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In this dissertation, we first focus on the generalized Laplace transform on time scales.

We prove several properties of the generalized exponential function which will allow

us to explore some of the fundamental properties of the Laplace transform. We then

give a description of the region in the complex plane for which the improper integral

in the definition of the Laplace transform converges, and how this region is affected

by the time scale in question. Conditions under which the Laplace transform of a

power series can be computed term-by-term are given. We develop a formula for the

Laplace transform for periodic functions on a periodic time scale. Regressivity and

its relationship to the Laplace transform is examined, and the Laplace transform for

several functions is explicitly computed. Finally, we explore some inversion formulas

for the Laplace transform via contour integration.

In Chapter 4, we develop two recursive representations for the unique solution of

the transport partial dynamic equation on an isolated time scale. We then use these

representations to explicitly find the solution of the transport equation in several

specific cases. Finally, we compare and contrast the behavior with that of the well-

known behavior of the solution to the transport partial difference equation in the case

where T = Z.
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Chapter 1

Introduction

In this dissertation we will use the tools of the time scales calculus to explore several

properties of the generalized exponential function, the generalized Laplace transform

on time scales, and the transport partial dynamic equation on time scales.

In 1988 Stefan Hilger introduced the concept of the time scale calculus in his

Ph.D. dissertation [16] as a means to unify continuous and discrete analysis. Many

results one encounters in the study of both differential and difference equations have

analogs in the time scale case. However, the time scale result encompasses both the

discrete and continuous results as special cases. In addition, the time scale calculus

is a rich source of interesting problems that do not have any natural equivalent in

either the continuous or discrete case.

While unification is certainly a goal in studying time scales, another focus is to

extend and explain the results of differential and difference equations. For example,

if we consider the second-order self-adjoint differential equation (px′)′(t) + q(t)x = 0,

it is well known that nonzero solutions to this equation correspond, via the so-called
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Riccati substitution, to solutions of the differential Riccati equation,

z′ + q(t) +
z2

p(t)
= 0. (1.1)

In the difference equation case, the well-known second-order self-adjoint equation

∆(p∆x)(t) + q(t)x(t + 1) = 0 has nonzero solutions that correspond to the solutions

of the discrete Riccati equation,

∆z(t) + q(t) +
z2(t)

z(t) + p(t)
= 0. (1.2)

It is through analysis using the techniques of time scales that we can not only unify

these two concepts, but also explain why the discrete Riccati equation has a different

form than the continuous Riccati equation. It turns out that nonzero solutions for

the dynamic equation (px∆)∆(t) + q(t)xσ(t) = 0 on a time scale T correspond to the

solutions of the time scale Riccati equation,

z∆(t) + q(t) +
z2(t)

µ(t)z(t) + p(t)
= 0. (1.3)

Since z∆(t) = z′(t) if T = R, and z∆(t) = ∆z(t) if T = Z, we find that the µ(t) term

explains the differences between the continuous and discrete cases. If T = R, then

µ(t) ≡ 0 and (1.3) reduces to the well-known continuous case (1.1); and if T = Z,

then µ(t) ≡ 1 and (1.3) reduces to the well-known discrete case (1.2). (Note that in

Section 2.1 the notation used here will be introduced and explained.)

After a quick introduction to the time scale calculus, we will look at four new

results that deal with the generalized exponential function on time scales (see Section

2.2). These results will be fundamental in many of the proofs we give in Chapter 3.

The results pertaining to the generalized exponential function range from asymptotic
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properties to determining the region of analyticity.

In Chapter 3, we will turn our attention to the generalized Laplace transform on

time scales. The definition of the Laplace transform that we will be concerned with

here was first given by Bohner and Peterson in the paper “Laplace transform and Z-

transform: Unification and extension,” (see [5]). Note that this definition differs from

that given by Stefan Hilger in [17]. A special case of this transform in the discrete

setting is given in Donahue’s honors thesis [11] written under the supervision of Paul

Eloe. A thorough introduction to the Laplace transform we will define and examine

here is also given in [4], and some further properties that we will make use of are

given in [3]. A generalization of the Laplace transform to so-called α-derivatives on

generalized time scales can be found in [2].

We will define the generalized Laplace transform in Section 3.1 and proceed to

examine its properties in the sections that follow. Specifically, we will examine the

region in the complex plane for which the Laplace transform converges with various

assumptions on the time scale in question. In this section, the conclusions of Theorems

3.2.2 and 3.2.5 are similar to those obtained in [10] by Davis, et al.; however, we have

extended and clarified these results by relaxing the assumptions necessary on the time

scale. Further, the proofs given here are substantially different than those in [10].

We then work through several results of the Laplace transform when applied to

power series and with respect to periodic time scales. We show that in situations

involving initial value problems in which the dynamic equation is not regressive on

certain time scales, we can still apply the Laplace transform in order to solve these

problems. We conclude our examination of some of the properties of the transform

by directly calculating several Laplace transforms. Finally, we develop two inversion

formulas which are markedly different from the one given by Davis, et al., in [10]

as we will use the techniques of contour integration to achieve the results in this
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dissertation.

In Chapter 4, we change gears and focus on the transport partial dynamic equa-

tion. We will look at the specific case when the time scale is isolated. In this case, we

show that the solution to the transport partial dynamic equation with a given initial

condition is unique. Further, we develop two different recursive representations of this

solution. Then, using these representations, we find explicitly the unique solution for

several specific time scales. These particular examples prove to be quite interest-

ing since they depart significantly from the behavior observed in the continuous and

discrete cases.
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Chapter 2

Time Scale Preliminaries

2.1 The Time Scale Calculus

A detailed introduction to the time scale calculus is given in [4] and [15]. In this

section we collect the definitions and theorems that will be most useful to us.

Definition 2.1.1. A time scale, denoted T, is a nonempty, closed subset of R. For

a, b ∈ T such that a < b, we let [a, b]T denote the set [a, b] ∩ T.

Definition 2.1.2. Let T be a time scale. For t ∈ T, we define the forward jump

operator σ : T → T by

σ(t) := inf{s ∈ T : s > t},

and the backward jump operator ρ : T → T is defined by

ρ(t) := sup{s ∈ T : s < t}.

In these definition we use the convention that inf(∅) = sup(T) and sup(∅) = inf(T).

For f : T → R, we frequently use the notation fσ(t) for the composition f(σ(t)).
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Definition 2.1.3. The graininess function µ : T → [0,∞) is defined by

µ(t) := σ(t) − t.

The above definitions for the forward and backward jump operators lend to a

natural classification of the points in a time scale:

Definition 2.1.4. Let t ∈ T. If σ(t) = t and t 6= sup(T), then t is right-dense. If

σ(t) > t, then t is right-scattered. Similarly, if ρ(t) = t and t 6= inf(T), then t is left-

dense, and if ρ(t) < t, then t is left-scattered. If a point t ∈ T is both right-scattered

and left-scattered, we say that t is an isolated point.

Definition 2.1.5. If a time scale T is composed completely of isolated points, we say

that T is an isolated time scale.

Definition 2.1.6. If sup(T) = m such that m is left-scattered, then define Tκ :=

T\{m}; otherwise, define Tκ := T.

Definition 2.1.7. A function f : T → R is rd-continuous provided it is continuous

at right-dense points in T and its left-sided limits exist and are finite at all left-dense

points in T.

A function p : T → R is regressive provided 1 + µ(t)p(t) 6= 0 for all t ∈ Tκ.

The set of all regressive and rd-continuous functions on a time scale T is denoted by

R = R(T). A function p : T → R is positively regressive provided 1+µ(t)p(t) > 0 for

all t ∈ Tκ. The set of all positively regressive and rd-continuous functions is denoted

by R+ = R+(T).

Throughout, we will use the following abuse of notation: we will write z ∈ C∩R

to mean z ∈ C and 1 + zµ(t) 6= 0 for all t ∈ T. In other words, when z is viewed as a
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constant function from T to C, it is indeed an element of R. However, we will always

take C ∩R ⊆ C.

We are now in a position to define the generalization of the classical derivative,

the so-called ∆-derivative, as well as the generalization of the classical integral, the

∆-integral, for an arbitrary time scale.

Definition 2.1.8. Let f : T → R and t ∈ Tκ. If t is a right-scattered point, the

∆-derivative of f is defined to be

f∆(t) :=
f(σ(t)) − f(t)

σ(t) − t
=

fσ(t) − f(t)

µ(t)
.

Otherwise, we define it to be

f∆(t) := lim
s→t

f(t) − f(s)

t − s

provided this limit exists.

Definition 2.1.9. The Cauchy ∆-integral of a function f : T → R is defined as

∫ b

a

f(t)∆t := F (b) − F (a),

where F : T → R is an antiderivative of f .

Of course, defining the ∆-integral to be antidifferentiation as is done in Definition

2.1.9 is extremely restrictive. It turns out that the ∆-integral can be developed as a

Riemann integral (see, for example, [14]). In fact, this development is almost identical

to what one would encounter in an introductory analysis course for the classical

Riemann integral. Further, the ∆-integral can be developed as a Lebesgue integral.

Since this will prove useful to us in this dissertation, some of this development is given
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below starting with Theorem 2.1.18. A thorough treatment of building the ∆-integral

as a Lebesgue integral can be found in [8] and [13].

Definition 2.1.10. The generalized Taylor monomials, hk : T × T → R for k ∈ N0,

are defined recursively as follows:

h0(t, s) ≡ 1, and

hk+1(t, s) =

∫ t

s

hk(τ, s)∆τ,

for all s, t ∈ T, and k ∈ N0.

In the next definition, we define an important function on a time scale: the gen-

eralized exponential function, ep(t, t0). Properties of this function will play a pivotal

role in obtaining many of the results found in Chapter 3.

Definition 2.1.11. For p ∈ R, the generalized exponential function ep : T × T → R

is defined by

ep(t, s) = exp

(∫ t

s

ξµ(τ)(p(τ))∆τ

)

,

for s, t ∈ T, where the cylinder transformation, ξh : C\
{
− 1

h

}
→ C for h > 0, is given

by

ξh(z) =
1

h
Log(1 + zh),

and ξ0(z) = z.

The proofs of the following theorems can be found in [4].

Theorem 2.1.12. Let T be a time scale and t0 ∈ T. If p ∈ R+, then

1 +

∫ t

t0

p(τ)∆τ ≤ ep(t, t0) for all t ∈ [t0,∞)T.
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Definition 2.1.13. For p, q ∈ R, we define circle plus addition, denoted ⊕, and circle

minus, denoted ⊖, as follows:

(p ⊕ q)(t) := p(t) + q(t) + µ(t)p(t)q(t) and (⊖p)(t) :=
−p(t)

1 + p(t)µ(t)
,

for all t ∈ Tκ.

It should be noted that (R,⊕) is an abelian group. With ⊕ and ⊖ in hand, we are

able to obtain several basic properties of the generalized exponential function. The

proofs of the next two theorems are given in [4], Theorem 2.36 and Theorem 2.44,

respectively.

Theorem 2.1.14. If p, q ∈ R and t, s, r ∈ T, then

(a) e0(t, s) ≡ 1 and ep(t, t) ≡ 1,

(b) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s),

(c) ep(s, t) = 1
ep(t,s)

= e⊖p(t, s),

(d) ep(t, s)ep(s, r) = ep(t, r), and

(e) ep(t, s)eq(t, s) = ep⊕q(t, s).

Note that (d) is often referred to as the semigroup property.

Theorem 2.1.15. Assume p ∈ R+ and t0 ∈ T. Then ep(t, t0) > 0 for all t ∈ T.

Definition 2.1.16. For p : T → R such that µp2 ∈ R, we define the trigonometric

functions by

cosp(t, t0) =
eip(t, t0) + e−ip(t, t0)

2
and sinp(t, t0) =

eip(t, t0) − e−ip(t, t0)

2i
.
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Definition 2.1.17. For each t ∈ [t0,∞)T, we define

Trd(t) := {s ∈ [t0, t)T : σ(s) = s}, and Trs(t) := {s ∈ [t0, t)T : σ(s) > s}.

Note that if t0 is right-scattered, we take Trs(t0) = {t0}, and similarly, if t0 is right-

dense, we take Trd(t0) = {t0}.

So, Trd(t) is the set of all right-dense points in [t0,∞)T strictly less than t. For

consistency in notation, we will denote the set of all right-dense points in [t0,∞)T by

Trd(∞), and similarly, the set of all right-scattered points in [t0,∞)T will be denoted

by Trs(∞).

As noted above, ∆-integration can be realized via the Lebesgue ∆-measure, µ∆,

on T. This measure is briefly introduced in [6, Section 5.7] and fleshed out in detail

by Cabada and Vivero in [8]. Hence, we can apply general measure theory results

(such as the Dominated Convergence Theorem) to the ∆-integral.

Throughout this work, we would like to evaluate the ∆-integral over [t0, t)T by

integrating over the sets Trd(t) and Trs(t), and then adding. This is only legal if Trd(t)

and Trs(t) are ∆-measurable.

Theorem 2.1.18. The set of all right-scattered points, Trs(∞), is countable.

Proof. For each k ∈ Z and n ∈ N, define

An,k :=

{

t ∈ [t0,∞)T ∩ [k, k + 1) : µ(t) ≥
1

n

}

.

Note that An,k ⊂ [k, k + 1) is bounded, and for any distinct s, t ∈ An,k, we have

|t − s| ≥ 1
n
. Therefore, An,k has only finitely many elements. Hence, for any fixed

k ∈ Z, Ak :=
⋃∞

n=1 An,k is countable. Further, by construction, Ak is precisely the set
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of all right-scattered points in [t0,∞)T ∩ [k, k + 1). Therefore, Trs(∞) =
⋃∞

k=−∞ Ak,

which is the countable union of countable sets, and hence is countable.

Note that in the proceeding theorem, we proved the set of all right-scattered points

in the unbounded set [t0,∞)T is countable. Cabada and Vivero prove an identical

result for a bounded time scale via a different method. They define a monotone

increasing function on a real interval that has jump discontinuities precisely at the

right-scattered points of T, and hence the set of right-scattered points is countable

(see [8, Lemma 3.1]).

Corollary 2.1.19. For any t ∈ [t0,∞)T, the sets Trs(t) and Trd(t) are ∆-measurable.

Further, the sets Trs(∞) and Trd(∞) are ∆-measurable.

Proof. Since for any t ∈ [t0,∞)T, the singleton set {t} is ∆-measurable (see [6, Section

5.7]), it follows that Trs(∞), a countable union of singletons, is ∆-measurable. Since

Trd(∞) = [t0,∞)T ∩ [Trs(∞)]c, we have that Trd(∞) is ∆-measurable. Finally, fix

t ∈ [t0,∞)T. Since all intervals of the form [a, b)T for a, b ∈ T are ∆-measurable,

Trd(t) = Trd(∞) ∩ [t0, t)T and Trs(t) = Trs(∞) ∩ [t0, t)T are ∆-measurable.

Theorem 2.1.20. Let E ⊆ [t0,∞)T be nonempty such that E is ∆-measurable and

contains no right-scattered points. Let f : E → R be a ∆-measurable function. Then,

∫

E

f(t)dµ∆(t) =

∫

E

f(t)dm(t),

where m is the usual Lebesgue measure on R.

Proof. Let A ⊆ E be an arbitrary, ∆-measurable set. Since A is ∆-measurable, for

each k ∈ N0, we have that each Ak := A ∩ [t0 + k, t0 + k + 1) is also ∆-measurable.

Since each Ak is bounded, t0 + k +1 6∈ Ak, and Ak contains no right-scattered points,
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by Proposition 3.1 in [8], it follows that µ∆(Ak) = m(Ak) for all k ∈ N0. Noting that

Ai ∩ Aj = ∅ for i 6= j, we have

µ∆(A) = µ∆

(
∞⋃

k=0

Ak

)

=
∞∑

k=0

µ∆(Ak) =
∞∑

k=0

m(Ak) = m

(
∞⋃

k=0

Ak

)

= m(A).

Therefore, since µ∆(A) = m(A) for all ∆-measurable A ⊆ E, it follows from standard

measure theory arguments that

∫

E

f(t)dµ∆(t) =

∫

E

f(t)dm(t).

We conclude this section by stating a very useful result from Cabada and Vivero

(see [8, Theorem 5.2]). We have rephrased the statement slightly to match our nota-

tion.

Theorem 2.1.21. Let E ⊆ [t0,∞)T be any bounded, ∆-measurable set, and f :

T → R be ∆-measurable. If sup(E) ∈ E and is a right-scattered point, then take

Ẽ = E\{sup(E)}. Otherwise, take Ẽ = E. Then,

∫

E

f(t)dµ∆(t) =

∫

E

f(t)dm(t) +
∑

t∈Ẽ∩Trs(∞)

f(t)µ(t).

From this point forward, when writing integrals, we will stop explicitly mentioning

the measures in question. i.e.,
∫

E
f(t)∆t denotes integration with respect to the µ∆

measure, and
∫

E
f(t)dt denotes integration with respect to the Lebesgue measure.
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2.2 Properties of the Generalized Exponential

Function

In addition to the basic properties of the generalized exponential function outlined in

the previous section and in Chapter 2 of [4], we will utilize several other properties

throughout. The proofs of these four results first appeared in my paper [1].

In the first lemma, we compute the limit as t goes to infinity of eα⊖x(t, t0) where

α, x ∈ R such that x > α and 1 + αµ(t) > 0 for all t ∈ T. Of course, this result

is obvious when the time scale in question is T = R since, in this case, eα⊖x(t, t0) =

e(α−x)(t−t0). However, since the constant α−x generalizes to a function dependent on t,

namely (α⊖x)(t), some care is required in obtaining the desired result on an arbitrary

time scale. This lemma and Lemma 2.2.2 (which relates a generalized exponential

involving a complex number z to a generalized exponential involving Re(z), the real

part of z) will be used in tandem to generalize several well-known results about the

classical Laplace transform on R. In Lemma 2.2.3, we will give a detailed proof that

the generalized exponential function is analytic on the domain Ω := C\{x ∈ R :

x ≤ 0}. Finally, we show that complex conjugation behaves as expected with the

generalized exponential function; if p : T → R, then eip(t, t0) = e−ip(t, t0).

Lemma 2.2.1. Let T be unbounded above. Fix t0 ∈ T and let x > α such that

α ∈ R+ be given. Then,

lim
t→∞

ex⊖α(t, t0) = +∞, and lim
t→∞

eα⊖x(t, t0) = 0.

Proof. We first consider the limit of ex⊖α(t, t0) as t → ∞.

Since T is unbounded above, at least one of the following must hold:
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(a) m(Trd(∞)) = +∞, or

(b)
∑

t∈Trs(∞) µ(t) = +∞.

Here m is the classical Lebesgue measure on R.

Note that (x⊖α)(t) = x−α
1+αµ(t)

> 0, and hence 1 + (x⊖α)(t)µ(t) > 0 for all t ∈ T.

Thus, x ⊖ α ∈ R+. By Theorem 2.1.12, we have

ex⊖α(t, t0) ≥ 1 +

∫ t

t0

(x ⊖ α)(τ)∆τ

= 1 +

∫

Trd(t)

x − α

1 + αµ(τ)
∆τ +

∫

Trs(t)

x − α

1 + αµ(τ)
∆τ

= 1 + (x − α)

∫

Trd(t)

dτ + (x − α)
∑

τ∈Trs(t)

µ(τ)

1 + αµ(τ)
(by Theorem 2.1.21)

= 1 + (x − α)m(Trd(t)) + (x − α)
∑

τ∈Trs(t)

µ(τ)

1 + αµ(τ)
. (2.1)

In the above calculation, when applying Theorem 2.1.21 to the integral over Trs(t),

we note that sup{Trs(t)} ≤ t and t 6∈ Trs(t) by the definition of the set Trs(t), and

hence the integral reduces to a sum over the entire set Trs(t).

Case 1: Assume m(Trd(∞)) = +∞ holds.

From (2.1), since every term is nonnegative, we have ex⊖α(t, t0) ≥ (x−α)m(Trd(t)).

Since m(Trd(∞)) = ∞, it follows that Trd(t) → ∞ as t → ∞. Therefore, ex⊖α(t, t0) →

∞ as t → ∞.

Case 2: Assume
∑

t∈Trs(∞) µ(t) = +∞ holds.

Again from (2.1), since every term is nonnegative, we have that

ex⊖α(t, t0) ≥ (x − α)
∑

τ∈Trs(t)

µ(τ)

1 + αµ(τ)
. (2.2)

Because
∑

t∈Trs(∞) µ(t) = ∞, we can choose {t1, t2, · · · } ⊆ Trs(∞) such that
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(a) t1 < t2 < · · · ,

(b) lim
n→∞

tn = ∞, and

(c)

∞∑

n=1

µ(tn) = ∞.

Note that for each t ∈ T, Trs(t)∩{t1, t2, · · · } is a finite set as sup{Trs(t)} ≤ t and

limn→∞ tn = ∞. Hence, for each t ∈ T where t ≥ t1, there exists n0 = n0(t) ∈ N

such that Trs(t) ∩ {t1, t2, · · · } = {t1, t2, · · · , tn0}. Further, by the definition of Trs(t),

the construction of {tn}
∞
n=1, and our choice of n0, we have that as t → ∞, n0 → ∞.

Therefore, from (2.2), for t ≥ t1,

ex⊖α(t, t0) ≥ (x − α)
∑

τ∈Trs(t)

µ(τ)

1 + αµ(τ)

≥ (x − α)

n0∑

k=1

µ(tk)

1 + αµ(tk)
. (2.3)

We aim to show that the series
∑∞

k=1
µ(tk)

1+αµ(tk)
diverges. We will consider two

subcases.

Subcase 1: Assume limn→∞ µ(tn) = 0.

Note that in this case

lim
n→∞

µ(tn)

1 + αµ(tn)

(
1

µ(tn)

)

= lim
n→∞

1

1 + αµ(tn)
= 1 > 0,

so by the Limit Comparison Test, since
∑∞

n=1 µ(tn) diverges,
∑∞

n=1
µ(tn)

1+αµ(tn)
also di-

verges.

Subcase 2: Assume limn→∞ µ(tn) 6= 0.

In this case, there exists a subsequence {tnk
}∞k=1 such that µ(tnk

) ≥ ǫ0 > 0, for

some ǫ0. Note that if we define f(x) := x
1+αx

, then f ′(x) = 1
(1+αx)2

. So, in particular,
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if α ≥ 0, then f ′(x) > 0 for all x ∈ (0,∞), and if α < 0, then f ′(x) > 0 for all

x ∈
(
0,− 1

α

)
.

If α ≥ 0, then 1 + αx 6= 0 for all x ∈ [0,∞) and f is continuous (and increasing)

on the entire interval (0,∞). Therefore, since µ(tnk
) ≥ ǫ0, it follows that f(µ(tnk

)) ≥

f(ǫ0).

If α < 0, then f is continuous on
(
0,− 1

α

)
and is increasing on this interval. Now,

α ∈ R+ implies 1 + αµ(t) > 0 which implies µ(t) < −1
α

for all t ∈ T since α < 0.

Therefore, µ(t) ∈
[
0, −1

α

)
for all t ∈ T. So again, we have that µ(tnk

) ≥ ǫ0 for all

k ∈ N which implies f(µ(tnk
)) ≥ f(ǫ0). So, regardless of the value of α, we have that

f(µ(tnk
)) ≥ f(ǫ0).

Thus,

f(µ(tnk
)) =

µ(tnk
)

1 + αµ(tnk
)
≥

ǫ0

1 + αǫ0

= f(ǫ0) > 0,

for all k ∈ N. Therefore, limn→∞
µ(tn)

1+αµ(tn)
6= 0 and so

∑∞
n=1

µ(tn)
1+αµ(tn)

diverges.

As t → ∞, we noted above that n0 = n0(t) → ∞. Therefore,
∑n0

k=1
µ(tk)

1+αµ(tk)
→ ∞

as t → ∞. It follows from (2.3) that ex⊖α(t, t0) → ∞ as t → ∞.

As for the limt→∞ eα⊖x(t, t0), note that using Theorem 2.1.14(c),

lim
t→∞

eα⊖x(t, t0) = lim
t→∞

e⊖(x⊖α)(t, t0) = lim
t→∞

1

ex⊖α(t, t0)
= 0.

When working with the standard exponential function defined on the complex

numbers, a commonly used identity is |ez| = ex where z = x + iy. Unfortunately,

this does not necessarily hold for the generalized exponential function on an arbitrary

time scale. However, we are guaranteed the following inequality in the case where

Re(z) ∈ R+ ∩ R.
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Lemma 2.2.2. Let p : T → C such that p(t) = u(t) + iv(t) where u, v : T → R and

u ∈ R+. Then,

(a) |ep(t, t0)| ≥ eu(t, t0), and

(b) |e⊖p(t, t0)| ≤ e⊖u(t, t0),

for all t ∈ [t0,∞)T.

Proof. First note that p ∈ R. To see this, consider for any t ∈ T,

1 + p(t)µ(t) = 1 + [u(t) + iv(t)]µ(t) = [1 + u(t)µ(t)] + iv(t)µ(t) 6= 0,

since u ∈ R+.

Now for any t ∈ T,

|1 + p(t)µ(t)|2 =
(

1 + u(t)µ(t)
)2

+
(

v(t)µ(t)
)2

≥
(

1 + u(t)µ(t)
)2

,

and hence |1 + p(t)µ(t)| ≥ 1+u(t)µ(t). Therefore, using the cylinder transform given

in Definition 2.1.11,

Re(ξµ(t)(p(t))) =







Re
[

1
µ(t)

Log(1 + p(t)µ(t))
]

, µ(t) > 0,

Re(p(t)), µ(t) = 0

=







1
µ(t)

ln |1 + p(t)µ(t)| , µ(t) > 0,

u(t), µ(t) = 0

≥







1
µ(t)

ln(1 + u(t)µ(t)), µ(t) > 0,

u(t), µ(t) = 0
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=







1
µ(t)

Log(1 + u(t)µ(t)), µ(t) > 0,

u(t), µ(t) = 0

= ξµ(t)(u(t)),

where the second to last equality follows since u ∈ R+; i.e., 1 + u(t)µ(t) > 0 for all

t ∈ T. Finally, note that by the definition of the generalized exponential function

(Definition 2.1.11), we have

|ep(t, t0)| =

∣
∣
∣
∣
exp

(∫ t

t0

ξµ(τ)(p(τ))∆τ

)∣
∣
∣
∣

=

∣
∣
∣
∣
exp

(∫ t

t0

Re(ξµ(τ)(p(τ)))∆τ + i

∫ t

t0

Im(ξµ(τ)(p(τ)))∆τ

)∣
∣
∣
∣

= exp

(∫ t

t0

Re(ξµ(τ)(p(τ)))∆τ

)

≥ exp

(∫ t

t0

ξµ(τ)(u(τ))∆τ

)

= eu(t, t0).

The second statement of the lemma follows immediately as u ∈ R+ and e⊖u(t, t0) =

1
eu(t,t0)

.

In practice, at least in this dissertation, we will apply Lemma 2.2.2 by taking

z ∈ C ∩R with z = x + iy and concluding that |ez(t, t0)| ≥ ex(t, t0).

Lemma 2.2.3. Let T be a time scale. Define Ω := C\{x ∈ R : x ≤ 0} and fix any

s, t ∈ T. Then, ez(t, s) is analytic on the domain Ω. Further,

d

dz
[ez(t, s)] = ez(t, s)

∫ t

s

∆τ

1 + zµ(τ)
,

for all z ∈ Ω.

Proof. Let s, t ∈ T be arbitrary. First consider f(z) :=
∫ t

s
ξµ(τ)(z)∆τ . We claim that

f is analytic on Ω.
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Fix z0 ∈ Ω. Let z0 = x0 + iy0. If x0 > 0, then take R := 1
2
|z0|. If x0 ≤ 0, then

take R := 1
2
|y0|. Note that since z0 ∈ Ω, if x0 ≤ 0, then y0 6= 0. So, in either case,

R > 0. Since Ω is open, there exists 0 < r < R such that Br(z0) ⊆ Ω. Note that

lim
z→z0

f(z) − f(z0)

z − z0

= lim
z→z0

1

z − z0

[∫ t

s

ξµ(τ)(z)∆τ −

∫ t

s

ξµ(τ)(z0)∆τ

]

= lim
z→z0

∫ t

s

ξµ(τ)(z) − ξµ(τ)(z0)

z − z0

∆τ.

We will apply the Dominated Convergence Theorem in order to interchange this

integral and limit.

Fix τ ∈ T. Since the principle logarithm is analytic on Ω and z ∈ Ω implies

1 + zµ(τ) ∈ Ω, by direct calculation,

d

dz
ξµ(τ)(z) =







d
dz

[
1

µ(τ)
Log(1 + zµ(τ))

]

, µ(τ) > 0,

d
dz

[z], µ(τ) = 0

=







1
1+zµ(τ)

, µ(τ) > 0,

1, µ(τ) = 0

=
1

1 + zµ(τ)
,

for any z ∈ Ω. Hence, for any fixed τ ∈ T,

lim
z→z0

ξµ(τ)(z) − ξµ(τ)(z0)

z − z0
=

d

dz
ξµ(τ)(z)

∣
∣
∣
z=z0

=
1

1 + z0µ(τ)
.

We will now show that
ξµ(τ)(z)−ξµ(τ)(z0)

z−z0
is dominated by a ∆-integrable function on
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[s, t]T. If µ(τ) = 0, we have that

∣
∣
∣
∣

ξµ(τ)(z) − ξµ(τ)(z0)

z − z0

∣
∣
∣
∣
=

∣
∣
∣
∣

z − z0

z − z0

∣
∣
∣
∣
= 1. (2.4)

Assume µ(τ) > 0. In this case, note that

∣
∣
∣
∣

ξµ(τ)(z) − ξµ(τ)(z0)

z − z0

∣
∣
∣
∣
=

∣
∣
∣
∣

Log(1 + zµ(τ)) − Log(1 + z0µ(τ))

µ(τ)(z − z0)

∣
∣
∣
∣

=

∣
∣
∣
∣

1

µ(τ)(z − z0)
Log

(
1 + zµ(τ)

1 + z0µ(τ)

)∣
∣
∣
∣

=

∣
∣
∣
∣

1

µ(τ)(z − z0)
Log

(

1 +
(z − z0)µ(τ)

1 + z0µ(τ)

)∣
∣
∣
∣
. (2.5)

We claim that
∣
∣
∣
(z−z0)µ(τ)
1+z0µ(τ)

∣
∣
∣ < 1 for z ∈ Br(z0) and any τ ∈ T. To show this, we

define g : [0,∞) → R by

g(x) :=
x

|1 + z0x|
=

x
√

(1 + xx0)2 + (xy0)2
,

where z0 = x0+ iy0. Note that g is continuous on [0,∞) because z0 ∈ Ω which implies

1+z0x 6= 0 for all x ∈ [0,∞). Also, g′(x) = 1+xx0

((1+xx0)2+(xy0)2)
3
2
, and so, provided x0 6= 0,

x = −1
x0

is a possible critical point. We will now consider two cases.

Case: Assume x0 ≥ 0.

It follows that g has no critical points in (0,∞). Further, x0 ≥ 0 implies g′(x) > 0

for x ∈ [0,∞); hence, g is increasing on [0,∞). Also, note that limx→∞ g(x) = 1
|z0|

and g is continuous on [0,∞). Therefore, in this case, g(x) ≤ 1
|z0|

for all x ∈ [0,∞).

Thus, for z ∈ Br(z0),

∣
∣
∣
∣

(z − z0)µ(τ)

1 + z0µ(τ)

∣
∣
∣
∣
= |z − z0| g(µ(τ)) ≤

|z − z0|

|z0|
<

r

|z0|
<

1

2
,
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by the choice of r.

Case: Assume x0 < 0.

Since z0 ∈ Ω, y0 6= 0. Then −1
x0

is a critical point in (0,∞) which corresponds to

a local maximum. Note that

g

(
−1

x0

)

=
−1

x0

∣
∣
∣
∣

x0

y0

∣
∣
∣
∣
=

1

|y0|
.

Therefore, in this case, g(x) ≤ 1
|y0|

for all x ∈ [0,∞). Thus, for z ∈ Br(z0),

∣
∣
∣
∣

(z − z0)µ(τ)

1 + z0µ(τ)

∣
∣
∣
∣
= |z − z0| g(µ(τ)) ≤

|z − z0|

|y0|
<

r

|y0|
<

1

2
,

again by the choice of r.

Thus, we have shown for any τ ∈ T and z ∈ Br(z0),

∣
∣
∣
∣

(z − z0)µ(τ)

1 + z0µ(τ)

∣
∣
∣
∣
<

1

2
.

Thus, for z ∈ Br(z0),
(z−z0)µ(τ)
1+z0µ(τ)

is in the radius of convergence for the Taylor series

expansion of Log
(

1 + (z−z0)µ(τ)
1+z0µ(τ)

)

.

So, from (2.5), we have for z ∈ Br(z0),

∣
∣
∣
∣

ξµ(τ)(z) − ξµ(τ)(z0)

z − z0

∣
∣
∣
∣
=

∣
∣
∣
∣

1

µ(τ)(z − z0)
Log

(

1 +
(z − z0)µ(τ)

1 + z0µ(τ)

)∣
∣
∣
∣

=
1

|z − z0|µ(τ)

∣
∣
∣
∣
∣

∞∑

k=0

(−1)k

k + 1

(
(z − z0)µ(τ)

1 + z0µ(τ)

)k+1
∣
∣
∣
∣
∣

≤
1

|z − z0|µ(τ)

∞∑

k=0

1

k + 1

(
|z − z0|µ(τ)

|1 + z0µ(τ)|

)k+1
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=
1

|1 + z0µ(τ)|

∞∑

k=0

1

k + 1

(
|z − z0|µ(τ)

|1 + z0µ(τ)|

)k

≤
1

|1 + z0µ(τ)|

∞∑

k=0

1

k + 1

(
1

2

)k

≤
1

|1 + z0µ(τ)|

∞∑

k=0

(
1

2

)k

=
2

|1 + z0µ(τ)|
. (2.6)

From (2.4) and (2.6), we have shown that for z ∈ Br(z0) and any τ ∈ T,

∣
∣
∣
∣

ξµ(τ)(z) − ξµ(τ)(z0)

z − z0

∣
∣
∣
∣
≤

2

|1 + z0µ(τ)|
.

We will now show that 2
|1+z0µ(τ)|

is ∆-integrable on [s, t]T. Consider h : [0,∞) → R

given by h(x) = 2
|1+z0x|

. Since z0 ∈ Ω, 1 + z0x ∈ Ω for all x ∈ [0,∞), which

implies 1 + z0x 6= 0 for all x ∈ [0,∞). Therefore, h is continuous on [0,∞). So, h

satisfies the following properties: (a) h is continuous on [0,∞), (b) h(0) = 2, and (c)

limx→∞ h(x) = 0.

Therefore, it must be the case that h(x) is bounded on [0,∞). Thus, h(µ(τ)) =

2
|1+z0µ(τ)|

is bounded for τ ∈ T. In particular, 2
|1+z0µ(τ)|

is bounded on the interval

[s, t]T. Since bounded functions on a finite interval are ∆-integrable (see [6, Theorem

5.20]), 2
|1+z0µ(τ)|

is ∆-integrable on [s, t]T.

Applying the Dominated Convergence Theorem, we have

lim
z→z0

f(z) − f(z0)

z − z0

= lim
z→z0

∫ t

s

ξµ(τ)(z) − ξµ(τ)(z0)

z − z0

∆τ

=

∫ t

s

lim
z→z0

ξµ(τ)(z) − ξµ(τ)(z0)

z − z0
∆τ =

∫ t

s

∆τ

1 + z0µ(τ)
.
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Since z0 ∈ Ω was arbitrary, we have that for any z ∈ Ω, the derivative exists and

d

dz

[∫ t

s

ξµ(τ)(z)∆τ

]

=

∫ t

s

∆τ

1 + zµ(τ)
.

Finally, since ez is entire, by the chain rule,

d

dz
[ez(t, s)] =

d

dz

[

exp

(∫ t

s

ξµ(τ)(z)∆τ

)]

= exp

(∫ t

s

ξµ(τ)(z)∆τ

)
d

dz

[∫ t

s

ξµ(τ)(z)∆τ

]

= ez(t, s)

∫ t

s

∆τ

1 + zµ(τ)
,

for all z ∈ Ω.

Lemma 2.2.4. Let T be any time scale. If p : T → R, then eip(t, t0) = e−ip(t, t0).

Proof. Since p(t) is real-valued, 1± iµ(t)p(t) 6= 0 for t ∈ T, and hence ±ip ∈ R. Note

that for any t ∈ T,

Log(1 − ip(t)µ(t)) = ln |1 − ip(t)µ(t)| + i Arg(1 − ip(t)µ(t))

= ln |1 + ip(t)µ(t)| + i arctan(−p(t)µ(t))

= ln |1 + ip(t)µ(t)| − i arctan(p(t)µ(t))

= ln |1 + ip(t)µ(t)| − i Arg(1 + ip(t)µ(t))

= Log(1 + ip(t)µ(t)).
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We have used here the fact that arctan is an odd function. So,

ξµ(t)(−ip(t)) =







1
µ(t)

Log(1 − ip(t)µ(t)), µ(t) > 0,

−ip(t), µ(t) = 0

=







1
µ(t)

Log(1 + ip(t)µ(t)), µ(t) > 0,

ip(t), µ(t) = 0.

= ξµ(t)(ip(t)),

which implies
∫ t

t0

ξµ(τ)(−ip(τ))∆τ =

∫ t

t0

ξµ(τ)(ip(τ))∆τ .

Since ez = ez, by using the definition of the generalized exponential function, we

have

eip(t, t0) = exp

(∫ t

t0

ξµ(τ)(ip(τ))∆τ

)

= exp

(
∫ t

t0

ξµ(τ)(ip(τ))∆τ

)

= exp

(∫ t

t0

ξµ(τ)(−ip(τ))∆τ

)

= e−ip(t, t0).
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Chapter 3

The Generalized Laplace

Transform

3.1 Introduction

Throughout, we let T be a time scale that is unbounded above with t0 ∈ T fixed.

Definition 3.1.1. Assume that f : T → R is a locally ∆-integrable function. Then

the generalized Laplace transform of f is defined by

L{f}(z) :=

∫ ∞

t0

f(t)eσ
⊖z(t, t0)∆t for z ∈ D{f},

where D{f} ⊆ C consists of all z ∈ C ∩R for which the improper integral exists.

Recall that we are using the notation z ∈ R∩C to mean z ∈ C and 1+ zµ(t) 6= 0

for all t ∈ T. Thus, R∩ C ⊆ C (see the explanation after Definition 2.1.7).

In Section 3.2 we will discuss the set D{f} ⊆ C. We will show that for reasonable

assumptions on the function f , D{f} is nonempty regardless of the time scale in
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question. Further, if we put some restrictions on the time scale, we can say even

more about D{f}.

Definition 3.1.2. A function f : T → R is said to be of exponential order α provided

there exist constants M > 0, α ∈ R+ ∩ R such that |f(t)| ≤ Meα(t, t0) for all

t ∈ [t0,∞)T.

We will always assume that f : T → R is a locally ∆-integrable function, some-

times without explicit mention. By making this assumption, we are assured that the

only problem we must worry about in the definition of L{f}(z) is whether or not the

improper integral converges for a particular z ∈ C.

3.2 Region of Convergence of the Laplace

Transform

The following theorem appears in [4, Example 3.91]. Here, Bohner and Peterson via

direct computation obtain the following result:

Theorem 3.2.1. Let T be any time scale that is unbounded above. Fix t0 ∈ T. Then

for z ∈ C ∩R and α ∈ R,

L{eα(·, t0)}(z) =
1

z − α

provided limt→∞ eα⊖z(t, t0) = 0.

This limit defines precisely the set of z ∈ C∩R for which the improper integral in

the definition of the Laplace transform converges to 1
z−α

. In other words, given any

time scale T that is unbounded above and a fixed t0 ∈ T, we have that

D{eα(·, t0)} =
{

z ∈ C ∩R : lim
t→∞

eα⊖z(t, t0) = 0
}

.
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Depending on the complexity of the time scale in question, computing the set in

the complex plane that this limit describes can be a difficult task. In fact, for a given

f : T → R and choice of α, it may not be immediately clear that D{f} is nonempty.

In this section, we will show that with the standard assumption that f : T → R

is of exponential order α, the set D{f} is nonempty for any time scale; and further,

D{f} contains the right-half plane z ∈ C such that Re(z) > α. If we restrict the

time scale in question such that the graininess is bounded below (away from 0), we

can say even more about D{f}. Finally, if we have a specific time scale in hand, we

will show via an example, that we can determine D{f} even more explicitly.

Theorem 3.2.2. Let T be any time scale that is unbounded above. Fix t0 ∈ T. If

f : [t0,∞)T → R is of exponential order α where α ∈ R+ ∩ R, then

{z ∈ C : Re(z) > α} ⊆ D{f}.

Furthermore, the improper integral in the definition of the Laplace transform con-

verges absolutely for z in this region.

Proof. Fix z ∈ C such that z = x + iy and x > α. Here x, y ∈ R. Since α ∈ R+,

1 + xµ(t) > 1 + αµ(t) > 0 for any t ∈ T. Thus, 1 + zµ(t) = 1 + xµ(t) + iyµ(t) 6= 0

and so z ∈ R.

We aim to show that
∫∞

t0

∣
∣f(t)eσ

⊖z(t, t0)
∣
∣∆t converges. Since x > α and α ∈

R+, by Lemma 2.2.1, limt→∞ eα⊖x(t, t0) = 0, which implies, by Theorem 3.2.1, that

L{eα(·, t0)}(x) exists and equals 1
x−α

.
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For any L ∈ [t0,∞)T, we have

∫ L

t0

∣
∣f(t)eσ

⊖z(t, t0)
∣
∣∆t ≤ M

∫ L

t0

eα(t, t0)
∣
∣eσ

⊖z(t, t0)
∣
∣∆t

≤ M

∫ L

t0

eα(t, t0)e
σ
⊖x(t, t0)∆t (by Lemma 2.2.2)

≤ M

∫ ∞

t0

eα(t, t0)e
σ
⊖x(t, t0)∆t

= ML{eα(·, t0)}(x)

=
M

x − α
.

As L → ∞, the real-valued function of L,
∫ L

t0

∣
∣f(t)eσ

⊖z(t, t0)
∣
∣∆t, is monotone increas-

ing and bounded above, and so it follows that limL→∞

∫ L

t0

∣
∣f(t)eσ

⊖z(t, t0)
∣
∣∆t converges.

i.e., the desired improper integral converges, and we have that L{f}(z) converges ab-

solutely. Hence, z ∈ D{f}.

Example 3.2.3. Consider the time scale T = R and f(t) = eα(t, 0) = eαt for some

α ∈ R. In this case, the Laplace transform is simply the classical Laplace transform.

It is well-known that in the classical case, L{eαt}(z) exists if and only if Re(z) > α.

i.e., we have found a function of exponential order α and a time scale such that

{z ∈ C : Re(z) > α} = D{f}.

Remark 3.2.4. In light of Example 3.2.3 and Theorem 3.2.2, for an arbitrary time

scale and an arbitrary function of exponential order, Theorem 3.2.2 is the “best” we

can do. The set {z ∈ C : Re(z) > α} is the largest set (not depending on the time

scale T) for which we can say

{z ∈ C : Re(z) > α} ⊆ D{f}.

So, for the generalized Laplace transform, if we restrict our attention to functions
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Figure 3.1: The region of convergence guaranteed by Theorem 3.2.2 for
an arbitrary time scale T.

of exponential order, the region of convergence is extremely similar to the classical

Laplace transform on R. However, we have shown that we have a half-plane of

convergence for any time scale T. This half-plane is shown in Figure 3.1.

We will now show that if we put some restrictions on the time scale, we can obtain

an even larger region in the complex plane (independent of T) for which the Laplace

transform of a function of exponential order converges.

Theorem 3.2.5. Let T be unbounded above such that 0 < µmin ≤ µ(t) for all t ∈ T.

If f : [t0,∞)T → R is of exponential order α > 0, then

{z ∈ C : |1 + zµmin| > 1 + αµmin} ⊆ D{f}.
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Furthermore, the improper integral in the definition of the Laplace transform con-

verges absolutely for z in this region.

To prove this theorem, we use the following lemma.

Lemma 3.2.6. Let T be unbounded above such that 0 < µmin ≤ µ(t) for all t ∈ T.

Let α > 0 be given. Then, for z ∈ C such that |1 + zµmin| > 1 + αµmin, there exists

a constant δ = δ(α, z, µmin) > 0 such that

1 + αµ(t)

|1 + zµ(t)|
≤ δ < 1 for all t ∈ T.

Proof. Fix z ∈ C such that

|1 + zµmin| > 1 + αµmin. (3.1)

This implies 1+αµmin

|1+zµmin|
< 1. Let z = u + iv and define f : [0,∞) → R by

f(x) =
1 + αx

|1 + zx|
=

1 + αx
√

(1 + ux)2 + (vx)2
.

Thus,

f ′(x) =
α − u + x(αu − (u2 + v2))

[(1 + ux)2 + (vx)2]
3
2

=
α − Re(z) + x(α Re(z) − |z|2)

|1 + zx|3
.

Note that it follows from assumption (3.1) that

1 + αµmin < |1 + zµmin| ≤ 1 + |z|µmin =⇒ α < |z| . (3.2)
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If α Re(z) − |z|2 = 0, then using (3.2) we have

0 = α Re(z) − |z|2 < α Re(z) − α2 = α(Re(z) − α) =⇒ Re(z) − α > 0,

where the final implication is obtained by dividing by α > 0. Thus, in this case,

f ′(x) =
α − Re(z)

|1 + zx|3
< 0,

and hence f is strictly decreasing on (0,∞) and f(0) = 1.

We now assume α Re(z) − |z|2 6= 0. Thus, the only possible critical point, x0, of

f is given by

x0 =
Re(z) − α

α Re(z) − |z|2
. (3.3)

We will now consider two cases.

Case: Assume Re(z) ≥ α.

Then

α Re(z) ≤ [Re(z)]2 ≤ [Re(z)]2 + [Im(z)]2 = |z|2

and so α Re(z) − |z|2 < 0. (We have strict inequality here since z 6= α which follows

from assumption (3.1).) Therefore, x0 ≤ 0 and so f does not have a critical point

on the interval (0,∞). Further, it is straightforward to see that f is continuous on

(0,∞), f is strictly decreasing on (0,∞), and f(0) = 1.

Thus, 0 < µmin implies f(µmin) < 1. Further, µmin ≤ µ(t) for all t ∈ T implies

f(µmin) ≥ f(µ(t)) for all t ∈ T. Define δ := f(µmin), and so, in this case we have

f(µ(t)) =
1 + αµ(t)

|1 + zµ(t)|
≤

1 + αµmin

|1 + zµmin|
= f(µmin) = δ < 1 for all t ∈ T.

Case: Assume Re(z) < α.
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If Re(z) = 0, then Im(z) 6= 0 by assumption (3.1). Thus, α Re(z) − |z|2 =

−[Im(z)]2 < 0. If Re(z) < 0, then α Re(z) < 0 =⇒ α Re(z)− |z|2 < 0. If Re(z) > 0,

then from (3.2) we have α Re(z) < Re(z) |z| ≤ |z|2 =⇒ α Re(z) − |z|2 < 0.

So, for Re(z) < α, α Re(z) − |z|2 < 0, and hence x0 > 0 given by (3.3) is a

critical point for f in the interval (0,∞). Again, it is straightforward to see that f is

continuous on (0,∞), f is strictly increasing on (0, x0), and f is strictly decreasing

on (x0,∞). Since f(0) = 1, it follows that for x ∈ [0, x0), f(x) ≥ 1.

Further, limx→∞ f(x) = α
|z|

< 1 by (3.2). By assumption (3.1), f(µmin) < 1, and

so µmin ∈ (x0,∞). So, in particular, f is decreasing on the interval (µmin,∞). Thus,

µmin ≤ µ(t) for all t ∈ T implies f(µmin) ≥ f(µ(t)) for all t ∈ T. Define δ := f(µmin),

and so again we have

f(µ(t)) =
1 + αµ(t)

|1 + zµ(t)|
≤

1 + αµmin

|1 + zµmin|
= f(µmin) = δ < 1 for all t ∈ T.

Proof of Theorem 3.2.5. Since 0 < µmin ≤ µ(t) for all t ∈ T, the time scale T is an

isolated time scale. Let T = {t0, t1, · · · } where t0 < t1 < · · · . Fix z ∈ C such that

|1 + zµmin| > 1 + αµmin.

Note that by the definition of the generalized exponential function, for any n ∈ N0,

|eα⊖z(tn, t0)| =

∣
∣
∣
∣
exp

(∫ tn

t0

ξµ(τ)((α ⊖ z)(τ)∆τ

)∣
∣
∣
∣

= exp

(∫ tn

t0

Re[ξµ(τ)((α ⊖ z)(τ)]∆τ

)

= exp

(∫ tn

t0

1

µ(τ)
ln

∣
∣
∣
∣

1 + αµ(τ)

1 + zµ(τ)

∣
∣
∣
∣
∆τ

)
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= exp

(
n−1∑

i=0

ln

∣
∣
∣
∣

1 + αµ(ti)

1 + zµ(ti)

∣
∣
∣
∣

)

(by Theorem 2.1.21)

=
n−1∏

i=0

∣
∣
∣
∣

1 + αµ(ti)

1 + zµ(ti)

∣
∣
∣
∣

≤
n−1∏

i=0

δ (by Lemma 3.2.6)

= δn,

where δ < 1.

In an argument that is very similar to that given in Lemma 3.2.6 (and also given

in the proof of Lemma 2.2.3), it follows that there exists a constant C = C(z) > 0

such that
∣
∣
∣

µ(t)
1+zµ(t)

∣
∣
∣ ≤ C for all t ∈ [t0,∞)T. Thus, for any k ∈ N0, we have

∫ tk

t0

∣
∣f(t)eσ

⊖z(t, t0)
∣
∣∆t ≤ M

∫ tk

t0

eα(t, t0)
∣
∣eσ

⊖z(t, t0)
∣
∣∆t

≤ M

∫ tk

t0

∣
∣
∣
∣

1

1 + zµ(t)

∣
∣
∣
∣
|eα⊖z(t, t0)|∆t

= M
k−1∑

i=0

∣
∣
∣
∣

µ(ti)

1 + zµ(ti)

∣
∣
∣
∣
|eα⊖z(ti, t0)| (by Theorem 2.1.21)

≤ MC

k−1∑

i=0

δi ≤ MC

∞∑

i=0

δi =
MC

1 − δ
.

As k → ∞, the real-valued sequence
∫ tk

t0

∣
∣f(t)eσ

⊖z(t, t0)
∣
∣∆t is monotone increasing

and bounded above, thus limk→∞

∫ tk
t0

∣
∣f(t)eσ

⊖z(t, t0)
∣
∣∆t converges. i.e., the desired

improper integral converges, and we have that L{f}(z) converges absolutely. Hence,

z ∈ D{f}.

Example 3.2.7. Let T = hZ, h > 0, and f(t) = eα(t, 0) for some α > 0. On this

time scale, it is straightforward to see that eα⊖z(t, 0) =
(

1+αh
1+zh

) t
h . Using Theorem
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2.1.21, we have

L{eα(·, 0)}(z) =

∫ ∞

0

eα(t, 0)eσ
⊖z(t, 0)∆t

=
∞∑

t=0

h

1 + zh
eα⊖z(t, 0) =

h

1 + zh

∞∑

t=0

(
1 + αh

1 + zh

) t
h

.

Thus, the Laplace transform converges if and only if
∣
∣1+αh

1+zh

∣
∣ < 1 if and only if

1 + αh < |1 + zh|. Therefore, in conjunction with Theorem 3.2.5, we can conclude

{z ∈ C : |1 + zh| > 1 + αh} = D{f}.

Remark 3.2.8. Similar to what we saw before, because of Example 3.2.7 and The-

orem 3.2.5, for a time scale such that 0 < µmin ≤ µ(t) for all t ∈ T and an arbitrary

function of exponential order α, Theorem 3.2.5 is the “best” we can do. The set

{z ∈ C : |1 + zµmin| > 1 + αµmin} is the largest set (not depending on the time scale

T) for which we can say

{z ∈ C : |1 + zµmin| > 1 + αµmin} ⊆ D{f}.

So, for the generalized Laplace transform, if we restrict the graininess of our time

scale as indicated and only focus on functions of exponential order α, the region of

convergence is extremely similar to the classical Z-transform from difference equations

(see, for example, [12, Section 6.1]). This region of convergence for the generalized

Laplace transform is shown in Figure 3.2.

Note that this region is slightly different from what we expect for the Z-transform

from difference equations. For the Z-transform, the transform converges for all points

outside a ball centered at the origin. However here, we have convergence for all points

outside a ball centered at −1
µmin

. The reason for this is that the generalized Laplace
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Figure 3.2: The region of convergence guaranteed by Theorem 3.2.5 for a
time scale such that 0 < µmin ≤ µ(t) for all t ∈ T.

transform on Z is a shift of the classical Z-transform. In other words,

(z + 1)L{f}(z) = Z{f}(z + 1).

So far we have shown that for any time scale, the region of convergence of the

generalized Laplace transform behaves very similar to that of the classical Laplace

transform on R. We have also shown that by bounding the graininess below away

from zero, the region of convergence of the generalized Laplace transform behaves

very similar to that of the classical Z-transform on Z. We conclude this section with

an interesting example that shows that when we take a time scale that is not either

of the classical cases R or Z, then we find that the region of convergence of the



36

generalized Laplace transform behaves in a substantially different way than the two

classical cases.

Example 3.2.9. In this example we will consider the function f(t) = eα(t, t0), for

some α > 0, on the time scale defined by T := {0, γ, γ + δ, 2γ + δ, 2γ +2δ, · · · }, where

γ > 0 and δ > 0. We will enumerate T = {t0, t1, t2, · · · }.

0 γ γ + δ 2γ + δ 2γ + 2δ 3γ + 2δ
· · ·

It is straightforward to see that on this time scale µ(tn) = γ if n is even, µ(tn) = δ

if n is odd, and

eα⊖z(tn, t0) =







(
1+αδ
1+zδ

)n
2

(
1+αγ

1+zγ

)n
2

, n even,

(
1+αδ
1+zδ

)n+1
2

(
1+αγ

1+zγ

)n−1
2

, n odd.

Thus,

L{eα(·, t0)}(z) =

∫ ∞

t0

eα(t, t0)e
σ
⊖z(t, t0)∆t

=
∞∑

n=0

µ(tn)

1 + zµ(tn)
eα⊖z(tn, t0) (by Theorem 2.1.21)

=

∞∑

n=0
n even

γ

1 + zγ

(
1 + αδ

1 + zδ

)n
2
(

1 + αγ

1 + zγ

)n
2

+

∞∑

n=0
n odd

δ

1 + zδ

(
1 + αδ

1 + zδ

)n+1
2
(

1 + αγ

1 + zγ

)n−1
2

=

(
γ

1 + zγ

) ∞∑

k=0

(
1 + αδ

1 + zδ

)k (
1 + αγ

1 + zγ

)k

+

(
δ

1 + zδ

) ∞∑

k=0

(
1 + αδ

1 + zδ

)k+1(
1 + αγ

1 + zγ

)k
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=

[
γ

1 + zγ
+

δ(1 + αδ)

(1 + zδ)2

] ∞∑

k=0

[(
1 + αδ

1 + zδ

)(
1 + αγ

1 + zγ

)]k

.

Noting that we have ended up with a geometric series, it follows that the Laplace

transform of eα(t, t0) converges on this time scale if and only if
∣
∣
∣

(
1+αδ
1+zδ

) (
1+αγ

1+zγ

)∣
∣
∣ < 1.

This inequality defines the set of z ∈ C for which the generalized Laplace transform

converges, D{eα(t, t0)}, on this particular time scale. If we fix α = 1
4

and γ = 1
2
,

Figures 3.3, 3.4, 3.5, and 3.6 show how the region of convergence varies as we modify

the time scale by adjusting the value of δ.

3.3 Power Series on Time Scales

From the study of the classical Laplace transform on R, it is known that we are not

always able to expand a function via its power series representation, take the Laplace

transform term-by-term, and obtain a representation of the Laplace transform of the

original function (see, for example, [19, Example 1.17]).

The main objective of this section is to give conditions on when we can take the

generalized Laplace transform of a power series representation of a function f : T → R

term-by-term. As in Bohner and Guseinov’s paper [3], we will define F to be the set

of all functions f : [t0,∞)T → C of the form

f(t) =
∞∑

n=0

cnhn(t, t0), t ∈ [t0,∞)T, (3.4)

where |cn| ≤ Kαn for all n ∈ N0. Here K > 0, α > 0 are constants independent of

n. Also note that hn(t, t0) is the generalized monomial found in Definition 2.1.10.

Bohner and Guseinov prove in [3], that for f ∈ F , the series in (3.4) converges

uniformly on any compact interval [a, b]T where b > a. They also show for z ∈ C∩R,
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Figure 3.3: The region of convergence
guaranteed by Example 3.2.9 with γ = 1

2

and δ = 3
5
.

Figure 3.4: The region of convergence
guaranteed by Example 3.2.9 with γ = 1

2

and δ = 6.

Figure 3.5: The region of convergence
guaranteed by Example 3.2.9 with γ = 1

2

and δ = 2.

Figure 3.6: The region of convergence
guaranteed by Example 3.2.9 with γ = 1

2

and δ = 8.

Note that Theorem 3.2.2 guarantees the half-plane of convergence to the right of the
vertical line in these figures. Similarly, since in all four cases, the time scale satisfies
0 < 1

2
≤ µ(t), Theorem 3.2.5 guarantees convergence outside of a ball of radius 9

4

centered at −2 indicated by the circle in these figures.
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the generalized exponential function is given by the expansion

ez(t, t0) =

∞∑

n=0

znhn(t, t0).

Further, Bohner and Guseinov define

Dn :=
{

z ∈ C ∩R : lim
t→∞

hn(t, t0)e⊖z(t, t0) = 0
}

,

and D :=
⋂∞

n=0 Dn. This definition relies on the fact that, via direct calculation,

L{hk(t, t0)}(z) = 1
zk+1 provided limt→∞ hk(t, t0)e⊖z(t, t0) = 0 (see [4, Theorem 3.90]).

Hence, D describes the set in the complex plane for which the Laplace transform

converges when applied to each term of the expansion of the function f .

In [3], it is assumed that D is nonempty. However, after the work done in Section

3.2, we merely need to show that for each n ∈ N0, hn(t, t0) is of exponential order α

for some α > 0 in order to find some sets that are contained in D regardless of the

time scale.

Theorem 3.3.1. Let T be unbounded above, and fix t0 ∈ T. For any n ∈ N0 and

any α > 0, the generalized monomial hn(t, t0) is of exponential order α.

Proof. Fix n ∈ N0 and α > 0. We first claim limt→∞ hn(t, t0)e⊖α(t, t0) = 0. To

see this, we will apply a version of L’Hôpital’s Rule for time scales (see [4, Theorem

1.120]):

Assume f and g are ∆-differentiable on T with limt→∞ g(t) = ∞. Suppose g(t) >

0, g∆(t) > 0 for all t ∈ [t0,∞)T. Then limt→∞
f∆(t)
g∆(t)

= r ∈ R implies limt→∞
f(t)
g(t)

= r.

Using the definition of hn(t, t0), note that hn(t, t0) ≥ 0 for all t ∈ [t0,∞)T. Also,

since α > 0, it follows that 1 + αµ(t) > 0 for all t ∈ [t0,∞)T, and so eα(t, t0) > 0 for
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all t ∈ [t0,∞)T by Theorem 2.1.15. Thus, for t ∈ [t0,∞)T,

0 ≤ hn(t, t0)e⊖α(t, t0) =
hn(t, t0)

eα(t, t0)
. (3.5)

Since α > 0, limt→∞ eα(t, t0) = ∞ by Lemma 2.2.1. Further, since eα(t, t0) > 0,

we have e∆
α (t, t0) = αeα(t, t0) > 0. Continuing to take ∆-derivatives shows that for

every 0 ≤ k ≤ n, e∆k

α (t, t0) = αe∆k−1

α (t, t0) = · · · = αkeα(t, t0) > 0. Therefore,

h∆n

n (t, t0)

e∆n

α (t, t0)
=

h∆n−1

n−1 (t, t0)

αe∆n−1

α (t, t0)
= · · · =

1

αneα(t, t0)
.

Hence, by n applications of L’Hôpital’s Rule, we have

lim
t→∞

hn(t, t0)

eα(t, t0)
= lim

t→∞

h∆n

n (t, t0)

e∆n

α (t, t0)
=

1

αn
lim
t→∞

1

eα(t, t0)
= 0.

So, by (3.5), it follows that

lim
t→∞

hn(t, t0)e⊖α(t, t0) = 0.

In other words, there exists a T ∈ [t0,∞)T such that for all t ∈ [T,∞)T, we have

hn(t, t0)e⊖α(t, t0) < 1. Define

M := max

{

sup
t∈[t0,T ]T

hn(t, t0)e⊖α(t, t0), 1

}

.

Then, hn(t, t0)e⊖α(t, t0) ≤ M for all t ∈ [t0,∞)T. Therefore, hn(t, t0) ≤ Meα(t, t0) for

all t ∈ [t0,∞)T.

Using this theorem, we can now show that for any time scale, {z ∈ C : Re(z) >

0} ⊆ D.
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Corollary 3.3.2. For any time scale T, if z ∈ C such that Re(z) > 0, then z ∈ D.

Proof. Let z ∈ C be such that Re(z) > 0. Since Re(z) > 0, there exists a constant α

such that 0 < α < Re(z). So for any n ∈ N0, hn(t, t0) is of exponential order α, and by

Theorem 3.2.2, z ∈ Dn. This holds for any n ∈ N0; therefore, z ∈
⋂∞

n=0 Dn = D.

We are now set to prove the main result of this section:

Theorem 3.3.3. Assume f : T → R is such that there exist constants K > 0, α > 0

with f(t) =
∑∞

n=0 cnhn(t, t0) for all t ∈ [t0,∞)T where |cn| ≤ Kαn for all n ∈ N0. i.e.,

f ∈ F . Then,

L{f}(z) =
∞∑

n=0

cnL{hn(t, t0)}(z) =
∞∑

n=0

cn

zn+1
,

for all z ∈ C such that Re(z) > α.

Proof. By definition of the generalized monomial, for each n ∈ N0, hn(t, t0) ≥ 0 for

all t ∈ [t0,∞)T. Let z ∈ C such that z = x + iy and x > α. Let ǫ > 0 be given. Since

x > α, we have that the geometric series 1
x

∑∞
n=0

(
α
x

)n
= 1

x

(
1

1−α
x

)

= 1
x−α

. Hence,

there exists M ∈ N such that for all N ≥ M ,

1

x − α
−

1

x

N∑

n=0

(α

x

)n

<
ǫ

K
.

Now, for N ≥ M , we have

∣
∣
∣
∣
∣
L{f}(z) −

N∑

n=0

cnL{hn(t, t0)}(z)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
L

{

f(t) −
N∑

n=0

cnhn(t, t0)

}

(z)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
L

{
∞∑

n=N+1

cnhn(t, t0)

}

(z)

∣
∣
∣
∣
∣
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≤

∫ ∞

t0

(
∞∑

n=N+1

|cn|hn(t, t0)

)

∣
∣eσ

⊖z(t, t0)
∣
∣∆t

≤ K

∫ ∞

t0

(
∞∑

n=N+1

αnhn(t, t0)

)

eσ
⊖x(t, t0)∆t

= K

∫ ∞

t0

(
∞∑

n=0

αnhn(t, t0) −
N∑

n=0

αnhn(t, t0)

)

eσ
⊖x(t, t0)∆t

= K

∫ ∞

t0

(

eα(t, t0) −
N∑

n=0

αnhn(t, t0)

)

eσ
⊖x(t, t0)∆t

= K

∫ ∞

t0

eα(t, t0)e
σ
⊖x(t, t0)∆t

− K

N∑

n=0

αn

∫ ∞

t0

hn(t, t0)e
σ
⊖x(t, t0)∆t.

We have used Lemma 2.2.2 to obtain the second inequality above. Since x > α > 0,

and eα(t, t0) is of exponential order α, it follows that x ∈ D{eα(t, t0)} by Theorem

3.2.2. Thus, L{eα(·, t0)}(x) exists and equals 1
x−α

.

Similarly, since x > 0, and hn(t, t0) is of exponential order α for any n ∈ N0, it

follows that x ∈ D by Corollary 3.3.2. Thus, L{hn(·, t0)}(x) exists and equals 1
xn+1

for each n ∈ N0 by [4, Theorem 3.90]. So, continuing our calculation, we have

= KL{eα(·, t0)}(x) − K

N∑

n=0

αnL{hn(·, t0)}(x)

= K

[

1

x − α
−

N∑

n=0

αn

xn+1

]

= K

[

1

x − α
−

1

x

N∑

n=0

(α

x

)n

]

< ǫ.

Therefore, since ǫ > 0 was arbitrary, L{f}(z) =
∑∞

n=0 cnL{hn(t, t0)}(z). Finally,
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by [4, Theorem 3.90], we have

L{f}(z) =

∞∑

n=0

cnL{hn(t, t0)}(z) =

∞∑

n=0

cn

zn+1
.

3.4 Basic Properties of the Laplace Transform

In this section, we collect some basic properties of the generalized Laplace transform

on time scales. From Theorem 3.2.2, if f : T → R is of exponential order α, the

Laplace transform L{f}(z) converges absolutely for z ∈ C such that Re(z) > α

where α ∈ R+ ∩ R. In fact, the proof gives the bound

|L{f}(z)| ≤

∫ ∞

t0

∣
∣f(t)eσ

⊖z(t, t0)
∣
∣∆t ≤

M

Re(z) − α
.

Thus, two immediate corollaries are as follows:

Corollary 3.4.1. Let f : T → R be of exponential order α, and take x0 > α

where α ∈ R+ ∩ R. Then, the Laplace transform L{f}(z) is uniformly bounded on

{z ∈ C : Re(z) ≥ x0}.

Proof. For any z = x + iy such that x ≥ x0 > α, we have that |L{f}(z)| ≤ M
x−α

≤

M
x0−α

. Here, the bound M
x0−α

is independent of z.

Corollary 3.4.2. Let f : T → R be of exponential order α where α ∈ R+∩R. Then,

lim
Re(z)→∞

L{f}(z) = 0.
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It turns out that the Laplace transform satisfies an even stronger form of con-

vergence than absolute convergence. In the next theorem, we show that the Laplace

transform converges uniformly on a closed half-plane.

Theorem 3.4.3. Let f : T → R be of exponential order α, and take x0 > α > 0.

Then, the Laplace transform L{f}(z) converges uniformly on {z ∈ C : Re(z) ≥ x0}.

Proof. First note that for x ∈ (0,∞), eα⊖x(t, t0) is decreasing with respect to x. To

see this, let x > 0 be given. Then x ∈ Ω as defined by Lemma 2.2.3. Thus, using this

lemma, we have

d

dx
[eα⊖x(t, t0)] =

d

dx

[
eα(t, t0)

ex(t, t0)

]

= −eα(t, t0)e⊖x(t, t0)

∫ t

t0

∆τ

1 + xµ(τ)

= −eα⊖x(t, t0)

∫ t

t0

∆τ

1 + xµ(τ)
.

Since

1 + (α ⊖ x)(t)µ(t) = 1 +
α − x

1 + xµ(t)
µ(t) =

1 + αµ(t)

1 + xµ(t)
> 0

on [t0,∞)T, by Theorem 2.1.15, eα⊖x(t, t0) > 0 for all t ∈ [t0,∞)T. Further, since

x > 0,
∫ t

t0

∆τ
1+xµ(τ)

> 0 for all t ∈ (t0,∞)T. Therefore, d
dx

[eα⊖x(t, t0)] < 0 for all x > 0.

It follows that for any x ≥ x0, eα⊖x(t, t0) ≤ eα⊖x0(t, t0).

Let ǫ > 0 be given. Let z = x + iy such that x ≥ x0 be given. By Lemma 2.2.1,

limt→∞ eα⊖x0(t, t0) = 0. Hence, there exists T ∈ T, sufficiently large, such that for all

t ∈ [T,∞)T,

eα⊖x0(t, t0) <
(x0 − α)ǫ

M
.
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So, for any T1 ∈ [T,∞)T, we have

∣
∣
∣
∣

∫ ∞

T1

f(t)eσ
⊖z(t, t0)∆t

∣
∣
∣
∣
≤ M

∫ ∞

T1

eα(t, t0)
∣
∣eσ

⊖z(t, t0)
∣
∣∆t

≤ M

∫ ∞

T1

eα(t, t0)e
σ
⊖x(t, t0)∆t (by Lemma 2.2.2)

= M

∫ ∞

T1

1

1 + xµ(t)
eα⊖x(t, t0)∆t

=
M

α − x

∫ ∞

T1

α − x

1 + xµ(t)
eα⊖x(t, t0)∆t

=
M

α − x

∫ ∞

T1

(α ⊖ x)(t)eα⊖x(t, t0)∆t

=
M

α − x
eα⊖x(t, t0)

∣
∣
∣

t→∞

t=T1

=
Meα⊖x(T1, t0)

x − α
≤

Meα⊖x0(T1, t0)

x0 − α
< ǫ.

Since ǫ > 0 was arbitrary, the Laplace transform converges uniformly on {z ∈ C :

Re(z) ≥ x0 > α}.

3.5 Periodic Time Scales

Definition 3.5.1. A time scale T is said to be periodic with period T provided t ∈ T

implies t + T ∈ T.

Let T be a periodic time scale with period T . Note that necessarily, periodic time

scales are unbounded above. If we consider a function f : T → R that has period T ,

we can write the Laplace transform of f in terms of f̃ : T → R defined by f̃(t) = f(t)

for t ∈ [t0, t0 + T ]T and f̃(t) = 0 elsewhere. In other words, in this case we can find

the Laplace transform merely by performing an appropriate integration over the first

period of the function f .

Theorem 3.5.2. Let T be a periodic time scale with period T . Further, assume
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f : T → R is periodic with period T . Then,

L{f}(z) =
1

1 − e⊖z(t0 + T, t0)
L{f̃}(z),

where L{f̃}(z) =
∫ t0+T

t0
f(t)eσ

⊖z(t, t0)∆t.

Proof. Since T is a periodic time scale with period T , µ(t + T ) = µ(t) for all t ∈ T.

By Theorem 2.1.21, for any ∆-integrable g : T → R, we have

∫ b

a

g(τ)∆τ =

∫

[a,b]T

g(τ)dτ +
∑

τ∈[a,b)T∩Trs(∞)

g(τ)µ(τ),

where the first integral is the classical Lebesgue integral and [a, b)T ∩ Trs(∞) is the

set of right-scattered points in the interval [a, b)T. By the translation invariance of

the Lebesgue integral, and reindexing the sum we obtain

∫ b

a

g(τ)∆τ =

∫

[a,b]T

g(τ)dτ +
∑

τ∈[a,b)T∩Trs(∞)

g(τ)µ(τ)

=

∫

[a−T,b−T ]T

g(τ + T )dτ +
∑

τ∈[a−T,b−T )T∩Trs(∞)

g(τ + T )µ(τ + T )

=

∫

[a−T,b−T ]T

g(τ + T )dτ +
∑

τ∈[a−T,b−T )T∩Trs(∞)

g(τ + T )µ(τ)

=

∫ b−T

a−T

g(τ + T )∆τ,

where we have applied Theorem 2.1.21 again to obtain the final equality.

Further, for any z ∈ C ∩ R, we have that the cylinder transformation satisfies

ξµ(t)(z) = ξµ(t+T )(z) for all t ∈ T since µ(t) = µ(t+T ). Using this, it is straightforward

to see that ez(t + T, t0 + T ) = ez(t, t0).

Now by the periodicity of f and µ, as well as the semigroup property of the
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generalized exponential function, we have

L{f}(z) =

∫ ∞

t0

f(t)eσ
⊖z(t, t0)∆t

=

∫ t0+T

t0

f(t)eσ
⊖z(t, t0)∆t +

∫ ∞

t0+T

f(t)eσ
⊖z(t, t0)∆t

=

∫ t0+T

t0

f(t)eσ
⊖z(t, t0)∆t +

∫ ∞

t0

f(τ + T )eσ
⊖z(τ + T, t0)∆τ

=

∫ t0+T

t0

f(t)eσ
⊖z(t, t0)∆t

+

∫ ∞

t0

f(τ)

(
1

1 + zµ(τ + T )

)

e⊖z(τ + T, t0)∆τ

=

∫ t0+T

t0

f(t)eσ
⊖z(t, t0)∆t

+

∫ ∞

t0

f(τ)

(
1

1 + zµ(τ)

)

e⊖z(τ + T, t0 + T )e⊖z(t0 + T, t0)∆τ

=

∫ t0+T

t0

f(t)eσ
⊖z(t, t0)∆t

+ e⊖z(t0 + T, t0)

∫ ∞

t0

f(τ)

(
1

1 + zµ(τ)

)

e⊖z(τ, t0)∆τ

=

∫ t0+T

t0

f(t)eσ
⊖z(t, t0)∆t + e⊖z(t0 + T, t0)

∫ ∞

t0

f(τ)eσ
⊖z(τ, t0)∆τ

=

∫ t0+T

t0

f(t)eσ
⊖z(t, t0)∆t + e⊖z(t0 + T, t0)L{f}(z).

Solving for L{f}(z), we obtain

L{f}(z) =
1

1 − e⊖z(t0 + T, t0)

∫ t0+T

t0

f(t)eσ
⊖z(t, t0)∆t.
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3.6 Regressivity

In Theorem 3.2.1, direct calculation from the definition of the Laplace transform gives

us that if α ∈ C∩R, L{eα(·, t0)}(z) = 1
z−α

for z ∈ C∩R such that limt→∞ eα⊖z(t, t0) =

0. When applying this formula, it is essential that α ∈ R to ensure that the gen-

eralized exponential function eα(t, t0) is well defined. So, this formula holds only on

specific time scales; namely, time scales such that α ∈ R. The question we concern

ourselves with in this section is on a time scale T for which α 6∈ R, does there exist

f : T → R such that L{f}(z) = 1
z−α

? The answer is affirmative, and we will show by

example that we can use this to solve initial value problems.

Let T be a time scale that is unbounded above and fix t0 ∈ T. Let α 6∈ R([t0,∞)T)

be given. Thus, there exists t1 ∈ [t0,∞)T such that 1 + αµ(t1) = 0 and for all

t0 ≤ t < t1, 1 + αµ(t) 6= 0. In other words, t1 is the first point in the time scale for

which 1 + αµ(t1) = 0.

Consider T̃ := [t0, t1]T. Note that T̃ is a bounded time scale such that α ∈ R(T̃).

Hence, on T̃, the generalized exponential, eα(t, t0), is well defined. Note that there is

a subtle difference between the graininess functions for the time scales T and T̃. For

any t ∈ [t0, t1)T, µ(t) = µ̃(t). However, µ(t1) = −1
α

but µ̃(t1) = 0, and then for any

t ∈ T such that t > t1, µ̃(t1) is not even defined. Define f : T → R by

f(t) :=







eα(t, t0), t ∈ T̃,

0, t /∈ T̃.

By construction, f is well defined on all of T.
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Theorem 3.6.1. Let T, T̃, α, t1 ∈ T, and f : T → R be as above. Then,

L{f}(z) =
1

z − α
,

for all z ∈ C ∩R.

Proof. Using the definition of the Laplace transform, we have

L{f}(z) =

∫ ∞

t0

f(t)eσ
⊖z(t, t0)∆t

=

∫ σ(t1)

t0

eα(t, t0)e
σ
⊖z(t, t0)∆t

=

∫ t1

t0

eα(t, t0)

1 + zµ(t)
e⊖z(t, t0)∆t +

∫ σ(t1)

t1

eα(t, t0)

1 + zµ(t)
e⊖z(t, t0)∆t

=

∫ t1

t0

1

1 + zµ(t)
eα⊖z(t, t0)∆t +

µ(t1)

1 + zµ(t1)
eα⊖z(t1, t0)

=
1

α − z

∫ t1

t0

α − z

1 + zµ(t)
eα⊖z(t, t0)∆t +

− 1
α

1 − z
α

eα⊖z(t1, t0)

=
1

α − z

∫ t1

t0

(α ⊖ z)(t)eα⊖z(t, t0)∆t −
1

α − z
eα⊖z(t1, t0)

=
1

α − z
eα⊖z(t, t0)

∣
∣
∣

t=t1

t=t0

−
1

α − z
eα⊖z(t1, t0)

=
1

α − z
eα⊖z(t1, t0) −

1

α − z
eα⊖z(t0, t0) −

1

α − z
eα⊖z(t1, t0)

=
1

z − α
.

The fourth equality is obtained by applying Theorem 2.1.21 to the second integral.

Example 3.6.2. Let T be the time scale {0, 3, 6, 7} ∪ Ta where Ta is any time scale

such that Ta ⊆ [7,∞). Note that, in particular, µ(0) = µ(3) = 3 and µ(6) = 1. Thus,

−1 6∈ R(T).
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Consider the initial value problem

x∆ + x = 1, x(0) = 0.

Applying the Laplace transform, we have

zL{x}(z) + L{x}(z) =
1

z
=⇒ L{x}(z) =

1

z(z + 1)
=

1

z
−

1

z + 1

=⇒ x(t) = L−1

{
1

z

}

− L−1

{
1

z + 1

}

=⇒ x(t) = 1 − L−1

{
1

z + 1

}

.

Since −1 6∈ R(T), we must apply the previous theorem in order to find a function f

such that L{f}(z) = 1
z+1

on this particular time scale. In this case, T̃ = {0, 3, 6} and

on this time scale, it is straightforward to compute that e−1(t, 0) = (−2)
t
3 . Hence,

defining f(t) := (−2)
t
3 for t ∈ {0, 3, 6} and 0 otherwise, we have L{f}(z) = 1

z+1
by

Theorem 3.6.1. Therefore,

x(t) = 1 −







(−2)
t
3 , t ∈ {0, 3, 6},

0, otherwise

=







1 − (−2)
t
3 , t ∈ {0, 3, 6},

1, otherwise.

Direct calculation verifies that this is indeed a solution of the initial value problem

on T.



51

3.7 Inversion Integrals

In this section we present two inversion theorems for the Laplace transform that make

use of contour integration. The result given in Theorem 3.7.1 is specific to time scales

that are unbounded above and such that 0 < µmin ≤ µ(t) for all t ∈ T. In this

particular case, the inversion integral appears very much like the classic inversion

integral in the case of the Z-transform on the integers.

In the second theorem given in this section (Theorem 3.7.3), we turn our attention

to an arbitrary time scale (i.e., we require no restriction on the graininess as needed

in Theorem 3.7.1).

Theorem 3.7.1. Assume T is unbounded above such that 0 < µmin ≤ µ(t) for all

t ∈ T. Let f : T → R such that F (z) := L{f}(z) is analytic on {z ∈ C : |z| > R}

for some R > 0, F (z) has only isolated singularities, and the Laplace transform of f

converges uniformly on Ω := {z ∈ C : |z| ≥ r} where r > R. Then,

f(t) =
1

2πi

∫

C

F (z)ez(t, t0)dz,

where C is a positively oriented, simple, closed path in Ω such that IndC

(
−1
µ(t)

)

= 1

for all t ∈ [t0,∞)T, and IndC(z) = 1 at each singularity of F . Here, IndC(z) is the

index of z with respect to the path C, and is defined by IndC(z) := 1
2πi

∫

C

dξ

ξ−z
.

Proof. Note that since F is analytic on {z ∈ C : |z| > R} and has only isolated

singularities, it follows that F has only a finite number of singularities. Further, since

0 < µmin ≤ µ(t) we have that −1
µmin

≤ −1
µ(t)

< 0 for all t ∈ [t0,∞)T. Hence, there exists

a positively oriented, simple, closed path in Ω that encircles the singularities of F

and the points − 1
µ(t)

, t ∈ [t0,∞)T.

Since 0 < µmin ≤ µ(t) for all t ∈ T, it follows that T is an isolated time scale.
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Thus, let T = {t0, t1, · · · } where t0 < t1 < · · · . Then, for any tn ∈ T, by Theorem

2.1.21,

ez(tn, t0) = exp

(∫ tn

t0

ξµ(τ)(z)∆τ

)

= exp

(
n−1∑

k=0

Log(1 + zµ(tk))

)

=

n−1∏

k=0

(1 + zµ(tk)) .

This implies e⊖z(tn, t0) =
∏n−1

k=0
1

1+zµ(tk)
.

Again using Theorem 2.1.21, we have

F (z) = L{f}(z) =

∫ ∞

t0

f(t)eσ
⊖z(t, t0)∆t =

∞∑

n=0

f(tn)µ(tn)
n∏

k=0

1

1 + zµ(tk)
.

Fix tm ∈ T. Then, using uniform convergence to interchange the sum and integral,

we have

1

2πi

∫

C

F (z)ez(tm, t0)dz

=
1

2πi

∫

C

(
∞∑

n=0

f(tn)µ(tn)

n∏

k=0

1

1 + zµ(tk)

)
m−1∏

k=0

(1 + zµ(tk))dz

=

∞∑

n=0

f(tn)µ(tn)

[

1

2πi

∫

C

n∏

k=0

1

1 + zµ(tk)

m−1∏

k=0

(1 + zµ(tk))dz

]

=

m−1∑

n=0

f(tn)µ(tn)
1

2πi

∫

C

m∏

k=n+1

(1 + zµ(tk))dz +
1

2πi

∫

C

f(tm)µ(tm)

1 + zµ(tm)
dz

+

∞∑

n=m+1

f(tn)µ(tn)
1

2πi

∫

C

n∏

k=m

1

1 + zµ(tk)
dz. (3.6)

Note that for any 0 ≤ n ≤ m−1,
∏m

k=n+1(1+zµ(tk)) is entire and hence the contour

integral
∫

C

∏m

k=n+1(1 + zµ(tk))dz = 0 for such n. Therefore, the first summation in

(3.6) is 0.
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As for the second term of (3.6), since f(tm)µ(tm)
1+zµ(tm)

has a pole at −1
µ(tm)

of order one

which is encircled by C, by the Cauchy Residue Theorem we have

1

2πi

∫

C

f(tm)µ(tm)

1 + zµ(tm)
dz =

f(tm)µ(tm)

2πi

∫

C

1

1 + zµ(tm)
dz

= f(tm)µ(tm) Res
z=− 1

µ(tm)

1

1 + zµ(tm)

= f(tm)µ(tm)
1

µ(tm)
= f(tm).

We now aim to handle the third term of (3.6) by showing that

1

2πi

∫

C

n∏

k=m

1

1 + zµ(tk)
dz = 0

for every n ≥ m + 1. To do so, fix n ≥ m + 1. Define fn(z) :=
∏n

k=m
1

1+zµ(tk)
. Note

that C encircles all the poles of fn and fn is analytic on {z ∈ C : |z| > R}. Thus, we

can apply the so-called residue theorem at infinity (see, for example, [7, page 185]):

1

2πi

∫

C

fn(z)dz = −Res
z=0

1

z2
fn

(
1

z

)

= −Res
z=0

1

z2

n∏

k=m

1

1 + 1
z
µ(tk)

= −Res
z=0

1

z2

(
z

z + µ(tm)

)(
z

z + µ(tm+1)

) n∏

k=m+2

z

z + µ(tk)

= −Res
z=0

(
1

z + µ(tm)

)(
1

z + µ(tm+1)

) n∏

k=m+2

z

z + µ(tk)
= 0,

since
(

1
z+µ(tm)

)(
1

z+µ(tm+1)

)
∏n

k=m+2
z

z+µ(tk)
does not have a singularity at z = 0. Since

n ≥ m + 1 was arbitrary, it follows that the third term of (3.6) is 0. Therefore, we

have shown that

1

2πi

∫

C

F (z)ez(tm, t0)dz = f(tm),

for all m ∈ N0.
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Turning our attention to the case of an arbitrary time scale, we first consider a

result from complex analysis. An extension of Cauchy’s integral formula given in [9,

Theorem 62.1] is as follows:

Theorem 3.7.2. Let f be analytic in the half-plane Re(z) ≥ γ > 0 such that there

exist constants M > 0, k > 0 such that |f(z)| ≤ M

|z|k
for |z| > r0 in the half-plane for

some r0 > 0. If z0 ∈ C with Re(z0) > γ, then

f(z0) =
−1

2πi

∫ γ+i∞

γ−i∞

f(z)

z − z0

dz =
−1

2π

∫ ∞

−∞

f(z)

z − z0

dy,

where the integration is along the line x = γ; so z = γ + iy.

To get an idea of what the inversion integral should be, consider the following.

Suppose F (z) = L{f}(z). Assuming we can interchange the inverse Laplace trans-

form operator L−1 and a certain integral, we would have

f(t) = L−1{L{f}(z)}(t)

= L−1{F (z)}(t)

= L−1

{
−1

2πi

∫ γ+i∞

γ−i∞

F (s)

s − z
ds

}

(t)

=
1

2πi

∫ γ+i∞

γ−i∞

F (s)L−1

{
1

z − s

}

(t)ds

=
1

2πi

∫ γ+i∞

γ−i∞

F (s)es(t, t0)ds.

Here we have used the fact that L{es(·, t0)}(z) = 1
z−s

on any time scale for an appro-

priate choice of s ∈ C. Of course these are merely formal manipulations, but it does

give us an indication as to what the time scale equivalent of the Laplace inversion

formula should be.



55

Theorem 3.7.3. Let F (z) be analytic in the half-plane Re(z) > α > 0 such that for

each fixed t ∈ [t0,∞)T, there exist M > 0, k > 1, and γ > α such that

|F (γ ⊕ iy)| |eiy(t, t0)| ≤
M

yk
for all y ≥ y0 > 0,

for some y0 > 0. Further, assume F (z) is real-valued whenever z ∈ R and Re(z) > α.

Then, the following integral along the line x = γ converges to some function, say

f : T → R. i.e.,

f(t) =
1

2πi

∫ γ+i∞

γ−i∞

ez(t, t0)F (z)dz.

Proof. Note 1 + zµ(t) = 0 if and only if z = − 1
µ(t)

. Hence, for any z /∈ R, it must be

the case that z is on the negative real axis. Since we are working in the half-plane

Re(z) > α > 0, non-regressivity is not an issue.

Fix t ∈ [t0,∞)T. Now, for any β > 0, we consider 1
2πi

∫ γ+iβ

γ−iβ
F (z)ez(t, t0)dz.

Consider the substitution:

y =
z − γ

i(1 + γµ(t))
=⇒ z = γ + iy(1 + γµ(t)) = γ ⊕ iy,

dy =
1

i(1 + γµ(t))
dz =⇒ dz = i(1 + γµ(t))dy.

Also, the limits of integration with this substitution become

z = γ + iβ =⇒ y =
β

1 + γµ(t)
and z = γ − iβ =⇒ y =

−β

1 + γµ(t)
.
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Thus,

1

2πi

∫ γ+iβ

γ−iβ

F (z)ez(t, t0)dz

=
i(1 + γµ(t))

2πi

∫ β
1+γµ(t)

−β
1+γµ(t)

eγ⊕iy(t, t0)F (γ ⊕ iy)dy

=
(1 + γµ(t))eγ(t, t0)

2π

∫ β
1+γµ(t)

−β
1+γµ(t)

eiy(t, t0)F (γ ⊕ iy)dy

=
eσ

γ(t, t0)

2π

[
∫ 0

−β
1+γµ(t)

eiy(t, t0)F
(

γ + iy(1 + γµ(t))
)

dy

+

∫ β
1+γµ(t)

0

eiy(t, t0)F
(

γ + iy(1 + γµ(t))
)

dy

]

=
eσ

γ(t, t0)

2π

[
∫ β

1+γµ(t)

0

e−iy(t, t0)F
(

γ − iy(1 + γµ(t))
)

dy

+

∫ β
1+γµ(t)

0

eiy(t, t0)F
(

γ + iy(1 + γµ(t))
)

dy

]

.

Since F (z) is real-valued whenever z ∈ R and Re(z) > α, by the Schwarz Reflec-

tion Principle, it follows that F (z) = F (z). Further, by Lemma 2.2.4, eiy(t, t0) =

e−iy(t, t0). So, continuing the calculation we have

=
eσ

γ(t, t0)

π

∫ β
1+γµ(t)

0

Re
[

eiy(t, t0)F
(

γ + iy(1 + γµ(t))
)]

dy

=
eσ

γ(t, t0)

π

∫ β
1+γµ(t)

0

[

U(γ, y(1 + γµ(t))) cosy(t, t0)

− V (γ, y(1 + γµ(t))) siny(t, t0)
]

dy,

where we have used Euler’s formula (see [4, Exercise 3.27]) and taken F (u + iv) =

U(u, v) + iV (u, v).

So, if 1
2πi

∫ γ+i∞

γ−i∞
F (z)ez(t, t0)dz converges, it is real-valued. Finally, to see that

it does in fact converge, using the same substitution as above, note that for any
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sufficiently large β,

∣
∣
∣
∣

1

2πi

∫ γ+iβ

γ−iβ

ez(t, t0)F (z)dz

∣
∣
∣
∣

=
eσ

γ(t, t0)

π

∣
∣
∣
∣
∣

∫ β
1+γµ(t)

0

Re [eiy(t, t0)F (γ ⊕ iy)] dy

∣
∣
∣
∣
∣

≤
eσ

γ(t, t0)

π

∫ β
1+γµ(t)

0

|F (γ ⊕ iy)eiy(t, t0)| dy

≤
eσ

γ(t, t0)

π

∫ ∞

0

|F (γ ⊕ iy)eiy(t, t0)| dy

≤
eσ

γ(t, t0)

π

[∫ y0

0

|F (γ ⊕ iy)eiy(t, t0)| dy +

∫ ∞

y0

M

yk
dy

]

≤
eσ

γ(t, t0)

π

[

Ct,γ +
My1−k

0

k − 1

]

,

since k > 1. Here the bound is independent of β. Thus, as a real-valued function of

β,
∣
∣
∣
∣

1

2πi

∫ γ+iβ

γ−iβ

ez(t, t0)F (z)dz

∣
∣
∣
∣
,

is monotonically increasing, and bounded above, and hence converges as β → ∞.

Thus, the contour integral 1
2πi

∫ γ+i∞

γ−i∞
ez(t, t0)F (z)dz converges.

3.8 Some Calculations

Recall that in the case of the classical Laplace transform on R, for n ∈ N0 we have

1

n!
L{tneαt}(z) =

1

(z − α)n+1
.

The question naturally arises: what is the time scale analog of tn

n!
in the context of

the Laplace transform?
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Definition 3.8.1. Fix α ∈ C ∩ R. For each k ∈ N0, we define the functions jk :

T × T → C recursively by taking j0(t, t0) := 1, and

jk+1(t, t0) :=

∫ t

t0

1

1 + αµ(τ)
jk(τ, t0)∆τ.

Theorem 3.8.2. Let α ∈ C ∩R, and n ∈ N0 be given. Then

L{jn(·, t0)eα(·, t0)} (z) =
1

(z − α)n+1
,

provided

lim
t→∞

jk(t, t0)eα⊖z(t, t0) = 0 for each k = 0, 1, · · · , n.

Proof. For n = 0, from Theorem 3.2.1, we have

L{j0(·, t0)eα(·, t0)}(z) = L{eα(·, t0)}(z) =
1

z − α
.

Note that for any n ∈ N,

j∆
n (t, t0) =

(∫ t

t0

1

1 + αµ(τ)
jn−1(τ, t0)∆τ

)∆

=
1

1 + αµ(t)
jn−1(t, t0).

Proceeding by induction, assume L{jn−1(·, t0)eα(·, t0)} (z) = 1
(z−α)n for some n ≥ 1.

Now consider

L{jn(·, t0)eα(·, t0)}(z)

=

∫ ∞

t0

jn(t, t0)eα(t, t0)e
σ
⊖z(t, t0)∆t

=

∫ ∞

t0

jn(t, t0)(1 + µ(t)(⊖z)(t))eα⊖z(t, t0)∆t
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=
1

α − z

∫ ∞

t0

jn(t, t0)

(
α − z

1 + zµ(t)

)

eα⊖z(t, t0)∆t

=
1

α − z

∫ ∞

t0

jn(t, t0)(α ⊖ z)(t)eα⊖z(t, t0)∆t

=
1

α − z

[

jn(t, t0)eα⊖z(t, t0)
∣
∣
∣

t→∞

t=t0

−

∫ ∞

t0

j∆
n (t, t0)e

σ
α⊖z(t, t0)∆t

]

(by integration by parts)

=
1

α − z

[

0 −

∫ ∞

t0

j∆
n (t, t0)e

σ
α⊖z(t, t0)∆t

]

=
1

z − α

∫ ∞

t0

j∆
n (t, t0) (1 + µ(t)(α ⊖ z)(t)) eα⊖z(t, t0)∆t

=
1

z − α

∫ ∞

t0

(
1

1 + αµ(t)

)

jn−1(t, t0)

(
1 + αµ(t)

1 + zµ(t)

)

eα⊖z(t, t0)∆t

=
1

z − α

∫ ∞

t0

jn−1(t, t0)eα(t, t0)

(
1

1 + zµ(t)

)

e⊖z(t, t0)∆t

=
1

z − α

∫ ∞

t0

jn−1(t, t0)eα(t, t0) (1 + µ(t)(⊖z)(t)) e⊖z(t, t0)∆t

=
1

z − α

∫ ∞

t0

jn−1(t, t0)eα(t, t0)e
σ
⊖z(t, t0)∆t

=
1

z − α
L{jn−1(·, t0)eα(·, t0)} (z) =

1

(z − α)n+1
.

Theorem 3.8.3. Let α, β ∈ C be regressive. Then

L
{

e α
1+βµ

(·, t0)eβ(·, t0)
}

(z) = L{eβ(·, t0)}(z − α) =
1

z − (α + β)
,

for those z ∈ R ∩ C such that limt→∞ e(α+β)⊖z(t, t0) = 0.



60

Proof. Note that for any t ∈ T,

α

1 + βµ(t)
⊕ β =

α

1 + βµ(t)
+ β +

αβµ(t)

1 + βµ(t)

=
α + β + β2µ(t) + αβµ(t)

1 + αβµ(t)

=
(α + β)(1 + βµ(t))

1 + βµ(t)

= α + β.

Hence

L
{

e α
1+βµ

(·, t0)eβ(·, t0)
}

(z) = L{eα+β(·, t0)} (z) =
1

z − (α + β)
.

On the other hand, L{eβ(·, t0)}(z − α) = 1
z−β

∣
∣
∣
z=z−α

= 1
z−(α+β)

.

Theorem 3.8.4. For α 6= 0,

L−1

{
1

(z2 + α2)2

}

(t) =
sinα(t, t0)

2α3
−

cosα(t, t0)

2α2

∫ t

t0

∆τ

1 + α2µ2(τ)

−
sinα(t, t0)

2α

∫ t

t0

µ(τ)∆τ

1 + α2µ2(τ)
,

for those z ∈ R ∩ C such that

lim
t→∞

jk(t, t0)eiα⊖z(t, t0) = 0 and lim
t→∞

jk(t, t0)e−iα⊖z(t, t0) = 0, k = 0, 1.

Proof. Let α 6= 0 be given. Note that by partial fraction decomposition, we have

1

(z2 + α2)2
=

−1

4α3i(z + iα)
−

1

4α2i(z + iα)2
+

1

4α3i(z − iα)
−

1

4α2i(z − iα)2
.

We now take the inverse Laplace transform and apply Theorem 3.2.1 and Theorem
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3.8.2, to obtain

L−1

{
1

(z2 + α2)2

}

(t)

=
−1

4α3i
L−1

{
1

z + iα

}

(t) −
1

4α2i
L−1

{
1

(z + iα)2

}

(t)

+
1

4α3i
L−1

{
1

z − iα

}

(t) −
1

4α2i
L−1

{
1

(z − iα)2

}

(t)

=
−1

4α3i
e−iα(t, t0) −

1

4α2i

(

e−iα(t, t0)

∫ t

t0

∆τ

1 − iαµ(τ)

)

+
1

4α3i
eiα(t, t0) −

1

4α2i

(

eiα(t, t0)

∫ t

t0

∆τ

1 + iαµ(τ)

)

=
1

2α3

(
eiα(t, t0) − e−iα(t, t0)

2i

)

−
1

4α2

(

e−iα(t, t0)

∫ t

t0

1 + iαµ(τ)

1 + α2µ2(τ)
∆τ

+eiα(t, t0)

∫ t

t0

1 − iαµ(τ)

1 + α2µ2(τ)
∆τ

)

=
sinα(t, t0)

2α3
−

1

2α2

(
e−iα(t, t0) + eiα(t, t0)

2

)∫ t

t0

∆τ

1 + α2µ2(τ)

−
1

2α

(
eiα(t, t0) − e−iα(t, t0)

2i

)∫ t

t0

µ(τ)∆τ

1 + α2µ2(τ)

=
sinα(t, t0)

2α3
−

cosα(t, t0)

2α2

∫ t

t0

∆τ

1 + α2µ2(τ)
−

sinα(t, t0)

2α

∫ t

t0

µ(τ)∆τ

1 + α2µ2(τ)
.

Similarly we can show for α 6= 0,

L−1

{
z

(z2 + α2)2

}

(t) =
sinα(t, t0)

2α

∫ t

t0

∆τ

1 + α2µ2(τ)
−

cosα(t, t0)

2

∫ t

t0

µ(τ)∆τ

1 + α2µ2(τ)
.

Now, since

z2

(z2 + α2)2
=

1

z2 + α2
−

α2

(z2 + α2)2
and

z3

(z2 + α2)2
=

z

z2 + α2
−

α2z

(z2 + α2)2
,
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we can apply the above to obtain:

L−1

{
z2

(z2 + α2)2

}

(t) =
sinα(t, t0)

2α
+

cosα(t, t0)

2

∫ t

t0

∆τ

1 + α2µ2(τ)

−
α sinα(t, t0)

2

∫ t

t0

µ(τ)∆τ

1 + α2µ2(τ)
,

and

L−1

{
z3

(z2 + α2)2

}

(t) = cosα(t, t0) −
α sinα(t, t0)

2

∫ t

t0

∆τ

1 + α2µ2(τ)

−
α2 cosα(t, t0)

2

∫ t

t0

µ(τ)∆τ

1 + α2µ2(τ)
.

These, and a few other similar calculations are collected in Tables 3.1 and 3.2.

Note that in these tables we have that L{f}(z) = F (z).
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F (z) f(t)
1

(z − α)n+1
, n ∈ N0 jn(t, t0)eα(t, t0)

αβ

(z2 + α2)(z2 + β2)

α sinβ(t, t0) − β sinα(t, t0)

α2 − β2

z

(z2 + α2)(z2 + β2)

cosβ(t, t0) − cosα(t, t0)

α2 − β2

z2

(z2 + α2)(z2 + β2)

α sinα(t, t0) − β sinβ(t, t0)

α2 − β2

z3

(z2 + α2)(z2 + β2)

α2 cosα(t, t0) − β2 cosβ(t, t0)

α2 − β2

Table 3.1: Laplace Transform formulas for α 6= β.

F (z) f(t)
1

(z2+α2)2
sinα(t,t0)

2α3 − cosα(t,t0)
2α2

∫ t

t0

∆τ
1+α2µ2(τ)

− sinα(t,t0)
2α

∫ t

t0

µ(τ)∆τ

1+α2µ2(τ)
z

(z2+α2)2
sinα(t,t0)

2α

∫ t

t0

∆τ
1+α2µ2(τ)

− cosα(t,t0)
2

∫ t

t0

µ(τ)∆τ

1+α2µ2(τ)
z2

(z2+α2)2
sinα(t,t0)

2α
+ cosα(t,t0)

2

∫ t

t0

∆τ
1+α2µ2(τ)

− α sinα(t,t0)
2

∫ t

t0

µ(τ)∆τ

1+α2µ2(τ)

z3

(z2+α2)2
cosα(t, t0) −

α sinα(t,t0)
2

∫ t

t0

∆τ
1+α2µ2(τ)

− α2 cosα(t,t0)
2

∫ t

t0

µ(τ)∆τ

1+α2µ2(τ)

Table 3.2: Laplace Transform formulas for α 6= 0.
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Chapter 4

The Transport Equation

4.1 Introduction

In partial differential equations, the transport initial value problem

ut(t, s) + us(t, s) = 0, t ≥ s ≥ 0,

u(t, 0) = f(t), t ∈ [0,∞),

has a unique solution given by u(t, s) = f(t − s). If we would like to consider the

analog of the transport equation on time scales, we run into an immediate problem:

for an arbitrary time scale, we are not guaranteed that t − s ∈ T and hence f(t − s)

could be a nonsense statement on that particular time scale, and so f(t − s) has no

chance of being the solution of the transport equation in this case. In this chapter

we will investigate this problem in the special case that T is an isolated time scale.

In particular, we will develop two recursive representations for the unique solution of

the transport dynamic initial value problem, as well as give several examples.

In the examples considered here we will find closed-form solutions to the transport
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partial dynamic initial value problem on particular time scales; however, it should be

noted that the recursive representations developed in Section 4.2 are sufficient for

numerically finding the solution of the transport dynamic equation on any isolated

time scale.

Note that in the case of the transport equation on R or Z, we expect the initial

function to simply “shift” in time. In other words, we have a right traveling wave

solution and the wave is not distorted in any fashion, just shifted. However, as we

will see in Examples 4.3.2, 4.3.4, and 4.3.6, once we find a closed-form solution to the

transport dynamic equation and graph the solution, we will find that some distortion

occurs. Why? It turns out that when the graininess of the time scale is not constant,

as the solution progresses in time, it must compensate for this nonconstant graininess.

It does so by distorting the initial function in some fashion.

One final note in way of introduction: while studying this particular partial dy-

namic equation is interesting in its own right, it should be pointed out that it is

crucial in the development of the convolution theorem on time scales (see [3]).

Throughout, we will let T be an isolated time scale that is unbounded above with

t0 ∈ T fixed. Since T is isolated, we can take T = {t0, t1, · · · } where t0 < t1 < t2 < · · · .

The transport partial dynamic initial value problem that we will be considering is

given by

u∆t(t, σ(s)) + u∆s(t, s) = 0, t, s ∈ T, t ≥ s ≥ t0, (4.1)

u(t, t0) = f(t), t ∈ [t0,∞)T, (4.2)

where f : [t0,∞)T → C.

There is a useful result from Bohner and Guseinov’s paper on the convolution on

time scales (see [3, Lemma 2.4]) that we will make use of in this chapter:
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Lemma 4.1.1. Let T be any time scale. If u is a solution of the partial dynamic

initial value problem (4.1)–(4.2), then u(t, t) = f(t0) for any t ∈ [t0,∞)T.

Throughout, we will use some notation that is in the spirit of difference equations.

For k ∈ N, n ∈ N0 such that 1 ≤ k ≤ n + 1, define

[µ(tn)]k :=

n∏

i=n−k+1

µ(ti) = µ(tn)µ(tn−1) · · ·µ(tn−k+2)µ(tn−k+1).

4.2 The Transport Equation on an Isolated Time

Scale

We will now examine the solution of the transport equation (4.1)–(4.2) in the case

that the time scale in question is isolated. First, in Theorem 4.2.1 we show that on an

isolated time scale, the solution of (4.1)–(4.2) is unique. In Theorems 4.2.2 and 4.2.3

we develop two representations of this unique solution, both of which use recursion.

This section is concluded by proving a quick result that has to do with the form of

the solution of the transport equation on an isolated time scale (see Theorem 4.2.6).

Theorem 4.2.1. Let T be an isolated time scale. Then the partial dynamic initial

value problem (4.1)–(4.2) has a unique solution.

Proof. Assume u is a solution to (4.1)–(4.2). First note that since u solves the partial

dynamic equation (4.1) and T is an isolated time scale, for t ≥ s ≥ t0 we have

0 = u∆t(t, σ(s)) + u∆s(t, s) =
u(σ(t), σ(s)) − u(t, σ(s))

µ(t)
+

u(t, σ(s)) − u(t, s)

µ(s)
.
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Solving for u(σ(t), σ(s)), it follows that

u(σ(t), σ(s)) = u(t, σ(s))

(

1 −
µ(t)

µ(s)

)

+
µ(t)

µ(s)
u(t, s). (4.3)

We need to show that u(t, s) is uniquely determined for any t ≥ s ≥ t0. Let

t, s ∈ T such that t ≥ s ≥ t0 be arbitrary but fixed. Since T is isolated, there exist

n, m ∈ N0 such that t = tn and s = tm. So, for any n, m ∈ N0 with n ≥ m, we must

show that u(tn, tm) is uniquely determined. We will do this in several cases. First,

consider the case when m = 0. Note that u(tn, t0) = f(tn) for any n ≥ 0 by the initial

condition (4.2). i.e., u(tn, t0) is uniquely determined from the initial data.

Case: Assume m = 1.

We claim that u(tn, t1) is uniquely determined for n ≥ 1. We will prove this using

induction on n. For the base case note that by Lemma 4.1.1, u(t1, t1) = f(t0) (and

hence is uniquely determined), and from equation (4.3), it follows that

u(t2, t1) = u(σ(t1), σ(t0)) = u(t1, t1)

(

1 −
µ(t1)

µ(t0)

)

+
µ(t1)

µ(t0)
u(t1, t0).

Since u(t1, t1) = f(t0) and u(t1, t0) = f(t1), it follows that u(t2, t1) is uniquely deter-

mined by the initial data.

Proceeding by induction, assume u(tn, t1) for some n ≥ m = 1 is uniquely deter-

mined from the initial data. Then, by equation (4.3),

u(tn+1, t1) = u(σ(tn), σ(t0)) = u(tn, t1)

(

1 −
µ(tn)

µ(t0)

)

+
µ(tn)

µ(t0)
u(tn, t0).

Here u(tn, t1) is uniquely determined by the induction hypothesis, and u(tn, t0) =

f(tn) is given by the initial condition. Therefore, u(tn+1, t1) is uniquely determined

from the initial data. Hence, it follows by induction that u(tn, t1) is uniquely deter-



68

mined for any n ≥ m = 1.

Case: Assume m = 2.

We now claim that u(tn, t2) is uniquely determined for n ≥ m = 2. As above, we

will prove this using induction on n. For the base case note that by Lemma 4.1.1,

u(t2, t2) = f(t0) (and hence is uniquely determined).

Proceeding by induction, assume that for some n ≥ m = 2, u(tn, t2) is uniquely

determined from the initial data. Then, by equation (4.3),

u(tn+1, t2) = u(σ(tn), σ(t1)) = u(tn, t2)

(

1 −
µ(tn)

µ(t1)

)

+
µ(tn)

µ(t1)
u(tn, t1).

Here u(tn, t2) is uniquely determined by the induction hypothesis, and u(tn, t1) is

uniquely determined by the previous case. Therefore, u(tn+1, t2) is uniquely deter-

mined. Hence, it follows by induction that u(tn, t2) is uniquely determined for any

n ≥ m = 2.

Continuing this process inductively, we find that for any n, m ∈ N0 such that

n ≥ m, u(tn, tm) is uniquely determined which implies that for any t ≥ s ≥ t0, u(t, s)

is uniquely determined from the initial data. Therefore, u is the unique solution to

(4.1).

Theorem 4.2.2. For an isolated time scale T = {t0, t1, · · · } where t0 < t1 < · · · , the

unique solution of (4.1)–(4.2) is given by

u(tn+j, tn) =

j
∑

i=0

Aj,i(n)f(ti), n, j ∈ N0,
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where

Aj,i(n) :=







n−1∑

k=0

[µ(tn+j−1)]
j

[µ(tn+j−1−k)]
j

(

1 −
µ(tn+j−1−k)

µ(tn−1−k)

)

Aj−1,i(n − k), for i < j,

[µ(tn+j−1)]
j

[µ(tj−1)]
j

, for i = j.

Before we prove Theorem 4.2.2, it should be noted that the solution given here is a

linear combination of the initial data and that each Aj,i(n) is simply the coefficient of

the f(ti) term in this linear combination. So, when presented with a specific isolated

time scale, in order to find the solution to (4.1)–(4.2), we simply need to resolve the

recursion in the definition of the Aj,i(n) coefficients for each 0 ≤ i ≤ j.

Proof. Let t ≥ s ≥ t0 be given. Then there exist n ∈ N and j ∈ N0 such that t = tn+j

and s = tn. Define u(tn+j, tn) as in the statement of the theorem.

Note that

u∆t(t, σ(s)) = u∆t(tn+j, tn+1)

=
1

µ(tn+j)
[u(tn+j+1, tn+1) − u(tn+j, tn+1)]

=
1

µ(tn+j)

[
j
∑

i=0

Aj,i(n + 1)f(ti) −

j−1
∑

i=0

Aj−1,i(n + 1)f(ti)

]

=
1

µ(tn+j)

[

Aj,j(n + 1)f(tj) +

j−1
∑

i=0

(

Aj,i(n + 1) − Aj−1,i(n + 1)
)

f(ti)

]

.

(4.4)
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Similarly,

−u∆s(t, s) = −u∆s(tn+j , tn)

=
1

µ(tn)
[u(tn+j, tn) − u(tn+j, tn+1)]

=
1

µ(tn)

[
j
∑

i=0

Aj,i(n)f(ti) −

j−1
∑

i=0

Aj−1,i(n + 1)f(ti)

]

=
1

µ(tn)

[

Aj,j(n)f(tj) +

j−1
∑

i=0

(

Aj,i(n) − Aj−1,i(n + 1)
)

f(ti)

]

. (4.5)

Hence, u∆t(t, σ(s)) = −u∆s(t, s) (and so (4.1) is satisfied) if and only if (4.4)

equals (4.5). To see that this is in fact the case, we will show that for each 0 ≤ i ≤ j,

the coefficients of f(ti) in (4.4) and (4.5) are equal.

First consider the coefficient of f(tj) in (4.4). Note that

1

µ(tn+j)
Aj,j(n + 1) =

1

µ(tn+j)

[µ(tn+j)]
j

[µ(tj−1)]
j

=
µ(tn+j−1) · · ·µ(tn+1)

[µ(tj−1)]
j

=
1

µ(tn)

µ(tn+j−1) · · ·µ(tn+1)µ(tn)

[µ(tj−1)]
j

=
1

µ(tn)

[µ(tn+j−1)]
j

[µ(tj−1)]
j

=
1

µ(tn)
Aj,j(n).

Now fix i such that 0 ≤ i ≤ j − 1. We aim to show that the coefficient of f(ti) in
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(4.4) matches the coefficient of f(ti) in (4.5). To see this, first consider

1

µ(tn+j)
Aj,i(n + 1) =

1

µ(tn+j)

n∑

k=0

[µ(tn+j)]
j

[µ(tn+j−k)]
j

(

1 −
µ(tn+j−k)

µ(tn−k)

)

Aj−1,i(n + 1 − k)

=
1

µ(tn+j)

n∑

k=0

µ(tn+j)µ(tn+j−1) · · ·µ(tn+1)

µ(tn+j−k)µ(tn+j−1−k) · · ·µ(tn+1−k)

·

(

1 −
µ(tn+j−k)

µ(tn−k)

)

Aj−1,i(n + 1 − k)

=
1

µ(tn)

n∑

k=0

µ(tn+j−1) · · ·µ(tn+1)µ(tn)

µ(tn+j−k)µ(tn+j−1−k) · · ·µ(tn+1−k)

·

(

1 −
µ(tn+j−k)

µ(tn−k)

)

Aj−1,i(n + 1 − k)

=
1

µ(tn)

n∑

k=0

[µ(tn+j−1)]
j

[µ(tn+j−k)]
j

(

1 −
µ(tn+j−k)

µ(tn−k)

)

Aj−1,i(n + 1 − k)

(reindexing) =
1

µ(tn)

n−1∑

k=−1

[µ(tn+j−1)]
j

[µ(tn+j−1−k)]
j

(

1 −
µ(tn+j−1−k)

µ(tn−k−1)

)

Aj−1,i(n − k)

=
1

µ(tn)

[
[µ(tn+j−1)]

j

[µ(tn+j)]
j

(

1 −
µ(tn+j)

µ(tn)

)

Aj−1,i(n + 1)

]

+
1

µ(tn)

n−1∑

k=0

[µ(tn+j−1)]
j

[µ(tn+j−1−k)]
j

(

1 −
µ(tn+j−1−k)

µ(tn−k−1)

)

Aj−1,i(n − k)

=

[(
1

µ(tn+j)
−

1

µ(tn)

)

Aj−1,i(n + 1)

]

+
1

µ(tn)
Aj,i(n).

Since i was arbitrary, for any 0 ≤ i ≤ j − 1, it follows that

1

µ(tn+j)

(

Aj,i(n + 1) − Aj−1,i(n + 1)
)

=
1

µ(tn)

(

Aj,i(n) − Aj−1,i(n + 1)
)

.

Therefore, for each i = 0, · · · , j, the coefficients of f(ti) are equal in (4.4) and (4.5),

and so we can conclude that u∆t(t, σ(s)) = −u∆s(t, s).

To see that the initial condition is satisfied, note that Aj,j(0) = 1 and for i 6= j,

Aj,i(0) = 0 by the convention that a sum from 0 to −1 is taken to be 0. Therefore,
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u(tj, t0) =
∑j

i=0 Aj,i(0)f(ti) = f(tj). So, we have shown that u(t, s) solves the partial

dynamic equation as well as satisfies the initial condition. Finally, by Theorem 4.2.1,

u is the unique solution of (4.1)–(4.2).

In practice, when explicitly calculating the Aj,i(n) terms for a particular time

scale, the recursive definition given in Theorem 4.2.2 lends to some cancellation. For

example, noting that

Aj,j(n) =
[µ(tn+j−1)]

j

[µ(tj−1)]
j

,

it follows that

Aj,j−1(n) =
n−1∑

k=0

[µ(tn+j−1)]
j

[µ(tn+j−1−k)]
j

(

1 −
µ(tn+j−1−k)

µ(tn−1−k)

)

Aj−1,j−1(n − k)

=
n−1∑

k=0

[µ(tn+j−1)]
j

[µ(tn+j−1−k)]
j

(

1 −
µ(tn+j−1−k)

µ(tn−1−k)

)(
[µ(tn+j−2−k)]

j−1

[µ(tj−2)]
j−1

)

=
[µ(tn+j−1)]

j

[µ(tj−2)]
j−1

n−1∑

k=0

[µ(tn+j−2−k)]
j−1

[µ(tn+j−1−k)]
j

(

1 −
µ(tn+j−1−k)

µ(tn−1−k)

)

=
[µ(tn+j−1)]

j

[µ(tj−2)]
j−1

n−1∑

k=0

1

µ(tn+j−1−k)

(

1 −
µ(tn+j−1−k)

µ(tn−1−k)

)

=
[µ(tn+j−1)]

j

[µ(tj−2)]
j−1

n−1∑

k=0

(
1

µ(tn+j−1−k)
−

1

µ(tn−1−k)

)

. (4.6)

Similarly, it can be shown that

Aj,j−2(n) =
[µ(tn+j−1)]

j

[µ(tj−3)]
j−2

n−1∑

k1=0

(
1

µ(tn+j−1−k1)
−

1

µ(tn−1−k1)

)

·
n−1−k1∑

k2=0

(
1

µ(tn+j−2−k1−k2)
−

1

µ(tn−1−k1−k2)

)

. (4.7)

The calculations (4.6) and (4.7) motivate the following representation for the

solution of (4.1)–(4.2).
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Theorem 4.2.3. The coefficients Aj,i(n) in Theorem 4.2.2 can be written as follows:

Aj,i(n) =
[µ(tn+j−1)]

j

[µ(ti−1)]i
Bj,i,0(n),

where

Bj,i,∆(n) =







n−1∑

k=0

(
1

µ(tn+j−∆−1−k)
−

1

µ(tn−1−k)

)

Bj,i,∆+1(n − k), for j − i < ∆,

1, for j − i = ∆,

and 0 ≤ ∆ ≤ j − i.

Of course, this representation still uses recursion for the Bj,i,∆(n) terms. Note

that in each step of the recursion, we add one to ∆ and hence we will eventually

arrive at ∆ = j − i and thus the recursion will terminate after a finite number

of steps. Therefore, when completely expanded out, Bj,i,∆(n) will consist of j − i

nested summations. Despite the use of recursion again here, this representation for

the solution is an improvement as the cancellation that occurs when expanding the

Aj,i(n) terms from Theorem 4.2.2 is already accounted for. Before proving Theorem

4.2.3, we need a technical lemma.

Lemma 4.2.4. For any i, m, n ∈ N0, we have

Bi+m,i,0(n) = Bi+m+1,i,1(n),

where Bj,i,∆(n) is as defined in Theorem 4.2.3.

Proof. The overall idea of this proof is to expand out Bi+m,i,0(n) using the recursive

definition to obtain m nested summations. We will then rewrite the indices of the

points in the time scale in an appropriate way in order to collapse the expansion back
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down and ultimately end up with Bi+m+1,i,1(n). While this idea is straightforward,

the details do become a little bit cumbersome.

Let i, n ∈ N0 be arbitrary but fixed. If m = 0, then by definition of Bj,i,∆(n),

Bi+m,i,0(n) = Bi,i,0(n) = 1, and

Bi+m+1,i,1(n) = Bi+1,i,1(n) = 1.

So, in the base case where m = 0, we have Bi+m,i,0(n) = Bi+m+1,i,1(n) as desired.

Assume m ≥ 1. Then,

Bi+m,i,0(n) =

n−1∑

k1=0

(
1

µ(tn+(i+m)−0−1−k1
)
−

1

µ(tn−1−k1)

)

Bi+m,i,1(n − k1)

=
n−1∑

k1=0

(
1

µ(tn+i+m−1−k1)
−

1

µ(tn−1−k1)

)

Bi+m,i,1(n − k1)

=
n−1∑

k1=0

(
1

µ(tn+i+m−1−k1)
−

1

µ(tn−1−k1)

)

·
n−k1−1∑

k2=0

(
1

µ(tn+i+m−2−k1−k2)
−

1

µ(tn−1−k1−k2)

)

Bi+m,i,2(n − k1 − k2)

=

n−1∑

k1=0

(
1

µ(tn+i+m−1−k1)
−

1

µ(tn−1−k1)

)

·
n−k1−1∑

k2=0

(
1

µ(tn+i+m−2−k1−k2)
−

1

µ(tn−1−k1−k2)

)

·
n−k1−k2−1∑

k3=0

(
1

µ(tn+i+m−3−k1−k2−k3)
−

1

µ(tn−1−k1−k2−k3)

)

· Bi+m,i,3(n − k1 − k2 − k3).
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Continuing this process, after m − 1 steps we have

=

n−1∑

k1=0

(
1

µ(tn+i+m−1−k1)
−

1

µ(tn−1−k1)

)

·
n−k1−1∑

k2=0

(
1

µ(tn+i+m−2−k1−k2)
−

1

µ(tn−1−k1−k2)

)

· . . . ·

·

n−k1−···
−km−2−1
∑

km−1=0

(
1

µ(tn+i+m−(m−1)−k1−···−km−1)
−

1

µ(tn−1−k1−···−km−1)

)

· Bi+m,i,m−1(n − k1 − · · · − km−1)

=

n−1∑

k1=0

(
1

µ(tn+i+m−1−k1)
−

1

µ(tn−1−k1)

)

·
n−k1−1∑

k2=0

(
1

µ(tn+i+m−2−k1−k2)
−

1

µ(tn−1−k1−k2)

)

· . . . ·

·

n−k1−···
−km−2−1
∑

km−1=0

(
1

µ(tn+i+m−(m−1)−k1−···−km−1)
−

1

µ(tn−1−k1−···−km−1)

)

·

n−k1−···
−km−1−1
∑

km=0

(
1

µ(tn+i+m−m−k1−···−km
)
−

1

µ(tn−1−k1−···−km
)

)

· Bi+m,i,m(n − k1 − · · · − km). (4.8)

By definition of Bj,i,∆(n), it follows that both Bi+m,i,m(n − k1 − · · · − km) = 1 and

Bi+m+1,i,m+1(n−k1−· · ·−km) = 1. Hence, we can replace Bi+m,i,m(n−k1−· · ·−km)

with Bi+m+1,i,m+1(n−k1 −· · ·−km) in (4.8). Further, in the innermost summation of

(4.8), we will rewrite the index of t in an appropriate way. So continuing from (4.8),
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we have

=

n−1∑

k1=0

(
1

µ(tn+i+m−1−k1)
−

1

µ(tn−1−k1)

)

·
n−k1−1∑

k2=0

(
1

µ(tn+i+m−2−k1−k2)
−

1

µ(tn−1−k1−k2)

)

· . . . ·

·

n−k1−···
−km−2−1
∑

km−1=0

(
1

µ(tn+i+m−(m−1)−k1−···−km−1)
−

1

µ(tn−1−k1−···−km−1)

)

·

n−k1−···
−km−1−1
∑

km=0

(
1

µ(t(n−k1−···−km−1)+(i+m+1)−m−1−km
)
−

1

µ(t(n−k1−···−km−1)−1−km
)

)

· Bi+m+1,i,m+1(n − k1 − · · · − km). (4.9)

Looking at the innermost summation, we see that when compared to the definition

of Bj,i,∆(n) given in the statement of Theorem 4.2.3, n in the definition is n − k1 −

· · · − km−1 here, j in the definition is i + m + 1 here, and ∆ in the definition is m

here. Therefore, the innermost sum in (4.9) reduces to

n−k1−···
−km−1−1
∑

km=0

(
1

µ(t(n−k1−···−km−1)+(i+m+1)−m−1−km
)
−

1

µ(t(n−k1−···−km−1)−1−km
)

)

· Bi+m+1,i,m+1(n − k1 − · · · − km)

= Bi+m+1,i,m(n − k1 − · · · − km−1).
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Therefore, substituting this in and continuing from (4.9), we obtain:

=
n−1∑

k1=0

(
1

µ(tn+i+m−1−k1)
−

1

µ(tn−1−k1)

)

·
n−k1−1∑

k2=0

(
1

µ(tn+i+m−2−k1−k2)
−

1

µ(tn−1−k1−k2)

)

· . . . ·

·

n−k1−···
−km−2−1
∑

km−1=0

(
1

µ(tn+i+m−(m−1)−k1−···−km−1
)
−

1

µ(tn−1−k1−···−km−1)

)

· Bi+m+1,i,m(n − k1 − · · · − km−1)

=
n−1∑

k1=0

(
1

µ(tn+i+m−1−k1)
−

1

µ(tn−1−k1)

)

·
n−k1−1∑

k2=0

(
1

µ(tn+i+m−2−k1−k2)
−

1

µ(tn−1−k1−k2)

)

· . . . ·

·

n−k1−···
−km−2−1
∑

km−1=0

(
1

µ(t(n−k1−···−km−2)+(i+m+1)−(m−1)−1−km−1
)
−

1

µ(t(n−k1−···−km−2)−1−km−1
)

)

· Bi+m+1,i,m(n − k1 − · · · − km−1). (4.10)

Again looking at the innermost summation, we see that when compared to the def-

inition of Bj,i,∆(n) given in the statement of Theorem 4.2.3, n in the definition is

n− k1 − · · ·− km−2 here, j in the definition is i + m + 1 here, and ∆ in the definition
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is m − 1 here. Therefore, the innermost sum in (4.10) reduces to

n−k1−···
−km−2−1
∑

km−1=0

(
1

µ(t(n−k1−···−km−2)+(i+m+1)−(m−1)−1−km−1 )
−

1

µ(t(n−k1−···−km−2)−1−km−1)

)

· Bi+m+1,i,m(n − k1 − · · · − km−1)

= Bi+m+1,i,m−1(n − k1 − · · · − km−2).

Substituting and continuing this iterative process from (4.10), it follows that

=
n−1∑

k1=0

(
1

µ(tn+i+m−1−k1)
−

1

µ(tn−1−k1)

)

·
n−k1−1∑

k2=0

(
1

µ(tn+i+m−2−k1−k2)
−

1

µ(tn−1−k1−k2)

)

· . . . ·

· Bi+m+1,i,m−1(n − k1 − · · · − km−2)

...

=

n−1∑

k1=0

(
1

µ(tn+i+m−1−k1)
−

1

µ(tn−1−k1)

)

·
n−k1−1∑

k2=0

(
1

µ(tn+i+m−2−k1−k2)
−

1

µ(tn−1−k1−k2)

)

· Bi+m+1,i,3(n − k1 − k2)
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=

n−1∑

k1=0

(
1

µ(tn+i+m−1−k1)
−

1

µ(tn−1−k1)

)

·
n−k1−1∑

k2=0

(
1

µ(t(n−k1)+(i+m+1)−2−1−k2)
−

1

µ(t(n−k1)−1−k2)

)

· Bi+m+1,i,3(n − k1 − k2)

=
n−1∑

k1=0

(
1

µ(tn+i+m−1−k1)
−

1

µ(tn−1−k1)

)

Bi+m+1,i,2(n − k1)

=
n−1∑

k1=0

(
1

µ(tn+(i+m+1)−1−1−k1)
−

1

µ(tn−1−k1)

)

Bi+m+1,i,2(n − k1)

= Bi+m+1,i,1(n).

Recall that this lengthy calculation began with Bi+m,i,0(n), and hence we have

shown for any i, m, n ∈ N0,

Bi+m,i,0(n) = Bi+m+1,i,1(n).

With this lemma in hand, we are now in a position to prove Theorem 4.2.3.

Proof of Theorem 4.2.3. Let i, j ∈ N0 such that j ≥ i be arbitrary but fixed. We will

use induction on m := j − i. Hence, j = i + m, and we aim to show that for any

i, n, m ∈ N0, we have

Aj,i(n) = Ai+m,i(n) =
[µ(tn+i+m−1)]

i+m

[µ(ti−1)]i
Bi+m,i,0(n) =

[µ(tn+j−1)]
j

[µ(ti−1)]i
Bj,i,0(n). (4.11)

The base case is m = 0 which implies i = j. In this case, starting with the right-hand
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side of (4.11), we have

[µ(tn+j−1)]
j

[µ(ti−1)]i
Bj,i,0(n) =

[µ(tn+j−1)]
j

[µ(tj−1)]
j

Bj,j,0(n) =
[µ(tn+j−1)]

j

[µ(tj−1)]
j

= Aj,j(n),

where we have used the definition of Aj,j(n) given in the statement of Theorem 4.2.2.

Proceeding by induction, assume that for some m ≥ 0, and any i, n ∈ N0, that

statement (4.11) holds. Now, from the definition of Aj,i(n), it follows that

Ai+m+1,i(n) =

n−1∑

k=0

[µ(tn+(i+m+1)−1)]
i+m+1

[µ(tn+(i+m+1)−1−k)]i+m+1

·

(

1 −
µ(tn+(i+m+1)−1−k)

µ(tn−1−k)

)

Ai+m,i(n − k)

(by induction

hypothesis)
=

n−1∑

k=0

[µ(tn+i+m)]i+m+1

[µ(tn+i+m−k)]i+m+1

(

1 −
µ(tn+i+m−k)

µ(tn−1−k)

)

·

(
[µ(t(n−k)+i+m−1)]

i+m

[µ(ti−1)]i
Bi+m,i,0(n − k)

)

=
[µ(tn+i+m)]i+m+1

[µ(ti−1)]i

n−1∑

k=0

[µ(t(n−k)+i+m−1)]
i+m

[µ(tn+i+m−k)]i+m+1

·

(

1 −
µ(tn+i+m−k)

µ(tn−1−k)

)

Bi+m,i,0(n − k). (4.12)

Focusing our attention on the summation in (4.12), note that

n−1∑

k=0

[µ(t(n−k)+i+m−1)]
i+m

[µ(tn+i+m−k)]i+m+1

(

1 −
µ(tn+i+m−k)

µ(tn−1−k)

)

Bi+m,i,0(n − k)

=

n−1∑

k=0

µ(tn−k+i+m−1)µ(tn−k+i+m−2) · · ·µ(tn−k+i+m−1−(i+m)+1)

µ(tn−k+i+m)µ(tn−k+i+m−1) · · ·µ(tn−k+i+m−(i+m+1)+1)

·

(

1 −
µ(tn+i+m−k)

µ(tn−1−k)

)

Bi+m,i,0(n − k)
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=

n−1∑

k=0

1

µ(tn−k+i+m)

(

1 −
µ(tn+i+m−k)

µ(tn−1−k)

)

Bi+m,i,0(n − k)

=

n−1∑

k=0

(
1

µ(tn−k+i+m)
−

1

µ(tn−1−k)

)

Bi+m,i,0(n − k)

=

n−1∑

k=0

(
1

µ(tn−k+i+m)
−

1

µ(tn−1−k)

)

Bi+m+1,i,1(n − k) (by Lemma 4.2.4)

=

n−1∑

k=0

(
1

µ(tn+(i+m+1)−0−1−k)
−

1

µ(tn−1−k)

)

Bi+m+1,i,1(n − k)

= Bi+m+1,i,0(n).

For the final equality, we have used the definition of Bj,i,∆(n) given in the statement

of Theorem 4.2.3: j in the definition is i + m + 1 here, and ∆ in the definition is 0

here. Therefore, from (4.12) we have

Ai+m+1,i(n) =
[µ(tn+i+m)]i+m+1

[µ(ti−1)]i

n−1∑

k=0

[µ(t(n−k)+i+m−1)]
i+m

[µ(tn+i+m−k)]i+m+1

·

(

1 −
µ(tn+i+m−k)

µ(tn−1−k)

)

Bi+m,i,0(n − k)

=
[µ(tn+i+m)]i+m+1

[µ(ti−1)]i
Bi+m+1,i,0(n)

=
[µ(tn+i+(m+1)−1)]

i+(m+1)

[µ(ti−1)]i
Bi+(m+1),i,0(n)

as desired. Hence, by induction, for any n, j, i ∈ N0 such that j ≥ i, we have

Aj,i(n) =
[µ(tn+j−1)]

j

[µ(ti−1)]i
Bj,i,0(n).

We conclude this section with one quick result about the coefficients of the f(ti)

terms, 0 ≤ i ≤ j, in the solution of (4.1)–(4.2) given in Theorem 4.2.2. It turns out,
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regardless of the initial function f(t), for any j, n ∈ N0, the coefficients Aj,i(n) sum to

one when summing with respect to i. To prove this, we first need a straightforward

lemma.

Lemma 4.2.5. For any time scale T, the solution of the transport dynamic equation

(4.1) with a constant initial condition—i.e., in (4.2), f(t) ≡ c for some constant c—is

u(t, s) ≡ c.

Proof. Assume u(t, s) = c for all t, s ∈ T such that t ≥ s. Then u∆s(t, s) = 0 and

since, u(t, σ(s)) = c as well, we further have that u∆t(t, σ(s)) = 0. Therefore u

satisfies (4.1)–(4.2) when f(t) ≡ c.

Theorem 4.2.6. Let T be an isolated time scale such that T = {t0, t1, · · · } where

t0 < t1 < · · · . Then the coefficients of the f(ti) terms of the solution given in the

statement of Theorem 4.2.2 sum to one. In other words, for each j, n ∈ N0,

j
∑

i=0

Aj,i(n) = 1.

Proof. Let f(t) ≡ 1. By Lemma 4.2.5, u(tn+j, tn) = 1 for any j, n ∈ N0. Thus, by

the uniqueness of the solution to (4.1)–(4.2) on an isolated time scale (see Theorem

4.2.1), it follows that

1 = u(tn+j, tn) =

j
∑

i=0

Aj,i(n)f(ti) =

j
∑

i=0

Aj,i(n).

Since each Aj,i(n) is independent of f , we have proven the desired result.
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4.3 Examples

In this section we collect several specific examples of solutions to the transport dy-

namic equation (4.1)–(4.2) that are obtained using Theorems 4.2.2 and 4.2.3.

Example 4.3.1. Let T = N0. It is well known from the study of difference equations

that if f : N0 → R, then the unique solution of

∆tu(t, s + 1) + ∆su(t, s) = 0, t, s ∈ N0, t ≥ s ≥ 0,

u(t, 0) = f(t), t ∈ N0,

is given by u(t, s) = f(t − s). (Note that this partial difference equation is simply

(4.1)–(4.2) in which we have taken T = N0 and t0 = 0.) In this example, we will show

that by using Theorem 4.2.3, we obtain this same solution as expected.

By the definition of Bj,i,∆(n) given in Theorem 4.2.3, and since µ(t) ≡ 1 on this

time scale, for any j > i, it follows that

Bj,i,0(n) =

n−1∑

k=0

(
1

µ(tn+j−1−k)
−

1

µ(tn−1−k)

)

Bj,i,1(n − k)

=

n−1∑

k=0

(1 − 1)Bj,i,1(n − k)

= 0,

and for j = i, we have

Bj,i,0(n) = 1.

Hence,

Aj,i(n) =
[µ(tn+j−1)]

j

[µ(ti−1)]i
Bj,i,0(n) = Bj,i,0(n) =







0, j > i,

1, j = i.
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Let t, s ∈ T = N0 such that t ≥ s. Then there exist n, j ∈ N0 such that t = tn+j and

s = tn. So, by Theorem 4.2.2,

u(tn+j, tn) =

j∑

i=0

Aj,i(n)f(ti) = f(tj). (4.13)

Because T = {0, 1, 2, · · · } = {t0, t1, t2, · · · }, we have that tn+j = n + j and tn = n.

Thus,

t − s = tn+j − tn = n + j − n = j = tj

and so equation (4.13) reduces to u(t, s) = f(t − s).

Example 4.3.2. Let α > 0 and β > 0 be given. Consider the isolated time scale

T = {t0, t1, t2, · · · } = {0, α, α + β, 2α + β, 2α + 2β, · · · }.

0 α α + β 2α + β 2α + 2β 3α + 2β
· · ·

Note that for this particular time scale, for any n ∈ N0,

µ(tn) =







α, n even,

β, n odd.

(4.14)

We will use Theorem 4.2.2 to show that the unique solution of (4.1)–(4.2) on this

particular time scale is given by

u(tn+j, tn) =







(
1 − β

α

)
f(tj−1) + β

α
f(tj), both n, j odd,

f(tj), otherwise,

where n, j ∈ N0.
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Proof. Let n, j ∈ N0 be arbitrary but fixed. By Theorem 4.2.2, the unique solution

of (4.1)–(4.2) is given by

u(tn+j, tn) =

j
∑

i=0

Aj,i(n)f(ti).

Thus, we need to determine Aj,i(n) for each 0 ≤ i ≤ j. First we will consider the case

when i = j. Note that

Aj,j(n) =
[µ(tn+j−1)]

j

[µ(tj−1)]
j

=
µ(tn+j−1)µ(tn+j−2) · · ·µ(tn)

µ(tj−1)µ(tj−2) · · ·µ(t0)
.

If n is even, then using (4.14) we have

n + j − 1 ≡ j − 1 mod 2 =⇒ µ(tn+j−1) = µ(tj−1)

n + j − 2 ≡ j − 2 mod 2 =⇒ µ(tn+j−2) = µ(tj−2)

...

n + 1 ≡ 1 mod 2 =⇒ µ(tn+1) = µ(t1)

n ≡ 0 mod 2 =⇒ µ(tn) = µ(t0).

Hence, if n is even,

Aj,j(n) =
µ(tn+j−1)µ(tn+j−2) · · ·µ(tn)

µ(tj−1)µ(tj−2) · · ·µ(t0)
=

µ(tj−1)µ(tj−2) · · ·µ(t0)

µ(tj−1)µ(tj−2) · · ·µ(t0)
= 1. (4.15)
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Similarly, if n is odd, then

n + j − 1 ≡ j mod 2 =⇒ µ(tn+j−1) = µ(tj)

n + j − 2 ≡ j − 1 mod 2 =⇒ µ(tn+j−2) = µ(tj−1)

...

n + 1 ≡ 2 mod 2 =⇒ µ(tn+1) = µ(t2)

n ≡ 1 mod 2 =⇒ µ(tn) = µ(t1).

So, in this case

Aj,j(n) =
µ(tn+j−1)µ(tn+j−2) · · ·µ(tn)

µ(tj−1)µ(tj−2) · · ·µ(t0)
=

µ(tj)µ(tj−1) · · ·µ(t1)

µ(tj−1)µ(tj−2) · · ·µ(t0)
=

µ(tj)

µ(t0)
.

It follows that if n is odd, then Aj,j(n) = 1 when j is even, and Aj,j(n) = β

α
when j

is odd. So in the case i = j, we have shown that

Aj,j(n) =







β

α
, j odd, n odd,

1, otherwise.

(4.16)

Now let 0 ≤ i ≤ j − 1 be given. By definition,

Aj,i(n) =
n−1∑

k=0

[µ(tn+j−1)]
j

[µ(tn+j−1−k)]
j

(

1 −
µ(tn+j−1−k)

µ(tn−1−k)

)

Aj−1,i(n − k).
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Note that

(

1 −
µ(tn+j−1−k)

µ(tn−1−k)

)

= 0 ⇐⇒ µ(tn+j−1−k) = µ(tn−1−k)

⇐⇒ n + j − 1 − k ≡ n − 1 − k mod 2

⇐⇒ j ≡ 0 mod 2.

Thus, if j is even,
(

1 −
µ(tn+j−1−k)

µ(tn−1−k)

)

= 0 for every 0 ≤ k ≤ n− 1. Hence, regardless of

the parity of n, if j is even, then Aj,i(n) = 0 for any 0 ≤ i ≤ j − 1.

Now assume j is odd. If n is even, then

Aj,i(n) =
n−1∑

k=0

[µ(tn+j−1)]
j

[µ(tn+j−1−k)]
j

(

1 −
µ(tn+j−1−k)

µ(tn−1−k)

)

Aj−1,i(n − k)

=
n−1∑

k=0
k even

[µ(tn+j−1)]
j

[µ(tn+j−1−k)]
j

(

1 −
µ(tn+j−1−k)

µ(tn−1−k)

)

Aj−1,i(n − k)

+

n−1∑

k=0
k odd

[µ(tn+j−1)]
j

[µ(tn+j−1−k)]
j

(

1 −
µ(tn+j−1−k)

µ(tn−1−k)

)

Aj−1,i(n − k)

=

n−1∑

k=0
k even

1

(

1 −
α

β

)

Aj−1,i(n − k) +

n−1∑

k=0
k odd

α

β

(

1 −
β

α

)

Aj−1,i(n − k)

=
n−1∑

k=0
k even

(

1 −
α

β

)

Aj−1,i(n − k) +
n−1∑

k=0
k odd

(−1)

(

1 −
α

β

)

Aj−1,i(n − k)

=

n−1∑

k=0

(−1)k

(

1 −
α

β

)

Aj−1,i(n − k). (4.17)

In the case where n is odd, an almost identical calculation yields

Aj,i(n) =

n−1∑

k=0

(−1)k

(

1 −
β

α

)

Aj−1,i(n − k). (4.18)

If i 6= j − 1, then, since j is odd, j − 1 is even and so Aj−1,i(n) = 0 for any n
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from work done above. Hence, if i 6= j−1, then using either equation (4.17) or (4.18)

depending on the parity of n, we have Aj,i(n) = 0 regardless of n.

So finally, the last case we must consider is when i = j − 1 and j is odd. If n is

even, from (4.17), it follows that

Aj,i(n) = Aj,j−1(n) =

n−1∑

k=0

(−1)k

(

1 −
α

β

)

Aj−1,j−1(n − k)

=

n−1∑

k=0

(−1)k

(

1 −
α

β

)

(by (4.16) since j − 1 is even)

= 0,

since n is even and hence this summation has an even number of terms. If n is odd,

from (4.18) it follows that

Aj,i(n) = Aj,j−1(n) =

n−1∑

k=0

(−1)k

(

1 −
β

α

)

Aj−1,j−1(n − k)

=

n−1∑

k=0

(−1)k

(

1 −
β

α

)

(by (4.16) since j − 1 is even)

= 1 −
β

α
,

since n is odd and hence this summation has an odd number of terms.

So, in the case that 0 ≤ i ≤ j − 1, putting everything together, we have

Aj,i(n) =







1 − β

α
, j odd, n odd, and i = j − 1,

0, otherwise.

(4.19)
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Therefore, using (4.16) and (4.19), we can write the solution of (4.1)–(4.2) as

u(tn+j, tn) =

j
∑

i=0

Aj,i(n)f(ti) =







(
1 − β

α

)
f(tj−1) + β

α
f(tj), both n, j odd,

f(tj), otherwise.

We will now use this result to graph the solution of (4.1)–(4.2) for a specific time

scale. Let T = {0, 1, 3, 4, 6, · · · }. Hence T is of the form given in Example 4.3.2 with

α = 1 and β = 2. Therefore, the solution is

u(tn+j, tn) =







2f(tj) − f(tj−1), both n, j odd,

f(tj), otherwise.

If we take the initial function to be the identity function, f(t) = t, we can graph the

solution of (4.1)–(4.2), u(t, s), on this particular time scale which we do in Figure 4.2.

Remark 4.3.3. As mentioned in the introduction, since the graininess on this time

scale is not constant, we see that we do not have a traveling wave solution as we would

expect in the case where T = Z. Instead, we have distortion of the initial function

as s increases. Since the graininess on this time scale only attains two values in a

periodic fashion, the distortion is not too significant and is quite predictable. In fact,

using the enumeration of the time scale T = {t0, t1, t2, · · · }, if we fix s = tk where

k ≡ 0 mod 2, then we have the initial function only shifted.

Example 4.3.4. Let α > 0, β > 0, and γ > 0 be given. Consider the isolated time

scale T = {t0, t1, t2, · · · } = {0, α, α + β, α + β + γ, 2α + β + γ, 2α + 2β + γ · · · }.

0 t1 t2 t3 t4 t5 t6 t7 t8 t9
· · ·
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Figure 4.1: The domain of the solution of (4.1)–(4.2) found in Example 4.3.2.
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Figure 4.2: The solution of (4.1)–(4.2) found in Example 4.3.2 on T =
{0, 1, 3, 4, 6, · · · } with the initial function given by f(t) = t.
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Note that for this particular time scale, for any n ∈ N0,

µ(tn) =







α, n ≡ 0 mod 3,

β, n ≡ 1 mod 3,

γ, n ≡ 2 mod 3.

(4.20)

In an argument very similar to that given in Example 4.3.2, we can show that:

If j ≡ 0 mod 3,

u(tn+j, tn) = f(tj) for all n ∈ N0.

If j ≡ 1 mod 3,

u(tn+j, tn) =







f(tj), n ≡ 0 mod 3,

β

α
f(tj) +

(
1 − β

α

)
f(tj−1), n ≡ 1 mod 3,

γ

α
f(tj) +

(
1 − γ

α

)
f(tj−1), n ≡ 2 mod 3.

If j ≡ 2 mod 3,

u(tn+j, tn) =







f(tj), n ≡ 0 mod 3,

γ

α
f(tj) +

β

α

(

1 −
γ

α

)

f(tj−1)

+

(

1 −
γ

α
−

β

α

(

1 −
γ

α

))

f(tj−2)
, n ≡ 1 mod 3,

γ

β
f(tj) +

(

1 −
γ

β

)

f(tj−1), n ≡ 2 mod 3.

Let T = {0, 1, 3, 6, 7, 9, 12, · · ·}. Note that T is of the form given in Example 4.3.4

with α = 1, β = 2, and γ = 3. Hence, we can use the solution that we explicitly

calculated above to graph the solution of (4.1)–(4.2) with the initial function being

the identity function, f(t) = t. We do this in Figure 4.4.
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Remark 4.3.5. In this figure (Figure 4.4), we notice that the behavior is similar

to that which we observed in Example 4.3.2. However here, since the time scale is

periodic with 3 points in its period, we find that if s = tk where k ≡ 0 mod 3, then

we have the initial function only shifted.

Example 4.3.6. Let T be the so-called harmonic time scale: let t0 = 1, tn =
∑n

i=1
1
i

for n ∈ N, and define T = {tn : n ∈ N0}. Note that T is unbounded above and

µ(tn) = tn+1 − tn = 1
n+1

.

We will use Theorem 4.2.3 to show that the unique solution of (4.1)–(4.2) on this

particular time scale is given by

u(tn+j, tn) =

j
∑

i=0

[
i!(n + j − i − 1)j−i · jj−i

(n + j)j(j − i)!

]

f(ti),

where n, j ∈ N0.

Proof. Let n, j ∈ N0 be given. If j = 0, then u(tn, tn) = f(t0) by Lemma 4.1.1. So,

assume j ≥ 1. Recall from Theorem 4.2.2 that

u(tn+j, tn) =

j
∑

i=0

Aj,i(n)f(ti),

and by Theorem 4.2.3 we know that

Aj,i(n) =
[µ(tn+j−1)]

j

[µ(ti−1)]i
Bj,i,0(n),



93

t
0 2 4 6 8 10 12 14 16 18

s

0

2

4

6

8

10

12

14

16

18

Figure 4.3: The domain of the solution of (4.1)–(4.2) found in Example 4.3.4.
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Figure 4.4: The solution of (4.1)–(4.2) found in Example 4.3.4 on T =
{0, 1, 3, 6, 7, 9, 12, · · ·} with the initial function given by f(t) = t.
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where

Bj,i,∆(n) =







n−1∑

k=0

(
1

µ(tn+j−∆−1−k)
−

1

µ(tn−1−k)

)

Bj,i,∆+1(n − k), for j − i < ∆,

1, for j − i = ∆.

We now aim to compute Bj,i,0(n) on this time scale. For j ≥ 1, note that

Bj,i,0(n) =
n−1∑

k1=0

(
1

µ(tn+j−1−k1)
−

1

µ(tn−1−k1)

)

Bj,i,1(n − k1)

=
n−1∑

k1=0

(

(n + j − k1) − (n − k1)
)

Bj,i,1(n − k1)

= j

n−1∑

k1=0

Bj,i,1(n − k1). (4.21)

If i + 1 < j, then

Bj,i,1(n − k1) =

n−k1−1∑

k2=0

(
1

µ(tn−k1+j−2−k2)
−

1

µ(tn−1−k1−k2)

)

Bj,i,2(n − k1 − k2)

=

n−k1−1∑

k2=0

(

(n − k1 + j − 1 − k2) − (n − k1 − k2)
)

Bj,i,2(n − k1 − k2)

= (j − 1)

n−k1−1∑

k2=0

Bj,i,2(n − k1 − k2).

Hence, combining this with (4.21), it follows that

Bj,i,0(n) = j(j − 1)

n−1∑

k1=0

n−k1−1∑

k2=0

Bj,i,2(n − k1 − k2)

= j2
n−1∑

k1=0

n−k1−1∑

k2=0

Bj,i,2(n − k1 − k2).
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Continuing this process inductively, we obtain

Bj,i,0(n) = j2
n−1∑

k1=0

n−k1−1∑

k2=0

Bj,i,2(n − k1 − k2)

= j3
n−1∑

k1=0

n−k1−1∑

k2=0

n−k1
−k2−1∑

k3=0

Bj,i,3(n − k1 − k2 − k3)

(j − i iterations)
...

= jj−i

n−1∑

k1=0

n−k1−1∑

k2=0

· · ·

n−k1−···
−kj−i−1−1
∑

kj−i=0

Bj,i,j−i(n − k1 − · · · − kj−i)

= jj−i

n−1∑

k1=0

n−k1−1∑

k2=0

· · ·

n−k1−···
−kj−i−1−1
∑

kj−i=0
︸ ︷︷ ︸

j−i sums

1

= jj−i

[
(n + j − i − 1)j−i

(j − i)!

]

.

The proof for the final equality is given below in Lemma 4.3.7.

Next note that

[µ(tn+j−1)]
j

[µ(ti−1)]i
=

µ(tn+j−1)µ(tn+j−2) · · ·µ(tn)

µ(ti−1)µ(ti−2) · · ·µ(t0)

=

1
(n+j)(n+j−1)···(n+1)

1
(i)(i−1)···1

=
i!

(n + j)j
.

Therefore, by Theorem 4.2.3,

Aj,i(n) =
[µ(tn+j−1)]

j

[µ(ti−1)]i
Bj,i,0(n) =

i!

(n + j)j

(

jj−i

[
(n + j − i − 1)j−i

(j − i)!

])

,
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and so by Theorem 4.2.2,

u(tn+j, tn) =

j
∑

i=0

[
i!(n + j − i − 1)j−i · jj−i

(n + j)j(j − i)!

]

f(ti),

where n, j ∈ N0. We graph this solution of (4.1)–(4.2) for the harmonic time scale in

Figure 4.6.

Lemma 4.3.7. For any n, M ∈ N,

n−1∑

k1=0

n−k1−1∑

k2=0

· · ·

n−k1−···
−kM−2−1
∑

kM−1=0

n−k1−···
−kM−1−1
∑

kM=0
︸ ︷︷ ︸

M sums

1 =
(n + M − 1)M

M !
.

Proof. Fix n ∈ N. If M = 1, the result is obvious, so assume that M > 1.

Note that

n−1∑

k1=0

n−k1−1∑

k2=0

· · ·

n−k1−···
−kM−2−1
∑

kM−1=0

n−k1−···
−kM−1−1
∑

kM =0

1 =

n−1∑

k1=0

n−k1−1∑

k2=0

· · ·

n−k1−···
−kM−2−1
∑

kM−1=0

(n−k1−· · ·−kM−1). (4.22)

Focusing on the innermost summation of (4.22), note that when kM−1 = 0, the

summand n− k1 − · · · − kM−1 = n− k1 − · · · − kM−2. Similarly, when kM−1 = 1, the

summand is n− k1 − · · · − kM−2 − 1. We continue this process in the following table:
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0
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Figure 4.5: The domain of the solution of (4.1)–(4.2) found in Example 4.3.6.
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Figure 4.6: The solution of (4.1)–(4.2) found in Example 4.3.6 on the so-called har-
monic time scale with the initial function given by f(t) = t.
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kM−1 n − k1 − · · · − kM−1

0 n − k1 − · · · − kM−2

1 n − k1 − · · · − kM−2 − 1

2 n − k1 − · · · − kM−2 − 2

...
...

n − k1 − · · · − kM−1 − 2 2

n − k1 − · · · − kM−1 − 1 1

Hence, we can reindex the innermost summation of (4.22) as follows:

n−k1−···
−kM−2−1
∑

kM−1=0

(n − k1 − · · · − kM−1) =

n−k1−···
−kM−2∑

j=1

j

=

n−k1−···
−kM−2∑

j=1

j1

=
j2

2

∣
∣
∣

j=n−k1−···−kM−2+1

j=1

=
(n − k1 − · · · − kM−2 + 1)2

2
.

Here we have used standard results from the theory of summation from difference

equations (see, for example, [18, Section 2.2]). Note that when we evaluate the lower

limit in the second to last expression, we get 12

2
= 0. This will occur at every stage

of this calculation. So, continuing from (4.22) we have

=

n−1∑

k1=0

n−k1−1∑

k2=0

· · ·

n−k1−···
−kM−3−1
∑

kM−2=0

n−k1−···
−kM−2−1
∑

kM−1=0

(n − k1 − · · · − kM−1)

=
1

2

n−1∑

k1=0

n−k1−1∑

k2=0

· · ·

n−k1−···
−kM−3−1
∑

kM−2=0

(n − k1 − · · · − kM−2 + 1)2. (4.23)
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Again we can reindex this innermost summation:

kM−2 n − k1 − · · · − kM−2 + 1

0 n − k1 − · · · − kM−3 + 1

1 n − k1 − · · · − kM−3

2 n − k1 − · · · − kM−3 − 1

...
...

n − k1 − · · · − kM−2 − 2 3

n − k1 − · · · − kM−2 − 1 2

Thus, continuing from (4.23), we have

=
1

2

n−1∑

k1=0

n−k1−1∑

k2=0

· · ·

n−k1−···
−kM−4−1
∑

kM−3=0

n−k1−···
−kM−3−1
∑

kM−2=0

(n − k1 − · · · − kM−2 + 1)2

=
1

2

n−1∑

k1=0

n−k1−1∑

k2=0

· · ·

n−k1−···
−kM−4−1
∑

kM−3=0

n−k1−···
−kM−3+1
∑

j=2

j2

=
1

2

n−1∑

k1=0

n−k1−1∑

k2=0

· · ·

n−k1−···
−kM−4−1
∑

kM−3=0

j3

3

∣
∣
∣

j=n−k1−···−kM−3+2

j=2

=
1

3!

n−1∑

k1=0

n−k1−1∑

k2=0

· · ·

n−k1−···
−kM−4−1
∑

kM−3=0

(n − k1 − · · · − kM−3 + 2)3

...

=
1

(M − 2)!

n−1∑

k1=0

n−k1−1∑

k2=0

(n − k1 − k2 + M − 3)M−2

=
1

(M − 2)!

n−1∑

k1=0

n−k1+M−3∑

j=M−2

jM−2
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=
1

(M − 1)!

n−1∑

k1=0

jM−1
∣
∣
∣

j=n−k1+M−2

j=M−2

=
1

(M − 1)!

n−1∑

k1=0

(n − k1 + M − 2)M−1

=
1

(M − 1)!

n+M−2∑

j=M−1

jM−1

=
1

M !
jM
∣
∣
∣

j=n+M−1

j=M−1

=
(n + M − 1)M

M !
.
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