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Abstract

Nonlinear differential equations arise in all fields of applied mathematics, physical sci-

ence and Engineering, hence being of fundamental importance the existence of meth-

ods to find their solutions. In the 1980’s, George Adomian introduced a semi-analytical

technique known as, Adomian decomposition method, for solving linear and nonlinear

differential equations.

In this thesis, some modifications of the Adomian decomposition method are pre-

sented.

In chapter one, we explained the Adomian decomposition method and how to use it to

solve linear and nonlinear differential equations and present few examples .

Modifications based on assumptions made by Adomian for solving differential equa-

tions are explained in chapter two as well as a comparison of the results found to those

found by ADM were presented.

In chapter three, some modifications based on operators were presented and we com-

pare the results found to those found by ADM.
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Chapter 1

Introduction To The Modified

Adomian Decomposition Method

1.1 Introduction

George Adomian established the Adomian decomposition method (ADM) in the 1980s,

the ADM has been paid much attention in the recent years in applied mathematics, and

in the field of series solution particularly. Moreover, it is a fact that this method is

powerful, effective, as well easily solves many types of linear or nonlinear ordinary or

partial differential equations, and integral equations [1, 2, 3, 4].

The ADM solves the problems in direct way and in an uncomplicated fashion with-

out using linearization, perturbation or any other unpreferable assumptions that may

change the physical behavior of the model, also the method is capable of greatly re-

ducing the size of the computational work while still maintaining high accuracy of the

numerical solution.

THE ADM has led to several modifications on the method made by various researchers

in an attempt to improve the accuarcy or expand the application of the original method.

To begin with, Adomian and Rach [5] introduced modified Adomian polynomials

which converge slightly faster than the original or classical Adomian polynomials and
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are convenient for computer generation. The modified polynomials are defined using

a differencing method. The first few terms of the modified Adomian polynomials gen-

erated are identical to the original Adomian polynomials, but higher order terms do

exhibit differences. In addition to the classical and modified Adomian polynomials,

Adomian also introduced accelerated Adomian polynomials [5, 24]. These Adomian

polynomials provide faster convergence; however, they are less convenient compu-

tationally [5]. Despite the various types of the Adomian polynomials, the original

Adomian polynomials are more generally used based on the advantage of a convenient

algorithm which is easily remembered [24]. They are easily generated without a com-

puter and converge rapidly enough for most problems [5] .

Proposed modifications to the standard ADM can be as simple as the following; Wazwaz

[30] presented a reliable modification of the ADM. The modified ADM proposed by

Wazwaz divides the original function f into two parts, one assigned to the initial term

of the series and the other to the second term. All remaining terms of the recursive

relationship are defined as previously, but the modification results in a different series

being generated. This method has been shown to be computationally effecient; how-

ever, it does not always minimize the size of calculations needed and even requires

much more calculations than the standard ADM. The success of the modified method

depends mainly on the proper choice of the parts into which to divide the original func-

tion.

In 2001 Wazwaz and Al-sayed [29] presented a new modification of the ADM for lin-

ear and nonlinear operator, in the new modification Wazwaz replaced the process of

dividing f into two components by a series of infinite components, the new modifica-

tion introduce a promizing tool for linear and nonnlinear operator.

In 2005, Wazwaz [27] presented another type of modification to the ADM. The pur-

pose of this new approach was to overcome the difficulties that arise when singular

points are present. The modification arises in the initial definition of the operator when

applying the ADM to the Emden-Fowler equation. According to Wazwaz [27], the

ADM usually starts by defining the equation in an operator form by considering the
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lowest-ordered derivative in the problem. However, by defining the differential oper-

ator in terms of both derivatives in the equation, the singularity behavior was easily

overcome. The most striking advantage of using this choice for the operator L is that

it attacks the Emden-Fowler equation directly without any need for a transformation

formula. This modification could prove useful for similar models with singularities.

In [13, 14, 17] Y. Q. Hasan, solved first and second-order ordinary differential equa-

tions by Modified ADM, the difficulty in using ADM directly to this type of equations,

due to the existence of singular point at x = 0, is overcome here. He defined a new

differential operator which can be used for singular and nonsingular ODEs.

Another modification was proposed by Luo [23]. This variation separates the ADM

into two steps and therefore is termed the two-step ADM (TSAMD), the purpose be-

hind the proposed scheme is to identify the exact solution more readily and eliminate

some calculations. The two steps proposed by Luo [23] are as follows:

(1) Firstly, apply the inverse operator and the given conditions. Then, define a func-

tion, u0, ”where u0 is the first term of the solution” based on the resulting terms. If

this satisfies the original equation and the conditions as checked by substiution, it is

considered the exact solution and the calcuations terminated. Otherwise, continue on

to step two.

(2) Continue with the standard Adomian recursive relationship. As one can see, this

modification involves verifying that the zeroth component of the series solution in-

cludes the exact solution [23]. As such, it offers the advantage of requiring less calu-

culations than the standard ADM.

Another recent modification is termed the restarted Adomian method [9]. This method

involves repeatedly updating the initial term of the series generated rather than calcu-

lating additional terms of the solution by determining Adomian polynomials for large

indexes.

other researchers have developed modifications based on the operators to the (ADM).
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1.2 Operator

An operator is a function that takes a function as an argument instead of numbers as

we are used to dealing with in functions. We already know a couple of operators even

if we did not know that they were operators. Here are some examples of operators

L =
d

dx
, L =

∂

∂x
, L =

∫
dx, L =

∫ b
a
dx.

If a function is plugged in, say in each of the above, then the following can be obtained

L(u) =
du

dx
L(u) =

∂u

∂x
L(u) =

∫
(u)dx L(u) =

∫ b
a
(u)dx.

These are simple examples of operators derivative and integral. A more complicated

operator would be the heat operator. The heat operator can be found from a slight

rewrite of the heat equation without sources. The heat operator is then

L =
∂

∂t
− k ∂

2

∂x2
.

Also

L =
d

dx

(
1

x

d

dx

)
,

is another differential operator for a particular second order differential equation.

The operator L in second order differential equations is a twice differentiable function.

The domain of L is the twice differentiable functions on an open interval I . The

terminology L of the function u is used to describe L(u), and the range of the functions

on I (and hence L(u) is itself a function on I ). Generally, L is chosen

L(.) =
dp

dxp
(.),

for the pth order differential equations and thus its inverse L−1 follows as the p-fold

definite integration operator from x0 to x. The operator L defined has the following

basic property: If u1 and u2 are twice differentiable functions on I and c1 and c2 are

constants, then

L [c1u1 + c2u2] = c1L [u1] + c2L [u2] ,

4



note: an operator L satisfying property above is called linear operator.

Example 1.2.1. The differential equation

u
′′ − 1

x
u
′
= 0,

can be rewritten in compact form as(
1

x
u
′
)′

= 0, (1.1)

so from this, an operator can be generated to be:

L =
d

dx

(
1

x

d

dx

)
, (1.2)

so that (1.2) can be written in an operator form as:

L [u] =
d

dx

(
1

x

du

dx

)
,

after this, it can be verified that the operator is linear, bearing the basic properties of

derivation of ordinary differential equations in mind and plugging in the expression

c1u1 + c2u2 into the operator above it can be shown as:

L [c1u1 + c2u2] =
d

dx

(
1

x

d

dx
(c1u1 + c2u2)

)
,

=
d

dx

(
1

x

d

dx
(c1u1) +

1

x

d

dx
(c2u2)

)
,

=
d

dx

(
c1

1

x

d

dx
u1 + c2

1

x

d

dx
u2

)
,

= c1
d

dx

(
1

x

d

dx
u1

)
+ c2

d

dx

(
1

x

d

dx
u2

)
,

= c1L [u1] + c2L [u2] ,

thus the operator at (1.2) is linear operator. An operator that is not linear is known as

nonlinear operator.
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In this thesis, nonlinear operators in which nonlinear functions are plugged are symbol-

ized by some various representations like N(u) and F (u). These operators are used to

determine the Adomian polynomials by the help of Adomian formula which is briefly

discussed in the following chapter.

1.3 Adomian polynomials

The main part of ADM method is calculating Adomian polynomials for nonlinear poly-

nomials.

In this section, we will obtaining the Adomian general formula for Adomian polyno-

mials.

The decomposition method decomposes the solution u(x) and the nonlinearity N(u)

into series

u(x) =
∞∑
n=0

un , N(u) =
∞∑
n=0

An,

where An are the Adomian polynomials.

To compute An take N(u) = f(u) to be a nonlinear function in u, where u = u(x),

and consider the Taylor series expansion of f(u) around u0

f(u) = f(u0) + f ′(u0)(u− u0) +
1

2!
f ′′(u0)(u− u0)2 +

1

3!
f ′′′(u0)(u− u0)3 + · · · ,

but u = u0 + u1 + u2 + · · · ,

then

f(u) = f(u0) + f ′(u0)(u1 + u2 + u3 + · · · ) +
1

2!
f ′′(u0)(u1 + u2 + u3 + · · · )2

+
1

3!
f ′′′(u0)(u1 + u2 + u3 + · · · )3 + · · · ,

by expanding all terms we get

f(u) = f(u0) + f ′(u0)(u1) + f ′(u0)(u2) + f ′(u0)(u3) + · · ·+ 1

2!
f ′′(u0)(u1)

2

+
2

2!
f ′′(u0)(u1u2)+

1

2!
f ′′(u0)(u1u3)+· · ·+

1

3!
f ′′′(u0)(u1)

3+
3

3!
f ′′′(u0)u

2
1u2

6



+
1

3!
f ′′′(u0)u

2
1u3 + · · · ,

now, let li be the order of uil and l(i) + m(j) be the order of uilu
j
m. Then An consists

of all terms of order n, so we have

A0 = f(u0),

A1 = u1f
′(u0),

A2 = u2f
′(u0) +

1

2!
u21f

′′(u0),

A3 = u3f
′(u0) +

2

2!
u1u2f

′′(u0) +
1

3!
u31f

′′(u0),

A4 = u4f
′(u0) +

[
1

2!
u22 + u1u3

]
f ′′(u0) +

1

2!
u21u2f

′′′(u0) +
1

4!
u41f

′′′′(u0).

...

Hence,

An =
1

n!

dn

dλn

[
N

(
∞∑
n=0

λnun

)]
λ=0

, n ≥ 0. (1.3)

To find the An’s by Adomian general formula, these polynomials will be computed as

follows:

A0 = N(u0),

A1 = N(u0)u1 =
d

dλ
N(u0 + λu1)

∣∣∣∣
λ=0

,

A2 = N ′(u0)u2 +
1

2!
N ′′(u0)u

2
1 =

1

2!

d2

dλ2
N(u0 + λu1 + λ2u2)

∣∣∣∣
λ=0

,

A3 = N ′(u0)u3 +
2

2!
N ′′(u0)u1u2 +

1

3!
N ′′′(u0)u

3
1 =

1

3!

d2

dλ2
N(u0 + λu1 + λ2u2 +

+λ3u3)

∣∣∣∣
λ=0

,

...

Example 1.3.1. The Adomian polynomials of

f(u) = u5

are

7



A0 = u50,

A1 = 5u40u1,

A2 = 5u40u2 + 10u30u
2
1,

A3 = 5u40u3 + 20u30u1u2 + 10u30u
3
1,

...

for more example see [12, 34].

1.4 Analysis of the ADM

As well the ADM consist of decomposing the unknown function u(x, y) of any equa-

tion into a sum of an infinite number of components defined by the decomposition

series

u(x, y) =
∞∑
i=1

un(x, y), (1.4)

where the components un(x, y), n ≥ 0 are to be determined in a recursive manner. The

ADM concerns itself with finding the components

u0, u1, u2, · · · individually.

The determinant of these component can be achieved in any easy way through a recur-

sive relation that usually involve simple integrals. This technique is very simple in an

abstract formulation but the difficulty arises in calculating the Adomian polynomials

and proving the convergence of the series of the function.

The ADM consists of splitting the given equation into linear and nonlinear parts, in-

verting the highest-order derivative operator contained in the linear operator on both

sides, identifying the initial and/or boundary conditions and the terms involving the

independent variable alone as initial approximation, decomposing the unknown func-

tion into a series whose components are to be determined, decomposing the nonlinear

function in terms of special polynomials called Adomian polynomials and finding the

8



successive terms of the series solution by recurrent relation using Adomian polyno-

mials. The solution is found as an infinite series in which each term can be easily

determined and that converges quickly towards an accurate solution.

The ADM is quantitative rather than qualitative, analytic, requiring neither lineariza-

tion nor perturbation and continuous with no need to discretization and consequent

computer-intensive calculations.

ADM for ODEs

To give a clear overview of ADM, we consider a differential equation

F (u(t)) = g(t),

where F represents a general nonlinear ordinary or partial differential operator includ-

ing both linear and nonlinear terms. Linear terms are decomposed into L + R, where

L is invertible and is taken as the highest order derivative, and R is the remainder of

the linear operator. Thus the equation may be written as

Lu+Nu+Ru = g, (1.5)

where N(u) represents the nonlinear terms. Solving for Lu, we obtain

Lu = g −Nu−Ru. (1.6)

Operating on both sides of eq. (1.6) with L−1 we have,

L−1Lu = L−1g − L−1Nu− L−1Ru. (1.7)

The decomposition method represents the solution u(x, t) as a series of this form,

u(x, t) =
∞∑
n=0

un(x, t). (1.8)

The nonlinear term Nu is decomposed as

N(u) =
∞∑
n=0

An. (1.9)

9



Substitute eq. (1.8) and eq. (1.9) into eq. (1.7) we get,

∞∑
n=0

un(x, t) = ϕ0 + L−1g(x)− L−1R
∞∑
n=0

un − L−1
∞∑
n=0

An, (1.10)

where,

ϕ0 =



u(0), if L =
d

dx
,

u(0) + xu′(0), if L =
d2

dx2
,

u(0) + xu′(0) +
x2

2!
u′′(0), if L =

d3

dx3
,

...

u(0) + xu′(0) +
x2

2!
u′′(0) + · · ·+ xn

n!
u(n)(0), if L =

dn+1

dxn+1
.

(1.11)

Therefore 

u0 = ϕ0 + L−1g(x),

u1 = −L−1Ru0 − L−1A0,

u2 = −L−1Ru1 − L−1A1,

...

un+1 = −L−1Run − L−1An, n ≥ 0,

(1.12)

where An are the Adomian polynomials generated for each nonlinearity so that A0

depends only on u0, A1 depends only on u0 and u1, A2 depends only on u0, u1, u2 and

etc.

The Adomian polynomials are obtained from the formula

An =
1

n!

dn

dλn

[
N

(
∞∑
n=0

λnun

)]
λ=0

, n = 0, 1, 2, · · · . (1.13)

10



We write the first five Adomian polynomials

A0 = N(u0),

A1 = u1N
′(u0),

A2 = u2N
′(u0) +

1

2!
u21N

′′(u0),

A3 = u3N
′(u0) + u1u2N

′′(u0) +
1

3!
u31N

′′′(u0),

A4 = u4N
′(u0) +

[
1

2!
u22 + u1u3

]
N ′′(u0) +

1

2!
u21u2N

′′′(u0) +
1

4!
u41N

′′′′(u0),

...
(1.14)

So, the practical solution for the n terms approximation is

φn =
n−1∑
i=0

ui, (1.15)

where

u(x, t) = lim
n→∞

φn(x, t) =
∞∑
i=0

ui(x, t). (1.16)

We now demonstrate the ADM on the following illustrative examples.

Example 1.4.1. Consider the second order linear ordinary differential equation

u
′′ − u = 1, (1.17)

subject to the initial conditions

u(0) = 0, u
′
(0) = 1.

In operator form, eq. (1.17) can be written as

Lu = 1 + u, (1.18)

where L is the second order differential operator Lu = u
′′
, so L−1is given by

L−1(.) =

∫ x

0

∫ x

0

(.)dxdx.

11



Applying L−1 to both sides of (1.18) and using the initial conditions into (1.19) gives

u = u(0) + xu
′
(0) + L−1(1) + L−1(u) = x+

x2

2
+ L−1(u),

applying eq. (1.8) to the last eq. we have

∞∑
n=0

un = x+
x2

2
+ L−1(

∞∑
n=0

un),

this leads to the recursive relation u0 = x+
x2

2
,

un+1 = L−1(un), n ≥ 0.

The first few components are thus determined as follows:

u0 = x+
x2

2
,

u1 =
x3

6
+
x4

24
,

u2 =
x5

5!
+
x6

6!
.

Consequently, the solution in a series form is given by

u(x) = x+
x2

2
+
x3

6
+
x4

24
+
x5

5!
+
x6

6!
+ · · ·

and clearly in a closed form is given by

u(x) = ex − 1.

ADM for PDEs

Previously, we applied the (ADM) to ordinary differential equations. Now, we will

show how the method can be implemented to partial differential equations as well.

Consider the general partial differential equation written in operator form:

Lxu+ Ltu+Ru+ Fu = g, (1.19)

12



where Lxis the highest order differential in x, Lt is the highest order differential in t,

R is the remainder of differential operator consisting of lower order derivatives, F (u)

is an analytic nonlinear term, and g is the specified inhomogeneous term. Applying the

inverse operator L−1x , the equation (1.19) becomes

u = ϕ0 − L−1x Ltu− L−1x Ru− L−1x F (u) + L−1x g, (1.20)

where

ϕ0 =



u(0, t), if L =
∂

∂x
,

u(0, t) + xux(0, t), if L =
∂2

∂x2
,

u(0, t) + xux(0, t) +
x2

2!
uxx(0, t), if L =

∂3

∂x3
,

...

u(0, t) + xux(0, t) +
x2

2!
uxx(0, t) + · · ·+ xn

n!
uxx...(ntimes)(0, t), if L =

∂n+1

∂xn+1
.

The method admits the decomposition of u(x, t) into an infinite series of terms ex-

pressed as:

u(x, t) =
∞∑
n=0

un(x, t), (1.21)

and the nonlinear term F (u) is to be equated to an infinite series of polynomials

F (u(x, t)) =
∞∑
n=0

An, (1.22)

where An are the Adomian polynomials that represent the nonlinear term F (u(x, t)),

insertinging (1.21) and (1.22) into (1.4) yields

∞∑
n=0

un(x, t) = ϕ0+L−1x Lt

∞∑
n=0

un(x, t)−L−1x R

∞∑
n=0

un(x, t)−L−1x
∞∑
n=0

An(x, t)+L−1x g.

The various terms un(x, t) of the solution u(x, t) can be easily determined by using

the recursive relationu0(x, t) = ϕ0 + L−1x g,

un+1(x, t) = −L−1x Ltun(x, t)− L−1x Run(x, t)− L−1x An, n ≥ 0.

(1.23)
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Consequently, the first few terms of the solution are given by

u0 = ϕ0 + L−1x g,

u1 = −L−1x Ltu0(x, t)− L−1x Ru0(x, t)− L−1x A0,

u2 = −L−1x Ltu1(x, t)− L−1x Ru1(x, t)− L−1x A1,

u3 = −L−1x Ltu2(x, t)− L−1x Ru2(x, t)− L−1x A2,
...

Example 1.4.2. Consider the following homogeneous partial differential equation

ux − uy = 0, u(0, y) = y, u(x, 0) = x. (1.24)

In an operator form, eq. (1.24) becomes

Lxu(x, y) = Lyu(x, y), (1.25)

where the operator Lx and Ly are defined by

Lx =
d

dx
and Ly =

d

dy
.

Applying the inverse operator L−1 to both side of (1.31) and using the given condition

u(0, y) = y yields

u(x, y) = y + L−1x (Lyu), (1.26)

define the unknown function u(x, y) by the decomposition series

u(x, y) =
∞∑
n=0

un(x, y), (1.27)

inserting (1.27) into both sides of (1.26) gives

∞∑
n=0

un(x, y) = y + L−1x

(
Ly

(
∞∑
n=0

un(x, y)

))
, (1.28)

by considering few terms of the decomposition of u(x, y), eq. (1.34) becomes

u0 + u1 + u2 + · · · = y + L−1x (Ly(u0 + u1 + u2 + · · · )),

14



proceeding as before, we identify the zeroth component u0 by

u0(x, y) = y,

after identifying the zeroth component u0(x, y), we obtain the recursive schemeu0(x, y) = y,

un+1(x, y) = L−1x Ly(un), n ≥ 0.

(1.29)

The components u0, u1, u2, · · · are thus determined as follows :

u0(x, y) = y,

u1(x, y) = L−1x Lyu0 = L−1x Ly(y) = x,

u2(x, y) = L−1x Lyu1 = L−1x Ly(x) = 0,

it is obvious that the component un(x, y) = 0, n ≥ 2. Consequently, the solution is

given by

u(x, y) = u0(x, y) + u1(x, y) + u2(x, y) + · · · = u0(x, y) + u1(x, y) = y + x,

hence the exact solution of the homogeneous partial deferential equation in eq.(1.24)

is given by

u(x, y) = x+ y.

Example 1.4.3. Consider the initial value problem of nonlinear partial differential

equation

uxx +
1

4
u2t = u(x, t), u(0, t) = 1 + t2, ux(0, t) = 1. (1.30)

We first rewrite eq. (1.30) in an operator form as

Lxu = u− 1

4
u2t

where Lx is a second order partial differential operator. Operating with L−1x both sides

of the last PDE and using the initial conditions gives

u = 1 + t2 + x+ L−1x u− 1

4
L−1x u2t .

15



Applying eq. (1.8) and (1.9) we have
∞∑
n=0

un(x, t) = 1 + t2 + x+ L−1x (
∞∑
n=0

un(x, t))− 1

4
L−1x (

∞∑
n=0

An(x, t))

Recursively we determine u0, u1, u2, ,to obtain

u0(x, t) = 1 + t2 + x,

un+1(x, t) = L−1x un(x, t)− 1

4
L−1x An, n ≥ 0,

where An are the Adomian polynomials. The first few polynomials for the nonlinear

quadratic term u2t are given by

A0 = u20t,

A1 = 2u0tu1t,

A2 = 2u0tu2t + u21t.

...

Consequently, the first three terms of the solution u(x, t) are given by

u0(x, t) = 1 + t2 + x,

u1(x, t) = L−1x u0 −
1

4
L−1x A0 = L−1x (1 + x) =

x2

2!
+
x3

3!
,

u2(x, t) = L−1x u1 −
1

4
L−1x A1 = L−1x (

x2

2!
+
x3

3!
) =

x4

4!
+
x5

5!
,

...

thus, the infinite solution in a series form is given by

u(x, t) = t2 + (1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ · · · ).

Note that infinite series is the McLaurin series expansion of ex. Indeed, the latter equa-

tion leads to the exact solution of our initial value problem which is given by

u(x, t) = t2 + ex,

for more example see [31, 32].
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1.5 Modified Adomian polynomials

In this section a new class of the Adomian Polynomials is defined, denoted byAn.

In the ADM for solving nonlinear differential or partial differential equations [1, 2,

3, 4, 32], Several studies such as Rach [5], zhu [34], Wazwaz [28], Duan [10], [11]

have been proposed to modifiy the regular Adomian polynomials An, a rapidly con-

verging approximant to the solution u denoted by ϕm[u] =
∑m−1

n=0 un. Then u(x, t) =

limm→∞ ϕm[u] = limm→∞
∑m−1

n=0 un = u,

where un are components to be determined such that we have convergence to u.

Now we make an analogous definition that just as ϕm[u] or simply ϕm approximates

u, i.e.,

ϕm[u] =
m−1∑
n=0

un,

Φm[f(u)] similarly approximates f(u), or

φm[f(u)] =
m−1∑
n=0

An.

The An, represent a new class of the Adomian polynomials and the limm→∞[Φm =∑m−1
n=0 An] = f(u). Thus we view Φm = f(u) and ϕm = u as truncated representa-

tions of f(u) and u. The An, can now be defined by:

Am = Φm+1 − Φm, (1.31)

just as

um = ϕm+1 − ϕm.

From Φm =
∑m−1

n=0 An, we see that Φ1 = A0. for m ≥ 1,

Am = ϕm+1[f(u)]− ϕm[f(u)],

thus

A1 = ϕ2[f(u)]− ϕ1[f(u)],

A2 = ϕ3[f(u)]− ϕ2[f(u)],

17



A3 = ϕ4[f(u)]− ϕ3[f(u)],

...

we can also write from (1.31)

A1 = Φ2 − Φ1,

A2 = Φ3 − Φ2,

A3 = Φ4 − Φ3,

...

the Φm are conveniently defined as:

Φm =
m−1∑
n=0

(ϕm−n+1 − u0)n

n!
fn(u0),

hence,

Φ1 = f(u0),

Φ2 = f(u0) + u1f
1(u0),

Φ3 = f(u0) + (ϕ3 − u0)f 1(u0) +
(ϕ2 − u0)2

2!
f 2(u0),

...

from which

A0 = f(u0),

A1 = Φ2 − Φ1 = u1f
1(u0),

A2 = Φ3 − Φ2 = u2f
1(u0) + (

u21
2!

)f 2(u0),

which so far, are identical to the classical or original A0, A1, A2, respectively.

For m ≥ 3, Am = Am. To see this, we calculate Φ4 and A3.

Φ4 = f(u0) + (ϕ4 − u0)f 1(u0) +
(ϕ3 − u0)2

2!
f 2(u0) +

(ϕ2 − u0)3

3!
f 3(u0),

since

A3 = Φ4 − Φ3 = u3f
1(u0) + (

u22
2!

+ u1u2)f
2u0 + (

u31
3!

)f 3u0,
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but

A3 = u3f
1(u0) + u1u2f

2u0 + (
u31
3!

)f 3u0,

clearly, then the decomposition components un of the solution u of a differential equa-

tion using the An for nonlinearities are equal to the components using the An for

u0, u1, u2, u3 but not for u4, u5, · · · .

Example 1.5.1.
du

dx
= u2, u(0) = 1.

In an operator form write

Lu = u2.

Applying L−1 to both sides yeild

u = u(0) + L−1u2,

u = 1− L−1
∞∑
n=0

An.

Using the original An,

A0 = u20,

A1 = 2u0u1,

A2 = u21 + 2u0u2,

A3 = 2u1u2 + 2u0u3,

A4 = u22 + 2u1u3 + 2u0u4,

A5 = 2u2u3 + 2u1u4 + 2u0u3,
...

if we use the An, we have

A0 = u20,

A1 = 2u0u1,

A2 = u21 + 2u0u2,
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A3 = u22 + 2u1u2 + 2u0u3,

A4 = u33 + 2u0u4 + 2u1u3 + 2u2u3,

A5 = u42 + 2u0u5 + 2u1u4 + 2u2u4 + 2u3y4,
...

we note a difference from the original An, beginning with A3 which appears in the

fourth term of the decomposition. The regular polynomials An have generally been

used because they are simply generated, The convergence of the An is slightly faster

than for the An since the two are identical until A3.
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Chapter 2

Some Modifications of the ADM Based

on the Assumptions

Several researchers have developed modifications to the ADM [8, 13, 23, 27]. The

modifications arise from evaluating difficulties specific for the type of problem under

consideration. Usually the modification involves only a slight change and is aimed

at improving the convergence or accuracy of the series solution. This further demon-

strates the wide applicability that the ADM has, as well as its simplicity since it can be

easily modified for the situation at hand. In this chapter we present some modifications

of the ADM where the assumptions made by Adomian were modified.

Note that, the modified ADM will be applied wherever it is appropriate, to all partial

differential equations of any order. The modified ADM may give the exact solution

after just two iterations only and without using the Adomian polynomials.

2.1 The modified decomposition method by Wazwaz

The assumptions made by Adomian were modified in (1999) by Wazwaz [30]. In

(2001) Wazwaz and Al-sayed considered a new modification [29]. In this section we

present these two modifications.
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2.1.1 The first modified (MADM1)

Wazwaz presented a reliable modification of the Adomian decomposition method. As

we know the ADM suggest that the zeroth component u0 usually defined by function

f = ϕ+ L−1g. But the modified decomposition method proposed by Wazwaz was es-

tablished based on the assumption that the function f can be divided into two parts one

assigned to the initial term of the series and the other to the second term. All remain-

ing terms of the recursive relationship are defined as previously, but the modification

results in a different series being generated. This method has been shown to be com-

putationally efficient; however, it does not always minimize the size of calculations

needed. The success of the modified method depends mainly on the proper choice of

the parts into which to divide the original function. Under this assumption we set

f = f0 + f1.

Based on this, we formulate the modified recursive relation as follows:
u0(x) = f0,

u1(x) = f1 − L−1 (Ru0)− L−1 (A0) ,

un+1(x) = −L−1 (Run)− L−1 (An) , n ≥ 0.

(2.1)

Having calculated the component un(x, y), the solution in a series form follows imme-

diately.

Although this variation in the formation of u0 and u1 is slight, however it plays a ma-

jor role in accelerating the convergence of the solution and in minimizing the size of

calculations.

Furthermore, there is no need sometimes to evaluate the so-called Adomian polyno-

mials required for nonlinear operators. Two important remarks related to the modified

method were made in this section. First, by proper selection of the function f0 and

f1 , the exact solution u may be obtained by using very few iterations, and sometimes

by evaluating only two components. The success of this modification depends only on

22



the choice of f0 and f1 , and this can be made through trials, that are the only crite-

ria which can be applied so far. Second, if g consists of one term only, the standard

decomposition method should be employed in this case, see [29].

2.1.2 The second modified (MADM2)

As indicated earlier, although the modified decomposition method may provide the ex-

act solution by using two iterations only, and sometimes without any need for Adomian

polynomials, but its effectiveness depends on the proper choice of f0 and f1 . In the

new modification, Wazwaz and Al-sayed [33] replaces the process of dividing f into

two components by a series of infinite components. He suggests that f be expressed in

Taylor series

f =
∞∑
n=0

fn. (2.2)

Moreover, he suggest a new recursive relationship expressed in the formu0 = f0,

un+1 = fn+1 − L−1 (Run)− L−1 (An) , n ≥ 0.

(2.3)

having calculated the component un(x, y), the solution in a series form follows imme-

diately.

We can observe that algorithm (2.3) reduces the number of terms involved in each stan-

dard ADM only. Moreover this reduction of terms in each component facilitates the

construction of Adomian polynomials for nonlinear operators. The new modification

overcomes the difficulty of decomposing f(x), and introduces an efficient algorithm

that improves the performance of the standard ADM.

Note: If f consists of one term only, then scheme (2.3) reduces to ADM relation .

Moreover, if f consists of two terms, then relation (2.3) reduces to the modified rela-

tion (2.1), see [30].
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2.2 The two-step ADM (TSADM)

Although the modified decomposition method may provide the exact solution by using

two iteration only, the criterion of dividing the function f into two practical parts, and

the case where f consists only of one term remain unsolved so far.In fact, as will be

seen from the examples below, the effort to divide f into two parts is useless and may

even decelerates the convergence sometimes.

Another modification of ADM was proposed by Luo [23]. This variation separates the

ADM into two steps and therefore is termed the two-step ADM. The purpose behind

the proposed scheme is to identify the exact solution more readily and eliminate some

calculations as such. The two steps proposed by Luo are as follows: Firstly, apply the

inverse operator and the given conditions. Then, define a function, u0, based on the

resulting terms. If this satisfies the original equation and the conditions as checked by

substitution, it is considered the exact solution and the calculations terminated. Other-

wise, continue on to step two. In step tow we are continue with the standard Adomian

recursive relationship. As one can see, this modification involves ”verifying that the

zeroth component of the series solution includes the exact solution”. As such, it offers

the advantage of requiring less calculations than the standard ADM.

The main ideas of the TSADM method are:

(1) Applying the inverse operator L−1 and using the given condition we obtain

Φ = ϕ+ L−1g, (2.4)

where the function ϕ represents the terms arising from using the given conditions, all

are assumed to be prescribed.To achieve the objectives of this study, we set

Φ = Φ0 + Φ1 + · · ·+ Φm, (2.5)

where Φ0, Φ1, · · · Φm are the terms arising from integrating the source term and from

using the given conditions. Based on this, we define

u0 = Φn + · · ·+ Φn+s, (2.6)
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where n = 0, 1, 2, · · · ,m, and s = 0, 1, 2, · · · ,m− n, then we verify that u0 satisfies

the original equation and the given condition by substitution, once the exact solution

is obtained we finish. otherwise, we go to following step two.

(2) We set u0 = Φ and continue with the standard Adomian recursive relation

un+1 = −L−1 (Run)− L−1 (An) , n ≥ 0. (2.7)

Compared to the standard Adomian method and the modified method, we can see that

the TSADM may provide the solution by using one iteration only. It is important to

note that the procedure of verification in the first step can be significantly effective in

many practical cases. This can be seen from the examples below by taking full ad-

vantage of the property of the original equation and the given conditions. Further, the

TSADM method avoids the difficulties arising in the modified method.

2.3 Restarted ADM (RADM)

Basically the RADM has the same structure as that of the ADM but the ADM is

used more than once. In practice, after applying the ADM and calculating m terms

of the series solution, for arbitrary m, the summation of these terms is taken as the

first term of the solution of the ADM and then the method starts again for arbitrary

m′ times. In other words, to apply the RADM, firstly we apply the ADM and set

φm = u0 + u1 + . . . + um−1. Then the RADM begins when we choose φm(t) as the

first term of the solution in the ADM; hence, in essence, we reset the initial term. The

RADM can be summarized in the following algorithm, see [6, 9, 26].
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The algorithm

Consider the differential equation

Lu+Ru+Nu = g. (2.8)

Step 1. Choose positive natural numbers m, n, m′.

Step 2. Use the ADM to solve the differential equation and obtain Φm(t), then let

G(t) = Φm(t).

Step 3. Add and substract G(t) to right side of eq. (2.8)

For k = 1 to n, do Step 4. Let uresk,0(t) = G(t).

Step 5. uresk,1(t) = ϕ0 + L−1g(x)− L−1Ru0 − L−1A0 −G(t).

Step 6. uresk,n+1(t) = L−1g(x)− L−1Run − L−1An.

Step 7. Let

xres(t) =
m′∑
n=0

uresk,n(t),

G(t) = ures(t),

End for Step 8. Consider the approximate solution of the problem as Φ(t) = G(t).

See [26].

2.4 Examples

In this section, some initial value problems are considered to show the efficiency of

each modified.

Example 2.4.1.

u′ − u = x cosx− x sinx+ sinx, u(0) = 0.

Applying L−1to both sides yields

u(x) = x sinx− x cosx− sinx+ L−1u(x),

26



where L(.) =
d

dx
(.), and L−1(.) =

∫ t
0
(.)dt.

Then we have recursive relationshipu0 = xsinx− xcosx− sinx,

un+1 = L−1un, n ≥ 0.

By using MADM1:

u0 = x sinx,

u1 = x cosx− sinx+ L−1u0 = 0,

...

un+1 = L−1un = 0, n ≥ 0.

Then the exact solution is u(x) = x sinx

By using MADM2: the Taylor expansion for

f(x) = x sinx+ x cosx− sinx is given by

f(x) = x2 − 2x3

3!
− x4

4!
+

4x5

5!
+
x6

6!
+ · · · ,

then the recursive relationship

u0 = x2,

u1 =
−2x3

3!
+ L−1u0 = 0,

u2 =
−x4

3!
+ L−1u1 =

−x4

3!
,

u3 = 0,

u4 =
−x6

5!
.

...

The solution in a series form is given by u(x) = x2−x
4

3!
+
x6

5!
+· · · = x

[
x− x3

3!
+
x5

5!
+ · · ·

]
=
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x sinx.

By using TSADM: Let

Φ = Φ0 + Φ1 + Φ2,

Φ0 = x sinx, Φ1 = x cosx, Φ2 = − sinx,

clearly Φ0,Φ1 and Φ2 satisfy, by selecting u0 = Φ0 and by verifying that u0 justified

the differential equation.

Then, the exact solution is obtained immediately u = x sinx.

By using RADM:Let

u0 = x sinx,

u1 = x cosx− sinx+ L−1A0 = 0.

Then

Φ1 = x sinx,

then the exact solution is u(x) = x sinx.

The following table display a comparison of absolute errors between the exact solution

and approximate solutions by ADM and MADM2.
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x U Exact ADM MADM2 ADM Abs. error MADM2 Abs. error

0.0 0.0 3.10862 ∗ 10−15 0.0 3.10862 ∗ 10−15 1.54811 ∗ 10−11

0.1 −0.00500836 −0.00500836 −0.00500836 1.48548 ∗ 10−11 1.9028 ∗ 10−9

0.2 −0.0201348 −0.0201348 −0.0201348 2.19203 ∗ 10−8 7.46429 ∗ 10−7

0.3 −0.0456917 −0.0456934 −0.0456917 1.75982 ∗ 10−6 2.90542 ∗ 10−5

0.4 −0.082229 −0.0822708 −0.082229 4.18148 ∗ 10−5 4.39705 ∗ 10−4

0.5 −0.130584 −0.131082 −0.130584 4.98158 ∗ 10−4 3.96416 ∗ 10−3

Table 2.1: Comparison of absolute errors between the exact solution and approximate

solutions by ADM and MADM2.

Note: MADM2 does not always have higher accuracy than the ADM but we shown

here that MADM2 are successfully applied to solve differential equation and minimize

the size of calculations.

Example 2.4.2. Consider the linear partial differential equation [8]

utt + uxx + u = 0, (2.9)

with initial conditions u(x, 0) = 1 + sinx, ut(x, 0) = 0.

In an operator form the eq. (2.9) becomes

Lttu(x, y) = − (uxx + u) , (2.10)

where Ltt =
d2

dt2
, and L−1tt =

∫ 1

0

∫ 1

0
(.)dtdt.

Applying L−1tt to both sides of (2.10) and using the initial condition we obtain

u(x, t) = 1 + sinx− L−1tt (u+ uxx) .

By using (MADM1)

we divide f(x) into two parts,
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f0 = 1, and f1 = sinx,then we have from the recursive relation
u0 = 1,

u1 = sinx− L−1tt
(
u0 + u0|xx

)
, n ≥ 0

un + 1 = L−1tt
(
un + un|xx

)
, n ≥ 0.

The first few component from the last recursive relation are

u0 = 1,

u1 = sinx− L−1tt (u0 + uxx) = sin x− 1

2!
t2,

u2 = −L−1tt
(
u1 + u1|xx

)
=

1

4!
t4,

u3 = −L−1tt
(
u2 + u2|xx

)
= − 1

6!
t6,

...

u(x, t) = u0 + u1 + u2 + · · ·

= sinx+ 1− 1

2!
t2 +

1

4!
t4 − 1

6!
t6 + · · ·

= sinx+ cos t.

By using (MADM2) :

the Taylor expansion for f(x) = 1 + sinx is :

f(x) = 1 + x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + · · · ,

then we have from the recursive relation

u0 = 1,

u1 = x− L−1tt (u0 + uxx) = x− 1

2!
t2,

u2 = − 1

3!
x3 − L−1tt

(
u1 + u1|xx

)
= − 1

3!
x3 − 1

2
xt2 +

1

4!
t4,

u3 =
1

5!
x5 − L−1tt

(
u2 + u2|xx

)
=

1

5!
x5 − 1

6!
t6 +

1

24
xt4 +

1

2
xt2 +

1

12
x3t2,

...
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u(x, t) = u0 + u1 + u2 + · · · ,

=

(
x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + · · ·

)
+

(
1− 1

2!
t2 +

1

4!
t4 − 1

6!
t6 + · · ·

)
,

= sinx+ cos t.

An important conclusion that can be made here is that the exact solution was accelerate

by using the modification more than the standard Adomian method .

Example 2.4.3. By using (TSADM) :

Consider the partial differential equation

uxx + (1− 2x)uxy + (x2 − x− 2)uyy = 0, (2.11)

with the initial condition u(x, 0) = x, uy(x, 0) = 1.

In an operator form the equation (2.11) becomes

Lyyu(x, y) = − (1− 2x)

(x2 − x− 2)
uxy −

1

(x2 − x− 2)
uxx, (2.12)

where Lyy(.) =
d2

dy2
(.), and L−1yy (.) =

∫ y
0

∫ y
0

(.)dydy.

Applying L−1yy to both side of (2.12) and using the initial condition we obtain

u(x, y) = x+ y − L−1yy
[

(1− 2x)

(x2 − x− 2)
uxy −

1

(x2 − x− 2)
uxx

]
, (2.13)

using the eq. (2.13) gives: Φ = Φ0 + Φ1 = x+ y

Φ0 = x, Φ1 = y,

by select u0 = x+y and verify that u0 satisfies the eq. (2.11) and the given conditions.

Then the exact solution is

u(x, y) = x+ y.
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Example 2.4.4. By using (RADM) [7]:

Consider the boundary value problem

u′′ + λ
(
1 + u+ u2 + u3

)
= 0, 0 < x < 1, (2.14)

u(0) = u(1) = 0.

Applying the standard ADM in eq.(2.14), we get

∞∑
n=0

un = −λ

(
L−1(1) + L−1

∞∑
n=0

un +
1

2!
L−1

∞∑
n=0

An +
1

3!
L−1

∞∑
n=0

Bn

)
, n ≥ 0.

(2.15)

This gives

u0 = −1

2
λx2 +

1

2
λx,

un+1 = −λ
(
L−1un +

1

2!
L−1An +

1

3!
L−1Bn

)
, n ≥ 0. (2.16)

Adding and subtracting g(x) to right side of eq. (2.15) to obtain

∞∑
n=0

un = G(x)−λ

(
L−1(1) + L−1

∞∑
n=0

un +
1

2!
L−1

∞∑
n=0

An +
1

3!
L−1

∞∑
n=0

Bn

)
−G(x), n ≥ 0,

(2.17)

by equating the terms we can get

u0 = G(x),

u1 = −λ
(
L−1(1) + L−1u0 +

1

2!
L−1A0 +

1

3!
L−1B0

)
−G(X), (2.18)

un+2 = −λ
(
L−1un+1 +

1

2!
L−1An+1 +

1

3!
L−1Bn+1

)
, n ≥ 0,

Step 1: In this step, g(x) is calculated from eq. (2.16) as follows:

u0 = −1

2
λx2 +

1

2
λx,

u1 = − 1

2688
λ4x8 +

1

672
λ4x7.

So

G(x) = φ1(x) = u0 + u1,
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Step 2: Now, components of the RADM is computed from eq. (2.18) as follows:

u0 = G(x),

u1 = − 1

757447262208
λ13x26 +

1

58265174016
λ13x25 − · · · ,

u2 =
1

20709139646480822304768
λ22x44 − 1

941324529385491922944
λ22x34 + · · · ,

u3 = − 1921

11035111388719457016087541142519808
λ31x62 + · · · ,

u4 = −2947869097563053625774338209619441623807033344

λ

40

x80 + · · · ,

so,

φ2 = u0 + u1 + u2 + u3 + u4,

The approximate solution u(x) is obtained in a series form

u(x) = φ2 = u0 + u1 + u2 + u3 + u4.

x Exact ADM Abs. error RADM Abs. error

0 0 0 0

0.1 0.0498467900 2.9 ∗ 10−5 4.8 ∗ 10−7

0.2 0.0891899350 5.6 ∗ 10−5 9.4 ∗ 10−7

0.3 0.1176090956 7.9 ∗ 10−5 1.3 ∗ 10−7

0.4 0.1347902526 9.4 ∗ 10−5 1.6 ∗ 10−7

0.5 0.1405392142 9.9 ∗ 10−5 1.7 ∗ 10−7

0.6 0.1347902526 9.4 ∗ 10−5 1.6 ∗ 10−7

0.7 0.1176090956 7.9 ∗ 10−5 1.3 ∗ 10−7

0.8 0.0891899350 5.6 ∗ 10−5 9.4 ∗ 10−7

0.9 0.0498467900 2.9 ∗ 10−5 4.8 ∗ 10−7

1.0 0 2.5 ∗ 10−11 1 ∗ 10−11

Table 2.2: Comparison of absolute errors between the exact solution and approximate

solutions by ADM and RADM.
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The obtained results indicate that the new techniques give more suitable and accurate

solutions compared with the ADM.
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Chapter 3

Some Modifications of ADM Based On

The Operators

3.1 MADM3

In this section, we present a reliable modification of the ADM to solve singular and

nonsingular initial value problems of the first, second and high order ordinary differ-

ential equations. Theoretical considerations have been discussed and the solutions are

constructed in the form of a convergent series. Some examples are presented to show

the ability of the method for linear and nonlinear problems.

We will show that, with the proper use of MADM3, it is possible to obtain an analytic

solution to first order differential equation, singular or nonsingular. The difficulty in

using ADM directly to this type of equations, due to the existence of singular point at

x = 0, is overcome . Here we use the MADM3 for solving singular and nonsingular

initial value problem of order one and two. It is demonstrated that this method has the

ability of both linear and nonlinear ordinary differential equation.
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3.1.1 First order ODEs

The first order ordinary differential equation can be consider as:

u′ + p(x)u+ F (x, u) = g(x), (3.1)

with boundary condition u(0) = A,

where A is constant, p(x) and g(x) are given functions and F (x, u) is a real function.

The ADM can not find the solution of (3.1) directly at x = 0. For example, we cannot

find the solution of u′ +
sec2 x

tanx
u = 2 sec2 x at x = 0 by ADM.

For this reason, Hasan in [14] introduced a new modification of ADM (MADM3), he

proposed a new differential operator which can be used for singular and nonsingular

ODEs.

Method of solution

Define a new differential operator L in terms of the one derivative contained in the

problem. Rewrite (3.1) in the form

Lu = g(x)− F (x, u), (3.2)

where the differential operator is defined by

L(u) = e−
∫
p(x)dx d

dx

(
e
∫
p(x)dxu

)
. (3.3)

The inverse operator L−1 is therefore consider a one-fold integral operator, as below,

L−1(.) = e−
∫
p(x)dx

∫ x

0

e
∫
p(x)dx(.)dx. (3.4)

Applying L−1 of (3.4) to the first tow terms u′ + p(x)u of eq. (3.1). We find

L−1(u′ + p(x)u) = e−
∫
p(x)dx

∫ x

0

e
∫
p(x)dx(u′ + p(x)u)dx = u− u(0)φ(0)e−

∫
p(x)dx

where φ(x) = e
∫
p(x)dx.
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By operating L−1 on (3.3), we have

u(x) = u(0)φ(0)e−
∫
p(x)dxdx+ L−1g(x)− L−1F (x, u). (3.5)

The ADM introduces the solution u(x) by an infinite series of components

u(x) =
∞∑
n=0

un(x), (3.6)

and the nonlinear function F (x, u) by an infinite series of polynomials

F (x, u) =
∞∑
n=0

An, (3.7)

where the components un(x) of the solution u(x) will be determined recurrently and

An are Adomian polynomial that can be constructed for various classes of nonlinearity

according to specific algorithms set by Wazwaz [28]. For a nonlinear F (u), the first

few polynomials are given by

A0 = F (y0),

A1 = u1F
′(u0)

A2 = u2F
′(u0) +

1

2!
u21F

′′(u0),

A3 = u3F
′(u0) + u1u2F

′′(u0) +
1

3!
u31F

′′(u0),

...

(3.8)

Substituting (3.6) and (3.7) into (3.5) gives

∞∑
n=0

un(x) = u(0)φ(0)e−
∫
p(x)dxdx+ L−1g(x)− L−1

∞∑
n=0

An.

To determine the components un(x), we use ADM that suggests the use of the recursive

relation

u0(x) = u(0)φ(0)e−
∫
p(x)dxdx+ L−1g(x),

un+1(x) = −L−1(An), n ≥ 0,
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which gives 

u0(x) = u(0)φ(0)e−
∫
p(x)dxdx+ L−1g(x),

u1(x) = −L−1(A0),

y2(x) = −L−1(A1),

u3(x) = −L−1(A2),

...

(3.9)

from (3.8) and (3.9), we can determine the components un(x) and hence the series

solution of u(x) in (3.6) can be immediately obtained. For numerical purposes, the

nth-term approximant

Φn =
n−1∑
n=0

un(x),

can be used to approximate the exact solution.

Example 3.1.1. We consider the linear singular initial value problem

u′ +
sec2 x

tanx
u = 2 sec2 x, (3.10)

u(0) = 0.

we put

L(.) =
1

tanx

d

dx
tanx(.),

so

L−1(.) =
1

tanx

∫ x

0

tanx(.)dx,

in an operator form eq. (3.10) becomes

Lu = 2 sec2 x, (3.11)

applying L−1 to both sides of (3.11) we have

LL−1u =
1

tanx

∫ x

0

2 tanx(sec2 x)dx,

⇒ u(x) = tan x.
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Example 3.1.2. Consider the nonlinear initial value problem

u′ + 2xu = 1 + x2 + u2, (3.12)

u(0) = 1.

We put

L(.) = e−x
2 d

dx
ex

2

(.),

so

L−1(.) = e−x
2

∫ x

0

ex
2

(.).

In an operator form, eq. (3.12) becomes

Lu = 1 + x2 + u2. (3.13)

Applying the inverse operator L−1 to be the sides of eq.(3.13) we get:

u(x) = e−x
2

+ L−1(1 + x2) + L−1(u2),

u0 = e−x
2

+ e−x
2

∫ x

0

ex
2

(1 + x2)dx,

by using Taylor series of e−x2 and ex2 with order 6 and Adomain polynomials men-

tioned we obtain

u0 = 1 + x− x2 − x3

3
+
x4

2
+

2x5

15
− x6

6
− 4x7

105
− 143x9

3780
+ · · · ,

u1 = x+ x2 − x3 − 7x4

6
+

2x5

3
+

32x6

45
− 103x7

315
− 383x8

1260
+ · · · ,

u2 = x2 +
4x3

3
− x4 − 29x5

15
+

5x6

9
+

14x7

9
− 619x8

2520
+ · · · ,

u3 = x3 +
5x4

3
− 13x5

15
− 253x6

90
+

7x7

45
− 79x8

30
+ · · · ,

u4 = x4 + 2x5 − 28x6

45
− 236x7

63
− 28x8

45
+ · · · ,

u5 = x5 +
7x6

3
− 4x7

15
− 2963x8

630
+ · · · ,

39



...

this means that the solution in a series form is given by

u(x) = u0 + u1 + u2 + u3 + u4 + u5 + · · ·

= 1 + 2x+ x2 + x3 + x4 + x5

and in the closed form

u(x) = x+
1

1− x
.

Example 3.1.3. Consider the nonlinear initial value problem

u′ + 3x2u = ex + 3u(lnu)2, (3.14)

u(0) = 1.

We put

L(.) = e−x
3 d

dx
ex

3

(.)

L−1(.) = e−x
3

∫ x

0

ex
3

(.)dx.

In an operator form, eq. (3.14) becomes

Lu = ex + 3u(lnu)2 (3.15)

Applying the inverse operator L−1 to both sides of eq. (3.15), we have

u(x) = e−x
3

+ L−1(ex) + 3L−1u(lnu)2,

u0 = e−x
3

+ L−1(ex),

= e−x
3

+ e−x
3

∫ x

0

ex
3+xdx.

By using Taylor series of e−x3 and ex3+x with order 8 and Adomain polynomials men-

tioned we obtain

u0 = 1 + x+
x2

2
− 5x3

6
− 17x4

24
− 7x5

24
+

301x6

6!
+

1531x7

7!
+

4411x8

8!
+ · · · ,
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u1 = x3 +
3x4

4
− 9x5

10
− 5x6

3
− 127x7

280
+

353x8

320
+ · · · ,

u2 =
6x5

5
+

5x6

4
− 183x7

140
+

235x8

80
+ · · · ,

u3 =
51x7

35
+

39x8

20
− 1027x9

560
− 15531x10

2800
+ · · · ,

...

this means that the solution in a series form is given by

u(x) = u0 + u1 + u2 + u3 + · · ·

= 1 + x+
x2

2
+
x3

3!
+
x4

4!
+
x5

5!

and in the closed form

u(x) = ex.

3.1.2 Second order ODEs [19].

Consider the initial value problem in the second order ordinary differential equation in

the form u
′′ + p(x)u′ + F (x, u) = g(x),

u(0) = A, u′(0) = B,

(3.16)

where F (x, u) is a real function, p(x) and g(x) are given functions and A and B are

constants.

Method of solution

Here, we propose the new differential operator, as below

L(.) = e−
∫
p(x)dx d

dx

(
e
∫
p(x)dx d

dx

)
(.),

so, the problem (3.16) can be written as,

Lu = g(x)− F (x, u). (3.17)

The inverse operator L−1 is therefore considered a two-fold integral operator, as below,

L−1(.) =

∫ x

0

e−
∫
p(x)dx

∫ x

0

e
∫
p(x)dx(.)dx dx.
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By applying L−1 on (3.17), we have

u(x) = ϕ(x) + L−1g(x)− L−1F (x, u), (3.18)

such that

L(ϕ(x) = 0).

Recall that the ADM introduce the solution y(x) and the nonlinear function F (x, y) by

infinite series

u(x) =
∞∑
n=0

un(x), (3.19)

and

F (x, y) =
∞∑
n=0

An, (3.20)

where the components un(x) of the solution u(x) will be determined recurrently as

seen in the previous section.

A0 = F (u0),

A1 = u1F
′(u0),

A2 = u2F
′(u0) +

1

2!
u21F

′′(u0),

A3 = u3F
′(u0) + u1u2F

′′(u0) +
1

3!
u31F

′′′(u0),

...

which can be used to construct Adomian polynomials, when F (u) is a nonlinear func-

tion. By substituting (3.19) and (3.20) into (3.18), we get

∞∑
n=0

un(x) = ϕ(x) + L−1g(x)− L−1
∞∑
n=0

An. (3.21)

Through using ADM, the components un(x) can be determined asu0(x) = ϕ(x) + L−1g(x),

un+1(x) = −L−1
∑∞

n=0An, n ≥ 0,

(3.22)
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which gives 

u0(x) = ϕ(x) + L−1g(x),

u1(x) = −L−1(A0),

u2(x) = −L−1(A1),

u3(x) = −L−1(A2),

...

(3.23)

From (3.22) and (3.23), we can determine the components un(x) and hence the series

solution of u(x) in (3.21) can be immediately obtained.

Example 3.1.4. Consider the Lane-Emden equation formulated as, [27] ,
u′′ +

2

x
u′ + F (x, u) = g(x), 0 ≤ x ≤ 1

u(0) = A, u′(0) = B.

(3.24)

where A and B are constants, F (x, u) is a real function and g(x) ∈ [0.1] is given.

Usually, the standard ADM is divergent to solve singular LaneEmden equations. To

overcome the singularity behavior, Wazwaz [27] defined the differential operator L in

terms of two derivatives contained in the problem. He rewrote (3.24) in the form

Lu = −F (x, u) + g(x),

where the differential operator L is defined by

L = x−2
d

dx

(
x2

d

dx

)
.

Note that the above operator is a special kind of the proposed operator (3.1.2), since

for LaneEmden problem (3.24), p(x) is equal to
2

x
, so,

e−
∫
p(x)dx = x−2,

and

e
∫
p(x)dx = x2,
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therefore we have

L = e−
∫
p(x)dx d

dx

(
e
∫
p(x)dx d

dx

)
= x−2

d

dx

(
x2

d

dx

)
,

and

L−1(.) =

∫ x

0

x−2
∫ x

0

x2(.)dx dx.

Example 3.1.5. Consider the linear singular initial value problem
u′′ +

cosx

sinx
u′ = −2 cosx,

u(0) = 1, u′(0) = 0.

(3.25)

We put

L(.) =
1

sinx

d

dx
sinx

d

dx
(.),

so

L−1(.) =

∫ x

0

1

sinx

∫ x

0

sinx(.)dx dx.

In an operator form, eq. (3.25) becomes

Lu = −2 cosx, (3.26)

Now, by applying L−1 to both sides of (3.26) we have

L−1Lu = −2

∫ x

0

1

sinx

∫ x

0

sinx(cos(x))dx dx,

and it implies,

u(x) = u(0) + xu′(0) + cos(x)− 1⇒ u(x) = cos(x).

So, the exact solution is easily obtained by modified Adomian decomposition method.

Example 3.1.6. Consider the linear nonsingular initial value problemu
′′ + u′ = 2x+ 2,

u(0) = 0, u′(0) = 0.

(3.27)
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According to (3.1.2), we put

L = e−x
d

dx
ex
d

dx
,

so

L−1(.) =

∫ x

0

e−x
∫ x

0

ex(.)dx dx.

In an operator form, eq. (3.27) becomes

Lu = 2x+ 2. (3.28)

Now, by applying L−1 to both sides of (3.28), we have

L−1Lu =

∫ x

0

e−x
∫ x

0

ex(2x+ 2)dx dx,

and it implies that

u(x) = u(0) + u′(0) + x2 = x2.

So, the exact solution is easily obtained by proposed Adomian method.

Example 3.1.7. Consider the nonlinear initial value problemu
′′ + xu′ + x2u3 = (2 + 6x2)ex

2
+ x2e3x

2
,

u(0) = 1, u′(0) = 0.

(3.29)

with the exact solution u(x) = ex
2
.

According to (3.1.2), we put

L = e

−x2

2
d

dx
e

x2

2
d

dx
,

so

L−1(.) =

∫ x

0

e

−x2

2

∫ x

0

e

x2

2 (.)dx dx.
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In an operator from, eq. (3.29) becomes

Lu =
(
2 + 6x2

)
ex

2

+ x2e3x
2 − x2u3

Now, by applying L−1 to both sides , we have

L−1Lu = u(0) + xu′(0) + L−1g − L−1
(
x2u3

)
.

And we have,  u0 = u(0) + xu′(0) + L−1 (g(x)) ,

un+1 = −L−1 (An) , n ≥ 0.

We compute An’s Adomian polynomials of nonlinear term x2y3, as below

A0 = x2u3,

A1 = x2(3u20u1),

A2 = x2(3u20u2 + 3u0u
2
1),

A3 = x2(3u20u3 + 3u0u
2
1 + 6u0y1u2 + u31),

...

(3.30)

by using Taylor series of g(x), e
−x2

2 and e
x2

2 with order 10 and Adomian polynomials

mentioned in (3.30), we obtain,
u0 = 1 + x2 +

7x4

12
− 7x5

24
+

23x6

96
+ · · · ,

u1 + u0 = 1 + x2 +
x4

2
+
x6

6
+ · · · ,

u0 + u1 + u2 = 1 + x2 +
x4

2
+
x6

6
+
x8

24
+
x10

120
+

731x12

44354
+ · · · ,

note that the Taylor series of the exact solution y(x) = ex
2 with order 10 is as below

ex
2

= 1 + x2 +
x4

2
+
x6

6
+
x8

24
+
x10

120
+O(x11).

Note that: the Adomian decomposition method is divergent to solve these type of

second order ordinary differential equation.
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3.1.3 High-order and system of nonlinear differential equations [18]

This section extends MADM3 for specific second order ordinary differential equations

to high order and system of differential equations.

Consider the initial value problem in the n-order differential equation in the form:u
(n) + p(x)u(n−1) +Nu = g(x),

u(0) = α0, u
′(0) = α1, . . . , u

(n−1)(0) = αn−1,

(3.31)

where N is a nonlinear differential operator of order less than n− 1, p(x) and g(x) are

given functions and α0, α1, . . . , αn−1 are given constants.

Here, consider the differential operator, as below:

L = e−
∫
p(x)dx d

dx

(
e
∫
p(x)dx d

n−1

dn−1x

)
, (3.32)

so, the problem (3.31) can be written as

Lu = g(x)−Nu. (3.33)

The inverse operator L−1 is therefore considered an n-fold integral operator, as below:

L−1(.) =

∫ x

0

∫ x

0

· · ·
∫ x

0

e−
∫
p(x)dx

∫ x

0

e
∫
p(x)dx(.)dx · · · dx. (3.34)

By operating L−1 on (3.33), we have

u(x) = ϕ(x) + L−1g(x)− L−1Nu,

such that

Lϕ(x = 0),

so, we have
∞∑
n=0

u(x) = ϕ(x) + L−1g(x)− L−1
∞∑
n=0

An.

Through using ADM, the components un(x) can be determined asu0 = ϕ(x) + L−1g(x),

un+1 = −L−1An, n ≥ 0.
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The mentioned method can be used for solving system of differential equation in the

following form

u
(n)
1 + p(x)u

(n−1)
1 + F1(x, y1, · · · , y(n−2)1 , y2, · · · , yn−22 , yn, · · · , y(n−2)n ) = g1(x),

u
(n)
2 + p(x)u

(n−1)
2 + F2(x, y1, · · · , y(n−2)1 , y2, · · · , yn−22 , yn, · · · , y(n−2)n ) = g2(x),

...

u
(n)
n + p(x)u

(n−1)
n + Fn(x, y1, · · · , y(n−2)1 , y2, · · · , yn−22 , yn, · · · , y(n−2)n ) = gn(x),

Example 3.1.8. Consider linear singular initial value problem in third order ordinary

differential equation, 
u
′′′

+
cos(x)

sin(x)
u
′
= sin(x)cos(x),

u(0) = 0, u
′
(0) = −2, u

′′
(0) = 0.

(3.35)

According to (3.32) and (3.34) we put

L(.) =
1

sin(x)

d

dx
(sin(x)

d2

dx2
)(.),

so

L−1(.) =

∫ x

0

∫ x

0

1

sin(x)
[

∫ x

0

sin(x)(.)dx]dxdx,

In an operator form, eq. (3.35) becomes

Lu = sin(x)cos(x). (3.36)

Now by applying L−1 on both side of (3.36), one gets

L−1Lu =

∫ x

0

∫ x

0

1

sin(x)
[

∫ x

0

sin(x)(sin(x)cos(x))dx]dxdx,

and this implies

u(x) = u(0) + xu
′
(0) +

3x2

4
− 3

8
cos(2x) = 1− 2x+

3x2

4
− 3

8
cos(2x).

Example 3.1.9. Consider the nonlinear system of differential equation,u
′′ + tanu′ + z2 = g(x), u(0) = 0, u′(0) = 0,

z′′ + 100z′ + y2 = h(x), z(0) = 0, z′(0) = 0,

(3.37)
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where g(x) and h(x) are compatible to exact solutions

u(x) = x sinx and z(x) = x tanx.

Here, we use Taylor series of g(x), h(x) and tanx with order 9.

By using standard ADM. Here, we have

u0 = L−1g(x) = x2 +
1

24
x6 +

3

224
x8 + · · · , (3.38)

z0 = L−1h(x) = x2 +
100

3
x3+,

1

3
x4 +

20

3
x5 +

1

3
x4 +

1

6
x6 − 40

21
x7 +

121

2520
x8 + · · · ,

and

un+1 = −L−1(tanu′n)− L−1An, n ≥ 0 (3.39)

zn+1 = −L−1(100z′n)− L−1Bn, n ≥ 0

where An and Bn are the Adomian polynomials of nonlinear terms y2 and z2. Also,

f(x) denoted the taylor series of tanx with order 9.

In this case, through considering (3.38) and (3.39), we have

u0 = x2 + 1
24
x6 + 3

224
x8 + · · · ,

u0 + u1 = x2 − 1
6
x4 − 1

72
x6 − 100

63
x7 + · · · ,

...

u0 + u1 + · · ·+ u6 = x2 − 1
6
x4 + 1

120
x6 − 1

5040
x8 + 200000

81
x9 + · · · .

and 

z0 = x2 + 100
3
x3 + 1

3
x4 + 20

3
x5 + · · · ,

z0 + z1 = x2 − 833x4 − 4994
45
x6 − 10

21
x7 + · · · ,

...

z0 + z1 + · · ·+ z6 = x2 + 1
3
x4 + 2

15
x6 + 17

315
x8 + 312500000000

567
x9 + · · · .

So, the standard ADM converges to Taylor expansion of exact solution.
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By using MADM3. By applying MADM to problem (3.37), we obtain:
u0 = x2 − 1

6
x4 + 1

24
x6 + 41

5040
x8 + · · · ,

...

u0 + u1 = x2 − 1
6
x4 + 1

120
x6 − 1

5040
x8 + 1339

1814400
x10 + · · · .

and 
z0 = x2 + 1

3
x4 + 1

6
x6 + · · · ,

...

z0 + z1 = x2 + 1
3
x4 + 2

15
x6 + 17

315
x8 + 28350

28350
x10 + · · · .

which is quite close to Taylor expansion of exact solution. For more example see [22].

The obtained result show that the rate of convergence of MADM4 is higher than stan-

dard ADM for this problem.

x U Exact ADM Abs error MADM4 absolute error

0.0 0 0 0

0.2 0.039733866159012 0.001264197530582 7.528800499700949 ∗ 10−11

0.4 0.155767336923460 1.058797809982970 ∗ 10−7 7.709478999640140 ∗ 10−8

0.6 0.338785484037021 4.445704692990216 ∗ 10−6 4.064858429964069 ∗ 10−6

0.8 0.573884872719618 7.894635701799491 ∗ 10−5 5.406399990504074 ∗ 10−5

1.0 0.841470984807897 7.352541691750814 ∗ 10−4 4.022691603570161 ∗ 10−4

Table 3.1: Comparison of absolute errors between the exact solution and approximate

solutions by ADM and MADM4.

3.2 MADM for singular ordinary differential equations

(MADM4) [25]

In this section, an efficient modification of ADM with another inverse differential oper-

ator is introduced for solving second order singular initial value problems of ordinary
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differential equations. The proposed method is tested on several linear and non-linear

boundary value problems. All the numerical results obtained by using modified Ado-

mian decomposition (MADM4) show very good agreement with the exact solutions

for only a few terms. In addition, we use this method to overcome the singularity dif-

ficulty for higher-order boundary value problems. The proposed method is tested for

some examples and the obtained results show the advantage of using this method.

3.2.1 (MADM4) for second ODEs

Consider the singular initial value problem in the second order ordinary differential

equation in the form 
u′′ +

2

x
u′ + F (x, u) = g(x),

u(0) = A, u′(0) = B,

(3.40)

where F (x, u) is a real function, g(x) is given function and A and B are constants.

Here, we present another differential operator, as below

L = x−1
d2

dx2
xu, (3.41)

so, the problem (3.40) can be written as,

Lu = g(x)− F (x, u).

The inverse operator L−1 is therefore considered a two-fold integral operator, as below

L−1(.) = x−1
∫ x

0

∫ x

0

x(.)dxdx. (3.42)

Applying L−1 of (3.42) to the first two terms u′′ +
2

x
u′ of equation (3.40) we find

L−1
(
u′′ +

2

x
u′
)

= x−1
∫ x

0

∫ x

0

x

(
u′′ +

2

x
u′
)
dxdx.

= x−1
∫ x

0

(xu′ + u− u(0))dx = u− u(0).
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By operating L−1 on (3.41), we have

u(x) = A+ L−1g(x)− L−1F (x, u).

Recall that the ADM introduce the solution u(x) and the nonlinear function F (x, u)

by infinity series

u(x) =
∞∑
n=0

un(x),

and

F (x, u) =
∞∑
n=0

An,

where, 

A0 = F (u0),

A1 = u1F
′(u0),

A2 = u2F
′(u0) +

1

2!
u21F

′′(u0),

A3 = u3F
′(u0) + u1u2F

′′(u0) +
1

3!
u31F

′′′(u0),

...

which can be used to construct Adomian polynomials, when F (u) is a nonlinear func-

tion.

so, we get
∞∑
n=0

u(x) = A+ L−1g(x)− L−1
∞∑
n=0

An.

Through using ADM, the components un(x) can be determined asu0(x) = A+ L−1g(x),

un+1(x) = −L−1(An), n ≥ 0,

which gives 

u1(x) = −L−1(A0),

u2(x) = −L−1(A1),

u3(x) = −L−1(A2),

...
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Example 3.2.1. Consider the linear singular initial value problem [16]

u′′ +
2

x
u′ + u = 6 + 12x+ x2 + x3 (3.43)

u(0) = u′(0) = 0.

In an operator form, equation (3.43) becomes

Lu = 6 + 12x+ x2 + x3 − u, (3.44)

Applying L−1 on both sides of (3.44) we find

u(x) = L−1(6 + 12x+ x2 + x3)− L−1(u),

where

L−1(.) = x−1
∫ t

0

∫ t

0

x(.) dt dt.

Therefore,

u(x) = x2 + x3 +
x4

20
+
x5

30
,

we divided x2 + x3 +
x4

20
+
x5

30
in two parts

u0 = x2 + x3,

u1 =
x4

20
+
x5

30
− L−1u0,

un+1 = −L−1(un). (3.45)

This in turn gives

u0 = x2 + x3,

and

u1 =
x4

20
+
x5

30
− L−1(y0),

un+1 = 0, n ≥ 0.

In view of (3.45), the exact solution is given by

u = x2 + x3.

53



A generalization of equation (3.40) has been studied by Wazwaz [27]. In a parallel

manner, we replace the standard coefficients of u′ and u by
2n

x
and

n(n− 1)

x2
respec-

tively, for real n, n ≥ 0.

In other words, a general equation

u′′ +
2n

x
u′ +

n(n− 1)

x2
u+ F (x, u) = g(x), n ≥ 0, (3.46)

u(0) = A, u′(0) = B.

he propose the new differential operator, as below

L(.) = x−n
d2

dxn
xn(.),

so, the problem (3.46) can be written as,

Lu = g(x)− F (x, u). (3.47)

The inverse operator L−1 is therefore considered a two-fold integral operator, as

L−1(.) = x−n
∫ x

0

∫ x

0

xn(.)dxdx. (3.48)

Applying L−1 of (3.48) to the first three terms of equation (3.46) we find

L−1
(
u′′ +

2n

x
u′ +

n(n− 1)

x2
u

)
= x−n

∫ x

0

∫ x

0

xn
(
u′′ +

2n

x
u′ +

n(n− 1)

x2
u

)
dxdx

= x−n
∫ x

0

(xnu
′
+ nxn−1u)dx = u.

By operating L−1 on (3.47), we have

u(x) = A+ L−1g(x)− L−1F (x, u),

proceeding as before we obtain through using ADM, the components un(x) can be

determined as u0(x) = A+ L−1n g(x),

un+1(x) = −L−1n (An), n ≥ 0,

where An are Adomian polynomials that represent the nonlinear term F (x, u):
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Example 3.2.2. Consider the linear singular initial value problem

u′′ +
4

x
u′ +

2

x2
u = 12, (3.49)

u(0) = 0, u′(0) = 0.

According to (3.2.1) we put

L(.) = x−2
d2

dx2
x2(.),

so

L−1(.) = x−2
∫ x

0

∫ x

0

x2(.).

In an operator form, equation (3.49) becomes

Ly = 12.

Now, by applying L−1 to both sides we have

L−1Lu = x−2
∫ x

0

∫ x

0

12x2 dxdx,

and it implies,

u(x) = x2.

Example 3.2.3. Consider the nonlinear singular initial value problems

u′′ +
6

x
u′ +

6

x2
u+ u2 = 20 + x4, (3.50)

u(0) = 0, u′(0) = 0.

According to (3.2.1). We put

L(.) = x−3
d2

dx2
x3(.),

so

L−1(.) = x−3
∫ x

0

∫ x

0

x3(.).
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In an operator form, equation (3.50) becomes

Lu = 20 + x4 − u2. (3.51)

Now, by applying L−1 to both sides of (3.51) we have

u = L−1(20 + x4)− L−1(u2).

Therefore

u = x2 +
x6

72
− L−1y2,

by divided x2 +
x6

72
into two parts and we obtain the recursive relationship



u0 = x2,

u1 =
x6

72
− L−1A0,

...

un+1 = −L−1(An).

(3.52)

Which implies

un+1 = 0, n ≥ 0.

In view of (3.52) the exact solution is given by

u(x) = x2.

And so, the exact solution is easing obtained by proposed Adomian method.

A generalization of second order ODEs [13].
u′′ +

n

x
u′ +

m

x2
u = g(x) + F (x, u), n ≥ 1,m ≥ 0,

u(0) = A, u′(0) = B.

(3.53)

Where F (x, u) and g(x) are given functions A, B, m and n are constants.

We define the differential operator L in the terms of the three part u′′ +
n

x
u′ +

m

x2
u

contained in the problem.
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Under the transformations 2h+ k = n and (h− 1)(h+ k) = m, the equation (3.53) is

transformed to

u′′ +
2h+ k

x
u′ +

(h− 1)(h+ k)

x2
u = g(x) + F (x, u), n ≥ 1, m ≥ 0,

where h and k are constants. Rewrite (3.53) in the form

Lu = g(x) + F (x, u),

where the differential operator L is defined by

L(.) = x−h
d

dx

(
x−k

d

dx
xh+k

)
(.). (3.54)

The inverse L−1 is therefore considered a twofold integral operator defined by

L−1(.) = x−(h+k)
∫ x

0

xk
∫ x

0

xh(.)dx dx. (3.55)

Applying L−1 defined in (3.55) to both side of eq. (3.53) we get

u = ϕ(x) + L−1 (g(x)) + L−1 (F (x, u)) . (3.56)

such that L (ϕ(x)) = 0.

The ADM introduce the solution u(x) and the nonlinear function F (x, u) by infinite

series

u(x) =
∞∑
n=0

un(x), (3.57)

and

F (x, u) =
∞∑
n=0

An, (3.58)

where the components un(x) of the solution u(x) will be determined recurrently. By

substituting (3.57) and (3.58) into (3.56) gives,

∞∑
n=0

un(x) = φ(x) + L−1 (g(x)) + L−1

(
∞∑
n=0

An

)
.

Through using ADM, the components un(x) can be determined asu0(x) = φ(x) + L−1g(x),

un+1(x) = L−1An, n ≥ 0,
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which gives 

u0(x) = φ(x) + L−1g(x),

u1(x) = −L−1(A0),

u2(x) = −L−1(A1),

u3(x) = −L−1(A2),

...

Example 3.2.4. Consider the singular initial value problem u′′ +
5

x
u′ +

3

x2
u = 15,

u(0) = 0, u′(0) = 0.
(3.59)

We put 2h+ k = 5 and (h− 1)(h+ k) = 3.

it follows that k = 1, h = 2, substitution of k and h in eq. (3.54) yields the operator

L(.) = x−2
d

dx

(
x−1

d

dx
x3(.)

)
,

so

L−1(.) = x−2
∫ x

0

x

∫ x

0

x2(.)dx dx.

In an operator form, eq. (3.59) becomes

Lu = 15, (3.60)

applying L−1 on both sides of (3.60) to obtain

u = L−1(15),

and it implies,

u = x2.

So, the exact solution is very easily obtained by this method.
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Example 3.2.5. Consider the nonlinear initial value problem
u′′ +

3

x
u′ +

1

x2
u = u2 + ex,

u(0) = 1, u′(0) = 1.

(3.61)

Here, we use Taylor series of g(x) with order 9, we put

2h+ k = 3, (h− 1)(h+ k) = 1,

it follows that k = −1, h = 2 substitution of h and k in eq. (3.54) yields the operator

L(.) = x−2
d

dx

(
x
d

dx
x(.)

)
,

so

L−1(.) = x−1
∫ x

0

x−1
∫ x

0

x2(.)dx dx.

In an operator form, eq. (3.61) becomes

Lu = u2 + g(x). (3.62)

Applying L−1 on both sides of (3.62) to obtain u0(x) = L−1g(x),

un+1(x) = L−1An, n ≥ 0,
(3.63)

An’s are Adomian polynomials of nonlinear term y2, as below:

A0 = u20,

A1 = 2u0u1,

A2 = u21u+ 2u0u1,

A3 = 2u1u2 + 2u0u3,

...

(3.64)

So, by substituting (3.64) into (3.63), we have

u0 = 1 + x+
7x2

18
− 23x4

600
− 431x5

1080
− · · · ,

u1 =
x2

9
+
x3

8
+

16x4

225
+

31x5

1296
+

1279x6

396900
− · · · ,

u2 =
2x4

225
+

17x5

1296
+

3877x6

396900
+

1201x7

259200
+ · · · ,

u0 + u1 + u2 = 1 + x+
x2

2
+
x3

6
+
x4

24
+

x5

120
+ · · · ,
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which u0 + u1 + u2 is quite close to Taylor expansion of exact solution u(x) = ex.

3.2.2 Higher-order boundary value problems [15]

Consider the singular boundary value problem of (n + 1)-order ordinary differential

equation in the form

u(n+1) +
m

x
u(n) +Nu = g(x), (3.65)

with initial conditions

u(0) = a0, u
′(0) = a1, · · · , u(n−1)(0) = an−1, u

′(b) = c,

where N is a nonlinear differential operator of order less than n, g(x) is a given func-

tion, a0, a1, ..., an1,, c, b are given constants, where m ≤ n− 1, n ≥ 1. We propose

the new differential operator, as below

L(.) = x−1
dn−1

dxn−1
xn−m

d

dx
xm−n−1

d

dx
(.), (3.66)

so, the problem (3.65) can be written as,

Lu = g(x)−Nu. (3.67)

the inverse operator L−11 is therefore considered a n+1-fold integral operator, as below,

L−11 (.) =

∫ x

b

xn−m−1
∫ x

0

xm−n(.)

∫ x

0

· · ·
∫ x

0

x(.)dx · · · dx,

by applying L−11 on (3.67), we have

u(x) = ϕ+ L−1g(x)− L−1Nu

such that L(ϕ(x) = 0).

Hence,
∞∑
n=0

u(x) = ϕ(x) + L−1g(x)− L−1
∞∑
n=0

An,
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so, we get

u0 = ϕ(x) + L−1g(x)

un+1 = −L−1
∞∑
n=0

An, n ≥ 0,

which gives

u0 = ϕ(x) + L−1g(x)

u1 = −L−1A0,

u2 = −L−1A1,

u3 = −L−1A2,

...

Example 3.2.6. Consider the nonlinear boundary value problem

u
′′′ − 2

x
u
′′ − u3 = g(x), u(0) = 0, u

′
(0) = 0, u(1) = 10.8731, (3.68)

where g(x) = 7x2ex + 6xex − 6ex − x9e3x + x3ex.

We use the Taylor series of g(x) with order 10, g(x) = gT = −6 + 10x2 + 10x3 +
21

4
x4 +

28

15
x5 +

1

2
x6 +

3

28
x7 +

11

576
x8 − 3769

3780
x9 − 100787

33600
x10.

We put

L. = x−1
d

dx
x4

d

dx
x−3

d

dx
(.).

so that

L−1(.) =

∫ x

0

x3
∫ x

0

x−4
∫ x

0

x(.) dx dx dx,

in an operator form, (3.68) becomes

Lu = g(x) + u3, (3.69)
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applying L−1, on both sides of (3.69) and then incorporating the given boundary con-

ditions, we find

u(x) = 2.71828x4 + L−1g(x) + L−1y3

Proceeding as before we obtained the recursive relationship

u0(x) = 2.71828x4 + L−1g(x) (3.70)

un+1(x) = L−1An, n ≥ 0 (3.71)

computing the Adomian polynomials for the nonlinear term u3 and Substituting into

(3.71) gives the components of the solution which is in good agreement with the Taylor

series of the exact solution u(x) = x3ex, see [18].

3.3 MADM for singular partial differential equations

(MADM5)

3.3.1 (MADM5) for first order PDEs

Consider the following general first-order (in t) singular nonlinear PDE:

ut +
p

t
u = F (x, u, ux), (3.72)

where t and x are independent variables, u is the dependent variable, F is a nonlinear

function of x, u and ux and p is a real constant: p ≥ 0. The initial condition is as

follows:

u(x, 0) = h(x). (3.73)

In order to solve the PDE (3.72) with initial condition (3.73) by the modified decompo-

sition method (MADM5), at first, the linear differential operatorLt(.) =
d(.)

dt
+
(p
t

)
(.)

is defined, and the left-hand side of (3.72) is rewritten as

Ltu =
du

dt
+
p

t
u. (3.74)
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The inverse differential operator of Lt, that is L−1t , is defined such that L−1t (Ltu) = u.

L−1t =
1

tp

∫ t

0

tp(.)dt. (3.75)

Applying the inverse differential operator, defined in (3.74), to the left-hand side of

(3.72) we get

L−1t

(
du

dt
+
p

t
u

)
=

1

tp

∫ t

0

tp
(
du

dt
+
p

t
u

)
dt,

=
1

tp

∫ t

0

(
tp
du

dt
+ ptp−1u

)
dt,

=
1

tp

∫ t

0

tp
d (tpu)

dt
dt,

=
1

tp
(tpu)t0 =

1

tp
(tpu) = u.

The inverse differential operator of (3.75), defined in the present work, can be used to

solve the general first-order singular nonlinear pdes. Applying (??) to (3.72) gives

Ltu = F (x, u, ux). (3.76)

Applying L−1t to both sides of (3.76) we obtain

u(x, t) = ϕ(x) + L−1t (F (x, u, ux)) , (3.77)

where ϕ is obtained as the result of initial condition,

u(x, t) =
∞∑
n=0

un(x, t),

and

F (x, u, ux) =
∞∑
n=0

An(x, t).

So eq. (3.77) can be written as

∞∑
n=0

un(x, t) = ϕ+ L−1t

(
∞∑
n=0

An(x, t)

)
,

according to the ADM, all terms of u(x, t) except u0(x, t) are determined by recursive

relation; that is,

u0(x, t) = ϕ(x),
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u1(x, t) = L−1t (A0(x, t)) ,

un+1(x, t) = L−1t (An(x, t)) , n ≥ 1.

By using the modified decomposition method (MADM4), ϕ(x) splits into two parts:ϕ(x) =

ϕ1(x) + ϕ2(x) the first part 1(x), is written with u0(x, t) and the second part ϕ2(x), is

written with u1(x, t) as follows:
u0(x, t) = ϕ1(x),

u1(x, t) = ϕ2(x) + L−1t (A0(x, t)) ,

un+1(x, t) = L−1t (An(x, t)) , n ≥ 1.

Example 3.3.1. Consider the following first-order (in t) non homogeneous singular

nonlinear PDE with a homogeneous initial condition:
ut +

u

2t
= 6uux − uxxx −

7

2
t2 + 9t3.

u(x, 0) = 0.

(3.78)

According to (??) in an operator form eq.(3.78) becomes

Ltu = 6uux − uxxx − 7
7

2
t2 + 9t3. (3.79)

Applying the inverse differential operator L−1t (.) =
1

t

∫ t1/2
0

t1/2(.)dt. defined in (3.75)

with p =
1

2
on (3.79) gives

u(x, t) = −t3 + 2t4 + 6L−1t (uux)− L−1t (uxxx) . (3.80)

Now, according to the (ADM), the dependent variable u(x, t) and the nonlinear term

uux are substituted with the infinite series as follows:u(x, t) =
∑∞

n=0 un(x, t),

uux = L−1t (An(x, t)) .

(3.81)

Substituting the infinite series of (3.81) in (3.80) gives

∞∑
n=0

un(x, t) = −t3 + 2t4 + 6L−1t

(
∞∑
n=0

An(x, t)

)
− L−1t (uxxx) .
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Hence, 
u0(x, t) = −t3,

u1(x, t) = 2t4 + 6L−1t (A0(x, t))− L−1t
(
u0|xxx

)
,

um+1(x, t) = 6L−1t (An(x, t)) + L−1t
(
un|xxx

)
, n ≥ 1.

(3.82)

The Adomian polynomials A′ns are obtained as

A0(x, t) = u0(x, t)u0|x(x, t) = 0,

A1(x, t) = u0(x, t)u1(x, t) + u1(x, t)u0|x(x, t),

A2(x, t) = u0(x, t)u2|x(x, t) + u1(x, t)u1|x(x, t) + u2(x, t)u1|x(x, t),

Am(x, t) = 0,m ≥ 3.

the first few component from recursive relation (3.82) are

u0(x, t) = −t3,

u1(x, t) = 2t4,

u2(x, t) = 6L−1t (A1(x, t)) + L−1t
(
u1|xxx

)
= 0,

un(x, t) = 0, n ≥ 3.

The solution of the first-order singular nonlinear initial-value problem of (3.78) by the

use of (MADM5) is the sum of un, that is, u(x, t) =
∑∞

n=0 un(x, t) such that

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + · · · = −t3 + 2t4,

3.3.2 (MADM5) for second order PDEs

Consider the following general second-order (in t) singular nonlinear pdes:

d2u

dt2
+
p

t

du

dt
= F (x, u,

du

dx
,
d2u

dx2
), (3.83)

with initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x),

where t and x are independent variables, u is the dependent variable, F is a nonlinear

function of x, u, ux and uxx and p is a real constant: p ≥ 0 .
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In order to use the modified decomposition method (MADM5), the left-hand side of

PDE (3.83) is considered as the linear invertible operator Lt :

Ltu =
d2u

dt2
+
p

t

du

dt
⇒ Lt(.) =

d2(.)

dt2
+
p

t

d(.)

dt
. (3.84)

The inverse of the linear differential operator (3.84) is defined as

L−1t =

∫ t

0

1

tp

∫ t

0

tpdtdt. (3.85)

Applying the inverse differential operator, defined in (3.85), to the left-hand side of

(3.84) we get

L−1t

(
d2u

dt2
+
p

t

du

dt

)
=

∫ t

0

1

tp

∫ t

0

tp
(
d2u

dt2
+
p

t

du

dt

)
dt,

=

∫ t

0

1

tp

∫ t

0

(
tp
d2u

dt2
+ ptp−1

du

dt

)
dt,

=

∫ t

0

1

tp

(
tp
du

dt

)
dt,

=

∫ t

0

(
du

dt
dt

)
= (u)t0 = u(x, t)− u(x, 0).

The inverse differential operator of (3.85), defined in the present work, can be used

to solve the general second-order singular nonlinear PDEs. Applying (3.84) to (3.83)

gives

Ltu = F (x, u, ux, uxx, ut). (3.86)

Applying L−1t to both sides of (3.86) we obtain

u(x, t) = f(x) + tg(x) + L−1t F (x, u, ux, uxx, ut) (3.87)

The (ADM) states that the dependent variable u(x, t) and F the nonlinear term should

be written as the following infinite series

u(x, t) =
∞∑
n=0

un(x, t)

F (x, u, ux) =
∞∑
n=0

An(x, t)
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Substituting the infinite series in (3.87) gives

∞∑
n=0

um(x, t) = f(x) + tg(x) + L−1t

(
∞∑
n=0

An(x, t)

)
.

By using the modified decomposition method (MADM1) f(x) + tg(x) splits into two

parts; f(x) is written with u0(x, t) and tg(x) is written with u1(x, t) as follows:
u0(x, t) = f(x),

u1(x, t) = tg(x) + L−1t (A0(x, t)) ,

un+1(x, t) = L−1t (An(x, t)) , n ≥ 1.

Example 3.3.2. Consider the following general second-order nonhomogeneous initial-

value problem with the homogeneous initial conditions:

d2u

dt2
− 1

3t

du

dt
+

(
du

dx

)2

= 1 +
5

3
xt− t2, (3.88)

u(x, 0) = 0, ut(x, 0) = 0.

According to (3.84) in an operator form eq. (3.88) becomes

Ltu = 1 +
5

3
xt− t2 − (

du

dx
)
2

.

Applying the inverse differential operator L−1t (.) =
∫ t
0
t1/3

∫ t
0
t−1/3(.)dtdt. defined in

(3.85), with p =
−1

3
on the PDE (3.88) gives

u(x, t) =
3t2

4
+
t3

3
x− 3t4

32
L−1 (ux)

2 .

Using of the modified method (MADM5) results

∞∑
n=0

un(x, t) =
3t2

4
+
t3

3
x− 3t4

32
+ L−1t

(
∞∑
n=0

An(x, t)

)
,

where, 

u0(x, t) =
3t2

4
,

u1(x, t) =
t3

3
x− 3t4

32
+ L−1t (A0(x, t)) ,

un+1(x, t) = L−1t (An(x, t)) , n ≥ 1.

(3.89)
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A′ns are Adomian polynomial of nonlinear term
(
du

dx

)2

can be expressed as follows:

A0(x, t) = u0|x(x, t) = 0,

A1(x, t) = 2u0|x(x, t)u1|x(x, t) = 0,

A2(x, t) = 2u0|x(x, t)u2|x(x, t) +
(
u1|x(x, t)

)2
=
t6

9
,

A3(x, t) = 2u0|xu3|x(x, t) + 2u1|x(x, t)u2|x(x, t) = 0,

A4(x, t) = 2u0|xu4|x(x, t) + 2u1|x(x, t)u3|x(x, t)
(
u2|x(x, t)

)2
= 0,

An(x, t) = 0, n ≥ 5.

So, by substituting the last Am’s on (3.89),we have

u0(x, t) =
3t2

4
,

u1(x, t) = x
t3

3
− 3t4

32
,

u2(x, t) = L−1t (A1(x, t)) = 0,

u3(x, t) = L−1t (A2(x, t)) =
1

460
t
23
3 ,

u4(x, t) = L−1t (A3(x, t)) = 0,

un(x, t) = L−1t (An−1(x, t)) = 0, n ≥ 5

Therefore, solution of second-order initial-value problem of (3.83) is as follows:

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + · · ·

=
3

4
t2 +

x

3
t3 − 3t4

32
+

1

460
t
23
3

which is the exact solution of the initial-value problem of (3.83).

3.3.3 (MADM5) for higher-order singular PDEs

dn+1u

dtn+1
+
p

t

dnu

dtn
= F (x, u,

dnu

dxn
, · · · , du

dx
,
du

dt
), (3.90)
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with initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x) · · ·ut···(n+1 time) t = h(x),

where t and x are independent variables, u is the dependent variable, F is a nonlinear

function of x, u, ux and uxx and ux···(n+1 time) x and p is a real constant: p ≥ 0 . In

order to use the modified decomposition method (MADM5), the left-hand side of PDE

(3.90) is considered as the linear invertible operator Lt :

Ltu =
dn+1u

dtn+1
+
p

t

dnu

dtn
⇒ Lt(.) =

dn+1(.)

dtn+1
+
p

t

dn(.)

dtn
. (3.91)

The inverse of the linear differential operator (3.91) is defined as

L−1t =

∫ t

0

∫ t

0

· · · (n) times

∫ t

0

1

tp

∫ t

0

tpdt · · · (n+ 1) times dt. (3.92)

The inverse differential operator of (3.92), defined in the present work, can be used to

solve the general n+1-order singular nonlinear PDEs. Applying (3.91) to (3.90) gives

Ltu = F (x, u,
du

dx
, · · · d

n+1u

dxn+1
,
du

dt
). (3.93)

Applying L−1t to both sides of (3.93) we obtain

u(x, t) = f(x) + tg(x) + · · ·+ tn

n!
h(x) + L−1t (x, u,

du

dx
, · · · , d

n+1u

dxn+1
,
du

dt
). (3.94)

where f(x) + tg(x) + · · · + tn

n!
h )( xappears as the result of initial conditions. Using

Adomian decomposition method, (3.94) can be rewritten as

∞∑
n=0

un(x, t) = f(x) + tg(x) + · · ·+ tn

n!
h(x) + L−1t

(
∞∑
n=0

An(x, t)

)
.

the modified decomposition method (MADM1) splites f(x) + tg(x) + · · · + tn

n
h(x)

into two parts:f(x) is writen with u0(x, t) and tg(x) + · · · + tn

n
h(x) is writen with

u1(x, t) as follows:
u0(x, t) = f(x),

u1(x, t) = tg(x) + · · ·+ tn

n!
h(x) + L−1t (A0(x, t)) ,

un+1(x, t) = L−1t (An(x, t)) , n ≥ 1.
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General complete second-order singular nonlinear PDEs.

Consider the general second-order (in t) singular nonlinear PDE in following form:

d2u

dt2
+

2p

t

du

dt
+
p(p− 1)

t2
u = F (x, u,

du

dx
,
d2u

dx2
,
du

dt
), (3.95)

with initial conditions

u(x, 0) = f(x), ut(x, 0) = g(x),

where t and x are independent variables, u is the dependent variable, F is a nonlinear

function of x, u, ux, uxx, ut and p is a real constant: p ≥ 1 .

Defining the linear differential operator Lt(.) =
d2(.)

dt2
+

2p

t

d(.)

dt
+
p(p− 1)

t2
(.) the

left-hand side of (3.95) is rewritten as

Lu =
d2u

dt2
+

2p

t

du

dt
+
p(p− 1)

t2
u (3.96)

The inverse differential operator of Lt , that is, L−1 is defined such that:

L−1t (.) =
1

tp

∫ t

0

∫ t

0

tp(.)dtdt. (3.97)

Applying the inverse differential operator, defined in (3.97), to the left-hand side of

(3.95) we get

L−1t

(
d2u

dt2
+

2p

t

du

dt
+
p(p− 1)

t2
u

)
=

1

tp

∫ t

0

∫ t

0

tp
(
d2u

dt2
+

2p

t

du

dt
+
p(p− 1)

t2
u

)
dtdt,

=
1

tp

∫ t

0

∫ t

0

(
tp
d2u

dt2
+ 2ptp−1

du

dt
+ p(p− 1

(p−2)
t u

)
dtdt,

=
1

tp

∫ t

0

∫ t

0

d

dt

(
tp
d2u

dt2
+ pt(p−1)u

)
dtdt,

=
1

tp

∫ t

0

d

dt
(tpu) dt. =

1

tp
(tpu) = u.

The inverse differential operator of (3.96) can be used to solve the general complete

second-order singular nonlinear PDEs.

Applying L−1t to both sides of (3.95) we obtain

u(x, t) = f(x) + tg(x) + L−1t (F (x, u, ux, uxx, ut)) , (3.98)
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where f(x) + tg(x) appears as the result of initial conditions. Using Adomian decom-

position method, (3.98) can be rewritten as

∞∑
n=0

un(x, t) = f(x) + tg(x) + L−1t

(
∞∑
n=0

An(x, t)

)
.

The modified decomposition method (MADM1) splits f(x) + tg(x) into two parts,

f(x) is written with u0(x, t) and tg(x) is written with u1(x, t) as follows:
u0(x, t) = f(x),

u1(x, t) = tg(x) + L−1t (A0(x, t)) ,

un+1(x, t) = L−1t (An(x, t)) , n ≥ 1.

Example 3.3.3. Consider the following second-order initial value problem

d2u

dt2
+

2

t

du

dt
+
du

dx

d2u

dx2
= 1 + x, (3.99)

u(x, 0) = 0, ut(x, 0) = 0.

According to (3.96) in an operator form eq. (3.99)

Ltu = 1 + x− du

dx

d2u

dx2
. (3.100)

Applying the inverse differential operator L−1t (.) =
1

t

∫ t
0

∫ t
0
t(.)dtdt. ,define in (3.97)

on the PDE (3.100) gives

u(x, t) =
t2

6
+
t2

6
x− L−1t (uxuxx) (3.101)

Using the (ADM), (3.101) becomes

∞∑
n=0

un(x, t) =
3t2

4
+
t3

3
x− 3t4

32
+ L−1t

(
∞∑
n=0

An(x, t)

)
,



u0(x, t) =
t2

6
,

u1(x, t) =
t2

6
x+ L−1t (A0(x, t)) ,

un+1(x, t) = L−1t (An(x, t)) , n ≥ 1.

(3.102)
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An’s are Adomian polynomial of nonlinear term can be expressed as follows

A0(x, t) = u0|x(x, t)u0|xx(x, t) = 0,

A1(x, t) = u0|x(x, t)u1|xx(x, t) + u1|x(x, t)u0|xx(x, t) = 0,

A2(x, t) = u0|x(x, t)u2|xx(x, t) + u1|x(x, t)u1|xx(x, t) + u2|x(x, t)u0|xx(x, t) = 0,

An(x, t) = 0, n ≥ 3.

The first few component from recursive relation (3.102) are

u0(x, t) =
t2

6
, ,

u1(x, t) = x
t2

6
,

u2(x, t) = −L−1t (A1(x, t)) = 0,

un+1(x, t) = L−1t (An(x, t)) = 0, n ≥ 3

Therefore, solution of second-order initial-value problem of (3.101) by MDM is as

follows:

u(x, t) = u0(x, t) + u1(x, t) + · · · = t2

6
+
t2

6
x,

which is the exact solution of the initial-value problem of (3.101), for more example

see [21, 20].

In this thesis, the ADM and some modifications of ADM are successfully applied to

solve many differential equations, we shown that the modified methods are simple,

reliable, efficient and require fewer computations. We proposed an efficient modifi-

cation of the standard ADM for solving singular and non singular partial differential

equations. Furthermore, we made a comparison between some of these modifications

and ADM showed that the accuracy and the rate of convergence of MADM is higher

than standard ADM for many problems.

72



Bibliography

[1] G. Adomian, Analytical solution of Navier-Stokes Flow of a viscous compress-

ible fluid, Foundations of Physics Letters, Vol. 8, No. 4, 1995.

[2] G. Adomian, A Review of the Decomposition Method in Applied Mathematics,

Journal of Mathematical Analysis and Applications, 135, pp. 501 - 544, 1988.

[3] G. Adomian, Convergent series solution of nonlinear equations, Journal of

Computational and Applied Mathematics, 11, pp. 225-230, 1984.

[4] G. Adomian, Solving Frontier Problems of Physics: The Decomposition

Method, Kluwer Academic Publishers, Boston, 1994.

[5] G. Adomian and R. Rach, Modified Adomian Polynomials, Mathematical and

Computer Modelling, 24(11):39-46, 1996.

[6] M. Al-Mazmumy and H. Al-Malki, Some Modifications of Adomian Decom-

position Methods For Nonlinear Partial Diffirential Equations, Department of

Mathematics,IJRRAS 23 (2) May 2015 .

[7] M. Al-Mazmumy, A. Al-Mutairi, K. Al-Zahrani, An Efficient Decomposition

Method for Solving Bratus Boundary Value Problem, American Journal of

Computational Mathematics, Vol. 7, pp 84-93, KSA, 2017.

[8] M. Almazmumy, F. A. Hendi, H. O. Bakodah and H. Alzumi, Recent Modifica-

tions of Adomian Decomposition Method for Initial Value Problem in Ordinary

Differential Equations American Journal of Computational Mathematics, 2012,

2, 228-234.

73



[9] E. Babolian and S. Javadi, Restarted Adomian method for algebraic equations,

Applied Mathematics and Computation, Vol. 146, pp 533-541, 2003.

[10] J. Duan, The Adomian Polynomials and the New Modified Decomposition

Method for BVPs of nonlinear ODEs, Math. Comput., Vol. 4, 2015.

[11] J. Duan, Convenient analytic recurrence algorithms for the Adomian polynomi-

als, Appl. Math. Comput., Vol. 217, pp 6337-6348, 2011.

[12] J. Biazar, and S. M. Shafiof A Simple Algorithm for Calculating Adomian Poly-

nomials,Int. J. Contemp. Math. Sciences, Vol. 2, 2007, no. 20, 975 - 982.

[13] Y. Q. Hasan, Modified Adomian decomposition method for second order singu-

lar initial value problems,Advances in Computational Mathematics and itsAp-

plications,Vol.1,No.2,pp, 2012.

[14] Y. Q. Hasan, Solving first-order ordinary differential equations by Modified

Adomian decomposition method, Dep.math., Vol. 1, 2012.

[15] Y.Q. Hasan and L. M. Zhu,A note on the use of modified Adomian decompo-

sition method for solving singular boundary value problems of higher-order or-

dinary differential equations,Commun Nonlinear Sci Numer Simulat 14 (2009)

3261-3265.

[16] Y. Q. Hasan and L. M. Zhu, Modified Adomian De-composition Method for Sin-

gular Initial Value Problems in the Second Order Ordinary Differential Equa-

tions, Surveys in Mathematics and its Applications, Vol. 3, 2008, pp. 183-193.

[17] Y.Q. Hasan , The numerical solution of third-order boundary value problems

by the modified decomposition method, Advances in Intelligent Transportation

Systems, pp 71-74, 2012.

[18] M.M. Hosseini and M. Jafari A note on the use of Adomian decomposition

method for high-order and system of nonlinear differential equations, Commun

Nonlinear Sci Numer Simulate, Vol. 14,pp 1952-1957, Iran, 2009.

74



[19] M.M. Hosseini and H. Nasabzadeh. Modified Adomian decomposition method

for specific second order ordinary differential equations , Apl. Math. and Comp.,

Vol. 186, pp117-123, 2007.

[20] O. H. Lerma,Improvement of the Modified Decomposition Method for Han-

dling Third-Order Singular Nonlinear Partial Differential Equations with Ap-

plications in Physics, International Journal of Partial Differential Equations,

Volume 2014, Article ID 607259, 6 pages.

[21] O.H.Lerma, Modified Decomposition Method with New Inverse Differential

Operators for Solving Singular Nonlinear IVPs in First- and Second-Order

PDEs Arising in Fluid Mechanics ,International Journal of Partial Differential

Equations Dep of Mech Eng, Vol. 7, 2014.

[22] W. Kima and C. Chunb, A Modified Adomian Decomposition Method for Solv-

ing Higher-Order Singular Boundary Value Problems, Naturforsch, Vol. 65, pp

1093-1100, Korea, 2010.

[23] X.G. Luo, A two-step Adomian decomposition method, Applied Mathematics

and Computation, Vol. 170, pp 570-583, china, 2005.

[24] R. Rach, A new definition of the Adomian polynomials, Kybernetes, Vol. 37, pp

910-955, 2008.

[25] Z. Smarda, Modifications of Adomian Decomposition Method for Certain

Classes of Singular Differential Equations of the Second Order, Mathematical

Models and Methods in Modern Science, Journal of Applied Mathematics, 2

(2010), 91-98. Brno.

[26] A. R. Vahidi a, Z. Azimzadeh a and S. Mohammadifar b, Restarted Adomian De-

composition Method for Solving Duffing-van der Pol Equation,Applied Mathe-

matical Sciences, Vol. 6, 2012, no. 11, 499 - 507.

75



[27] A.M. Wazwaz, Adomian decomposition method for a reliable treatment of the

Emden- Fowler equation, Applied Mathematics and Computation, Vol. 161, pp

543-560, 2005.

[28] A. M. Wazwaz, A new algorithm for calculating Adomian polynomials for non-

linear operators, Appl. Math. Comput., pp 53-69, 2000.

[29] A.M. Wazwaz Anew method for solving singular initial valu problems in the

second order ode, Appl.Math.commput.128(2002) 45-57.

[30] A.M. Wazwaz, A Reliable Modification of Adomian Decomposition Method,

Applied Mathematics Computa-tion, Vol. 102, No. 1, 1999, pp. 77-86.

[31] A.M.wazwaz, partial differential equation method and applications,

Springer,,USA,2002,ISBN, 90 5809 3697.

[32] A.M. Wazwaz, Partial Differential Equations and Solitary Waves Theory,

Springer, New York, 2009.

[33] A. M. Wazwaz and S. M. El-Sayed, A new Modification of the Adomian De-

composition Method for linear and nonlinear operator, Appl. Math. Comput.,

Vol.122, pp 393 - 405, 2001.

[34] Y. Zhu, Q. Chang, and S. Wu, A new algorithm for calculating Adomian poly-

nomials, Appl. Math. Comput., Vol. 169, pp 402-416, 2005.

76


