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We investigate the cohomology of modules over commutative complete intersection

rings. The first main result is that if M is an arbitrary module over a complete

intersection ring R, and if Ext2n
R (M,M) = 0 for some n ≥ 1 then M has finite

projective dimension. The second main result gives a new proof of the fact that the

support variety of a Cohen-Macaulay module whose completion is indecomposable is

projectively connected.
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Chapter 1

Introduction

Commutative algebra is a classical subject which originated in the study of topics

such as algebraic curves, factorization in number fields, and the invariant theory of

groups. Homological algebra is an abstraction of methods used in algebraic topology.

In the mid 1950’s Auslander, Buchsbaum and Serre used homological algebra to solve

several long-open conjectures in commutative algebra. Since that groundbreaking

work, homological techniques have been very important in the study of commutative

algebra.

In this thesis we study the class of commutative rings known as complete in-

tersection rings. We make now the assumption that all rings are noetherian and

commutative. For ease of exposition we will also assume in this introduction that all

rings are local. A ring R with a presentation as the quotient of a regular local ring

Q by an ideal I,

R = Q/I,

is a complete intersection if I can be generated by a Q-regular sequence. This class

of rings is particularly amenable to homological methods. To give an idea of what

position these rings occupy among all commutative rings let us recall that there is a



2

“homological” hierachy of local rings:

regular ⇒ complete intersection⇒ Gorenstein⇒ Cohen-Macaulay.

Regular local rings are the simplest rings homologically. In the work of Auslander,

Buchsbaum and Serre mentioned above, regular local rings are characterized by the

fact that every module has a finite free resolution. Thus a singular complete inter-

section, by which we mean one that’s not regular, has at least one module whose

minimal free resolution goes on forever. Understanding the infinite free resolutions

that occur over a complete intersection is a classical problem.

One of the first steps in this program was taken by Tate [25] where he explicitly

constructed a free resolution of the residue field over a complete intersection. Shamash

[24] used the finite Q-free resolution of a finitely generated R-module to construct

an R-free resolution of M . These results led to subsequent work in such papers as

Gulliksen [19], Eisenbud [17], Avramov [3] and Avramov, Gasharov and Peeva [7].

These all study free resolutions over complete intersections. In particular this work

has shown that the infinite resolutions that occur over a complete intersection have

a different character than resolutions over non-complete intersection rings.

One of the themes that ties together the work after Shamash, listed above, is the

use of cohomology operators. These operators have become central to the study of

homological behavior of modules over complete intersection rings. In this thesis in

particular we make use of them in a vital way. Because of this, and because they

will lead us to a description of the results contained herein, we now describe them in

detail.

For the rest of this introduction we assume that R is a complete intersection of the

form Q/(f1, . . . , fc), where Q is a regular local ring and f = f1, . . . , fc is an Q-regular
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sequence. The ring of cohomology operators is the polynomial ring over R

S = R[χ1, . . . , χc],

graded by giving each of the c polynomial indeterminates degree 2. Recall that

Ext∗R(M,M) is a graded algebra for any R-module M . The multiplication is given

by Yoneda products. The cohomology operators act via central homogeneous maps

of R-algebras

ηM : S → Ext∗R(M,M).

for each R-module M .

The usefulness of the operators is due to the non-triviality of the maps ηM . In

general the Ext-algebra of a module over a commutative noetherian ring is highly

non-commutative and non-noetherian. However, under the assumption that R is

a complete intersection and M is finitely generated, the algebra Ext∗R(M,M) is a

finitely generated S-module via the map ηM . Thus this noncommutative algebra is

module finite over a commutative noetherian ring and in particular is left and right

noetherian. A direct consequence of this gives strong results about the Betti numbers

of M . Recall that the nth Betti number of M , denoted βn(M) and calculated by

dimk ExtnR(M,k), is the rank of the nth free module in a minimal free resolution of

M . Using basic commutative algebra and the finite generation of Ext∗R(M,M) over

S, one can show that the sequence {βn(M)}, with n ∈ N, satisfies a linear recurrence

relation and is bounded by a polynomial in n of degree at most c− 1. For a module

over a general local ring this sequence may grow exponentially and need not satisfy

any linear recurrence relation.

Let us decribe another application of the action of the operators that will lead us

immediately to a description of our first result. Avramov and Buchweitz showed that



4

if M is a finitely generated module with Ext2n
R (M,M) = 0 for some n ≥ 1 then M

has finite projective dimension [4, 4.3]. This generalized greatly [2, 1.8] which was

the case n = 1. While they do not appear in the statement of the result the action

of the cohomology operators is essential to the proof.

The first result of this thesis generalizes the Avramov-Buchweitz theorem from

finitely generated modules to arbitrary modules:

Theorem A. Let R = Q/(f1, . . . , fc) where Q is a regular ring and f1, . . . , fc is an

Q-regular sequence. Let M be an arbitrary R-module such that Ext2n
R (M,M) = 0 for

some n ≥ 1. Then M has finite projective dimension.

The proof of the Avramov-Buchweitz theorem relies on the finite generation of

Ext∗R(M,M) over S; see 4.1.1. However when M is not finitely generated over R

then Ext∗R(M,M) may not be finitely generated over S: already Ext0
R(M,M) =

HomR(M,M) may not be finitely generated over S0 = R. To overcome this difficulty

we work “globally.” We proceed via the embedding of the category of R-modules into

the homotopy category of injective R-modules, denoted K(InjR), whose objects are

chain complexes of injective modules. This category is triangulated and compactly

generated by the images of finitely generated R-modules; two properties that are

essential to our argument. Indeed, the Avramov-Buchweitz result shows that the

property we hope to prove holds for all “generators” of K(InjR). Using techniques

from homotopy theory we are able to show that the property holds for a large class

of objects of K(InjR). In particular it holds for all modules.

The proof of Theorem A was inspired by [11]. This methods in loc. cit. generalize

the classical concept of support variety to compactly generated triangulated cate-

gories. Support varieties attach a geometric object to a represention, or equivalently

module, that gives information about the free resolution of the module. Support
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varieties were first defined by Carlson for representations of finite groups and have

proliferated throughout algebra to include among others restricted Lie algebras, fi-

nite group schemes, and most relevant to us, finitely generated modules over complete

intersections.

A general guideline is that the support set for an object X should closely reflect

the structure of X. A famous instance of this is Carlson’s connectedness theorem [16],

which shows that the support variety of an indecomposable group representation is

projectively connected. Bergh proved an analogue of this for support varieties over

complete intersections. In the second half of this thesis we prove a generalization of

Bergh’s theorem to the setup of [11]:

Theorem B. Let X be an object of K(InjR) such that the image of X is indecom-

posable in K(InjR)/locK(InjR)(iR). Then the support set of X is a connected subset of

ProjS.

In the statement of the theorem locK(InjR)(iR) is the localizing subcategory of K

generated by iR, an injective resolution of R, and K(InjR)/locK(InjR)(iR) is the Verdier

quotient; the terminology is recalled in Chapter 2.

The support set of a module provides a measurement of the entire free resolution of

the module. Thus for a connectedness result we need a stronger assumption than that

the module is indecomposable: we need to ensure that its syzygies are indecomposable

as well. When X is the injective resolution of a module, the assumption that X

is indecomposable in K(InjR)/locK(InjR)(iR) forces the syzygies of the module to be

indecomposable. When the ring is zero dimensional, e.g. a group ring as in the

case of Carlson’s result, a module being indecomposable forces its syzygies to be

indecomposable but this is no longer the case in higher dimensions. When X is the

injective resolution of a maximal Cohen-Macaulay module M this condition boils
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down to assuming that M is indecomposable after removing free summands.

As to the conclusion of the theorem, note that if the ring R is local then S has

a unique maximal homogeneous ideal and hence every subset of SpecS is connected.

Thus being connected in ProjS is a stronger statment.

A connection between Theorems A and B is that we work in the category K(InjR)

to prove them. Compactly generated triangulated categories, such as K(InjR), behave

very much like the homotopy category studied by algebraic topologists. In particular

there is a rich theory of useful techniques imported from algebraic topology. In

Chapter 2 we review the relevant defintions and techniques that we will use in the

sequel. In Chapter 3 we sketch a construction of the action the ring of operators and

discuss how this action is used to define the two notions of support mentioned above.

Chapters 4 is devoted to proving Theorem A above. There is a result of independent

interest in the first section. In Chapter 5 we prove Theorem B and show how it

may be used to give a new proof of Bergh’s result on support varieties over complete

intersections.
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Chapter 2

Background on triangulated

categories

We make use of various triangulated categories throughout this thesis. In this chapter

we review relevant properties of triangulated categories and discuss in detail the

particular triangulated categories that we employ in the sequel.

2.1 Definitions

2.1.1. An additive category is a category in which all Hom-sets are abelian groups

and the composition maps are homomorphisms of abelian groups. Moreover, finite

products and coproducts exist and coincide. Let T be an additive category with a

fixed autoequivalence ΣT. A triangle in T is a diagram of the form:

X
u−→ Y

v−→ Z
w−→ ΣTX

where X, Y, Z are objects of T.

The category T is triangulated with shift functor ΣT if there exists an autoequiv-
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alence ΣT and a class of triangles, the distinguished triangles, that satisfy the axioms

(TR1)-(TR4) listed in e.g. [26].

When T is triangulated, a triangulated subcategory S of T is a full additive sub-

category such that for all distringuished triangles X → Y → Z → ΣTX with at least

two of X, Y and Z in S then the third is as well. This implies in particular that S is

closed under ΣT.

Let T and D be triangulated categories with shift functors ΣT and ΣD respectively.

A functor F : T → D, equipped with an isomorphism of functors ΣD ◦ F ∼= F ◦ ΣT,

is a triangulated functor from T to D if F maps distinguished triangles in T to

distinguished triangles in D.

For the rest of the section T will be a triangulated category with shift functor

Σ = ΣT . By a triangle in T we always mean a distinguished triangle.

2.1.2. Let S be a triangulated subcategory of T. We say S is a thick subcategory

if X ⊕ X ′ ∈ S implies that X ∈ S. If furthermore S is closed under all set-valued

coproducts then we say S is localizing. We will often use the fact that if T is itself

closed under coproducts then a triangulated subcategory S is localizing if it is closed

under coproducts [22, 1.5], i.e. S is already thick in this case.

For a class of objects C in T the thick subcategory generated by C, denoted thickT(C),

is the smallest thick subcategory containing C. Analagously one defines the localizing

subcategory generated by C, denoted locT(C).

2.1.3. Let X, Y be objects in T. By Hom∗T(X, Y ) we denote the Z-graded abelian

group which in degree n is HomT(X,ΣnY ).

The group Hom∗T(X,X) is a graded ring with multiplication given by composition.

Also Hom∗T(X, Y ) is a bimodule with left action by Hom∗T(Y, Y ) and right action by

Hom∗T(X,X).
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2.1.4. An object X of T is compact if the natural map

⊕
i∈I

HomT(X, Yi)→ HomT(X,
⊕
i∈I

Yi)

is an isomorphism for all sets of objects {Yi}i∈I of T. We denote the full subcategory

of compact objects of T by Tc.

2.1.5. The category T is compactly generated if there is a set of compact objects C

such that

locT(C) = T.

In this case we say C is a set of compact generators for T.

When C is a set of compact objects a result of Neeman [22, 2.2] shows that

locT(C)c = thickT(C).

In particular if C is a set of compact generators of T then the full subcategory of

compact objects of T is completely determined by C:

Tc = thickT(C).

The following is well known. We give a proof for lack of a reference, and to give

a flavor of the type of argument used in this context.

Lemma 2.1.6. Let T be compactly generated with a set of generators C and let

X be an object of T. Then X 6= 0 if and only if there exists a C ∈ C such that

Hom∗T(C,X) 6= 0.

Proof. Clearly if Hom∗T(C,X) is nonzero for any object C then X is nonzero. To see
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the other direction we consider the full subcategory

B = {Z | Hom∗T(Z,X) = 0}.

We claim it is localizing. It is clearly closed under Σ as

Hom∗T(Z,X) :=
⊕
n∈Z

HomT(Z,ΣnX) ∼=
⊕
n∈Z

HomT(Σ−nZ,X).

Given an exact triangle Z ′ → Z → Z ′′ → there is a long exact sequence

. . .→ Homn
T(Z ′′, X)→ Homn

T(Z,X)→ Homn
T(Z ′, X)→ Homn+1

T (Z ′′, X)→ . . .

from which one sees that if Hom∗T(−, X) is zero for two of the three objects in the

triangle it must be zero on the third. Finally B is closed under coproducts as there

is an isomorphism ∏
i∈I

Hom∗T(Zi, X)→ Hom∗T(
⊕
i∈I

Zi, X)

for any set of objects Zi in K.

If Hom∗T(C,X) = 0 for all C in C then all objects of C are in B. But since B is

localizing we have T = locT(C) ⊆ B. Thus B = T and in particular X ∈ B. This

shows that Hom∗K(X,X) = 0 and hence X is zero itself.

2.2 Homotopy categories

In this section R denotes a left noetherian associative ring and ModR denotes the

category of left R-modules.

2.2.1. Let A be an additive subcategory of ModR. By an A-complex we mean a
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diagram

. . .→ Xn ∂n
X−→ Xn+1 ∂n+1

X−−−→ Xn+2 → . . .

of R-modules with Xn ∈ A and ∂n+1
X ∂nX = 0 for all n ∈ Z. When A is ModR we

simply say R-complex.

2.2.2. Let X be an R-complex. We write Hn(X) for the nth cohomology group of

X and H(X) for the graded R-module which in degree n is Hn(X). We say X has

finitely generated total cohomology if H(X) is a finitely generated R-module.

The Hom-complex between R-complexes X, Y , denoted HomR(X, Y ), has compo-

nents and differential given by

HomR(X, Y )n =
∏
i∈Z

HomR(X i, Y i+n) ∂(f) = ∂Y ◦ f − (−1)|f |f ◦ ∂X .

A morphism is a degree zero cycle f : X → Y of HomR(X, Y ); thus a morphism

is a degree preserving map from X to Y that commutes with the differentials. We

denote the induced map on cohomology by H(f). It is a quasi-isomorphism when

H(f) : H(X)→ H(Y ) is an isomorphism.

2.2.3. The category of A-complexes and morphisms is denoted C(A). The homotopy

category of A, denoted K(A), has the same objects as C(A) with morphisms given by

HomK(A)(X, Y ) := H0(HomR(X, Y )).

Thus morphisms in this category are morphisms of complexes modulo homotopy

equivalence.

2.2.4. The shift functor Σ on K(A) is defined by (ΣX)n = Xn+1 and ∂ΣX = −∂X .
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Given a morphism

f : X → Y

in K(A) the mapping cone fits into a triangle X
f−→ Y → cone(f)→ ΣX; see section

1.5 of [26] for a reference. A triangle X ′ → Y ′ → Z ′ → ΣX ′ in K(A) is distinguished

if there is a commutative diagram

X
f
//

��

Y //

��

cone(f) //

��

ΣX

��

X ′ // Y ′ // Z ′ // ΣX ′

in which the vertical maps are isomorphisms. These structures make K(A) into a

triangulated category with shift and distinguished triangles as above; see section 10.2

of [26] for a proof.

The following is a subcategory of K(A) that we will use frequently in the sequel.

2.2.5. A complex X is acyclic if H(X) = 0. The category Kac(A) is the full subcate-

gory of K(A) whose objects are the acyclic A-complexes. Since homology commutes

with coproducts one easily checks that Kac(A) is a localizing subcategory of K(A).

2.3 Localization in triangulated categories

In this section we review the two types of localization for triangulated categories.

Throughout T is a triangulated category and S is a thick subcategory of T.

2.3.1. The kernel of a triangulated functor F : T → D, denoted kerF , is the full

subcategory of T with objects all X such that F (X) = 0; this is a thick subcategory.
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A Verdier localization of S is a triangulated functor

Q : T→ T/S

from T to a triangulated category T/S such that kerQ = S and every triangulated

functor F : T → D with S ⊆ kerF factors uniquely through Q. By the universal

property it is easy to see that the category S is unique up to equivalence.

To construct a Verdier localization one takes T/S to be the category whose objects

are the same as those of T. The morphisms from X to Y is given by equivalence classes

of diagrams of the form

X ′

α

~~||
||

||
|| β

  
AA

AA
AA

AA

X Y

such that the cone of α is in S. The equivalence relation, namely that two diagrams are

equivalent if there exists a third that both factor through, ensures that composition

is well-defined in the category T/S. A reference for this construction is section 2 of

[23]. The localizations we encounter in this thesis have no set-theoretic issues as they

may be realized as subcategories of existing categories.

The next construction allows us to “separate” an object X into a piece that lies

in a subcategory S and a piece that lies away from S.

2.3.2. Let S be a localizing subcategory of T and let

S⊥ := {X ∈ T | Hom∗T(S,X) = 0 for all S ∈ S}.
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When one can, for any object X in T, find a triangle

(2.3.2.1) X ′ → X → X ′′ → ΣX ′

with X ′ in S and X ′′ in S⊥ one says that Bousfield localization at S exists. By [23,

8.4.5] Bousfield localization exists if S is the localizing subcategory of a set of compact

objects of T; see 2.1.4 for the definition.

When a triangle as above exists, the map X ′ → X is universal with respect to

maps from objects in S to X and the map X → X ′′ is universal with respect to maps

from X to objects in S⊥.

Example 2.3.3. Let R be a commutative noetherian ring. Consider the homotopy

category K(ModR) and the thick subcategory Kac(ModR) of acyclic R-complexes.

The Verdier localization of Kac(ModR) in K(ModR) is denoted D(R). This is the clas-

sical derived category of R. Since a morphism α in K(ModR) is a quasi-isomorphism

if and only the cone of α is acyclic, we see from the construction above that every

quasi-isomorphism is invertible in D(R).

The module R, viewed as a complex concentrated in degree 0, is compact in D(R).

To see this, note that Homn
D(R)(R,X) ∼= Hn(X) and use the fact that cohomology

commutes with direct sums. Moreover there is a nonzero map from ΣiR → X for

every non-zero X in D(R) and some i ∈ Z. This shows that (locD(R)(R))⊥ = 0. The

Bousfield localization at locD(R)(R) exists by the above; however since (locD(R)(R))⊥ =

0 this shows that every object X ∈ D(R) is in locD(R)(R). Thus R is a compact

generator of D(R). From Neeman’s theorem, recalled in 2.1.5 above, we see that the

compact objects of D(R) are exactly those in the thick subcategory generated by R:

D(R)c = thickD(R)(R).
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Also thickD(R)(R) consists of all complexes which are quasi-isomorphic to finite com-

plexes of finitely generated projective modules; such a complex is perfect. In particular

the image of a finitely generated module in D(R) is compact if and only if the module

has finite projective dimension.

The connection between Verdier and Bousfield localization is given by the following

Theorem 2.3.4. Let S be a triangulated subcategory of a compactly generated trian-

gulated category T. The following are equivalent:

(i) Bousfield localization at S exists;

(ii) the Verdier localization map T→ T/S has a right adjoint;

(iii) the inclusion S→ T has a right adjoint.

In case one of these conditions hold, the right adjoint to T → T/S is a fully faithful

functor whose image is the subcategory S⊥. Moreover the triangle (2.3.2.1) for an

object X is given by the canonical maps of the adjunction.

Proof. The equivalence of (i) and (ii) is [23, 9.1.13] while [21, 3.2] shows that (ii) and

(iii) are equivalent. By 9.1.16 and 9.1.8 of [23] the last two statements hold in case

Bousfield localization exists.

2.4 Homotopy category of injectives

In this section we discuss the category in which we work throughout the sequel. We

assume that R is a left noetherian associative ring and ModR again denotes the

category of left R-modules.
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2.4.1. Let InjR be the full additive subcategory of ModR whose objects are the

injective R-modules. As in 2.2.1 we consider the homotopy category of this additive

subcategory, denoted K(InjR), which is called the homotopy category of injective

R-modules. When the ring is clear from the context we abbreviate K(InjR) to K.

We say an R-complex I is semi-injective if In is an injective R-module for all

n ∈ N and if the Hom-complex HomR(−, I) preserves quasi-isomorphisms. Let Kac

be the category of acyclic complexes of injectives, see 2.2.5. From the definition it

follows that a complex I in K is semi-injective if and only if it is in the subcategory

K⊥ac := {X ∈ K | Hom∗K(A,X) = 0 for all A ∈ Kac}.

Let X be an arbitrary R-complex. A semi-injective resolution of X is a semi-

injective complex iX and a quasi-isomorphism X → iX. Such a resolution always

exists; see [5] or [6].

The definition of semi-injective resolutions is formulated to give these complexes

the lifting properties required to do homological algebra. In particular they are used

in two ways: to define injective dimension and derived functors.

2.4.2. A complex X has finite injective dimension if there exists a semi-injective

resolution of X, say iX, such that (iX)n = 0 for all n� 0.

For complexes X and Y define the derived functor of the Hom-complex to be

Ext∗R(X, Y ) := Hom∗K(iX, iY )

where iX and iY are semi-injective resolutions of X and Y respectively. Using the

definition of semi-injective complex one can show that the above definition is inde-

pendent of the resolutions chosen and that Ext∗R(X, Y ) ∼= Hom∗K(ModR)(X, iY ).

WhenX and Y are complexes concentrated in degree 0, i.e. modules, these notions
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are the usual ones.

2.4.3. The diagram

Kac → K→ D(R)

is a Bousfield localization at Kac; see for instance [21, 3.6]. In particular the natural

map K → D(R) has a fully-faithful right adjoint Qρ whose image is K⊥ac, i.e. the

subcategory of semi-injective complexes. One can show that for a complex X, the

complex QρX is a semi-injective resolution of X. Thus Qρ is an embedding of D(R)

into K that sends every complex to a semi-injective resolution.

Krause went on to show that the map K→ D(R) restricts to give an equivalence:

(2.4.3.1) Kc → Df (R)

where Df (R) is the full subcategory of D(R) whose objects are those complexes with

finitely generated total cohomology. Thus the compact objects of K are exactly the

semi-injective resolutions of R-complexes with finitely generated total cohomology.

Remark. The equivalence 2.4.3.1 is the central reason we work in K. In the derived

category the image of a finitely generated module is compact if and only if it has finite

projective dimension. However when constructing Bousfield localizations we need the

image of every finitely generated module to be compact. As the above shows K is a

category, which has a subcategory equivalent to D(R), satisfying this property.
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Chapter 3

Support over complete

intersections

In this chapter we first discuss the cohomology operators for a complete intersection.

These operators provide a theory of support and local cohomology via [11]. We discuss

the parts of loc. cit. that we will need in the sequel. Finally we present details

on Koszul objects. We assume throughout this chapter that R = Q/(f1, . . . , fc)

where Q is a commutative noetherian ring and f1, . . . , fc is a Q-regular sequence.

We define S to be the polynomial ring, R[χ1, . . . , χc], graded by declaring that χi

has cohomological degree 2 for i = 1, . . . , c. As in Chapter 2 K := K(InjR) is the

homotopy category of injective R-modules.

3.1 Cohomology operators

Avramov has shown in [3, section 1] that for a complex of injective R-modules X

there are elements ζ1, . . . , ζc in H2(HomR(X,X)) = HomK(X,Σ2X).

For proofs of the following properties see [3] and [9].
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3.1.1. Let X and Y be complexes of injective R modules. Recall that Hom∗K(X, Y )

is a left Hom∗K(Y, Y )-module and a right Hom∗K(X,X)-module.

The ζi, from above, lie in the center of the algebra Hom∗K(X,X) and hence deter-

mine a map of R-algebras

ηX : S ∼= SymR(Rc)→ Hom∗K(X,X).

By restriction Hom∗K(X, Y ) is an S-module via the maps ηY and ηX . These actions

coincide up to a sign:

ηY (s)ξ = (−1)|s|ξηX(s)

for s ∈ S and ξ ∈ Hom∗K(X, Y ).

Assume that X and Y are compact in K. So X ∼= iM and Y ∼= iN for finitely

generated R-modules M and N respectively. The action of S on Hom∗K(X, Y ) ∼=

Ext∗R(M,N) coincides with the action of the Eisenbud operators of [17]. If either

proj dimQM or inj dimQN is finite then Hom∗K(X, Y ) ∼= Ext∗R(M,N) is a finitely

generated S-module. This was originally proven by Gulliksen in [19]; a different

action of S was used but [9] shows that this action coincides with the one defined

above up to sign.

3.2 Support and local cohomology

In this section we sketch the definition of support and local cohomology from [11].

We also discuss the relation of support to the support varieties of [4].

3.2.1. Set S+ = ⊕i≥1S i. The set Spec+ S denotes the set of homogeneous prime

ideals of S. By ProjS we denote the subset of Spec+ S given by those p such that

p + S+.
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Recall that Spec+ S is equipped with a topology, the Zariski topology. The closed

sets are V(I) := { p ∈ ProjS | I ⊆ p} for a homogeneous ideal I of S. We give ProjS

the subset topology.

A subset V of Spec+ S is specialization closed if p ⊆ q and p ∈ V then q ∈ V .

3.2.2. For a graded S-module N , we set

SuppS N := { p ∈ Spec+ S |Np 6= 0}.

Recall that for objects X and Y of K, the set Hom∗K(X, Y ) is an S-module ??. For

V ⊆ Spec+ S specialization closed we define the following full subcategory of K:

(3.2.2.1) KV := {X ∈ K | SuppS Hom∗K(C,X) ⊆ V for all C ∈ Kc}.

Lemma 3.2.3. Let V ⊆ Spec+ S be specialization closed and C ∈ Kc.

1. The category KV is localizing.

2. The object C is in KV if and only if SuppS Hom∗K(C,C) ⊆ V.

These are proved in [11]; we give a quick proof for the sake of exposition.

Proof. (1) An exact triangle X ′ → X → X ′′ → induces a long exact sequence of

S-modules

. . .→ Hom∗K(C,X ′)→ Hom∗K(C,X)→ Hom∗K(C,X ′′)→ Hom∗K(C,X ′)[1]→ . . .

where M [i]j = Mi+j for an S-module M . Assume that X ′, X ′′ are in KV . Since

SuppSM ⊆ SuppSM
′ ∪ SuppSM

′′ for an exact sequence of S-modules M ′ → M →

M ′′ we see that X ∈ KV .
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Given a family {Xi} of objects in K there is an isomorphism
⊕

i Hom∗K(C,Xi)→

Hom∗K(C,
⊕

Xi) since C is compact. For a family of S-modules {Mi} we have

SuppS (
⊕

Mi) =
⋃

SuppSMi. Thus if each Xi is in KV from the isomorphism we

see that so will
⊕

Xi be.

(2) Assume C ∈ KV . Then by the definition of KV we have that SuppS Hom∗K(C,C) ⊆

V . For the other inclusion, assume that SuppS Hom∗K(C,C) ⊆ V . The action of S

on Hom∗K(D,C), for any object D ∈ K, factors through Hom∗K(C,C). In particular

SuppS Hom∗K(D,C) ⊆ SuppS Hom∗K(C,C).

More generally, the objects of KV are exactly those with “support” contained

inside V . This is made precise in the sequel.

3.2.4. By [11, 4.5], Bousfield localization exists at KV . Thus we have a diagram

KV // K //

ΓV
oo

K/KV
LV

oo

where the unlabeled arrows are the natural functors. In particular for every X in K

there is a triangle

ΓVX → X → LVX → .

The functors ΓV are the local cohomology functors. Note that ΓVX is in KV by

definition.

3.2.5. For p ∈ Spec+ S

Z(p) := { q ∈ SpecS | q * p}.
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This is specialization closed. For X ∈ K, following [11], the support of X is

VS(X) := { p ∈ SpecS |LZ(p)ΓV(p)X 6= 0}.

By [11, 5.7] an object X is in KV if and only if VS(X) ⊆ V ; moreover X is nonzero

if and only if VS(X) is nonempty.

3.2.6. The functors ΓV , LV are important in the proof of the connectedness theorem.

We use a special case of the Mayer-Vietoris triangle [11, 7.5]. Let X ∈ K and V1,V2 ⊆

SpecS specialization closed with VS(X) ⊆ V1 ∪ V2. There is an exact triangle

ΓV1∩V2X → ΓV1X ⊕ ΓV2X → X → .

3.2.7. Let M be a finitely generated R-module such that proj dimQM < ∞. Let

X = iM , an injective resolution of M . Since X ∈ K, the support VS(X) is defined,

as above.

The set VSX decomposes in the following way [11, 11.3]:

VS(X) =
⋃

p∈SpecR

SuppS⊗Rk(p) Ext∗Rp
(Mp, k(p))

where k(p) = Rp/pRp. This is actually a ”fibering” over R in the following sense [11,

11.3]:

SuppS⊗Rk(p) Ext∗Rp
(Mp, k(p)) = VS(X) ∩ π−1(p)

, where π : ProjS → SpecR is the map induced by the inclusion R→ R[χ] = S.

Assume (R,m, k) is local with maximal ideal m and residue field k. We see that

VS(X) ∩ π−1(m) = suppk[χ] Ext∗R(M,k).
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We define VR(M) := suppk[χ] Ext∗R(M,k), where R := S ⊗R k ∼= k[χ1, . . . , χc]. The

set VR(M) recovers the support variety of M introduced by Avramov and Buchweitz;

see 5.5.

3.3 Koszul objects

The following simple and useful construction has been used in e.g. [8], [11], [13].

3.3.1. Let s ∈ Sn and X ∈ K. Recall that there is a map of graded R-algebras

ηX : S → Hom∗K(X,X). Since s the map is homogenous ηX(s) is an element of

HomK(X,ΣnX). The Koszul object of s on X, denoted X//s, is the mapping cone of

ηX(s); by definition there is an exact triangle

(3.3.1.1) X
ηX(s)−−−→ ΣnX → X//s→ .

For a sequence of homogeneous elements s = s1, . . . , sr in S the Koszul object of s on

X, denoted X//s, is defined inductively as the Koszul object of sr on X//s1, . . . , sr−1.

If I is a homogenous ideal of S, we define X//I to be X//s1, . . . , sr for some

generating set s1, . . . , sr of I. This may depend on the generators chosen, but by [10,

2.6.1] all such objects generate the same localizing subcategory.

Note that if X is compact then the triangle (3.3.1.1) shows that so is X//I.

Let s = s1, . . . , sr be a sequence of homogeneous elements of S and X and Y

objects of K. We will use the following properties of Koszul objects [11, 5.11]:

3.3.1.1. For all X, Y in K there exists an integer n ≥ 0 such that

(s)n Hom∗K(X//(s), Y ) = 0 = (s)n Hom∗K(Y,X//(s)).
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3.3.1.2. If Hom∗K(Y,X//(s)) = 0 and the S-module Hom∗K(Y,X) is (s)-torsion then

Hom∗K(Y,X) = 0. Recall for an ideal I ⊆ S, an S-module M is I-torsion if for each

m ∈M there exists an integer n such that Inm = 0.

Koszul objects give a description of the subcategory KV , defined in 3.2.2, which

we need in the sequel.

3.3.2. Let I be an ideal of S and V(I) the closed subset of Spec+ S determined by

I. By [10, 2.7] there is an equality

KV(I) = locK(C//I |C ∈ Kc ).
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Chapter 4

Finite injective dimension via

vanishing of self-extensions

In this chapter we assume that R = Q/(f1, . . . , fc), where Q is a commutative noethe-

rian ring regular of finite Krull dimension and f1, . . . , fc is aQ-regular sequence. While

we do not assume that Q is local, note that it does have finite global dimension; i.e.

there is an integer N such that every Q-module has projective dimension at most N .

As before S = R[χ1, . . . , χc] is the ring of operators and K = K(InjR) is the homotopy

category of injective R-modules. We set S+ = ⊕i≥1S i.

The goal of this chapter is to proof Theorem A from the introduction. In the first

section we prove a preliminary result of independent interest.

4.1 Systems of parameters and Koszul objects

We say that a complex M is perfect when M ∈ thickD(R)(R); see 2.3.3. This implies

in particular that M has finitely generated cohomology.

The following is well-known. We reprove it here because we could not find the
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formulation that we need. It was originally proved in the case M is a module and

n = 1 by Auslander, Ding and Solberg [2]; Avramov and Buchweitz proved it for any

module of finite complete-intersection dimension and any n ≥ 1 in [4].

Proposition 4.1.1. Let M be an R-complex with finitely generated total cohomology.

If Ext2n
R (M,M) = 0 for some n ≥ 1, then M is perfect.

Recall that for every complex M there is a homogeneous map of R-algebras ηM :

S → Ext∗R(M,M).

Proof. We will prove the statement in case R is a local ring with residue field k. The

reduction to this case is standard commutative algebra.

We will use the fact that over a local ring, M is perfect if ExtnR(M,k) for n � 0

[5].

Now for all m ≥ n and 1 ≤ i ≤ c we see that

ηM(χmi ) Ext∗R(M,M) = ηM(χm−ni )ηM(χni ) Ext∗R(M,M) = 0.

This first equality follows from the fact that ηM is a ring map; the second since

ηM(χni ) ∈ Ext2n
R (M,M) = 0. This shows that the finitely generated S-module

Ext∗R(M,M) is (χ) = (χ1, . . . , χc)-torsion. Since the action of S on Ext∗R(M,k)

factors through Ext∗R(M,M) we see that Ext∗R(M,k) is also (χ)-torsion. In particu-

lar since each member of a finite set of generators is killed by a power of (χ), we see

that ExtnR(M,k) = 0 for n� 0. Since R is local this shows that M is perfect.

Let ν1, . . . , νl be homogeneous elements of positive degree in the ring of opera-

tors S. Consider the subring R[ν1, . . . , νl] of S generated by the elements ν1, . . . , νl.

The S-module Ext∗R(M,M) is an R[ν1, . . . , νl]-module via the inclusion map of rings
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R[ν1, . . . , νl] ⊆ S. The proof of the following statement uses an idea from the argu-

ment of [3, 2.1]. For an R-complex M , recall that M//(ν1, . . . , νl) denotes the Koszul

object of ν1, . . . , νl on M ; see 3.3.1.

Theorem 4.1.2. Let ν = ν1, . . . , νl be a sequence of homogeneous elements of positive

degree in the ring of operators S and let M be an R-complex with finitely generated

total cohomology.

The R[ν]-module Ext∗R(M,M) is finitely generated if and only if M//(ν) is perfect.

Proof. We assume first that Ext∗R(M,M) is a finitely generated R[ν] module. Since

Ext∗R(M,M//ν) is a finitely generated Ext∗R(M,M) module [9, 5.1] it is also a finitely

generated R[ν] module. But by 3.3.1.1 there is an n ≥ 1 such that

(ν)n Ext∗R(M,M//ν) = 0.

We claim that Ext∗R(M,M//ν) is a finitely generated R-module via the embedding

R ⊆ R[ν].

To see this assume M is a finitely generated R[ν]-module such that (ν)nM = 0

for some n ≥ 1. We induce on n. When n = 1 then M is a finitely generated

R[ν]/(ν) ∼= R module. Since the composition

R ⊆ R[ν]→ R[ν]/(ν) ∼= R

is the identity, we see that M is a finitely generated R-module under the action

via the inclusion. Now assume the statement holds for all finitely generated R[ν]-

modules and all integers less than n and let M be a finitely generated R[ν]-module

with (ν)nM = 0. By induction the quotientM/(ν)(n−1)M is finitely generated since

it is annihilated by (ν)(n−1). Also the submodule (ν)n−1M is finitely generated over
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R since it is annihilated by (ν). Thus from the exact sequence

0→ (ν)n−1M→M→M/(ν)(n−1)M→ 0

we see that M is finitely generated over R.

Since Ext∗R(M,M//ν) is finitely generated over R we must have ExtnR(M,M//ν) =

0 for n� 0. We claim the full subcategory

A = {X ∈ Df (R) | ExtnR(X,M//ν) = 0 for n� 0}

is thick. Recall that Df (R) is the full subcategory of D(R) with objects complexes

with finitely generated total cohomology. An exact triangle

X ′ → X → X ′′ →

induces a long exact sequence

. . .→ ExtnR(X ′′,M)→ ExtnR(X,M)→ ExtnR(X ′,M)→ Extn+1
R (X ′′,M)→ . . .

From this one sees that A is closed under exact triangles. It also clearly closed under

direct summands.

Since M is in the thick subcategory A so is every object in thickD(R)(M). In

particular M//ν is in this subcategory and hence

ExtnR(M//ν,M//ν) = 0 for n� 0.

This shows that M//ν) is perfect by 4.1.1.
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To prove the converse we induce on l, the length of the sequence ν. The base case

l = 0 implies that M is perfect; it’s easy to see that this implies that ExtnR(M,M)

= 0 for n � 0 and hence Ext∗R(M,M) is finitely generated over R. We now assume

that M//ν1, . . . , νl is perfect and l ≥ 1. Since the Koszul object of the sequence

ν2, . . . , νl on M//ν1 is perfect, we see that Ext∗R(M//ν1,M//ν1) is a finitely gener-

ated R[ν2, . . . , νl] module by induction. Since Ext∗R(M//ν1,M) is a finitely generated

Ext∗R(M//ν1,M//ν1)-module, it is also finitely generated over R[ν2, . . . , νl]. From the

exact triangle M
ν1−→ Σ|ν1|M →M//ν1 → in Df (R) we arrive at the diagram of graded

R-modules below, in which the image of every arrow is the kernel of the proceeding

arrow:

Ext∗R(M,M)
ν1

// Ext
∗+|ν1|
R (M,M)

φ
uukkkkkkkkkkkkkk

Ext∗R(M//ν1,M)

hhRRRRRRRRRRRRRR

.

The image of φ is a submodule of the noetherianR[ν2, . . . , νl]-module Ext∗R(M//ν1,M).

Pick a generating set

φ(e1), . . . , φ(em)

for this image. Let H be the R[ν2, . . . , νl]-submodule of Ext∗R(M,M) generated by

e1, . . . , em. By exactness Ext∗R(M,M) = H + ν1 Ext∗R(M,M). Iterating, we have that

Ext∗R(M,M) = Σj
i=0ν

i
1H + νj1 Ext∗R(M,M)

for all j ≥ 1. But ∩∞i=1ν
i
1 Ext∗R(M,M) = 0 since |ν1| > 0. Thus Ext∗R(M,M) =

Σ∞i=0ν
i
1H, and hence Ext∗R(M,M) is a finitely generated R[ν1, . . . , νl]-module.

Corollary 4.1.3. Let M be a complex with finitely generated cohomology. Then

M//χ1, . . . , χc is perfect.
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Proof. By 3.1.1 we know that Ext∗R(M,M) is a finitely generated R[χ1, . . . , χc]-

module. Thus by Theorem 4.1.2 we see that M//(χ1, . . . , χc) is perfect.

4.2 Torsion in the module of self-extensions

In this section we prove the following:

Theorem 4.2.1. Let M be an R-complex with nonzero cohomology such that Hn(M) =

0 for all n� 0. If the S-module Ext∗R(M,M) is S+-torsion then M has finite injective

dimension.

The definition of Ext and injective dimension for complexes is recalled in 2.4.2.

The action of S on Ext∗R(M,M) is sketched in 3.1.1. Recall that a module over

a commutative ring is I-torsion, for I an ideal, if every element of the module is

annihilated by a power of I; see 3.3.1.2.

We need several preliminary results in the proof of the theorem. Recall that Kc

is the subcategory of compact objects of K and C//(χ1, . . . , χc) is a Koszul object of

(χ1, . . . , χc) on C; see 3.3.1.

Proposition 4.2.2. Let iR an injective resolution of R. There is an inclusion of

subcategories:

locK(C//(χ1, . . . , χc) |C ∈ Kc) ⊆ locK(iR).

Proof. Set χ = χ1, . . . , χc. It suffices to show that C//χ is in locK(iR) for all C ∈ Kc.

Fix a compact object C of K. By 2.4.3.1 there exists a complex M with finitely

generated total cohomology such that C ∼= iM , where iM is an injective resolution of

M . By 4.1.3 proj dimRM//(χ1, . . . , χc) is perfect, i.e.

M//(χ1, . . . , χc) ∈ thickD(R)(R).
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Applying the injective resolution functor i(−) to the the triangle M
χ1−→ Σ2M →

M//χ1 → gives a triangle

iM
χ1−→ Σ2iM → i(M//χ1)→ .

This shows that i(M//χ1) is a Koszul object of χ1 on iM ∼= C. Repeating we see

that i(M//(χ1, . . . , χc) is a Koszul object of (χ1, . . . , χc) on C. Thus C//(χ1, . . . , χc) ∈

thickK(i(M//(χ1, . . . , χc)) by [10, 2.6.1]. Taking injective resolutions is a triangulated

functor and triangulated functors preserve thick subcategories. Thus we have that

i(M//(χ1, . . . , χc)) ∈ thickK(iR).

Taken together this shows C//(χ1, . . . , χc) ∈ thickK(iR). Finally the inclusion thickK(iR) ⊆

locK(iR) is clear.

The proposition below holds for any commutative Gorenstein ring of finite Krull

dimension.

Proposition 4.2.3. Let M be an R-complex with Hn(M) = 0 for all n� 0. Let iR

and iM be semi-injective resolutions of R and M respectively. If iM is in locK(iR),

then M has finite injective dimension.

Proof. Under the hypothesis that R has finite injective dimension and that M has

no cohomology in high degrees, there exists a Gorenstein injective resolution of M [1,

3.2]. This is a map v : iM → T , where T is an acyclic complex of injective modules,

such that vn : (iM)n → T n is bijective for all n ≥ k, for some k ∈ Z. We have

isomorphisms

Hom∗K(iR, T ) ∼= Hom∗K(R)(R, T ) ∼= H∗(T ) = 0.
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The first is [21, 2.1]; the second is clear and the third is the fact that T is acyclic.

The class of complexes X such that Hom∗K(X,T ) = 0 is localizing. Since iR is in

this class so will be the entire subcategory locK(iR). In particular since iM ∈ locK(iR)

we see that

Hom∗K(iM,T ) = 0.

This shows that the map v above is nulhomotopic. Now we have a nullhomotopic map

v : iM → T which is bijective in all high degress and has target an acyclic complex

of injective modules. We’ll show that this forces iM to have an injective cokernel in

a high degree.

Since v is nullhomotopic there exists a map s : iM → T such that ∂T s+ s∂iM = v.

Denote the component from (iM)n → T n−1 by sn. Since vn is bijective for all n ≥ k

we have that (vn)−1∂T s
n + (vn)−1sn+1∂iM = 1iMn . Where (vn)−1 is the inverse of the

bijective map vn. One checks that v−1 commutes with the differentials in the degrees

for which it is defined; this gives

∂iM(vn)−1sn + (vn)−1sn+1∂iM = 1iMn .

A simple diagram chase now shows that Im(∂kiM) splits as a submodule of (iM)k+1

and hence is injective.

The fact that v is a bijection for n ≥ k implies that Hn(iM) = 0 for n ≥ k. Thus

iM has an injective cokernel in a degree higher than its last nonzero cohomology; by

[5, 2.4.I] this implies that M has finite injective dimension.

We now prove the main theorem of the chapter. Part of the proof reproves a

special case of [11, 6.4].

Proof of Theorem 4.2.1. Set X = iM and χ = χ1, . . . , χc. It suffices to show that



33

X ∈ locK(C//χ |C ∈ Kc); for then by 4.2.2 and 4.2.3 this will show that M has finite

injective dimension.

Set C = locK(C//χ |C ∈ Kc). Note that C is compactly generated, so Bousfield

localization at C exists; see 2.3.2. It yields a triangle

(4.2.3.1) X ′ → X → X ′′ →

with X ′ ∈ C and X ′′ ∈ C⊥.

Fix a compact object D. The action of S on Hom∗K(D,X) is via the map ηX :

S → Hom∗K(X,X). By hypothesis Hom∗K(X,X) is S+-torsion, i.e. ηX(s)n = 0 for all

s ∈ S and some n ≥ 0. Thus Hom∗K(D,X) is also S+-torsion.

Now consider the full subcategory

B = {Z ∈ K | Hom∗K(D,Z) is S+-torsion}.

We claim that it is localizing.

To see this, first note that it is clearly closed under Σ; given a triangle Y → Z →

W → ΣY in K there is an exact sequence of S-modules:

Hom∗K(D, Y )→ Hom∗K(D,Z)→ Hom∗K(D,W ).

From this we see that if Hom∗K(D, Y ) and Hom∗K(D,W ) are S+-torsion then so is

Hom∗K(D,Z). This shows that if Y and W are in B then so is Z; thus B is triangulated.

Using that D is compact one sees that B is localizing. By 3.3.1.2, for every object C

the module Hom∗K(D,C//χ) is S+-torsion. Thus C = locK(C//χ |C ∈ Kc) ⊆ B since

B is localizing and every object C//χ is in B.

Now we have that Hom∗K(D,X ′) is S+-torsion since X ′ ∈ C ⊆ B. Also from
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(4.2.3.1) we have that X ′′ is in B since the other two objects in the triangle are; to

rephrase we have that Hom∗K(D,X ′′) is also S+-torsion. By (3.3.1.2) this implies that

Hom∗K(D,X ′′) = 0. Since D was an arbitrary compact object and K is compactly

generated this shows that X ′′ = 0, see 2.1.6. From the triangle (4.2.3.1) we see that

X ′ ∼= X is an element of C = locK(C//χ |C ∈ Kc).

The following result, Theorem A of the introduction, is a corollary of Theorem

4.2.1.

Corollary 4.2.4. Let M be an arbitrary R-module such that Ext2n
R (M,M) = 0 for

some n ≥ 1. Then M has finite projective dimension.

Proof. It suffices to prove that Ext∗R(M,M) is S+-torsion. To see this let m ≥ n; we

have that

ηM(χmi ) Ext∗R(M,M) = ηM(χm−ni )ηM(χni ) Ext∗R(M,M) = 0 for all i = 1, . . . , c.

Thus by Theorem 4.2.1 the module M has finite injective dimension. Since R is a

complete intersection it is Gorenstein; since it has finite Krull dimension it has finite

injective dimension over itself. Using this one can show that when a module has finite

injective dimension it must also have finite projective dimension. Thus M has finite

projective dimension.

Remark. 1. For Theorem 4.2.1, it is not vital that R is commutative. The proof

goes through for any left noetherian ring that has a ring of operators S over

which the Ext-algebra of any finitely generated module is noetherian. This

point of view is taken in [15].
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2. The boundedness assumption on the cohomology of M in Theorem 4.2.1 is

necessary: take for instance the complex M = ⊕n∈ZE[n] which has an injective

module E in each degree and zero differential. This does not have finite injective

dimension by the definition of [5] since it has cohomology in arbitrarily high

degrees.
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Chapter 5

Connectedness of support varieties

In this chapter we prove Theorem B from the introduction and show that it specializes

to give a different proof of a result of Bergh [12].

We assume that R = Q/(f1, . . . , fc) where Q is a commutative noetherian regular

ring and f1, . . . , fc is an Q-regular sequence. As before S = R[χ] is the graded ring

of operators.

5.1 Connectedness of BIK support

Definition. Let V be a subset of Spec+ S. We say V is projectively connected if

V ∩ ProjS is a connected topological space of ProjS; in other words if there exist

closed subsets V1,V2 of SpecS such that

V = (V1 ∪ V2) ∩ V and V1 ∩ V2 ⊆ V (S+)

then V ∩ Vi ⊆ V (S+) for i = 1 or 2.

Remark. This definition applies to any positively graded homogeneous ring.



37

The main result of this section is the following:

Theorem 5.1. Let iR be an injective resolution of R, locK(iR) the localizing subcat-

egory it generates, and K/locK(iR) the Verdier quotient. If X ∈ K is such that the

image of X in K/locK(iR) is indecomposable then VS(X) is projectively connected.

To prove Theorem 5.1 we need the following.

Theorem 5.2. Let V(χ) = V (χ1, . . . , χc) be the closed subset of Spec+ S defined by

the homogeneous ideal (χ1, . . . , χc) and let iR be an injective resolution of R. Then

KV(χ) = locK(iR).

Proof. Let M be an R-complex with finitely generated total cohomology. Since R is

Gorenstein M we have ExtnR(M,R) = 0 for all n � 0 [18]. Since |χi| = 2 > 0 this

forces Ext∗R(M,R) to be (χ)-torsion. Thus by [11, 2.5]

SuppS Hom∗K(iM, iR) = SuppS Ext∗R(M,R) ⊆ V(χ).

Thus we have iR ∈ KV(χ) by 3.2.2, noting that all compact objects of K are of the

form iM for M a complex with finitely generated total cohomology; see 2.4.3.1. Since

KV(χ) is a localizing subcategory we see that locK(iR) ⊆ KV(χ).

To show the other inclusion, by 3.3.2 we need only show that C//(χ) is in locK(iR)

for every compact object C of K. But this is Theorem 4.2.2.

Proof of Theorem 5.1. Assume VS(X) is disconnected; we show that X is decompos-

able in K/locK(iR). By assumption there exist nonempty closed sets V1,V2 ⊆ Spec+ S

with Vi ∩ VS(X) * V (χ) for i = 1, 2 such that

V1 ∪ V2 = VS(X) and V1 ∩ V2 ⊆ V (χ).
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The Mayer-Vietoris triangle, see (3.2.6), associated to V1 and V2 yields a triangle:

(*) ΓV1∩V2X → ΓV1X ⊕ ΓV2X → X → .

By definition ΓV1∩V2X ∈ KV1∩V2 and KV1∩V2 ⊆ KV(χ); see (3.2.6). Since KV(χ) =

locK(iR) by 5.2, ΓV1∩V2X is in the kernel of the quotient functor ρ : K→ K/locK(iR).

Thus one has an isomorphism

ΓV1X ⊕ ΓV2X
∼=−→ X

in K/locK(iR). Because Vi∩VS(X) * V (χ), the object ΓVi
X is nonzero in K/locK(iR)

[11, 5.7.2]. This shows X is decomposable in K/locK(iR).

5.2 MCM modules

In this section we assume that Q, and hence R, is local. Let m denote the unique

maximal ideal and k the residue field.

Definition. The stable category of maximal Cohen-Macaulay modules has objects the

maximal Cohen-Macaulay R-modules and the set of morphisms between two objects

M and N is given by

HomR(M,N)/P HomR(M,N)

where P HomR(M,N) is the submodule of all R-linear maps that factor through a

projective module. We denote the stable category by MCM(R). See e.g. [14] for

further details on the stable category.

There is a functor, MCM(R)→ MCM(R), which is the identity on objects which

satisfies the universal property that any additive functor F from MCM(R) to an
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additive category A, such that F (P ) = 0 for every projective module, factors through

MCM(R)→ MCM(R). Moreover, a map f : M → N in MCM(R) is an isomorphism

if and only if there exist free modules P and Q and an isomorphism g : M⊕P → N⊕Q

in Mod(R), where the component of g from M to N is a lifting of f ; see [20].

The following result is in [21]; we restate and reprove it to fit our purposes more

closely.

Proposition 5.3. Let M be a maximal Cohen-Macaulay module that is indecompos-

able in MCM(R) and let iM be an injective resolution of M . The image of iM under

the quotient map K→ K/locK(iR) is indecomposable.

Proof. Consider the natural map F : MCM(R)→ Df (R)/thickD(R)(R) which sends a

module to its image in the quotient Df (R)/thickD(R)(R). It sends projective modules

to zero, hence factors through a map

(5.2.0.1) MCM(R)→ Df (R)/thickD(R)(R).

When R is Gorenstein this is an equivalence [14, 4.4.1] .

Consider also the equivalence Df (R) → Kc from 2.4.3.1. Under the equivalence

R gets mapped to an injective resolution iR. Thus the equivalence restricts to an

equivalence thickD(R)(R)→ thickK(iR). Taking quotients we have an equivalence

(5.2.0.2) Df (R)/thickD(R)(R)→ Kc/thickK(iR).

Neeman’s theorem recalled in 2.1.4 shows that thickK(iR) = locK(iR)c. Composing

(5.2.0.1) and (5.2.0.2) gives an equivalence:

(5.2.0.3) MCM(R)→ Kc/locK(iR)c
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which sends a maximal Cohen-Macaulay module to the image of an injective resolu-

tion in Kc/locK(iR)c.

We need to be careful as Kc/locK(iR)c is not in general equivalent to (K/locK(iR))c.

However, the Neeman-Thomason-Trobaugh-Ravenal localization theorem [22, 2.1]

shows that there is a fully faithful functor G : Kc/locK(iR)c → (K/locK(iR))c making

the following diagram commute:

(5.2.0.4) Kc

��

// (K/locK(iR))c

Kc/locK(iR)c
G

66

The vertical arrow is the natural quotient map. By [22, 2.4] the quotient map K →

K/locK(iR) preserves compactness; the horizontal functor is the restriction of this map

to compact objects.

Now consider the object iM of K and assume that the image of iM under the

map K→ K/locK(iR) is decomposable. Since M is finitely generated iM is compact;

moreover by the commutativity of (5.2.0.4) iM is in the image of the functor G. By

the fully faithfulness of the functor G this implies that the image of iM in Kc/locK(iR)c

is decomposable. And hence M is decomposable in MCM(R) by (5.2.0.3).

The set VR(M) is defined in 3.2.7.

Theorem 5.4. Let M be a maximal Cohen-Macaulay R-module whose image in

MCM(R) is indecomposable. The set VR(M) of M is a projectively connected subset

of Pc−1
k .

Proof. Let iM be an injective resolution of M . By Propsition 5.3 the image of iM in

K/locK(iR) is indecomposable; by Theorem 5.1 the support set VS(iM) is a connected

subset of ProjS. Recall that VR(M) = π−1(m) ∩ VS(M); see 3.2.7.
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We will again prove the contrapositive. Assume that VR(M) = W1 ∪ W2 with

W1 ∩W2 = (χ) with Wi * V(χ). We will show this implies the disconnectedness of

VS(M). By Proposition 5.3 and Theorem 5.1 this will show that M is decomposable.

Let Vi = { p = p0 + p1 + · · · ∈ VS(M) | p0 ∈ SpecR and m + p1 + · · · ∈ Wi}.

By construction V1 ∪ V2 = VS(M) and it is also clear that V1 ∩ V2 = V(χ). Finally

Vi * V(χ) since Wi * (χ). Thus V1 ∪ V2 = VS(M) is a nontrivial disconnection.

5.3 Bergh’s Result

Throughout the thesis so far we have assumed that R is the quotient of a regular ring.

However there are examples of local rings that are not quotients of regular local rings.

Recall that by Cohen’s structure theorem every complete local ring is the quotient of

a regular local ring.

Definition. A local ring (R,m, k) is a local complete intersection ring if the m-adic

completion of R, denoted R̂, is presented as

R̂ = Q/(f1, . . . , fc)

for some regular local ring Q and a Q-regular sequence f1, . . . , fc. The codimension

of R is equal to the smallest such c ranging over all regular local rings and regular

sequences as above.

Remark. It is an open question whether every complete intersection is in fact already

the quotient of a regular ring by a regular sequence.

In this section we show how 5.4 recovers a recent result of Bergh about support

varieties over local complete intersections and discuss the necessity of one of the

assumptions.
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For the rest of the section we fix a local complete intersection R of codimen-

sion c and a presentation R̂ = Q/(f1, . . . , fc), where Q is a regular local ring and

f1, . . . , fc is a Q-regular sequence. There is a ring of operators R̂[χ1, . . . , χc] which

acts on Ext∗bR(M̂, N̂) for every pair of finite R-modules M and N . Set R := k ⊗ bR
R̂[χ1, . . . , χc] = k[χ1, . . . , χc]. Given an R-module M the support variety of M is

VR(M̂) = suppk[χ] Ext∗bR(M̂, k) ⊆ Pc−1
R

When R is the quotient of a regular local ring we recover nothing new:

Lemma 5.5. Let (R,m, k) be a local ring with a presentation

R = Q/(f1, . . . , fc)

where Q is a regular local ring and (f1, . . . , fc) is a Q-regular sequence.

Let M be a finitely generated R-module. Then the following subsets of Spec+ k[χ1, . . . , χc]

are equal:

VR(M) = VR(M̂).

Proof. First note that the presentation of R gives a presenation of the m-adic comple-

tion of R as R̂ = Q̂/(f1, . . . , fc). By [4, 5.3] the support variety of M does not depend

on the presentation of R̂ as a quotient of a regular local ring by a regular sequence,

so we compute the support variety using the presentation R̂ = Q̂/(f1, . . . , fc).

The maps R→ R̂ and M → M̂ induce a map

ζ : Ext∗bR(M̂, k)→ Ext∗R(M,k).

Since k is m-adically complete the map ζ is an isormorphism in each degree. By [9,
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3.1] this is a morphism of R-modules and hence an isomorphism of R-modules. In

particular

VR(M) := suppR Ext∗R(M,k) = suppR Ext∗bR(M̂, k) =: VR(M̂)

which shows the claim.

The following was originallly proved in [12, 3.2].

Theorem 5.6. Let (R,m, k) be a local complete intersection of codimension c. Let

M be a Cohen-Macaulay module whose completion in the m-adic topology is indecom-

posable. Then the support variety of M is a connected subset of Pc−1
k .

Proof. First, we may assume that M is maximal Cohen-Macaulay. Indeed, by [27,

8.17], every syzygy of M has an indecomposable syzygy. Also, the supporty variety

of M and a syzygy of M coincide.

By assumption M̂ is an indecomposable R̂-module. Moreover, we may assume M̂

is indecomposable in MCM(R̂). For assume there is a decomposition

M̂ ∼= M1 ⊕M2 ∈ MCM(R̂).

Thus there exist projective R̂-modules P,Q such that as R̂-modules

M̂ ⊕ P ∼= M1 ⊕M2 ⊕Q.

Since R̂ is complete the Krull-Remak-Schmidt theorem holds. Thus we have

M̂ |M1 , M̂ |M2 or M̂ |Q
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since M̂ is indecomposable. If M̂ |Q then M̂ is projective and VR(M̂) = 0 and in

particular is projectively connected. So we may assume M̂ |M1. Cancelling M̂ there

exists N such that

P ∼= N ⊕M2 ⊕Q

which shows that M2 is projective and hence zero in MCM(S).

Now since we’re assuming the image of M̂ is indecomposable in MCM(R̂), Theo-

rem 5.4 applies to show that VR(M̂), which is the support variety of M , is a connected

subset of Pc−1
k .

Remark. 1. Bergh has raised the question as to whether the assumption of com-

pleteness is necessary. The above two theorems show that if there exists a lo-

cal complete intersection (R,m, k) and a maximal Cohen-Macaulay R-module

M , with M indecomposable in MCM(R) and VR(M̂) projectively disconnected,

then R is not the quotient of a regular local ring. For if R = Q/I is the quotient

of a regular ring, then I must be generated by a regular sequence. And then by

5.4 the set VR(M) is projectively connected. But by 5.5, there is an equality

VR(M) = VR(M̂) which shows in particular that VR(M̂) must be connected.

2. As the previous chapter, the methods used here apply more generally. Specifi-

cally they show that for a ring with a support theory, an indecomposable module

which is the analogue of a maximal Cohen-Macaulay module, will have a con-

nected support set.
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