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Asymptotic and transient dynamics are both important when considering the future

population trajectory of a species. Asymptotic dynamics are often used to determine

whether the long-term trend results in a stable, declining or increasing population

and even provide possible directions for management actions. Transient dynamics

are important for estimating invasion speed of non-indigenous species, population

establishment after releasing biocontrol agents, or population management after a

disturbance like fire. We briefly describe here the results in this thesis.

(1) We consider asymptotic dynamics using discrete time linear population models

of the form n(t + 1) = An(t) where A is a population projection matrix or integral

projection operator, and n(t) represents a structured population at time t. Within the

model are the underlying parameters. Some of these parameters are of more interest

to us: either ones which have a large confidence interval or are the easiest to manage

from a conservation managers point of view. Using these parameters of interest, we

next divide the parameter space into two parts: on one side the population grows

and on the other side the population declines. We call this dividing hypersurface the

growth-decline boundary and use this as a tool to show how senescence affects the

prediction of a matrix model for the Serengeti cheetah (Acinonyx jubatus). We next

analyze an integral projection model for thistles (Onopordum illyricum) again using

this growth-decline boundary.

(2) We consider how temperature effects the transient (short term) dynamics for

an ectothermal species such at the pea aphid (Acyrthosiphon pisum). We define



“transient amplification” and develop two different models to explore the effect of

temperature on this concept. We estimate model parameters (survivorship and fe-

cundity) at two different temperatures, and then scrutinize both model predictions

by comparing observed and predicted transient population growth rates and the pro-

jection of population size over 20 days. Both models predict that temperature affects

the short term transient amplification. The degree day model predicts no effect of

temperature on the asymptotic transient amplification while the results of the ordinal

day model were inconclusive.
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Chapter 1

Introduction

Matrix projection models are commonly used for predicting the dynamics of struc-

tured populations (e.g., [16, 39, 80, 98, 111]). In many cases key life history pa-

rameters like survival of fecundity are determined by continuous variables (such as

size). In these cases the use of matrix projection models requires discretization of

the continuous variable; because the method of discretization influences the model

predictions [35], algorithms have been developed to find the most biologically mean-

ingful discretization [96, 122]. Additionally, matrix models are often constructed with

a self-perpetuating final stage, e.g. an animal could theoretically stay in the last age

class indefinitely. Hence matrix models ignore the effect of senescence on population

dynamics. A recently developed alternative to matrix models are integral projection

models, which consider continuous stages but are discrete in time. Both of these

modeling approaches require multiple parameters, and the data to accurately esti-

mate those parameters is often lacking; as a result of insufficient data these models

suffer from high parameter uncertainty. Therefore there is a need to analyze the ef-

fect of parameter uncertainty on the model’s predictions. Furthermore, parameters

often vary on a spatial and temporal scale, and stochastic models are even more data
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hungry [34].

The first part of this dissertation entails studies of both population projection

matrices (PPMs) and integral projection models (IPMs). From a mathematical point

of view, PPMs and IPMs are similar, since both are compact linear operators. PPMs

are analyzed using linear algebra; IPMs require the use of functional analysis. For

linear PPMs and IPMs, the determination of the asymptotic growth rate of the pop-

ulation is the most common method for analyzing the model. For linear models, the

asymptotic growth rate is the dominant eigenvalue, λ, of the model if it exists. If

λ > 1, the population grows asymptotically. If λ < 1, the population declines asymp-

totically, and if λ = 1, the population is asymptotically stable. The growth-decline

boundary of a PPM or IPM is this λ = 1 hypersurface as a function of the parameters

in the model. In Chapters 2 and 3, I’ll look at how changing the models’ parameters

effect λ and hence determine the growth-decline boundary.

There are well established methods for local perturbation analysis, such as elas-

ticity and sensitivity of matrix transition rates or parameter values, which examine

the consequences of very small perturbations of single, independent parameters [16].

Sensitivity of λ to a matrix element, aij, defined as
∂λ

∂aij
, evaluates the effect of

infinitesimal perturbations of single parameters on the dominant eigenvalue. Since

some matrix elements in a PPM are measured on a different scale than others, (for

example, compare survivorship with fecundity), elasticity, the proportional change in

λ per proportional change in the matrix element,

∂λ

λ

/∂aij
aij

,

is also used. Because both sensitivity and elasticity are partial derivatives, they

inherently linearize the relationship between λ and the matrix parameter value of
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interest. In some cases, this could lead to erroneous results [56, 95].

Calculations of elasticities assume that all other matrix elements remain un-

changed [29], or in the case of multiple perturbations, that the transition proba-

bilities are changed by the same proportion [95]. Sensitivity and elasticity analyses

have also been used to decide which stage or age group of a population should be

manipulated to improve population viability the most [29, 40], but without evaluating

whether the particular management action is sufficient to achieve the management

goal [26, 27, 33, 106]. If one is going to enact a conservation plan based upon the

analysis of the model, one should have confidence that the model predicts success.

Furthermore, elasticity analyses does not take into account uncertainty in the data.

Parameter uncertainty has been incorporated into elasticity analysis by incorporating

standard deviation into the definition of elasticity [40], including covariation between

parameters [121], and by adding random components to the parameters [124]. Caswell

[15] and de Kroon et al. [29] both give in-depth discussions of the caveats for some of

these methods.

Global perturbation analysis is necessary when relatively large changes in param-

eters values are being considered. Large uncertainties in the parameter values often

occur when the sample size is small. Management actions may also change param-

eter values by large amounts. Demographic and environmental stochasticity lead to

mean parameter values which vary over space and time. Using sensitivity and elas-

ticity analysis to infer the effect of large perturbations on the asymptotic population

growth rate λ can result in misleading conclusions [30, 55, 56, 95, 116]. One possible

approach to global perturbation analysis of matrix models is Monte Carlo analysis

[116].

In Chapter 2 of this dissertation, I use an analytical alternative for matrix pro-

jection models developed by my colleagues and me to analyze the growth-decline
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boundary for an endangered species. In Chapter 3, I extend this method to integral

projection models. In this approach, I plot the growth-decline boundary as func-

tions of the most significant parameters. I then use this to determine how robust

λ is within the confines of the uncertainty in the parameters. This method can be

applied to models for endangered (or invasive) species. Sensitivity and elasticity tells

us what management strategy we should focus on in order to increase (or decrease)

the asymptotic growth rate. Our method tells us how confident we are that a specific

management strategy can achieve the desired population growth rate (e.g. λ > 1) in

the face of both parameter and stochastic uncertainty.

The starting point for the analysis of both PPMs and IPMs is the identification

of a “nominal point” in the multidimensional parameter space. The nominal point

uses our best estimates for the parameters, or our best guess in the case of poorly

known parameters. I am interested in both the effects of small (local) and large

(global) perturbations away from the nominal point on the asymptotic growth rate,

λ. In the approach I developed with my colleagues, we first calculate the hypersur-

face representing population stasis (λ = 1); then one side of the surface indicates the

parameter space for a growing population (λ > 1), and the other side for a declining

population (λ < 1). In case of an endangered species the nominal point will be on the

declining side, while the nominal point for an invasive species will be on the growing

side. In both cases it is important to know how sensitive the qualitative predictions

are to parameter perturbations, especially when these perturbations cause a predicted

growing population to decline or cause a predicted declining population to grow. This

is relevant for population management, i.e. choosing a strategy that works under a

range of likely environmental conditions (including temporal and or spatial variation

of population parameters), or for understanding how reliably ecological factors such

as predation or competition can limit population growth. The distance from the
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nominal point to the hypersurface representing stasis is a measure of the robustness

of the stability (or lack of stability) of the system. The larger the distance, the more

robust the model predictions are to parameter perturbations, i.e. the less likely that

perturbations cause a qualitative change in model predictions (e.g. achieving or not

achieving a desired management goal). The distance can be evaluated numerically,

or it can be evaluated graphically when there are two or three relevant parameters.

Population Projection Matrix Models (PPMs)

In these systems the population vector consists of finitely many discrete stages. If

there are S stages, the population vector x is in RS, with all entries nonnegative. If

the population vector during year t is denoted x(t), and if A is the S by S projection

matrix for this population, then (x(t))∞t=0 satisfies the discrete time dynamical system

x(t+ 1) = Ax(t). (1.1)

The total population is

‖x‖ := n1 + n2 + . . .+ nS, (1.2)

the 1-norm of x.

The long term growth rate for solutions of (1.1) is determined by the eigenvalue

or eigenvalues of A of maximum modulus. For a matrix M, when there is only

one eigenvalue of maximum modulus, we call it the leading eigenvalue, and refer to

it as λ(M). The spectral radius, r(M), is the largest modulus of an eigenvalue of

M. If r(A) > 1 (or r(A) < 1), then the total population increases (or decreases)

geometrically, i.e. there exists m > 0 and ρ > 1 (or 0 < ρ < 1) such that

‖x(k)‖ ≥ mρk, (‖x(k)‖ ≤ mρk) k = 0, 1, . . . .
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The following is a well-known consequence of the Perron-Frobenius theorem [110].

Note that a nonnegative matrix is a matrix whose entries are all ≥ 0. A primitive

matrix is a nonnegative square matrix A such that Ak > 0 for some positive integer

k.

Theorem 1.0.1. (Perron-Frobenius) Let A be a square, nonnegative, primitive ma-

trix. Then A has an eigenvalue, λ, which satisfies:

1. λ is real and λ > 0,

2. λ has a right eigenvector whose components are strictly positive, and this is the

only eigenvector (up to normalization) with this property.

3. λ > |µ| for any eigenvalue µ 6= λ,

4. λ is a simple root of the characteristic equation of A.

Integral Projection Models (IPMs)

A class of integral population projection operators is introduced in Easterling [35],

Easterling, et al. [36], and Ellner and Rees [41]. Let n(x, t) be the population dis-

tribution as a function of the stage x at time t. For example, x could be the size of

the individual, with maximal size Ms. The matrix is replaced by an integral operator

with projection kernel k(y, x), yielding the integro-difference equation

n(y, t+ 1) =

∫ Ms

0

k(y, x)n(x, t)dx. (1.3)

In particular, this kernel does two things. One, it determines the probability of

transition from size x to any possible size in one time step, much the same way that

the (i, j)th entry of a projection matrix determines how an individual in stage j at

time t moves to state i at time t + 1. It also determines the number of newborns
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and the probability of transition of these newborns into any possible size. Let Ω be

a bounded set containing the set of possible stages y. For instance, if y is size, Ω is

the interval [0,Ms], where Ms is the maximum size. (We note that a size of 0 is not

biologically possible.) We can write (1.3) as

n(y, t+ 1) =

∫
Ω

k(y, x)n(x, t)dx. (1.4)

The stage variable y does not have to be a scalar. In an example in Chapter 3,

originally given in Ellner and Rees [41], Ω is the set of all size-age pairs, where age

is measured discretely with maximum age Ma, so Ω = {(x, a) | x ∈ [0,Ms], a ∈

{0, 1, 2, . . .Ma}}. Then the projection model is still given by (1.4), but if Ω is not a

subset of R, dy will indicate integration with respect to a measure.

Integral equations such as (1.4) can be analyzed in much the same way as matrix-

based models of the form (1.1). The Banach space L1(Ω), which has norm

‖v‖ :=

∫
Ω

|v(x)|dx,

is analogous to RS with norm given in (1.2). For a population function n(x, t),

it is sometimes useful to distinguish between the function n(x, t) of two variables

and the vector n(t) = n(·, t) which is in L1(Ω) for a given t. Define the operator

A : L1(Ω)→ L1(Ω) by

(Av)(·) :=

∫
Ω

k(·, x)v(x)dx.

Then the equation (1.4) is equivalent to

n(t+ 1) = An(t), (1.5)
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which is analogous to (1.1).

Easterling [35], Easterling, et al. [36], and Ellner and Rees [41] show that for a

large class of kernels k, the solution of (1.4) satisfies the conclusions of Theorem 1.0.1.

I will denote matrices and integral operators by bold capital letters, such as A.

I will denote vectors, S by 1 matrices (i.e. column vectors) and L1(Ω) functions by

bold lower case letters, such as d. I will denote 1 by S matrices (i.e. row vectors)

and functionals on L1(Ω) by bold lower case letter with a T superscript, to denote

transpose, such as eT .

A key modelling and analysis issue is that the matrix or operator A will involve

parameters, for instance fecundity or survival parameters. Usually these parameters

will be uncertain. These uncertainties in A are typically structured, that is, the

uncertainties occur only in specific locations in the model. For example, in a Leslie

matrix, it only makes biological sense to perturb the top row and/or the sub-diagonals.

These uncertainties and can be described by m parameters (p1, p2, . . . , pm). When A

is a matrix, we can typically choose m ≤ S2, the number of entries.

Since I am interested in the effect of the uncertainties on the asymptotic growth

rate λ, I denote the explicit dependence of A and λ on (p1, p2, . . . , pm) by writing

A = A(p1, p2, . . . , pm), λ = λ(p1, p2, . . . , pm).

I identify a set P of admissible parameters as those (p1, p2, . . . , pm) which make bi-

ological sense in the model, and if necessary, are such that A(p1, p2, . . . , pm) has

desirable mathematical properties. I can now describe one way of analyzing the effect

of changes in the parameters on λ.
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Consider the subset of P given by

C := {(p1, p2, . . . , pm) ∈ P | λ(p1, p2, . . . , pm) = 1}. (1.6)

This is the set of (p1, p2, . . . , pm) for which the leading eigenvalue λ(A) = 1. This set

is a hypersurface. If we are considering two uncertain parameters, then m = 2 and C

is a curve. If we are considering three uncertain parameters, then m = 3 and C is an

ordinary surface (that is, a two dimensional object in three dimensions).

If we are concerned with maintaining a particular growth rate, say 3%, then we

would replace C by C1.03, where for arbitrary µ,

Cµ := {(p1, p2, . . . , pm) ∈ P | λ(p1, p2, . . . , pm) = µ}.

In many applications we would be interested in identifying the set of all parameters

which lead to asymptotic growth:

C+ := {(p1, p2, . . . , pm) ∈ P | λ(p1, p2, . . . , pm) > 1}. (1.7)

For other applications, we will be interested in identifying the set of all parameters

which lead to asymptotic decay:

C− := {(p1, p2, . . . , pm) ∈ P | λ(p1, p2, . . . , pm) < 1}. (1.8)

When the notion of “side” is made precise mathematically, we can prove that C+ is

one side of the hypersurface C and C− is on the other side of C. This is done in [77].

My primary interest is to find a usable formula for the hypersurface C. We

assume that in applications we have nominal values for the parameters (p1, p2, . . . pm),
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that is, those values that are determined by experiment or some other method. We

denote these nominal values by the point q0 in Rm. We also assume that it is either

considered “desirable” for the population to be in asymptotic decline (for instance, for

an invasive species), or “desirable” for the population to be asymptotically increasing

(for instance, for an endangered species).

The following robustness questions can be addressed once we have a formula for

C:

• If λ(q0) > 1, and it is desirable for the population to asymptotically increase,

then we are interested in how much the nominal parameters can be perturbed

before population growth is lost.

• If λ(q0) < 1, and it is desirable for the population to asymptotically decrease,

then we are interested in how much the nominal parameters can be perturbed

before population decay is lost.

The following control, i.e. population management, questions can be addressed once

we have a formula for C:

• If λ(q0) > 1, and it is desirable for the population to asymptotically decrease,

then we are interested in how much the parameters have to be perturbed before

population decay is achieved.

• If λ(q0) < 1, and it is desirable for the population to asymptotically increase,

then we are interested in how much the parameters have to be perturbed before

population growth is achieved.

We still need to find a usable equation for C. The obvious starting point is to
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consider the hypersurface Γ on which at least one eigenvalue of A is 1:

Γ = {(p1, p2, . . . , pm) ∈ P | 1 is an eigenvalue of A(p1, p2, . . . , pm)}.

In the matrix case, the hypersurface Γ is obtained from inspecting the characteristic

polynomial: letting I denote the n× n identity matrix,

Γ := {(p1, p2, . . . , pm) ∈ P | det(I −A(p1, p2, . . . , pm)) = 0}. (1.9)

More generally, we can let Γµ be the hypersurface on which at least one eigenvalue of

A is µ:

Γµ = {(p1, p2, . . . , pm) ∈ P | µ is an eigenvalue of A(p1, p2, . . . , pm)};

for matrices this is

Γµ := {(p1, p2, . . . , pm) ∈ P | det(µI −A(p1, p2, . . . , pm)) = 0}. (1.10)

If A is a matrix, it is easy to find a formula for Γ, and if A is an integral operator,

it is often relatively easy to approximate Γ. However, as alluded to above, there is no

guarantee that Γ is the same as C because we cannot guarantee a priori that we have

not just found a sub-dominant eigenvalue of A(p1, p2, . . . , pm). Therefore it would be

useful to have conditions under which

Cµ = Γµ .

In Deines et al. (2007) this is shown for a particular matrix example, using linear



12

algebra techniques that are specific to the system in that paper. The following gen-

eralization was shown by Boeckner, my co-author in [77].

Theorem 1.0.2. Suppose that A is primitive and can be written as A = A0 + deT

where

1. A0 is a nonnegative matrix;

2. d is a column vector, eT is a row vector, and at least one of them is nonnegative;

If λ > r(A0) is an eigenvalue of A, then λ = λ(A).

Note that in the above theorem, A0 may be a function of some or all the param-

eters (p1, p2, . . . , pm), i.e. A0 = A0(p1, p2, . . . , pm). If this is the case, then λ needs to

be greater than r(A0) for all (p1, p2, . . . , pm) ∈ P.

We also showed in [77] that if A(p1, p2, . . . , pm) is written in the form required

by Theorem 1.0.2 above, then for µ ≥ ν, for some ν with r(A0) ≤ ν, the two

hypersurfaces Cµ and Γµ defined by

Cµ := {(p1, p2, . . . , pm) ∈ P | λ(p1, p2, . . . , pm) = µ} (1.11)

and

Γµ := {(p1, p2, . . . , pm) ∈ P | det(µI −A(p1, p2, . . . , pm)) = 0} (1.12)

are equal, i.e.

Corollary 1.0.3. For µ ≥ r(A0), for all (p1, p2, . . . , pm) ∈ Γµ,

Cµ = Γµ. (1.13)
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Furthermore, in [77], we showed that this curve divides the subspace, P, into two

distinct pieces:

C+
µ := {(p1, p2, . . . , pm) ∈ P | λ(p1, p2, . . . , pm) > µ} (1.14)

and

C−µ := {(p1, p2, . . . , pm) ∈ P | λ(p1, p2, . . . , pm) < µ}. (1.15)

Therefore choosing µ = 1 will divide the parameter space P into those parameters

values which result in asymptotic population growth and those which result in asymp-

totic population decline, i.e. µ = 1 is the growth-decline boundary. This choice of µ

is arbitrary; one could choose any desirable µ. For example, in the case of an invasive

species, choosing a µ < 1 would be a more likely management goal.

Perhaps the simplest parameterized PM is the Leslie matrix L of a population with

S age classes. Here the parameters consist of fecundity values f1, . . . , fS in the top

row and survival probabilities σ1, . . . , σS−1 in a sub-diagonal. The Leslie matrix L has

only one positive real eigenvalue which is well-known, but which also follows directly

from Theorem 1.0.2. Cushing and Yicang [28] showed that the asymptotic growth rate

of an age-structured population, i.e. the leading eigenvalue of L, is greater than one

if, and only if, the reproductive value, R = f1 + f2σ1 + f3(σ1σ2) + . . .+ fs(σ1 · · ·σs−1)

is greater than one. Hence the relationship

f1 + f2σ1 + f3(σ1σ2) + . . .+ fs(σ1 · · ·σs−1) = 1

characterizes the boundary between growing and declining age-structured popula-

tions. Cushing and Yicang [28] also calculated the net reproductive value for other

types of population projection matrices in terms of the matrix entries. These re-
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sults yield a growth-decline boundary based on the calculation for net reproductive

value. In addition, given the reproductive value R, they showed that if R < 1, then

R ≤ λ ≤ 1 and if R > 1, then 1 ≤ λ ≤ R. However, their results do not lead to a

robustness analysis of λ with respect to the nominal vital rates.

Suppose we are identifying the growth-decline boundary, but we do not have an

easy way of determining whether an eigenvalue of A is the leading eigenvalue. This is

not particularly difficult if the nominal population is declining. This is because all of

the eigenvalues of the nominal model are less than 1 and so to seek parameters values

yielding leading eigenvalues greater than one reduces to finding parameter values

so that one eigenvalue hits 1. The same applies at more general growth-decline

boundaries λ = ρ. Thus, the robustness of population decline is an ‘easy’ problem.

If, however, we start with a base point given by a nominal growing population,

which already has at least one eigenvalue greater than 1, then the boundary is no

longer determined simply by parameter values achieving an eigenvalue of 1. This is

because we cannot guarantee a priori that this eigenvalue at 1 is the leading eigen-

value. We see that robustness of population growth is more subtle than robustness

of population decline, and is simplified if we can easily identify when an eigenvalue is

the leading eigenvalue.

In Chapter 2, I look at a specific population projection matrix for the endangered

Serengeti cheetah population. The management goal for the Serengeti cheetah is

to achieve a robustly stable or growing population. Using a PPM, Crooks et al.

[26] showed the Serengeti cheetah population is most sensitive to adult survivorship,

suggesting that conservation efforts should focus on increasing adult survivorship.

One pitfall of sensitivity and elasticity analysis is they do not consider biological

limits which may constrain how much a transition rate with the highest elasticity

can be changed. When analyzing the survival of captive cheetahs, I found strong
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age dependency in survival, indicating captive cheetahs experience senescence, i.e.

the reduction in the rate of survival with age [5, 24, 104], and thus estimated the

upper age limit for survival of wild cheetahs. I expand their model to incorporate

senescence. I also show that my new PPM satisfies the conclusions of Theorem

1.0.2, thus in particular, C1 = Γ1. I then analyze the model using our robustness

method which allows for multiple perturbations of different proportions, and provides

a visual interpretation of the uncertainty in the data. Therefore I avoid the limitations

inherent in sensitivity and elasticity analysis. By using the growth-decline boundary,

I show that increasing the adult survivorship alone will not achieve the management

goal of λ > 1 [78].

For integral equations with kernels of a form analogous to that in Theorem 1.0.2,

I show in Chapter 3 that the curves Cµ and Γµ defined in equations (1.10) and (1.11)

above are equal under easily checkable conditions. I also give an example of how

to analyze the IPM using this method with the thistle Onopordum illyricum, the

example originally used by Ellner and Rees [41].

In order to analyze the integral projection models, some definitions are necessary.

Let B be a Banach space, and A : B→ B be a linear operator. The integral operators

of the form (1.4) I consider in this dissertation are all bounded operators. If the

function k(·, ·) is continuous and the set Ω is bounded - which is typical when Ω is the

set of stages a population can take - then A is a Hilbert-Schmidt operator, and hence is

a compact operator, see for instance Bachman and Narici [3]. One characterization of

a compact operator is that it can be uniformly approximated by finite rank operators,

so reliable numerical results can be obtained for these systems [50]. A consequence of

compactness is that the only non-zero spectrum A has are eigenvalues. In order for

an integral equation of the form (1.4) to satisfy the conclusions of Proposition 1.0.1, I

need to make a further assumption about A. Biologically, this assumption translates
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to the need to assume that the state of the offspring is independent of the state of the

parents. The following definitions can be found in many sources, including [41, 67],

and [126].

In order to work with “positive operators” the same way we work with positive

matrices, we first need a partial order “≥” on B.

Definition 1.0.4. Let B be a Banach space. A cone is a non-empty, closed, convex

subset, K ⊆ B provided two conditions hold:

1. If x ∈ K and α ≥ 0 then αx ∈ K.

2. If x,−x ∈ K then x = 0.

Definition 1.0.5. A cone, K, induces a partial order on the Banach space B, denoted

by “ ≥′′ (or resp. “ ≤′′) where x ≥ y (or resp. x ≤ y) for x, y ∈ B means x− y ∈ K

(or resp. y − x ∈ K). If we write x > y (or resp. x < y), we mean that x ≥ y and

x 6= y (or resp. x ≤ y and x 6= y).

Definition 1.0.6. A cone is called reproducing if K 	K = B, that is, every element

in the Banach space can be written as the sum of one element in K plus the negative

of another element in K.

When B = L1(Ω), we typically use the cone K of functions which are nonnegative

on Ω, which is reproducing. Hence if f, g ∈ L1(Ω), then f ≤ g means g − f is a

nonnegative function on Ω, i.e. g − f is in the cone K. When B = Rn, we use the

cone of vectors which have nonnegative components.

Definition 1.0.7. Let K1 and K2 be cones in Banach spaces B1 and B2 respectively.

A bounded linear operator, A, is called positive if it maps K1 into the cone K2, i.e.

AK1 ⊆ K2.
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In the case where the bounded linear operator is a population projection matrix,

the definition for a positive operator is analogous with the definition for a nonnegative

matrix.

Definition 1.0.8. Let u ∈ K, u 6= 0. A positive linear operator, A, is called u-

bounded if for each n ∈ K there exists constants α = α(n) > 0 and β = β(n) > 0

such that

αu ≤ An ≤ βu.

There are two possible paths to show an integral projection model is u-bounded.

Both of these methods are explained in [41]; I will summarize their explanations here.

Let

k(j+1)(y, x) =

∫
Ω

k(y, x)k(j)(z, x)dz, (1.16)

where k(j) is the kernel for Aj. We say that the kernel k is power positive if there

exists some integer j > 0 such that k(j)(y, x) > 0 for all x, y ∈ Ω. This is analoguous

to the definition of a primitive matrix. In kernels where k(y, x) ≥ 0 for all x, y ∈ Ω

this means every possible state is achievable independent of the initial conditions.

For integral projection models like those in this thesis, where Ω is the product space

of a continuous and discrete bounded domains and it is possible to achieve every

possible state regardless of the initial condition, the kernel is a power positive kernel.

Furthermore the kernel is a “uniform power positive” kernel, which has the more

stringent requirement that k(j)(y, x) > c for all x, y ∈ Ω for some constant, c >

0. Thus for the integral projection models as discussed in this thesis, there exists

some iteration of the kernel km(y, x) which is bounded both below and above due

to continuity and compactness. Hence there exists constants c and C such that c ≤

km(y, x) ≤ C < ∞. Letting u(x) = 1, α(n) = c

∫
Ω

n(x)dx and β(n) = C

∫
Ω

n(x)dx,
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then

αu ≤
∫

Ω

km(y, x)n(x)dx ≤ βu. (1.17)

This shows Am is u−bounded; the final steps of showing the integral operator A is

u-bounded is given in [41].

A second method for achieving a u−bounded operator is if there is “mixing at

birth”, i.e. that all parents produce a similar distribution of offspring regardless of

the state of the parents [41]. Mixing at birth leads to some iterative of the operator

A being u−bounded, which in turn leads to the operator A itself being u−bounded.

The mixing at birth assumption is shown to be valid for size × age domains with a

finite maximum age [21] and extended to non-finite maximum age domains in species

where a cohort of newborns are eventually outnumbered by their descendants for all

states [41].

The following theorem is a generalization of the Perron-Frobenius theorem for

matrices to compact, u-bounded operators. It is proved in [67].

Theorem 1.0.9. Let B be a Banach space with a reproducing cone K which deter-

mines a partial order. Let A be a positive, compact, u-bounded linear operator on B.

Then

1. A has a positive eigenvalue, λ, whose corresponding eigenvector is an element

of K. This eigenvalue is the spectral radius of A.

2. This eigenvalue is simple and its corresponding eigenvector is the unique (up to

normalization) eigenvector in K.

3. Every other eigenvalue of A is less in magnitude than λ.

Transient Dynamics

The second part of this dissertation is focused on transient dynamics. Most analysis
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of population dynamics literature is devoted to asymptotic dynamics, including my

PPM and IPM analyses in Chapters 2 and 3, since the theory to analyze asymptotic

dynamics is well established (see e.g. [16]). However, environmental disturbances like

drought and fire and intervention by human activity may affect one stage or age class

more than another, resulting in deviations from the stable state distribution. Thus

asymptotic dynamics may in fact, be not as common as previously thought [7, 23,

42, 51, 52]. The dynamics of populations that are not at its stable state distribution,

known as transient dynamics, can be significantly different from asymptotic ones.

Transient dynamics may be important for dispersal and population establishment

in a new location if the dispersal is restricted to particular life history stages, such

as seeds in many plants, or adults in many animals. Transient dynamics give insight

into how a population may react to perturbations caused by human intervention, e.g.

through the release of captive-reared animals into the wild, the relocation of a wild

population, or selective culling of a specific age class. Modeling the transient behavior

offers insight into whether such an management is viable [53].

Transient dynamics have been studied as perturbations from a stable state dis-

tribution or from an equilibrium. Both [18] and [19] provide theoretical framework

for studying transients of a system perturbed from an equilibrium in a predator-prey

model. Additionally, [118] and [119] have looked at using the Kreiss bound as an al-

ternative method for studying perturbations from an equilibrium position. For single

species models, early work focused on the length of time it took for the system to re-

turn to its stable state distribution, i.e. its damping ratio [74]. More current work has

been done to calculate the sensitivity of the transient population dynamics to various

life history parameters, see for example [17] and [42]. Both [64] and [125] showed for

population projection matrices how the transient growth rate depends on the initial

population, yet little has been done to study transient dynamics when temperature,
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such as in ectothermal animals, plays an important role. In Chapter 4, I focus on

the effect of temperature on the transient dynamics resulting from an invasion by a

single, reproducing adult aphid, which is the dispersal stage of the aphid, and com-

pared these dynamics with an invading population with a stable state distribution,

normalized to 1.

One quantification of transient dynamics is to consider the difference between the

size of a population which starts with a stable stage distribution versus one which

starts with a non-stable state distribution. This has been studied by demographers

(e.g. [61, 62]) in both matrix models and in continuous time models. Consider the S×

S population projection matrix, A, such that the assumptions of the Perron-Frobenius

theorem, Theorem 1.0.1, are satisfied. Let w be A’s leading right unit eigenvector

and v be its leading left eigenvector normalized such that vTw = 1. Let n(t) be

the population vector at time t, where n(0) is an arbitrary (non-normalized) initial

population vector. Eventually, when asymptotic behavior is reached, n(t)/‖n(t)‖

will converge to w. The stable equivalent, Q, is defined as the constant such that if

you begin with an initial population vector of Qw, it asymptotically produces the

same population as if you started with n(0). In this PPM case, Q = vTn(0), so Q

depends on the initial population vector [62, 120]. From a different perspective, if

w1,w2, . . . ,wS are the (normalized) right eigenvectors with w1 being the eigenvector

associated with the leading eigenvalue, and n(0) = c1 ∗w1 + c2 ∗w2 + · · ·+ cS ∗wS,

then Q = c1.

Koons et al. [65] defines population inertia relative to a reference vector, r(t) as

Ir(0) = lim
t→∞

‖n(t)‖
‖n(0)‖

/ ‖r(t)‖
‖r(0)‖

(1.18)

where n(t) is the population at time t. For example, if the matrix is primitive,
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the reference vector could be the positive eigenvector corresponding to the leading

eigenvalue, i.e. the stable state distribution. In this case, population inertia, which

is also called the stable equivalent ratio, is the ratio of the population size at time

t normalized by its size at t = 0 to what the size of the population would be if

its initial population was at its normalized stable state distribution. Additionally,

if ‖n(0)‖ = ‖r(0)‖, and r(0) is the positive right eigenvector associated with the

leading eigenvalue, then the stable equivalent ratio is equal to Q. Koons et al’s [65]

population inertia is a generalization of Tuljapurkar’s and Lee’s deterministic stable

equivalent ratio [120] and Keyfitz’s population momentum [61]. Tuljapurkar and Lee

[120] also defined their stable equivalent ratio for stochastically varying matrices.

Because I am interested in the transient effects caused by an invasion, I am looking

in particular at how the population changes in those first days of the invasion. One

frequent measure of transient dynamics is the transient growth rate which is defined

as

λ(t) =
‖n(t+ 1)‖
‖n(t)‖

(1.19)

where t is measured in days. Following [117], I also define transient amplification as

TA(t) =
‖n(t)‖
λt

(1.20)

where n(t) is the population at time t and λ is the asymptotic population growth rate.

I assume the initial population, ‖n(0)‖ = 1. This definition is therefore a specific case

of Koons et al.’s [65] population inertia given in (1.18) above.

Two models were constructed to study the effect of temperature on transient

dynamics. Both are variations of the continuous time model given in [10]:
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n(a, t) =


n(a− t, 0)

s(a)

s(a− t)
a > t

b(t− a)s(a) a < t,

(1.21)

where n(a, t) is the population distribution of age a at time t, s(a) is the probability

an aphid will survive to age a, and b(t) are the births at time t. The first line in

(1.21) is the number of aphids alive at t = 0 and still alive at time t. The second line

is the number of aphids which were born at time t − a and are still alive at time t.

The number of births b(t) is given by

b(t) =

∫ max age

0

n(a, t)m(a)da, (1.22)

where m(a) is the average offspring per aphid of age a. See Chapter 4 for more

specifics on the models.

In one model, called the ordinal time model, time is measured in days and is

denoted by t; while in the other model, called the degree day model, time is measured

in degree days and is denoted by t̃. Degree days normalize the effect of temperature

on insect growth and development, i.e. degree days measure physiological time. In the

temperature range of interest (18−28◦C), the relationship (for most insects, including

aphids) between temperature and rate of development is linear [75, 114, 115], i.e.

(time to first reproduction)−1 = c1 ∗ temperature(◦C) + c2, (1.23)

where c1 and c2 are constants dependent upon the particular species. The temperature

where this linear fit crosses the temperature axis is called the “lower threshold”, LT ,

or “threshold of development” [69, 115]. Biologically, this can be thought of the lowest

temperature at which chemical reactions within the animal will occur and thus allow

growth. Outside of the range of interest in this thesis, the linear relationship no
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longer holds, and flattens out at lower temperatures before no development occurs,

hence LT is not a true threshold. Assuming a constant temperature, T , the number

of cumulative degree days is given by

degree days := t̃ = (T − LT )t, (1.24)

where t is the elapsed number of days. [57, 92]. Using t = 1 converts the one day to

elapsed degree days.

In both the ordinal day model and the degree day model, the maternity function,

or the number of offspring produced per unit time, was measured as a function of

time since from onset of reproduction, either by days or by degree days. This is the

significant difference between my models and that given by (1.21) above.

To parameterize the models, I conducted empirical experiments to estimate pa-

rameter values and to test model predictions. I estimated survivorship and fecundity

of aphids at two different temperatures (20◦C and 25◦C) and at low and medium

relative humidities. The models were tested by simulating an aphid invasion in the

laboratory and counting the population as it evolved in time. Temperature was in-

cluded into the model in two different ways. The first method parameterized the

survivorship and fecundity data for each temperature as two separate experiments.

The second method combined the survivorship and fecundity data for both tempera-

tures using the degree day conversion in (1.24) above. Statistical analyses were done

to determine if humidity affected the parameterization of the model and hence the

final results.
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Chapter 2

Using the Growth-Decline

Boundary to Determine the Effect

of Senescense on Stage Structured

Populations

As mentioned in the introduction, sensitivity and elasticity analysis do not consider

how biological limits may constrain how much life history parameters can be ma-

nipulated [16]. Using the endangered cheetah (Acinonyx jubatus) as a case study I

illustrate that ignoring biological limits can result in management recommendations

that are unlikely to achieve the management goal, which in this case is population

stasis or population increase (λmax ≥ 1).

Crooks et al. [26] constructed a population matrix model for Serengeti chee-

tahs; see Table 2.1. Their model predicts an annual population decline of 8.7%,

i.e. λmax := λ = 0.913. The long-term population growth rate is most sensitive to

adult survivorship, suggesting that wildlife managers should aim to increase adult
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Table 2.1: Population Projection Matrix (PPM) for wild cheetahs [26]

Age classes (months)

0− 6 6− 12 12− 18 18− 24 24− 30 30− 36 36− 42 42+
0 0 0 0 s2f1 s2f1 s2f1 s3f2

s0 0 0 0 0 0 0 0
0 s1 0 0 0 0 0 0
0 0 s1 0 0 0 0 0
0 0 0 s2 0 0 0 0
0 0 0 0 s2 0 0 0
0 0 0 0 0 s2 0 0
0 0 0 0 0 0 s2 s2

s0 = 0.081, survival of 0− 6 month age class;
s1 = 0.771, survival of 6− 12 and 12− 18 month age classes;
s2 = 0.920, survival of 18− 24, 24− 30, 30− 36 and

36− 42 month age classes;
s3 = 0.879, survival of 42+ month age class;
f1 = 1.2476, fecundity of 24− 30, 30− 36, and

36− 42 month age classes;
f2 = 1.4994, fecundity of 42+ month age class.

survival. I expand their model to include the effects of senescence on survival and

fecundity.

In 1900, the cheetah (Acinonyx jubatus) roamed over much of Africa, Asia and the

Middle East with a total population estimated at 100,000 [85]. Now barely 100 years

later, there are only 12,000 to 15,000 animals left worldwide; most reside in southern

Africa [88, 89, 85]. The largest concentration of cheetahs resides in Namibia, with

an estimated population of 2500 felines [88, 89, 85]. The majority of the cheetahs

in Namibia live outside protected areas and as a result, their demise is linked to

the loss of habitat by encroaching farms, poaching, and the reduced number of prey

[86, 87, 88, 89]. Approximately 300-400 cheetahs reside in the Serengeti Plains of

Tanzania [14, 47]. Much of this area is a protected national park, yet the population
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fails to thrive due to the high cub mortality caused by predation by lions and hyenas

[13, 37, 59, 60, 72]. 92% of the newborn cheetahs die during the first six month

of life, but once they can outrun predators (older than 5 months) their survival

increases 10 times [26]; see also [13]. Juveniles stay with their mother for up to 18

months [13, 37, 60]. A female reaches sexual maturity at approximately 24 months,

and after a gestation period of about 3 months she will give birth to one to six cubs

[13, 37, 59, 60, 86]. Caro [13] considers a 23-42 month old adult cheetah to be a young

adult and those older than 42 months to just be adults. If a wild female Serengeti

cheetah reaches adulthood (24 months), its average life span is 6.2 years [60].

2.1 Methods

I retain Crooks et al.’s [26] original 6 month age classes as an aid to help compare

models which include senescence with those that do not. The new model (see Tables

2.2 and 2.3) increases the number of age classes from 8 to 36; the last age class

includes cheetahs that are 210-216 month old (18 years). Since cheetahs older than

18 years have zero fecundity, they are considered “biologically dead” and are not

a factor in the cheetah’s population growth, hence they are ignored in the model

(Caswell, 2001). I then identify strategies that produce a growing population (λ > 1)

and are robust to parameter uncertainty. First, I estimate the biological limit of

adult survival. Then, within the biological meaningful range of survival scenarios, I

identify the magnitude of disturbances permissible to reach the management goal; if

the permissible perturbations are realistic within the confines of the variance in the

data, I call the management strategy “robust”.

I analyze survival data available in the 2002, 2003, and 2004 International Cheetah

Studbooks [82, 83, 84]. Because the model by Crooks et al. [26] ignores males, I
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only estimate female survival. Sometimes cheetah deaths are not reported and as

a result the records suggest that some of these cheetahs are older than 30 years;

even though in captivity cheetahs rarely live past 21 years of age [88]. Also, since

the inclusion of live cheetahs in my data analysis did not change the survivorship

estimation significantly, in the survival analysis I exclude those cheetahs that are

still alive and those considered “lost” or “assumed dead” by the stud keeper. This

left N = 1955 cheetahs for my analysis. Figure 2.1 shows the Kaplan Meier curve

for captive cheetah survival. The Kaplan Meier curve, also called the product-limit

estimator; is probability that an individual will survive beyond a specific time [25].

The Matlab [91] computer code for these calculations is given in Appendix A.

Analogous to Crooks et al.’s [26] model, I use 6 month time intervals and calculate

survivorships for 0−6 month old (s∗0), 6−18 months old (s∗1), and 18−42 months old

cheetahs (s∗2). To account for senescence (Figure 2.1) I split the survival of the 42+

month old cheetahs of Crooks et al’s [26] model into 42−102 months old (s∗3) and> 102

months old (s∗4). For cheetahs older than 156 months I use the same survivorship as

for cheetahs aged 102−156 months, even though this is an overestimation. I calculate

the average survival per time step as follows:

s∗i =

(
`(t+ δt)

`(t)

)1/n

(2.1)

where ` is the Kaplan-Meier estimate, t and (t + δt) are the start and end times of

the ith stage, and n is the number of time steps in δt [16]. Using these estimates for

survivorship (Table 2.3), my model predicts that once a cheetah survives to adulthood,

there is a 50% chance that she will survive past 9− 9 1/2 years (108− 114 months).

The model by Crooks et al. [26] assumes the same fecundity, f2, for all 42+ months

old cheetahs. This is particularly problematic because in the wild, cheetahs do not
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Figure 2.1: Survival data from captive female cheetahs shows the cumulative survivor-
ship of female cheetahs with known age of death. The solid curve is the Kaplan-Meier
curve using monthly time steps. The heavy dashed curve shows the cumulative fe-
male adult survivorship with all 42+ month old cheetahs lumped into one age class
using the survivorship of 42− 102 month cheetahs (s∗3 = 0.9567). The heavy dotted
curve divides the 42+ month old cheetahs into two age classes: 42 − 102 months
(s∗3 = 0.9567) and 102+ months (s∗4 = 0.898) with the 102+ month age class having
the survivorship of 102 − 162 month cheetahs. The 95% confidence intervals for the
Kaplan-Meier curve are very tight and thus are omitted for clarity.
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reproduce after 12 years of age [59, 86, 101] and even in captivity, cheetahs rarely,

if at all, reproduce after they turn 18 years (216 months) (see [81, 82, 83, 84, 88]).

In captivity, a cheetah’s prime reproductive period is between 3 and 10 years of age

[81, 82, 83, 84], but in general cheetah fecundity in captivity is lower than in the wild

[101]; also compare [81, 82, 83, 84] with [59]. This is in agreement with other captive

carnivorous animals [22, 68]. Because I do not have data to estimate the effect of

senescence on the fecundity of wild cheetahs, I consider two different cases. In both

cases, I assume fecundity of the 18 − 42 month old cheetahs (f1 = 1.2476) and the

42−144 month old cheetahs (f2 = 1.4994) is that given in Crooks et al. [26]. Defining

f3 to be the fecundity of the 144 − 216 month old cheetahs, I first set f3 equal to

f2 (f3 = 1.4994), which ignores a reduction in fecundity due to senescence, and as a

consequence, my model’s predictions will overestimate population growth rate (Table

2.2). Second, I assume that adult cheetahs stop reproducing at the age of 12 years as

is observed in wild cheetahs, (f3 = 0), in which case I can remove these age classes

from the model. In both cases, I assume the fecundity of cheetahs older than 216

months (18 years) is zero.

To analyze this model I examine the response of the asymptotic population growth,

λmax, to large simultaneous deviations from the parameter values used in the model

by Crooks et al. [26]; in particular I wish to explore if it is theoretically possible

to achieve the management goal (in this paper λmax > 1) by perturbing parameter

values to their biological limits. First I set the fecundities and survivorships of the

102 − 216 month old cheetahs to their biological limit (f ∗2 , f
∗
3 , s
∗
4, Table 2.3). I then

identify the survivorship combinations of younger adult cheetahs (s∗2, s
∗
3) that yield a

growth rate of λ = 1. Let A be the 36×36 population projection matrix model shown

in Table 2.2 with Crooks et al.’s [26] values for the survivorships of the 0− 6 month

cubs (s0) and the 6− 18 month old cheetahs (s1). Let P denote the 36 by 36 matrix
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containing the deviations from the nominal values given in A; all matrix entries of P

that are not affected by the particular perturbation are zero. Since I am perturbing

s∗2, s
∗
3, I let p2 denote changes in s∗2, and I let p3 denote changes in s∗3. Thus the first

row of the matrix P has p2f1 in columns 5 through 7 and p3f2 in columns 8 through

17 where f1 and f2 are the fecundities of the 18 − 42 month old and the 42 − 216

month old cheetahs. The subdiagonal of P has p2 in columns 4 through 7 and p3 in

columns 8 through 17. I call A + P the perturbed matrix. For example, to examine

the effect of changing both s∗2, s
∗
3 to that given in Crooks at al. [26] I set p2 = −.0485

and p3 = −.0468 in the above P. This gives s∗2 + p2 = s2 and s∗3 + p3 = s3.

My goal is to determine which (p2, p3) yield λ(p2, p3) = 1, i.e. to determine the

growth-decline boundary as a function of p2 and p3. Unfortunately, A and A + P

are not primitive matrices since the last column consists entirely of zeros, therefore

Theorem 1.0.2 cannot directly be used to show that if an eigenvalue, λ, of A + P

is 1, then λ = λ(A + P). In order to use Theorem 1.0.2, a modification to the

Perron-Frobenius Theorem (Theorem 1.0.1) is necessary.

Theorem 2.1.1. Let A be an n× n matrix of the form given in Table 2.3. Then A

has an eigenvalue, λ, which satisfies:

1. λ is real and λ > 0,

2. λ has a unique (up to normalization) right eigenvector whose components are

strictly positive,

3. λ > |µ| for any eigenvalue |µ| 6= λ,

4. λ is a simple root of the characteristic equation of A.
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Proof: Let λ be an eigenvalue of A and v its corresponding eigenvector. Consider

the system

Av =



0

B
...

0

0 · · · 0 s∗3 0





v1

...

vn−1

vn


= λ



v1

...

vn−1

vn


, (2.2)

where B is the n− 1 by n− 1 submatrix of A. It is easily seen that the eigenvalues

of A are the same as the eigenvalues of B plus the addition of λ = 0. Since B is a

square, nonnegative, primitive matrix, then the Perron-Frobenius theorem (Theorem

1.0.1) holds for B. Let λ be the largest positive eigenvalue of B; hence λ satisfies

items (1) and (3) for A as required. Notice that

B


v1

...

vn−1

 = λ


v1

...

vn−1

 .

By Perron-Frobenius (Theorem 1.0.1), we may assume v1, . . . , vn−1 > 0 and


v1

...

vn−1

 (2.3)

is the unique (up to normalization) positive eigenvector of B . For v to be the

corresponding eigenvector for A requires s∗3vn−1 = λvn. Now, s∗3, vn−1 and λ are all

> 0. Therefore vn > 0 and is uniquely defined by vn = s∗3vn−1/λ.

In order to satisfy (2) above, I need to show that λ = 0 does not have an eigenvec-

tor, v, whose components are strictly positive. Assume v is the eigenvector associated
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with λ = 0 and that it has strictly positive components. Thus



0

B
...

0

0 · · · 0 s∗3 0





v1

...

vn−1

vn


= 0. (2.4)

It is obvious this requires s∗3vn−1 = 0. Since both s∗3 and vn−1 are positive, this is a

contradiction. Therefore A has only one eigenvector whose components are strictly

positive, hence item (2) is satisfied.

To show item (4) holds, let det(tI−A) be the characteristic equation of B. Thus

the characteristic equation of A is t det(tI − A). Thus t = 0 is an additional root

of A’s characteristic equation. Since the Perron-Frobenius theorem (Theorem 1.0.1)

holds for B, then the leading eigenvalue λ is also a simple root of the characteristic

equation of A, hence item (4) holds. 2

Corollary 2.1.2. A satisfies the conclusions of Theorem 1.0.2.

Proof: The proof follows the same as Theorem 1.0.2. I can rewrite A as A0 +deT

where A0 is the same as A except the first row is replaced with zeros, d = [1 0 · · · 0]T

and eT is the first row of A. Since A0 is nilpotent, r(A0) = 0. The proof of Theorem

1.0.2, which is similar to the proof of Theorem 3.1.1, shows λ = λ(A). 2

Therefore, if λ(p2, p3) = 1, then λ(p2, p3) = 1 is the largest eigenvalue of A + P

and the λ(p2, p3) = 1 curve divides the admissible parameter space into increasing

and decreasing asymptotic populations. Methods for solving the equation det(I −

(A + P)) = 0 are further outlined in [30, 55, 56]. Because cub survival in the wild is

extremely low and can theoretically be increased to a large extent I also consider the

perturbations in three parameter values: s0, s
∗
2, and s∗3. The computer code for these
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Table 2.3: Values* Calculated by Kaplan-Meier Analysis for Captive Cheetahs

s∗0 = 0.8087± 0.0174, survival of 0− 6 month age class;
s∗1 = 0.9434± 0.0082, survival of 6− 12 and 12− 18 month age classes;
s∗2 = 0.9685± 0.0047, survival of 18− 24, 24− 30, 30− 36 and

36− 42 month age classes;
s∗3 = 0.9567± 0.0041, survival of 42− 48, 48− 56, . . . 96− 102

month age classes;
s∗4 = 0.8980± 0.0091, survival of 102 + month age class.

*with 95% confidence intervals

analyses is located in Appendix A.

2.2 Results

In this study I used data for captive cheetahs as a conservative estimate of the bio-

logical limit of adult survival. The Kaplan-Meier curve (Figure 2.1) illustrates that

the survival of captive cheetahs dropped after 8.5 years and that a model ignoring

this largely overestimates cheetah survival (heavy dashed line). Thus, predicting the

effect of increasing adult survival requires a model that includes a senescent age class

(modified model, Table 2.2, and heavy dotted line in Figure 2.1). Assuming that the

survival of an adult cheetah in the wild can be raised to that in captivity corresponds

to an average life expectancy of 9− 9 1/2 years for those cheetahs that reach adult-

hood. This is four years more than in the model by Crooks et al. [26] and three years

longer than calculated by Kelly et al. [60]. Still, this increase in adult survival is not

sufficient to produce a growing population; the projected population growth rate, λ,

is 0.998, indicating that in each 6 month interval the cheetah population decreases

by 0.2% (Tables 2.2 and 2.3).
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Figure 2.2: The effect of perturbing survivorships of 18 − 42 month old adults and
42−102 month old adults, where the 102+ month old adult survivorships have been set
to the biological limit (s4∗ = 0.898). The solid curves denotes λ = 1 for two different
fecundities of the 144−216 month old cheetahs: f3 = 1.4994 and f3 = 0. Points above
each of these curves produce positive growth; points below the curve produce negative
growth. The horizontal line denotes the biological limit for the survivorship of 42−102
months old adults (s3∗ = 0.9567) and the vertical line denotes the biological limit
for the survivorship of 18− 42 months old adults (s2∗ = 0.9685). Point A marks the
original, unperturbed survivorships (s2 = 0.92, s3 = 0.879, λ = 0.9553) reported by
[26].
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Figure 2.3: Necessary fecundities required to achieve λ = 1 with all adult survivor-
ships at their biological limits. The top curve sets the fecundity of 144− 216 month
old to be zero (f3 = 0). The bottom curve sets the fecundities of the 144−216 month
olds to be the same as the 42 − 102 month old adults (f3 = 1.4994). Point C shows
the fecundities as calculated by Crooks et al. [26].
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Figure 2.4: Contour graph of the perturbed survivorships of the 18 − 42 month
old adults, 42 − 102 month old adults and 0 − 6 month cubs. The contours are
labeled by the 0 − 6 month cub survivorship and describe the 18 − 42 month and
42− 102 month survivorships necessary to achieve stasis (λ = 1). The heavy contour
denotes calculated 0 − 6 month cub survivorship (s0 = 0.081). The horizontal line
denotes the biological limit for the adult survivorship of 42 − 102 month cheetahs
(s∗3 = 0.9567). The vertical line denotes the biological limit in the 18 − 42 month
old cheetahs (s∗2 = 0.9685). Point A marks the original, unperturbed young and old
adult survivorships as recorded in [26] (s2 = .92, s3 = .879, λ = 0.9553). In this case,
the 0− 6 month cub survivorship must increase to 0.155 in order to obtain λ = 1.
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Next I perturbed the survival of 18 − 42 months old (s2) and 42 − 102 months

old cheetahs (s3) and graphed the growth-decline boundary as a function of these

parameters.(Figure 2.2). Graphically, one can see how far different parameter com-

binations are from the λ = 1 curve. A discussion of how to quantify the distance

between the chosen parameter combination and the λ = 1 curve is given in [77].

Only if both survival parameters increase to that of captive cheetahs, and if cheetah

fecundity is not affected by senescence (e.g. fecundity of 12−18 year old females does

not differ from 4 year old ones) do the parameter values approach the λ = 1 curve

(as indicated by the short distance to the λ = 1 curve). In a more realistic scenario,

where females older than 12 years of age are assumed to be infertile, the distance to

the λ = 1 curve is rather large. Hence within the biological meaningful parameter

range it is highly unlikely to produce population stasis (λmax = 1) by increasing adult

survival alone (Figure 2.2). It is only possible to achieve a growing population by

increasing adult survival to its biological limit if the fecundity of younger adults has

been underestimated by Crooks et al. [26] (Figure 2.3).

Finally I explored the effect of increasing newborn survival (Figure 2.4), which is

highly impacted by predators [13, 71]. My model suggests that increasing newborn

survival from 0.081 to only 0.155, which is far below cub survival in captivity (= 0.81,

Table 2.3), produces population stasis. The improvement in cub survival required to

achieve population stasis decreases with increasing survival of older age classes.

2.3 Discussion

My results reveal that senescence plays an important role in the longevity of the cap-

tive adult cheetah. In the wild, the evidence for senescence is ambiguous [44, 104, 113]

due to many reasons, including the fact that wild animals are subjected to predation,
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injuries, and random environmental factors and hence rarely live to old age [24, 93].

Furthermore there is a lack of long-term monitoring which also contributes to the in-

ability to quantify senescence [44, 76, 100]. Thus population projection matrices for

wild animals rarely incorporate senescence into the model. In captivity, senescence is

exhibited by increased mortality and decreased fecundity of older animals, which can-

not be explained by random effects [24]. Since the survival of adult Serengeti cheetahs

is already very close to the biological limit predicting the effect of increasing adult

survivorship even further requires a model which takes senescence into consideration

- to do otherwise will vastly overestimate adult survivorship and in turn, result in an

overestimation of the population growth rate.

In this study I calculated the survivorships of the adult captive cheetah and used

these to approximate the biological limit for the wild cheetah. Using captive reared

animals to estimate biological limits assumes that hunting success of adult cheetahs

(food availability) is independent of age and that diseases successfully treated in cap-

tivity have negligible survival consequences for wild animals. Since captive cheetahs

have been known to live more than 15 years [82, 83, 84, 88], husbandry methods

are not a restricting factor when determining the biological limit. I also assume that

cheetahs older than 18 years were infertile. Using this model, I find that even increas-

ing the survivorships of the wild adult cheetah to the biological limit does not result

in an asymptotic growing population. Since it is highly unlikely the survivorship of

the wild cheetah can reach and be sustained at these biological limits, a management

strategy which only strives to increase adult survivorship will not result in a growing

population.

My perturbation analysis of the model evaluated the effect of increasing the adult

survivorship alone and then also in conjunction with increasing the 0 − 6 month

cub survivorship. Since there is uncertainty in all parameter estimates, where some
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of these uncertainties maybe large, it is important to consider management options

which will succeed in light of this uncertainty. Since I am interested in the effect of

changes and/or uncertainty in two (or three) parameters, I use robustness methods

described in Hodgson and Townley [55], Hodgson et al. [56], Deines et al. [30] and

Lubben et al. [77]. I calculate the growth-decline boundary, i.e. the λ = 1 curve; the

distance from model prediction to this curve is a measure of robustness (the larger the

distance the larger the robustness). This perturbation analysis suggests that within

the biological reasonable parameter space it is highly unlikely to produce a grow-

ing population by increasing adult survival alone. In contrast, increasing newborn

survival to a fraction of its biological limit can achieve the management goal. The

latter management strategy is robust to parameter uncertainty. The survivorship of

Serengeti cubs is currently an order of magnitude smaller than both the biological

limit and that of Namibian wild cubs where predation on cubs is not an issue [86].

In the Serengeti, cheetah predators are protected from culling, therefore it would be

challenging to find effective management strategies ensuring better newborn survival.

In addition, it is necessary to account for the relative costs of altering different pa-

rameters [4]. However these results clearly demonstrate that such strategies could

dramatically improve the future prospects of Serengeti cheetah populations.
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Chapter 3

The Growth-Decline Boundary of

Integral Projection Models

3.1 Methods

As mentioned in the introduction, there is a class of integral operators, introduced in

[41], of the form (1.4), for which there is an analog of the Perron-Frobenius Theorem.

In particular, conditions on A are given in Theorem 1.0.9 which guarantee that (1.1)

satisfies the conclusion of Proposition 1.0.1. These conditions are that A is positive,

compact, and u-bounded. These three concepts were defined in the introduction.

As in the PPM case, an IPM operator A can usually be decomposed into the

sum of a survival operator A0 and a fecundity operator F. Furthermore, F can often

be decomposed into a product deT : if v is a population vector, eTv is the total

number of offspring from all states, and d distributes these offspring into the states.

Therefore, A = A0 + deT . Roughly speaking, any population where the state of

the offpring is independent of the parents’ state can be written in this manner. For

instance, in a plant model, the seeds are the same independent of the size of the plant
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that produced them.

If A is a positive, compact and u-bounded operator, then there are results for A

which are analogous to Theorem 1.0.2 and Corollary 1.0.3. I assume a cone in the

Banach space B has been defined, thus determining a definition of “positive”: see

Definitions 1.0.4, 1.0.5, 1.0.6 and 1.0.7 in the introduction.

Theorem 3.1.1. Suppose that A is positive, compact and u-bounded and can be

written as A = A0 + deT where

1. A0 : B→ B is a positive linear operator;

2. d : R→ B, eT : B→ R, and at least one of them is positive;

If λ > r(A0) is an eigenvalue of A, then λ = λ(A).

Proof: I first assume that d is positive. Suppose λ > r(A0) is an eigenvalue of

A. Then for some nonzero v ∈ Rn,

(A0 + deT )v = λv. (3.1)

Since λ is not an eigenvalue of A0, I can re-arrange (3.1) to give:

v = (λI−A0)−1deTv . (3.2)

Note that if eTv = 0, then (3.2) implies that v = 0, which is a contradiction. Hence

eTv or −eTv is a positive scalar. Without loss of generality assume that eTv is

positive, since if eTv is not positive, I can replace v by −v. Since λ > r(A0), I can

expand (λI−A0)−1 in a power series:

(λI−A0)−1 =
1

λ
(I +

A0

λ
+

A2
0

λ2
+ . . .) . (3.3)
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Since A0 is positive and d is positive, it follows that Ak
0d is positive for all k ≥ 0.

Hence it follows from (3.3) that (λI − A0)−1d is positive. Then (3.2) shows that

v is also positive, i.e. it is in the cone. Hence λ is a positive eigenvalue of A with

associated positive eigenvector v. Hence by Theorem 1.0.9, λ must be the leading

eigenvalue of A, so λ = λ(A). Since A is compact, its nonzero spectrum consists only

of eigenvalues, so λ(A) = r(A).

If d is not positive but eT is positive, I can apply the result to the adjoint A∗ of A.

We denote the adjoint of d by dT and the adjoint of eT by e. Then the result follows

immediately from the facts that A∗ = A∗0 + edT , r(A∗0) = r(A0), and λ(A∗) = λ(A).

2

Now suppose A = A(p1, p2, . . . pm). We now can identify the set of admissible

parameters P as those (p1, p2, . . . pm) such that A(p1, p2, . . . pm) satisfy the hypotheses

of Theorem 3.1.1. It follows immediately that Corollary 1.0.3 is also true for A which

satisfy the hypotheses of Theorem 3.1.1.

3.2 Results

I will apply our methods to a model, originally given in Ellner and Rees [41], for the

thistle O. illyricum, which can be wriiten in the form (1.4). I will consider the effect

that three of the parameters in the fecundity kernel have on λ(A).

O. illyricum is a monocarpic perennial across its entire current range [102]. It

flourishes in fertile soils and is adapted to warmer climate with dry summers [8]. Re-

production only occurs by seed, and seeds remain viable in the seed bank for many

years [46]. In its native range O. illyricum is attacked by a large variety of insect

species (129 insect species feed on Onopordum spp. in Europe [9]), but in its intro-

duced range like Australia, insect herbivores play a minor role in O. illyricum pop-
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ulation dynamics. This thistle became a noxious weed in Australia after widespread

pasture improvements (fertilization) [49].

The population distribution of O. illyricum at time t, n(x, a, t), is a function of

the plant size x, and the age of the plant a. The plant size is a continuous variable

taking on values between 0 and Ms, the maximum size, whilst the age is a discrete

variable which can take on values in {0, 1, . . . ,Ma}, where Ma is the maximum age.

Let Ω = {(x, a) | x ∈ [0,Ms], a ∈ {0, 1, . . . ,Ma}}, and let d(x, a) denote the product

measure on Ω with Lebesgue measure in x and discrete measure in a (i.e. integrate

over x and sum over values of a). The kernel k in (1.4) can be written k = p + f ,

where p is the “growth and survivorship kernel” and f is the “fecundity kernel”. The

kernel describes how to get from state (x, a) to state (y, b), hence is a function of

(y, x, b, a). The population model can be written as n(t+ 1) = An(t): here A is the

operator defined on the Banach space

B = L1(Ω) = {v(·, ·) |
∫ Ms

0

|v(x, b)| dx <∞ for all b = 0, 1, 2, . . .Ma}

given by

(Av)(y, b) =

∫
Ω

(p(y, x, b, a) + f(y, x, b, a))v(x, a)d(x, a). (3.4)

Expanding the product measure, (3.4) becomes

(Av)(y, b) =
Ma∑
a=0

∫ Ms

0

(p(y, x, b, a) + f(y, x, b, a))v(x, a)dx.

The population vector n(t) = n(·, ·, t) is a vector in B for each t.

The growth and survivorship kernel p(y, x, b) is given by

p(y, x, b, a) = s(x, a) [1− pf (x, a)] g(y, x)δa,b−1(1− δb,0), (3.5)
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with component terms as follows: s(x, a) > 0 is the yearly survivorship of a plant of

size x and age a into a plant of size x and age a+ 1; the Kronecker delta function δij

equals 1 if i = j, else it equals 0; the growth of a plant from size x to size y is given by

g(y, x) > 0; and pf (x, a) is the probability of the plant of size x and age a to flower

in a year. Since O. illyricum is a monocarpic perennial, flowering results in death.

Consequently 1− pf (x, a) > 0 reflects the probability of the plant not flowering. The

term δa,b−1 = 1 when a = b− 1, i.e. when plants are moving from one age class into

the next. This prevents plants from aging more than one year at a time and also

prevents them from getting younger with time. Since plants do not grow and survive

into age 0, 1− δb,0 prevents this possibility. (For simplicity, these functions were not

included in the original model in Ellner and Rees (2006).) Hence the growth and

survival operator A0 is given by

(A0v)(y, b) =

∫
Ω

s(x, a) [1− pf (x, a)] g(y, x)δa,b−1(1− δb,0)v(x, a) d(x, a). (3.6)

The fecundity kernel f(y, x, b, a) contains three underlying parameters, pe, p1 and

p2, whose uncertainty can have a broad impact on the asymptotic population growth

rate. Here, pe is the probability of seedling establishment and ep1+p2x is the number

of seeds per adult of size x. Since the model assumes that the state of the offspring

is independent of the parents, new plants are distributed into size classes according

to the probability distribution φ(y) > 0. The kernel f is therefore given by

f(y, x, b, a) = s(x, a)pf (x, a)pee
p1+p2xφ(y)δb,0. (3.7)

The total number of offspring produced by the population distribution n(x, b, t) at
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time t is

(eTn)(t) =

∫
Ω

s(x, a)pf (x, a)pee
p1+p2xn(x, a, t) d(x, a). (3.8)

These offspring are then distributed into size classes described by the vector d ∈ B

given by

d = φ(·)δb,0, (3.9)

that is, d(1) is represented by the function which is φ(y) when b = 0 and is 0 otherwise.

Thus the population distribution at time t+ 1 is

n(t+ 1) = A(n(t)) = (A0 + deT )(n(t)). (3.10)

We need to verify that this system satisfies the condition in Theorem 3.1.1. The

cone K used in Theorem 1.0.9 is the set of all positive functions v(x, a) on Ω. In this

example, the operator A0 : B→ B is nilpotent, i.e. there is a positive integer m such

that Am
0 = 0. This is because A0 advances the age of the population distribution,

and in the absence of any population input the population will die off in finite time.

Nilpotent operators are well-known to have spectral radius 0, i.e. r(A0) = 0. An

integral projection model which does not advance the age of the species may or

may not have this decomposition into a nilpotent A0. The vector d ∈ B, and the

operators eT : B → R, A0 and A are clearly positive. The kernel k(y, x, b, a) =

p(y, x, b, a) + f(y, x, b, a) is bounded on a bounded set [0,Ms] ⊗ {0, 1, . . . ,Ma}, so

by the Hilbert-Schmidt theorem A is compact (see Bachman and Narici, 1966). It

is proved in Ellner and Rees (2006) that A is u-bounded. Therefore, this system

satisfies the hypotheses of Theorem 1.0.2 with r(A0) = 0, so I can conclude that any

positive eigenvalue of A is in fact the leading eigenvalue. A satisfies the conditions

of Theorem 1.0.2 for any positive pe, p1 and p2. In addition, since pe is a probability,
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the set, P, of admissible parameters is {(pe, p1, p2) | pe ∈ [0, 1], p1 > 0, p2 > 0}.

Remark 3.2.1. The kernel k in the model given in Ellner and Rees (2006) also de-

pends on the quality q, which represents the variability between plants and is assumed

to be constant throughout each plant’s lifespan. To add this dependence to the model

here would only require including a distribution function β(q) to the operator d which

distributes the newborns into quality classes much like φ(y) distributes the newborns

into size classes.

The probability of seedling establishment, pe, cannot be calculated accurately due

to the presence of a seed bank, so I expect substantial uncertainty in the value of

this parameter. Suppose pe has a nominal value of 0.025. (Note that while in Ellner

and Rees (2006), pe = 0.025, they use the value 0.03 in their computer code.) I take

the nominal value of the fecundity intercept, p1, to be −11.84, and the nominal value

of the fecundity slope, p2, to be 2.27. Both of these calculated numbers have the

following standard errors as given in Ellner and Rees (2006): 4.43 for the fecundity

intercept and 0.60 for the fecundity slope. Thus the seed production per plant has a

wide range of possibilities.

I first consider the effect of pe and p1 on λ(A), which is an easy case, since both

variables can be pulled out of the integral defining eT . In particular, I can write

eT = pee
p1eTp , where eTp v =

∫
Ω

ep2xpf (x, a)s(x, a)v(x, a) d(x, a).

For now I assume that p2 is fixed at its nominal value.

Theorem 3.2.2. Suppose that λ > 0 is an eigenvalue of A. Then

pe =

(
λ

γ

)
e−p1 , (3.11)
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where

γ = eTp

(
I +

A0

λ
+

A2
0

λ
+ · · ·+ Am−1

0

λ

)
φ. (3.12)

Proof Suppose that λ > 0 is an eigenvalue of A with eigenvector η ∈ B. Then

(A0 + deT )η = λη. (3.13)

Let I : B → B be the identity operator, and note that (λI − A0)−1 is a bounded

operator since A0 is a compact operator with r(A0) = 0. After some algebraic

manipulation,

(λI−A0)−1deTη = η,

which implies that

eT (λI−A0)−1deTη = eTη. (3.14)

If the scalar eTη = 0, then (3.13) implies that λ is an eigenvalue of A0, which is not

possible. Hence eTη is a nonzero scalar and we can divide (3.14) by eTη to obtain

eT
(

I− A0

λ

)−1

d(1) = λ. (3.15)

Since Am
0 = 0, expanding (3.15) gives

λ = pee
p1eTp

(
I − A0

λ

)−1

d(1) = pee
p1eTp

(
I +

A0

λ
+

A2
0

λ
+ · · ·+ Am−1

0

λ

)
d(1).

(3.16)

Note that d(1) = φ(y), a probability distribution, to get (3.12). Therefore we can

solve for pe in terms of p1 to get (3.11). 2

Note that γ is a real number which can be accurately approximated numerically.
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If there is a particular asymptotic growth rate λ > 0 which is desired, Theorem 3.2.2

gives a formula for the curve of (p1, pe) values which lead to λ.

Figure 3.1 shows the curves {(p1, pe)|λ(p1, pe) = α} for α increasing from 0.70

to 1.3 in 0.1 increments. The nominal point computed in Ellner and Rees (2006) is

(−11.84, 0.025), which leads to λ = 0.9878. One can see from both the figure and

from (3.16) that λ varies considerably more with larger uncertainties in the fecundity

intercept p1 than with large uncertainties in the probability for seedling establishment

pe. The graphs shows the range of p1 within its standard error of the nominal value.

In this range the variation in λ includes both values signifying dramatic asymptotic

decay and values signifying dramatic asymptotic growth. Thus I do not consider λ

to be robust with respect to large changes in p1. Since the probability of seedling

establishment was not measured directly (see Ellner and Rees (2006)), it is unclear

whether λ is robust to changes in pe within the unknown standard error. If pe remains

within 25% of its current values, i.e. between 0.019 and 0.031 and if the fecundity

intercept remains fixed at its nominal value, −11.84, λ varies by less than 0.10. Yet

if pe increases by as much as 50% to 0.375, then λ increases by approximately 0.10.

Likewise, if pe decreases by 50% to 0.0125, then λ decreases by almost 0.20. Hence λ

is more robust to increases in pe than to decreases to pe.

I now consider simultaneous variation in the fecundity intercept p1, fecundity

slope p2 and probability of seedling establishment pe. This is more difficult compu-

tationally, since p2 cannot be pulled out of the integral defining eT . I use the same

derivation as above, but now γ in (3.12) is the function, γ(p2), which needs to be

calculated for every p2. I can solve for pe in terms of p1 and γ(p2). Figure 3.2 shows

the surface {(pe, p1, p2)|λ(pe, p1, p2) = 1} for a range of admissible (pe, p1, p2). This

surface divides the (pe, p1, p2) parameter space into those parameters above the sur-

face, which lead to asymptotically increasing population, and those parameters below
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Figure 3.1: The curves show values of (p1, pe) for which λ = .70, .80, .90, 1.0, 1.1, 1.2,
decreasing in value to the left of the λ = 1 curve and increasing in value to the right.
The black diamond marks the nominal point (−11.84, 0.025)

the surface, which lead to asymptotic decreasing population, i.e. this is the growth-

decline boundary. Notice that as p1 and p2 decrease within the standard error, pe

must increase exponentially to maintain λ(pe, p1, p2) = 1, and eventually increases

above 1, an impossibility for a probability. Figure 3.3 shows the λ = 1 contours for

pe = .01, .03, .10, .30, .60, and 1.0. The black diamond marks the nominal values of

(p1, p2) = (−11.84, 2.27). On the graph, one can see that if p1 and/or p2 are increased

slightly, pe needs only to decrease slightly in order to maintain λ = 1. On the other

hand, if p1 and/or p2 are decreased slightly, pe must increase to a much greater value

in order to maintain λ = 1. Thus our graph shows λ is not robust at all to decreases

in p1 and p2 and to increases in pe.
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Figure 3.2: The parameter space of fecundity intercept p1, fecundity slope p2 and
probability of seedling establishment pe for λ = 1.

3.3 Discussion

Extending the theory given by Boeckner in [77], I identify a class of PPM’s (e.g. see

Chapter 2) and IPM’s for which the growth-decline boundary λ = ρ is given precisely

by those parameters for which ρ is an eigenvalue. This means I can determine the

growth-decline boundary simply by evaluating the parameterized characteristic func-

tion evaluated at ρ = 1. I must assume a decomposition of the parameterized operator

in terms of an operator A0 whose dominant eigenvalue we know to be less than ρ, and

a second operator which can be decomposed into two separate operators: one from

the Banach space into R and the other from R into the Banach space. The existence

of such a decomposition very often follows immediately from the construction of the
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Figure 3.3: The contours are the λ = 1 curves for various values of the probability
of seedling establishment pe. The nominal values for the fecundity intercept and
fecundity slope are indicated by the black diamond.

PM, and is ecologically natural. For instance, for Leslie matrices A0 is obtained by

zeroing out the fecundities so that A0 has dominant eigenvalue λ = 0. For an IPM,

A0 would be the operator containing only the growth and survival kernel. In fact, any

PPM or IPM whose population advances to a new age class at every time step until

it reaches some maximum age and then dies, will have nilpotent A0, so r(A0) = 0.

This is true for a Leslie matrix, for my PPM example in Chapter 2 and in my IPM

example in this chapter. Thus, as a special case, I get the familiar result that any

PM which can be written in the general form of A = A0 + deT , with nilpotent A0,

will have only one positive eigenvalue.

Having identified the growth-decline boundary in such analytically simple terms,
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I can then explore how “close” the nominal values are to the boundary as one, two

or even all parameters are varied. Additionally, the growth-decline boundary shows

the interconnectedness between all of the parameters. A management action increas-

ing one parameter value may also have the benefit of moving the nominal point far

enough on the other “side” of the (λ = 1)-hypersurface, that the uncertainties in the

other parameters are no longer a major concern. Thus, in this case even with the

uncertainties in the other parameters, population growth (or decline) is robust.

While this method does not explicitly address stochastically varying environments,

it does allow for analysis of spatially and temporally varying environments when

this variation is within some tolerance level. For example, in environments which

vary slightly, the stochastic contribution to the variance of the parameters can be

treated like a parameter uncertainty. These methods then can be applied in the same

way as we did in [77], where the data uncertainty is due to spatial variation. If

the environments vary considerably, such as in the case of hurricanes, fires or other

catastrophes, then our method would not give useful information since the parameter

variation is too large. However, in this case, sensitivity methods may also not be

accurate [56, 95]. Our methods also do not take into consideration possible density-

dependence.

Despite these shortcomings mentioned in the previous paragraph, this method

generates a clear growth-decline boundary for PPMs and IPMs and points conserva-

tion managers towards a strategy which can be robust in the face of the uncertainty

in more than one parameters.



54

Chapter 4

Effect of Temperature on Transient

Dynamics

4.1 Introduction

I constructed two models to study the effect of temperature on transient dynamics.

As mentioned in the introduction, one is a function of ordinal time, measured in

days, and one is a function of physiological time, measured in degree days. Both are

variations of a continuous time model given in [10]:

n(a, t) =


n(a− t, 0)

s(a)

s(a− t)
a > t

b(t− a)s(a) a < t,

(4.1)

where n(a, t) is the population density of age a at time t, s(a) is the probability an

aphid will survive to age a, and b(t) are the births at time t. The first line is the

number of aphids alive at t = 0 and still alive at time t. The second line is the number

of aphids born at time t − a who survived to age a. This model is shown in [66] to
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be equivalent to the McKendrick-von Foerster PDE:

∂n

∂a
+
∂n

∂t
= −µ(a)n, (4.2)

where µ(a) is the per capita mortality rate of an aphid of age a. The relationship

between µ(a) and s(a) is derived by first performing a change of variables. Let a = ξ

and t = ξ + ν. Thus

∂a

∂ξ
=
∂t

∂ξ
= 1

and

∂n

∂ξ
=
∂n

∂a

∂a

∂ξ
+
∂n

∂t

∂t

∂ξ
=
∂n

∂a
+
∂n

∂t
= −µ(ξ)n.

Thus

dn

n
= −µ(ξ)dξ.

Let a ≤ t and consider following one cohort of aphids as they age from 0 to ξ.

Then ∫ n(ξ,ν)

n(0,ν)

dñ

ñ
= −

∫ ξ

0

µ(ξ̃)dξ̃,

⇒ n(ξ, ν)

n(0, ν)
= exp

(
−
∫ ξ

0

µ(ξ̃)dξ̃

)
.

Next, convert back to the original variables to obtain

n(a, t− a)

n(0, t− a)
= exp

(
−
∫ a

0

µ(ã)dã

)
,

⇒ s(a) = exp

(
−
∫ a

0

µ(ã)dã

)
.

Pea aphids, Acyrthosiphon pisum, are ideally suited to study the effect of temper-

ature on transient dynamics because they have a short generation time and all vital
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rates (developmental time, fecundity and survival) are largely influenced by tempera-

ture [11, 12, 57, 63, 70, 97, 112]. Pea aphids are viviparous (give birth to live nymphs)

and parthenogenic (reproduce asexually) [31]. In their natural environment, it is only

until temperatures in the fall begin to dip that aphids produce eggs which survive

until spring. The nymphs develop through four instars before reaching adulthood. If

environmental conditions deteriorate as a result of high aphid density or decreasing

host plant quality an increasing proportion of migrants are born; migrants develop

wings in the adult stage (alate morphs) and disperse to better habitats [31]. Under

good rearing conditions (e.g. good plant quality and low densities) the proportion of

winged ahids is very small [31]; thus in my experiments I exclusively used wingless

(apterae) morphs.

4.1.1 Model Construction

I will reference the model where time is measured in (ordinal) days by the “ordinal

day”, or OD, model. I will reference the second model, where time is measured in

degree days as the “degree day”, or DD, model. The difference between my two models

and that given by (4.1) above is the maternity function, i.e. the number of offspring

per unit time. In my models, the maternity function is not only a function of time,

but also a function of time from the onset of reproduction. Thus the population is now

a function of age, time and time since onset of reproduction where age is measured

in the same units as time, either in ordinal days or degree days.

Let r be the time since onset of reproduction. The population as a function of r

can be considered a step function. Nonreproducing aphids are assigned a constant,

negative r value (r = −1) until they begin to reproduce at which point r is reassigned

to r = 0. Once r ≥ 0, r increases with time. Thus my OD model is
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n(a, r, t) =



n(a− t, r − t, 0)
s(a)

s(a− t)
a > t, r > t

n(a− t, t− r, 0)
s(a)

s(a− t)
a > t, 0 ≤ r ≤ t

n(a− t, r, 0)
s(a)

s(a− t)
a ≥ t, r = −1

n(a− r, 0, t− r) s(a)

s(a− r)
0 ≤ r < a < t

n(0, r, t− a)s(a) a < t, r = −1.

(4.3)

The first line is the number of reproducing aphids alive at t = 0 and still alive at

time t. The second line is the number of nonreproducing aphids alive at time t = 0

who begin to reproduce at time t − r and are still alive at time t. The third line

is the number of nonreproducing aphids alive at t = 0 who have not yet begun to

reproduce by by time t, and are still alive at time t. The fourth line is the number of

reproducing aphids born at time t− a, who, at the age of a− r began reproducing at

time t− r and are still alive at time t. The last line is the number of nonreproducing

aphids born at time t − a who are still alive at time t. Since I am modeling the

invasion by a single invading, reproducing aphid, the number of reproducing aphids

alive at t = 0 is 1, while there are no nonreproducing aphids alive at t = 0 except

those born at time t = 0. For the DD model, t is replaced by t̃, the time measured in

degree days.

In order to solve (4.3) numerically, it is best to think of beginning at time, t = 0,

and marching forward in infinitesimal time steps of δt. Note that if r ≥ 0, δt = δa =

δr, otherwise δr = 0.

Theorem 4.1.1. The model given by (4.3) can be programmed on the computer by

using:

n(a+ δa, r + δr, t+ δt) =
s(a+ δa)

s(a)
n(a, r, t). (4.4)
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Proof: I will prove the first case (i.e. the first line) in (4.3) above, the others are

similar. Assume a > t and r > t. Thus δa = δr = δt and

n(ã+ δa, r + δr, t+ δt)

= n(a+ δa− t− δt, r + δr − t− δt, 0)
s(a+ δa)

s(a+ δa− t− δt)
, by (4.3),

= n(a− t, r − t, 0)
s(a+ δa)

s(a− t)
,

= n(a− t, r − t, 0)

(
s(a)

s(a− t)

)(
s(a+ δa)

s(a)

)
,

= n(a, r, t)
s(a+ δa)

s(a)
, by (4.3).

2

The model’s initial condition is

n(a, 0, 0) =

 1 for a = â, where â is the age of the initial invading aphid

0 otherwise.
(4.5)

and first of the two boundary conditions is

n(0,−1, t) =

[∫ t

0

∫ R

0

m(r)n(a, r, t)drda

]
+m(t)n(â+ t, t, t)δa, (4.6)

where m(r) is the maternity function as a function of days from the onset of repro-

duction and R the maximum time of the aphids’ reproductive period. The first term

in (4.6) above is the number of births by aphids born after time t = 0. The second

term is the number of births by the initial invading aphid of age â > t. Since I assume

this initial aphid begins to reproduce at t = 0, the time since its onset of reproduction

is just t.
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The boundary condition from when r = −1 to when r changes to r = 0, i.e. when

an aphid first begins to reproduce, is given by

n(a+ δa, 0, t+ δt) =
s(a+ δa)

s(a)
pr(a)n(a,−1, t), (4.7)

where pr(a) is the probability that an aphid of age a who has not started to reproduce

will begin to reproduce by age a+ δa.

Due to continuity, as δt → 0 the numerical solution converges uniformly to the

model given in (4.3). A flow chart for the computer program of this model is given

in Figure 4.1 and the computer code is given in Appendix C.

4.1.2 Experimental Design and Methods

I conducted all the experiments in two temperature controlled rooms monitored every

5 minutes using Onset Corporation’s HOBO U-012 data loggers (accuracy ±0.35◦C).

The experiments were carried out on alfalfa (Medicago sativa L., cv. ‘Vernal’) plants

with 3-4 plants per 12.5 cm diameter pot. The same plant-aphid system has been

used in other demographic models [48, 117]. The particular model in [117] suggests

the occurrence of transient dynamics following a dispersal event of aphids, but none of

them incorporates the effect of temperature on transient dynamics. The temperatures

of the rooms were set at 20◦C and 25◦C. Grow lights were set to a 16L:8D photope-

riod. The relative humidity could not be controlled in our experiments, and varied

significantly between summer and winter. Because the relative humidity influenced

survivorship and fecundity I conducted experiments both in the summer (“medium”

humidity) and winter (“low” humidity). The data loggers were placed under radia-

tion shields near the alfalfa plants. An average daily temperature was determined by

the 24-hr average of the readings from the data loggers. The two rooms used were
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Figure 4.1: Schematics for logic flow of both models.
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approximately 8.5 square meters in size and approximately square in shape.

To determine survivorship/fecundity parameters, two wingless adult aphids were

placed in each clip cage (4 cm diameter) and attached to 25 − 35 day old alfalfa

plants. Up to 4 clip cages were used per pot of 3−4 alfalfa plants. Seven hours later,

I removed all aphids but one newborn from the clip cages. Using two adult aphids

increased the probability that the clip cage would contain at least one newborn when

inspected. Clip cages were monitored daily, ±1 hours, for survivorship and fecundity

and newborns were removed after counting. Each clip cage was numbered, so that I

could record the fate of individual aphids from birth until death.

Next I conducted population count experiments to validate our model predictions.

Because the initial population state affects transient dynamics [64] and because an

aphid’s fecundity is highly age dependent [6, 12], I started the experiments with

aphids that newly entered the reproductive stage. I reared aphids of known age us-

ing clip cages as described above. Once aphids were 5-7 days old I transferred them

to plants in larger cages with one aphid. The number of aphids was counted daily

(±3 hours) with more plants added as necessary to prevent density dependence. The

change in aphid numbers was recorded in 12 cages (two runs each of 6 cages) in the

low temperature, medium humidity room and in another 12 cages (two runs each of 6

cages) in the high temperature, low humidity room. Humidity was not held constant

because of logistical reasons which required the experiments to be spread out over

summer and winter.

Estimating Model Parameters

Clip cages were monitored daily (±1 hours), for survivorship and fecundity. The
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initial aphid density was 73 and 69 newborns respectively for the 20◦C and 25◦C

experiments. Of these initial newborns, 45 and 51 survived to reproduce offspring in

the 20◦C and 25◦C experiments respectively.

Table 4.1 lists the mean temperatures and mean humidities with 95% confidence

intervals. Overall, the temperature remained constant except for brief fluctuations

when the lights turned on and off. For the survival/fecundity experiment at high

temperature and low humidity, the heat was shut off in the building 21 days after the

beginning of the experiment, resulting in increased fluctuations in the temperature

during the later part of the experiment. This had only a small effect on estimating

model parameters because at that point aphid daily reproduction is only 25% of the

daily reproduction during the first week of entering the reproductive period, and 43%

of aphids had already died at that point. This agrees with data presented in [12] who

found that in this temperature range, aphids begin to reproduce when just 6.6− 14.5

days old. Hence it is assumed that this instability in the temperature did not affect

the fecundity of the aphids.

All model parameters were estimated using the statistical package R [105]. The

methods for determining both the ordinal (OD) model’s and the degree day (DD)

model’s parameters were similar, except for the maternity function. For the degree

day (DD) model, each day was converted to degree days. I estimated the lower thresh-

old by fitting a line to the data on a temperature vs. (time to onset of reproduction)−1

graph (1.23) using a generalized linear model (GLM). Then I used the average tem-

perature of each 24 hour period, to convert the day to degree days using (1.24) and

converted the number of elapsed days in the experiment to elapsed degree days. The

fitting routines for survival rate and probability for onset of reproduction were then

used with time measured in degree days incorporating both 20◦C and 25◦C data sets

for each humidity. The maternity function required a slightly different fitting routine
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which is outlined below.

I estimated the daily survival rate using a Weibull function [103] because aphid

survival is strongly age dependent. The probability that an animal of age a will

survive to age a+ δa, is

s(a+ δa)

s(a)
= e−((a+δa)ρ)κ−(aρ)κ , (4.8)

where ρ is the scale parameter of the distribution and κ is the shape parameter [25].

The probability of transitioning to the reproductive stage at a particular age is a

binomial process and can be analyzed using survival analysis. Because the transition

probability increases with age I fitted a Weibull function to the data. Let f(a) be

the probability that an aphid of age a remains in the pre-reproductive stage; then an

aphid who has failed to reproduce by age a will fail to reproduce by age a + δa, i.e.

the aphid of age a will begin to reproduce in the time period a+ δa with probability

1− f(a+ δa)

f(a)
= 1− e−((a+δa)ρ)κ−(aρ)κ , (4.9)

where ρ is the scale parameter of the distribution and κ is the shape parameter. To

account for the minimum duration of the juvenile phase, I only included data where

the probability of transitioning to the reproductive phase is > 0. Additionally, since

the data was collected daily, reproduction began prior to the actual observation of the

first offspring, up to one day earlier. Therefore, it is fair to assume that on average

aphids began reproducing 1/2 day prior to the recorded observation of offspring. To

account for this I assumed that on the first half-day the rate at which the aphids

reproduced twice was many aphids as observed. That is, if I observed 4 aphids on the

first day an aphid began reproducing, then its rate of producing offspring for the first

half day is 8 aphids/day. This did not result in an increase in the total fecundity of
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the individual aphid, since this rate was only maintained for 1/2 day, agreeing with

the observed 4 aphids. To determine the maternity function m(r) for the ordinal day

(OD) model, I fit the fecundity data to a first order generalized linear model, using a

Poisson error distribution with a log link, i.e. I fit the data to the curve exp(a+ bt).

Determining the maternity function, m(r), for the degree day (DD) model, was

slightly different. If I converted the number of offspring per day to number of offspring

per degree day, this would lose the characteristics of the Poisson error distribution

inherent with count data. Notice that

(
offspring

day

)
=

(
offspring

degree day

)(
degree day

day

)
, (4.10)

where (degree day)/day is the number of degree days in one day as calculated by

(1.24). If I assume an exponentiated linear function for offspring per degree day, e.g.

if I assume a first order exponentiated linear function, then

offspring

day
= exp(a+ bt̃)

(
degree day

day

)
, (4.11)

and so

ln

[
offspring

day

]
= (a+ bt̃) + ln

(
degree day

day

)
. (4.12)

Since the number of offspring per day is a whole number, I can again use a Poisson

error distribution and fit the fecundity data to a first order generalized linear model

using a log link with an offset of

ln

(
degree day

day

)
.
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Once offspring per day was calculated, determining the maternity function, i.e. the

offspring per degree day was simply done by:

m(a, r) =

(
offspring

degree day

)
=

(
offspring

day

)(
day

degree day

)
. (4.13)

where day/(degree day) is the number of days in one degree day.

Evaluating Model Predictions

For all models, I simulated an invading aphid by setting the initial condition of the

model to be one aphid just beginning to reproduce. For each of the simulated aphid

population trajectories, I calculated the transient growth rate (1.19) and transient

amplification (1.20). For the DD model, time was converted back to days prior to

these calculations. To obtain the 95% confidence intervals for the models’ predictions,

I bootstrapped 10, 000 data sets (sampling with replacement, see [38]) using the same

individual’s demographic data to derive all three function parameters. To model

demographic stochasticity, for each of the bootstrapped data sets, at each δt (or

δt̃) in each model’s run, values for proportion surviving, proportion just beginning

to reproduce, and the maternity function were determined randomly as follows: for

both survivorship and whether the aphids will begin to reproduce, I randomly drew a

number from a uniform distribution on [0, 1]. If this random number was smaller than

the probability to survive as calculated by the Weibull distribution, then the aphids of

that age survived. Similarly, the probability remaining in the pre-reproductive stage

is equivalent to “surviving”, so if the random number was less than that calculated

by the Weibull distribution, then aphids of that age remained in the pre-reproductive

stage. For the maternity function in both the OD model and the DD model, the

number of offspring per day was randomly chosen from the Poisson distribution using
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the calculated values mean in the Poisson pdf.

4.2 Results

4.2.1 Parameter Estimates

Comparison of Low and Medium Humidity Data

Generalized linear models were used to determine whether humidity had a statisti-

cally significant influence on parameter estimates. Table 4.2 shows the average de-

mographic values for aphids growing at different temperature and humidity regimes.

The first day of reproduction was influenced by both humidity (p = 6.2× 10−25)

and temperature (p = .000197); furthermore there was a significant interaction be-

tween both factors (p = .000142). Survivorship was not influenced by temperature

(p = .0543), nor humidity (p = .553), and there was no significant interaction be-

tween both parameters (p = .613). Total fecundity was influenced by both humidity

(p = 4.9×10−5) and temperature (p = 4.97×10−5) and there was significant interac-

Table 4.2: The effect of temperature and humidity on aphid demography

Mean first day Average age to Mean Total
Temperature Humidity of reproduction*† 50% mortality* Fecundity*†

(Days) (Days)

20◦C Low 13.00(0.428) 26.5 29.22(2.43)
20◦C Medium 14.67(0.359) 33.5 44.4(3.16)
25◦C Low 9.15(0.181) 21.50 34.82(2.01)
25◦C Medium 11.40(0.454) 25.5 29.33(2.43)

*Values in parentheses are standard errors
†Includes only adults who have begun to reproduce
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tion between temperature and humidity (p = 7.06× 10−5). Fecundity was influenced

by humidity (p = .00584) and the interaction between humidity and temperature

(p = .00631), but temperature alone had no significance (p = .615). In conclusion,

humidity was a significant factor in the aphids’ first day of reproduction and in their

fecundity. Therefore, these data sets were kept separate, and I parameterized the

models for both low and medium humidity scenarios.

Vital Rates

I fitted the survival data to a Weibull distribution (where the mortality rate in-

creases with age) and compared this with the exponential distribution (which has a

constant mortality rate) and used the Akaike Information Criterion (AIC) to evaluate

which distribution fits the data best (Table 4.3). When comparing models, the one

with the lower AIC is generally deemed better, if the difference is greater than four

[1, 2, 109]. Figures 4.2 and 4.3 shows the survivorship curve for the 25◦C, medium

humidity data as a function of ordinal days and degree days, respectively. The curves

for the other temperature/humidity combinations are similar and thus are not shown.

Because the fit of the Weibull distribution (Table 4.4) was visually superior and had

a smaller AIC value, the Weibull distribution was used in both models.

Determining whether the aphids will begin to produce was done similarly to the

survivorship curves. Since I modeled the probability of beginning reproduction as

a step function, the first days where no aphids reproduced was set to zero and the

second part of the function was determined by the Weibull distribution. For the 20◦C,

low humidity data, this was 10.5 days, for the 20◦C, medium humidity data, this was

11.5 days. For both humidities at 25◦C, no aphids reproduced in the first 7.5 days.

If the age was above or equal to the minimum first day of reproduction, the Weibull
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Table 4.3: Comparison of AIC Values for Survival Curves

Temp Humidity Exponential Distribution Weibull Distribution

20◦C Low 560.67 549.06
20◦C Medium 542.30 512.05
25◦C Low 544.39 512.05
25◦C Medium 512.87 455.64

Degree Days Low 991.16 909.67
Degree Days Medium 913.5019 784.6982

Table 4.4: Weibull Distribution Parameter Values for Survival Function

Temp Humidity ρ κ

20◦C Low .039778 1.519531
20◦C Medium .032442 2.202668
25◦C Low .043407 1.721847
25◦C Medium .038053 2.669978

Degree Days Low 0.001894 3.337367
Degree Days Medium 0.001612 5.373067

Table 4.5: Comparison of AIC Values for Failure to Reproduce Curves

Temp Humidity Exponential Distribution Weibull Distribution

20◦C Low 185.31 168.57
20◦C Medium 217.29 214.69
25◦C Low 171.37 164.76
25◦C Medium 256.06 256.73

Degree Days Low 872.31 851.35
Degree Days Medium 1011.92 1013.39
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Figure 4.2: The Kaplan-Meier estimates for survivorship (with 95% confidence inter-
vals) for the 25◦C, medium humidity data as a function of ordinal days. Also shown
are the survival curve fittings of the Weibull distribution and exponential distribution.

function determined the probability of beginning to reproduce.

The Weibull distribution was better than or equal to the exponential distribution

for the “failure to reproduce” curves (Table 4.5), therefore the Weibull distribution

was used in both the OD and DD models. Shown are two of the figures (Figures 4.4

and 4.5) for the proportion of not reproducing as a function of time. The curves for

the other temperatures and humidities are similar and are not shown.

Figure 4.6 shows the first order maternity functions for the 25◦C, low humidity
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Figure 4.3: The Kaplan-Meier estimates for survivorship (with 95% confidence inter-
vals) for medium humidity data as a function of degree days. Also shown are the
survival curve fittings of the Weibull distribution and exponential distribution.

data. Figure 4.7 shows the first order maternity functions for the degree day, low

humidity data.

4.2.2 Model and Empirical Results

Figures 4.8 and 4.9 show the model predictions incorporating demographic stochas-

ticity for the transient growth rates along with the experimentally observed growth

rates for the low humidity, 25◦C data and for the medium humidity, 20◦C data re-
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Figure 4.4: The Kaplan-Meier estimates for proportion not reproducing (with 95%
confidence intervals) for the 20◦C, medium humidity data as a function of ordinal
days from the day the aphids first began to reproduce. The shift is the day when
the first aphid began to reproduce. Also shown are the curve fittings for both the
Exponential and Weibull distributions.
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Figure 4.5: The Kaplan-Meier estimates for proportion not reproducing (with 95%
confidence intervals) for the medium humidity data as a function of degree days from
the day the aphids first began to reproduce. Also shown are both the curve fittings
for the exponential and Weibull distribution.
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Table 4.6: Weibull Distribution Parameter Values for Probability of Failing to Re-
produce Function

Temp Humidity ρ κ

20◦C Low 0.233935 .596591
20◦C Medium 0.259200 0.762856
25◦C Low 0.550418 0.710482
25◦C Medium 0.134205 0.874164

Degree Days Low 0.025445 0.674449
Degree Days Medium 0.008127 1.060526

Figure 4.6: The generalized linear model (with 95% confidence intervals) fitting of
the maternity function to the 25◦C, low humidity data. Circle represent data points
with the radius of the circle proportional to number of data points.
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Figure 4.7: The generalized linear model (with 95% confidence intervals) fitting of
the maternity function to the degree day, low humidity data. Circle represent data
points with the radius of the circle proportional to number of data points.

spectively. One can see that the model predictions for the low humidity, 25◦C data

fit the empirical data rather well, but that the medium humidity, 20◦C data does not,

due mainly to the difference of when the onset of reproduction began.

In the clip cages, the earliest onset of reproduction at the lower cages occurred

when the aphids were 11.5 days old. From the count data of the population dynamics

experiment and as can be seen in Figure 4.9, it is obvious that the first born offsprings

in the large cages started reproducing at least 2 days earlier. Since the degree day

model uses both temperature data to estimate the lower threshold, it does show an

earlier mean onset of reproduction, by about one day, for the medium humidity, 20◦C
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Figure 4.8: Comparison of the observed transient growth rates with the model pre-
dictions for the 25◦C low humidity data. The circles are the observed population
means with their 95% means. The top graph shows the model prediction using the
ordinal day model. The mean prediction is the solid line with the dotted lines being
its 95% confidence interval. The bottom graph shows the model prediction using the
degree day model. Again, the mean prediction is the solid line with the dotted lines
being its 95% confidence interval.
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Table 4.7: Maternity Function, where T and LT are the desired temperature and
computed lower threshold respectively, see (1.24).

Temp Humidity Maternity Function

20◦C Low exp(1.508526− 0.139891t)
20◦C Medium exp(1.605473− 0.088002t)
25◦C Low exp(1.774711− 0.147828t)
25◦C Medium exp(1.68710− 0.17067t)

Degree Days Low
exp(−1.0351707− 0.00927430t+ ln(T − LT ))

T − LT

Degree Days Medium
exp(−1.0960596− 0.0074586t+ ln(T − LT ))

T − LT

data as also seen in Figure 4.9. Not shown are the actual population counts. The

model predictions for population count for the 25◦C, low humidity data was consistent

with the empirical observations, while the model predictions for the population count

in the 20◦C, medium humidity data were much lower than the observed counts.

There are a number of possible reasons for this discrepancy between the model

prediction and observation at 20◦C. The aphids used in this experiment came from a

colony reared for the past two years on broad bean (Vicia faba) plants in a high tem-

perature (≥ 25◦C) room. Thus the aphids were acclimated to the higher temperature

and to a different food source, which might have negatively affected aphid perfor-

mance (references). This imposed stress in combination with feeding alone might

have caused a delay in aphid development in the clip cages. It has been shown that

it is advantageous for some aphid species to feed in groups, rather than as individu-

als [32, 123], though other studies have not seen this effect [54, 94]. Perhaps in pea

aphids an Allee effect is only measurable under stressful conditions. Additionally,

the clip cages prevented the aphids from moving to the younger, newer leaves at the
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Figure 4.9: Comparison of the observed transient growth rates with the model pre-
dictions for the 20◦C medium humidity data. The circles are the observed population
means with their 95% means. The mean prediction is the solid line with the dotted
lines being its 95% confidence interval. The bottom graph shows the model prediction
using the degree day model. Again, the mean prediction is the solid line with the
dotted lines being its 95% confidence interval.
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top of the alfalfa plant as they did in the larger cages (personal observations). In

the case of sycamore aphids, [20] showed that aphids feeding on older, mature leaves

develop slower than those feeding on unfurling leaves. The clip cages did not impact

vital rates estimates if aphids were reared at higher temperature, as there was a very

good match between model prediction an observation (Figure 4.8). Therefore, I will

assume the discrepancy between the model predictions and empirical observations in

the 20◦C, medium humidity model case is due to the stress caused by performing the

experiment at an temperature cooler than what the aphids were acclimated too.

Since the aphids began reproducing at least two days earlier in the large cages for

the low temperature regime, I shifted the growth rate curve (Figure 4.9) to the left

by two days by subtracting two days from the day the aphids in the clip cages began

to reproduce and recalculating the parameters for the Weibull distribution for the

“failure to reproduce” curve (ρ = 0.259200, κ = 0.762856). Then I ran the ordinal

day model again with the results shown in the top graph of Figure 4.10. The predicted

population count is still lower than the empirical data, but the model predictions for

the transient growth rate now match the empirical data much better. This model

was therefore used for the remainder of this dissertation.

I did not make any changes to the 25◦C, medium humidity data, since there is a

good match between predictions and observations at this temperature regime.

Using this correction I calculated the transient amplification for both temperatures

at medium humidity. The transient amplification, TA(t) as given in (1.20), is the ratio

of the actual population size at time t to what the population would be if it started at

its stable state distribution. Thus the greater the difference between the lines in Figure

4.11, the greater the transient amplification. I assume that the initial population size

and the norm of the population at its stable state distribution are both equal to 1.

Notice the y-axis is on a logarithmic scale. The transient amplification changes with
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Figure 4.10: Comparison of the observed transient growth rates with the model pre-
dictions for the 20◦C medium humidity data incorporating a two day shift in the
onset of reproduction. The circles are the observed population means with their 95%
means. The mean prediction is the solid line with the dotted lines being its 95%
confidence interval.
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Table 4.8: Asymptotic Rates*

Temp - Humidity Asymptotic λ Asymptotic λ Asymptotic λ
Mean lower 95% CI Mean Mean upper 95% CI

20◦C − Medium 1.1818 1.2402 1.3019
25◦C − Medium 1.1610 1.2333 1.3171

Temp - Humidity Asymptotic TA Asymptotic TA Asymptotic TA
Mean lower 95% CI Mean Mean upper 95% CI

20◦C − Medium 1.5071 4.7809 8.1413
25◦C − Medium 1.7088 4.8479 9.4451

*Stochastic OD model. Mean is calculated from day 100 to day 197.

time, but stabilizes after 50 time steps. Shown is TA(10) = 29.96/8.64 = 3.47.

Table 4.8 gives the asymptotic growth rate and asymptotic transient amplification

for the two temperatures. While both values are similar, the higher temperature result

does have a greater confidence interval.

Figure 4.12 shows the transient amplification for both the 20◦C and 25◦C, medium

humidity stochastic, ordinal day models. Notice as t→∞, the transient amplification

stabilizes to a constant. For days less than 30, which temperature has the greater

the transient amplification depends on the particular day. On some days (e.g. day

20), the 20◦C model has a greater transient amplification. On other days (e.g. day

12), the 25◦C model has greater transient amplification. The mean average peaks of

the transient amplification for the two temperatures are the same; they just occur

on different days. These general results, i.e. the same asymptotic transient growth

rate, the same mean average peaks for transient amplification occurring on different

days) are also common to the low humidity, ordinal day model and for the degree day

model at both humidities (not shown). For the degree day model, the asymptotic

transient amplification will always be the same, not matter what two temperatures
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Figure 4.11: The top curve is the population trajectory assuming a single invading
aphid just beginning to reproduce. The bottom curve is the population size assuming
the initial population is at its stable state distribution, normalized to 1. Notice the
y-axis is on a logarithmic scale. The transient amplification at time t is the ratio of
the two population counts at time t.
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Figure 4.12: The transient amplification for the medium humidity, stochastic, ordinal
day model. The lighter weight lines are the 95% confidence intervals.

are compared as the following theorem shows.

Theorem 4.2.1. Let n(t̃) be the population as a function of degree days. Then the

asymptotic transient amplification for any temperature is the same.

Proof: Let t̃0 be a time (in degree days) such that the asymptotic dynamics
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is reached. Hence I assume the aphids are reproducing exponentially and that the

transient amplification at this time is constant. Let T1 and T2 be any two arbitrary

temperatures and let LT be the lower threshold of the degree day model. Let t̃1 and

t̃2 be the degree days after one ordinal day has elapsed at temperatures T1 and T2

respectively. Thus t̃1 = t̃0 + (T1 − LT ) and t̃2 = t̃0 + (T2 − LT ) by (1.24). Without

loss of generality, assume t̃1 < t̃2.

Next, let t01 = (T1 − LT )t̃0 and t02 = (T2 − LT )t̃0 be the time (in ordinal days) of

t̃0. Let t11 and t22 be the time (in ordinal days) of t̃1 and t̃2 respectively. Thus

‖n(t̃0)‖ = ‖n(t01)‖ = ‖n(t02)‖, (4.14)

‖n(t̃1)‖ = ‖n(t11)‖, (4.15)

‖n(t̃2)‖ = ‖n(t22)‖, and (4.16)

t02 = t01
(T1 − LT )

(T2 − LT )
. (4.17)

Let λ1, λ2 be the asymptotic population growth rates at temperatures T1 and T2

respectively. From above and from (1.19),

λ1 =
‖n(t̃1)‖
‖n(t̃0)‖

and λ2 =
‖n(t̃2)‖
‖n(t̃0)‖

. (4.18)

Let r1 and r2 be the intrinsic rate of increase (measured in days−1) at temperatures

T1 and T2. Thus λ1 = er1 and λ2 = er2 (see [108] p. 59). Noting that the conversion

from degree days to days at temperature T1 is (T1 − LT )−1, then

‖n(t̃2)‖
‖n(t̃0)‖

= e
r1

(t̃2−t̃0)
T1−LT , (4.19)

= e
r1
(
T2−LT
T1−LT

)
. (4.20)
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Letting s =
T2 − LT
T1 − LT

, then from above,

λ2 = λs1, (4.21)

and

λt022 = (λs1)
t01

(T1−LT )

(T2−LT ) , by 4.17, (4.22)

= λt011 . (4.23)

Let TA1 and TA2 be the asymptotic transient amplification at T1 and T2 respec-

tively. Then

TA1

TA2

=

(
‖n(t̃1)‖
λt01+1

1

)(
λt02+1

2

‖n(t̃2)‖

)
, (4.24)

=

(
λ1‖n(t̃0)‖
λt01+1

1

)(
λt02+1

2

λ2‖n(t̃0)‖

)
, (4.25)

=
λt022

λt011

, (4.26)

=
λt011

λt011

, by (4.22), (4.27)

= 1. (4.28)

Therefore TA1 = TA2. 2

4.3 Discussion

As far as I know this study is the first study on the effect of humidity on the vital

rates of aphids. I find that low humidity significantly reduces developmental time,

decreases survival and reduces fecundity (at the lower temperature) of A. pisum
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(Table 4.2). This negative effect is enhanced by increased desiccation probability

at low humidity conditions: A. pisum drops off plants as a response to predator

attack and if humidity is low aphids are more likely to die before they return to the

plant [107]. Previous aphid studies on the effect of temperature on fecundity and

survivorship were conducted under higher humidity conditions (e.g. [12]: 50 − 70%

r.h., [57]: 70−100% r.h., and [112] at 70−75% r.h.) than our study (26−38% r.h. and

40− 52% r.h.). Despite the higher humidity during the experimental conditions the

juvenile period in the clip cages at 20◦C was at least 4 days longer than reported in

the literature ([12] 9 days, 8.5 days [57] and [112]). In contrast, aphids not constrained

to clip cages (i.e., those in the large cage experiments) started reproducing 2-3 days

earlier at 20◦C than in the clip cages, which is consistent with that reported in the

literature (considering the lower humidity). Therefore, in the 20◦C model I shifted

the onset of reproduction by two days.

As mentioned in the results section, this later onset of reproduction in the clip cage

experiments could be due to an Allee effect caused by aphids aggregating together.

Dixon and Wratten [32] showed that black bean aphids (Aphis fabae Scop.) feeding

in groups were larger than those feeding alone and that larger apterae (non-winged)

aphids not only have a greater fecundity, but they also have a shorter (one day) delay

time between when the aphids molt to the adult stage and when they actually begin

to reproduce. Other studies have not seen this Allee effect [54, 94]. Additionally, [20]

showed that sycamore aphids (Drepanosiphum platanoidis) feeding on older, mature

leaves developed slower than those feeding on unfurling (younger) leaves. Since the

clip cages prevented the aphids from aggregating and from moving to choice feeding

sites, a prolonged period of development for aphids raised in the clip cages is not

unfeasible.

In general, the mean total fecundity of aphids in this experiment (30-44 aphids,
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Table 4.2) was only half of that reported in the literature ([12] 93 offsprings at 20◦C,

and 90 offsprings at 26◦C). In contrast, the total lifetime offspring production in

this study increased with decreasing temperature under medium humidity conditions,

which is consistent with the literature; both [6] and [12] found that the fecundity of

pea aphids was highest at 15◦C. The overall low fecundity of these experiments in

this study could be partially explained by lower host plant quality (the fecundity of

pea aphids depends on plant species and plant cultivar [6, 43, 90, 97]), and to the

low humidity rearing conditions. This suggests that it is rather challenging to make

quantitative prediction of aphid population dynamics, however qualitative predictions

should hold (e.g. fecundity decreases with increasing temperature).

For the higher temperature the predicted and observed population trajectory

match perfectly, and after adjusting the parameter for the first day of reproduction

for the lower temperature, the model’s predicted and observed population trajectories

match also. Therefore, I believe that these models can be used to examine the effect

of temperature on transient and asymptotic population growth rate. Contrary to our

expectations and the literature [12, 112] the asymptotic population growth rates at

both temperatures are similar because, everything else equal, a quicker development

increases population growth rate. In this study the time of development between

the two temperature regimes differed only by one day. The positive effect of this

small difference was counteracted through a reduced fecundity and survival at the

higher temperature. Since the asymptotic population growth rates were similar at

both temperatures, the transient amplifications should be similar as well [117]. Fu-

ture experiments testing the effect of temperature on transient population dynamics

should also include much lower temperature ranges resulting in a range of asymptotic

population growth rates.

Transient amplification following an invasion by a single aphid exhibits damped
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oscillations: the declining phase is characterized by a declining fecundity of adults

and by a large number of juvenile aphids; the increasing phase is characterized by the

next generation reaching the reproductive stage. Once the stable state distribution

is reached (after about 50 days), the transient amplification stabilizes to a constant.

This agrees with the general results derived in [65] who showed that for any single

species matrix model, the transient amplification stabilizes to a constant.

The 95% confidence intervals for the transient amplification are large and indi-

cate the range of possible transient amplifications that one might observe in real

populations. Additionally, the upper bounds take much longer the longer to reach

an asymptotic level (day 100, data not shown) compared to lower bounds (day 50,

Figure 4.12). The lower bound of the confidence interval is always greater 1 except at

the first minimum. Therefore the ordinal day model suggests that ignoring transient

dynamics in the early phase after a dispersal event of A. pisum always results in an

underestimation of population size.

The prediction of the degree day model is similar to the ordinal day model in that

the transient amplification in the first days following an invasion follows a damped

oscillatory pattern. As shown in the results, for any two temperatures, the asymp-

totic transient amplification will always be equal. For example, model runs from

15◦C and 25◦C still result in the temperatures having the same asymptotic transient

amplification (data not shown). As with the ordinal day model, the lower bound of

the confidence interval is always greater than 1. The degree day model does rely on

the assumption that the conversion of survivorship and fecundity from “per day” to

“per degree day” is linear. While a linear relationship between temperature and the

inverse of time to development (see equation (1.23)) exists, it is unknown whether

higher temperatures decrease survivorship and increase the rate of offspring produced

in the same linear fashion. Therefore, it has not been tested whether this model is
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justified.

My model applies to population dynamics that are not affected by density depen-

dent processes, such as during the initial phase of population establishments following

a dispersal event. In this study aphid populations take 50 time steps to reach the

asymptotic growth rate, at which time the population size increased to about 25, 000

individuals; in the field, density dependence would have started to affect aphid pop-

ulations at much lower density. Under crowded conditions or poor host plant quality

aphids increasingly produce winged morphs (alatae) that migrate to better habitats.

In the field the populations of many aphid species crash two to three generations

after the initial colonization (20 - 30 days), which is mostly due to mass migration

[31]. This study suggests that aphid populations crash long before they reach the

asymptotic population growth rate and thus studying transient dynamics is more

relevant.

Studying transient dynamics is important because it influences the probability

of population establishment. If the crash occurs as a result of poor plant quality

(ripening plants) or because plants get harvested, the transient population growth

rate determines the peak aphid population density, which in turn influences the yield

reduction caused by aphids [45, 73]. Studies have been done to predict when it is

necessary to apply insecticides (see e.g. [79, 99]). In particular, [79] estimates the

economic threshold level. This is the pest density at which action should be taken

(e.g. application of insecticide) to prevent an increasing pest population from causing

economic injury to the crop, i.e. when the cost of controlling the aphids balances the

lose of income due to smaller yields caused by the infestation [58]. These estimates

rely on predicting aphid population growth rates because of the time lag between the

application and the harvest. The transient amplification gives an indication of the

magnification of the aphid population when comparing a population beginning at its
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stable state distribution verses a population beginning with a different distribution

such as reproducing adults. A beginning population consisting of only reproducing

adults will result in a greater population than a population (with the same number

of individuals) at its stable state distribution. This in turn, gives an upper bound on

the population size and hence can help determine a bound on the amount of injury

caused by the aphids on a field crop.
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Appendix A

Chapter 2 Computer Programs

A.1 Program 1

% studyearKM.m

% this takes the cheetah data from studbook and calculates

% Kaplan-Meiercurve (i.e. draws Figure 1)

clear;

cheetahdata = dlmread(’studbook2004.txt’,’\t’);

ncheetah=size(cheetahdata) ;

% ncheetah(1) = number of cheetahs in database

% initialize

possibleages=transpose(linspace(1.5,30,58));

% possible ages are 18 months - 30 years

nageclass = length(possibleages);

nalive=zeros(nageclass,1) ;

% number alive at the beginning of each age class

ndied=zeros(nageclass, 1);

% number who died in that ageclass

flag=0; % assume dead

newdata=[];

% now do all the cheetahs

for ii=1:ncheetah(1); % for every cheetah

flag=0 ; % assume dead

if cheetahdata(ii,5)~=0 % so the cheetah is dead

yalive = cheetahdata(ii,5)-cheetahdata(ii,3);

else
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yalive=2004 - cheetahdata(ii,3)+1; % cheetah is alive

flag=1;

end

if yalive == 0 % died same year

malive = cheetahdata(ii,4)-cheetahdata(ii,2);

% # of months alive at beginning of month

else

malive = 12-cheetahdata(ii,2) ;

% number of months alive at beginning of month in first year

malive= malive+cheetahdata(ii,4) ;

% plus number of months alive at beginning of month in last year

malive= malive + 12*(yalive-1);

% plus number of months alive inbetween

if cheetahdata(ii,5)==0 malive=malive+1; end

% because lived through that last month

end

newdata=[newdata ; ii malive flag cheetahdata(ii,3)];

end

% now calculate Kaplan Meier curve

nalive=zeros(360,1) ;

% number of cheetahs alive at beginning of month

ndied=zeros(360,1) ;

% number of cheetahs who died during that month

nc=size(newdata);

ncheetahs=0;

for jj=1:nc(1)% number of cheetahs in studbook

if newdata(jj,3)==0 % choose only those cheetahs that died

ncheetahs=ncheetahs+1;

nmonths=newdata(jj,2)+1 ;

% number of months cheetah is alive at beginning of month

if nmonths <=360 % use only cheetahs less than 30 years old

nalive(1:nmonths)=nalive(1:nmonths)+1;% add to total alive

ndied(nmonths)=ndied(nmonths)+1 ;

% number of cheetahs that died during that month

end

end

end

% using "Analysis of Survival Data" by D.R. Cox and D. Oakes



93

% now to remove age classes where there are no deaths

r=[ncheetahs];

d=[0];

age=[0];

for kk=1:length(nalive)

if nalive(kk)~= 0 %don’t do anything if no one is still alive

% % this prevents us also from dividing by zero

r=[r nalive(kk)];

d=[d ndied(kk)];

age=[age kk/12] ; % convert months to years

end

end

% now calculate product-limit estimator

lengthr=length(r)-1; % so we don’t divide by zero

KM=zeros(lengthr,1);

KM(1)=1-d(1)/r(1);

varKM=zeros(lengthr,1);

varsum=zeros(lengthr,1);

confl=zeros(lengthr,1); % lower 95% confidence

confu=zeros(lengthr,1); % upper 95% confidence

cinterval=zeros(lengthr,1); % 95% confidence

for kk=2:lengthr-1

KM(kk)=KM(kk-1)*(1-d(kk)/r(kk));

varsum(kk)=d(kk)/(r(kk)*(r(kk)-d(kk)));

varKM(kk)=KM(kk)^2 *sum(varsum(1:kk));

confl(kk)=KM(kk)-1.96*sqrt(varKM(kk));

confu(kk)=KM(kk)+1.96*sqrt(varKM(kk));

cinterval(kk)=1.96*sqrt(varKM(kk));

end

% now plot Kaplan-Meier curve

plot(age(1:lengthr),KM,’k’,’LineWidth’,3);

hold on

xlabel(’Age (in years)’,’FontSize’,16)

ylabel(’Cumulative Survivorship’,’FontSize’,16)

axis([0 25 0 1]);

h=findobj;

set(h(3),’FontSize’,14,’FontWeight’,’bold’);

set(h(3),’XTick’,[0 4 8 12 16 20 24]);
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%plot(age,confl,’k:’,’LineWidth’,2.5)

%plot(age,confu,’k:’,’LineWidth’,2.5)

% calculate survivorships

% 0-6 month

alive=nalive(1,1);

died=sum(ndied(1:6));

%these died before moving to next age class

surv06=(alive-died)/alive % 6 - month survivorship

% 6-12, 12-18 month

alive=nalive(7,1);

died=sum(ndied(7:18));

%these died before moving to next age class

surv618=(alive-died)/alive ; % 12 - month survivorship

surv618=surv618^(1/2)

% 18-42

alive=nalive(19,1);

died=sum(ndied(19:42));

%these died before moving to next age class

surv1842=(alive-died)/alive ;

surv1842=surv1842^(1/4) % split into 4 age classes

% 42-102

alive=nalive(43,1);

died=sum(ndied(43:102));

%these died before moving to next age class

surv42102=(alive-died)/alive ;

surv42102=surv42102^(1/10) % split into 10 age classes

% 102-156

alive=nalive(103,1);

died=sum(ndied(103:162));

%these died before moving to next age class

surv102162=(alive-died)/alive ;

surv102162=surv102162^(1/10) % split into 9 age classes

% now overlay plot of Kaplan-Meier curve

% surv is survivorship with cheetahs older
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% than 42 months having 42-102 survivorship

% surv2 is survivorship with 42-102, 102-162,

% and cheetahs older than 168

% months having same survivorship as those 102-162

age=zeros(61,1); % there are 60 - 6 month age classes

surv=zeros(61,1); % cummulative survivorship

age(1)=0; % everybody is alive at birth

surv(1)=1;

age(2)=.5 ;

surv(2)=surv06;

age(3)=1 ;

surv(3)=surv(2)*surv618;

age(4)=1.5 ;

surv(4)=surv(3)*surv618;

for jj=5:8

surv(jj)=surv(jj-1)*surv1842;

age(jj)=(jj-1)*6/12;

end

surv3(1:8)=surv(1:8);

for jj=9:18

surv(jj)=surv(jj-1)*surv42102;

surv3(jj)=surv3(jj-1)*.9258; % this is our average

age(jj)=(jj-1)*6/12;

end

surv2(1:18)=surv(1:18) ;

% these are the same until month 102

for jj=19:61

surv(jj)=surv(jj-1)*surv42102 ;%surv102;

surv2(jj)=surv2(jj-1)*surv102162;

surv3(jj)=surv3(jj-1)*.9258;

age(jj)=(jj-1)*6/12;

end

hold on

plot(age, surv,’k--’,’Linewidth’,3)

plot(age, surv2,’ko’,’Linewidth’,2.5)



96

A.2 Program 2

% p1f2 (Chapter 2, figure 2)

% calcuates perturbations in adult survivorship for

% senescence matrix, sets

% s4 at biological limit, allows s2 to vary and determines s3

% necessary for lambda=1

% two cases: fecundity of 12-18 years is biological limit

% and fecundity of 12-18 years is = 0

clear

global sw0 sw1 sw2 sw3

global s2 s3 s4 f1 f2 f3;

syms sp3 Delta P

syms p2

getinitialvalues %

p3start = -.02 ; %

p3finish= 1 - s3;

lp3=100; % length of p2

p3=linspace(p3start,p3finish,lp3);

% part 1: biological limit for fecundity of 12-18 years old cheetah

smat=36; % size of matrix

A=matrixA(smat);

D=zeros(smat,14);

D(1,2:4)=f1*ones(1,3);

D(1,5:14)=f2*ones(1,10);

for nn=1:14

D(nn+4,nn)=1;

end

E=zeros(14,smat);

for nn=1:14

E(nn,nn+3)=1;

end

% Here is Delta

for jj=1:14

for nn=1:14

Delta(nn,jj)=0;

end

end
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for nn=1:4;

Delta(nn,nn)=p2;

end

for nn=5:14

Delta(nn,nn)=sp3;

end

% check does P=D*Delta*E ?

for jj=1:smat

for nn=1:smat

P(nn,jj)=0;

end

end

P(5,4)=p2; P(6,5)=p2; P(7,6)=p2; P(8,7)=p2;

P(1,5)=f1*p2 ; P(1,6)=f1*p2; P(1,7)=f1*p2;

for jj=8:17

P(1,jj)=sp3*f2;

P(jj+1,jj)=sp3;

end

% check

% P-D*Delta*E

p3b=[];

p2b=[];

G = E*inv(eye(smat)-A)*D;

G1T=G(:,1:4);

G2=G;

G2(:,1:4)=zeros(14,4);

for ii=1:lp3;

HP= eye(14)-p3(ii)*G2 ;

H=inv(HP)*G1T ; % so H is a 14 x 4 matrix

p2poss=eigs(H(1:4,:));

p2poss=1./p2poss;

flag=0;

for kk=1:length(p2poss) % we’re looking for admissible p3

if p2poss(kk)==real(p2poss(kk)) ;

% only want real perturbations
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if p2poss(kk) > -s2 ;

% minimum survivorship is 0 - but can’t be =0

% since not primitive

if p2poss(kk) <= 1-s2 % maximum survivorship is 1

if flag ==1

disp(’more than one admissible eigenvalue’)

end

flag=1;

p2c=p2poss(kk); % this perturbation is admissible

end

end

end

end

if flag == 1 % so there is an admissible perturbation

p2b=[p2b p2c];

p3b=[p3b p3(ii)];

end

end

% now check lambdamax

lp2b=length(p2b);

P2=zeros(smat,smat);

for ii=1:lp2b;

P2(5,4)=p2b(ii); P2(6,5)=p2b(ii);

P2(7,6)=p2b(ii); P2(8,7)=p2b(ii);

P2(1,5)=f1*p2b(ii) ; P2(1,6)=f1*p2b(ii); P2(1,7)=f1*p2b(ii);

for jj=8:17

P2(1,jj)=p3b(ii)*f2;

P2(jj+1,jj)=p3b(ii);

end

evalue=eig(A+P2);

imax=find(evalue==max(evalue));

lambdamax=evalue(imax)

end

disp(’Check to make sure eigenv = 1’)

% now plot

p2t=p2b+ones(1,lp2b)*s2;

p3t=p3b+ones(1,lp2b)*s3;
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plot(p2t,p3t,’k’,’LineWidth’,3)

hold on

%***********************************************

% part 2 fecundity of 12-18 years old cheetah is = 0

clear P

syms P

smat=24; % size of matrix

A=matrixA0(smat);

D=zeros(smat,14);

D(1,2:4)=f1*ones(1,3);

D(1,5:14)=f2*ones(1,10);

for nn=1:14

D(nn+4,nn)=1;

end

E=zeros(14,smat);

for nn=1:14

E(nn,nn+3)=1;

end

% Here is Delta

for jj=1:14

for nn=1:14

Delta(nn,jj)=0;

end

end

for nn=1:4;

Delta(nn,nn)=p2;

end

for nn=5:14

Delta(nn,nn)=sp3;

end

% check does P=D*Delta*E ?

for jj=1:smat

for nn=1:smat

P(nn,jj)=0;

end

end



100

P(5,4)=p2; P(6,5)=p2; P(7,6)=p2; P(8,7)=p2;

P(1,5)=f1*p2 ; P(1,6)=f1*p2; P(1,7)=f1*p2;

for jj=8:17

P(1,jj)=sp3*f2;

P(jj+1,jj)=sp3;

end

% check

% P-D*Delta*E

p3b0=[];

p2b0=[];

G = E*inv(eye(smat)-A)*D;

G1T=G(:,1:4);

G2=G;

G2(:,1:4)=zeros(14,4);

for ii=1:lp3;

HP= eye(14)-p3(ii)*G2 ;

H=inv(HP)*G1T ; % so H is a 14 x 4 matrix

p2poss=eigs(H(1:4,:));

p2poss=1./p2poss;

flag=0;

% now find the one which is an admissible perturbation

for kk=1:length(p2poss) % we’re looking for admissible p3

if p2poss(kk)==real(p2poss(kk)) ;

% only want real perturbations

if p2poss(kk) > -s2 ;

% minimum survivorship is 0 - but can’t be =0

% since not primitive

if p2poss(kk) <= 1-s2 % maximum survivorship is 1

if flag ==1

disp(’more than one admissible eigenvalue’)

end

flag=1;

p2c=p2poss(kk); % this perturbation is admissible

end

end

end
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end

if flag == 1 % so there is an admissible perturbation

p2b0=[p2b0 p2c];

p3b0=[p3b0 p3(ii)];

end

end

% now check lambdamax

lp2b0=length(p2b0);

P2=zeros(smat,smat);

for ii=1:lp2b0;

P2(5,4)=p2b0(ii); P2(6,5)=p2b0(ii);

P2(7,6)=p2b0(ii); P2(8,7)=p2b0(ii);

P2(1,5)=f1*p2b0(ii) ; P2(1,6)=f1*p2b0(ii);

P2(1,7)=f1*p2b0(ii);

for jj=8:17

P2(1,jj)=p3b0(ii)*f2;

P2(jj+1,jj)=p3b0(ii);

end

evalue=eig(A+P2);

imax=find(evalue==max(evalue));

lambdamax=evalue(imax)

end

disp(’Check to make sure eigenv = 1’)

% now plot

p2t0=p2b0+ones(1,lp2b0)*s2;

p3t0=p3b0+ones(1,lp2b0)*s3;

plot(p2t0,p3t0,’k’,’LineWidth’,3)

ylabel(’Survival 42-102 months, s_3*’,’FontSize’,16)

xlabel(’Survival 18-42 months,s_2*’,’FontSize’,16)

xstart=.86;

xfinish=1.0;

ystart=.86;

yfinish=1.0;

axis([xstart xfinish ystart yfinish])

h=findobj;
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set(h(3),’FontSize’,14,’FontWeight’,’bold’);

set(h(3),’YTick’,[.86 .88 .90 .92 .94 .96 .98 1.0]);

set(h(3),’XTick’,[.86 .88 .90 .92 .94 .96 .98 1.0]);

%

text(.9,.975,’f_3=1.4994’,’FontSize’,16,’FontWeight’,’bold’);

text(.982,.98,’f_3=0’,’FontSize’,16,’FontWeight’,’bold’);

% now draw dotted lines showing perturbed to that of

% captive cheetahs

x1=linspace(xstart,xfinish,lp2b0);

y1=0.9567*ones(1,lp2b0);

plot(x1,y1,’k-.’,’LineWidth’,3);

x1=0.9685*ones(1,lp2b0);

y1=linspace(ystart,yfinish,lp2b0);

plot(x1,y1,’k-.’,’LineWidth’,3);

plot(sw2,sw3,’p’, ’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’k’,...

’MarkerSize’,14) % original values for f1 and f2

text(.92+.004,.88,’A’,’FontSize’,16,’FontWeight’,’bold’);

A.3 Program 3

% p1f3 (Chapter 2, figure 3)

% calcuates robustness due perturbations in

% fecundity in senescence matrix

% sets s2, s3 and s4 at biological limit

%

clear

global sw0 sw1 sw2 sw3

global s2 s3 s4 f1 f2 f3

syms fsym P detAP

smat=36; % size of matrix A

eyemat=eye(smat);

getinitialvalues

%**********************************************

% Case 1 f3=0

% nominal value is point A on graph

smat=24; % size of matrix A

eyemat=eye(smat);
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A=matrixA0(smat);

% OK, now we are going to perturb

% fecundity f2 and solve for f1

pf2start=-.4; %

pf2finish= .4; %

lpf2=50; % length of f2

pf2=linspace(pf2start,pf2finish,lpf2);

pf2b=[];

pf1b=[];

for jj=1:smat

for nn=1:smat

P(nn,jj)=0;

end

end

for jj=1:lpf2

flag=0;

for kk=5:7

P(1,kk)=s2*fsym;

end

for kk=8:17

P(1,kk)=s3*pf2(jj);

end

for kk=18:24

P(1,kk)=s4*pf2(jj);

end

detAP=det(eyemat-(A+P));

f1poss=eval(solve(detAP));

for kk=1:length(f1poss) % we’re looking for admissible f1

if f1poss(kk)==real(f1poss(kk)) ;

% only want real perturbations

if flag ==1

disp(’more than one admissible eigenvalue’)

end

flag=1;

pf1c=f1poss(kk); % this perturbation is admissible

end

end
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if flag == 1 % i.e. there was an admissible solution

pf1b=[pf1b pf1c];

pf2b=[pf2b pf2(jj)];

end

end

% check, is this lambda max?

lpf2b=length(pf2b);

P2=zeros(smat,smat);

for jj=1:lpf2b;

for kk=5:7

P2(1,kk)=pf1b(jj)*s2 ;

end

for kk=8:17

P2(1,kk)=pf2b(jj)*s3;

end

for kk=18:24

P2(1,kk)=s4*pf2b(jj);

end

evalue=eig(A+P2);

imax=find(evalue==max(evalue));

lambdamax=evalue(imax)

end

disp(’Check to make sure eigenv = 1’)

figure

pf2t=pf2b+ones(1,lpf2b)*f2;

pf1t=pf1b+ones(1,lpf2b)*f1;

plot(pf1t,pf2t,’k’,’LineWidth’,3) % This is line A

ylabel(’Fecundity of 42-144 months’)

xlabel(’Fecundity of 18-42 months’)

hold on

%************************************************

% Case 2 f3=f2

% nominal value is point A on graph

f3=f2;
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smat=36;

A=matrixA(smat);

eyemat=eye(smat);

pf2b=[];

pf1b=[];

for jj=1:smat

for nn=1:smat

P(nn,jj)=0;

end

end

for jj=1:lpf2

flag=0;

for kk=5:7

P(1,kk)=s2*fsym;

end

for kk=8:17

P(1,kk)=s3*pf2(jj);

end

for kk=18:24

P(1,kk)=s4*pf2(jj);

end

for kk=25:smat-1

P(1,kk)=s4*pf2(jj); % since f3=f2

end

detAP=det(eyemat-(A+P));

f1poss=eval(solve(detAP));

for kk=1:length(f1poss) % we’re looking for admissible f1

if f1poss(kk)==real(f1poss(kk)) ;

% only want real perturbations

if flag ==1

disp(’more than one admissible eigenvalue’)

end

flag=1;

pf1c=f1poss(kk); % this perturbation is admissible

end

end

if flag == 1 % i.e. there was an admissible solution

pf1b=[pf1b pf1c];

pf2b=[pf2b pf2(jj)];



106

end

end

% check, is this lambda max?

lpf2b=length(pf2b);

P2=zeros(smat,smat);

for jj=1:lpf2b;

for kk=5:7

P2(1,kk)=pf1b(jj)*s2 ;

end

for kk=8:17

P2(1,kk)=pf2b(jj)*s3;

end

for kk=18:24

P2(1,kk)=s4*pf2b(jj);

end

for kk=25:smat-1

P2(1,kk)=s4*pf2b(jj); % since f3=f2

end

evalue=eig(A+P2);

imax=find(evalue==max(evalue));

lambdamax=evalue(imax)

end

disp(’Check to make sure eigenv = 1’)

pf2t=pf2b+ones(1,lpf2b)*f2;

pf1t=pf1b+ones(1,lpf2b)*f1;

plot(pf1t,pf2t,’k’,’LineWidth’,3) % This is the bottom line

xstart=1;

xfinish=2.5;

ystart=1;

yfinish=2.5;

axis([xstart xfinish ystart yfinish])

text(1.5,1.3,’f_3=1.4994’,’FontSize’,16,’FontWeight’,’bold’);

text(1.5,1.8,’f_3=0’,’FontSize’,16,’FontWeight’,’bold’);

plot(f1,f2,’p’, ’MarkerEdgeColor’,’k’,’MarkerFaceColor’,...

’k’, ’MarkerSize’,14)% original values for f1 and f2

text(f1-.07,f2-.04,’C’,’FontSize’,16,’FontWeight’,’bold’);
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A.4 Program 4

% p1f4 Chapter 2, figure 4

% calcuates perturbations in adult survivorship for senescence

% model sets p4 at biological limit. Sets fecundity at

% biological limit allows p2 and p3 to vary, calculates

% necessary p0 to achieve lambda=1

clear

global sw0 sw1 sw2 sw3

global s2 s3 s4 f1 f2 f3;

getinitialvalues

smat=36;

A=matrixA(smat);

eyemat=eye(smat);

% OK, now we are going to perturb adult survivorships p2 and p3

p2start=-.14; %

p2finish= 1-s2; % perturbations can’t be greater than 1

p3start= -.12 ;

p3finish=1-s3;

lp2=100;

lp3=100;

p2=linspace(p2start,p2finish,lp2);

p3=linspace(p3start,p3finish,lp3);

p2b=[];

p3b=[]

p0b=[];

for jj=1:smat

for nn=1:smat

P(nn,jj)=0; % initialize P

end

end

for nn=1:lp3

for jj=1:lp2

flag=0;

G = E*inv(eye(smat)-A)*D; % so G is a 15 by 15 matrix
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G1T=G(:,1);

G2=zeros(15,15);

G2(:,2:5)=G(:,2:5);

G3=zeros(15,15);

G3(:,6:15)=G(:,6:15);

HP=eye(15)-p2(jj)*G2-p3(nn)*G3 ;

H=inv(HP)*G1T ; % so H is a 15 x 1 vector

p0b(nn,jj)=1/H(1); %

end

end

% check, is this lambda max?

%lp2b=length(p2b);

%lp3b=length(p3b)’

P2=zeros(smat,smat);

for jj=1:lp2;

for nn=1:lp3;

P2(5,4)=p2(jj); P2(6,5)=p2(jj); P2(7,6)=p2(jj); P2(8,7)=p2(jj);

P2(1,5)=f1*p2(jj) ; P2(1,6)=f1*p2(jj); P2(1,7)=f1*p2(jj);

for kk=8:17

P2(1,kk)=p3(nn)*f2;

P2(kk+1,kk)=p3(nn);

end

P2(2,1)=p0b(nn,jj);

evalue=eig(A+P2);

imax=find(evalue==max(evalue));

lambdamax=evalue(imax);

if abs(lambdamax-1) > .00001 % check tolerance

lambdamax

end

end

end

disp(’Check to make sure eigenv = 1’)

figure

p2t=p2+ones(1,lp2)*s2;
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p3t=p3+ones(1,lp3)*s3;

p0t = p0b + ones(lp3,lp2)*sw0;

% adding the original survivorship to the perturbation

[cs,h]=contour(p2t,p3t,p0t,[.081 .1 .12 .14 .155 .18 .20] );

%clabel(cs,h,’fontsize’,16);

colormap(’gray’)

caxis([4 5]);

xlabel(’Survival of 18-42 month young adults, s_2*’)

ylabel(’Survival of 42-102 month adults, s_3*’)

axis([.87 1 .87 1])

h=findobj;

set(h(3),’FontSize’,14,’FontWeight’,’bold’);

%

hold on

% now draw dotted lines showing perturbed to

% that of captive cheetahs

xstart=.8;

xfinish=1;

x1=linspace(xstart,xfinish,lp2);

y1=s3*ones(1,lp2);

plot(x1,y1,’k-.’,’LineWidth’,3);

x1=s2*ones(1,lp2);

y1=linspace(xstart,xfinish,lp2);

plot(x1,y1,’k-.’,’LineWidth’,3);

plot(sw2,sw3,’p’, ’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’k’);

text(sw2+.004,sw3,’A’,’FontSize’,16,’FontWeight’,’bold’);

A.5 Common Subroutines

function getinitialvalues

% This sets the initial values

global sw0 sw1 sw2 sw3

global s2 s3 s4 f1 f2 f3 ;

sw0 = .081 ; % survival of juvenile wild cubs age 0-6 month

sw1 = .771 ; % survival of juvenile wild cubs age 6-12 month

% and 12-18 month

sw2 = .92; % survival of wild 18-24, 24-30, 30-36,

% and 36-42 month

sw3 = .879; % survival of wild adults age 42+
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s2 = .9685; % biological limit for wild young adults

% (18-42 months)

s3 = .9567; % biological limit for wild mid age adults

% (42-102 months)

s4 = .8980; % biological limit for wild very old adults

% (102+ months)

f1 = 1.75*(365/256)*(1/2) ; % from Crooks’ paper -

%fecundity of 24-42 age classes

f2 = 1.75*(365/213)*(1/2) ; % from Crooks’ paper -

%fecundity of 42 - 144 age classes

f3 = f2; %fecundity of 144-216 month age classes (12-18 years)

% we’ll perturb this

function A=matrixA(smat)

% matrixA

% This calculates matrix A for all pictures for paper #1

% smat is size of square matrix Z

global sw0 sw1 sw2 sw3

global s2 s3 s4 f1 f2 f3;

A=zeros(smat,smat) ;

% put in survivorships into matrix

A(2,1)=sw0;

A(3,2)=sw1; A(4,3)=sw1;

A(5,4)=s2; A(6,5)=s2; A(7,6)=s2; A(8,7)=s2;

A(1,5)=f1*s2 ; A(1,6)=f1*s2; A(1,7)=f1*s2;

for jj=8:17

A(1,jj)=s3*f2;

A(jj+1,jj)=s3;

end

for jj=18:24

A(1,jj)=s4*f2;

A(jj+1,jj)=s4;

end

for jj=25:smat-1

A(1,jj)=s4*f3;

A(jj+1,jj)=s4;

end

A(1,smat)=0;%s4*f3;

function A=matrixA0(smat)

% matrixA

% This calculates matrix A for all pictures for paper #1 using zero
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% fecundity if cheetah is over 12 years

% smat is size of square matrix Z

global sw0 sw1 sw2 sw3

global s2 s3 s4 f1 f2 f3

A=zeros(smat,smat) ;

% put in survivorships into matrix

A(2,1)=sw0;

A(3,2)=sw1; A(4,3)=sw1;

A(5,4)=s2; A(6,5)=s2; A(7,6)=s2; A(8,7)=s2;

A(1,5)=f1*s2 ; A(1,6)=f1*s2; A(1,7)=f1*s2;

for jj=8:17

A(1,jj)=s3*f2;

A(jj+1,jj)=s3;

end

for jj=18:smat-1

A(1,jj)=s4*f2;

A(jj+1,jj)=s4;

end

A(1,smat)=0;%s4*f3;
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Appendix B

Chapter 3 Computer Programs

B.1 Program 1

% figure 1 in chapter 2

clear all

global n nage nquality gammaq cutq phiy

% what lambda do we deisre?

lambda = [.7 .8 .9 1 1.1 1.2 1.3 ];

[pvec,L,U,pest,withq]=getinitialvalues;

% boundary points b and mesh points y

c=0:1:n ; % row vector

b = L+c*(U-L)/n;

y = 0.5*(b(1:n)+b(2:(n+1)));

kidsizemean=pvec(13);

kidsizevar=pvec(14);

phiy=normpdf(y,kidsizemean,sqrt(kidsizevar))/ ...

(1-normcdf(0,kidsizemean,sqrt(kidsizevar)));

phiy=transpose(phiy); %

%points for numerical integration of survival intercepts

cutq = linspace(-4*pvec(4),4*pvec(4),nquality);

%normalised to sum to 1

gammaq=normpdf(cutq,0,1)/sum(normpdf(cutq,0,1));

hold on

ploticon=[’k’,’:’,’--’];

p2start= -.02499; % thus p2 + pest > 0.0001 > 0

p2finish= .07;
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npoints=100;

p2=linspace(p2start, p2finish,npoints);

for kk=1:3 % lambda < 1

% now calculate triple integral

w=D(1, withq);

w=IminusA0inv(pvec,w,y,U,L,lambda(kk),withq);

gamma(kk)=E(pvec,w,pest,y,U,L,withq);

gamma(kk)=gamma(kk)/pest;

p1=zeros(1,npoints);

for jj=1:npoints

p1(jj)=log(lambda(kk)/((pest+p2(jj))*gamma(kk)));

end

plot(p1+pvec(11),p2+pest, ’:’)

end

kk=4; % lambda =1

% now calculate triple integral

w=D(1, withq);

w=IminusA0inv(pvec,w,y,U,L,lambda(kk),withq);

gamma(kk)=E(pvec,w,pest,y,U,L,withq);

gamma(kk)=gamma(kk)/pest;

p1=zeros(1,npoints);

for jj=1:npoints

p1(jj)=log(lambda(kk)/((pest+p2(jj))*gamma(kk)));

end

plot(p1+pvec(11),p2+pest, ’k’)

for kk=5:7 % lambda >1

% now calculate triple integral

w=D(1, withq);

w=IminusA0inv(pvec,w,y,U,L,lambda(kk),withq);

gamma(kk)=E(pvec,w,pest,y,U,L,withq);

gamma(kk)=gamma(kk)/pest;

p1=zeros(1,npoints);

for jj=1:npoints

p1(jj)=log(lambda(kk)/((pest+p2(jj))*gamma(kk)));

end

plot(p1+pvec(11),p2+pest, ’-’)

end

xlabel(’Fecundity Intercept, p_1’,’FontSize’,16)
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ylabel(’Probability of seedling establishment, p_e’,’FontSize’,16)

axis([-16.27 -7.41 0 .06])

plot(-11.85,0.025,’d’)

B.2 Program 2

% plots figures 2 and 3 in chapter 3

clear

global n nage nquality gammaq cutq phiy

[pvec,L,U,pest,withq]=getinitialvalues;

kidsizemean=pvec(13);

kidsizevar=pvec(14);

lambda=1; % what lambda do we desire?

storepvec=pvec; % because change it later

p2start=-4.43 ;

% we’re perturbing fecundity intercept (nominal value = -11.84)

p2finish=4.43 ;

p3start= -.6 ;

% we’re perturbing fecundity slope (nominal value = 2.27)

p3finish= .6 ; %

npoints=50 ; % # of perturbations

p2=linspace(p2start, p2finish,npoints);

npointsp3=50 ; % # of perturbations

p3=linspace(p3start, p3finish,npointsp3);

p1=zeros(npoints, npointsp3);

YMIN = storepvec(11)-4.43; % limits on graph

YMAX = storepvec(11)+4.43;

XMIN = storepvec(12)-.60;

XMAX = storepvec(12)+.60;

ZMIN = 0;

ZMAX = 1;

% boundary points b and mesh points y

c=0:1:n ; % row vector

b = L+c*(U-L)/n;

y = 0.5*(b(1:n)+b(2:(n+1)));

if withq==0

pvec(4)=0 ;

end
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if nquality==1;

pvec(4)=0;

end

phiy=normpdf(y,kidsizemean,sqrt(kidsizevar))/ ...

(1-normcdf(0,kidsizemean,sqrt(kidsizevar)));

phiy=transpose(phiy); %

%points for numerical integration of survival intercepts

cutq = linspace(-4*pvec(4),4*pvec(4),nquality);

%normalised to sum to 1

gammaq=normpdf(cutq,0,1)/sum(normpdf(cutq,0,1));

ww=D(1, withq);

% now calculate triple integral (*)

for jj=1:npoints

w=IminusA0inv(storepvec,ww,y,U,L,lambda,withq);

for kk=1:npointsp3

pvec(12)=storepvec(12)+p3(kk);

gamma(kk)=E(pvec,w,pest,y,U,L,withq);

p1(jj,kk)=pest*((lambda/gamma(kk))*exp(-p2(jj))-1);

end

end

xx=p3+storepvec(12);

yy=p2+storepvec(11);

zz=p1+pest;

mesh(xx,yy,zz)

hold on

colormap(’gray’)

zlabel(’Probability of seedling establishment, p_e’);

ylabel(’Fecundity Intercept, p_1’);

xlabel(’Fecundity Slope, p_2’);

% now plot nominal values

plot3(2.27,-11.84,0.025,’kd’)

AXIS([XMIN XMAX YMIN YMAX ZMIN ZMAX])

%

figure

[X, Y]=meshgrid(xx,yy);

contour(X,Y,zz,’LineWidth’,3,’LineColor’,[0 0 0],...

’LevelList’,[0.01 0.03 0.1 0.3 0.6 1]);

colormap(’gray’)
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xlabel(’Fecundity Slope, p_2’);

ylabel(’Fecundity Intercept, p_1’);

hold on

plot(2.27,-11.84,’kd’)

B.3 Common Subroutines

function [pvec,L,U,pest,withq]=getinitialvalues

% getinitialvalues

% this gets the initial values needed for all of my matlab files

global n nage nquality gammaq cutq phiy

n=50;

nage=8;

nquality=1;

% Rounded parameter vector,

% see Table 1 in Ellner and Rees for more details.

pvec=[-1.42 1.08 -1.09 0.82 -24.01 2.91 .84 3.24 .56 ...

42.47 -11.84 2.27 1.06 3.37 -0.71/2];

L=0;% minimum (0.9*minimum size from data)

U=9.24; % maximum sizes (1.1*maximum size from data)

%probability of seedling establishment

pest=0.025 ;

withq=0 ; % if we’re using quality, otherwise =0 if not

function Aw = IminusA0inv(params,w,y,U,L,lambda,withq);

global n nage nquality gammaq cutq phiy

% computes (I-A_0/lambda)^{-1}w

% note - A0 is a nilpotent operator,

% thus we need to only carry out the

% summation to the nage^{th} term

Aw=w;

P=getmatrixP(params,y,U,L,withq);

if withq==1

v=zeros(n,nage,nquality) ;% ;

for iter=1:nage-1 % since A0 is nilpotent

v=A0withq(params,w,y,U,L,P);

w=v;

Aw=Aw+w/lambda^(iter);

% i.e. (I + A_0 /lambda + (A_0)^2/lambda + ...)w

end

else
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v=zeros(n,nage) ;% ;

for iter=1:nage-1 % since A0 is nilpotent

v=A0noq(params,w,y,U,L,P);

w=v;

Aw=Aw+w/lambda^(iter);

% i.e. (I + A_0 /lambda + (A_0)^2/lambda + ...)w

end

end

function w=D(alpha,withq);

% alpha := scalar

% w := element in the Banach space

% withq =1 if adding quality

global n nage nquality gammaq cutq phiy

if withq==1 % with quality

w=zeros(n,nage,nquality);

% distribute into sizes

SizeN=phiy*alpha;

% distribute into quality classes and into the first age class

for interb=1:nquality

w(:,1,interb)=w(:,1,interb)+gammaq(interb)*SizeN;

end

else

w=zeros(n,nage);

% now distribute into sizes

w(:,1)=phiy*alpha; % distribute into size classes and

% into the first age class

end

function nbirths=E(params,Nt,pest,y,U,L,withq);

% calculates the number of new births by population distribution Nt

% alpha := scalar

% Nt := element of the Banach space

global n nage nquality gammaq cutq phiy

storepvec=params;

if withq==1

B=zeros(n,nage,nquality); % fecundity

%Create matrix B, looping over quality class

% (survival intercept) and age

for inter = 1:nquality
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for age = 1:nage

% # Calculate survival intercept for this quality class

params(1) = storepvec(1)+cutq(inter);

% # Calculate survival and birth matrices for

% each quality (intercept) age combination.

for xi=1:n

B(xi,age,inter)=fxyt(y(xi),age,params,pest); %

end

end

end

B=(U-L)*B/n; % this gives B(x);

% now evaluate triple integral

nbirths = 0; % total number of new births

for interp=1:nquality

for agep=1:nage

% number of births per size and quality

nbirths= nbirths + transpose(B(:,agep,interp))*Nt(:,agep,interp)

end

end

else % no quality

B=zeros(n,nage); % fecundity

%Create matrix B, looping over age

for age = 1:nage

for xi=1:n

B(xi,age)=fxyt(y(xi),age,params,pest); %

end

end

B=(U-L)*B/n; % this gives B(x);

% now evaluate double integral

nbirths = 0; % total number of new births

for agep=1:nage

% number of births per size

nbirths= nbirths + transpose(B(:,agep))*Nt(:,agep);

end

end

function P=getmatrixP(params,y,U,L,withq);

% calculates matrix P which is used to estimate A0
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global n nage nquality gammaq cutq phiy

if withq==1

P=zeros(n,n,nage,nquality); % survival growth

oldpvec=params;

%Create matrix P, looping over quality class

% (survival intercept) and age

for inter = 1:nquality

params(1) = oldpvec(1)+cutq(inter);

for age = 1:nage

for xi=1:n

for yi=1:n

P(yi,xi,age,inter)=pxyt(y(yi),y(xi),age,params);

end

end

end

end

P=(U-L)*P/n; % this gives P(y,x) ;

else % no quality

P=zeros(n,n,nage); % survival growth

%Create matrix P, looping over age

for age = 1:nage

for xi=1:n

for yi=1:n

P(yi,xi,age)=pxyt(y(yi),y(xi),age,params); %

end

end

end

P=(U-L)*P/n; % this gives P(y,x) ;

end

function w=A0noq(params,Nt,y,U,L,P);

% calculates survial and growth by population distribution Nt

% Nt := original element of the Banach space

% w := new element of Banach space

global n nage nquality gammaq cutq phiy

w=zeros(n,nage);

for age=2:nage

w(:,age)=P(:,:,age-1)*Nt(:,age-1);

end
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function w=A0withq(params,Nt,y,U,L,P);

% calculates survial and growth by population distribution Nt

% Nt := original element of the Banach space

% w := new element of Banach space

global n nage nquality gammaq cutq phiy

w=zeros(n,nage,nquality);

for inter=1:nquality

for age=2:nage

w(:,age,inter)=P(:,:,age-1,inter)*Nt(:,age-1,inter);

end

end
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Appendix C

Chapter 4 Computer Programs

C.1 Program 1

# MCday.R

# this file chooses bootstrapped parameters

# for model as a function of ordinal days

rm(list=ls())

library(survival)

changerep=0

for (datarun in 3:3){

if(datarun==1){

fecfile <- "DevFec68degreesm2.csv"

outfile="MCday68LH.csv"

shift=10.5

}

if(datarun==2){

fecfile <- "DevFec76degreesm2.csv"

outfile="MCDay76LH.csv"

shift=7.5

}

if(datarun==3){

changerep=3 # = 0 don’t shift 20 C reproduction

# = 1 yes shift 20 C reproduction by one day

# = 2 change possibility of beginning to reproduce to 8.5 days

# = 3 yes shift 20 C reproduction by two days

fecfile <- "DevFec68highhumiditym2.csv"

outfile="MCday68HH.csv"

shift=11.5

if(changerep==1){

outfile="MCday68HHwithshiftv3.csv"
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shift=10.5

}

if(changerep==2){

outfile="MCday68HHwithshift.csv"

shift=8.5

}

if(changerep==3){

outfile="MCday68HHwithshiftv4p2.csv"

shift=9.5

}

}

if(datarun==4){

fecfile <- "DevFec76highhumiditym2.csv"

outfile="MCday76HH.csv"

shift=7.5

}

# initialize array to print to file

# nc = number of parameters to find

# np = number of points

nc=8

np=9000

MC<-array(NA,dim=c(np,nc))

# column #1, wrho<= location(lambda) for survivorship

# column #2, wkappa <= scale(kappa) for survivorship

# column #3, rrho <= rho for first day of reproduction

# column #4, rkappa <= kappa for first day of reproduction

# column #5, shift <= shift for first day of reproduction

# column #6, c1 <= x^0 term:

# fecundity as function of days from onset of reproduction

# column #7, c2 <= x^1 term:

# fecundity as function of days from onset of reproduction

# column #8, set =0

######################################

# survtoday

# converts data file into format for survival analysis

#

survtoday=function(aphid){
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# make matrix for input into survfitdays

#% csurv = column 1 = # days for this aphid since birth

#% ysurv = column 2 = # of offspring since birth

# (i.e. its still alive)

#% asurv = column 3 = aphid #

csurv=0; # initialize - I’ll remove the zeros later

ysurv=0;

asurv=0;

#%

len=length(aphid);

aphid=as.matrix(aphid)

for(ii in 1:len) { # % for each aphid

yesalive=0; # initialize - I’ll remove the zero later

# find index of negative entry

daydied=which(aphid[,ii]<0)

daydied=as.numeric(daydied)

if (aphid[daydied,ii] == -2) { # died on day giving birth

yesalive=aphid[1:daydied-1,ii] ;# since died on previous day

}

if (aphid[daydied,ii] == -1) {# so died day after giving birth

yesalive=aphid[1:daydied,ii];

yesalive[daydied]=0; # get rid of that negative

}

aphidnum=ii*rep(1,length(yesalive));

lyesalive=length(yesalive); # initialize

cumday=seq(1,lyesalive);

cumday=cumday-1

# now assume only survived half the day

cumday[lyesalive]=cumday[lyesalive]-.5

csurv=c(csurv,cumday) # cumulative days

ysurv=c(ysurv,yesalive) # yes its alive on those days

asurv=c(asurv,aphidnum) # aphid number

}

# get rid of those leading zeros

csurv=csurv[-1]

ysurv=ysurv[-1]

asurv=asurv[-1]

survdata=data.frame(csurv,ysurv,asurv)
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return(survdata)

}

#####################################################

#####################################################

fectoday= function(aphid){

# cfecday = column 1 = # days for this offspring since

# first day of reproduction

# offspring = column 2 = # of offspring

cfecday=0; # initialize - I’ll remove the zeros at the end

offspring=0 ; # initialize - I’ll remove the zeros at the end

len=length(aphid);

aphid=as.matrix(aphid)

for( ii in 1:len) { # % for each aphid

firstrep=which(aphid[,ii]>0) # % finds positive entries

# % doesn’t reproduce - then = NA

firstrep=as.numeric(firstrep)

daydied=which(aphid[,ii]<0)

daydied=as.numeric(daydied)

lenfirstrep=length(firstrep)

noffspring=0;

# number of days in reproductive period

days=daydied-firstrep[1]

if ( lenfirstrep > 0 ){ # so it reproduced

cumdays=seq(1,days,1)

cumdays=cumdays-1 # assume born on day 0

# this next line is because I assume that when

# the aphid begins to reproduce,

# the first data point is only for a 1/2 day

if(lenfirstrep >1){

cumdays[2:length(cumdays)]=cumdays[2:length(cumdays)]-1/2

}

# pick off reproducing days

noffspring=as.numeric(aphid[firstrep[1]:(daydied-1),ii]);

# note - the first data point is for one-half day, thus

# the rate fecundity/day is actually twice the observed

# offspring, so

noffspring[1]=noffspring[1]*2

cfecday=c(cfecday,cumdays)

offspring=c(offspring,noffspring)
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}}

cfecday=cfecday[-1] # get rid of those leading zeros

offspring=offspring[-1]

ab=data.frame(cfecday,offspring)

return(ab)

}

#########################################################

# so, for every different run

for (ii in 1:np){

#%

#% read in surv/fecundity

#% -1 = died

#% -2 = died previous day but had offspring on that day

aphid=read.csv(fecfile,header=FALSE)

# here I do my bootstrapping

aphid=sample(aphid,replace=T)

# now find survivorship parameters

survdata = survtoday(aphid)

days= survdata$csurv # first column

offspring=survdata$ysurv # second column

ind=survdata$asurv # third column

fecundity=data.frame(days,offspring,ind)

fec.freq = data.frame(table(days,offspring))

fec.freq$days = as.numeric(levels(fec.freq$days))[fec.freq$days]

fec.freq$offspring =

as.numeric(levels(fec.freq$offspring))[fec.freq$offspring]

surv.times = tapply(fecundity$days,fecundity$ind,max)

surv.times = tapply(fecundity$days,fecundity$ind,max)

surv.mod1 = survreg(Surv(surv.times)~1,dist="weibull")

rho = 1/exp(surv.mod1$icoef[1])

kappa = 1/exp(surv.mod1$icoef[2])

MC[ii,1]=rho

MC[ii,2]=kappa

###########################################################

# find age when the sampled aphids first reproduced
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whenrep=0

status=0

ncol=length(aphid[1,])

for (jj in 1:ncol) { # for each aphid

# find when reproduced

index=which(aphid[,jj]!= 0)

if (aphid[index[1],jj]<0){ # died before giving birth

status=c(status,0)

whenrep=c(whenrep,index[1])

}

if (aphid[index[1],jj]>0){

status=c(status,1)

whenrep=c(whenrep,index[1])

}

}

#

whenrep=whenrep[-1] # get rid of the leading zero

status=status[-1]

whenrep=whenrep-1.5 # because when I wrote down the data,

# I started with day=1,

# but in all my programming, I start with day==0

# shifting the onset of reproduction by one day

if(changerep==1) whenrep=whenrep-0.99

# use 0.99 because of survreg

# shifting the onset of reproduction by two days

if(changerep==3) whenrep=whenrep-1.99

# use 0.99 because of survreg

whenrep=whenrep-shift

index=which(whenrep>=0)

whenrep=whenrep[index]

status=status[index]

rep.mod2 = survreg(Surv(whenrep)~1,dist="weibull")

rho = 1/exp(rep.mod2$icoef[1])

kappa = 1/exp(rep.mod2$icoef[2])

MC[ii,3]=rho

MC[ii,4]=kappa

MC[ii,5]=shift # shift is the # of initial days
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# when no aphids gave birth

####################################################

# find the parameters for

# fecundity as a function of days from onset of reproduction

#

fecdata <- fectoday(aphid)

days= fecdata$cfecday # first column

offspring=fecdata$offspring # second column

fecundity=data.frame(days,offspring)

fec.model1 =

glm(offspring~days,family=poisson(link="log"),data=fecundity)

xx=fec.model1$coef

MC[ii,6]=xx[1]

MC[ii,7]=xx[2]

MC[ii,8]=0

}

write.csv(MC,file=outfile,row.names=FALSE)

}

C.2 Program 2

# MCdd.R

# this file chooses bootstrapped parameters for degree day model

#

rm(list=ls())

library(survival)

changerep=1 # = 0 don’t shift 20 C reproduction

# = 1 yes shift 20 C reproduction by 1 day

# = 2 just change possibility of first reproduction to 8.5 days

for (datarun in 2:2){
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if(datarun==1){

# low humidity data

avgtemp76=25.37

avgtemp68=19.85

# read in daily average temperature

tempdata76=read.csv("RoomAApr21May30.csv", header=FALSE)

tempdata68=read.csv("RoomBFeb21Apr6.csv", header=FALSE)

fec68file <- "DevFec68degreesm2.csv"

fec76file <- "DevFec76degreesm2.csv"

outfile="MCddLH.csv"

shift68=10.5

shift76=7.5

}

if(datarun==2){

# high humidity data

avgtemp76=24.51

avgtemp68=19.52

# read in daily average temperature

tempdata76=read.csv("RoomASep18Oct28.csv", header=FALSE)

tempdata68=read.csv("RoomBSep18Nov3.csv", header=FALSE)

fec68file <- "DevFec68highhumiditym2.csv"

fec76file <- "DevFec76highhumiditym2.csv"

outfile="MCddHH.csv"

if(changerep==1){outfile="MCddHHwithshiftv3p2.csv"}

if(changerep==2){outfile="MCddHHwithshift.csv"}

shift68=11.5

if(changerep==1){shift68=10.5}

if(changerep==2){shift68=8.5}

shift76=7.5

}

# initialize array to print to file

# nc = number of parameters to find

# np = number of points

nc=9

np=9000
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MC<-array(NA,dim=c(np,nc))

# column #1, wrho<= location(lambda) for survivorship

# column #2, wkappa <= scale(kappa) for survivorship

# column #3, rrho <= rho for first day of reproduction

# column #4, rkappa <= kappa for first day of reproduction

# column #5, shift <= shift for first day of reproduction

# column #6, c1 <= x^0 term:

# fecundity as function of days from onset of reproduction

# column #7, c2 <= x^1 term:

# fecundity as function of days from onset of reproduction

# column #8, c3 <= 0 not used

# column #9, lowerthres

#################################################################

#################################################################

# survtoday subroutine

# converts data file into format for survival analysis

#

survtoday=function(aphid,lowerthres,tempdata){

# make matrix for input into survfitdays

#% csurv = column 1 = # days for this aphid since birth

#% ysurv = column 2 = # of offspring since birth so still alive

#% asurv = column 3 = aphid #

csurv=0; # initialize - I’ll remove the zeros later

ysurv=0;

asurv=0;

#convert daily temperature to degree days

dailyavgtem=tempdata$V6

index=which(is.na(dailyavgtem)==0)

avgtemp=dailyavgtem[index];

# avgtemp(1) = average temp from birth noon next day

# (day 0 to day 1)

# avgtemp(2) = average temp from day 1 to day 2

# avgtemp(3) = average temp from day 2 to day 3 etc.

len=length(aphid);
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aphid=as.matrix(aphid)

for(ii in 1:len) { # % for each aphid

yesalive=0; # initialize - I’ll remove the zero later

daydied=which(aphid[,ii]<0) # finds index of negative entry

daydied=as.numeric(daydied)

if (aphid[daydied,ii] == -2) {# died on day giving birth

yesalive=aphid[1:daydied-1,ii];# since died on previous day

}

if (aphid[daydied,ii] == -1) { # so died day after giving birth

yesalive=aphid[1:daydied,ii];

yesalive[daydied]=0; # get rid of that negative

}

aphidnum=ii*rep(1,length(yesalive));

lyesalive=length(yesalive); # initialize

cumdays=seq(1,lyesalive);

cumdays=cumdays-1

#assume only survived half the day

cumdays[lyesalive]=cumdays[lyesalive]-.5

# first find elapsed degree days per day

#no elapsed degree days have elapsed at beginning of experiment

dd=0

for(kk in 2:length(cumdays)){

dd=c(dd,(avgtemp[kk-1]-lowerthres)*(cumdays[kk]-cumdays[kk-1]))

}

##convert cumdays to degree days

edd=dd # initialize

for(jj in 2:length(dd)){

edd[jj]=edd[jj-1]+edd[jj] # elapsed cumulative degree days

}

csurv=c(csurv,edd) # cumulative degree days

ysurv=c(ysurv,yesalive)# yes its alive on those days

#(gives # of offspring)

asurv=c(asurv,aphidnum) # aphid number

}

# get rid of those leading zeros

csurv=csurv[-1]

ysurv=ysurv[-1]

asurv=asurv[-1]

survdata=data.frame(csurv,ysurv,asurv)
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return(survdata)

}

##############################################################

fectoday= function(aphid,lowerthres,tempdata,temp){

len=length(aphid[1,]);

aphid=as.matrix(aphid)

# cdegday = column 1 = cumulative degree days for

# this offspring since first day of reproduction

# offspringdd = column 2 = # of offspring per degree day

# offspring day = column 3 = # of offspring per day

# dailydegday = column 4 = daily degree days for this offspring

cdegday=0; # initialize - I’ll remove the zeros at the end

offspringdd=0; # initialize-I’ll remove the zeros at the end

offspringday=0; # initialize-I’ll remove the zeros at the end

dailydegday = 0; # initialize-I’ll remove the zeros at the end

#convert daily temperature to degree days

dailyavgtem=tempdata$V6

index=which(is.na(dailyavgtem)==0)

avgtemp=dailyavgtem[index];

# avgtemp(1) = average temp from birth noon next day

# (day 0 to day 1)

# avgtemp(2) = average temp from day 1 to day 2

# avgtemp(3) = average temp from day 2 to day 3 etc.

for( ii in 1:len) { # % for each aphid

firstrep=which(aphid[,ii]>0) # % finds positive entries -

# if doesn’t reproduce - then = NA

firstrep=as.numeric(firstrep)

daydied=which(aphid[,ii]<0)

daydied=as.numeric(daydied)

lenfirstrep=length(firstrep)

noffspring=0;

days=daydied-firstrep[1]

# number of days in reproductive period

if(lenfirstrep >0) { # gave birth at least one day

cumdays=seq(1,daydied,1)

# assume born when zero degree days have elapsed
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cumdays=cumdays-1

# pick off reproducing days

noffspring=as.numeric(aphid[firstrep[1]:(daydied-1),ii]);

# this next line is because I assume that when

# the aphid begins to reproduce,

# the first data point is only for a 1/2 day

cumdays[firstrep[1]]=cumdays[firstrep[1]]-1/2

if(days>1){

cumdays[(firstrep[1]+1):length(cumdays)]=

cumdays[(firstrep[1]+1):length(cumdays)]-1

}

# get rid of days not reproducing

cumdays=cumdays[(firstrep[1]):length(cumdays)]

# convert from offspring per day to offspring per degree day

# first find degree days per day on the days it reproduced

dd=0 # initialize

for(kk in 1:length(cumdays)-1){

dd=c(dd,(avgtemp[kk]-lowerthres)*

(cumdays[kk+1]-cumdays[kk]))

}

dd=dd[-1]

## find cumulative elapsed degree days

edd=0 # initialize

for(jj in 1:(length(dd))){

edd=c(edd, (edd[jj]+dd[jj])) # elapsed cumulative degree days

}

# now convert from offspring per day to offspring per degree day

noffspringday=noffspring

noffspringdd=noffspring

# note - the first data point is for one-half day, thus

# the rate fecundity/day is actually twice the observed

# offspring, so

noffspringday[1]=noffspringday[1]*2

# this is automatically taken into account when converting to

# degree days since dd[1] is only 1/2 day

noffspringdd=noffspring/dd[1:length(noffspring)]

if(days == 1){

cdegday=c(cdegday, dd[1])

dailydegday=c(dailydegday,dd[1])
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}

if(days > 1) {

cdegday=c(cdegday, edd[1:length(edd)-1])

dailydegday=c(dailydegday,dd[1:length(edd)-1])

}

offspringday=c(offspringday,noffspringday)

offspringdd=c(offspringdd,noffspringdd)

}}

cdegday=cdegday[-1] # get rid of those leading zeros

offspringdd=offspringdd[-1]

offspringday=offspringday[-1]

dailydegday=dailydegday[-1]

ab=data.frame(cdegday,offspringdd,offspringday,dailydegday)

return(ab)

}

#########################################################

#########################################################

# so, for every different run

for (ii in 1:np){

#%

#% read in surv/fecundity

#% -1 = died

#% -2 = died previous day but had offspring on that day

aphid68=read.csv(fec68file,header=FALSE)

aphid76=read.csv(fec76file,header=FALSE)

# here I do my bootstrapping

#

aphid68=sample(aphid68,replace=T)

aphid76=sample(aphid76,replace=T)

whenrep68=0

ncol=length(aphid68[1,])

for (jj in 1:ncol) { # for each aphid

xx=which(aphid68[,jj]!=0)

if(aphid68[xx[1],jj]>0){# so it reproduced before dying

whenrep68=c(whenrep68,xx[1])

}

}

whenrep68=whenrep68[-1]
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if(changerep==1){whenrep68=whenrep68-0.99}

whenrep76=0

ncol=length(aphid76[1,])

for (jj in 1:ncol) { # for each aphid

xx=which(aphid76[,jj]!=0)

if(aphid76[xx[1],jj]>0){ # so it reproduced before dying

whenrep76=c(whenrep76,xx[1])

}

}

whenrep76=whenrep76[-1]

whenrep=c(whenrep68, whenrep76)

t68=whenrep68*0+1 #trick to make t68 the same length as whenrep68

t68=t68*avgtemp68

t76=whenrep76*0+1 #trick to make t76 the same length as whenrep68

t76=t76*avgtemp76

temp=c(t68,t76)

# find out what adult aphids didn’t reproduce

nooffspring=match(whenrep,c(0))

# find what indices of whenrep where the aphid does reproduce

index=which(is.na(nooffspring))

# vector of only those that reproduce

yeswhenrep=as.numeric(whenrep[index])

yeswhenrep=yeswhenrep-1.5 # because when I wrote down the data,

# I started with day=1,

# but in all my programming, I start with day==0

# Also, on average begin to reproduce 1/2 before I see babies.

yeswhenrep=1/yeswhenrep

temp2=temp[index]

temp2=as.numeric(temp2)

birthdata=data.frame(temp2,yeswhenrep)

# assuming normal distribution of errors

m1 = glm(yeswhenrep~temp2,data=birthdata)

slope=m1$coefficients[2]

intercept=m1$coefficients[1]

lowerthres=-intercept/slope

MC[ii,9]=lowerthres

############################################################
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# find age when the sampled aphids first reproduced

# convert to degree days

whenrep68=0

status68=0

ncol=length(aphid68[1,])

for (jj in 1:ncol) { # for each aphid

# find when reproduced

index=which(aphid68[,jj]!= 0)

if (aphid68[index[1],jj]<0){ # died before giving birth

status68=c(status68,0)

whenrep68=c(whenrep68,index[1])

}

if (aphid68[index[1],jj]>0){

status68=c(status68,1)

whenrep68=c(whenrep68,index[1])

}

}

#

whenrep68=whenrep68[-1] # get rid of the leading zero

status68=status68[-1]

whenrep76=0

status76=0

ncol=length(aphid76[1,])

for (jj in 1:ncol) { # for each aphid

# find when reproduced

index=which(aphid76[,jj]!= 0)

if (aphid76[index[1],jj]<0){ # died before giving birth

status76=c(status76,0)

whenrep76=c(whenrep76,index[1])

}

if (aphid76[index[1],jj]>0){

status76=c(status76,1)

whenrep76=c(whenrep76,index[1])

}

}

#

whenrep76=whenrep76[-1] # get rid of the leading zero

status76=status76[-1]

whenrep68=whenrep68-1.5
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# change onset of reproduction

if (changerep==1){whenrep68=whenrep68-0.99}

whenrep76=whenrep76-1.5

whenrep68=(avgtemp68-lowerthres)*whenrep68

whenrep76=(avgtemp76-lowerthres)*whenrep76

whenrep=c(whenrep68,whenrep76)

status=c(status68,status76)

index=which(status!=0)

# convert earliest day of reproduction to degree days

shift1=(avgtemp68-lowerthres)*shift68

shift2=(avgtemp76-lowerthres)*shift76

shift3=min(whenrep[index])

shift=min(shift1,shift2,shift3)

whenrep=whenrep-shift+.001

index=which(whenrep>=0)

whenrep=whenrep[index]

status=status[index]

rep.mod2 = survreg(Surv(whenrep,status)~1,dist="weibull")

rho = 1/exp(rep.mod2$icoef[1])

kappa = 1/exp(rep.mod2$icoef[2])

MC[ii,3]=rho

MC[ii,4]=kappa

MC[ii,5]=shift # shift is the # of initial days

# when no aphids gave birth

################################################

# now find survivorship parameters

survdata68 = survtoday(aphid68,lowerthres,tempdata68)

survdata76 = survtoday(aphid76,lowerthres,tempdata76)

survdata=merge(survdata68,survdata76,all=T)

degdays= survdata$csurv # first column

offspring=survdata$ysurv # second column

ind=survdata$asurv # third column

fecundity=data.frame(degdays,offspring,ind)

fec.freq = data.frame(table(degdays,offspring))
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fec.freq$degdays =

as.numeric(levels(fec.freq$degdays))[fec.freq$degdays]

fec.freq$offspring =

as.numeric(levels(fec.freq$offspring))[fec.freq$offspring]

surv.times = tapply(fecundity$degdays,fecundity$ind,max)

surv.mod1 = survreg(Surv(surv.times)~1,dist="weibull")

rho = 1/exp(surv.mod1$icoef[1])

kappa = 1/exp(surv.mod1$icoef[2])

MC[ii,1]=rho

MC[ii,2]=kappa

###########################################################

# find the parameters for

# fecundity as a function of days from onset of reproduction

#

tempdata=tempdata68

avgtemp=avgtemp68

fecdata68 <- fectoday(aphid68,lowerthres,tempdata,avgtemp68)

tempdata=tempdata76

avgtemp=avgtemp76

fecdata76 <- fectoday(aphid76,lowerthres,tempdata,avgtemp)

# now merge dataframe

fecdata=merge(fecdata68,fecdata76,all=T)

days=fecdata$cdegday# first column

offspringdd=fecdata$offspringdd # second column

offspringday=fecdata$offspringday # third column

Ddays=fecdata$dailydegday # fourth column

fecundityday=data.frame(days,offspringday,Ddays)

fec.freq = data.frame(table(days,offspringdd))

fec.freq$days = as.numeric(levels(fec.freq$days))[fec.freq$days]

fec.freq$offspring =

as.numeric(levels(fec.freq$offspring))[fec.freq$offspring]

fec.model1p = glm(offspringday~days+offset(log(Ddays)),

family=poisson(link="log"),data=fecundityday)

xx=fec.model1p$coefficients

MC[ii,6]=xx[1]

MC[ii,7]=xx[2]

MC[ii,8]=0

}

write.csv(MC,file=outfile,row.names=FALSE)
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}

C.3 Program 3

% MCdays.m

% determines aphid population as a function of days

% written in Matlab

clear all

warning(’off’,’MATLAB:dispatcher:InexactMatch’)

global npop %

% fecundity as a function of days since onset of reproduction

global c1 c2 c3

global wrho wkappa % weibull distribution for survivorship

% weibull distribution for first day of reproduction

global shift rrho rkappa

global degday lowerthres temp

maxa=50 ; % max age in days

MC=1% MC = 1 assume demographic stochasticity

% MC = 0 run model with calculated parameters

getinitialvalues=dlmread(’MCday68HHwithshiftv4.csv’);

getinitialvalues=getinitialvalues(8001:10000,:);

modeln=’shiftv4HHm8001_10000.csv’

temp=68%

if MC==1

basepopfile=’MCpopd’;

else

basepopfile=’DetPopd’;

end

nMC=size(getinitialvalues);

ntrials=nMC(1);

enddays=200 % number of days to run model

kk=2 % need maxa*10 for convergence

% I concatenate the rest of the file name below

basepopfile=strcat(basepopfile,int2str(enddays));

basepopfile=strcat(basepopfile,’t’);

stringtemp=int2str(temp);

basepopfile=strcat(basepopfile,stringtemp);

popfile=strcat(basepopfile,modeln);

plotday=2;
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t=0:1:enddays; % used for plotting

temp=(temp-32)*5/9; %

mina=0; % minimum age

% number of time divisions in endtime days - depends on kk

nn=[maxa maxa*10 maxa*20 maxa*50 maxa*100];

timestart = 0; % start after 0 elapsed days

% used when I ran through all nn to check convergence

cline=[’g’,’r’,’b’,’k’,’y’, ’m’];

% keep track of total population by days

npopmatrix=zeros(enddays, ntrials);

n=nn(kk);

% set up for integral

h=(maxa-mina)/n; % length of age interval

c=0:1:n;

age = mina + c*h; %

nage=length(age) ; % should = n+1

for trial=1:ntrials

trial

wrho=getinitialvalues(trial,1);

wkappa=getinitialvalues(trial,2);

rrho=getinitialvalues(trial,3);

rkappa=getinitialvalues(trial,4);

shift=getinitialvalues(trial,5);

c1=getinitialvalues(trial,6);

c2=getinitialvalues(trial,7);

c3=getinitialvalues(trial,8);

initialage=shift; % earliest age of reproduction

endtime=enddays; % number of days in experiment

time=timestart:h:endtime; % time at each time step

ntime=length(time);

iage=find(age >= initialage);

iage=iage(1); % index of earliest reproducing age class

numrepageclass=nage-iage+1;% number of reproducing age classes

npop=zeros(ntime,1);% keeps track of total population over time

% keeps track of population distribution
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pop=zeros(nage,numrepageclass+1);

% so popdist is age X age since first reproduction

% i.e. row 20 column 15 is number of aphids of age(20)

% and who have been reproducing for age(15) days the

% last column are those which have not started to reproduce

pop(iage,1)=1; % initial first population distribution

npop(1)=1; % we start with one aphid

degday=0; % since not the degree day model

if MC == 1

% popdist is final population distribution

pop=PDEfunc(pop,ntime,nage,age,h,MC) ;

else

pop=PDEfuncnoMC(pop,ntime,nage,age,h,MC) ;

end

% convert to days

% find population for each 24 hour day

index=1:1:enddays+1;

index=index*(1/h)-(1/h-1);

npopdays=npop(index);

npopdaysp1=npopdays(2:length(npopdays));

npopdays=npopdays(1:length(npopdays)-1);

npopmatrix(:,trial)=npopdays;

plot(t(plotday:length(npopdays)), ...

npopdays(plotday:length(npopdays)),cline(kk))

hold on

if floor(trial/10)==trial/10

dlmwrite(popfile,npopmatrix); % create data file

end

end

ylabel(’N_t’)

xlabel(’Days’)

dlmwrite(popfile,npopmatrix); % create data file

figure

%hold on

ylabel(’N_{t+1}/N_t’)

xlabel(’Days’)
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grmatrix=findgr(npopmatrix,1);

run100=mean(grmatrix,2); %

std100=std(grmatrix’)’;

E = std100.*ones(size(run100));

plot(t(plotday:length(run100)),run100(plotday:length(run100)));

C.4 Program 4

% MCdegdays.m

% determines aphid population as a function of degree days

% written in Matlab

clear all

warning(’off’,’MATLAB:dispatcher:InexactMatch’)

global npop %

% fecundity as a function of days since onset of reproduction

global c1 c2 c3

global wrho wkappa % weibull distribution for survivorship

% weibull distribution for first day of reproduction

global shift rrho rkappa

global degday lowerthres temp %used in PDEfunc for DD model

degday=1; % since using deree day model

maxadays=50 ; % max age in days

MC=1 % MC = 1 assume demographic stochasticity

% MC = 0 run model with calculated parameters

getinitialvalues=dlmread(’MCddHH.csv’);

getinitialvalues=getinitialvalues(71:3000,:);

modeln=’HHm71_3000.csv’

temp=77%

enddays=200 % number of days to run model

if MC==1

basepopfile=’MCpopdegd’;

else

basepopfile=’Popdegd’;

end

nMC=size(getinitialvalues);
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ntrials=nMC(1);

kk=3 % need maxa*10 for convergence

% I concatenate the rest of the file name below

basepopfile=strcat(basepopfile,int2str(enddays));

basepopfile=strcat(basepopfile,’t’);

stringtemp=int2str(temp);

basepopfile=strcat(basepopfile,stringtemp);

popfile=strcat(basepopfile,modeln);

plotday=2;

temp=(temp-32)*5/9; %

mina=0; % minimum age

% number of time divisions in endtime days - depends on kk

nn=[maxadays maxadays*5 maxadays*10 maxadays*15];

timestart = 0; % start after 0 elapsed days

% used when I ran through all nn to check convergence

cline=[’g’,’r’,’b’,’k’,’y’, ’m’];

% keep track of total population by days

npopmatrix=zeros(enddays-1, ntrials);

n=nn(kk);

for trial=1:ntrials

trial

wrho=getinitialvalues(trial,1);

wkappa=getinitialvalues(trial,2);

rrho=getinitialvalues(trial,3);

rkappa=getinitialvalues(trial,4);

shift=getinitialvalues(trial,5);

c1=getinitialvalues(trial,6);

c2=getinitialvalues(trial,7);

c3=getinitialvalues(trial,8);

lowerthres=getinitialvalues(trial,9);

% number of degree days in experiment

endtime=(temp-lowerthres)*enddays;

maxa=(temp-lowerthres)*maxadays; % maximum age in degree days

% set up for integral

h=(maxa-mina)/n; % length of age interval (in degree days)

c=0:1:n;
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age = mina + c*h; %

nage=length(age) ; %

initialage=shift; % earliest age of reproduction

time=timestart:h:endtime; % time at each time step

ntime=length(time);

iage=find(age >= initialage);

iage=iage(1); % index of earliest reproducing age class

numrepageclass=nage-iage+1; % number of reproducing age classes

npop=zeros(ntime,1);% keeps track of total population over time

% keeps track of population distribution

pop=zeros(nage,numrepageclass+1);

% so popdist is age X age since first reproduction, i.e.

% row 20 column 15 is number of aphids of age(20) and who have

% been reproducing for age(15) days the

% last column are those which have not started to reproduce

pop(iage,1)=1; % initial first population distribution

npop(1)=1; % we start with one aphid

if MC == 1

% popdist is final population distribution

pop=PDEfunc(pop,ntime,nage,age,h,MC) ;

else

pop=PDEfuncnoMC(pop,ntime,nage,age,h,MC) ;

end

% convert to days

% find population for each 24 hour day

timedays=time/(temp-lowerthres);

npopdays=zeros(enddays,1);

npopdays(1)=1;

for mm=2:enddays-1

index=find(timedays >= mm-1);% because starting on day 0

% assume population is linear between degree days

slope=(npop(index(1))-npop(index(1)-1))/ ...

(timedays(index(1))-timedays(index(1)-1));

intercept=npop(index(1))-timedays(index(1))*slope;

npopdays(mm)=slope*(mm-1)+intercept;

end

npopdaysp1=npopdays(2:length(npopdays));
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npopdays=npopdays(1:length(npopdays)-1);

lmatrix=min(length(npopdays),length(npopmatrix(:,1)));

npopmatrix(1:lmatrix,trial)=npopdays(1:lmatrix);

t=0:1:enddays; % used for plotting

plot(t(plotday:lmatrix),npopdays(plotday:lmatrix),cline(kk))

hold on

if floor(trial/10)==trial/10

dlmwrite(popfile,npopmatrix); % create data file

end

end

ylabel(’N_t’)

xlabel(’Days’)

dlmwrite(popfile,npopmatrix); % create data file

figure

%hold on

ylabel(’N_{t+1}/N_t’)

xlabel(’Days’)

grmatrix=findgr(npopmatrix,1);

run100=mean(grmatrix,2); %

std100=std(grmatrix’)’;

E = std100.*ones(size(run100));

plot(t(plotday:length(run100)),run100(plotday:length(run100)));

C.5 Common Subroutines

function popdist=PDEfunc(pop,ntime,nage,age,h,MC)

% given a population distribution for each day,

% computes total population at time enddays

% written in Matlab

global npop %

% fecundity as a function of days since onset of reproduction

global c1 c2 c3

global wrho wkappa % weibull distribution for survivorship

% weibull distribution for first day of reproduction

global shift rrho rkappa

global degday lowerthres temp
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% since calling this then MC =1

% aphids reproduce first, then age

index=find(age >= shift);%find index when old enough to reproduce

index=index(1);

numrepageclass=nage-index+1;%number of reproducing age classes

if degday ==0

% maternity function by days since onset of reproduction

mfec= ...

transpose(exp(c1+c2*(age(index:nage)-age(index))));

convdd=1;

else % maternity function by degree days since onset of reproduction

mfec= ...

exp(c1+c2*(age(index:nage)-age(index))+ log(temp-lowerthres));

mfec=transpose(mfec);

convdd=temp-lowerthres;

end

% ages of aphids who are old enough to reproduce

age1=[age age(nage)+h];

% compute hazard function for reproduction,

% i.e. give proportion of aphids

% which will reproduce at age a provided

% they have not begun to reproduce

rep=((age1(index+1:nage+1)-age(index)).^rkappa)- ...

((age1(index:nage)-age(index)).^rkappa);

% proportion which will NOT begin to reproduce

nnotrep=transpose(exp(-((rrho^rkappa)*rep)));

s1=(wrho*age1(2:nage+1)).^wkappa; % Wiebull distribution

s1=exp(-s1);

s2=(wrho*age1(1:nage)).^wkappa;

s2=exp(-s2);

surv=s1./s2;

nsurv=surv’;

% reproduce first then survive

% note: population is already vectorized (see lines 70-71)

for ii=2:ntime

fec=poissrnd(mfec) ; % pick random maternity

% pick if will reproduce randomly

randrep=unifrnd(0,1,numrepageclass,1) ;

notrep=(randrep>(1-nnotrep)) ;
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% if = 1, these age classes will not begin to reproduce

% if = 0, these age classes will begin to reproduce

% pick if will survive randomly

randsurv=unifrnd(0,1,length(age),1) ;

xx=(randsurv>nsurv) ;

surv = 1-xx ; % if = 1, these age classes will survive

% if = 0, these age classes will not survive

fec=fec/convdd; % final conversion for degree day model

surv=surv(1:nage,:)*ones(1,numrepageclass+1);

poptplus1=zeros(nage,numrepageclass+1,1);

% total fecundity: Equation 4.6 in thesis

sumfec=0;

% note, the two conditional statements below are

% the same as line 80. Removing

% these conditional statement made the program run faster

% if ii >= index % so second generation is beginning to

% reproduce since elapsed time = age(ii)

% \int_(age) \int_(rep age) fec(rep age)*n(age,rep age) dr da

% = \int_(rep age) fec(rep age) ( \int_(age) *n(age,rep age) da ) dr

% the inner integral is just the total number of aphids between age 0

% and age=current time (= age(ii))

% the sum(pop) below is population by age of onset of reproduction

% jj=min(ii,nage);

% sumfec=sum(pop(index:jj,1:numrepageclass)*fec)*h;

% end

% now add in offspring from initial aphid

% if ii < nage-index+1 % so initial aphid is younger than max age

% sumfec=sumfec + pop(ii+index-2,ii-1)*fec(ii)*h;

% end

sumfec=sum(pop(index:nage,1:numrepageclass)*fec)*h;

pop(1,numrepageclass+1)=sumfec; % put newborns into age class 0

% figure out those that will survive to next timestep

pop=pop.*surv;

% now figure out how many need to be reproducing at next time step

% total # non-reproducing adults by age

tnotrep=pop(index:nage,numrepageclass+1);

% find proportion that will not reproduce in next timestep

norep=tnotrep.*notrep; %

% thus proportion that will reproduce is

yesrep=tnotrep-norep;
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% advance days since onset of reproduction

pop(index:nage,2:numrepageclass)= ...

pop(index:nage,1:numrepageclass-1);

pop(index:nage,1)=yesrep;

pop(index:nage,numrepageclass+1)=norep;

poptplus1(2:nage,:)=pop(1:nage-1,:); % advance age

npop(ii)=sum(sum(poptplus1));

pop=poptplus1;

end

popdist=pop; % returns population distribution
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Birkhäuser Verlag, Basel, 1995.

[51] A. Hastings. Transients: The key to long-term ecological understanding. Trends
Ecol. Evolution, 19:39–45, 2004.



152

[52] A. Hastings and K. Higgins. Persistence of transients in spatially structured
ecological models. Science, 263:1133–1136, 1994.

[53] C.E. Hauser, E.G. Cooch, and J.-D. Lebreton. Control of structured populations
by harvest. Ecological Modelling, 196:462–470, 2006.

[54] D.J. Hodgson and H.C.J. Godfray. The consequences of clustering by Aphis
fabae foundresses on spring migrant production. Oecologia, 118:446–452, 1999.

[55] D.J. Hodgson and S. Townley. Linking management changes to population
dynamic responses: the transfer function of a projection matrix perturbation.
Journal of Applied Ecology, 41:1155–1161, 2004.

[56] D.J. Hodgson, S. Townley, and D. McCarthy. Robustness: Predicting the effects
of life history perturbations on stage-structured population dynamics. Theoret-
ical Population Biology, 70:214–224, 2006.

[57] W.D. Hutchison and D.B. Hogg. Demographic statistics for the pea aphid (Ho-
moptera: Aphididae) in Wisconsin and a comparison with other populations.
Environmental Entomology, 13:1173–1181, 1984.

[58] Iowa State University-University Extension. http://www.ipm.iastate.edu/ipm/
icm/node/2551/print.

[59] M.J. Kelly and S.M. Durant. Viability of the Serengeti cheetah population.
Conservation Biology, 14:786–797, 2000.

[60] M.J. Kelly, M.K. Laurenson, C.D. FitzGibbon, D.A. Collins, S.M. Durant,
G.W. Frame, B.C.R. Bertram, and T.M. Caro. Demography of the Serengeti
cheetah (Acinonyx jubatus) population: the first 25 years. Journal of Zoology,
London, 244:473–488, 1998.

[61] N. Keyfitz. On the momentum of population growth. Demography, 8:71–80,
1971.

[62] N. Keyfitz and H. Caswell. Applied Mathematical Demography. Springer, New
York, third edition, 2005.

[63] L. Kilian and M.W. Nielson. Differential effects of temperature on the biological
activity of four biotypes of the pea aphid. Journal of Economic Entomology,
64:153–155, 1971.

[64] D.N. Koons, J.B. Grand, B. Zinner, and R.F. Rockwell. Transient popula-
tion dynamics: relations to life history and initial population state. Ecological
Modelling, 185:283–287, 2005.



153

[65] D.N. Koons, R.R. Holmes, and J.B. Grand. Population inertia and its sensitivity
to changes in vital rates and population structure. Ecology, 88:2857–2867, 2007.

[66] M. Kot. Elements of Mathematical Ecology. Cambridge University Press, Cam-
bridge, 2001.

[67] M.A. Krasnosel’skij, Je.A. Lifshits, and A.V. Sobolev. Positive Linear Systems
- The Method of Positive Operators. Heldermann Verlag, Berlin, 1989.

[68] L. Laikre. Conservation genetics of Nordic carnivores: lessons from zoos. Hered-
itas, 130:203–216, 1999.

[69] R.J. Lamb. Developmental rate of Acyrthosiphon pisum (Homoptera: Aphi-
didae) at low temperatures: Implications for estimating rate parameters for
insects. Environmental Entomology, 21:10–19, 1992.

[70] R.J. Lamb, P.A. MacKay, and G.H. Gerber. Are development and growth of pea
aphids, Acyrthosiphon pisum, in North America adapted to local temperatures?
Oecologia, 72:170–177, 1987.

[71] M.K. Laurenson. Implications of high offspring mortality for cheetah population
dynamics. In A.R.E. Sinclair and P. Arcese, editors, Serengeti II: Dynamics,
Management, and Conservation of an Ecosystem, pages 385–399. University of
Chicago Press, Chicago, 1995.

[72] M.K. Laurenson, T. Caro, and M. Borner. Female cheetah reproduction. Na-
tional Geographic Research and Exploration, 8:64–75, 1992.

[73] G. Lee, D.J. Stevens, S. Stoke, and S.D. Wratten. Duration of cereal aphid
populations and the effects on wheat yield and breadmaking quality. Annals of
Applied Biology, 98:169–178, 1981.

[74] L.P. Lefkovitch. Some comments on the invariants of population growth. In G.P.
Patil, E.C. Pielou, and W.E. Water, editors, Statistical Ecology, Vol. 2, pages
337–360. Pennsylvania State University Press, University Park, Pennsylvania,
1971.

[75] J.A. Logan, D.J. Wollkind, S.C. Hoyt, and L.K. Tanigoshi. An analytic model
for description of temperature dependent rate phenomena in arthropods. En-
vironmental Entomology, 5:1133–1140, 1976.

[76] A. Loison, M. Festa-Bianchet, J.-M. Gaillard, J.T. Jorgenson, and J.-M. Jullien.
Age-specific survival in five populations on ungulates: evidence of senescence.
Ecology, 80:2539–2554, 1999.



154

[77] J. Lubben, D. Boeckner, R. Rebarber, S. Townley, and B. Tenhumberg. Pa-
rameterizing the growth-decline boundary for uncertain population projection
models. Theoretical Population Biology, 75:85, 2008.

[78] J. Lubben, B. Tenhumberg, A. Tyre, and R. Rebarber. Management recom-
mendations based on matrix projection models: The importance of considering
biological limits. Biological Conservation, 141:517–523, 2008.

[79] G.A. Maiteki and R.J. Lamb. Spray timing and economic threshold for the pea
aphid Acyrthosiphon pisum (Homoptera: Aphididae), on field peas in Manitoba.
Journal of Economic Entomology, 78:1449–1454, 1985.

[80] M.C. Mandujano, C. Montaña, M. Franco, J. Golubov, and A. Flores-Mart́ınez.
Integration of demographic annual variability in a clonal desert cactus. Ecology,
82:344–359, 2001.

[81] L. Marker. 1999 Cheetah (Acinonyx jubatus) Studbook. Cheetah Conservation
Fund, Namibia, 1999.

[82] L. Marker. 2002 Cheetah (Acinonyx jubatus) Studbook. Cheetah Conservation
Fund, Namibia, 2004.

[83] L. Marker. 2003 Cheetah (Acinonyx jubatus) Studbook. Cheetah Conservation
Fund, Namibia, 2006.

[84] L. Marker. 2004 Cheetah (Acinonyx jubatus) Studbook. Cheetah Conservation
Fund, Namibia, 2006.

[85] L. Marker, D. Kraus, D. Barnett, and S. Hurlbut. Cheetah Survival on Namibian
Farmlands. Cheetah Conservation Fund, Windhoek, 1996.

[86] L.L. Marker, A.J. Dickman, R.M. Jeo, M.G.L. Mills, and D.W. Macdonald.
Demography of the Namibian cheetah, Acinonyx jubatus jubatas. Biological
Conservation, 114:413–425, 2003.

[87] L.L. Marker, A.J. Dickman, M.G.L. Mills, and D.W. Macdonald. Aspects of
the management of cheetahs Acinonyx jubatus jubatas trapped on Namibian
farmlands. Biological Conservation, 114:401–412, 2003.

[88] L. Marker-Kraus. History of the cheetah Acinonyx jubatus in zoos 1829-1994.
International Zoo Yearbook, 35:27–43, 1997.

[89] L. Marker-Kraus and D. Kraus. Conservation strategies for the long-term sur-
vival of the cheetah Acinonyx jubatus by the Cheetah Conservation Fund, Wind-
hoek. International Zoo Yearbook, 35:59–66, 1997.



155

[90] M. Markkula and K. Roukka. Resistance of plants to the pea aphid
Acyrthosiphon pisum Harris (Homoptera: Aphididae). Annales Agriculturae
Fenniae, 10:33–37, 1971.

[91] MathWorks, Inc. Matlab R2007a, 2007.

[92] B.P. McCornack, D.W. Ragsdale, and R.C. Venette. Demography of soybean
aphid (Homoptera: Aphididae) at summer temperatures. Journal of Economic
Entomology, 97:854–861, 2004.

[93] P.B. Medawar. An Unsolved Problem in Biology. H.K. Lewis, London, 1952.

[94] F.J. Messina. Effect of initial colony size on the per-capita growth-rate and
alate production of the Russian wheat aphid (Homoptera: Aphididae). Journal
of the Kansas Entomological Society, 66:365–371, 1993.

[95] L.S. Mills, D.F. Doak, and M.J. Wisdom. Reliability of conservation actions
based on elasticity analysis of matrix models. Conservation Biology, 13:815–829,
1999.

[96] K.A. Moloney. A generalized algorithm for determining category size. Oecologia
(Berlin), 69:176–180, 1986.

[97] D. Morgan, K.F.A. Walters, and J.N. Aegerter. Effect of temperature and cul-
tivar on pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae) life history.
Bulletin of Entomological Research, 91:47–52, 2001.

[98] W.F. Morris and D.F. Doak. Quantitative Conservation Biology; Theory and
Practice of Population Viability Analysis. Sinauer Associates, Sunderland, Mas-
sachusetts, 2002.

[99] S.W. Myers, D.B. Hogg, and J.L. Wedberg. Determining the optimal timing of
foliar insecticide applications for control of soybean aphid (Hemiptera: Aphidi-
dae) on soybean. Journal of Economic Entomology, 98:2006–2012, 2005.

[100] J.D. Nichols, J.E. Hines, and P. Blums. Tests for senescent decline in annual
survival probabilities of common pochards, Aythya ferina. Ecology, 78:1009–
1018, 1997.

[101] K. Nowell and P. Jackson, editors. Wild Cats, Status Survey and Conservation
Action Plan. IUCN, Gland, Switzerland, 1996.

[102] W.J. Pettit, D.T. Briese, and A. Walker. Aspects of thistles population dy-
namics with reference to Onopordum. Plant Protection Quarterly, 11:232–235,
1996.



156

[103] J.E. Pinder III, J.G. Wiener, and M.H. Smith. The Weibull distribution: a new
method of summarizing survivorship data. Ecology, 59:175–179, 1978.

[104] D.E.L. Promislow. Senescence in natural populations of mammals: a compar-
ative study. Evolution, 45:1869–1887, 1991.

[105] R Development Core Team. R: A programming environment for data analysis
and graphics, version 2.4.1, 2006.

[106] J. Ratsirarson, J.A. Silander, Jr., and A.F. Richard. Conservation and man-
agement of a threatened madagascar palm species, Neodypsis decaryi, Jumelle.
Conservation Biology, 10:40–52, 1996.

[107] B.D. Roitberg and J.H. Myers. Behavioral and physiological adaptations of
pea aphids (Homoptera: Aphididae) to high ground temperatures and predator
disturbances. Canadian Entomology, 111:515–519, 1979.

[108] J. Roughgarden. Primer of Ecological Theory. Prentice Hall, Upper Saddle
River, New Jersey, 1998.

[109] Y. Sakamoto, M. Ishiguro, and G. Kitagawa. Akaike Information Criterion
Statistics. KTK Scientific Publishers and D. Reidel Publishing, Tokyo and
Dordrecht, 1987.

[110] E. Seneta. Non-negative Matrices and Markov Chains. Springer-Verlag, New
York, NY, 1981.

[111] H. Seno and H. Nakajima. Transition matrix model for persistence of mono-
carpic perennial plant population under periodically ecological disturbance.
Ecological Modelling, 117:65–80, 1999.

[112] W.H. Siddiqui, C.A. Barlow, and P.A. Randolph. Effects of some constant and
alternating temperatures on population growth of the pea aphid, Acyrthosiphon
pisum (Homoptera: Aphididae). Canadian Entomologist, 105:145–156, 1973.

[113] N.A. Slade. Failure to detect senescence in persistence of some grassland ro-
dents. Ecology, 76:863–870, 1995.

[114] R.E. Stinner, A.P. Gutierrez, and G.D. Butler, Jr. An algorithm for
temperature-dependent growth rate simulation. The Canadian Entomologist,
106:519–523, 1974.

[115] F. Taylor. Convergence to the stable age distribution in populations of insects.
American Naturalist, 113:511–530, 1979.

[116] B. Tenhumberg, S. M. Louda, S.O. Eckberg, and M. Takahashi. Monte carlo
analysis of parameter uncertainty in matrix models of the weed Cirsium vulgare.
Journal of Applied Ecology, 45:438–447, 2008.



157

[117] B. Tenhumberg, A.J. Tyre, and R. Rebarber. Model complexity affects pre-
dicted transient population dynamics following a dispersal event: A case study
with Acyrthosiphon pisum. Ecology, 2009. In press.

[118] S. Townley, D. Carslake, O. Kellie-Smith, D. McCarthy, and D. Hodgson. Pre-
dicting transient amplification in perturbed ecological systems. Journal of Ap-
plied Ecology, 44:1243–1251, 2007.

[119] S. Townley and D. Hodgson. Erratum et addendum: transient amplification
and attenuation in stage-structured population dynamics. Journal of Applied
Ecology, 45:1836–1839, 2008.

[120] S. Tuljapurkar and R. Lee. Demographic uncertainty and the stable equivalent
population. Mathematical and Computer Modelling, 26:39–56, 1997.

[121] P.H. van Tienderen. Life cycle trade-offs in matrix population models. Ecology,
76:2482–2489, 1995.

[122] J. Vandermeer. Choosing category size in a stage projection matrix. Oecologia
(Berlin), 32:79–84, 1978.

[123] M.J. Way and C.J. Banks. Intra-specific mechanisms in relation to the natural
regulation of numbers of Aphis fabae Scop. Annales of Applied Biology, 59:189–
205, 1967.

[124] M.J. Wisdom and L.S. Mills. Sensitivity analysis to guide population recovery:
prairie-chickens as an example. J. of Wildlife Management, 61:302–312, 1997.

[125] J.M. Yearsley. Transient population dynamics and short-term sensitivity anal-
ysis of matrix population models. Ecological Modelling, 177:245–258, 2004.

[126] P.P. Zabreyko, A.I. Koshelev, M.A. Krasnosel’skii, S.G. Mikhlin, L.S.
Rakovshchik, and V.Ya. Stet’senko. Integral Equations - A Reference Text.
Noordhoff International, Leyden, The Netherlands, 1975.


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Summer 2009

	Modeling and Analysis of Biological Populations
	Joan Lubben

	tmp.1247590908.pdf.OSdkR

