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Abstract

Nonlinear differential equations arise in all fields of applied mathematics, physical sci-
ence and Engineering, hence being of fundamental importance the existence of meth-
ods to find their solutions. In the 1980’s, George Adomian introduced a semi-analytical
technique known as, Adomian decomposition method, for solving linear and nonlinear
differential equations.

In this thesis, some modifications of the Adomian decomposition method are pre-
sented.

In chapter one, we explained the Adomian decomposition method and how to use it to
solve linear and nonlinear differential equations and present few examples .
Modifications based on assumptions made by Adomian for solving differential equa-
tions are explained in chapter two as well as a comparison of the results found to those
found by ADM were presented.

In chapter three, some modifications based on operators were presented and we com-

pare the results found to those found by ADM.
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Chapter 1

Introduction To The Modified

Adomian Decomposition Method

1.1 Introduction

George Adomian established the Adomian decomposition method (ADM) in the 1980s,
the ADM has been paid much attention in the recent years in applied mathematics, and
in the field of series solution particularly. Moreover, it is a fact that this method is
powerful, effective, as well easily solves many types of linear or nonlinear ordinary or

partial differential equations, and integral equations [1, 2, 3, 4].

The ADM solves the problems in direct way and in an uncomplicated fashion with-
out using linearization, perturbation or any other unpreferable assumptions that may
change the physical behavior of the model, also the method is capable of greatly re-
ducing the size of the computational work while still maintaining high accuracy of the

numerical solution.

THE ADM has led to several modifications on the method made by various researchers
in an attempt to improve the accuarcy or expand the application of the original method.
To begin with, Adomian and Rach [5] introduced modified Adomian polynomials

which converge slightly faster than the original or classical Adomian polynomials and



are convenient for computer generation. The modified polynomials are defined using
a differencing method. The first few terms of the modified Adomian polynomials gen-
erated are identical to the original Adomian polynomials, but higher order terms do
exhibit differences. In addition to the classical and modified Adomian polynomials,
Adomian also introduced accelerated Adomian polynomials [5, 24]. These Adomian
polynomials provide faster convergence; however, they are less convenient compu-
tationally [S]. Despite the various types of the Adomian polynomials, the original
Adomian polynomials are more generally used based on the advantage of a convenient
algorithm which is easily remembered [24]. They are easily generated without a com-

puter and converge rapidly enough for most problems [5] .

Proposed modifications to the standard ADM can be as simple as the following; Wazwaz
[30] presented a reliable modification of the ADM. The modified ADM proposed by
Wazwaz divides the original function f into two parts, one assigned to the initial term
of the series and the other to the second term. All remaining terms of the recursive
relationship are defined as previously, but the modification results in a different series
being generated. This method has been shown to be computationally effecient; how-
ever, it does not always minimize the size of calculations needed and even requires
much more calculations than the standard ADM. The success of the modified method
depends mainly on the proper choice of the parts into which to divide the original func-

tion.

In 2001 Wazwaz and Al-sayed [29] presented a new modification of the ADM for lin-
ear and nonlinear operator, in the new modification Wazwaz replaced the process of
dividing f into two components by a series of infinite components, the new modifica-

tion introduce a promizing tool for linear and nonnlinear operator.

In 2005, Wazwaz [27] presented another type of modification to the ADM. The pur-
pose of this new approach was to overcome the difficulties that arise when singular
points are present. The modification arises in the initial definition of the operator when
applying the ADM to the Emden-Fowler equation. According to Wazwaz [27], the

ADM usually starts by defining the equation in an operator form by considering the



lowest-ordered derivative in the problem. However, by defining the differential oper-
ator in terms of both derivatives in the equation, the singularity behavior was easily
overcome. The most striking advantage of using this choice for the operator L is that
it attacks the Emden-Fowler equation directly without any need for a transformation

formula. This modification could prove useful for similar models with singularities.

In [13, 14, 17] Y. Q. Hasan, solved first and second-order ordinary differential equa-
tions by Modified ADM, the difficulty in using ADM directly to this type of equations,
due to the existence of singular point at x = 0, is overcome here. He defined a new

differential operator which can be used for singular and nonsingular ODEs.

Another modification was proposed by Luo [23]. This variation separates the ADM
into two steps and therefore is termed the two-step ADM (TSAMD), the purpose be-
hind the proposed scheme is to identify the exact solution more readily and eliminate

some calculations. The two steps proposed by Luo [23] are as follows:

(1) Firstly, apply the inverse operator and the given conditions. Then, define a func-
tion, ug, “where ug is the first term of the solution” based on the resulting terms. If
this satisfies the original equation and the conditions as checked by substiution, it is
considered the exact solution and the calcuations terminated. Otherwise, continue on

to step two.

(2) Continue with the standard Adomian recursive relationship. As one can see, this
modification involves verifying that the zeroth component of the series solution in-
cludes the exact solution [23]. As such, it offers the advantage of requiring less calu-

culations than the standard ADM.

Another recent modification is termed the restarted Adomian method [9]. This method
involves repeatedly updating the initial term of the series generated rather than calcu-
lating additional terms of the solution by determining Adomian polynomials for large

indexes.

other researchers have developed modifications based on the operators to the (ADM).



1.2 Operator

An operator is a function that takes a function as an argument instead of numbers as
we are used to dealing with in functions. We already know a couple of operators even

if we did not know that they were operators. Here are some examples of operators

d 0 b

L=— L=— L={d L= "dz.
dz’ ox’ J d, Ju

If a function is plugged in, say in each of the above, then the following can be obtained

_du
- dx

_(9u

L(u) L(u) = o L(u) = [(u)dz L(u) = [} (u)de.

These are simple examples of operators derivative and integral. A more complicated
operator would be the heat operator. The heat operator can be found from a slight
rewrite of the heat equation without sources. The heat operator is then

0 02
=5 Yo

d (1d
L=— (2%
dx (:cdx)’

is another differential operator for a particular second order differential equation.

L

Also

The operator L in second order differential equations is a twice differentiable function.
The domain of L is the twice differentiable functions on an open interval /. The
terminology L of the function u is used to describe L(u), and the range of the functions
on [ (and hence L(u) is itself a function on I ). Generally, L is chosen

dP
 dar

L(.) (),

for the p'™ order differential equations and thus its inverse L~! follows as the p-fold
definite integration operator from z( to x. The operator L defined has the following
basic property: If u; and u, are twice differentiable functions on / and c; and ¢, are
constants, then

L [clul + CQUQ] = ClL [Ul] + 02L [UQ] s

4



note: an operator L satisfying property above is called linear operator.

Example 1.2.1. The differential equation

can be rewritten in compact form as

so from this, an operator can be generated to be:

_d(ld
Cde \xzdx)’

so that (1.2) can be written in an operator form as:

i = (5

(1.1)

(1.2)

after this, it can be verified that the operator is linear, bearing the basic properties of

derivation of ordinary differential equations in mind and plugging in the expression

c1uy + cous into the operator above it can be shown as:

d (1d

L{ciuq + cous) = ar <5d—(61u1 + 62U2)) ’

d ld( )+1d( )
~ dz \zdz i x dz “2u2) )

d( 14 14
~ dr Clxd “ Cdequ ’

d
d
c1 L fur] + eo L [ug]

1d N, d(1d
vdr ) T \ G ™

)

thus the operator at (1.2) is linear operator. An operator that is not linear is known as

nonlinear operator.



In this thesis, nonlinear operators in which nonlinear functions are plugged are symbol-
ized by some various representations like N (u) and F'(u). These operators are used to
determine the Adomian polynomials by the help of Adomian formula which is briefly

discussed in the following chapter.

1.3 Adomian polynomials

The main part of ADM method is calculating Adomian polynomials for nonlinear poly-

nomials.
In this section, we will obtaining the Adomian general formula for Adomian polyno-
mials.

The decomposition method decomposes the solution u(x) and the nonlinearity N (u)

into series

u(x) :Zun , N (u) :ZA”’

where A,, are the Adomian polynomials.
To compute A, take N(u) = f(u) to be a nonlinear function in u, where u = u(x),

and consider the Taylor series expansion of f(u) around g
/ 1 " 2 1 1" 3
Fu) = fluo) + f'(uo)(u = uo) + 5 f"(uo) (u = uo)” + 1 f" (uo) (u — o)™ + -+,
butu:u0+u1+u2+-~ y
then
1
f(u) = f(U()) + f’(uO>(U1 + U +us+--- ) + Ef”(quul + Uy +us+--- )2

1
+ f”/(UQ)(Ul—|—UQ+U3+"‘)3+"',

3!

by expanding all terms we get
Flu) = Foi0) + F (o) (n) + £ (o) z) + (o)) + -+~ o ") (o0’
b 1 i)y o o) o)+ 5 £ ) )+ (o)
6



1
g

now, let /i be the order of u} and (i) + m(j) be the order of uju?,. Then A, consists

of all terms of order n, so we have

AO = f(U()),
Al = ulf/(u0)7
Ay = uy f'(ug) + lzﬁf”(ﬂo),

2!

2 1
Az = usf'(uo) + §U1U2f"(uo) + gui’f"(uo),

1 1 1
Ay = uy f'(uo) + {gug + Ulus] J"(uo) + gufuzf'"(uo) - Euilf"”(uo).

Hence,

1 dr =\
Av=—o [N (;A un>]H,nzo. (1.3)

To find the A,,’s by Adomian general formula, these polynomials will be computed as

follows:
AO = N(UO>,
d
A1 = N(UO)Ul = —N(Uo + )\ul) 5
d\ A=0
! 1 " 2 1 d2 2
A2 =N (’LLO)UQ + EN (UO)UI = EWN(UO + )\Ul + A Ug) s
: : A=0
Az = N'(ug)ug + zN”(u Juiug + iN”’(u i = ld—zN(u + Aup + ANup +
3 — 0) w3 2| 0) w12 3| o/%1 — 3'd)\2 0 1 2
+)\3U3) s
A=0

Example 1.3.1. The Adomian polynomials of

flu) =w’

are



Ay = Bugug + 10udu?,

As = 5U§U3 + 20uduyug + 10udu?,
for more example see [12, 34].

1.4 Analysis of the ADM

As well the ADM consist of decomposing the unknown function u(zx, y) of any equa-
tion into a sum of an infinite number of components defined by the decomposition

series

u(w,y) = > un(z,y), (1.4)
=1

where the components u,,(x, y), n > 0 are to be determined in a recursive manner. The
ADM concerns itself with finding the components

Ug, U, Usg, - - - individually.

The determinant of these component can be achieved in any easy way through a recur-
sive relation that usually involve simple integrals. This technique is very simple in an
abstract formulation but the difficulty arises in calculating the Adomian polynomials

and proving the convergence of the series of the function.

The ADM consists of splitting the given equation into linear and nonlinear parts, in-
verting the highest-order derivative operator contained in the linear operator on both
sides, identifying the initial and/or boundary conditions and the terms involving the
independent variable alone as initial approximation, decomposing the unknown func-
tion into a series whose components are to be determined, decomposing the nonlinear

function in terms of special polynomials called Adomian polynomials and finding the



successive terms of the series solution by recurrent relation using Adomian polyno-
mials. The solution is found as an infinite series in which each term can be easily

determined and that converges quickly towards an accurate solution.

The ADM is quantitative rather than qualitative, analytic, requiring neither lineariza-
tion nor perturbation and continuous with no need to discretization and consequent

computer-intensive calculations.

ADM for ODEs
To give a clear overview of ADM, we consider a differential equation
Fu(t)) = g(t),

where F' represents a general nonlinear ordinary or partial differential operator includ-
ing both linear and nonlinear terms. Linear terms are decomposed into L + R, where
L is invertible and is taken as the highest order derivative, and R is the remainder of

the linear operator. Thus the equation may be written as
Lu+ Nu+ Ru =g, (1.5
where N (u) represents the nonlinear terms. Solving for Lu, we obtain
Lu=¢g— Nu— Ru. (1.6)
Operating on both sides of eq. (1.6) with L~! we have,
L'Lu=L"'9— L 'Nu— L 'Ru. (1.7)

The decomposition method represents the solution u(x,t) as a series of this form,

u(z,t) = Z up(z,1). (1.8)
n=0

The nonlinear term Nu is decomposed as
N(u)=> A, (1.9)
n=0

9



Substitute eq. (1.8) and eq. (1.9) into eq. (1.7) we get,

> un(wt) =@+ L7'g(x) = LT'RY u, — LY A, (1.10)
n=0 n=0 n=0
where,
(
d
u(0), if L = =
d2
u(0) + zu'(0), if L= ot
_ 22 . d? (1.11)
Yo = U(O) + IU/(()) + EU/I(O), if L = %, '
2 n m—+1
0+ Fo(0) e T o), L=
\u(O) + zu/(0) + Tk 0)+---+ o (0), if L o
Therefore

(

u = o + L7 g(z),
Uy = —L—IRUO — L_1A07

Ug = —L_lRUI — L_lAl, (112)

Upyr = —L*Ru,, — L7YA,,n >0,
\
where A,, are the Adomian polynomials generated for each nonlinearity so that A
depends only on ug, A; depends only on wug and u;, As depends only on g, 11, us and

etc.

The Adomian polynomials are obtained from the formula

1 dn = .,
An= i [N@%A“")]A_o’nzo’l’z’m' o

10



We write the first five Adomian polynomials

(

Ag = N(uyp),

Ay = ur N'(uo),

Ay = usN'(ug) + %u%N”(uo),

As = ugN'(ug) + ugus N"(ug) + %u?]\f’”(uo),

1 1 1
Ay = ugN'(ug) + {—u% + u1u3} N"(ug) + =uduaN" (ug) + —uiN""(uy),

2! 2! 4
(1.14)
So, the practical solution for the n terms approximation is
n—1
b= ui, (1.15)
i=0
where
u(e,t) = lim ¢, (x,) = Zoui(x,t). (1.16)

We now demonstrate the ADM on the following illustrative examples.

Example 1.4.1. Consider the second order linear ordinary differential equation
U —u=1, (1.17)

subject to the initial conditions

In operator form, eq. (1.17) can be written as
Lu=1+4 u, (1.18)

where L is the second order differential operator Lu = u", so L~ 'is given by

() = /0 /Ox(.)dscda:.
11



Applying L~ to both sides of (1.18) and using the initial conditions into (1.19) gives
w=u(0) +u (0) + L7 () + L7 (w) = x + o + L7 (u),

applying eq. (1.8) to the last eq. we have

iun =x+ %2 + L_l(iun),
n=0 n=0

this leads to the recursive relation
72

U0:5E+3,

Upr1 = L7 (u,), n>0.

The first few components are thus determined as follows:

2

x
U0=$+77
3 xt
=t
x> b
TG

Consequently, the solution in a series form is given by

R s S L
U(I):x+§+€+ﬂ+§+a+"'

and clearly in a closed form is given by

u(z) =e" — 1.

ADM for PDEs

Previously, we applied the (ADM) to ordinary differential equations. Now, we will
show how the method can be implemented to partial differential equations as well.

Consider the general partial differential equation written in operator form:

L,u+ Lyu+ Ru+ Fu =g, (1.19)

12



where L,is the highest order differential in x, L, is the highest order differential in ¢,
R is the remainder of differential operator consisting of lower order derivatives, F'(u)
is an analytic nonlinear term, and g is the specified inhomogeneous term. Applying the

inverse operator L', the equation (1.19) becomes

w=o— Ly Lyu— L' Ru— L' F(u) + L;g, (1.20)
where
.
0
U(O,t), lfL — 8_x7
o2
0 t x Oat ) fL = < 5
u(0,1) + 21, 0,1 L=
Yo = 3 z? e 03
u(0,t) + zu, (0,t) + gum(o,t), if L = Rt
x? " , ontl
\U(O, t) + IL‘UJ;(O, t) + aumx(oy t) + e+ Huxx...(ntimes) (07 t); if L= O+l

The method admits the decomposition of u(x,t) into an infinite series of terms ex-

pressed as:
u(@,t) =Y uy(z,t), (1.21)
n=0

and the nonlinear term F'(u) is to be equated to an infinite series of polynomials

Flu(z,t) =) An, (1.22)
n=0

where A,, are the Adomian polynomials that represent the nonlinear term F'(u(z,t)),

insertinging (1.21) and (1.22) into (1.4) yields

Z Un(7,t) = o+ L, Ly Z un(z, t)—L;lRZ (2, t)—L,* Z Ap(z,t)+L 1 g.
n=0 n=0

n=0 n=0
The various terms u,(z,t) of the solution u(z,t) can be easily determined by using
the recursive relation

U()(I,t) = $o + L:;1.97
(1.23)

Uni1(z,t) = —L; ' Lyuy,(x,t) — L Ruy,(x,t) — LY A, n>0.

13




Consequently, the first few terms of the solution are given by
ug = o + L'y,

up = — L7 Lyug(x,t) — L7 Rug(x,t) — L' Ay,

up = =Ly Lyua (v,t) — Ly Rua (2,t) — L Ay,

uz = — L, Lyug(,t) — L Rug(x,t) — L' Ay,

Example 1.4.2. Consider the following homogeneous partial differential equation

uy —uy =0, u(0,y) =y, u(z,0)=uz. (1.24)

In an operator form, eq. (1.24) becomes
Lyu(z,y) = Lyu(z,y), (1.25)

where the operator L, and L, are defined by

d

d
L,=— and Ly:d—y.

dz

Applying the inverse operator L™! to both side of (1.31) and using the given condition
u(0,y) = y yields
w(z,y) =y + L' (Lyu), (1.26)

define the unknown function u(x, y) by the decomposition series

u(a,y) = un(z,y), (127)
n=0

inserting (1.27) into both sides of (1.26) gives

Zun(x, y)=y+L;" <Ly (Z un(x,y))> , (1.28)

n=0

by considering few terms of the decomposition of u(z, ), eq. (1.34) becomes

Up 4+ uy +ug + - =y + L7 (Ly(ug + uy +ug +-++)),

14



proceeding as before, we identify the zeroth component u, by

UO(:L‘7 y) =Y,

after identifying the zeroth component g (z, y), we obtain the recursive scheme

UD(‘T’ y) =Y,
(1.29)
un+1(x7 y) = L;lLy(un),n > 0.
The components g, u, ug, - - - are thus determined as follows :
Ug (33, y) =Y,

ur(z,y) = L' Lyuo = L' Ly(y) = =,
us(z,y) = L' Lyu; = L Ly (x) =0,

it is obvious that the component u,(z,y) = 0,n > 2. Consequently, the solution is

given by
u(z,y) = uo(@,y) + wi(z,y) + ua2(z,y) + - = wo(z,y) + w(z,y) =y +,

hence the exact solution of the homogeneous partial deferential equation in eq.(1.24)
is given by

u(z,y) =z +y.

Example 1.4.3. Consider the initial value problem of nonlinear partial differential
equation

1

We first rewrite eq. (1.30) in an operator form as

1
Lyu=u— Zuf

where L, is a second order partial differential operator. Operating with L' both sides

of the last PDE and using the initial conditions gives

1
u=1+¢+z+ L 'u— ZL;luf.

15



Applying eq. (1.8) and (1.9) we have
oo o0 1 o0
Up(w,t) =1+ +x+ L,* Uy (7,t)) — =L, " A, (x,t
nz% (z,1) (nz; (2,1)) = 7 (nz; (z,1))

Recursively we determine ug, 11, us, ,to obtain
up(w,t) =1+ * +x,

1
Upi1(2,1) = L up (2, 1) — Z—nglAn, n >0,
where A,, are the Adomian polynomials. The first few polynomials for the nonlinear

quadratic term u? are given by
_ .2

AO = Upgs

Ay = 2ugpuy,

— 2
A2 = 2U0tU2t + UTy-

Consequently, the first three terms of the solution u(x,t) are given by

ug(z,t) =1+ t* +z,
1 [
_r-1,, _ ty-14 _ 71-1 _

x> a2 2P

_1A1 — L;1<_ +

1
—7-1 S —_—
us(z,t) = L 4L$ 2! 3!) 4! * 5!

thus, the infinite solution in a series form is given by

2 x3 [E4 135

_ g2 LT LT
u(z,t) =t +(1+x+2!+3!+4!+5!+ ).

Note that infinite series is the McLaurin series expansion of e”. Indeed, the latter equa-

tion leads to the exact solution of our initial value problem which is given by
u(z,t) = t* + €”,
for more example see [31, 32].

16



1.5 Modified Adomian polynomials

In this section a new class of the Adomian Polynomials is defined, denoted byA,,.
In the ADM for solving nonlinear differential or partial differential equations [1, 2,
3, 4, 32], Several studies such as Rach [5], zhu [34], Wazwaz [28], Duan [10], [11]
have been proposed to modifiy the regular Adomian polynomials A,,, a rapidly con-
verging approximant to the solution u denoted by @,,,[u] = S>"" u,,. Then u(z,t) =
im0 @m[u] = limy, o0 EZ:_OI Uy, = U,

where u,, are components to be determined such that we have convergence to .

Now we make an analogous definition that just as ¢,,[u] or simply ,, approximates

u, i.e.,
m—1
me[u} = Z Unps
n=0
®,,[f(u)] similarly approximates f(u), or
m—l_
Omlf(W] = D An
n=0

The A,, represent a new class of the Adomian polynomials and the lim,, ,[®,, =
22”;01 A,] = f(u). Thus we view ®,, = f(u) and ¢,, = u as truncated representa-

tions of f(u) and u. The A, can now be defined by:
A = Ppg1 — Py, (1.31)

just as
Um = Pm+1 — Pm-

From &,, = Z?;[)l A, we see that &, = A,. form > 1,

Am = em[f(w)] = om[f(u)],

thus

Ay = o[ f(u)] — 1] f(u)],

Ay = @s[f(u)] = ol f(u)],
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Az = puaf(u)] = @3l f ()],

we can also write from (1.31)

Z1 == q)Q - (I)la
ZQ = q)3 - (1)27
Ay =Dy — O3,
the ®,,, are conveniently defined as:
S Bmonss — o)
o, — @m—n-&-l‘ 0 fn(U(]),
n!
n=0
hence,
(I)l = f(uo)a
Dy = f(uo) + urf*(uo),
2
—u
By = fluo) + (23 — o) (o) + 21 o),
from which
Z0 - f(u0)7
Zl = CI)Q — (I)l = ulfl(uo),
- 1 u% 2
Ay = D3 — Py = uof (uo) + () f*(uo),

2!
which so far, are identical to the classical or original Ay, A, As, respectively.

For m > 3, A,, = A,,. To see this, we calculate ®, and As;.

By = f(up) + (o1 = wo) ) + B o) 4 B2

since
2 3

— u u
Ag = (134 — @3 = ’LLgfl(Uo) + (—2 + U1u2)f2uO + (—1

9] 5 uo.
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but

ui

31 )f?’uo,

As = U3f1(U0) + U1U2f2U0 + (

clearly, then the decomposition components u,, of the solution u of a differential equa-
tion using the A, for nonlinearities are equal to the components using the A, for

Ug, Uy, Ug, U3 but not for Ug, Ug, """ .

d

Example 1.5.1. “— = %, u(0) = 1.
dz

In an operator form write

Applying L~ to both sides yeild

u = u(0) + L™ u?,

u=1-—L" iA"'
n=0

Using the original A,
AO = U%,
Ay = 2upuy,

A2 = u% + 2’LL0U27
Ag = QU1U2 + 2UOU3,
A4 = 'LL% -+ 2U1U3 -+ QUOU4,

A5 = 2U2U3 + QU1U4 + 2UQU3,

if we use the A,,, we have

T .2

AO —_— 'LLO,

Ay = 2upuy,

Ay = u? + 2ugus,
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Zg = u% -+ 2U1UQ + 2UOU3,
Ay = ug + 2uguyg + 2uius + 2usus,

As = ué + 2ugus + 2uiuy + 2usuy + 2u3yy,

we note a difference from the original A,,, beginning with A3 which appears in the
fourth term of the decomposition. The regular polynomials A, have generally been
used because they are simply generated, The convergence of the A, is slightly faster

than for the A,, since the two are identical until Aj.
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Chapter 2

Some Modifications of the ADM Based

on the Assumptions

Several researchers have developed modifications to the ADM [8, 13, 23, 27]. The
modifications arise from evaluating difficulties specific for the type of problem under
consideration. Usually the modification involves only a slight change and is aimed
at improving the convergence or accuracy of the series solution. This further demon-
strates the wide applicability that the ADM has, as well as its simplicity since it can be
easily modified for the situation at hand. In this chapter we present some modifications

of the ADM where the assumptions made by Adomian were modified.

Note that, the modified ADM will be applied wherever it is appropriate, to all partial
differential equations of any order. The modified ADM may give the exact solution

after just two iterations only and without using the Adomian polynomials.

2.1 The modified decomposition method by Wazwaz

The assumptions made by Adomian were modified in (1999) by Wazwaz [30]. In
(2001) Wazwaz and Al-sayed considered a new modification [29]. In this section we

present these two modifications.
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2.1.1 The first modified (MADM1)

Wazwaz presented a reliable modification of the Adomian decomposition method. As
we know the ADM suggest that the zeroth component u usually defined by function
f = ¢+ L 'g. But the modified decomposition method proposed by Wazwaz was es-
tablished based on the assumption that the function f can be divided into two parts one
assigned to the initial term of the series and the other to the second term. All remain-
ing terms of the recursive relationship are defined as previously, but the modification
results in a different series being generated. This method has been shown to be com-
putationally efficient; however, it does not always minimize the size of calculations
needed. The success of the modified method depends mainly on the proper choice of

the parts into which to divide the original function. Under this assumption we set

f=/fo+ f1.

Based on this, we formulate the modified recursive relation as follows:

/

UO(QJ) = an
Ul(I) = f1 - L_l (RU()) - L_l (AQ) s (21)

\unﬂ(x) = —L'(Ru,) — L '(A,), n>0.

Having calculated the component u,(x, y), the solution in a series form follows imme-

diately.

Although this variation in the formation of vy and w4 is slight, however it plays a ma-
jor role in accelerating the convergence of the solution and in minimizing the size of

calculations.

Furthermore, there is no need sometimes to evaluate the so-called Adomian polyno-
mials required for nonlinear operators. Two important remarks related to the modified
method were made in this section. First, by proper selection of the function f, and
f1 , the exact solution u may be obtained by using very few iterations, and sometimes

by evaluating only two components. The success of this modification depends only on
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the choice of fy and f; , and this can be made through trials, that are the only crite-
ria which can be applied so far. Second, if g consists of one term only, the standard

decomposition method should be employed in this case, see [29].

2.1.2 The second modified (MADM?2)

As indicated earlier, although the modified decomposition method may provide the ex-
act solution by using two iterations only, and sometimes without any need for Adomian
polynomials, but its effectiveness depends on the proper choice of f; and f; . In the
new modification, Wazwaz and Al-sayed [33] replaces the process of dividing f into
two components by a series of infinite components. He suggests that f be expressed in

Taylor series
F=Yfo 2.2)
n=0

Moreover, he suggest a new recursive relationship expressed in the form

Uy = f07
(2.3)

Unt1 = fos1 — L7 (Ruy) — L71(Ay), n > 0.
having calculated the component w,,(z, y), the solution in a series form follows imme-

diately.

We can observe that algorithm (2.3) reduces the number of terms involved in each stan-
dard ADM only. Moreover this reduction of terms in each component facilitates the
construction of Adomian polynomials for nonlinear operators. The new modification
overcomes the difficulty of decomposing f(z), and introduces an efficient algorithm

that improves the performance of the standard ADM.

Note: If f consists of one term only, then scheme (2.3) reduces to ADM relation .
Moreover, if f consists of two terms, then relation (2.3) reduces to the modified rela-

tion (2.1), see [30].
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2.2 The two-step ADM (TSADM)

Although the modified decomposition method may provide the exact solution by using
two iteration only, the criterion of dividing the function f into two practical parts, and
the case where f consists only of one term remain unsolved so far.In fact, as will be
seen from the examples below, the effort to divide f into two parts is useless and may
even decelerates the convergence sometimes.

Another modification of ADM was proposed by Luo [23]. This variation separates the
ADM into two steps and therefore is termed the two-step ADM. The purpose behind
the proposed scheme is to identify the exact solution more readily and eliminate some
calculations as such. The two steps proposed by Luo are as follows: Firstly, apply the
inverse operator and the given conditions. Then, define a function, ug, based on the
resulting terms. If this satisfies the original equation and the conditions as checked by
substitution, it is considered the exact solution and the calculations terminated. Other-
wise, continue on to step two. In step tow we are continue with the standard Adomian
recursive relationship. As one can see, this modification involves “verifying that the
zeroth component of the series solution includes the exact solution”. As such, it offers

the advantage of requiring less calculations than the standard ADM.

The main ideas of the TSADM method are:

(1) Applying the inverse operator L~' and using the given condition we obtain
®=p+ L'y, (2.4)

where the function ¢ represents the terms arising from using the given conditions, all

are assumed to be prescribed.To achieve the objectives of this study, we set
O=P5+D1+ -+ Dy, (2.5)

where @y, ®;, --- ®,, are the terms arising from integrating the source term and from

using the given conditions. Based on this, we define
Ug = O, + -0+ (I)n—i-s’ (2.6)
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wheren = 0,1,2,--- ;m,and s = 0,1,2,--- ,m — n, then we verify that u satisfies
the original equation and the given condition by substitution, once the exact solution

is obtained we finish. otherwise, we go to following step two.

(2) We set uy = ¢ and continue with the standard Adomian recursive relation
Upi1 = —L7 ' (Ru,) — L7 (A,), n>0. (2.7)

Compared to the standard Adomian method and the modified method, we can see that
the TSADM may provide the solution by using one iteration only. It is important to
note that the procedure of verification in the first step can be significantly effective in
many practical cases. This can be seen from the examples below by taking full ad-
vantage of the property of the original equation and the given conditions. Further, the

TSADM method avoids the difficulties arising in the modified method.

2.3 Restarted ADM (RADM)

Basically the RADM has the same structure as that of the ADM but the ADM is
used more than once. In practice, after applying the ADM and calculating m terms
of the series solution, for arbitrary m, the summation of these terms is taken as the
first term of the solution of the ADM and then the method starts again for arbitrary
m’ times. In other words, to apply the RADM, firstly we apply the ADM and set
Gm = Ug + Uy + ... + Up_1. Then the RADM begins when we choose ¢,,(t) as the
first term of the solution in the ADM; hence, in essence, we reset the initial term. The

RADM can be summarized in the following algorithm, see [6, 9, 26].
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The algorithm

Consider the differential equation
Lu+ Ru+ Nu = g. (2.8)

Step 1. Choose positive natural numbers m, n, m’.

Step 2. Use the ADM to solve the differential equation and obtain ®,,(), then let
G(t) = D,,(1).

Step 3. Add and substract G/(t) to right side of eq. (2.8)

For k = 1ton, do Step 4. Let u;55(t) = G(t).

Step 5. up (t) = wo + L™ 'g(x) — L' Rug — L™ Ay — G(t).

Step 6. up%,((t) = L 'g(z) — L7 Ru, — L™'A,,.

Step 7. Let

2 =Y upi(t),
G(t) = u™™(1),

End for Step 8. Consider the approximate solution of the problem as ®(t) = G(t).
See [26].

2.4 Examples

In this section, some initial value problems are considered to show the efficiency of

each modified.

Example 2.4.1.

' —u=uzcosz —xsinx +sinz, u(0)=0.

Applying L~'to both sides yields

u(z) = xsinx — xcosx — sinx + L™ u(z),
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where L(.) = dilx()’ and L7!(.) = fot(.)dt.

Then we have recursive relationship

Ug = TSINT — TCOST — SINT,

Upyr = L7 u,,n > 0.

By using MADM1:

uyg = rsinz,

u; = xcosx —sinx + L uy =0,

Upyr = L7 u, = 0,n > 0.

Then the exact solution is u(x) = xrsinx

By using MADM2: the Taylor expansion for

f(z) = xsinz + x cosx — sin z is given by

2¢%  xt  4xd b
— 2 —_— — — — — — DY
f@)=a = et tat

then the recursive relationship

Ug = X7,
—2x3
Uy = 3! + L_lu(] =Y,
4 4
—T 1 o —XT
2= gt =
Uz = O,
T
. . . , ot b ¥ P
The solution in a series form is given by u(z) = « —a—l—y—H Rk e + = + -
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Z sin .

By using TSADM: Let

O =0+ Dy + Dy,
by =xsinx, & =xcosx, Py = —sinzx,

clearly @4, &, and P, satisfy, by selecting uy = P and by verifying that v, justified

the differential equation.

Then, the exact solution is obtained immediately u = x sin x.

By using RADM:Let

Uy = xrsinz,
u; =xcosx —sinz + LA, = 0.
Then

®! = xsinz,

then the exact solution is u(z) = x sin z.

The following table display a comparison of absolute errors between the exact solution

and approximate solutions by ADM and MADM?2.
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x U Exact ADM MADM?2 ADM Abs. error | MADM?2 Abs. error
0.0 0.0 3.10862 x 10~1° 0.0 3.10862 * 10~1° 1.54811 % 10~
0.1 | —0.00500836 | —0.00500836 | —0.00500836 | 1.48548 * 10711 1.9028 * 107°
0.2 || —0.0201348 —0.0201348 —0.0201348 | 2.19203 * 1078 7.46429 % 1077
0.3 || —0.0456917 —0.0456934 —0.0456917 | 1.75982 % 1076 2.90542 % 107°
0.4 || —0.082229 —0.0822708 —0.082229 4.18148 ¥ 107° 4.39705 * 104
0.5 —0.130584 —0.131082 —0.130584 4.98158 x 1074 3.96416 x 1073

Table 2.1: Comparison of absolute errors between the exact solution and approximate
solutions by ADM and MADM2.

Note: MADM?2 does not always have higher accuracy than the ADM but we shown
here that MADM?2 are successfully applied to solve differential equation and minimize

the size of calculations.

Example 2.4.2. Consider the linear partial differential equation [8]

Utp + Uge +u =0, (2.9)
with initial conditions u(x,0) = 1 + sinz, u;(x,0) = 0.
In an operator form the eq. (2.9) becomes
Lttu(x> y) - (uSL‘I + u) ) (210)

2

d
here Ly = -,
whnere Ly a2

Applying L' to both sides of (2.10) and using the initial condition we obtain

and Li;' = [)' [(.)dtdt.

u(z,t) = 1+sine — Ly, (u+ ) -

By using (MADM]1)

we divide f(z) into two parts,
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fo =1, and f; = sin x,then we have from the recursive relation

(
UOzl,

u; = sinx — L;! (uo +u0‘m) ,n>0

Up +1=Ly" (un + Unp,, ) 0 > 0.
\
The first few component from the last recursive relation are
Uy = 1,

) _ ) 1
up = sinx — L' (ug + Uye) = sine — =12,

2!
o 1,
u2:_Ltt (ul—i—ul‘m)zﬁt,
1 16
uz = —Ly (U2+U2\m):—at,
u(z,t) = uo +up +up + - -
. 1, 1, 1,
_sm:):—&-l—ﬁt +It _&t + ...

=sinx + cost.

By using (MADM?2) :

the Taylor expansion for f(x) = 1 +sinx is :

1 1 1
f(z) :1+x—§x3+ax5—ﬁx7+--~ ,
then we have from the recursive relation
Uy = ]_,
1 L,
uy = — Ly (uo—i—um):x—ﬁt ,
1 _ 1 1 1
Uy = —51'3 — Lttl (Ul + U1|2I) = —5{,53 — §xt2 + I#l,
1 _ 1 1 1 1 1
Uz = agﬁ — L' (up +ugy,,) = axf’ - azfﬁ + ﬂxt“ + §xt2 +
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uw(w,t) =up+u +ug+ -+,

_ 1 3 1 5 1 7 1 2 1 4 1 6

=sinz + cost.

An important conclusion that can be made here is that the exact solution was accelerate

by using the modification more than the standard Adomian method .

Example 2.4.3. By using (TSADM) :

Consider the partial differential equation

Uy + (1 — 22) Uy + (2 — 2z — 2)uy, =0, (2.11)

with the initial condition u(z,0) = z, u,(x,0) = 1.

In an operator form the equation (2.11) becomes

1-2 1
Lyu(z,y) = _ﬁuw — muw, (2.12)

where L,,(.) = Cj—!ﬂ()’ and L) (.) = [} [ ()dydy.

Applying L;yl to both side of (2.12) and using the initial condition we obtain

(1 —2x) 1

Y S 2.13
(xQ—x—2)uy (x2—x—2)u 2.13)

u(z,y) :x+y—L;y1
using the eq. (2.13) gives: & = ¢4+ &y =2+ y
(p() =T, q)l =Y,

by select uy = = 4y and verify that v satisfies the eq. (2.11) and the given conditions.

Then the exact solution is

u(z,y) =z +vy.
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Example 2.4.4. By using (RADM) [7]:

Consider the boundary value problem

W+ A(L+utu®+u’) =0, 0<z<l, (2.14)

Applying the standard ADM in eq.(2.14), we get

— -1 -1 -1 -1
D = - (L (1) + L Zmﬁ—gL ZAnvtgL ZBH> . n>0.
n=0 n=0 n=0 n=0
(2.15)
This gives

1 1
uy = —5/\x2+§)\x,

1 1
Upy1 = —A (L‘lun + aL‘lAn + gL‘an> ., n>0. (2.16)

Adding and subtracting ¢(z) to right side of eq. (2.15) to obtain

o0 B B o0 1 - [o.¢] 1 B (o ¢]
>, = G(z)-A (L ")+ L 1Zun+5L 12An+§L 1ZBn>—G(x), n>0,
n=0 n=0 n=0 n=0

(2.17)
by equating the terms we can get
uw = G(z),
1 1
u = —\ (L—l(l) + L g + EL‘lAO + §L—1BO) - G(X), (2.18)
-1 L. [
Unp2 = —A| L Uppq + 5[/ Apyr + gL Bui1 ), n=>0,

Step 1: In this step, g(x) is calculated from eq. (2.16) as follows:

1, 1
Uy = —5)\1} +§)\$,
1 1
- _ /\4 8 _/\4 7'
“ %688 © Temt

So



Step 2: Now, components of the RADM is computed from eq. (2.18) as follows:

Uo

Uy

U2

Uus

Uy

S0,

The approximate solution u(x) is obtained in a series form

G (),
1

757447262208

1

13,.26
+

20709139646480822304768

1921

1

4 13,25
58265174016

22 44

1

941324529385491922944

31,.62

~11035111388719457016087541142519808
29478690975630536257743382096194416238070333444° n
— T

)\x _i_...?

A

¢QIUO+U1+U2+’U/3+U4,

U(m)=¢2:u0+u1+u2+u3+u4_

x Exact ADM Abs. error | RADM Abs. error
0 0 0 0
0.1 || 0.0498467900 2.9%107° 4.8 %1077
0.2 || 0.0891899350 5.6 %107° 9.4% 1077
0.3 || 0.1176090956 7.9%107° 1.3% 1077
0.4 || 0.1347902526 9.4%107° 1.6 %1077
0.5 || 0.1405392142 9.9 % 107° 1.7% 1077
0.6 || 0.1347902526 9.4%107° 1.6 %1077
0.7 || 0.1176090956 7.9%107° 1.3%1077
0.8 || 0.0891899350 5.6 % 107° 9.4% 1077
0.9 | 0.0498467900 2.9%107° 4.8% 1077
1.0 0 2.5 %1071 110~

Table 2.2: Comparison of absolute errors between the exact solution and approximate

solutions by ADM and RADM.
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The obtained results indicate that the new techniques give more suitable and accurate

solutions compared with the ADM.

34



Chapter 3

Some Modifications of ADM Based On
The Operators

3.1 MADM3

In this section, we present a reliable modification of the ADM to solve singular and
nonsingular initial value problems of the first, second and high order ordinary differ-
ential equations. Theoretical considerations have been discussed and the solutions are
constructed in the form of a convergent series. Some examples are presented to show

the ability of the method for linear and nonlinear problems.

We will show that, with the proper use of MADMa3, it is possible to obtain an analytic
solution to first order differential equation, singular or nonsingular. The difficulty in
using ADM directly to this type of equations, due to the existence of singular point at
x = 0, is overcome . Here we use the MADM3 for solving singular and nonsingular
initial value problem of order one and two. It is demonstrated that this method has the

ability of both linear and nonlinear ordinary differential equation.
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3.1.1 First order ODEs

The first order ordinary differential equation can be consider as:
u' + p(z)u+ F(z,u) = g(x), (3.1)

with boundary condition u(0) = A,
where A is constant, p(z) and g(z) are given functions and F'(x, u) is a real function.

The ADM can not find the solution of (3.1) directly at x = 0. For example, we cannot

2
find the solution of v’ + X T = 2sec?rats = 0 by ADM.

tanx

For this reason, Hasan in [14] introduced a new modification of ADM (MADM3), he
proposed a new differential operator which can be used for singular and nonsingular

ODE:s.

Method of solution

Define a new differential operator L in terms of the one derivative contained in the

problem. Rewrite (3.1) in the form
Lu = g(x) — F(x,u), (3.2)

where the differential operator is defined by

d
_ o~ [p@dz @ [p)de
L(u) =e¢ — (e u) . (3.3)

The inverse operator L~ is therefore consider a one-fold integral operator, as below,

L7Y() = e~ Jp@de / el P@dr () iy (3.4)
0
Applying L™! of (3.4) to the first tow terms v’ + p(x)u of eq. (3.1). We find

L7 + p(z)u) = efp(x)d"”/ el P@de () 4 p(a)u)dz = u — u(0)p(0)e /P
0

where ¢(z) = e/ P@)dz,
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By operating L~! on (3.3), we have
u(z) = u(0)p(0)e™ /POy 4 [l g(z) — L7F(z,u).

The ADM introduces the solution u(z) by an infinite series of components

and the nonlinear function F'(x, ) by an infinite series of polynomials

F(x,u) = i A,
n=0

(3.5)

(3.6)

(3.7)

where the components u,,(z) of the solution u(x) will be determined recurrently and

A,, are Adomian polynomial that can be constructed for various classes of nonlinearity

according to specific algorithms set by Wazwaz [28]. For a nonlinear F'(u), the first

few polynomials are given by

/

Ao = F(yo),

Ay = u F'(uy)

§ A2 = " (uo) + St o),

Az = usF'(up) + urua F" (up) + %u:{’F”(uo),

\

Substituting (3.6) and (3.7) into (3.5) gives

fiz%cw::uan¢«nef“@“dx+—L%ﬂx>—-L1§§f%-
n=0 n=0

(3.8)

To determine the components u,, (), we use ADM that suggests the use of the recursive

relation

ug(x) = w(0)p(0)e TP dr 4 L7 g(x),

Upy1(z) = =LY A,),n >0,
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which gives

up(x) = u(0)p(0)e™ S P dy 4+ L1g(x),

ui(z) = =L~ (A),

yQ(ZE) = —L*l(Al), 3.9
us(z) = —L7Y(Ay),

from (3.8) and (3.9), we can determine the components u,(x) and hence the series
solution of u(x) in (3.6) can be immediately obtained. For numerical purposes, the

n'h-term approximant

n—1
P, = Z Un (),
n=0

can be used to approximate the exact solution.

Example 3.1.1. We consider the linear singular initial value problem

2

w4+ 2T~ 9gec? x, (3.10)

tan
u(0) = 0.
we put
1 d
L(.) = —t )
(- tanx dx anz(.),

SO

tan x

() = /0 tan 2(.)dz.

in an operator form eq. (3.10) becomes
Lu = 2sec? z, (3.11)
applying L™ to both sides of (3.11) we have

LL 'y =

/ 2 tan z(sec® r)dw,
0

tan x

= u(x) = tan .
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Example 3.1.2. Consider the nonlinear initial value problem

u + 220 =1+ 2 4+ u?, (3.12)
u(0) =1
We put
L) = e L)
N dx ’
SO

In an operator form, eq. (3.12) becomes
Lu=1+2" 4 (3.13)
Applying the inverse operator L~ to be the sides of eq.(3.13) we get:
w(z) =e " + L1+ 2?) + L1 (u?),

ug=e* +e / e’ (14 2?)dx,
0

xT

by using Taylor series of e~ * and ¢*” with order 6 and Adomain polynomials men-

tioned we obtain

. , a3 n z! n 205 2% 42" 14320 n
Uy = r—x — — — - — = — = — ce
0 372 15 6 105 3780 ’

S 7xt 220 N 322% 10327 3832 N
y=x+z -z - — + — — e
! 6 3 45 315 1260 ’

, 4xd . 297%  5axS 142" 61928
T R T .
5 brt  132° 25325 7x" 7928
WETT ST Ty T o0 a5 30
2825 23627 2828
45 63 45

5. 76 427 296328 n
b 3 15 630 ’

u4:$4+2x5— 4+
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this means that the solution in a series form is given by
u(z) = up + uy + ug + uz + ug +us + - - -

=1+4+2r+22+ 23+ +2°

and in the closed form

u(x):x—i-l_x.

Example 3.1.3. Consider the nonlinear initial value problem

u' + 37%u = €* + 3u(lnu)?, (3.14)

We put

In an operator form, eq. (3.14) becomes
Lu = e* + 3u(lnu)? (3.15)

Applying the inverse operator L~! to both sides of eq. (3.15), we have

3

u(z) = e + L") + 3L u(lnu)?,

up = e + L7Y(e"),

xX
_3 3 3
=e ¥ +e" / er .
0

T

By using Taylor series of e~ * and e”’ % with order 8 and Adomain polynomials men-

tioned we obtain

Lot 2 53 172% Tx® n 3016 n 153127 n 441128 n
un = €x S — PPN
0 2 6 24 24 6! 7! 8! ’
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5 3zt 9z b52% 12727 353a®
METTTT T 00 T3 T as0 s
_ 62° 5z 1837 2352®
~ 5 T4 "m0 s0
5127 3928  10272° 1553120

35 | 20 560 2800

Uz

Us =

this means that the solution in a series form is given by

u(x):uo+u1+u2+u3+---

2 LCB I4 LUS

T
—1 T e
S S TR TR Y

and in the closed form

u(z) = e*.

3.1.2 Second order ODEs [19].

Consider the initial value problem in the second order ordinary differential equation in

the form

' + p(x)u + F(z,u) = g(x),
(3.16)
u(0) = A, v/ (0) = B,
where F'(z,u) is a real function, p(x) and g(z) are given functions and A and B are

constants.

Method of solution

Here, we propose the new differential operator, as below

L()=¢e [ p()d %(fp( )d _) (),

so0, the problem (3.16) can be written as,
Lu=g(z) — F(z,u). (3.17)

The inverse operator L~ ! is therefore considered a two-fold integral operator, as below,

() = / " ¢~ I p(a)aa / " IR ()
0

0

41



By applying L~! on (3.17), we have
u(z) = g(z) + L7 g(z) — L7'F(z, u), (3.18)

such that

Recall that the ADM introduce the solution y(x) and the nonlinear function F'(x, y) by

infinite series

u(z) =Y uy(z), (3.19)
n=0
and .
F(z,y)=> A, (3.20)
n=0

where the components u,,(z) of the solution u(x) will be determined recurrently as

seen in the previous section.

(

Ay = F(uy),

Ay = ur F' (uo),

Ay = us F'(ug) + %U%F”(uo),

Az = uzgF'(up) + urus F" (ug) + %u‘;’F”’(uo),

\
which can be used to construct Adomian polynomials, when F'(u) is a nonlinear func-

tion. By substituting (3.19) and (3.20) into (3.18), we get
D un(x) = g(x) + L'g(x) = L7 A, (3.21)
n=0 n=0

Through using ADM, the components u,,(x) can be determined as

up(r) = p(x) + L~ g(x),

Upr(z) = =LY A, n>0,

(3.22)
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which gives
(wol) = () + Lg(z),
wr(e) =~ (),
un(x) = L1 (Ay), (3.23)

us(x) = —L71(Ag),

\

From (3.22) and (3.23), we can determine the components u,,(z) and hence the series

solution of u(x) in (3.21) can be immediately obtained.

Example 3.1.4. Consider the Lane-Emden equation formulated as, [27] ,

2
'+ —u + F(zr,u) =g(x),0 <z <1
z (3.24)
u(0) = A,u/(0) = B.

where A and B are constants, F(x,u) is a real function and g(x) € [0.1] is given.

Usually, the standard ADM is divergent to solve singular LaneEmden equations. To
overcome the singularity behavior, Wazwaz [27] defined the differential operator L in

terms of two derivatives contained in the problem. He rewrote (3.24) in the form
where the differential operator L is defined by

d d
_ 20 [ 5d
L= dz (x da:) '

Note that the above operator is a special kind of the proposed operator (3.1.2), since

2
for LaneEmden problem (3.24), p(z) is equal to — , so,
x

e—fp(x)da: _ 123'_2

Y

and



therefore we have

d d d d
— o~ Sp@)dz @ | [p(e)de &} _ 2% [ 2%
L=c¢e . <e d:L‘) T . <x dx) ,

L) = xﬂ xxz(.)da:da:.
L

Example 3.1.5. Consider the linear singular initial value problem

and

cos
u” u' = —2cos,

sin x (3.25)
u(0) =1, ¥/(0) = 0.

We put

L(.) = ! isinxi(.),

sin x dx dx

X 1 X
Ll(.):/0 Sm/o sin2(.)da da.

In an operator form, eq. (3.25) becomes

SO

Lu = —2cosz, (3.26)

Now, by applying L~ to both sides of (3.26) we have

x 1 xX

L' Lu= —2/ , / sin z(cos(x))dx dz,
o sinz J,

and it implies,

w(z) = u(0) + zu'(0) + cos(z) — 1 = u(z) = cos(x).

So, the exact solution is easily obtained by modified Adomian decomposition method.

Example 3.1.6. Consider the linear nonsingular initial value problem

u" +u = 2x+ 2,
(3.27)



According to (3.1.2), we put

SO

)= [ e [ er()dn du
L

In an operator form, eq. (3.27) becomes
Lu =2z + 2. (3.28)
Now, by applying L~ to both sides of (3.28), we have
L' Lu = /x e " /w e’ (2x + 2)dx dx,
0 0

and it implies that

u(z) = u(0) + ' (0) + 2 = 22

So, the exact solution is easily obtained by proposed Adomian method.

Example 3.1.7. Consider the nonlinear initial value problem

U+ i + 22 = (24 622)e”” 4 2263
(3.29)

with the exact solution u(zx) = e
According to (3.1.2), we put

SO



In an operator from, eq. (3.29) becomes

Lu = (2+ 62?) e 4 123 _ g3

Now, by applying L~ to both sides , we have

L™ Lu = u(0) + 2u/(0) + L™'g — L™" (2%u?) .
And we have,
up = u(0) + 2u/'(0) + L1 (g(x))
Un+1 = —L_l (An) , n > 0.

We compute A,,’s Adomian polynomials of nonlinear term z2y3, as below

Ay = 22u?

Y

Ay = 22 (3uduy),

Ay = 2*(3udug + 3ugu?),

(3.30)
Az = 2%(3udus + 3ugu? + 6upyiug + ud),

\

*12 12 . . .
by using Taylor series of g(x), e 2 and ez with order 10 and Adomian polynomials
mentioned in (3.30), we obtain,

( B 9 Tt T 2328
L TR TR T

IA‘ .736
U1+U0:1+$2+5+E+“',

9 2t 2t 2 210 73112
(ot =t e o 0 T s T

note that the Taylor series of the exact solution y(z) = ¢*” with order 10 is as below

4 6 8 10
2 x x x x
z= _ 1 2 - - - - O 11 )
e trt ot ettt ()
Note that: the Adomian decomposition method is divergent to solve these type of

second order ordinary differential equation.
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3.1.3 High-order and system of nonlinear differential equations [18]

This section extends MADM3 for specific second order ordinary differential equations
to high order and system of differential equations.
Consider the initial value problem in the n-order differential equation in the form:

u® 4 playu® ) 4+ Nu = g(z),
(3.31)

u(0) = ag, w'(0) =y, ..., u"D(0) = a1,
where N is a nonlinear differential operator of order less than n — 1, p(x) and g(z) are
given functions and oy, aq, ..., a,_; are given constants.

Here, consider the differential operator, as below:

L = e—fp(af)dwi ol p@)de " (3.32)
dx A1z )’
so, the problem (3.31) can be written as
Lu = g(x) — Nu. (3.33)

The inverse operator L ™! is therefore considered an n-fold integral operator, as below:

L‘l(-)—/o /0 /0 e‘fp(f”)dx/o el P@dz( Yy g, (3.34)

By operating L~! on (3.33), we have

u(z) = p(x) + L g(x) — L™ Nu,

such that
Lz =0),
so, we have
> u(z) =)+ L'glx) = L7 A,
n=0 n=0

Through using ADM, the components u,,(x) can be determined as

uo = @(x) + L~'g(x),

Upyr = —L7A,, n>0.
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The mentioned method can be used for solving system of differential equation in the

following form

(

ugn) +p(x)ugn_1) + Fl(‘ra Y1, 7y§n_2)

n— n—2
y Y250 5 Yo zﬂynf"ayT(l )>:gl(x)7

(n—1) (n—2)

n n—2
uS" + p(x)ul + By(z, -y 7y =

ay27"'ayg_2ayn7"' y Yn _QQ(x)a

n n—1 n—2 n— n—2
\U%)‘Fp(x)u?(l )+Fn(x7y17"'7y§ )7y2""7y2 27ym"'7y7(l )):gn(x),

Example 3.1.8. Consider linear singular initial value problem in third order ordinary

differential equation,

sin(z) u = sin(x)cos(x), 339

u(0) =0, u'(0)=-2, v (0)=0.

SO

() = /0 ' /O ' ml(x) [ /0 " sin(a)(.)dz)dzdz,

In an operator form, eq. (3.35) becomes
Lu = sin(x)cos(x). (3.36)

Now by applying L' on both side of (3.36), one gets

L' — /O /0 L /Oxsz’n(aj)(sin(:c)cos(x))dx]da:da:,

sin(zx)
and this implies

/ 3z 3 322 3
u(z) = u(0) + zu (0) + % - §c03(2x) =1-2r+ % — gcos(Q:c).

Example 3.1.9. Consider the nonlinear system of differential equation,

' +tanu’ + 22 = g(x), u(0) =0, ¥'(0) =0,
(), u(0) (0) (3.37)

2" +1002" + y* = h(x), 2(0) =0, 2/(0) =0,
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where g(x) and h(z) are compatible to exact solutions

u(z) = xsinz and z(x) = rtanx.

Here, we use Taylor series of g(z), h(z) and tan x with order 9.

By using standard ADM. Here, we have

1 3
= L[} = — — .
Ug g(x) = 2 —|—243: +224x + - (3.38)
100 1 20 1 1 40 121
L) =2y sy 2 Moyl e 2or 19l s
20 (1) =a* + —=a, gal o at o gat 4 a® - ppat o oat
and
Upp1 = —L_l(tanu;)—L_lAn, n>0 (3.39)
Zny1 = —L7Y1002)) — L7'B,, n>0

where A,, and B, are the Adomian polynomials of nonlinear terms y* and 2%. Also,
f(x) denoted the taylor series of tan x with order 9.
In this case, through considering (3.38) and (3.39), we have

)
1 3 T
Uo 1'2 24'I6 224 i T

—p2_ 1,4 1.6 _ 100,.7 , |
U+ U =T 6% 5T 63 L' T

2 6 1 200000 9
U Uu —x——:v L6 L8 4 200000, -
L o+t ur+ + us Jr120 s000% t +-

and
.

1 1 2
2o =% + 808 4 Lot + Bab 4

20+ 2 =a? — 833zt — B0 — WaT 4.

_ 14 2 312500000000 .9 | . ..
(20t tta=at g + 520 + gi5a® + HEGERY 4

So, the standard ADM converges to Taylor expansion of exact solution.
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By using MADM3. By applying MADM to problem (3.37), we obtain:

(

and
(

up +uy = a? — pat + sa — st
\

up =a? — gt + Lab + st

5040

120 5040

zo=a+gat + 2ab 4

1339
1814400

1'10+...

- r 1;; 2 T 17 r 2835()]:
0+1 2+§4+T56+%8+m 10+“.'
\

which is quite close to Taylor expansion of exact solution. For more example see [22].

The obtained result show that the rate of convergence of MADMA4 is higher than stan-

dard ADM for this problem.

T U Exact

ADM Abs error

MADMA4 absolute error

0.0 0

0

0

0.2 || 0.039733866159012

0.001264197530582

7.528800499700949 x 10~ 11

0.4 || 0.155767336923460

1.058797809982970 * 10~

7.709478999640140 x 108

0.6 || 0.338785484037021

4.445704692990216 * 10~°

4.064858429964069 * 10~°

0.8 || 0.573884872719618

7.894635701799491 % 10~°

5.406399990504074 * 10~°

1.0 || 0.841470984807897

7.352541691750814 x 10~

4.022691603570161 « 104

Table 3.1: Comparison of absolute errors between the exact solution and approximate

solutions by ADM and MADM4.

3.2 MADM for singular ordinary differential equations

(MADM4) [25]

In this section, an efficient modification of ADM with another inverse differential oper-

ator is introduced for solving second order singular initial value problems of ordinary
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differential equations. The proposed method is tested on several linear and non-linear
boundary value problems. All the numerical results obtained by using modified Ado-
mian decomposition (MADM4) show very good agreement with the exact solutions
for only a few terms. In addition, we use this method to overcome the singularity dif-
ficulty for higher-order boundary value problems. The proposed method is tested for

some examples and the obtained results show the advantage of using this method.

3.2.1 (MADMS4) for second ODEs

Consider the singular initial value problem in the second order ordinary differential
equation in the form

2
w4+ —u' + F(z,u) = g(x),
x (3.40)

u(0) = A,4/(0) = B,
where F'(z,u) is a real function, g(x) is given function and A and B are constants.

Here, we present another differential operator, as below
L =x"1'—zu, (3.41)
so0, the problem (3.40) can be written as,
Lu = g(x) — F(x,u).

The inverse operator L~! is therefore considered a two-fold integral operator, as below

/ / Ddzdz. (3.42)

2
Applying L~ of (3.42) to the first two terms u” + —u’ of equation (3.40) we find
x

(w2 ot [ (o )

=zt /0 (zu' + u — u(0))dz = u — u(0).
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By operating L~! on (3.41), we have
u(z) = A+ L g(x) — L7 F(x,u).

Recall that the ADM introduce the solution «(z) and the nonlinear function F'(x, u)

by infinity series

u(@) = Y ().

and
F(z,u) = Z Ay,
n=0
where,
(
AO = F(Ug),
A1 = UlF/(UQ),
1
A2 = UQF/(’LL()) + EU%FU(U()),
' 1
Az = uzF" (ug) + uyus " (uo) + —u3 " (up),

3!

which can be used to construct Adomian polynomials, when F'(u) is a nonlinear func-

tion.

so, we get
Z u(z) = A+ L g(x) — L7} Z A,.
n=0 n=0

Through using ADM, the components u,,(x) can be determined as
ug(z) = A+ L7"g(x),
tny1(2) = —L7H(A,),n 20,

which gives
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Example 3.2.1. Consider the linear singular initial value problem [16]

2
W+ Eu u=6+ 122 + 2% + 28
x

In an operator form, equation (3.43) becomes
Lu=6+ 12z + 2% + 23 — u,
Applying L~! on both sides of (3.44) we find

u(z) = L_1(6 + 122 + 2% + x3) — L_l(u),

where
t t
L) :x_l/ / x(.) dt dt.
o Jo
Therefore,
xt xb
U(CL‘) =$2+l’3+%+%,
2 3 at ad
divided — 4+ —int t
we divided z° + x° + 20 + 30 1n two parts
ug =z + x3,
xt xd
_ 7 s L—l
=55 T30 Ho,
Un41 = _Lil(un>

This in turn gives

and

In view of (3.45), the exact solution is given by
u=a2°+z°.
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A generalization of equation (3.40) has been studied by Wazwaz [27]. In a parallel

2n d n(n—1)

manner, we replace the standard coefficients of v’ and u by — an 5 respec-
x x

tively, for real n, n > 0.

In other words, a general equation

’LL”—I— 2_nu/_'_ n(n_ 1)

; e u+ F(z,u) = g(x),n >0, (3.46)

u(0) = A, 4/(0) = B.
he propose the new differential operator, as below

dz™

s0, the problem (3.46) can be written as,
Lu = g(x) — F(x,u). (3.47)

The inverse operator L~! is therefore considered a two-fold integral operator, as

/ / Jdxdx. (3.48)

Applying L~! of (3.48) to the first three terms of equatlon (3.46) we find

L'+ Q—nu' + ﬂ = iy Mu dxdz
z 2

=z " / (2™ + na" tu)dr = u.
0
By operating L~! on (3.47), we have
u(w) = A+ Lg(x) — L F(a,u),

proceeding as before we obtain through using ADM, the components u,(z) can be

determined as
up(r) = A+ L, g(x),

U,n+1($) = —L;l(An),TL 2 07

where A,, are Adomian polynomials that represent the nonlinear term F'(x, u):
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Example 3.2.2. Consider the linear singular initial value problem

2 4/ 2
u A+ —u+ —u =12,
T x

According to (3.2.1) we put

SO

L) =22 /O /0 22(.).

In an operator form, equation (3.49) becomes
Ly =12.

Now, by applying L~! to both sides we have
L 'Lu= x_2/ / 1222 dxdz,
0o Jo

u(z) = z°.

and it implies,

Example 3.2.3. Consider the nonlinear singular initial value problems

6 6
u”+—u'+—2u+u2:20+x4,
x x

According to (3.2.1). We put

SO

(3.49)

(3.50)



In an operator form, equation (3.50) becomes
Lu =20 + z* — u? (3.51)
Now, by applying L~ to both sides of (3.51) we have
u=L"120+2%) — L7 (u?).
Therefore
2 4 2’ 142
u=x"+—=—
72 y )

6
by divided 2 + ﬁ into two parts and we obtain the recursive relationship

Ug = X7,
6
Uy = :E_ - LilAOa
72 (3.52)

Which implies

Upy1 = 0,n > 0.
In view of (3.52) the exact solution is given by

u(z) = 2°.

And so, the exact solution is easing obtained by proposed Adomian method.

A generalization of second order ODEs [13].

w + Dl 4 %u =g(z) + F(z,u),n >1,m >0,
x r (3.53)
u(0) = A,u/(0) = B.
Where F'(z,u) and g(z) are given functions A, B, m and n are constants.

n m
We define the differential operator L in the terms of the three part u” + —u' + —u
x x

contained in the problem.
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Under the transformations 2k + k = n and (h — 1)(h + k) = m, the equation (3.53) is

transformed to

2h + k h—1)(h+k
gy 2ok (D0
i e

u=g(x)+ F(x,u), n>1, m >0,
where h and k are constants. Rewrite (3.53) in the form

Lu = g(x) + F(z, u).
where the differential operator L is defined by

L() = xh% <xkd%xh+k> (). (3.54)

The inverse L~ ! is therefore considered a twofold integral operator defined by

L) =~ R / / )dz dz. (3.55)
Applying L~! defined in (3.55) to both side of eq. (3.53) we get

u=p(@)+ L (g(x))+ L (F(z,u)). (3.56)

such that L (¢(x)) = 0.

The ADM introduce the solution u(z) and the nonlinear function F'(z,w) by infinite

series
= un(), (3.57)
n=0
and
=> A, (3.58)
n=0

where the components u,,(x) of the solution u(x) will be determined recurrently. By

substituting (3.57) and (3.58) into (3.56) gives,

Zun = ¢(z) + L~ ((:c))+L1<ZAn>.

Through using ADM, the components u,,(x) can be determined as

uo(x) = ¢(z) + L~ g(x),

Upy1(x) = L71A,,n >0,
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which gives

uo(x) = ¢(x) + L~ g(x),

Example 3.2.4. Consider the singular initial value problem

D 3
u" + —u' + —u =15,
x x

u(0) = 0,4/(0) = 0.

(3.59)

We put 2h + k =5and (h — 1)(h + k) = 3.

it follows that £ = 1, h = 2, substitution of k£ and A in eq. (3.54) yields the operator

SO

In an operator form, eq. (3.59) becomes
Lu = 15, (3.60)
applying L~! on both sides of (3.60) to obtain
u = L*(15),

and it implies,

u=x.

So, the exact solution is very easily obtained by this method.
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Example 3.2.5. Consider the nonlinear initial value problem
3 1
u// + _u/+ _2u — u2 _’_6307
z z (3.61)
u(0) = 1,4/(0) = 1.

Here, we use Taylor series of g(z) with order 9, we put
2h+ k=3, (h—1)(h+k)=1,

it follows that k = —1, h = 2 substitution of & and k in eq. (3.54) yields the operator

SO

In an operator form, eq. (3.61) becomes
Lu = u* + g(z). (3.62)
Applying L~! on both sides of (3.62) to obtain

up(x) = L71g(x),

(3.63)
Upi1(x) = L7'A,, n>0,
A,,’s are Adomian polynomials of nonlinear term y?, as below:
(Ao = U3,
Ay = 2uguy,
Ay = udu + 2uguy, (3.64)

A3 = 2U1U2 + QUOU3,

\

So, by substituting (3.64) into (3.63), we have

(u—1_|_ 7_372_%_@_...

0= 1T T G500 1080 !

“ :x_2+x_3+ 162* N 3125 N 127925
9 8 225 1296 396900 ’
2x4 1725 387725 120127

= 225 T 1296 T 396000 " 259200 T
Y B
-1 T T T
k’U()—i‘ul‘|‘U2 +$+2+6+24+120+ s

Uz
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which ug + u; + us is quite close to Taylor expansion of exact solution u(z) = e”.

3.2.2 Higher-order boundary value problems [15]

Consider the singular boundary value problem of (n + 1)-order ordinary differential
equation in the form

um D) ) g — g(), (3.65)
xr

with initial conditions
w(0) = ag, w'(0) =ar, -, u""(0) = a,_1, W (b) =<,

where N is a nonlinear differential operator of order less than n, g(x) is a given func-
tion, ag, ay, ..., a,1,, ¢, b are given constants, where m < n — 1, n > 1. We propose

the new differential operator, as below

! d d

L() = nem__ gmenel () 3.66
so, the problem (3.65) can be written as,
Lu = g(x) — Nu. (3.67)

the inverse operator L' is therefore considered a n+ 1-fold integral operator, as below,
L) = / el / ™) / e / z(.)dz - - dx,
b 0 0 0
by applying L; ' on (3.67), we have
u(z) =9+ L 'g(x) — L™'Nu

such that L(p(z) = 0).

Hence,
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so, we get

ug = @(x)+ L g(x)

Upp1 = —L7° ZA”’ n >0,
n=0
which gives

ug = ¢(x)+ L g(x)

Uy = _L_lAO,
Uy = —L_lAl,
Uz = —LilAg,

Example 3.2.6. Consider the nonlinear boundary value problem

" 2 1 ’
u —-u —u’=g(x), u(0)=0, u(0)=0, wu(l)=10.8731, (3.68)
T

where g(z) = Tz?e” 4 6ze” — 6e® — 1% 4 z3e”.

We use the Taylor series of g(x) with order 10, g(x) = gr = —6 + 102 + 102° +
2, 28 5 1o 3 . 1L 8760, 100787

—X —X =T —X r — T — T U.
4 15 2 28 576 3780 33600

We put

L.= x_lix4 d -4

dz %x dx()

so that

)= [ & o () de do da,
L)

in an operator form, (3.68) becomes
Lu = g(z) + u*, (3.69)
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applying L~!, on both sides of (3.69) and then incorporating the given boundary con-
ditions, we find
u(z) = 2.71828z* + L 1g(z) + L 1y?

Proceeding as before we obtained the recursive relationship
up(w) = 2.71828z* + L~ 'g(x) (3.70)

Ungr(z) = L71A,, n>0 (3.71)

computing the Adomian polynomials for the nonlinear term »> and Substituting into
(3.71) gives the components of the solution which is in good agreement with the Taylor

series of the exact solution u(z) = z3e”, see [18].

3.3 MADM for singular partial differential equations
(MADMS)

3.3.1 (MADMS) for first order PDEs

Consider the following general first-order (in ¢) singular nonlinear PDE:
P _
Uy + Ju= F(x,u,uy,), (3.72)

where ¢ and x are independent variables, v is the dependent variable, F' is a nonlinear
function of x,u and u, and p is a real constant: p > 0. The initial condition is as
follows:

u(z,0) = h(x). (3.73)

In order to solve the PDE (3.72) with initial condition (3.73) by the modified decompo-
df.

sition method (MADMY), at first, the linear differential operator L,(.) = % (%) (\)

is defined, and the left-hand side of (3.72) is rewritten as

d
Ly = —u—i-gu.

3.74
dt t (3.74)
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The inverse differential operator of L,, thatis L; ', is defined such that L; ' (L,u) = u.

_11t

t s

tp( )dt. (3.75)

Applying the inverse differential operator, defined in (3.74), to the left-hand side of

(3.72) we get
,(du p 1 du p
1 r —
L, (dt+ u) tp/t<dt+ u)dt
1 [/ du
— tr— + ptP~lu | dt
W ( a P u) ’

t P
1 / tpd(t u)dt,

T dt

1 1
=% (tPu)|, = » — (tPu) = u.

The inverse differential operator of (3.75), defined in the present work, can be used to

solve the general first-order singular nonlinear pdes. Applying (??) to (3.72) gives
Liu = F(z,u,uy). (3.76)
Applying L; ! to both sides of (3.76) we obtain
u(z,t) = o(x) + L7 (Fx,u,uy)), (3.77)

where ¢ is obtained as the result of initial condition,

= Z Un(ﬂf, t)u
n=0
and

F(z,u,u,) ZA (x,t).

So eq. (3.77) can be written as

Zun(xvt) =@+ Lt_l (Z An(x,t)> )

according to the ADM, all terms of u(z, t) except ug(z, t) are determined by recursive

relation; that is,

Uo(xv t) - @(x)a
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w (@, t) = Ly (Aol 1),
Unir(z,t) = Lt (A2, 1) ,n > 1.
By using the modified decomposition method (MADM4), () splits into two parts:p(z) =

©1(x) + pa(x) the first part | (), is written with ug(x,t) and the second part o (), is

written with u (z, t) as follows:

(

up(r,t) = p1(w),
ui(z,t) = @a(x) + Ly ' (Ag(z, 1)),

Uny1(2,t) = L (An(z,1)),n > 1.
\

Example 3.3.1. Consider the following first-order (in t) non homogeneous singular

nonlinear PDE with a homogeneous initial condition:

7
Uy + *_ GUly — Uppy — =12 + 9t3.
2t 2 (3.78)

u(z,0) = 0.

According to (??) in an operator form eq.(3.78) becomes

Ly = 6utty — Uppy — 7;2 + 9¢3, (3.79)

1 a2

Applying the inverse differential operator L; '(.) = - t1/2(.)dt. defined in (3.75)

1
with p = 3 on (3.79) gives
u(z,t) = —t* 4+ 2t* + 6L, (uuy) — Ly (Ugen) - (3.80)

Now, according to the (ADM), the dependent variable u(x,¢) and the nonlinear term

uu,, are substituted with the infinite series as follows:

u(w,t) = 32 un(, 1),

uu, = L' (An(z,1)) .

(3.81)

Substituting the infinite series of (3.81) in (3.80) gives
Z Up(w,t) = —t3 + 2t* + 6L;" (Z Az, t)) — L7 (Usae) -
n=0 n=0
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Hence,

UO(x7 t) = _t37

ui(z,t) = 28" + 6Ly (Ag(x, 1)) — Ly (uo,...) » (3.82)

Umy1(z,t) = 6L (An(z, 1)) + L (ug),,) s n > 1.
\

The Adomian polynomials A/ s are obtained as

.

Ag(z,t) = uo(z, t)ug), (z,t) = 0,
Ai(z,t) = uo(z, t)ui(z,t) + ui (z, t)ug), (x, 1),

Ag(z,t) = uo(z, t)ug, (,t) + wi(x, t)uy, (@, t) + us(z, t)uy, (2, 1),

\Am(x,t) =0,m > 3.

the first few component from recursive relation (3.82) are

)
ug(z,t) = —t3,

uy(z,t) = 24,

up(z,t) = 6L, (Ai(z, 1)) + L (wy,,,) =0,

\un(:z:,t) =0, n>3.

The solution of the first-order singular nonlinear initial-value problem of (3.78) by the

use of (MADMS5) is the sum of w,,, that is, u(x,t) = > ° , u,(x, t) such that

u(x,t) = upl(x,t) +ur(x,t) + us(x,t +...:_t3—|—2t4,
(

3.3.2 (MADMS) for second order PDEs

Consider the following general second-order (in ¢) singular nonlinear pdes:

d’*u pd_u du d*u

_F -
(z,u, dx’ de)’

— == 3.83
a2t dt (3.83)

with initial conditions
’LL(:L‘,O) = f(x)7ut($70) = g(m)a

where ¢ and x are independent variables, u is the dependent variable, F' is a nonlinear

function of x, u, u, and u,, and p is areal constant: p > 0 .
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In order to use the modified decomposition method (MADMS), the left-hand side of

PDE (3.83) is considered as the linear invertible operator L; :

20 pdl.
= L() = d;) +]§%. (3.84)

d*u +pdu
A2 tdt

The inverse of the linear differential operator (3.84) is defined as

t 1 t
- :/ t_p/ tPdtdt. (3.85)
0 0

Applying the inverse differential operator, defined in (3.85), to the left-hand side of

(3.84) we get
[ d°u pdu pdu
Lt dt,
! (dt2 tdt) / tP/ (dt2 tdt)

du
tP— + ptP~1 dt,
/ tp / ( dt2 dt)
1 du
= dt,
/ tp ( dt)

:/0 (‘Zdt) ()l = u(x, t) — u(z,0).

The inverse differential operator of (3.85), defined in the present work, can be used
to solve the general second-order singular nonlinear PDEs. Applying (3.84) to (3.83)
gives

Liu = F(x,u, Uy, Ugy, Uy). (3.86)

Applying L; ! to both sides of (3.86) we obtain
u(z,t) = f(x) +tg(x) + L7 F (2,0, Uy, Upg, Uy) (3.87)

The (ADM) states that the dependent variable u(z, t) and F' the nonlinear term should

be written as the following infinite series



Substituting the infinite series in (3.87) gives

Zum(a:,t) = f(z) +tg(x) + L;* (Z An(x,t)> :

By using the modified decomposition method (MADM1) f(x) + tg(z) splits into two

parts; f(z) is written with ug(z, t) and tg(x) is written with u; (x, t) as follows:

(

Uo(xat> = f(:)ﬁ),

ui(z,t) = tg(x) + L; ' (Ao(x,t)),

Uni1(z,t) = L1 (An(2, 1)) ,n > 1.
\

Example 3.3.2. Consider the following general second-order nonhomogeneous initial-

value problem with the homogeneous initial conditions:

Pu 1 du du

2
5
a2 ) =14 St — 12 3.88
dt? 3tdt+(dx) T3v ’ (.58)

u(x,0) = 0,u(x,0) = 0.

According to (3.84) in an operator form eq. (3.88) becomes

5 du ?
Lou=1+-at —t*— (=) .
U + 3% ( dm>
Applying the inverse differential operator L;*(.) = fot /3 fot t=1/3(.)dtdt. defined in

-1
(3.85), with p = =3 on the PDE (3.88) gives

32 3 3t
U(I, t) = T + gfl] — EL_I (U:E)Q .

Using of the modified method (MADMY) results

S 32 8 3t (&
where,

( 2
3t

U()(l’,t) = Ia
t3 3t

uy(r,t) = —x — — + L' (Ao(, 1)), (3.89)
3 32

Upyr(7,t) = Lt (An(2,t), n>1
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du\ 2
Al s are Adomian polynomial of nonlinear term <d—u) can be expressed as follows:
x

Ag(z,t) = ug, (2, t) =0,
Ai(z,t) = 2ug), (2, t)uy, (2, t) =0,
A(,t) = 2uqy, (2, tugy, (,1) + (ur, (z,1))" = g
Az(z,t) = 2ug|,us), (2, 1) + 2wy, (2, Dugy, (2, 1) =0,
2

Ay(z,t) = 2ug), ua), (2, 1) + 2uq, (2, t)ug, (,t) (u2|x (x,t)) =0,

Ap(z,t) =0, n > 5.

So, by substituting the last A,,,’s on (3.89),we have

( 32
Uo(l',t) = 4 )
(2.1) 3 3t
u(x,t) =r— — —
S 3 32’

Therefore, solution of second-order initial-value problem of (3.83) is as follows:

U(l‘, t) = Uo(l‘,t) + Ul(l’, t) + u2(x’t) 4+

_3t2+l’t3 3t4+ 1 t%
4 3 32 460

which is the exact solution of the initial-value problem of (3.83).

3.3.3 (MADMS) for higher-order singular PDEs

A"y pdu d"u du du

awt g e e g ) (350
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with initial conditions

w(x,0) = f(z),u(x,0) = g(x) - Upoo.(n1 time) ¢ = h(T),

where ¢ and x are independent variables, u is the dependent variable, F' is a nonlinear
function of , u, u, and Uy, and Uy...(n41 time) » and p 1is areal constant: p > 0. In
order to use the modified decomposition method (MADMS), the left-hand side of PDE

(3.90) is considered as the linear invertible operator L, :

") pdi(.)
= L) = mn g

Aty D d™u
Codtnt ot din

(3.91)

The inverse of the linear differential operator (3.91) is defined as

t gt Lyt
Lyt = / / -+ (n) times / —/ tPdt--- (n+ 1) times dt. (3.92)
0 Jo o ¥ Jo

The inverse differential operator of (3.92), defined in the present work, can be used to

solve the general n+1-order singular nonlinear PDEs. Applying (3.91) to (3.90) gives

du d" 'y du

Lu=F — e — —). 3.93
tU (J],U, de’ dl’n'i_l’ dt) ( 9 )
Applying L; ! to both sides of (3.93) we obtain

t" . du d" M du

n

t

where f(z) +tg(z) +--- + —h)( xappears as the result of initial conditions. Using
n!

Adomian decomposition method, (3.94) can be rewritten as

n

> un(a,t) = f(z) +tg(z) + -+ %h(m) + Lt (Z An(x,t)> .

tn
the modified decomposition method (MADM1) splites f(x) + tg(x) + - -+ + —h(x)
n
into two parts: f(x) is writen with ug(z,t) and tg(z) + --- + —h(z) is writen with
n
uy(z,t) as follows:

;

uo(z,t) = f(x),

uy(z,t) =tg(x) + -+ %h(w) + L7 (Ag(z, 1)),

\un+1(a:,t) = L7 (An(z,t), n> 1.
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General complete second-order singular nonlinear PDEs.

Consider the general second-order (in t) singular nonlinear PDE in following form:

d*u L2 2p du N p(p—1) du d*u du

— =F — 3.95
dt? t dt 12 Y (@, dx’dx27dt)’ (3.95)

with initial conditions
u(z,0) = f(x), u(x,0) = g(x),

where ¢ and x are independent variables, u is the dependent variable, F' is a nonlinear

function of x, u, u,, Uz, u; and pis areal constant: p > 1.

d?(. 2p d(. —1
Defining the linear differential operator L,(.) = d;) + TP ag t) + p(th )( ) the
left-hand side of (3.95) is rewritten as
d? 2pd -1
Lo pde 20 -1, (3.96)

dt? t dt {2

The inverse differential operator of L; , that is, L~ is defined such that:

t t
L;l(.)ztlp/o /0 tP(.)dtdt. (3.97)

Applying the inverse differential operator, defined in (3.97), to the left-hand side of
(3.95) we get

d*u 2pdu  p(p— d*u 2p du p(p —1)
i Sy At} - BP— 20 dedt
t (dt2 TTaT e ) tp// (d fa T )

/ / (tpﬁ + 2ptP lilit +p(p — 1§p‘2)u> dtdt,

p_ (p—1)
// dt (t pTE + pt )dtdt,

p 1P
= [ e = =

The inverse differential operator of (3.96) can be used to solve the general complete

second-order singular nonlinear PDEs.

Applying L;! to both sides of (3.95) we obtain
u(@,t) = f(2) +tg(@) + Ly (F(2, 4, U, Uz, wr)) (3.98)

70



where f(z) + tg(z) appears as the result of initial conditions.

position method, (3.98) can be rewritten as

Using Adomian decom-

Zun(aj, t) = f(x) +tg(z) + L;* (Z An(x,t)> :

The modified decomposition method (MADM1) splits f(z) + tg(z) into two parts,

f(z) is written with ug(z, t) and tg(x) is written with u (z, t) as follows:

/

Uo(l’vt> = f(l’),
ui(z,t) = tg(x) + Ly (Ao(,1)),

Uni1(z,t) = L7t (A1), n > 1.

\

Example 3.3.3. Consider the following second-order initial value problem

d2u+2du+dud2u "
R [ - = €T
dt2  tdt drdz? ’

u(z,0) =0, wu(z,0)=0.

According to (3.96) in an operator form eq. (3.99)
dx da?’

1

Liu=1+z—

Applying the inverse differential operator L;(.) = — [ [+t

Tt
on the PDE (3.100) gives
2 2

u(a:, t) = g + Ex - L;l (Umuaz:p)

Using the (ADM), (3.101) becomes

(3.99)

(3.100)

(.)dtdt. ,define in (3.97)

(3.101)

(3.102)



A,’s are Adomian polynomial of nonlinear term can be expressed as follows
Ao(z,t) = ug), (x, t)ug|,2(x, t) = 0,

Ay (z,t) = uop, (, ) ur),2 (2, ) + ur), (2, O ug, (2, 1) =0,

As(z,t) = uol, (x, )ug, o (2, 1) + wr, (2, )wr),0 (2, ) + uz), (2, ) ug),o (7, ) = 0,

Ap(z,t) =0, n > 3.

The first few component from recursive relation (3.102) are

| Un1(z,1) = LY (Au(z,t) =0,n >3

Therefore, solution of second-order initial-value problem of (3.101) by MDM is as
follows:
2

U(f]’},t) = U’O('Tat) + ul(xat) + cet = E + EI’,

which is the exact solution of the initial-value problem of (3.101), for more example

see [21, 20].

In this thesis, the ADM and some modifications of ADM are successfully applied to
solve many differential equations, we shown that the modified methods are simple,
reliable, efficient and require fewer computations. We proposed an efficient modifi-
cation of the standard ADM for solving singular and non singular partial differential
equations. Furthermore, we made a comparison between some of these modifications
and ADM showed that the accuracy and the rate of convergence of MADM is higher

than standard ADM for many problems.
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