =1, (2) ﬂXay+i+§n f(2) 84, (y)erd, (x)+ £, (x) Bzary

£ 30 8(x)8d, (v)ad, (2)

i+j+r=n

Proof: (i) Replace (x+ y) for x and y in Definition 2.3.16 (2.3.5) we get:

f.((x+y)a(x+y))= D fi(x+y)ad;(x+y)

i+j=n
(2.3.8)

2 (i (x)ad; (9 + 1 (y)ad, (x) i (x) e (y)+ () exd ()

On the other hand:

f.((x+y)a(x+y))=f,(xax+xay+yax+yay)=f, (xax+yay)+ f, (xay + yax)
= 3 £, (Xad, (X)+ f,(y)ad, (y)+ f, (xay + yax) (2:3.9)

i+j=n
Comparing (2.3.8) and (2.3.9) we get:

f,(xay+yax)= Y f(y)ad;(x)+f (x)ad;(y).

(i) Replacing xBy+ypgx for y in 2.3.18(i) we get:
f,(xa(xBY +yBx)+(xBy +ypx)ax) = f (xa(xBy)+xa(ypx)+(xpy)ax+(ypx)ax)
= £, ((xax) By +(xay) Bx+(xBy)ax+(ypBx)ax)

D () Bd; (xax)+ £, (x) Bd; (xay)+ f, (x)ad; (xBY )+ f,(x)ad, (yx)

i+]j=n
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= 2 f( x)ad, (x)+ f,(x) Ad; (y) ad, (%) + i (x) ad; (y) Ad, (x) + f, (x) ad,; (x) Ad. (y)

= 1, (y) Prax+ z f,(y) B4, (x)ad, (x)-+ T, (x) Brary + Z £ (%), (y)ed, (x)+ f, () axpy
+ z f(x)ad, ()5, (x)+ 1, ()aypxs S (x)ad, ()59, (¥) (2.3.9)
On the other hand:

f (xa(xﬂy+ yﬂx)+(xﬂy+ ypx)ax) = f, (xaxBy+xaypx+xpyax+ypxax)=f, (y)Bxax

+ > fi( X)ad, (x)+ f,(X)aypx+ > f(x)ad;(x)Ad, (y)+ f,(xayBx+xByax) (2.3.10)

i+j+r=n i+j+r=n

Comparing (2.3.9) and (2.3.10) we get the require result.

(iii) Replacing « for g in 2.3.18(ii) we have:

f, (xayax+xayax)=2f, (xayax)= 2[ f, (X)axay+ i f.(x)ad;(y)ad, (x)}

i+j+r=n

Since M is 2-torsion free then we get:
i<n

f,(xayax)=f,(X)axay+ > f(x)ad,(y)ad,(X).

i+j+r=n

(iv) Replacing x+z for x in 2.3.18(iii) we have:

i~<n

f.((x+2)aya(x+2))=f, (x+2)a(x+2)ay+ Y f(x+2)ad;(y)ad, (x+2)=f, (X)axay

+]z f(x)ad, (y)ad, (X)+ 1, (Z)aXay+i+§:_n f (2)ad, (y)ad, (x)+ 1, (x)azay
+]z f(x)ad, (y)ad, (2)+ 1, (Z)aZaerH;ij_n f(2)ad, (y)ad, (2) (2:311)

On the other hand:

f.((x+2)aya(x+2))=f, (xayax+xayaz +zayax+zayaz)= f, (x)axay

+ i fi(x)ad;(y)ad, (x)+ fn(z)aZay+_ Izn: f(z)ad;(y)ad, (z)+ f, (xayaz +zayax) (2.3.12)
i+j+r=n i+j+r=n

Comparing (2.3.11) and (2.3.12) we get the require result.
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(v) Replace (x+z) for x in Definition 2.3.16(2.3.7) we have:

i~<n

f.((x+2)ayB(x+2))=f, (x+2)B(x+2)ay+ D fi(x+2)pd;(y)ad, (x+2)=f, (X)Bxay

+ f:_ fi(x) Bd; (y)ad, (x)+ f,(z) ray + i_ fi(z)pd;(y)ad, (x)+ f,(X) Bzay
* i fi(x)ﬂdj(y)“dr(Z)Jffn(z)ﬂza)’+_ Iin: f.(2)pd;(y)ad, (z) (2.3.13)
On the other hand:

f ((x +2)ayp(x+ z)) = f, (Xaypx+xaypz+zaypx+zayfz) =, (xaypx+zayfx+zayfz)

+f, (xaypz)= 1, (x)ﬁxazy+i+§:_n f.(x)pd; (y)ad, (x)+ f, (x)ﬂZay+i+§Z_n f.(x)pd;(y)ad, (2)
+1,(2) Bray + z £ (2) 54, (y)ad, (2)+ T, (xayp2) (23.14)

comparing (2.3.13) and (2.3.14) we get:

i<n

f,(xaypz)=f,(z) Bxay+ D f(z)pd;(y)ad,(X).

i+j+r=n
(vi) Replace (x+2z) for x in Definition 2.3.16(2.3.7) we have:

i<n

f.((x+2)ayB(x+2))=f, (x+2)B(x+ z)ozy+i+jz+r:_n f,(x+2)Bd;(y)ad, (x+2)

=(f,(0+ 1, (2) B(x+2)ay+ > (f.(x)+ 1 (2))8d; (y)a(d. (x)+d,(2))

i+j+r=n
i<n

= f,(x) Bxay+ f,(z) pxay + f,(X) Bzay + f,(z) fzay+ D f(x)Bd;(y)ad, (x)

+f,(z) pd; (y)ad, (x)+ f.(x) 5d; (y)ad, (2)+ f,(z) Bd, (y)ad, (z) (2.3.15)
On the other hand:

f.((x+2)ayB(x+2))=f, (xaypx+xaypz+zaypx+zaypz)=f, (xaypx+zaypz)

i<n

+f, (xayBz+zaypx)=f,(X)pxay+ > f(x)pd,(y)ad, (x)+f,(2) Bzay

+ i fi(z)Bd;(y)ad, (z)+ f, (xaypz+zaypx) (2.3.16)

i+j+r=n
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comparing (2.3.15) and (2.3.16) we get the require result. o

Definition 2.3.19: [20] Let F =(f; ) be a Jordan generalized higher reverse derivation of a I'—ring M,
then for all x,yeM and a I" we define:

5, (xy), = f, (xay)- >, fi(

i+j=n

Lemma 2.3.20:[20] If F =(f,),_, isaJordan generalized higher reverse derivation of T ring M, then for

all x,y,zeM,a,feland neN we get:

0 S(xy),=-d(y.x),

(i) S (x+y.2),=6,(x2),+5,(v.2),
(i) S (xy+2),=6,(xy),+5,(x2),
(iv) 6 (xY),.,=6(%Y),+5(xY),

Remark 2.3.21: Many notions on the Jordan generalized reverse derivations on I' — rings are generalized to
the Jordan generalized higher reverse derivations on T"— rings.

Remark 2.3.22: [20] Note that F =( f;)__ is a generalized higher reverse derivation of a I'—ring M if and
only if 6,(x,y) =0 forall x,yeM, eI and neN.

Theorem 2.3.33: [20] Let F :( f. )ieN be a Jordan generalized higher reverse derivation of al”' —ring M
then &,(x,y), =0 forall x,yeM, ael’ and neN.

Proof: By Lemma 2.3.18(i) we get:

f,(Xay+yax)= z fi( (x)+ f, (x)ad; (y) (2:3.17)

i+j=n
On the other hand:
Since f_ is additive mapping of a I'—ring M we have:

f.(xay+yax)=f (xay)+f,(yax)=f, (xay)+ Z fi( (2.3.18)

i+j=n
Compare (2.3.17) and (2.3.18) we get:

2 (xay)= if \ (xay)- in:f x)=0

i+j=n i+j=n

By Definition 2.3.19 we get:

5,(xy) =0.o 48



Chapter Three
Derivations On Prime - Rings

3.1 Generalized Derivations On Primer - Rings

In this section, we prove that a prime T"—ring M is commutative if f is a generalized derivation on
M with an associated non-zero derivation D on M such that f is centralizing and commuting on a left
ideal J of M.

A mapping f is said to be commuting on a left ideal J of M if [ f(x),x] =0 forall xeJ,ael

and f is said to be centralizing if | f (x),x] eZ(M) forall xeJ,ael.

Remark 3.1.1: Let M be a prime I"'—ring and J a nonzero left ideal of M. If D is a nonzero derivation
on M, then D is also a nonzero derivation on J .

Remark 3.1.2: Let M be a prime I'—ring and J a nonzero left ideal of M. If J is commutative, then M
is also commutative.

Lemma 3.1.3:[13] Suppose M is a prime I' —ring such that xaypz=xpyaz, forall x,y,zeM a,B T,

and D:M —M be a derivation. For an element a€M , if aeD(x)=0forall xeM and « I, then either
a=0or D=0.

Proof: By our assumption, aoD(x)=0for all xeM and a<I'. We replace x by XAy, then
aaD(xpy)=0=aaD(x)py+aaxpD(y)=0=aaxfD(y)=0 forall x,yeM and o, Bel. If D is
not zero, that is, if D(y);tO for some y e M, then by definition of prime I'—ring, a=0. o

Lemma 3.1.4:[13] Suppose M is a prime I' —ring such that Xayfz=xpgyaz , forall x,y,zeM a,fBel’,
and J a nonzero left ideal of M. If M has a derivation D which is zeroon J, then D is zeroon M.

Proof: By the hypothesis, D(J)=0. Replacing J by MIJ, we have 0=D(MIJ)
=D(M)I'J+MI'D(J)=D(M)I'J . Hence by Lemma 3.1.3, D must be zero, since J is nonzero.

Lemma 3.1.5:13] Suppose M is a prime I'—ring such that xayfz =xpByaz , forall x,y,zeM a,fBel’,
and J anonzero left ideal of M. If J is commutative, then M is commutative.

Proof: Suppose that x is a fixed element in J. Since J is commutative, so for all yeJ and ael,
[x,y], =0 and consequently, [x,J]_ =0. Hence by Lemma 3.1.4, [x,J]_=0 on M and xeZ(M). Thus

[x,M]_=0 for every xeJ and hence [J,y] =0 for all yeM. Again Lemma 3.1.4, [J,y] =0 and
yeZ (M) forall yeM. Therefore M is commutative.
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Lemma 3.1.6:[13] Let M be a prime I'—ring and f :M — M be an additive mapping. If f is centralizing
onaleftideal J of M,then f(a)ez(M) forallacJUZ(M).

Proof: By our assumption, f is a centralizing on a left ideal J of M. Thus we have, [f (a),a]a eZ(M)

forall acJ and a I". By linearization, for all a,beJ and a I", we have
[f(a).b] +[f(b).a] ez(M) (3.1.1)

If aeZ (M), then equation (3.1.1) implies [ f (a),b] €Z(M). Now replacing b by f(a)pb, we have
[f(a).f(a)pb] ez(M), this implies f(a)B[f(a),b] ez(M). If [f(a),b] =0, then
f(a)eCpy(J), the centralizer of J in M and hence f(a)eZ(M). Otherwise, if [ f(a),b] =0, then

J
f(a)ez(M). o

Theorem 3.1.7:[13] Let M be a prime I'—ring such that xayfz =xpyaz, forall x,y,zeM, a,fI"and
D a nonzero derivation on M. If f is a generalized derivation on a left ideal J of M such that f is
commuting on J, then M is commutative.

Proof: By our hypothesis, f is commuting on J. Thus we have [f (a),a]a =0 forall acJ and el
By linearizing this relation, we get | f (a),b] +[ f(b),a] =0.Putting b=bpaand simplifying, we obtain
[bpD(a),a] =0.Replacing b by ryb, we have [r,a] SayD(a)=0 forall acJ,reM and a, 8,y T .
Since M is prime I'—ring, thus [r,a] =0 or D(a)=0. Therefore for any acJ, either acZ(M) or
D(a)=0. Since D is nonzero derivation on M, then by Lemma 3.1.4, D is nonzero on J. Suppose
D(a)=0 for some aeJ, then acZ(M). Let ceJ with c=Z(M). Then D(c)=0 and a+c¢Z (M),

that is, D(a+c)=0 and so D(a)=0, which is a contradiction. Thus ce Z (M) forall ceJ. Hence J is
commutative and hence by Lemma 3.1.5, M is commutative. o

Theorem 3.1.8:[13] Let M be a prime I'—ring such that xayfz =xpyaz, forall x,y,zeM, a,f l'and
J a left ideal of M with JNZ(M)=0. If f is a generalized derivation on M with associated nonzero

derivation D such that f is commuting on J,then M is commutative.

Proof: We claim that Z(M);to because of f is commuting on J and the proof is complete. Now by

linearization, for all a,beJ and a €I", we have
[f(a).b] +[f(b).a] ez(M),
If we replace x by ¢gb with 0ceZ (M), then we have
[ f(c).b] po+cB[D(b),b] +cp f(b),b] €Z(M).Fromlemma3.13, f(c)eZ(M) and hence
cf[D(b).b] +cp[ f(b),b] eZ(M).
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Since f isa centralizing on J, we have c[ f (b),b] €Z (M) and consequently cs| D(b),b] eZ(M)
As c is nonzero, Lemma 1.3.4 follows that [D(b),b]a e Z(M). This implies D is centralizing on J and
hence we conclude that M is commutative. o

Remark 3.1.9: Let M be a prime I'—ring such that MITM =M and let A be the set of all ideals of M
which have zero annihilator in M, in this case, the set A is closed under multiplication. Indeed, let U and

V bein A . The equality UT'Vx=0 for xeM and all feT yields VAx< AnnU =(0) ,i.e, VSx=0
and so x e AnnV =(0) which implies x=0 Then we get that UT'V € A.

Denote  A={(U, f):U(+0) isanideal of M and f:U —M is a right M-module homomorphism for all U € A}
Define a relation ~ on A by (U, f)~(V,g)<3W(#0)cU NV suchthat f =g on W

Since the set A is closed under multiplication, it is possible to find such an ideal W € A and so "~
is an equivalence relation. This gives a chance for us to get a partition of A. We then denote the equivalence

class by CI(U, f)= f , where f ={g V. >M|(U, f)~(V,g)}, and denote by Q the set of all equivalence
classes. Then Q is a I'—ring, which is called the quotient T'—ring of M. The set
C.={geQlgyf="fygforall f eQand y eI} is called extended centroid of M.

Lemma 3.1.10: Suppose that the elements a ,b in the central closure of a prime I'-ring M satisfy

Zaiocix,Bibi =0 forall xeM and ¢, 8, €I". If b, =0 for some i, then a's are C —dependent, where C is

the extended centroid of M .

Proof: Let M be a prime I'—ring and let C. =C be the extended centroid of M. If a, and b, are non-zero
elements of M such that > aaxBb =0 for all xeM and ¢,/ €', then a;s(also b;s) are linearly

dependent over C. Moreover, if aaxfb=baxpa for all xeM and «,fI’, where a,b are fixed and
a =0, then there exists 4 C such that a=Aab for « €T". Clearly, the lemma is proved. o

Lemma 3.1.11:[30] Let M be a prime I"—ring of characteristic 2. Let d, and d, two non-zero derivations
of M and right M —module homomorphisms. If d,d,(x)=0 (3.1.2) forall xeM, then there exists
A eC,. such that d,(x)=Aad,(x) forall eI" and xeM.

Proof: Let x,yeM and a €I". Replacing x by xyy in (3.1.2), it follows from charM =2 that for all
Xx,yeM and y eI’

d, (x)yd,(y)=d,(x)rd,(y) (3.1.3)

Replacing x by xfz in (3.1.3), we get
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d, (x) Bzyd, (y)=d,(x)Bzyd,(y) (3.1.4)
forall xeM and y eI". Now, if we replace y by x in (3.1.4), then we obtain
d, (x) Bzyd, (x)=d, (x)Bzyd,(x) (3.1.5)

forall xeM and y,fel. If d,(x)=0, then there exists A(x)e C_such that d,(x)=A(x)ad,(x) for all
xeM and  eT" by Lemma 3.1.10. Thus, if d, (x)=0=d,(y), then (3.1.4) implies that

(A(y)—A(x))ad, (x) Bzyd,(x)=0 (3.1.5)

Since M is a prime I' —ring, we conclude by using Lemma 3.1.3 that A (y)=A(x) forall x,y e M. Hence
we proved that there exists 4 € C..such that d, (x)=Aad, (x) forall xeM and o eT" with d,(x)=0.0On

the other hand, if d, (x)=0, then d, (x)=0as well. Therefore, d,(x)=Aad,(x) forall xeM and aeT .
This complete the proof. o

Proposition 3.1.12:30] Let M be a prime I"—ring of characteristic 2 and d a non-zero derivation of M . If
d(x)ez(M) for all xeM, then there exists A(m)eC. such that d(m)=2A(m)ad(z) forall m,zeM
and ¢ €I” or M is commutative.

Proof: Since d(x)eZ (M) forall xeM, we have

[d(x),y]ﬂ =0 forall x,yeM and ST (3.1.6)
Replacing x by xyz in (3.1.6), we have

d(x)y[z,y]ﬂ+d(z)y[x, y]ﬂ =0 (3.1.7)
forall x,y,zeM and y,feTI'. Replace z by d(z) in (3.1.7), we obtain

d*(z)r[x y]ﬂ =0, VX,y,zeM, y,Bel (3.1.8)
Now, substituting zam for z in (3.1.8), it follows charM =2 that

d?(z)amy|[x, y]ﬂ:O, VX y,z,meM, y,B,ael (3.1.9)

Since M is a prime I" —ring, we obtain

d*(z)=0, vzeM or [x,y]ﬁzo, Vx,yeM,pel’ (3.1.10)

from (3.1.10), if d*(z)=0 for all zeM, then replacing z by zym in this last relation, it follows from
d(x)eZ (M) that
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d(z)yd(m)=d(m)yd(z), vzzmeM,y el (3.1.12)
Replacing z by zan in (3.1.11), it follows from d (x) e Z (M) that
d(z)anyd(m)=d(m)anyd(z), vzzmneM,y,ael’  (3.1.12)

If d(z)=0, then there exists A(m)eC_ such that d(m)=A(m)ad(z) for all zmeM and el by
Lemma 3.1.10. on the other hand, it follows from (3.1.10) that if [x, y]ﬂ =0 forall x,yeM and BeT,

then M is commutative. o

Theorem 3.1.13: [30] Let M be a prime I'—ring of characteristic 2, d, and d, two non-zero derivations of
M and U anon-zero ideal of M. If

d,d, (u)=0 forall ueU (3.1.13)
then there exists 4 €C. such that d,(x)=Aad,(x) forall aeT" and xeM.
Proof: Let u,veU and y eI'. Replacing u by d, (u)yvin (3.1.13), we get
dy(u)yd,(v)=0 forall uveU and y T (3.1.14)

Since d, #0, it follows from Lemma 3.1.3 that d; (u)=0 for all ueU , so from charM =2 that d; =0.
Now, substituting uyd, (x) for u in (1), we get

d,(u)rd,(d,(x))=0 forall ueU,xeM and y eT (3.1.15)

Since d, #0, we get d,(d,(x))=0 for all xeM by Lemma 3.1.3. Hence there exists 2eC such that
d,(x)=Aad,(x) forall €T and xeM by Lemma 3.1.11. o

Theorem 3.1.14: [30] Let M be a prime I'—ring, U a non-zero right ideal of M and d a non-zero
derivation of M. If

d(u)ya=0 forall ueU and y eI’ (3.1.16)

Where a is a fixed element of M, then there exists an element g of Q such that qya=0 and qyu =0 for
allueU and yeT.

Proof: Let ueU, xeM and feI. Since U is a right ideal of M, we have upxeU . Replacing u by
upx in (3.1.16), we get
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d(u)pxya+upd(x)ya=0 (3.1.17)

forall ueU, xeM and y,fel. Hence d(u)Bxyaam+upd(x)yaam=0 forany meM and a e,
and so d(u)ﬂ(ZXyaam)z—(uﬁ(Zd (x)yaam)). Therefore, for any veV =MI'al'M which is a non-

zero ideal of M, we have
d(u)pv=upf(v) (3.1.18)

forall ueU . f(v) is independent of u but it is dependent on v. Since M is a prime '—ring, f(v) is
well-defined and unique for all veV . Note that vay €V forany yeM, veV and « I'". Replacing v by
vay in (3.1.18) we get

d (u) B(vary) =ugf (vay) (3.1.19)
forall yeM and so by using (3.1.18) and (3.1.19), we have
(d (u) Av)ay =upt (vay) = (upt (v))ay =upf (vay)
= uBf (V)ay =upf (vay)
=up(f(v)ay-f(vay))=0
which implies from Theorem 1.3.3 that
f(vay)=f(v)ay (3.1.20)

for all yeM, veV and ael. It follows from (3.1.20) that f:V —M is a right: M—module
homomorphism. In this case, q=CI(V, f )€ Q. Moreover, f(v)=qgpv forall veV and aeI'. Let xeM
,VeV,ueU and y, Sl . Replacing v by xyv in (3.1.18), we get

d(u)B(xpv)=upf (xpv)=up(aBxyv) (3.1.21)

Also, replacing u by uyx in (3.1.18), we get

d(u) yxBv =uyxBaqpv—uyd(x)Bv (3.1.22)

Now, replacing B by y and replacing y by £ in (3.1.22), we get

d(u) Bxyv =uBxyayv—upsd (x) v (3.1.23)
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Thus, from (3.1.21) and (3.1.22) we obtain

uB(aBx—xyq+d(x))v=0 (3.1.24)

forall xeM,veV,ueU and y,fel". Hence d(x)=xyq—qpSx forall xeM and y, I by Theorem
1.3.3. now, we shall prove that g can be chosen in Q such that qya=0 and qyu=0 for all ueU and
yel. Let ueU and xeM,d(u)=gau—-upq and d(x)=qBx—xaq. Then we have
O:d(u[)’x)ya:(qa(uﬁx)—(uﬁx)aq)ya. Thus, qauBxya=upxaqya. If qyra=0, then qauBxya=0,
and so since M is prime I"—ring, we get qI'U = {0} . On the other hand, if gya=0, then gyu=0. In fact,
if qyu=0, then gqyra=0 since qaupBxya=upfxaqya. Thus, we may suppose that qya=0 and qyu =0 for
all ueU and yeT. In this case, we get gqaupfxya=upxaqya for all xeM,ueU and y,[,ael. It
follows from Lemma 3.1.10 that there exists A € C. such that gya=Ada and gyu=Adu forall ueU and

7,0, €l . Hence, if '=q—4, then gTa=0 and q'TU ={0}. This completes the proof. o

Lemma 3.1.15: [30] Let M be a prime I"—ring, U a non-zero right (resp. left) ideal of M and aeM. If
UTa={0} (resp. al'U ={0}), then a=0.

Theorem 3.1.16: [30] Let M be a prime I"—ring with charM =2, U a non-zero right ideal of M and d a
non-zero derivation of M. Then the subring of M generated by d(U) contains no non-zero right ideals of
M if and only if d(U)I'U ={0}.

Proof: Let A be the subring generated by d(U).Let S=ANU, ueU, seS and yeI'. Then
d(syu)=d(s)yu+syd(u)eA, and sowe have d(s)yueS.Thus d(S)I'U isaright ideal of M. In this
case, d(S)I'U ={0} by hypothesis. d(uya)=d(u)ya+uyd(a)eS and d(u)yaeS where ueU,acA.
Thus, we have uyd(a)eS. Therefore, 0=d (uyd (a)),Bu =(u;/d2(a)+d (u)yd (a))ﬁu .Since M isa

prime I' —ring, it follows from Lemma 3.1.15 that
uyd®(a)+d(u)yd(a)=0 (3.1.25)
forall ueU,ac A and y eI'. Replacing u by upv where veU, ST in (3.1.25) we get,
d(u)pvyd(a)=0 (3.1.26)

Since M is a prime I'—ring, we get d(U)I'U={0} or d(A)fU={0}. If d(A)TU={0}, then
d*(U)ru ={o}.
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Let u,veU and gel, then 0=d(d(upv))=upd?(v) +d(u)Ad (v)+d(v)Ad(u)+d?(u)Av, and so we
have d(u)gd(v)=0 forall u,veU and feI" by charM = 2. Replacing u by uyw where weU,y T’
in the last relation, we have d (u)ywgd (v) =0 which yields d(u)yv=0 forall u,veU and y T .

Conversely assume that d (U)T'U ={0}. Then AI'U ={0}. Since M isa prime I'—ring, A contains

no non-zero right ideals. o
Theorem 3.1.17:[30] Let M be a prime I"—ring with charM =2, U a nonzero right ideal of Mand d,,d,

are two non-zero derivations of M. If d,d,(U)={0}, then there exists two elements p,q of Q such that

qru ={0} and pI'u ={0}.

Proof: If d,d,(U)={0}, then d,(A)={0} where A is a subring generated by d,(U). Since d =0, A
contains no non-zero right ideals of M. Thus, from Theorem 3.1.16, we have d,(u)yv=0 forall u,veU
and y eI". Also, there exists q € Q such that gr'U = {0} by Theorem 3.1.14. Therefore d, (uyv)=uyd,(v)
for all u,veU and yeT. In this case, 0=d,d,(upv)=d, (uyd,(v))=d,(u)yd,(v), and since M is a
prime I'—ring, we get d,(u)yv=0 for all u,veU and yeI'. Again, by Theorem 3.1.14, there exists
p €Q such that pr'U ={0}. This completes the proof. o

Remark 3.1.18: (a) Consider the following example. Let R be a ring. A derivation d :R — R is called an
inner derivation if there exists aeR such that d(x)=[a,x]=ax—xa for all xeR. Let S be the 2x2

matrix ring over Galois field {0,1, W, WZ} , with inner derivations d, and d, defined by

s oo

for all xeS. Then the characteristic of S is 2 and we have d, #0,d, #0,d,d, =0and d? =0. Also, if we

take M=M,,(S)={(a,b)|abeS} and F:{Lﬂm is an integer},

then M is a prime I'—ring of characteristic 2. Define an additive map D, :M—>M by
D, (%, y)=(d,(x).d,(y))- Since (x, y){g}(a,b) =(nxa,nxb), therefore D, is a derivation on M . Similarly

D,:M—M given by D,(x,y)=(d,(x),d,(y)) is a derivation. In this case, we have
D, #0,D,=0,D,D,=0 and D =0. Thus we know that there exist two derivations D,,D, of M such that
D,D,(M)={0} but D,(M)I'M={0} and D,(M)I'M == {0}. Therefore the condition of charM =2 in
Theorems 3.1.15 and 3.1.16 is necessary.
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(b) In Theorems 3.1.14 and 3.1.17, if ay(cpb)=apf(cyb) for all a,b,ceM and y,pel, then

d(x)z[q,x]yzqyx—x;/q for all xeM,yeI’ and for some qeQ is inner derivation and also

dl(x):[q,x]y and dz(x):[q,x]ﬁ for all xeM,y,Bel’ and for some elements q,peQ are inner

derivations .
3.2 Permuting Tri-Derivation On Prime - Rings
Let M be a I'-ring. A mapping D:MxMxM — M is said to be tri-additive if it satisfies:

1. D(x+w,y,z)

D(x,y,z)+D(w,y,z),
D(x,y,2)+D(xw,z),
D(x,y,z)+D(xy,w).

2. D(x,y+w,2)

3. D(x,y,z+Ww)

for all x,y,zzweM. A tri-additive mapping D is said to be permuting tri-additive if
D(x,y,2)=D(x,z,y)=D(y,x,2)=D(y,z,x)=D(z,x,y)=D(z,y,x) for all x,y,zeM. A mapping
d:M—M defined by d(x)=D(x,x,x) is called the trace of D, where D is a permuting tri-additive

mapping. It is obvious that if D is a permuting tri-additive mapping, then the trace of D satisfies the
relation

d(x+y)=d(x)+d(y)+3D(x,x,y)+3D(x,Y,y) (3.21)

for all x,yeM. A permuting tri-additive mapping D is called a permuting tri-derivation if
D(xaw,y,z)=D(x,y,z)aw+xaD(w,y,z) forall x,y,z,weM and a I". Then the relations

D(x, yaw,z)=D(X,y,z)aw+yaD(w,y,z)
and
D(x,y,zaw)=D(x,y,z)aw+zaD(w,y, )

are fulfilled for all x,y,z,weM and a I'". Let D be a permuting tri-additive mapping of M, where M s
a I"'—ring. Since

D(0,x,y)=D(0+0,x,y)=D(0,x,y)+D(0,xy),
We have D(0,x,y)=0 forall x,yeM. Thus
0=D(0,y,z)=D(—x+X,y,2)=D(-x,y,2)+D(x,y,2),

and so D(—x,y,z)=-D(x,y,z) for all x,y,zeM. Therefore the mapping d:M —>M defined by

d(x)=D(x,x,x) is an odd function.
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Example 3.2.1: For a commutative ring R, let

laeR:.

<
I
o o w

b c 00
0 O|lajb,ceRyandI'=</0 O
00 00

o o R

It is obvious that M and T are both abelian groups under matrix addition. Now it is easy to show that M is
a I'—ring under matrix multiplication. A  map D:MxMxM—M  defined by

a b c¢)(fa b c)(a b ¢ 0 0 aca,fa,
0 0 0] /0 0 0|0 O 0 is a permuting tri-derivation.

0 0 O
0 0o 0){0O O O0){O0O O O 00 O

Lemma 3.2.2:[28] Let M be a 2,3-torsion free I'—ring and | a non-zero one-side ideal of M. Let D be a

permuting tri-derivation with the trace d . Consider the following conditions:

i. d(x)=0 forall xel
ii. D(xy,z)=0forall x,y,zel

(

iii.  D(m,x,y)=0forall x,yel and meM

iv. ~ D(m,n,x)=0 forall xel and m,neM
(

v. D(m,n,r)=0 forall mn,reM.

Then (i) and (ii) are equivalent. Moreover if M is a prime I'—ring or Ann.I =0 (or Ann| =0), the above
conditions are all equivalent.

Proof: Let | be arightideal of M and let m,n,reM,x,y,zel and «, ,y €I". Since M is 3-torsion free,
it follows from (3.2.1) that

D(x,x,¥)+D(xy,y)=0 (3.2.2)

Writing y+z for y in (3.2.2) and using the fact that M is 2-torsion free, we know that (i) and (ii) are
equivalent. Replacing z by zam in (ii) implies that

0=D(x,y,zam)=D(X,y,z)am+zaD(m,x,y)=zaD(m,Xx,y) (3.2.3)

If M is aprime I'—ring then by Lemma 3.1.3, we get (ii) and (iii) are equivalent. If Ann.1 =0, then from

(3.2.3) we get (ii) and (iii) are equivalent. Replacing y by yAn in (iii), we have

0=D(m,x,yBn)=D(m,x,y)Bn+ypD(m,n,x)=yLD(m,n,x) (3.2.4)

If M isaprime I"'—ring then by Lemma 3.1.3, we get (iii) and (iv) are equivalent. If Ann.|1 =0, then from

(3.2.4) we get (iii) and (iv) are equivalent. Replacing x by xyr in (iv), we have
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0=D(m,n,xyr)=D(m,n,x)yn+xyD(m,n,r)=xyD(m,n,r) (3.2.5)

If M is a prime I"'—ring then by Lemma 3.1.3, we obtain (iv) and (v) are equivalent. If Ann.1 =0, then

from (3.2.5) we have (iv) and (v) are equivalent. Similarly we can prove the result for a left ideal | . o

Theorem 3.2.3: [28] Let M be a 2,3-torsion free prime I'—ring, | a nonzero ideal of M. Let D, and D,
be permuting tri-derivations of M with traces d, and d, respectively. If D,(d,(x),x,x)=0 forall xel,
then D, =0 or D, =0.

Proof: Assume that D, (d,(x),x,x)=0 forall xeI.Foranyx,yel we have
D, (d, (x+Y),x+Yy,x+Yy)+D,(d, (—x+Yy),x+Yy,x+Yy)=0.

Since M is 2-torsion free, it follows that
2D, (d, (), %, y)+D;(d, (), % X)+3D,(D, (XX Y),%x)+3D, (D, (X, X, y),V.Y)
+6D, (D, (X, Y,¥). X, y)=0 (3.2.6)

forall x,y el.Writing x+y for y in (3.2.6) and using the fact that M is 3-torsion free, we get
D, (d,(x),y,y)+4D;(d,(x),x y)+6D, (D, (XX, ¥),X x)+6D, (D, (X, X, y), X Y)
+3D, (D, (X, ¥,Y), X, x)=0 (3.2.7)

forall x,yel.Writing —x for x in (3.2.7)and using the fact that M is 2-torsion free, we get
4D, (d,(x),%,y)+6D; (D, (XX, Y),%x)=0 (3.2.8)

for all x,yel. Replacing y for xay in (3.2.8)and using the hypothesis and the fact that M is 2,3-

torsion free, we get

d, (x)aD, (X, X, y)+d,(x)aD,(x,x,y)=0 (3.2.9)
forall x,yeland o eI'. Writing yfz for y in (3.2.9) implies that
d, (X)aypBD;(x,x,z)+d, (x)ayBD,(x,x,2)=0 (3.2.10)
forall x,y,zel and a, B eI". Writing x for z in (3.2.10)and using Lemma 1.4.8, we have

d, (x)aypd,(x)=0 (3.2.11)
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forall x,y,zel and «,f €T In this case, suppose that d, and d, are both different from zero. Then there
exist x,X, €I such that d,(x)=0 and d,(x,)=0. In particular, d,(x )aysd,(x)=0 forall yeland
a,pel’. Since d,(x)=0 and M is prime I'—ring we have d,(x,)=0. Similarly, we get d,(x,)=0.
Then the relation (3.2.10) reduces to the equation d, (x, )aySD,(x,%,z)=0 forall y,zel and o, fT.
Using this relation and Lemma 3.1.3 we obtain that D, (x,,x,z)=0 forall zel because of d,(x )= 0 (the
mapping z — D, (X, %,z) is a derivation ). Thus, we have D,(x,x,z)=0. In the same way, we get

D, (%, %,2z)=0. Substituting x, +X, for z, we obtain

d,(z)=d, (X +X%,) =d; (x)+d, (%) +3D, (%, %, %) +3D; (X, %, X%, ) =d, (%) =0

and
d,(z)=d,(x +x,)=d,(x)+d,(%)+3D, (X, %,%)+3D, (X, %,,%,) =d,(x,) =0

Therefore we have d,(z)=0 and d,(z)=0, a contradiction. Hence, we get d,(x)=0 for all xel or
d,(x)=0 forall xel.Thus D,=0 or D,=0. 0o

Remark 3.2.4: Let M be a 2,3-torsion free prime I'—ring. Let D be permuting tri-derivation of M with
trace d . If ad (x)=0 forall xeM,a T, where a is a fixed element of M, then either a=0 or D=0.

Theorem 3.2.5: [28] Let M be a prime I'—ring of characteristic not 2 and 3, 5-torsion free, | a non-zero
ideal of M. Let D, and D, be permuting tri-derivations of M and let d, and d, be traces of D, and D,,
respectively, such that d, (1)< 1. If Ann1=0 and D,(d,(x),d,(x),x)=0 for all xel, then D, =0or
D, =0.

Proof: Forany x,y e I, we have
D, (d,(x+Y),d, (x+y),x+y)+D,(d,(-x+y),d, (-x+Yy),-x+Yy)=0
Since CharM = 2, it follows that
2D, (d, (y),d, (x),x)+6D, (D, (%% ¥),d; (x), x)
+6D, (D, (X, Y, Y).d,(y),x)+18D, (D,(x. X, ¥), D, (X, ¥, ¥),X)
+D,(d,(x),d,(x),y)+6D,(D,(x,y,y).d, (x),y)
+6D, (D, (X, %, Y),d,(¥),y)+9D, (D, (X, Y,¥). D, (X, ¥,y).Y)

+9D, (D, (%, %,¥), D, (x,x,y),y)=0 forallx,y el. (3.2.12)
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Writing 2x for x in (3.2.12) and using the fact that CharM = 2 and M is 3-torsion free, we get

2D, (d,(y).d,(x),x)+30D,(D,(x X Y),d,(x),X)
+5D; (d, (x),d,(x),y)+18D, (D,(x,X,¥), D, (X, ¥, ¥),X) (3.2.13)
+6D, (D, (x,Y,Y).d,(X),y)+9D, (D, (X, %, ¥),D,(x,x,y),y)=0 forallx,y .
Writing 2x for x in (3.2.13) and using the fact that CharM = 2 and M is 3,5-torsion free, we get
6D, (D, (X, X, y).d,(X),x)+D;(d,(x),d,(x),y)=0 forallx,yel. (3.2.14)
Replacing y for yAx in (3.2.14) implies that
D, (x,%,y) BD,(d,(x),x,x)+D,(d,(x),x,y) #d,(x)=0forall x,yel, Sl (3.2.15)
Replacing y for xay in (3.2.15) induces
d, (X)ayBD,(d,(x),x,x)+D,(d,(x),x,x)aypd,(x)=0forallx,y e l,a, S T (3.2.16)
We now show that Dl(dz(x),x, x):O for all xel. Assume that there exists x, €l such that

D, (d, (%), %.%)#0.

Replacing x by x in (3.2.16), then d,(x)=0 by Lemma 14.8. Therefore
D, (d, (%), %,%)=D,(0,%,%)=0, a contradiction. It follows from Theorem 3.2.3 that D, =0 or D, =0.

O

Corollary 3.2.6: Let M be a prime I" —ring of characteristic not 2, 3 and 5, 7-torsion free, | a nonzero ideal
of M. Let D, and D, be permuting tri-derivations of M and let d, and d, be traces of D, and D,,

respectively, such that d,(I)<=1. If d,(d,(x))=f(x) for all xel then D=0 or D,=0, where a
permuting tri-additive mapping F:MxMxM —M and f is the trace of F .

61



3.3 Jordan Triple Higher Derivation On Prime I - Rings

In this section we introduce the concept of triple higher derivation on a prime I"—ring M and prove
that every Jordan triple higher derivation on a prime I'—ring M of characteristic different from two is a
triple higher derivation on M and then, it is shown that every Jordan triple higher derivation is a higher
derivationon M.
Definition 3.3.1: [3] Let M be a I'-ring and D :{dn}neN be a family of additive mappings d,:M —>M

such that d, =1,,. Then D is said to be

a) a higher derivation on M if foreach ne N,

.(aab)= > d (a ) forall a,beM,and ael;
p+g=n
b) a Jordan higher derivation on M ifforeach neN,
(aca)= > d (a ) forallaeM,and ael;

p+g=n
C) atriple higher derivation on M if foreach neN,
2(aabpe)= > d ( (b)Bd, (c) forall a,b,ceM,and o, BeT;

p+g+r=n
d) a Jordan triple higher derivation on M if foreach neN,
.(agbpa)=" > d ( (b)Bd, (a) forall a,beM,and o, BeT.

p+Qg+r=n

Example 3.3.2: [3] By Example 1.1.2 (2), let f :R— R be atriple derivation on R. Now define
F:M—M suchthat F((x,y))=(f(x), f(y)). Then F isatriple derivation on M. In fact, if

=(><1,yl),bz(xz,yz),c=(x3,y3)eM,a=[”0J nd = ( 1jer then

aab e = (xn%,n,%;, XN X,n,Y, ), and then we get F (acbpc)=F(a)abpc+aaF (b)Ac+aabpF (c), for
all a,b,ceM and o,pel".

n

Define d, = F—I forall ne N, where F is atriple derivation on M.
n!

Claim: D={d,} _ isatriple higher derivation on M.
We shall use induction on n to prove the claim:

%‘ib’&) =aabpc.

For n=0,d,(aabfc) =

F'(aabpc)

For n=1,d, (acbpc) = T =F (acbpc) = F (a)abpc+aaF (b) fc +aabSF (c).Suppose that,
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m

d:

m

| defines a triple higher derivation on M for each m<n. Consider,
m!

d, (acbfc) = M = 1(F (wﬂ _1 F ( _,(aabpc)). Applying the hypothesis of

n! n n—1)!

inductionon d_ , , we have

d,(aabpc)=— Z d (b)pd, (c)

Py Pl >an<b>ﬂFf<c>

;p:zrn:[F5;§a>a2?q<!b>[,,r#fr<!c>+Fpp<!a>aF“:!<b>,frr<!c>+Fpp<!a>aF;<!b>ﬁF~:!<c>J
=0 % (dpa(a)ad, (0)50,()(p 1)+, (a)ad,. (0)5d, (€)(a+1) +d, (), ()6, . () +1)
HS S et 0] @609+ 5 3 alaa, 0|, @
S 2 ataae, o), €0~ )]

255 0 ()t (0)d, (014530, (@)ad, ., ()50, (0) ~1 55 (a)a, ()0, 0
S (@)at, (080 (0)+ 50, ()b, (0) i~ 5.0, (@)abpd, , (o
+%:Z_::dj(a)adn_j(b)ﬂcj+ d, (a)abpen+~d, ,(a)ac, (b)ﬂc(n—l)—%dn(a)abﬁc

~2d,. (@), (0) o1 370, (), (0) e 323 ), ()0, , ()

135 d(@)ad,, (0), (0 Zd (@), ., (6) 48, (0)n=2 373, (), ., (0) . )
2554 (@), 1, (0) 94, (c)i ol () () )+ z (@)ad, ,(b) fo—15 4, (a)ad, , (o)
L4 (@)as, ﬁHjZO‘,ZOd b) B, ()—id()abﬂdn_l (€)-3-0 (), . (6), )
+%§di(a)adn (c) ind b) 4, , (c)+d a)abﬂc+§di(a)adn_i(b),8c
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n

Thus, the family D = {dn}neN where, d, =— defines a triple higher derivation on M .

n!

Similarly, if f:R—R is considered to be a Jordan triple derivation on R then using similar
procedure one can find an example of Jordan triple higher derivation on M.

Remark 3.3.3: In the above example if we consider f:R— R as derivation (resp. Jordan derivation), then

using similar arguments as given in the above example with necessary variations, one can construct an
example of higher derivation (resp. Jordan higher derivation) on M.

It can be easily seen that every triple higher derivation is a Jordan triple higher derivation. But the
converse is not true in general. In the present section we establish the converse of the above statement under
certain conditions.

Definition 3.3.4:[3] Let M be a I"—ring. Then for all a,b,ceM and «, 8 <l we define

[a,b,c]  =aabpc—cabpa.

a.p

Lemma 3.3.5:[3] If M isa I'—ring, then for all a,b,c,d eM and a,BeT

i a,b

.cl,,+lcba], =0
a+c,b,d]

a.fp

i. .y =labd] +[cbd]
iii. [abc+d]  =[abc]  +[abd]

a,

‘%

=[a,b,c] ,+[a.d,c]

a,

=

a.p
a,b, c] . [a,b,c]w +[a,b,c]m

a.p
V.

[
[
[
iv. [ab+d,c]
[
[

vi. [abc] , =[abc]  +[abc]
Proof: direct application of Definition 3.3.4. O

Lemma 3.3.6:[3] Let M bea I'—ringand D={d,} . be aJordan triple higher derivation on M. Then for

all a,b,ceM  and forall &, we have

d,(acbpc+cabBa)= > d ( + > dy( b)Ad, (a).
p+Qg+r=n p+g+r=n
Proof:  Since 2(aabpe)= > d( (b)pd,(c).  Linearizing on a we  get,

p+g+r=n

d,((a+c)abp(a+c))= > d, (a+c)ad,(b)Ad, (a+c). Computing and canceling the like terms from

p+g+r=n

both sides, the proof will be complete. o
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Let D={d,} . be a Jordan triple higher derivation of a I'—ring M. Then for all a,b,ceM and
a, B eI’ we define

G, ,(ab,c)=d, (acbpc)- > d, (b)Ad, (c) forall neN.

p+q-+r=n

Lemma 3.3.7: Let D={dn}neN be a Jordan triple higher derivation of a I'—ring M. Then for all
a,b,ceM , a,fland forall ne N, we have

i. G;,(abc)+G] (chb,a)=0

ii. G,,(a+cb,e)=G] (ab,e)+G] (cb.e),
ii. G,,(abc+e)=G],(ah,c)+G,,(ab,e),
iv. G),(ab+ce)=G],(abe)+G] (ace),
v. G _,(abc)=G],(ab,c)+G,(ab,c),
vi. G, (ab,c)=G,,(ab,c)+G; (ab,c).

Proof: Proof of part (i) is obvious by Lemma 3.3.6, while the proofs of parts (ii)-(vi) can be obtained easily
by using additivity of d, .

Lemma 3.3.8: Let M be a 2-torsion free semi-prime I'—ring. If G ,(a,b,c)yxs[a,b,c] =0, then

Ggﬁ(a,b,c)yx(S[u,v,w]a’ﬂ=O,for all a,b,c,u,v,w,xeM,a, ,7,06 <l andforall neN.

Proof: Replacing a by a-+u in the hypothesis we get Ggﬁ(a+u,b,c)yx6[a+u,b,c]aﬁ =0. Hence using

Lemma 3.3.5. we find that G, ,(a,b,c)yx5[u,b,c] . +G] ,(u,b,c)yxs[a,b,c]  =0.

a,p a,pB

Now consider; G; ,(a,b,c)yx5[u,b,c]  ¥xdG; ,(a,b,c)yxs[u,b,c] |

=-G] ,(a,b,c)yxs[u,b,c],  »x3G; ,(u,b,c)yxs[a,b,c] , =0 using hypothesis. Since M is semi-prime

a.p

' —ring, then G, ;(a,b,c)yx5[u,b,c]  =0. Similarly, replacing b by b+Vv and ¢ by c+w and using

a.p
semiprimeness of M, we get the required result. o

Now we are well equipped to prove the main result, which is:
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Theorem 3.3.9:[3] Let M be a prime I" - ring of characteristic different from two, then every Jordan triple
higher derivation on M is a triple higher derivation on M.

Proof: we are given that the family D={dn}neN of additive mappings on M satisfies

.(aabpa)=" > d ( (b)pd, (a)for all a,beM and o, Bel’, and for all neN.  Now we

p+g+r=n

compute A=d, (aa(b,Bnyécab) Ba+ca(bpayxsacab) fc) where

A= > d (a)ad;(bBcyxscab)pd,(a)+ D d (c)ad, (bBayxsaab)pd, (c)

p+i+v=n p+i+v=n

) p+q+JZJ:ru+v=ndp(a)adq (b) 4 j (crxdc)ady (b) Ady (a)

+D+C|+J§ru+v=ndp(c)adq (b) d j (arxoa)ady (b) Ay (c)

= > dp(a)adq (b) Ad, (¢)7d, (x)&d, (c)ed, (b) Ad, (a)

P+Q-+r+SFt-+u+v=n

¥ » dp (c)adq (b) 4, (a)yd, (x)5d, (a)ed, (b) Ad, (c).

p+Q+r+s+t+u+v=n

On the other hand,
A=d ((aabﬁc)yxé(Cabﬁa)+(Cabﬂa)yx5(aabﬁc)) and using Lemma 3.3.6 we get

A= > d (aabpc)yd,(x)sd,; (cabpa)+ Z d, (cabpa)yd, (x)sd; (aabpe).

i+s+j=n i+s+j=

On comparing the above two equalities we get,

> d;(acbpc)yd, (x)sd; (cabBa)+ D d;(cabpa)yd, (x)sd; (acbpc)

i+S+j=n i+s+j=n

_ 5 dp (a)adq (b) B, (c)7d, (X)5d, (c)eed, (b) A, (a) (3:3.1)

p+Q-+r+s++u+v=n

¥ » dp (c)adq (b) Ad, (a) 7d, (x)5d, (a)ed, (b) A, (c).

p-+q+r+s+t+u+v=n

In (3.3.1), put n=1 and cancel the like terms from both sides of this equality and then arrange them, to
obtain
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G, s(ab.c)yxs[ab,c]  +[ab.c]  yxsG, ,(ab,c)=0 (33.2)

a.p
In view of Lemma 1.4.5 and the above equation, we obtain

G, ,(ab,c)yxs[abc] = [a,b,c]aﬁ 7x6G,, ,(a,b,c)=0

ap
Also using Lemma 3.3.8 we find that

G,,(ab.c)yxsuv,w] =0, forall abcuvweMa py el

Therefore using primeness of M, we get either G;ﬁ(a,b,c)zoor 5[u,v,w]a’ﬂ:0, for all

a,b,c,u,v,weM,a, B,7,0 €T". If we suppose that 5[u,v,w] =0, for all u,v,weM,a, I, then we

a.p
have uavpw=wavpsu . Hence by Lemma 3.3.6 we find that,

d,(aabpc+aabpc)= > d ( + > do( b)Ad, (a).
p+q+r=1 p+q+r=1
Since M is 2-torsion free, we get d,(acbBc)= > d( (b)pd, (c)or we may say that for

p+g+r=n

n=1D={d fonis a triple higher derivation. On the other hand if G;,(ab,c)=0, then
d,(aabpc)= > d ( b) Ad, (c) , which again implies that D={d,} _ is triple higher derivation.

p+g+r=1
Now let the result holds for n—1, i.e., G, ,(aabfc)=0forall a,b,ceM and o, BT .

Also (3.3.1) can be rewritten as

Y d;(aabpc)yxsd; (cabBa)+ > d;(aabpc)yd,(x)sd, (cabpa)

i+j=n i+j=n-1

+..+ > d (aabpc)yd, , (x)8d, (cabpa)+ D d, (aabpc)yd, (x)5d; (cabBa)

i+j=1 i+j=0

+ > d;(cabBa)yxsd; (aabBc)+ > d,(cabpa)yd,(x)sd,; (acbpc)

i+j=n i+j=n-1

+..+ > d (cabpa)yd, ,(x)dd, (aabpc)+ D d, (cabpa)yd, (x)5d; (acbpc)

i+j:1 i+j:0
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= dp(a)adq(b) Ad, (c) yxod, (c)ad, (b) Ad, (a)

p+g+r++u+v=n

b3 dp(a)adg(b)d, (c)d, (x)od, (clad, (b) A9, (a)

p+g+r+t+u+v=n-1

Tt z dp(a)“dq (b)ﬂdr(c)ydn—l(x)é‘dt (C)adu (b)ﬂdv (a)
p-+g+r+t+u+v=1

> dp(a)adg(b)Ad, (¢)rd, (x)5d, (c)ad, (b) A, (a)

p+qg-+r+t+u+v=0

+ dp(c)edq(b) Ad, (a)yxsd, (a)d, (b) Ad, (c)

p+q+rJ§+u+v:n

+ > dp(c)adq(b)Ad, (a)rd, (x)5d, (a)xd, (b) Ad, (c)

p+g+r+t+u+v=n-1

bt X dp(c)adg(b)Ad, (a)yd,, (x)5d, (a)ad, (b) A, (c)

p+q+r+t+u+v=1

+ 0y dp (¢)erdq (b) A, (2) 4, (x) 54, (a)ad, (b) A, (c)

p+qg+r+t+u+v=0

Also, we have

> d,(aabpc)yxsd; (cabBa)+ > d (aabpc)yd,(x)sd,; (cabpsa)

i+j=n i+j=n-1
+..+d, (aabpc) yd, , (x)ScabBa+aabped, , (x)5d, (cabpa)

+aabpcyd, (x)scabpa+ Y. d, (cabBa)yxsd; (acbpc)

i+]j=n

+ > d,(cabpa)yd,(x)5d; (aabfBc)+...+d, (cabpa) yd, , (x) Saabc

i+j=n-1

+cabpayd, , (x)dd, (aabpc)+cabpayd, (x)Saabpsc

= dp (a)adg (b) Ad, (¢) yx5d, (clad, (b) Ad, (a)

pHo+r-Eru+v=n P

b3 dp(a)adg(b)d, (c)d, (x)od, (clad, (b) A9, (a)

p+g+r+t+u+v=n-1
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+..+d,(a)abpcyd, , (x)scabpa+aad, (b) fcyd, , (x)ScabBa
+aabpd, (c)yd, , (x)Scabpa+aabpeyd, , (x)5d, (c)abpa
+aabpcyd, , (x)scad, (b) fa+aabpcyd, , (x)scabpd, (a)

dp(c)adq(b)Ad, (a)yxod, (a)ed, (b)Ad, (c)

+aabpcyd, (x)scabpa+ %}
p+Q+r-T+u+v=n

b3 dp(c)adq(b)Ad, (a)rd, (x)od, (@, (b) A, (c)

p+g+r+t+u+v=n-1
+..+d, (c)abBayd, , (x)saabpc+cad, (b) fayd, , (x)Saabsc
+cabd, (a)yd,_, (x)saabpc+cabpayd, , (x)5d, (a)absc

+cabfayd, , (x)daad, (b) fc+cabpayd, , (x)saabpd, (c)

+cabpfayd, (x)saabpc .
Now since d,,(aabgc)= > d ( (b)d, (c)for all a,b,ceM,a,feland for all neN, the
p+q+r=n-1

above expression reduces to

> d;(aabBc)yxsd; (cabBa)+ > d,(cabpBa)yxsd, (aabpc)

i+j=n i+]j=n

dp(a)adq (b) Ad, (c) yxod, (c)ad, (b) Ad, (a)

p+q+r+¥+u+v=n

+ dp (c)adq (b) Ad, (a) yxod, (a)ed, (b) Ad, (c).

p+q+r4§‘+u+v=n

It can also be written as

i+j=n
d, (aabfc) yxscabBa+aabpcyxsd, (cabpa)+ Y. d (acbpc)yxsd, (cabpa)

0<i, j<n-1
i+j=n

+d, (cabBa)yxsaabpc +cabBayxsd, (acbpe)+ D d(cabBa)yxsd, (aabpc)

O<i, j<n-1

= > aabpcyxsd,(c)ed, (b)Ad, (a)

p+q+r=0,t+u+v=n
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+ > d,(a)ad,(b)sd, (c)yxscabpa

p+q+r=0,t+u+v=0

+ > d, (a)ad, (b)Ad, (c)yxsd, (¢)ad, (b) Ad, (a)

O<p+g+r,t+u+v<n-1

+ > cabpayxsd, (a)ad,(b)Ad,(c)

p+q+r=0,t+u+v=n

+ > d(c)ad,(b)Ad, (a)yxsaabsc

p+q+r=n,t+u+v=0

+ > d,(c)ad,(b)pd, (a)yxsd, (a)ead, (b)Ad, (c).

O<p+q+r,t+u+v<n-1

Onusing d,; (aabpc)=" > d ( (b)Ad, (c)forall ab,ceM,a, Bel and forall neN , we get,

p+g+r=n-1

G, ,(a,b,c)yxs[a,b,c]
neN.

.ptlab.c] yxsG] ,(ab,c)=0 for all abceM,a,perand for all

Now upon using the same methods as used after (3.3.2), we find that, either G ;(a,b,c)=0or

[a,b,c] =0, for all ab,ceM,a,Beland for all neN. If G} ,(a,b,c)=0, then by definition of

a.p

G, (ab.c),D={d,} , becomes a triple higher derivation. Whereas if [a,b,c] =0, in view of Lemma

3.3.5 and using torsion restriction on Magain D={d,} _ becomes a triple higher derivation. Hence the

required result is proved. o

Let D={d,} , be a Jordan higher derivation of a I'—ring M. Then for all a,beMand a eI we

define

s(ab)=d, (aab)- > d (a ) forall neN.

p+q=n

It can be easily seen that every higher derivation on a T"—ring M is a triple higher derivation on M.
But the converse is not true in general. The theorem given below provides the necessary condition such
converse holds for a prime I'—ring M.

Theorem 3.3.10:[3] Any triple higher derivation of a prime I'—ring M of characteristic different from two
IS a higher derivation on M.
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Proof: Given that D={d,} __isa triple higher derivation on M, i.e.,

(aabpe)= > d( (b)Ad, (c) foreacha,b,ceM,a, BeTand forall neN.

p+g+r=n
Now consider

A=d, (ac(byxsa)ab)= Y d,(a)ad, (byxsa)ad, (b)

p+i+t=n

= 2. dy(a)ad,(b)yd, (x)od,(a)ad,(b).

p+g+r+s+t=n
Again,

A=d,((aab)yx5(aab))= > d;(aab)yd,(x)5d,; (aab)

i+r+j=n

Comparing the above two expressions so obtained for A, we obtain

S d,(aab)yd, (x)5d, (aab)= Y d, (a)d, (b)yd, (x)5d, (a)ad,(b) (33.3)

i+r+j=n p+Qg+r+s+t=n
Hence, for n=1 the above equation becomes,

d, (aab)yxsaab+aabyd, (x) saab +aabyxsd, (aab)
=d, (a)abyxdaab+aad, (b)yxdaab +aabyd, (x)sacb
+aabyxsd, (a)ab +aabyxsaad, (b).

This yields that, F, ;(a,b)yxdaab+aabyxsF; ,(a,b)=0.

On using Lemma 1.4.5 we have F; ;(a,b)yxsaab=0for all a,b,xeM and o, BT, which further on
linearizing becomes F, ,(a,b)yxdcad for all a,b,x,c,d eM and a, Bl . Again since M is prime, we

get F, ;(a,b)=0for all a,b,xeMand a,B<T", or we can say that d,(acb)= > d,( ) for all

i+j=1

a,beM and a,B I Let the result hold for n—1, i.e.,

d,,(acb)= > d,(a)ed,(b) forall a,beM and o, BT . (3.34)

i+j=n-1

(3.3.3) can be rewritten as
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Y d;(aab)yxsd, (aab)+ D d;(aab)yd,(x)sd,; (ach)

i+j=n i+j=n-1

+..+ > d (aab)yd,,(x)5d; (acb)+ D d,(aab)yd, (x)5d, (aab)

i+j=1 i+j=0

= p+q+zs:+t=n dp(a)adg(b)yxsd,(a)d, (b)

' p+q+sz+t:n—1d p(a)adq (b)rd,(x)4d, (a)ad, (b)

' p+q+zs+t=1d p(@)adg (b)yd,,(x)dd, (a)ad, (b)

n p+q+zs+t:0d p(2)adq(b)yd, (x)&d, (a)ad, (b).

On using (3.3.4) we get,

D’ d;(aab)yxsd, (aab) =

d dg (b)yxod d. (b).
i+j=n p+q_|_Z:S+t:n p(a)a q( )]/X S(a)a t( )

Also

d, (aab)yxs (aab)+aabyxsd, (aab)+ > d,(aab)yxsd;(aab)

0<i, j<n-1

= Z aabyxé'd Z d 7/X§aab

S+t=n p+g=n

+ )Y dy(a)adg (b)yxdd, (a)ed, (b),
0<p+q,s+t<n-1 p (8)adq (b) %54, (a)ad, (b)

And again using (3.3.4) we have,

d, (aab)yxs (aab)+aabyxsd, (ach)= D" aabyxsd, (a)ad, (b)

s+t=n

+ Z dp(a)acdq (b)yxéaab,

p+g=n

or, F'

5 (a,b) yxsaab +aabyxsF, ,(a,b)=0. On using Lemma 1.4.5 we have F, ;(ab)yxdach=0for

all a,b,xeM and «,BeT, which further becomes F,,(a,b)yxdcad =0for all a,b,x,c,deM and
a,pel.
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Again since M is prime, we get F,,(a,b)=0for all abeMand «,Bel’, or we can say that

d,(aab)= D d,(a)ad;(b) for all a,beM and a<l, and for each neN. Therefore D={d,}

i+j=n

becomes a higher derivationon M. o

neN

In view of Theorems 3.3.9 and 3.3.10 one can easily conclude the following:

Corollary 3.3.11: Any Jordan triple higher derivation of a prime I"— ring M of characteristic different from
two is a higher derivation on M.
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Chapter Four
Derivations On Semi-Prime - Rings

4.1 Generalized Derivations On Semi-Prime - Rings With Involution

The purpose of this section is the notions of generalized | —derivation and generalized reverse | —
derivation on T"— rings and to prove some remarkable results involving these mappings.

Let M be a I" — ring with involution | . An additive mapping D:M —M s called an | —derivation if
D(aab)=D(a)al (b)+aaD(b) for all a,beM, ael’ and D is called a reverse |—derivation if

D(aab)=D(b)al(a)+baD(a) forall a,beM, a<I'. An additive mapping T :M —M is called a left
(right) | —centralizer if T (aab)=T(a)al(b)(resp. T(acb)=1(a)aT (b)) for all a,beM, ael'. An
additive mapping F :M —M is called a generalized | —derivation if F(aab)=F (a)al(b)+aaD(b) for
all a,beM and aeI', D an |—derivation on M. An additive mapping F:M—>M is called a

generalized reverse | — derivation if F(aab)=F(b)al(a)+baD(a) forall a,beM and ael’, D a
reverse | —derivationon M.

Theorem 4.1.1:[12] Suppose that M is a semi-prime I" — ring with involution I and D:M —M isan | -

derivation. If F is a generalized | —derivation on M, then F maps M into Z(M).

Proof : By definition of F , we have
F(aab)=F(a)al (b)+aaD(b) (4.1.1)
Forall a,beM,a el . Putting b=bgc in (4.1.1), we have
F (aabfic) = F (a)al (c) A1 (b)+aaD (bjc)
=F(a)al (c) A1 (b)+aaD(b) A1 (c)+aabpD(c) (4.1.2)
Also, we can write
F (aabpc)=F ((aab) fc)=F (a)al (b) I (c)+aaD(b) Bl (c)+aabpD(c) (4.1.3)
Hence, from (4.1.2) and (4.1.3) , we obtain F(a)a[I(c).1(b)], =0 (4.1.4)

For I(b)=b and I(c)=c, (4.1.4) becomes F(a)a[c,b], =0 (4.15)
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Putting c=cyF (@) in (4.1.5), we have

F(a)acy|F (a),b]ﬂ +F(a)ac,d], yF(a)=0=F (a)acy[F (a),b]ﬁ =0  (4.1.6)

Left multiplication of(4.1.6) by b, we get b3F (a)acy[F(a).b], =0 (4.1.7)

Putting ¢ =b/c in (4.1.6), we have F(a)abjcy[F(a),b], =0 (4.1.8)

Subtracting (4.1.7) from (4.1.8)and let acbfc=apbac for all ab,ceM,a,fel’, we obtain
[F(a).b],acy[F(a),b] =0 (4.1.9)

For all a,b,ceM,«, B,y €T . Hence, by semiprimeness of M, we have [F(a),b]ﬁ =0for alla,beM
and B el . Therefore F maps M intoZ (M) . Hence the theorem is complete. o

Theorem 4.1.2:[12] Suppose that M is a semi-prime I" — ring with involution | . If the additive mapping
T:M —Mis defined by T (aab)=T (a)al (b) forall a,beM and e €T then T maps M into Z(M).

Proof: By the hypothesis, we get T (acb) =T (a)al (b) (4.1.10)
Putting b=cpb in (4.1.10), we have T (aacpb) =T (a)al (b) Bl (c) (4.1.11)
Also, we can write
T (aacpb) =T ((aac) fb) =T (aac) Bl (b) =T (a)al (c) Bl (b) (4.1.12)
Hence from (4.1.11),(4.1.12) and let acbBc=apbac for all abceM,a,Bel’, we obtain
T(a)B[I(c),1(b)] =0 (4.1.13)

The equation (4.1.13) is similar to the equation (4.1.4) with the exception that the left | —centralizer T
instead of generalized | —derivation F . Thus the same approach, we have used after the equation (4.1.4) in
Theorem 4.1.1, we obtain the required result [T (a),b]a =0 forall a,beM and a €I". Hence the theorem

is proved. O

Corollary 4.1.3: Suppose that M is a prime I"—ring with involution 1 and D an | —derivation on M. If
F is a generalized | —derivation on M, then either F =0 or M is commutative.
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Proof: According to Theorem 4.1.1, we have F(a)A[b,c] =0 for all a,b,ceM and «,B<I . Putting
b=bye, we obtain F(a)pby[e,c] +F(a)p[b,.c] ye=0 for all abceeM and B,y €l’, which
implies F (a)gby[e,c] =0. Hence by the primeness of M, we have F(a)=0 or [e,c] =0, that is,

F =0 or M is commutative.o

Corollary 4.1.4: Suppose that M is a semi-simple T" — ring with involution | and D an | —derivation on
M. If F isageneralized | —derivation on M, then F maps M into Z(M).

Proof: Since every semi-simple I"—ring with involution is semi-prime I"—ring with the involution, so
according to the theorem 4.1.1, the corollary is nothing to prove. o

Corollary 4.1.5: Suppose that M is a I"—ring with involution | . If D is a nonzero | —derivation on M,
then D maps M into Z(M).

Proof: The corollary is nothing to prove if we consider F = Din the proof of theorem 4.1.1.0

Theorem 4.1.6:[12] Suppose that M is a semi-prime T'—ring with involution | and D a reverse |-
derivation on M. If F is a general reverse | —derivation on M, then [ D(a),c] =0 for all aceM and

ael,

Proof: By the definition of generalized | — derivation F on M , we have
F(aab)=F(b)al (a)+baD(a) (4.1.14)

Forall abeM and e <. Replacing a by agc in (4.1.14) , we have
F(apcab)=F(b)al(c)pl(a)+baD(c)Al(a)+bacsD(a) (4.1.15)

Also, we can write

F (apcab)=F (aB(cab))=F(b)al (c) 8l (a)+baD(c) 8l (a)+cabBD(a)  (4.1.16)

Comparing (4.1.15) ,(4.1.16) and let acb/5c =apbac for all a,b,ceM,a, BT, we have [b,c] pD(a)=0
(4.1.17) . putting b=D(a)yb in (4.1.17), we have

D(a)y[b.c], AD(a)+[D(a).c] ybsD(a)=0 (4.1.18)
Using (4.1.17) , we obtain [ D(a),c] 7bsD(a)=0 (4.1.19)
Putting b=bac in (4.1.19), we have [ D(a),c| ybacBD(a)=0 (4.1.20)
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Right multiplication of (4.1.19) by ac, we have
[D(a).c] 7bBD(a)ac=0 (4.1.21)
Subtracting (4.1.20) from (4.1.21) and let aabfc =apbac for all a,b,ceM,a, BT, we obtain
[D(a).c] pby[D(a).c] =0.
Hence by semiprimeness of M, we have [D(a).c] =0 for all aceMand a<T', and the theorem is

complete. o

Corollary 4.1.7:[12] Suppose that M is a non-commutative prime I'—ring with involution land D a

reverse | —derivation on M . If Fis a generalized reverse | —derivation on M , then Fis a reverse left | —
centralizer on M .

Proof: If we replace b by ayb, the relation (4.1.17) gives ay[b,c] BD(a)+[a,c] ybSD(a)=0 and
using (4.1.17), the relation implies[a,c] ybSD(a)=0for all a,b,ceM and «,B,y<Il'. Hence by
primeness  of M, either [ac] =0 or D(a)=0. If  we  consider,
U={aeM:[ac] =0forallceM,zel’} and V ={aeM:D(a)=0}. Then clearly U and V are additive

subgroups of Mand U UV =M . Therefore by Brauer's trick, either U=Mor V=M. If U =M, then
[a,c] =0 forall a,ceM and e €I". Thatis, M is commutative which gives a contradiction. On the other

hand, if V=M, then D(a)=0 for all aeM. Therefore by definition of F gives F(aab)=F(b)al(a)

forall a,beM and a eI". Hence the proof is complete. O

Corollary 4.1.8: Suppose that M is a semi-prime I'—ring with involution I . If Dis a reverse |-
derivation on M, then D maps M into Z(M).

Proof: If we consider F =D, Theorem 4.1.6 gives the result. o

4.2  Semi-Prime I - Rings With Orthogonal Reverse Derivations

This section presents the definition of orthogonal reverse derivations; some characterizations of semi-
prime I"— rings are obtained by using orthogonal reverse derivations. We also investigate conditions for two
reverse derivations to be orthogonal.

Definition 4.2.1:[8] Let d and g be two reverse derivations on M. If
d(x)I'MIg(y)=0=g(y)I'MId(x) forall x,yeM . (4.2.1)

Then d and g are said to be orthogonal.
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Remark 4.2.2:[8] A non-zero reverse derivation can not be orthogonal on itself.

Example 4.2.3: Let M, be a I', —ring and let M, be a I, —ring. Consider M =M, xM, and I'=I", xT,.
The addition and multiplication on M and I' are defined as follows:

(a,b)+(c,d)=(a+c,b+d), (a,b)(e, B)(c,d)=(acc,bpd) forevery a,beM,,c,d eM, a T,
and gerl,.

Under these operations M is a I'—ring. Let d, be a reverse derivation on M, . Define a derivation d on M
by d((a,b)):(dl(a),O). Then d is a reverse derivation on M. Let d, be a reverse derivation on M, .

Define a derivation g on M by g((a,b))=(0,d,(b)). Then g is a reverse derivation on M. It is clear that

d and g are orthogonal reverse derivation on M .

Lemma 4.2.4:[8] Let M be a semi-prime I" - ring and suppose that additive mappings d and g of M into
itself satisfy d (x)TMI'g(x)=0, forall xeM . Then d(x)I'MI'g(y)=0, forall x,yeM .

Proof: Suppose that d(x)ampg(x)=0, for all xmeM,a, Bel". Replace x by X+Yy in the above
relation, we get

0=d(x+y)ampBy(x+y)=(d(x)+d(y))amB(g(x)+g(y))
=d(x)ampg(x)+d(x)ampg(y)+d(y)ampg(x)+d(y)emBg(y)
—d(x)ampBg(y)+d(y)ampg(x). Thus d(x)ampg(y)=—d (y)amBg(x).
Now
(d(x)ampg(y))yns(d(x)ampg(y))=(d (x)ampg(y))rns(-d (y)empg(x))
=—(d(x)ampg(y)nsd (y)ampg(x))=0
Forall x,y,mneM and a,,6€T .
Thus d(x)I'MI'g(y)=0,forall x,yeM. o

Lemma 4.2.5:[8] Let M be a 2-torsion free semi-prime I"—ring. Let d and g be reverse derivations of M
. Then
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d(x)I'g(y)+g(x)I'd(y)=0,forall x,yeM. (4.2.2)

if and only if d and g are orthogonal.

Proof: Suppose that d(x)ag(y)+9(x)ad(y)=0, for all x,yeM and « <I". Consider the substituting

y=XAY in (4.2.2) . Then we obtain
0=d(x)ag (xBy)+g(x)ad (xBy),
0=d(x)a(9(y) Ax+yB9(x))+9(x)a(d(y) Ax+ypd(x)),
0=(d(x)ag(y)+g(x)ad(y))Ax+d (x)aypg(x)+g(x)aypd(x).
Using (4.2.2), we have d(x)ayBg(x)+g(x)aypd(x)=0. Then due to Lemma (4.2.2), we get
d(x)ayBg(x)=0, which gives the orthogonality of d and g.

Conversely, ifd and g are orthogonal, we get d(x)ampgg(y)=g(x)ampd(y)=0for all
meM,a,fel’. Then by using Lemma 1.45, we obtain d(x)ag(y)=g(x)ad(y)=0, for all
X,yeM,ael. Thus d(x)ag(y)+g(x)ad(y)=0,forall x,yeM,ael" which completes the proof. o

Remark 4.2.6: Suppose that d and g are reverse derivations of a I'—ring M . The following identities are
immediate from the definition of reverse derivation.

(dg)(xay)=d(g(xay))=d(g(y)ax+yag(x))=(dg)(x)ay+d(x)ag(y)

+g(x)ad(y)+xa(dg)(y) forall x,yeM,aeT . (4.2.3)

Similarly,
(gd)(xary)=g(d(xay))=g(d(y)ax+yad(x))=(gd)(X)ay+gd(x)ad(y)

+d(x)ag(y)+xa(gd)(y) forall x,yeM,aeT. (4.2.4)
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Theorem 4.2.7: [8] Let M be a 2-torsion free semi-prime I'—ring. Let d and g be reverse derivations on
M . Then the following conditions are equivalent:

i. dand g are orthogonal.
ii. dg=0.

iii. gd=0.

iv. dg+gd=0.

v. dg isa derivation.

Vi. gd is a derivation.

Proof: (ii)=>(i). Suppose dg =0. Then by using the identity (4.2.3) , we obtain
d(x)ag(y)+g(x)ad(y)=0, forall x,yeM,ael.
Therefore by Lemma (4.2.5), d and g are orthogonal.
(i)=(ii). Consider d (x)aysg(z)=0, forall x,y,zeM and @, BT . Then
0=d(d(x)@yAa(2))=d(vAa(2))ad (x)+ ypg (z)ad’ (x)
=(dg)(z) Ayad (x)+9(2) fd (y)ad (x)+yAg(z)ad (d (x))

Owing to (i), the second and third summands are zero. Therefore we obtain (dg)(z)Byad(x)=0 for all

X,y,zeM and a,8<I". Now take X =g(z) and we obtain
(dg)(z)Bya(dg)(z)=0,forall zeM and a,SeT .

Since M is semi-prime, we get (dg)(z)=0, forall ze M, thatis dg=0.

The proof of the parts (iii)=> (i) and (i)=(iii) are similar.

(iv)=(i).1f d and g are any reverse derivations, then by (ii) and (iii), dg=0 and gd =0.
Now using the equation (4.2.3) , we obtain,
(dg +gd)(xery) =(dg)(xay)+(gd)(xey)

=(dg)(x)ay+d(x)ag(y)+g(x)ad(y)+xa(dg)(y)

+(gd)(x)ay+g(x)ad (x)+d(x)ag(y)+xa(gd)(y)
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=(dg+gd)(x)ay+2d(x)ag(y)+29(x)ad(y)
+xa((dg)(y)+(gd)(y))forall x,yeM,axeT .

Thus, if dg+gd=0, then the above relation reduces to 2(d(x)ag(y)+g(x)ad(y))=0, for all
X,yeM,a eI'. Since M is 2-torsion free, we get

d(x)ag(y)+9(y)ad(y)=0, forall x,yeM,ael". By Lemma 4.2.5, we get that d and g are
orthogonal.

(i)=(iv). From the parts (ii) and (iii), we get dg+gd =0.

(dg)(x)ay+xe(dg)(y). Comparing this
0.

(v)=(i). Since dg is a derivation, we have (dg)(xay)

expression with (4.2.3), we obtain d(x)ag(y)+g(x)ad(y)
The proof of (vi)=> (i) is the similar to that of (V)= (i).
(iii)=(vi) . Obvious. This completes the proof. o

Corollary 4.2.8: Let M be a prime 2-torsion free I"—ring. Suppose that d and g are orthogonal reverse
derivations of M . Then either d =0 or g =0.

The proof is immediate from Theorem 4.2.7.

Theorem 4.2.9:[8] Let M be a 2-torsion free semi-prime I —ring satisfying the condition
Xaypfz=xpyaz forall x,y,zeM and «,fl". Let d and g be reverse derivations on M. Then the
following conditions are equivalent:

i. dand g are orthogonal.

ii. d(x)I'g(x)=0,forall xeM.

iii. g(x)Td(x)=0,forall xeM.

iv. d(x)T'g(x)+g(x)rd(x)=0,forall xeM.

Proof: (ii)= (i). The linearization of d (x+y)ag(x+y)=0 gives
d(x)ag(y)+d(y)ag(x)=0,forall x,yeM,ael’ (4.2.5)

take yBz as y in (4.2.5), we obtained d(x)ag(ypz)+d(yfz)ag(x)=0 forall x,y,zeM,a, BT .
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d(x)ag(z)By+d(x)azpg(y)+d(z)Bg(x)+zpd(y)ag(x)=0 (4.2.6)
forall x,y,zeM,a,B el .

Since, d(x)ag(z)=-d(z)ag(x) and d(y)ag(x)=—d(x)ag(y) and so (4.2.6) becomes
—d(z)ag(x)By+d(x)azBg(y)+d(z) Byag(x)—zpd (x)ag(y)=0 forall X,y,zeM,a,Bel.

Now, since xaypfz=xpyaz forall x,y,zeM and «, I’ ,we get

(2)ALy.0()a+[d (x),2]ag ()=0 (127)
Replacing z by d(x) in (4.2.7) we obtained d*(x)A[y,g(x)]a=0 (4.2.8)for all x,yeM,
a,pel,

Letting y = yow in (4.2.8), we get

0=d*(x) 5[ yow,g(x)]a

=d*(x) Bys[w. g (x) Jar+d*(x) Bys [ w.g (x) ]e

=d?®(x) Bys[w,g(x) | forall x,y,weM,a,B,5T.
Then by Lemma 4.2.4, we obtain

d?(x) Bys[w,g(y)]a=0 forall x,y,weM,a, 8,6 T (4.2.9)
Replacing x by XxAu in (4.2.9) we get,

0=d*(xau) ys[w.g(y)]a

=(d*(x)Au+2d (x) Ad (u)+x2d* (u)) ByS[ w,g () |« (4.2.10)

Forall xueM,a,f3,8,A¢eT .

By (4.2.9) the relation (4.2.10) reduced to 2d(x)Ad (u)ByS[w,g(y)]a=0. Since M is 2-torsion free,

we have

d(x)Ad(u)Bys[w,g(y)]a=0 forall x,yeM,a,p,5,Acl (4.2.11)
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Taking xyz for x in (4.2.11), we get
0=d(xyz)d(u) Bys[w.g(y)]e
=d(2)x2d (u) Bys| w,g(y) e +zyd (x) Ad (u) 25 [ W, g (y) |
and d (z)yxd (u) Bys[ w.g(y)]a=0. (by using (4.2.11) )
In particular, d(z)yx4d (x) Bys[w,g(y)]er=0.
The replacement d (z)=d(x) Bys[w,g(y)]e, gives
d (x) pys[w.g(y) Jarxad (x) Bys[w.g(y) e =0.

Since M is semi-prime, we get d(x)Bys[w,g(y)]a=0. Using (4.2.9) and (4.2.11) we obtain by
replacing d(x) for w, [d(x),g(y)]arys[d(x),g(y)]a=0,forallx,yeM,a,B,5,7 T .

Hence, d(x)ag(y)=9(y)ad(x), for all x,yeM,ael’. Thus (4.2.5) can be written in the form
g(y)ed(x)+d(y)ag(x)=0, forall x,yeM,ael". Now use Lemma 4.2.5 to get the required relation.

(i)=(iii). If d and g are orthogonal then we have d(x)I'MI'g(x)=0, for all xeM. Then we get
d(x)ag(x)=0,forall xeM,ael.

(iii)=(ii) . Take y=x in (4.2.3) . Then we see that (dg)(xax)=(dg)(x)ax+d(x)ag(x)
g(x)ad (x)+xa(dg)(x). Thus we obtain

(dg)(xax)=(dg)(x)ax+xa(dg)(x) forall xeM,a el . (4.2.12)

Equation (4.2.12) implies that dg is a Jordan derivation. We know that if M is semi-prime I"—ring, then
every Jordan derivation is a derivation.

(iii)= (ii) . This follows from Lemma 4.2.5. O

Corollary 4.2.10: [8] Let M be a 2-torsion free semi-prime T'—ring and let d be a reverse derivation on

M . If d? is also a derivation, then d =0

The proof follows from part (ii) of Theorem 4.2.9.
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Theorem 4.2.11: [8] Let M be a 2-torsion free semi-prime I'—ring. Let d and g be a reverse derivation
on M. Then the following conditions are equivalent:

i. dand g are orthogonal.
ii.  There exist ideals K, and K, of M such that:
a) K, MNK,=0 and K=K, @K, isanon-zero ideal of M.
b) d maps M into K, and g maps M into K,.
c) The restriction of d to K=K ®K, is a direct sum d, ®0,, where d,:K, — K is a reverse
derivation of K, and 0, : K, — K, is zero. If d,=0 then d =0.
d) The restriction of g to K=K, ®K, is a direct sum 0,&g,, where g,:K, > K,is a reverse
derivation of K, and O, : K, — K is zero. If g, =0 then g=0.

Proof: (ii)=(i). Obvious.

(i)=(ii). Let K, be an ideal of M generated by all d(x),xeM, and let K, be Ann(K,), the

annihilator of K,. From equation(4.2.1) we see that g(x)eK,, for all xeM . Whenever K, is an ideal in

a semi-prime I'—ring, we have K, (1K,=0 and K=K, @K, is a non-zero ideal. Thus a) and b) are
proved.

Our next goal is to show that d is zero on K, . Take k, e K,. Then kak, =0, forall k, e K,,a el .
Hence 0=d(kak,)=d(k,)ak +k,ad (k). It is obvious from the definition of K that d leaves K,
invariant and hence k,ad (k;)=0. Then the above relation reduces to d (k,)ak, =0. Since in a semi-prime
I ring the left, right and two-sided annihilators of an ideal coincide, we then have d(k,)e Ann(K,)=K, .

But on the other hand d(K,) belongs to the set of generating elements of K,. Thus d(k,)e K, NK, =0,
which means that d is zero on K, . As we have mentioned above d leaves K, invariant. Therefore we may

define a mapping d, : K, — K, as a restriction of d to K.

Suppose that d,=0. Then d is zero on K=K, ®@K,. Take keK and yeM, we have
d(yak)=d(k)ay+kad(y).But d(yak)=d(k)=0since kay,k e K,a eI . Consequently kad(y)=0
,forall yeM,ael". Thus d(y)e Ann(K). But ideal K is a non-zero and therefore Ann(K)=0. Hence
d(y)=0,forall yeM. Then c) is thereby proved.

It remains to prove d). First we show that g is zero on K,. Take X,y,zeM,a,B <’ and set
k, =zad(y)Bx. Then

g(k,)=9(x)B(zad (y))+x5g(zad (y))
=g(x)Bzad (y)+xB(9d)(y)az+xBd (y)ag(z).
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Since d and g are orthogonal we have g(x)azfBd(y)=0,d(y)ag(z)=0and gd =0. Hence
g(k,)=0. In a similar fashion we see that g(zad(y))=0,g(d(y)ax)=0 and g(d(y))=0. Then h is
zero on K,. Recall that g maps M into K,. In particular, it leaves K, invariant. Thus we may define
g, :K, > K, as arestriction of g to K,. The proof that g, =0 implies g =0 is the same as the proof that
d, =0 implies d =0. This completes the proof. o

Corollary 4.2.12: Let M be a 2-torsion free semi-prime I'—ring and let d be a reverse derivation of M . If
d(x)ad(x)=0 forall xeM,aeT", then d =0.

If d?=g° or if d(x)ad(x)=g(x)ag(x), for every xeM,a I, then we obtain the relation

between the reverse derivations d and g of a I'—ring.

Theorem 4.2.13: [19] Let M be a 2-torsion free semi-prime I'—ring. Let d and g be reverse derivations
on M. Suppose that d*=g?*, then d+g and d —g are orthogonal. Thus, there exist ideals K, and K, of

M such that K = K, ® K, is a non-zero ideal which is direct sumin M, d =gon K, and d =-g on K,.

Proof: From d®=g?it follows immediately that (d+g)(d-g)+(d—g)(d+g)=0. Hence d+g and

d —g are orthogonal by the part (iv) of Theorem 4.2.7. Another part of Theorem 4.2.13, follows from (ii)
of Theorem 4.2.11. O

From Theorem 4.2.13 we get the following

Corollary 4.2.14: Let M be a prime 2-torsion free I'—ring. Let d and g be derivations of M. If d*>=g?,
then either d=—-g or d=g.

Theorem 4.2.15: [8] Let M be a 2-torsion free semi-prime I'—ring. Let d and g be reverse derivations of
M. If d(x)ad(x)=g(x)ag(x), for all xeM,a eI, then d+g and d—g are orthogonal. Thus, there
exist ideals K, and K, of M such that K =K, @K, is an essential direct sum in M, d =9 on K, and
d=-g on K,.

Proof: Note that (d+g)(x)(d—g)(x)+(d—g)(x)(d+g)(x)=0, for all xeM,aeI". Now applying

parts (ii) and (iii) of Theorem 4.2.9, we obtain the required result. o

Corollary 4.2.16: Let M be a prime 2-torsion free I'—ring. Let d and g be reverse derivations of M . If
d(x)ad(x)=g(x)ag(x), forall xeM,a el , then either d =g or d =—g .

The proof is immediate from Theorem 4.2.15.0
4.3  Orthogonal (o,7)- Derivations On Semi-Prime T - Rings

The objective of this section is to extend the existing notions of derivations and generalized derivations
in semi-prime I"— ring.
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Definition 4.3.1: [1] Let o and zbe endomorphisms of M. Motivated by the concepts of (g,r)—
derivation and generalized (o,7)—derivation in rings, the notions of (o,7)— derivation and generalized

(o,7)— derivation in T"— rings are defined as follows:

An additive mapping d:M—M s called a (o,7)— derivation if d(xay)=d(x)ac(y)+7(x)ad(y)
holds for all x,yeM and a<I". An additive map F of M is a generalized (a,r)—derivation if there

exists a (o,7)—derivation d of M such that F(xay)=F(x)ao(y)+7(x)ad(y) holds for all x,yeM
and ael.

Remarks 4.3.2:

1. The notion of generalized (o,7)— derivation includes those of (o, 7)— derivation when F=d, of
derivation when F=d, and o=7r=1,,, the identity map on M, and of generalized derivation,
which is the case when o=7=1,. Note that, a generalized (l,!,,)—derivation is just a
generalized derivation.

2. Every generalized derivation is a generalized (o,7)— derivation with o =7 =1,,, the identity map
on M, but the converse need not be true in general. The following example shows that the notion of
a generalized (o,7)— derivation in fact generalizes that of a generalized derivation.

a X

I 0 m
Example 4.3.3: Let R beanyring,and let M=4| b y|:a,b,c,x,y,zeR} , F:{O 0 Oj:l,meR} ,
c z

Then M isa I'—ring. Further, the mappings o,7:M — M defined by

a X a o a X a 0 a X
ollb yl|=|b O, z||b y||=|0 Oflforall |[b y|eM are endomorphisms of M. Next, define
cC 2z c O c z 0 c z
X 0 0 a X
themap d:M—>M suchthat d|| b y|[|=lb O] forall|b y|eM.Clearly, d isa (o,7)-derivation
cC z 0 0 cC 2z
a X a o0
but not a derivation on M . Moreover, consider the map F:M —M definedas F||b y||=/0 0| for
c z 0 0
a x
all |b y|eM.
cC z
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Then F is a generalized (a,r)—derivation on M induced by d. However, Fis not a generalized

derivation on M.

Note: From now and until the end of this section, M is always a 2-torsion free semi-prime I" — ring while
o and z are automorphisms of M.

Lemma 4.3.4:[1] Let M be a 2-torsion free semi-prime I'—ring, and d,g be (a,r)—derivation of M.

Then d and g are orthogonal if and only if d(X)ag(y)+g(x)ad(y)=0 forall x,yeM and e T .

The proof is immediate from Lemma 4.2.5.0

Theorem 4.3.5:[1] Let M be a 2-torsion free semi-prime I'—ring, such that Xaypz=xByaz for all
X,¥,2zeM and a,Bel. Further, suppose d and g are (o,7)—derivation of M such that

do=od, dr=7d . Then d and g are orthogonal if and only if d(x)ag(x)=0 forall xeM and eI,
Proof: Suppose that d (x)ag(x)=0 forall xeM and « €T". Linearizing this relation, we get
d(x)ag(y)+d(y)ag(x)=0 forall x,yeM and a el . (43.1)
Replacing y by yBz in (4.3.1), we get
0=d(x)ag(ypz)+d(yBz)ag(x)
~d(x)ag(y) fo(2)+d (x)ar(y) Ao (2)+d(y) Ao (z)ag (x)+ (y) A (2) g (x)

In view of (4.3.1), we have d(x)ag(y)=-d(y)ag(x) and d(z)ag(x)=-d(x)ag(z), and hence the
above expression reduces to

d(y)B[o(2).9(x)] =[z(v).d(x)], Bg(z) forall x,y,zeM and @, Bel". (4.32)
Replacing y by 7*(d(x)) in (4.3.2), we obtain
d(r‘l(d(x)))ﬂ[a(z),g(x)]a =0 forall x,zeM and a,BeTl.

This implies that

r(d*(x)) B[z.9(x)] =0 forall x,z, eMand &, BT . (4.3.3)

Replacing z, by zys in (4.3.3) and using Lemma 1.4.5 and relation (4.3.3), we obtain
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r (d2 (x)),Bz;/[s, g (y)]a =0foralls,x,y,zeMand a, 3,7 T. (4.3.4)
Replacing x by xdu in (4.3.4) and using it, we get
Z(d (x)od(z 7 (o (u))) Bzy[ 5.9 (y)]a)zo vs,u,x,y,zeM, a,f,7,5 €T .
Putting u = a‘l(r(U)) in above and using the fact that M is 2-torsion free, we find that
d(x)od (u)Bzy[s,9(y)]| =0, Vs,u,x,y,zeM, a,B,7,6€T . (4.35)
Substituting xeyt for x in (4.3.5) and using it, we find that
d(X)eno(t)sd(u) fzy[s,9(y)] =0 Vs,tu,xy,zeM, &, a,B,7,6<T.
The above expression yields that
d(x)Bzy[s.g (y)]a aM&d (x) Bzy|'s.9 (y)]a =0, Vs,X,¥,zeM, o, a, 7,6 €T,

Semiprimeness of M implies that

d(x)Bzy[s.9(y)] =0, ¥s,x,y,2eM, @, B,y €T, and hence

d(x)azy[d(x),9(y)] =0, ¥x,y,zeM, a,Bel. (4.3.6)
Replacing z by g(Y)/z, we get

d(x)ag(y)Azr[d(x),9(y)], =0, VX y.zeM, a,f,7el. (4.3.7)
Also, from (4.3.6) , we have

g(y)ad(x)Bzy[d(x).9(y)] =0, VX y,zeM, a,B,yeT. (4.3.8)
Subtracting (4.3.8) from (4.3.7), we get

[d(x).9(y)], AM 7[d(x).9(y)], =0 ¥x.y.zeM, @,y el

Semiprimeness of M yields that [ d(x),g(y)] =0, ¥x,yeM, a el Thatis, d(x)ag(y)=9(y)ad(x)

forall x,yeM and aeI". Thus, (4.3.1)can be written as d(x)ag(y)+g(x)ad(y)=0 forall x,yeM
and €I’ . By Lemma 4.3.4, d and g are orthogonal.
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Conversely, suppose that d and g are orthogonal. Then d(x),BM yg(x)zO for all xeM and
B,y €T . Therefore, d(x)ag(x)=0 forall xeM anda eI"by Lemma 1.4.8 .c

Theorem 4.3.6:[1] Let M be a 2-torsion free semi-prime I'—ring. Suppose d and g are (o,7)-
derivations of Msuch that do=o0d, go=0g, dz=7d, gr=7g. Then the following conditions are
equivalent:
i. dand g are orthogonal.
ii. dg=0.
iii. gd=0.
iv. dg+gd=0.

v. dg isa(o® %) derivation of M.

Note: The following example shows that the hypothesis of semiprimeness in Theorem 4.3.6 is essential.

0

. Then M is a 2-torsion free I"—ring. It can be easily seen that M is not semi-prime. Take oc=7=1,,,

ab X 0
Example 4.3.7: Let R be any 2-torsion free ring and let M :{[O cj ra,b,ce R}, r :{( y} X,y € R}

where 1, is the identity map on M . Define the maps d,g:M —M such that

o3 20 2)olls DS Doz 2

Then it is straightforward to check that d and g are (a,f)—derivations on M. Also, d and g are

orthogonal, and dg isa (o?,7°)— derivation on M . However, dg =0, gd =0 and dg+gd =0.

Remark 4.3.8: Two generalized derivations (F,d)and (G,9) of M are called orthogonal If
F(X)ITMI'G(y)={0} =G(y)I'MIF(x) holds forall x,yeM.

Lemma 4.3.9:[1] Suppose that two generalized (o,7)— derivations(F,d) and (G,g) of M are orthogonal.
Then following relations hold:

i. F(x)aG(y)=G(x)aF(y)=0, and hence F(x)aG(y)+G(x)aF(y)=0 for all x,yeM and
acl,

ii. dandG areorthogonal and d(x)aG(y)

G(y)ad(x)=0 forall x,yeM and a T .

iii. g and F areorthogonal and g(x)aF(y)=F(y)ag(x)=0 forall x,yeM and ael.

iv. dand g are orthogonal.

v. |If Fo=0oF, Fr=7F, Go=0G, Gr=rGand do=o0d, dr=7d, go=0Q, gr =170, then
dG=Gd =0, gF =Fg=0 and FG=GF =0.
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Proof: (i). By the hypothesis, we have F(x)azfBG(y)=0 forall x,y,zeM and &, <. Application of
Lemma 1.4.8 yields that F(x)yG(y)=0=G(y)rF(x). Therefore, F(x)7G(y)+G(y)yF(x)=0for all
X,yeM and yeI".

(ii). By (i), we have F(x)aG(y)=0and F(x)BzyG(y)=0forall x,y,zeM and «, B,y €. Hence

0=F(z28x)aG(y)=F(z)Bo(x)aG(y)+z(z)pd(x)aG(y)=1(z)Bd (x)aG(y). Since 7 is an

automorphism of M , the last expression yields that
d(x)aG(y)Mpd(x)aG(y)={0} forall x,yeM and a, B,y <T.
Thus, the semiprimeness of M forces that

d(x)aG(y)=0 forall x,yeM and a €T, (4.3.9)
Replacing x by xBs in(4.3.9), we get
=d(xBs)aG(y)=d(x)Bo(s)aG(y)+7(x)Bd(s)aG(y).
Using(4.3.9) and fact thato is an automorphism of M, we obtain
d(x)CMI'G(y)={0} forall x,yeM .

Application of Lemma 1.4.8 yields that d and G are orthogonal, and hence
d(x)aG(y)=G(y)ad(x)=0 forall x,yeM and a T .

(i) . Using similar approach as we have used in (ii) .

(iv). By the assumption, we have F(x)aG(y)=0 for all x,yeM and a<l'. This implies that

=F (xB2)aG(yyw)=(F (x) Bo(z)+7(x) fd(2))a(G(y) ro (W) +z(y) g (w))
=F(x)fo(2)aG(y)yo(w)+F(x) fo(z)ar(y)rg(w)+z(x)Ad(2)aG(y)ro(w)
+7(x) pd (z)az(y)rg(w).
Using (i) and (iii) , we find that

( )ﬁd( ) ( )79( ) 0 forall w,x,y,zeM and a, B,y T
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Since 7 is an automorphism of M, so the last expression yields that
d(z)aMyg(w)oMpd (z)aMyg(w)={0} forall w,zeM and @, B,7.5 €T .
The semiprimeness of M forces that
d(z)eMyg(w)={0} forall w,zeM and a,y T .
Hence by Lemma 1.4.8, d and g are orthogonal.

(V). Inview of (ii) d and g are orthogonal. Hence, 0=G(d (x)azfG(y))

=G4 (x)ao (2) Ao (6(y)) +(d (1)@ (2) Ao (G (v) + (d (x))axr (2) Ao (G ().
Since dr =7d, Go=0G and d,g are orthogonal, so we obtain

Gd(x)az,G(y,)=0 forall x,y,,z, €M and a, ST . (4.3.10)

Replacing y, by d(x) in (4.3.10) and using the semiprimeness of M, we get Gd =0. Similarly, since
each of the equalities d(G(x)azpd(y))=0, F(g(x)azpF(y))=0, g(F(x)azpg(y))=0,
F(G(x)azBF(y))=0, and G(F(x)azBG(y))=0hold for all x,y,zeM and a,B<I", we concloud
that dG = Fg = gF = FG =GF =0, respectively.o

In view of Theorem 4.3.6(ii) and Lemma 4.3.9, we have the following corollary:

Corollary 4.3.10:[1] Let (F,d) and (G,g) be orthogonal generalized (o, 7)— derivations of M such that
Fo=0F, Fr=7F, Go=0G, Gr=7G and do=0d, dr=7d, go =04, gr =79, then dg isa (02,1'2)—

derivations of M and (FG,dg)=(0,0)is a generalized (02,12)— derivations of M.

Theorem 4.3.11:[1] Suppose (F.d) and (G,g)are generalized (o,7)-derivations of M such that
Fo=0oF, Fr=7F, Go=0G, Gr=tG and do=o0d, dr=7d, go=00, gr=7g. Then (F,d) and

(G, g) are orthogonal if and only if one of the following holds:

i. @ F(X)7G(y)+G(x)yF(x)=0, ¥x,yeM,yel.
(b) d(x)7G(y)+9(x)7F(y)=0, ¥x,yeM,yel,
i. F(x)yG(y)=d(x)yG(y)=0, ¥x,yeM,yel,
iii. F(x)»G(y)=0, Vx,yeM,yeland dG=dg=0 .
iv.  (FG,dg)is a generalized (o, 7% ) - derivation and F (X) yG(y) =0,vx,yeM,y eT .
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Proof: In view of Lemma 4.3.9, Corollary 4.3.10 and the orthogonality of (F,d)and (G,g9) =
(i),(ii),(iii) and (iv) . Now, we establish

(i)="(F,d)and (G, g) are orthogonal." By the hypothesis, we have
F(x)7G(y)+G(x)7F(y)=0 forall x,yeM and y el . (4.3.11)
Replacing x by xaz in (4.3.11), we find that

0=F(xaz)yG(y)+G(xaz)rF(y)
=F(x)ac(z)yG(y)+7(x)ad(z)yG(y)+G(x)ac(z)yF(y)+7(x)ag(z)rF(y)

Using (b) in last expression, we get

F(x)ao(z)yG(y)+G(x)ao(z)yF(y)=0 forall x,y,zeM and a,yel".  (4.3.12)
Since o is an automorphism of M, the relation (4.3.12) can be rewritten as
F(x)az,yG(x)+G(x)azyF(x)=0 forall x,z €M and e,y T,

By Lemma 1.4.8, we conclude that F(X)azyG(x)=0 and G(X)azyF(x)=0 for all x,z, €M and
a,y €. Using Lemma 1.4.5, we have F(x)azyG(y)=0 forall x,y,z, eM and a,y €. Therefore, F

and G are orthogonal.

(ii)="(F.d) and (G,g) are orthogonal.” Given that F(x)7G(y)=0. Putting xaz for x, we get
0=F (xaz)yG(y)
=F(x)ac(2)7G(y)+7(x)ad(2)7G(y)
=F(x)ac(2)7G(y)

Using Lemma 1.4.8 and the fact that o is an automorphism of M, we conclude that (F,d) and (G, g) are
orthogonal.

(iii)="(F,d) and (G, g) are orthogonal." By the assumption, we have

0=dG(xay)
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=d(G(x)ao(y)+z(x)ag(y))
=dG(x)ac” (y)+7(G(x))ad (o (y))+d(z(x))ac(g(y))+7* (x)adg(y)
~+(6(x))ad ((y))+d(s(x))ac (g (y)).
Since Gr =7G, go=0g and o,r are automorphisms of M, we have
G(x)ad(y,)+d(x)ag(y,)=0 forall x,y,eM,ael.
Application of Theorem 4.3.6(iv) and Lemma 1.4.8 yields that
G(x)ad(y,)=0 forall x,y,eM,ael.
Replacing x, by XAz and using Theorem 4.3.6(iv) and Lemma 1.4.8, we obtain

G(x)pBo(z)ad(y,)=0 forall x,y,,zeM and a,Bel.

By Lemma 1.4.8, we have d(y;)7G(x)=0 forall x,y, €M and y eI", which satisfies (ii). Therefore, (iii)
implies that (F,d) and (G,g) are orthogonal.

Iv)="(F,d)and (G,Qg) are orthogonal." Since ,dg) is a generalized (o“,z°)—derivation and dg is
i F,d G FG,d 2 r? d

a (az,rz)—derivation, we have

FG(xyry)=FG(x)yo?(y)+7*(x)ydg(y) forall x,yeM and yeI'. (4.3.13)
Also

FG (x;/y) =FG (X);/a2 (y)+ z‘(G (X));/d (G(y))+ F (Z'(X))]/G(g (y))+72 (X)]/dg (y) (4.3.14)
Comparing (4.3.13) and (4.3.14) , we get

7(G(x))yd(o(y))+F(r(x))7o(a(y))=0 forall x,yeM and y el .

Since o, 7 are automorphisms of M and noting that Gz =G, go =ocg , we have
G(x)rd(y,)+F(x)r9(y,)=0 forall x,y,eM and yeT. (4.3.15)
Since, F(%)7G(y,)=0, we get

0=F(x)rG(y,ez,)
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= F(%)76(%)ao(2) + F (x)77()20(z) = F (x)7e(%)a0(z)

By Lemma 1.4.8, we have g(z,)7F (X )=0forall x,z, €M and y €T . Replace z by v,z to get

Ozg(ylﬂzl)ﬂ:(xl)
:g(yl)ﬁo-(zl)ﬂ:(X1)+T(y1)ﬂg(zl)7|:(x1)
= g(yl)ﬂo-(zl)}/lz(xi)

Since o is an automorphism of M and using Lemma 1.4.8, we find that F(x )»g(y,)=0forall x,y, eM

and y eT". Now from (4.3.15), we get G(x )yd(y,)=0 forall x,y,eM and y eT". Putting zay, for
y, in the last relation, we get

0=G(x)yd(zay,)
=G(x)7d(z)ac(%,)+G(x)rr(z)ad(y,)
:G(X1)7/T(Zl)ad (yl)'

Since zis an automorphism of M, the above expression forces that G(x,)yz,ad(y,)=0 for all

X,Y,,Z, €M and a,y el". Again using Lemma 1.4.8, we obtain d(Y,)»G(x,)=0 for all x,y,eM and
yel . By (ii), (F,d) and (G,g) are orthogonal. o

Theorem 4.3.12:[1] Let (F,d) and (G,g)be generalized (o,7)-derivations of M such that
do=o0d, dr=7d, go =00, gz =g . Then the following conditions are equivalent:

i.  (FG,dg)is a generalized (o 7% )~ derivation.
i.  (GF,gd)is a generalized (o, z* ) - derivation.

iii. F and g are orthogonal, also G and d are orthogonal.

Proof:  (i)=(iii). Suppose (FG,dg) 1is a generalized (o°,7*)—derivation. We have

G(x)yd(y)+F(x)7g(y)=0 forall x,yeM and y " . Replacing y by Y5z, we obtain

0=G(x)yd(ypz)+F(x)rg(ypz)
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=G(x)7d(y) B(2)+G (x)77(y) 4 (2)+ F (x)79 (¥) fr(2) + F (X)) A9 (2)
=G (x)77(y) Bd (2)+ F (x)77(v) B9 (2).
Since 7 is an automorphism of M, the above relation yields that

G(x)yy,Bd(z)+F(x)yy,89(z)=0 forall x,y,,zeM and B,y T, (4.3.16)

Since dg is a (02,12)—derivation, so d and g are orthogonal by Theorem 4.3.6. replacing y, by

g(z)ay and using the orthogonality of d and g. We get
0=G(x)yg(z)aypd(z)+F(x)rg(z)aypg(z)
=F(x)y9(z)aypy(z).
Again replacing y by y6F(x) and B by » and using the semiprimeness of M, we obtain
F(x)79(2)=0 forall x,zeM and y T . (4.3.17)
Substituting yerz for z in (4.3.17), we find that
F(x)yg(y)ao(z)+F(x)rr(y)ag(z)=0 forall x,y,zeM and a,y T .
Using (4.3.17) and the fact that z is an automorphism of M, we get
F(x)ry,29(z)=0 forall x,y,,zeM and a,y €T .

Therefore by Lemma 1.4.8, F and g are orthogonal. Hence (4.3.16) becomesG(x)yy,4d(z)=0 for all
X,¥,,zeM and B,y €I'. Thus, G and d are orthogonal.

(iii)= (i). By the orthogonality of F and g, we have
F(x)ayBg(z)=0 forall x,y,zeM and a, BeT . (4.3.18)
Replacing x by syx, we get

0=F(syx)ayBd(z)
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=F(s)yo(x)aypg(z)+z(s)rd(x)aypsg(z)
=7(s)yd (x)aypa(y).

Since 7 is an automorphism of M and using the semiprimeness of M, we get d(x)ayAg(z)=0 for all
X,y,zeM and a,fel". By Lemma 1.4.8, d and g are orthogonal. Thus, by Theorem 4.3.6, dg is a
(02,72)—derivation. Now, replacing y by g(z)yysF(x) and S by « in (4.3.18), we get

F(x)ag(z)yysF (x)ag(z)=0 forall x,y,zeM and o, B,6 T

By the semiprimeness of M, we have F(x)ag(z)=0 for all x,zeM and a<I. Similarly, by the
orthogonality of G and d, we have G(x)ad(z)=0 forall x,zeM and a €T". Thus,

FG(xay)=FG(x)ac’(y)+7*(x)adg(y) forall x,yeM and a T .
Hence (FG,dg)is a generalized (o, z* ) derivation.
(ii) < (iii). Using similar approach as we have used to prove (i) < (iii).o

Corollary 4.3.13: Let (F,d) and (G,g) be generalized derivations of M. Then the following conditions

are equivalent:

i.  (FG,dg)is a generalized derivation.
ii. (GF,gd)is a generalized derivation.

iii. F and g are orthogonal, also G and d are orthogonal.

Note: The following example shows that Theorem 4.3.12 does not hold for arbitrary I"— rings.

Example 4.3.14: Let R be any 2-torsion free ring and let
a

b

M=<l¢c |:abc f,heRy, T={( 0 0 0 m):l,meR}.Then M is a 2-torsion free I ring which is
f
h

a a
b C
not semi-prime. Define the map c:M —M such that o|| ¢ | |=| b |. Clearly, & is an automorphism of
f f
h h

M and take 7 =1,,, where I,,is the identity map of M . Next, define the maps d,g:M — M such that,
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a 0 a 0 a
b 0 b C b
d{{c||={0[,g||c||=|b| forall | c|eM . Itcan be easily verified that d and g are (a,r)—
f f f 0 f
h 0 h 0 h
derivations of M such thatdo =od, dz =7d, go =00, gr =79 . Now, consider the maps F,G:M —>M
a a a 0 a
b 0 b 0 b
suchthat F| | c ||=|0|, G||c||=|0| forall|c |eM .
f 0 f 0 f
h 0 h h h

It can be easily checked that (F,d)and (G,g) are generalized (o,7)— derivations of M. Also, (FG,dg)
and (GF,gd)are generalized (az,rz)—derivations of M but neither F and g are orthogonal nor G and

d are orthogonal.

Corollary 4.3.15: Let (F,d) be generalized (o,7)— derivations of M. If F(x)yF(y)=0forall x,yeM
and y eI’ ,then F=d =0.

Proof: Notice that F(x)yF(y)=0 forall x,yeM and y eI . Replacing y by ySz, we get
0=F(x)yF(yBz)=F(x)yF(y)Bo(z)+F(x)yr(y)pd(z)=F(x)rr(y)psd(z).

Since z is an automorphism of M and using Lemma1.4.8, we have d(z)yF(x)=0 for all x,zeM and

y eI . Now, replacing x by xaz, we get
0=d(z)yF(xaz)=d(2)yF (X)ac(z)+d(z)yr(x)ad(z)=d(z)yr(x)ad(z).
By the semiprimeness of M, we get d(z)=0 forall zeM . Therefore, d =0 . Again
0=F(xyz)aF(y)=F(X)yo(z)aF (y)+7(x)yd(z)aF (y)=F (x)yo(z)aF(y).
In particular, we have
F(x)yzaF (x)=0forall x,z,eM and o,y €T
Using the semiprimeness of M, we get F(x)=0 forall xeM and hence F=0. o

Example 4.3.16: Let R be any 2-torsion free ring and let
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ra,b,c,f eRy, T={(0 x 0 0):xeR}.Then M isa 2-torsion free T'— ring which is not

-~ O T Q2

semi-prime. Define the mappings o,7:M — M such that o

- O T Q2
-~ Q T O
- O T Q2

f a
b b
= for all eM
Cc c
a f
. Clearly, o and 7 are automorphism of M . Next, define the mapd :M —M such that, d

all eM . It can be easily verified that d is a (o,7)— derivation of M .Further, consider the map

-~ O T

F:M — M such that F for all eM .

-~ O T 2
o O O D
-~ O T QD

Then it is straightforward to check that F is a generalized (o,7)— derivation of M. Moreover, F

satisfies the relation F(x)yF(y)=0 forall x,yeM and y €T, but neither F =0nor d =0,

4.4  Permuting Tri-Derivations On Semi-Prime I - Rings

In this section, we investigate some results concerning a permuting tri-derivation D on non-
commutative 3-torsion free semi-prime I'—rings M. Some characterizations of semi-prime I"—rings are
obtained by means of permuting tri-derivations.

Let | be a nonempty subset of M. Then amap d:M — M is said to be commuting (resp. centralizing)
on lif [d(x),x] =0 for all xel,ael (resp. [d(x),x] €Z(M) for all xel,aeTl), and is called

central if d(x)eZ (M) forall xeM,a el .

Every central mapping is obviously commuting but not conversely in general, and d is called skew-
centralizing on a subset | of M (resp. skew-commuting on a subset | of M) if

d(x)ax+xad(x)eZ (M) holds for all xel,a el (resp.d(X)ax+xad (x)=0holds forall xel,aeT).

Note: In this section we shall assume (*) xayBz =xpyaz forall x,y,zeM,a, ST .
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Theorem 4.4.1: Let M be a 3-torsion free semi-prime I" — ring satisfying the condition (*) and let | bea

non-zero ideal of M. If there exists a permuting tri-derivation D:MxMxM —M such that d is an
automorphism commuting on | , where d is the trace of D, then | is a non-zero commutative ideal.

Proof: Suppose that [d (x),x]ﬁ =0forall xel,Bel. (4.4.1)

Substituting x by X+Y leads to
[d(x).y],+[d(y).x],+3[D(xxy),x], +3[D(xy,y).x] +3[D(x.xy).y],
+3[D(x,y,y),y], =0 forall xyel,feT. (4.4.2)
Putting —x instead of x in (4.4.2) we get
[D(xy, y),x]ﬂ +[D(x.%,Y), y]ﬂ =0forall x,yel,fel. (4.4.3)
Since d is odd, we set X=X+Y in (4.4.3) and then use (4.4.1)and (4.4.2) to obtain
[d(y).x],+3[D(x.y,y).y] =0 forall x,yel,fel. (4.4.4)
Let us write yax instead of x in (4.4.4), we obtain
[d(y),yax], +3[D(yax.y,y),y], =ye[d(y).x], +3d(y)a[xY],
+3ya[D(xy,y),v], =ve([d(y).x], +3[D(x y.y).],)
+3d(y)a[x,y]ﬂ=0, vx,yel,a,pel.

Then d(y)a[xy],=0Vx,yel,a,fel’, since dis an automorphism, we obtain ya[x,y] =0

vx,yel,a,fel.
Replacing x by yax, we get

yaxy[x, y]ﬂ =0vx,yel, a,B,yel. (4.4.5)
Again left-multiplying by x implies that

xayy X, y]ﬂ =0vx,yel, a,B,yel. (4.4.6)
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Subtracting (4.4.5) and (4.4.6) with using M is semi-prime I" — ring, we completes our proof.o

Corollary 4.4.2: [7] Let M be a 3-torsion free semi-prime I"— ring satisfying the condition (*) and | be

an ideal of M . If there exists a permuting tri-derivation D:MxMxM —M such that d is commuting on
I , where d isthe trace of D, then | is a central ideal.

Theorem 4.4.3: [7] Let M be a 3-torsion free semi-prime I"—ring satisfying the condition (*) If there

exists a permuting tri-derivation D:MxMxM —M such that d is an automorphism commuting on M,
where d is the trace of D, then M is commutative.

Proof: For all xeM, we have d(x)eZ (M), then [d(x), x]ﬂ =0 VBel (4.4.7)
Substituting x by x+y, we obtained
[d(x).y],+[d(y).x], +3[D(xxy),x], +3[D(x.y,y),x] +3[D(xxy).y],
+3[ D (X, Y. ), y]ﬂ =0 forall x,yeM,pBerl. (4.4.8)
Putting —x instead of x in (4.4.8) and comparing (4.4.8) with the result, we arrive at
[D(xy, y),x]ﬁ+[D(x,x, y),y]ﬁzo (4.4.9)
Since d is odd, we set x=x+Yy in (4.4.9) and then use (4.4.7) and (4.4.9) to get
[d (y),x]ﬁ +3[D(X,Y,Y). y]ﬁ =0 (4.4.10)

Let us write yax instead of x in (4.4.10), we obtain
[d(y). yax]ﬂ +3[ D(yax,y,y), y]/j =ya[d(y), x]ﬂ +3d(y)a[xy],

+3ya[ D(X,Y,Y), y]ﬁ - ya([d(y),x]ﬂ +3[D(X,Y,Y), y]ﬂ)+3d (v)a[xy],=0

Then d(y)a(x, y]ﬂ =0. Since d is an automorphism, we obtain ye[x, y]ﬂ =0. Replacing x by yax, we
get
yaxy[x, y]ﬂ =0 (4.4.11) Again left-

multiplying by x implies that

xayy[x, y]ﬂ =0 (4.4.12)
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Subtracting (4.4.11) and (4.4.12) with using M is a semi-prime I"—ring, we get the required result. o

Theorem 4.4.4: [7] Let M be a 6-torsion free semi-prime I"—ring satisfying the condition (*) If there

exists a permuting tri-derivation D:MxMxM —M such that d is an automorphism centralizing on M,
where d is the trace of D, then M is commutative.

Proof: Assume that

[d(x).x], €Z(M) forall xeM and el (4.4.13)
Replacing X by X+Y and again using (4.4.13), we obtain
[d(x), y]ﬂ +[d(y), x]ﬁ +3[D(x.%Y), x]ﬁ +3[D(x,Y.Y), x]ﬁ +3[D(x.XY), y]ﬁ

+3[ D(x, Y, y),y]ﬂ eZ(M) ,Vx,yeM,Bel (4.4.14)

Replacing X by —X in (4.4.14) we get
[D(x.V, y),x]ﬁ +[ D(x,%,Y), y]ﬁ eZ(M) vx,yeM, Bel (4.4.15)
Replacing X by X+Y in (4.4.15), we obtain
[d (y), x]ﬁ +3[D(x, YY), y]ﬁ eZ(M) vx,yeM, Bel (4.4.16)
Taking x=yay in (4.4.16) and invoking (4.4.13), we get
[d(y), yay]ﬂ +3[D(yay.y.y). y]ﬂ =8[d(y), y]ﬂ ayeZ(M), YyeM,a,BeT (4.4.17)
Now commuting (4.4.17) with d (y) yields
S[d(y),y]ﬂa[d(y),y]ﬂ =0,VyeM,a,fel.

Again substituting X by yaX in (4.4.16) gives
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[d(y), yax]ﬁ +3[ D(yax,y,y), y]ﬂ = ya([d (y),x]ﬁ +3[D(x,Y,Y). y]ﬁ)+3d (v)a[xv],

+4[d(y),y]ﬂaXEZ(M) forall x,yeM,a, el |

Then [ya([d(y),x]ﬁ+3[D(x,y,y),y]ﬂ),yL+[3d(y)a[x,y]ﬁ+4[d(y),x]ﬁax,yL:O for all

X,yeM,a, el . And so we get

3d(y)a[[x, y]ﬂ,yL+7[d(y),y]ﬁa[x, y],=0 forall x yeM,a, BeT (4.4.18)

Since d acts as an automorphism with M is 6-torsion free the relation (4.4.18) reduces to
ya[[x, y]ﬁ,ylj =0 for all Xx,YyeM,a,Bel . Replacing X by rox we  get
yax&[[x, y]ﬂ,yL+2ya[x, y]ﬁ =0 forall x,yeM,a,5,0€<T. (4.4.19)

Replacing y by —y in (4.4.19) and subtracting with (4.4.19), gives

4ysS|x, y]ﬂ =0 forall x,yeM,B,5eT. (4.4.20)

Replacing x by xyr and left-multiplying by s, we obtain

4y5xa[r,y]ﬁ =0 forall x,y,r,seM,a,,0€<T. (4.4.21)

Again in (4.4.20) replacing x by xAm and x by s&x, we get

4yysSxa[m, y]ﬁ =0 forall x,ymseM,a,f,8,yel. (4.4.22)

Subtracting (4.4.21) and (4.4.22) with using M is 6-torision free semi-prime, we obtain [s, y]ﬁ =0 forall

S,yeM. Thus, we get M is commutative. O

Theorem 4.4.5: [7] Let M be a 3-torsion free semi-prime I" —ring satisfying the condition (*) If there

exists a permuting tri-derivation D:MxMxM —M such that d is commuting on M, where d is the trace

of D, then M is a central mapping.
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Proof: we have [d (x),x]ﬂ =0 forall xeM,pel. (4.4.23)

Substituting x by X+Yy leads to
[d(x), y]ﬂ +[d (y),x]ﬁ +3[ D(x,%,Y), x]ﬁ +3[D(x,Y,Y), x]ﬂ +3[D(x,%,Y), y]ﬁ
+3[D(x,Y, y),y]ﬂ =0 forall x,yeM,BeTl. (4.4.24)
Putting —x instead of x in (4.4.24) we get

[D(x.y.y).x],+[D(xx.y).y], =0 forall x,yeM,fel. (4.4.25)

Since d is odd, we set X=X+ in (4.4.25)and then use (4.4.23)and (4.4.24)to obtain
[d(y).x], +3[D(xy.,y),y],=0 forall x,yeM,Bel. (4.4.26)

Let us substitute yax instead of x in (4.4.26), since M is 3-torsion semi-prime, then d(y)e[x,y], =0

vX,yeM,a,p el

Applying Lemma 1.4.4, the above relation gives d (y) el (M) forall yeM, and this completes the
proof of the theorem. o

Theorem 4.4.6: [7] Let M be a 3-torsion free semi-prime I" — ring. If there exists a permuting tri-derivation

D:MxMxM —M such that d is commuting on M, where d is the trace of D, then D is commuting
(resp. centralizing).

Proof: we can restrict our attention to relation, [d(x),x]ﬂ =0 for all xeM, Bel". The substitution of

X+Yy for X in above relation gives

[d(x).y], +[d(y).x], +3[D(x.xy).x] +3[D(x.y.y).x], +3[D(xxy).y ] +3[D(xy.y).y],=0
vx,yeM, peT. (4.4.27)

Now, by the same method in Theorem 4.4.5, we arrive at

ys[d (y),x]ﬁ +3d(y)s[x ], +3ys5[D(x,Y.Y), y]ﬁ =0Vx,yeM,p,5el.  (4.4.28)

Which implies that

d(y)s[x y],=0 forall x,yeM,B.5<T. (4.4.29)
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The above relation gives d(y)eZ(M) for all xeM. By substitution the relation d(y)eZ(M) in

(4.4.29) with using replacing X by y and M is 3-torsion free semi-prime, we obtain

[D(y,y,y),y]ﬁ:O forall x,yeM,gerl. (4.4.30)

Then D is commuting(resp. centralizing) of M. O

Theorem 4.4.7: [7] Let M be a non-commutative 3-torsion free semi-prime I'—ring satisfying the
condition (*). If there exists a permuting tri-derivation D:MxMxM —M such that d is skew-

commuting on M, where d is the trace of D, then d is commuting.

Proof: We have d(x)ax+xad(x)=0 forall xeM and a €I". Replacing x by X+, we obtain
d(y)ax+3D(x,x y)ax+3D(x,y,y)ax+d(x)ay+3D(x,X,y)ay
+3D(X, Yy, y)ay+xad(y)+3xaD(x, X y)+3xaD(X,y,y)+yad(y)
+3yaD(x, X, y)+3yaD(x,y,y)=0 forall x,yeM,aeT. (4.4.31)

We substitute —x for x in (4.4.31) we get

3D(x,Y,y)ax+3D(x X, y)ay+3xaD(X,y,y)+3yaD(x,x,y)=0 for all
X, YeM,ael.

Since M is 3-torsion free, we obtain
D(X,y,y)ax+D(x X y)ay+xaD(X,y,y)+yaD(xx,y)=0 (4.4.32)
forall x,yeM,ael.

Again we substituting X4y for x in (4.4.32) then we get

xaD(y,y,y) By +D(X,Y,y)axpy+xaypD(y,y,y)+D(xy,y)ay =0 (4.4.33)
forall x,yeM,a,f el .

We substitute —x for x in (4.4.33) and compare (4.4.33) with the result to get
D(x,y,y)axBy =0 forall X,yeM,a, Bl . Replacing x by y and since d is the trace of D , we obtain
d(y)ayBy=0 forall yeM. Left-multiplying by y and right-multiplying by d(y)dy with using Lemma
1.4.4, we obtain
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yod(y)By=0 forall yeM,B,5el . (4.4.34)
Left-multiplying (4.4.34) by d(y) with using (Lemma 1.4.11 and Remark 3.2.4) gives
d(y)By=0forall yeM,Bel . (4.4.35)

Right-multiplying (4.4.34) by d(y) with using (Lemma 1.4.11 and Remark 3.2.4) and subtracting the
result with (4.4.35), we obtain [ d (), y]/j =0 forall yeM, Berl .

By Theorem 4.4.3, we complete our proof. o

Theorem 4.4.8: [7] Let M be a non-commutative 3-torsion free semi-prime I'—ring satisfying the
condition (*) and | be a non-zero ideal of M. If there exists a permuting tri-derivation

D:MxMxM—M such that d is skew-commuting on |, where d is the trace of D, then d is
commutingon | .

Proof: Using same method in Theorem 4.4.7, we complete the proof. o

Theorem 4.4.9: [7] Let M be a non-commutative 3-torsion free semi-prime I'—ring satisfying the
condition (*) and | be a non-zero ideal of M. If there exists a permuting tri-derivation

D:MxMxM—M such that d is skew-centralizing on |, where d is the trace of D, then d is
commutingon | .

Proof: Using same method in Theorem 4.4.7, we complete the proof. o

105



Chapter Five
Derivations On ™™ - Modules

5.1 Jordan Left Derivations On Left r™M - Modules

In this section, we present the concepts of a left I'M — module, left derivation on left I'M —
module and we will prove that; for M a I'—ring such that aabpfc=apbac for all

a,b,ceM,a, fel’ (*),and X aleft TM—module, if aax=0 with aeM,xe X and a eI then

either a=0 or x=0. It is also shown that there exists a non-zero left derivation d :M — X, such
that

1. If d:M — X isanon-zero left derivation and X a left ’'M — module. Then M is commutative.
2. If d:M — X isanon-zero Jordan left derivation and X is 2-torsion free. Then M is commutative.

Now, we start by the following definition.

Definition 5.1.1:[10] Let M be a I'-ring, (X,+) be an abelian group and X a left TM—module. An
additive mapping d :M — X is a left derivation if d (aacb)=acd (b)+bad (a) and a Jordan left derivation
if d(aca)=2acad(a) forall a,beM and a T,

Lemma 5.1.2:[10] Let M be a I"—ring satisfying (*) and let X be a 2-torsion free left TM —module. Let
d:M — X be aJordan left derivation. Then, for all a,beM and g, el .

i. d(aab+bea)=2aad(b)+2bad(a).
ii. d(acbpBa)=apaad(b)+3aabpd(a)-baapsd(a).
iii. d(aabfc+cabpa)=(afc+cpa)ad(b)+3aabpd(c)+3cabpsd(a)
—bacpd (a)—baapd(c).
iv. (aab—baa)paad(a)=ac(aab—baa)psd(a).
v. (aab-bea)pB(d(aab)-aad(b)-bad(a))=0 .

Proof: By Corollary 2.1.11, Preposition 2.1.12, Corollary 2.1.13 and Proposition 2.1.14 the proof is
complete. O

Lemma 5.1.3:[10] Let M be a I'—ring satisfying (=) and let X be a 2-torsion free 'M—module. Then
there exists a Jordan left derivation d : M — X such that

i. d(acapb)=acapd(b)+(apb+bpfa)ad(a)+aad(afb—bpa).
ii. d(baapa)=acapd(b)+(3bpsa—apb)ad(a)-aad(apsb—bpsa).
iii. (aob—bea)pd(aab—bea)=0.
iv. (acapb—2aabpa+baapa)ad(b)=0.

forall a,b,ceM and g, el .
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Proof: Substituting bga and agb for b in Lemma5.1.2 (i), we get

d (acbpa+bpfaca)=2aad (bfa)+2bpacd (a) (5.1.1)
and d(acapb+apfbea)=2aad(apb)+2apbad(a) (5.1.2)
Taking (5.1.2) minus (5.1.1) and then using (*), we get

d (acafb—baapa)=2acd (apfb—bpa)+2(apb—-bpa)ad(a) (5.1.3)
Replacing a by afa in Lemma5.1.2 (i) and then by (*), we get

d (acapb+baapfa)=2acapd (b)+4bpacd (a) (5.1.4)
By (5.1.3) and (5.1.4) with the condition that X is 2-torsion free, we have (i) .
Subtracting (5.1.3) from (5.1.4) and then applying the same condition, we obtain (ii).
By Lemma5.1.2 (v), we have

(acb—bea) B(d(aab)—bad (a)-aad (b)) =0 (5.1.5)
Using Lemma 5.1.2 (i) in (5.1.5), we get

(acb—bea) B(d (baa)—aad (b)—bad (a)) =0 (5.1.6)
Taking (5.1.5) minus (5.1.6), we obtain (iii).
By Lemma5.1.2 (i), Lemma5.1.2 (ii) and (*), we have

d((ach—baa) B(aab-bea)) =-3(acapb - 2achpa+baapa)ad (b)

—(babpa—2baapb+aabpb)ad(a).

On the other hand, using (iii), we have d((aab—baa)B(acb-beaa))=0.

Thus we have
3(aaapb—2aabpa+baapa)ad(b)+(babfa—2baapb+acbpb)ad(a)=0 (5.1.7)

From Lemma 5.1.2 (iv),

107



(acapb—2acbpa+baapa)ad(a)=0 (5.1.8)
Replacing a by a+b in (5.1.8), we obtain
(acapb—2acbpfa+baapa)ad (b)—(babpfa—2bcapb+achpb)ad(a)=0  (5.1.9)
Adding (5.1.7) and (5.1.9), and then using the condition that X is 2-torsion free, we get
(acapb—2acbfa+baapa)ad(b)=0 (5.1.10)
Hence from (5.1.9) and (5.1.10), we obtain (iv). o

Theorem 5.1.4: [10] Let M be a I'—ring satisfying () and let X be a left TM—module. Suppose that

aax=0 with aeM,xe X and a <" implies that either a=0 or x=0. If there exists a non-zero left
derivation d :M — X . Then M is commutative.

Proof: Since d :M — X is a non-zero left derivation, we have

d (agh) = acd (b) +bad (a), forall a,beM and el . (5.1.11)
Replacing b by bga in (5.1.11) forall ST, we have
d(acr(bBa))=aad (bpa)+bpaad (a) =aabpsd (a)+acapd (b)+bBaad (a) (5.1.12)
On the other hand

d((aab) Ba) =(aab) Ad (a)+aBaad (b)+apbad (). (5.1.13)

Now from (5.1.12) and (5.1.13), we get (aab—baa)Bd(a)=0. By assumption for each acM either
aeZ(M) or d(a)=0. But then Z(M) and Kerd ={meM:d(m)=0} are additive subgroups of M.
Since Z(M) and Kerd are proper subgroups of M, either M =Z (M) or M= Kerd. But d =0, then
M =Z(M). This completes the proof. o

Theorem 5.1.5: [10] Let M be a I"—ring satisfying (*) and let X be a 2-torsion free left I'M —module.

Suppose that aax=0 with aeM, xe X and a I" implies that either a=0 or x=0. If there exists a
non-zero Jordan left derivation d :M — X . Then M is commutative.

Proof: By Lemma 5.1.3 (iii), we have

(aab—bea) pd (acb—bea)=0, forall a,beM and B, el.
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Then by assumption either acb—baa=0 or d(aab—baa)=0. If acb—baa=0, then M is

commutative.

If d(aab—baa)=0, then 2d (acb)=d (aab)+d (bea) (5.1.14)
In (5.1.14) replace agbfor b, forall S<T, we obtain

2d (aapb) = d (acab)+d (afbaa).
Now by Lemma5.1.3 (i), Lemma5.1.2 (ii) and above relation, we get

2d (acrafb) = aad (b)+(aBb+bpa)ad (a) +aad (afb—bBa)+afaad (b)

+3aab3d (a)—baagd (a)

2d (accaib) = 2acafd (b) + 4aabd (a). (5.1.15)
But by Lemma 5.1.3 (i), we have

2d (acrafb) = 2acafd (b)+2(afb +bfa)ad (a) + 2aad (apb —bja)

2d (acrab) = 2accapd (b) +2(afb+bpa)ad (a) (5.1.16)
Replace (5.1.16) in (5.1.15), we get

2(apb—bpa)ad (a)=0. (5.1.17)

Since X be a 2-torsion free 'M—module then from (5.1.17), we have (afb—bpga)ad(a)e MI'X < X
and (apb—bpa)ad(a)=0, for all a,beM, S, T, therefore by assumption either agb—bBa=0, then

M is commutative or d(a)=0, a contradiction. o

5.2 Generalized Left Derivations On Left M- Modules

In this section, we will define generalized left derivation, generalized Jordan left derivation and we
will prove that; if M is a I"—ring satisfying (*) and X is a 2-torsion free left '™ —module. Suppose that,

aax=0 with aeM,xe X and a I implies that either a=0 or x=0. If D:M — X is generalized left
derivation with associated non-zero Jordan left derivation d : M — X . Then M is commutative.

Definition 5.2.1:[9] Let M bea I'-ringand X be a left 'M —module, an additive mapping D:M — X is
called generalized left derivation if there exists a left derivation d:M — X, such that
D(aab)=aaD(b)+bad(a) forall a,beM and ael.
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And D is called generalized Jordan left derivation if there exists a Jordan left derivation d : M — X
such that D(aca)=aaD(a)+aad(a) forall acM,aeT.

Note: X is faithful if XT'a={0} forces a=0 for all acM. X is prime if mr'MI'x=0, for meM and
x e X implies that either x=0 or mI'X =0.

Lemma 5.2.2: [9] Suppose that X is a faithful prime I'M—module. Let a,beMandxe X . If (the prime
I'—ring) M is 2-torsion free satisfying (=) and aempBbyméx=0, for all meM and o, 8,7,6 T, then
a=0orb=0,0r x=0.

Proof: We use the hypothesis acmpgbymox =0, forall a,b,meM,xe X and «,B,y,6€T".

Replacing m by u+v in the above equation and then putting v=mpaampbym, we get
aaupSbympBaampbymox +aampBacmpbympbyusx =0. This gives
aampPBaampbympbyusx =0, forall a,b,mueM,xe X and «,f,y,06 €I". If x=0, we are done.

Suppose that x=0. Since X is faithful and prime, then (aampga)ampg(bympgb)=0, for all

a,b,meM and «, 3,y €T". Primeness of M gives aempa=0 or bymgb =0, and consequently, a=0 or
b=0.0o

Defining D, (x)=[a,x]_, forall a,xeM and a €T", we have
Lemma 5.2.3:[9] Let M be a I —ring which satisfies (*) and let aM be a fixed element. Then :

i. D, (x) isaderivation.

)

ii. D,D,(x)=aaD,(x)-D,(x)aa.
(
(

ii. D,D,(x)=D,D,(x)
iv.  D,D,(xry)=D,D,(x)yy+2D,(x)AD,(y)+xyD,D,(y).

forall x,yeM and «,f,yT.
Proof: (i) Forall x,yeM, a,f el andusing (*) we have
D, (xBy)=[a,xpy], =[a,x], By +xa[a, y]ﬂ =D, (x) By +xaD,(y).

(i) By definition, we have

D,D,(x)=D, ([a, x]ﬂ):[a,[a, X]ﬂL =aafa,x] —[a,x], aa=aaD,(x)-D,(x)aa forall a,xeM and
a,pel.

(iii) Using (*), we get
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D,D,(x)=D, ([a, x]ﬂ) = [a,[a, x]ﬂ]a =aa(apx—xpa)—(afx—xpa)aa

=af(aax—xea) - (aax—xea) fa= [a,[a, x], ]ﬂ =D, ([a,x],)=D,D, (x)
forall a,xeM and o, eT.
(iv) By(ii)and (*), we have
D,D, (xry)=aaapxyy —aaxyypa—apfxyyaa+xyypfaca
=(acafx—aaxfa—afxaa+xpaca)yy+2aaxp(ayy —yya)
—2xaaf(ayy—yya)+xy(acafy—aaypfa—afyaa+ypfaca)
=D,D,(x)yy+2(aax—xaa)B(ayy—yya)+xyD,D,(y)
=D,D,(x)yy+2D,(x) D, (y)+xyD,D,(y).
Forall x,yeM and «,B,y€l".0

Lemma 5.2.4: Let M be a I'—ring satisfying (*) and of characteristic not 3, and d :M — X a Jordan left

derivation, where X is faithful and prime T'M-module. If d(a)=0, for some aeM, then

[a,[a,b]ﬁL 7[a,[a,b]ﬁlz =0,forall beM and «, B,y T.
Proof: Let a € M be a fixed element. By Lemma 5.2.3, we have

D,D, (x)=aa(apfx—xpa)—(afx—xpa)aa (5.2.1)
forall xeM and o, eT.

Using (*)in (acb—baa)pfaaD(a)=ac(aab—bea)pD(a), forall a,beM and o, T, we obtain

(ac(apx—xpa)-(aBx—xpa))ad(a)=0 (5.2.2)
forall xeM and a, el .
From (5.2.1) and (5.2.2), we get

D,D,(x)ad(a)=0, (5.2.3)

By Lemma 5.2.3 (iv)and (5.2.3), we have
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(D,D,(x)7y+2D,(x) 8D, (y))ad (a)=0 (5.2.4)
Forall x,yeM and a,f,yT.
Replacing y by D, (ypz) in (5.2.4) and by Lemma 5.2.3 (i), we obtain

(D.D, (x)7(D, (y) Bz+yaD,(z))+2D, (x) 8D, (D, (yA2)))ad () =0 (5.2.5)
Using Lemma 5.2.3 (iii) in (5.2.5), and then using (5.2.3), we get

(DaDﬂ (x)7(D, () Bz+yaD,(z)+D,D,(x)yyaD, (z)))ad (a)=0 (5.2.6)
Replacing D, (z) for z in (5.2.6), and then by Lemma 5.2.3 (iii) and (5.2.3), we obtain

(D,D,(X)7D, (y)aD,(z))ad (a)=0 (5.2.7)
Replacing D, (y) for y in (5.2.6), and then by Lemma 5.2.3 (iii) in (5.2.7), we obtain

(DD, (x))7(D,D, (y)))zzad (2) =0 (5.2.8)
Since (5.2.8) holds for all zeM, we are forced to conclude that d =0 implies

(D.D, (x))7(P.D, (y))=0
forall x,yeM and a,f,y €T.

In particular, (D,D, (b))y(D,D,(b))=0,Forall beM and e, 3,y T

This gives [a,[a,b]ﬂly[a,[a,b]ﬁl =0, forall beM and @, B,y .o

Theorem 5.2.5:[9] Let M be a I'—ring satisfying (*) and X be a 2-torsion free left TM—module.

Suppose that, aax=0 with aeM, xe X and a I implies that either a=0 or x=0.If D:M—> X is

generalized left derivation with associated non-zero Jordan left derivation d:M— X. Then M is
commutative.

Proof: Forall a,beM and «, 8 T, then we have
D((acra) fb) =acapD(b)+bpd (aca) =aaaBD(b)+2bBacd (a)

D((aca)Bb)=acapD(b)+2bBaad (a) (5.2.9)
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On the other hand
D((aca)Bb)=D(aa(apb))=aaD(apb)+apbad (a)
=aa(apD(b)+bpd(a))+apbad (a)
— acaD(b)+aab/d (a)+afbad (a)
But M satisfying (), then
D((aca) fb) =acapD(b)+2asbad (a) (5.2.10)
Now from (5.2.9) and (5.2.10), we get
2[a,b], ad(a)=0 (5.2.11)

But 2[x, y]ﬁ ad(a)e MI'X < X (since X be a left TM—module) and X be a 2-torsion free therefore from
(5.2.11), we have [a,b]ﬁ ad(a)=0, by assumption then either [a,b]ﬁ =0 or d(a)=0. For each aeM
either ac Z(M) or d(a)=0. But then Z(M) and Kerd ={meM:d(m)=0} are additive subgroups of

M. Since Z (M) and Kerd are proper subgroups of M, either M=Z (M) or M = Kerd . But d =0, then
M =Z(M). This completes the proof. o
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