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Dedication

To all those who take the road less traveled by,

it makes all the difference [1].
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Abstract

In the US alone, 20% of citizens will be over the age of 65 by the year 2030, and the

largest challenge facing this growing demographic is not a new disease but a simple

motion - the fall. These events are the premier cause of fatal and nonfatal injuries. In

fact, a fall is so common that every 17 seconds an older adult is treated for fall-related

injuries, and every 30 minutes, an older adult dies from fall complications. Research

has shown a positive outcome of a fall event is largely dependent on the immediate

response (<30 minutes) and rescue of the person.

This work explores the concept of utilizing structural vibrations to detect human

falls for rapid rescue response. A human-induced vibration monitoring system is de-

veloped on the principles of the ideal fall detection system. The system was installed

throughout the William Jennings Bryan Dorn Veteran’s Administration Medical Cen-

ter (VAMC) and a private four person family’s residence to collect real world human-

induced vibrations. Installation resulted in the recording of 16 human falls and 45,000

acceleration events, expanding the database to 220,597 events as of 2016 February

1. This and other information are recorded according to the data management plan

presented within to enable future study of human activity from vibrations.

For a successful fall detection system implementation, the accelerometers need

the ability to discern good signals to reduce the amount of data analyzed. A method

of signal categorization using Support Vector Machines is explored to this end, with

96.8% accuracy over 100 trials. Following signal selection, the ability to detect a fall

regardless of the distance from the event to the accelerometer becomes paramount,

and is overcome with the introduction of the Force Estimation and Event Localization
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(FEEL) Algorithm. The algorithm allows structures to ‘FEEL’ an impact, such as

a fall, boasting 96.4% accuracy in locating the impact in over 3575 impacts of eight

different types, and a 99% confidence interval for being within -2.0% ± 1.3% of

the actual force magnitude. The strength of the algorithm is that it intrinsically

embeds the properties of any structure and does not require time synchronization

of sensors. Since FEEL operates in the frequency domain, an Environments For

Fostering Effective Critical Thinking (EFFECT) active learning module is included

to aid in educating future learners.

vii



Table of Contents

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxviii

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Current State of Fall Detection Technology . . . . . . . . . . . . . . . 3

1.3 What’s Next? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 System Design and Implementation . . . . . . . . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Wireless Accelerometer Validation . . . . . . . . . . . . . . . . . . . . 8

2.3 Installation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Common Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

viii



2.5 Sensor Failure Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Sensor Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Description of Collected Data . . . . . . . . . . . . . . . . . . . . . . 29

2.8 Features of Collected Data . . . . . . . . . . . . . . . . . . . . . . . . 32

2.9 Hospital Reported Human Falls . . . . . . . . . . . . . . . . . . . . . 38

2.10 Real Falls vs Recorded Falls . . . . . . . . . . . . . . . . . . . . . . . 40

2.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapter 3 Data Management For Structural Vibration Mon-
itoring of Human Activity . . . . . . . . . . . . . . . . 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Management Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Database Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 4 Acceleration Event Filtering . . . . . . . . . . . . . . 60

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Acceleration Signal Metrics . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Filtering of Acceleration Signals . . . . . . . . . . . . . . . . . . . . . 69

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 5 The FEEL Algorithm . . . . . . . . . . . . . . . . . . . . 81

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Force Estimation and Event Localization (FEEL) Algorithm . . . . . 81

ix



5.3 Low-Pass Finite Impulse Response Filter Design and Fourier Method
Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Verification Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Implementation Experiments . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Implementation Experiment Resampled . . . . . . . . . . . . . . . . . 126

5.7 Implementation Retest Experiment . . . . . . . . . . . . . . . . . . . 130

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Chapter 6 EFFECT Active Learning Module For The Fre-
quency Domain . . . . . . . . . . . . . . . . . . . . . . . . 135

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2 The EFFECT Pedagogical Framework . . . . . . . . . . . . . . . . . 136

6.3 The EFFECT Developmental Framework . . . . . . . . . . . . . . . . 137

6.4 Concept Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.5 Active Learning Module . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Chapter 7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Appendix A Hospital Reported Falls and Descriptions . . . . . . 164

Appendix B Captured Human Fall Acceleration Records . . . . . 168

B.1 Fall Reported on 2013-06-17 22:00 (ID 16) . . . . . . . . . . . . . . . 168

x



B.2 Fall Reported on 2013-06-20 17:15 (ID 18) . . . . . . . . . . . . . . . 172

B.3 Fall Reported on 2013-06-28 23:20 (ID 20) . . . . . . . . . . . . . . . 173

B.4 Fall Reported on 2013-07-25 18:00 (ID 26) . . . . . . . . . . . . . . . 175

B.5 Fall Reported on 2013-07-30 04:50 (ID 28) . . . . . . . . . . . . . . . 176

B.6 Fall Reported on 2013-08-27 11:00 (ID 32) . . . . . . . . . . . . . . . 177

B.7 Fall Reported on 2013-08-29 14:40 (ID 33) . . . . . . . . . . . . . . . 179

B.8 Fall Reported on 2013-08-31 18:08 (ID 34) . . . . . . . . . . . . . . . 180

B.9 Fall Reported on 2013-09-22 03:05 (ID 35) . . . . . . . . . . . . . . . 182

B.10 Fall Reported on 2013-10-03 12:55 (ID 36) . . . . . . . . . . . . . . . 184

B.11 Fall Reported on 2013-10-22 20:10 (ID 39) . . . . . . . . . . . . . . . 185

B.12 Fall Reported on 2013-10-26 07:30 (ID 41) . . . . . . . . . . . . . . . 186

B.13 Fall Reported on 2013-10-28 23:23 (ID 42) . . . . . . . . . . . . . . . 187

B.14 Fall Reported on 2013-11-25 17:45 (ID 44) . . . . . . . . . . . . . . . 188

B.15 Fall Reported on 2013-12-03 03:55 (ID 46) . . . . . . . . . . . . . . . 190

B.16 Fall Reported on 2013-12-09 04:15 (ID 48) . . . . . . . . . . . . . . . 191

Appendix C Sample Human Activity Database Queries . . . . . . . 193

C.1 Database Table Information . . . . . . . . . . . . . . . . . . . . . . . 193

C.2 Sensor Related Queries . . . . . . . . . . . . . . . . . . . . . . . . . . 193

C.3 System Related Queries . . . . . . . . . . . . . . . . . . . . . . . . . 196

C.4 Acceleration Event Related Queries . . . . . . . . . . . . . . . . . . . 198

Appendix D SVM 3rd Degree Polynomial Kernel Results for
Event Filtering . . . . . . . . . . . . . . . . . . . . . . . 203

xi



Appendix E SVM Sigmoid Kernel Results for Event Filtering . 206

Appendix F Manual Vs. SVM Classified Categories for Recorded
Fall Events . . . . . . . . . . . . . . . . . . . . . . . . . 209

Appendix G Event Localization Method Attempts . . . . . . . . . 212

G.1 Deviation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

G.2 Deviation of Normalized Force Estimates . . . . . . . . . . . . . . . . 215

G.3 Modal Assurance Criterion of Force Estimates . . . . . . . . . . . . . 218

G.4 Time Shift Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

G.5 Residual Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . 225

Appendix H Verification Experiments Additional Results . . . . 229

H.1 Node 3 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

H.2 Node 6 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

H.3 Node 7 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

H.4 Node 10 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

H.5 Node 11 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

H.6 Node 14 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

H.7 Node 15 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Appendix I Implementation Experiment Force Hammer Trial
Additional Results . . . . . . . . . . . . . . . . . . . . . 244

I.1 Location 2 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

I.2 Location 3 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

I.3 Location 4 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

xii



I.4 Location 5 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Appendix J EFFECT Active Learning Module Frequency Do-
main Handout . . . . . . . . . . . . . . . . . . . . . . . . 253

Appendix K EFFECT Active Learning Module Survey . . . . . . . 259

Appendix L EFFECT Survey Responses . . . . . . . . . . . . . . . . 262

L.1 Student A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

L.2 Student B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

L.3 Student C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

L.4 Student D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

L.5 Student E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

L.6 Student F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

L.7 Student G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

L.8 Student H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

L.9 Student I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Appendix M SSH Database Utilities Documentation . . . . . . . . 272

Appendix N FEEL Python Package Documentation . . . . . . . . . 329

xiii



List of Tables

Table 2.1 Sensor Failure Modes . . . . . . . . . . . . . . . . . . . . . . . . . 20

Table 2.2 Reported Falls Vs. Recorded Data Events . . . . . . . . . . . . . . 41

Table 3.1 Acceleration Parameters . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 3.2 Parameters in the System Log Table . . . . . . . . . . . . . . . . . 56

Table 4.1 Signal Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Table 4.2 SVM Linear Kernel Metric Combination Stats (100 Trials) . . . . 71

Table 4.3 SVM RBF Kernel Metric Combination Stats (100 Trials) . . . . . 71

Table 4.4 SVM Linear Kernel Best Training Set for Each Metric Combination 75

Table 4.5 SVM RBF Kernel Best Training Set for Each Metric Combination 75

Table 4.6 SVM Linear Kernel Worst Training Set for Each Metric Combination 75

Table 4.7 SVM RBF Kernel Worst Training Set for Each Metric Combination 76

Table 5.1 Steel Frame Preliminary Trial Force Magnitude Estimate Results . 95

Table 5.2 Steel Frame Trial Using Eight Locations Results Summary . . . . 98

Table 5.3 Implementation Experiment Event Types . . . . . . . . . . . . . . 100

Table 5.4 Confusion Matrix for Locating Hammer Impacts . . . . . . . . . . 104

Table 5.5 Confusion Matrix for Locating Ball-Low Impacts . . . . . . . . . . 108

Table 5.6 Confusion Matrix for Locating Ball-High Impacts . . . . . . . . . . 109

Table 5.7 Confusion Matrix for Locating Bag-Low Impacts . . . . . . . . . . 113

xiv



Table 5.8 Confusion Matrix for Locating Bag-High Impacts . . . . . . . . . . 117

Table 5.9 Confusion Matrix for Locating D-Jump Impacts . . . . . . . . . . 120

Table 5.10 Confusion Matrix for Locating J-Jump Impacts . . . . . . . . . . . 122

Table 5.11 Confusion Matrix for Locating W-Jump Impacts . . . . . . . . . . 125

Table 5.12 Concrete Floor Confusion Matrix for Location Using Data Down-
sampled to 400 Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Table 5.13 Concrete Floor Confusion Matrix for Location Using Data Up-
sampled From 400 Hz to 1651.7 Hz . . . . . . . . . . . . . . . . . . 130

Table 5.14 Concrete Floor Retest Experiment Event Types . . . . . . . . . . 130

Table 5.15 Implementation Retest Confusion Matrix for Location . . . . . . . 132

Table 6.1 Question Statistics for Conducive/Confidence Questions . . . . . . 145

Table A.1 Hospital Reported Fall Events . . . . . . . . . . . . . . . . . . . . 164

Table D.1 SVM 3rd Degree Polynomial Kernel Metric Combination Stats
(100 Trials) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Table D.2 SVM 3rd Degree Polynomial Kernel Best Training Set for Each
Metric Combination . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Table D.3 SVM 3rd Degree Polynomial Kernel Worst Training Set for Each
Metric Combination . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Table E.1 SVM Sigmoid Kernel Metric Combination Stats (100 Trials) . . . . 206

Table E.2 SVM Sigmoid Kernel Best Training Set for Each Metric Combination206

Table E.3 SVM Sigmoid Kernel Worst Training Set for Each Metric Combination207

Table F.1 Recorded Fall Events SVM Classified Categories . . . . . . . . . . 209

xv



Table G.1 Confusion Matrix for Locating Ball-Low Impacts Using The De-
viation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Table G.2 Confusion Matrix for Locating Ball-High Impacts Using The De-
viation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Table G.3 Confusion Matrix for Locating Bag-Low Impacts Using The De-
viation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Table G.4 Confusion Matrix for Locating Bag-High Impacts Using The De-
viation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Table G.5 Confusion Matrix for Locating D-Jump Impacts Using The De-
viation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Table G.6 Confusion Matrix for Locating J-Jump Impacts Using The De-
viation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Table G.7 Confusion Matrix for Locating W-Jump Impacts Using The De-
viation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Table G.8 Confusion Matrix for Locating Ball-Low Impacts Using The De-
viation of Normalized Force Estimates Method . . . . . . . . . . . 216

Table G.9 Confusion Matrix for Locating Ball-High Impacts Using The De-
viation of Normalized Force Estimates Method . . . . . . . . . . . 217

Table G.10 Confusion Matrix for Locating Bag-Low Impacts Using The De-
viation of Normalized Force Estimates Method . . . . . . . . . . . 217

Table G.11 Confusion Matrix for Locating Bag-High Impacts Using The De-
viation of Normalized Force Estimates Method . . . . . . . . . . . 217

Table G.12 Confusion Matrix for Locating D-Jump Impacts Using The De-
viation of Normalized Force Estimates Method . . . . . . . . . . . 218

Table G.13 Confusion Matrix for Locating J-Jump Impacts Using The De-
viation of Normalized Force Estimates Method . . . . . . . . . . . 218

Table G.14 Confusion Matrix for Locating W-Jump Impacts Using The De-
viation of Normalized Force Estimates Method . . . . . . . . . . . 218

Table G.15 Confusion Matrix for Locating Ball-Low Impacts Using The MAC
of Force Estimates Method . . . . . . . . . . . . . . . . . . . . . . 220

xvi



Table G.16 Confusion Matrix for Locating Ball-High Impacts Using The
MAC of Force Estimates Method . . . . . . . . . . . . . . . . . . . 220

Table G.17 Confusion Matrix for Locating Bag-Low Impacts Using The MAC
of Force Estimates Method . . . . . . . . . . . . . . . . . . . . . . 220

Table G.18 Confusion Matrix for Locating Bag-High Impacts Using The
MAC of Force Estimates Method . . . . . . . . . . . . . . . . . . . 221

Table G.19 Confusion Matrix for Locating D-Jump Impacts Using The MAC
of Force Estimates Method . . . . . . . . . . . . . . . . . . . . . . 221

Table G.20 Confusion Matrix for Locating J-Jump Impacts Using The MAC
of Force Estimates Method . . . . . . . . . . . . . . . . . . . . . . 221

Table G.21 Confusion Matrix for Locating W-Jump Impacts Using The MAC
of Force Estimates Method . . . . . . . . . . . . . . . . . . . . . . 222

Table G.22 Confusion Matrix for Locating Ball-Low Impacts Using The Time
Shift Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Table G.23 Confusion Matrix for Locating Ball-High Impacts Using The
Time Shift Method . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Table G.24 Confusion Matrix for Locating Bag-Low Impacts Using The Time
Shift Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Table G.25 Confusion Matrix for Locating Bag-High Impacts Using The
Time Shift Method . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Table G.26 Confusion Matrix for Locating D-Jump Impacts Using The Time
Shift Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Table G.27 Confusion Matrix for Locating J-Jump Impacts Using The Time
Shift Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Table G.28 Confusion Matrix for Locating W-Jump Impacts Using The Time
Shift Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Table G.29 Confusion Matrix for Locating Ball-Low Impacts Using The Resid-
ual Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Table G.30 Confusion Matrix for Locating Ball-High Impacts Using The
Residual Analysis Method . . . . . . . . . . . . . . . . . . . . . . . 226

xvii



Table G.31 Confusion Matrix for Locating Bag-Low Impacts Using The Resid-
ual Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Table G.32 Confusion Matrix for Locating Bag-High Impacts Using The
Residual Analysis Method . . . . . . . . . . . . . . . . . . . . . . . 227

Table G.33 Confusion Matrix for Locating D-Jump Impacts Using The Resid-
ual Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Table G.34 Confusion Matrix for Locating J-Jump Impacts Using The Resid-
ual Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Table G.35 Confusion Matrix for Locating W-Jump Impacts Using The Resid-
ual Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . 228

xviii



List of Figures

Figure 2.1 PCB 33B50 Wired Accelerometer vs Intel Agua Mansa V2.0 . . . 9

Figure 2.2 System Star Network Topography . . . . . . . . . . . . . . . . . . 10

Figure 2.3 Example Signal With Missing Data . . . . . . . . . . . . . . . . . 12

Figure 2.4 Outline of System Database . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.5 System Operational Flow . . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.6 Home Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.7 Typical Patient Room at Hospital . . . . . . . . . . . . . . . . . . 15

Figure 2.8 Accelerometer Rapid Oscillation . . . . . . . . . . . . . . . . . . . 19

Figure 2.9 Accelerometer Spike . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2.10 Sensor Failure Modes in a Hospital Setting for a Total of 46,214
Sensor Hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 2.11 Life Time of Failed Sensors in a Hospital Setting (Out of 100
Sensors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.12 Home Installation’s Active Sensors . . . . . . . . . . . . . . . . . 23

Figure 2.13 Hospital Installation’s Active Sensors . . . . . . . . . . . . . . . . 23

Figure 2.14 QQ Plot for a Weibull Distribution Describing the Failure Rate . 25

Figure 2.15 QQ Plot for a Truncated Normal Distribution Describing the
Failure Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2.16 QQ Plot for a Log-Normal Distribution Describing the Failure Rate 27

Figure 2.17 Weibull Distribution Failure Model Vs. Sensor Failures . . . . . . 28

xix



Figure 2.18 Sensor Failure Rate Bathtub Curve . . . . . . . . . . . . . . . . . 28

Figure 2.19 Home Installation’s Sensor Activations . . . . . . . . . . . . . . . 30

Figure 2.20 Home Installation’s Activity Density . . . . . . . . . . . . . . . . 31

Figure 2.21 Hospital Installation’s Sensor Activations . . . . . . . . . . . . . . 32

Figure 2.22 Hospital Installation’s Activity Density . . . . . . . . . . . . . . . 33

Figure 2.23 Home Installation’s Maximum Amplitude per Record . . . . . . . 34

Figure 2.24 Home Installation’s Signal Energy Per Record . . . . . . . . . . . 35

Figure 2.25 Home Installation’s Maximum Amplitude Vs. Signal Energy . . . 36

Figure 2.26 Hospital Installation’s Maximum Amplitude Per Record . . . . . 37

Figure 2.27 Hospital Installation’s Signal Energy Per Record . . . . . . . . . . 37

Figure 2.28 Hospital Installation’s Maximum Amplitude Vs. Signal Energy . . 38

Figure 2.29 Comparison of Hospital Reported Falls to System Captured Falls 39

Figure 2.30 Visualization of Reported Falls Vs. Captured Falls . . . . . . . . 40

Figure 2.31 Fall Event 2013-06-28 23:23:57 . . . . . . . . . . . . . . . . . . . . 42

Figure 2.32 Fall Event 2013-06-28 23:24:42 . . . . . . . . . . . . . . . . . . . . 43

Figure 2.33 Fall Event 2013-06-28 23:28:42 . . . . . . . . . . . . . . . . . . . . 43

Figure 2.34 Fall Event 2013-08-29 14:48:57 - Sensor Inside Room . . . . . . . 44

Figure 2.35 Fall Event 2013-08-29 14:48:57 - Sensor Outside Room . . . . . . 45

Figure 2.36 Fall Event 2013-11-25 17:33:49 . . . . . . . . . . . . . . . . . . . . 46

Figure 3.1 Enhanced Entity Relationship Diagram for Human Activity Database 52

Figure 4.1 Example of How to Calculate RoD . . . . . . . . . . . . . . . . . 65

Figure 4.2 Example of How to Calculate DR . . . . . . . . . . . . . . . . . . 67

xx



Figure 4.3 Signal Category Examples . . . . . . . . . . . . . . . . . . . . . . 70

Figure 4.4 Score Distribution for Linear Kernel Metric Combinations (100
Trials) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 4.5 Score Distribution for RBF Kernel Metric Combinations (100 Trials) 73

Figure 4.6 Metric Comparison of Manually Categorized Records . . . . . . . 74

Figure 4.7 SVM Linear Kernel Metric Combination Hyperplanes . . . . . . . 76

Figure 4.8 SVM RBF Kernel Metric Combination Hyperplanes . . . . . . . . 77

Figure 4.9 SVM Classified Signal Category Examples . . . . . . . . . . . . . 78

Figure 4.10 Metric Comparison of SVM Classified Records Where DR Was
Used for Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 4.11 Recorded Fall Events Manual Vs. SVM Categories . . . . . . . . . 80

Figure 5.1 FEEL Algorithm Process Diagram . . . . . . . . . . . . . . . . . 82

Figure 5.2 Biased Force Estimate Example . . . . . . . . . . . . . . . . . . . 87

Figure 5.3 Low-Pass FIR Filter Frequency Response . . . . . . . . . . . . . . 88

Figure 5.4 Steel Test Frame Layout . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 5.5 T̂7,j for j From 1 to 3 . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 5.6 T̂10,j for j From 1 to 3 . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 5.7 Force Estimations for an Impact on Node 7 . . . . . . . . . . . . 92

Figure 5.8 Force Estimations for an Impact on Node 10 . . . . . . . . . . . . 93

Figure 5.9 Li for an Impact on Node 7 . . . . . . . . . . . . . . . . . . . . . 94

Figure 5.10 Li for an Impact on Node 10 . . . . . . . . . . . . . . . . . . . . . 94

Figure 5.11 Steel Frame Transfer Functions . . . . . . . . . . . . . . . . . . . 96

Figure 5.12 Force Estimates by Node for an Impact on Node 2 . . . . . . . . 97

xxi



Figure 5.13 Li for an Impact on Node 2 . . . . . . . . . . . . . . . . . . . . . 98

Figure 5.14 Implementation Experimental Layout . . . . . . . . . . . . . . . . 99

Figure 5.15 Implementation Experiment Example Accelerations . . . . . . . . 101

Figure 5.16 Concrete Floor Transfer Functions . . . . . . . . . . . . . . . . . 102

Figure 5.17 Hammer Impact Force Estimations for an Impact on Location 1 . 103

Figure 5.18 Hammer Impact Li for an Impact on Location 1 . . . . . . . . . . 104

Figure 5.19 Hammer Impacts Force Magnitude Estimation Difference . . . . . 105

Figure 5.20 Hammer Impacts Force Magnitude Estimation Error . . . . . . . 105

Figure 5.21 Ball-Low Li for an Impact on Location 1 . . . . . . . . . . . . . . 106

Figure 5.22 Ball-Low Force Estimations for an Impact on Location 1 . . . . . 107

Figure 5.23 Ball-Low Force Magnitude Estimation Histogram . . . . . . . . . 108

Figure 5.24 Ball-High Li for an Impact on Location 1 . . . . . . . . . . . . . . 109

Figure 5.25 Ball-High Force Estimations for an Impact on Location 1 . . . . . 110

Figure 5.26 Ball-High Force Magnitude Estimation Histogram . . . . . . . . . 111

Figure 5.27 Bag-Low Force Estimations for an Impact on Location 2 . . . . . 112

Figure 5.28 Bag-Low Li for an Impact on Location 2 . . . . . . . . . . . . . . 113

Figure 5.29 Bag-Low Force Magnitude Estimation Histogram . . . . . . . . . 114

Figure 5.30 Bag-High Force Estimations for an Impact on Location 5 . . . . . 115

Figure 5.31 Bag-High Li for an Impact on Location 5 . . . . . . . . . . . . . . 116

Figure 5.32 Bag-High Force Magnitude Estimation Histogram . . . . . . . . . 116

Figure 5.33 D-Jump Force Estimations for an Impact on Location 1 . . . . . . 118

Figure 5.34 D-Jump Li for an Impact on Location 1 . . . . . . . . . . . . . . 119

Figure 5.35 D-Jump Force Magnitude Estimation Histogram . . . . . . . . . . 119

xxii



Figure 5.36 J-Jump Li for an Impact on Location 3 . . . . . . . . . . . . . . . 120

Figure 5.37 J-Jump Force Estimations for an Impact on Location 3 . . . . . . 121

Figure 5.38 J-Jump Force Magnitude Estimation Histogram . . . . . . . . . . 122

Figure 5.39 W-Jump Force Estimations for an Impact on Location 4 . . . . . 123

Figure 5.40 W-Jump Li for an Impact on Location 4 . . . . . . . . . . . . . . 124

Figure 5.41 W-Jump Force Estimation Histogram . . . . . . . . . . . . . . . . 125

Figure 5.42 Force Magnitude Estimation Difference for Concrete Floor Im-
pacts Using Data Downsampled to 400 Hz . . . . . . . . . . . . . 127

Figure 5.43 Force Magnitude Estimation Error for Concrete Floor Impacts
Using Data Downsampled to 400 Hz . . . . . . . . . . . . . . . . . 127

Figure 5.44 Force Magnitude Estimation for Concrete Floor Impacts Using
Data Upsampled From 400 Hz to 1651.7 Hz . . . . . . . . . . . . . 129

Figure 5.45 orce Magnitude Estimation Error for Concrete Floor Impacts
Using Data Upsampled From 400 Hz to 1651.7 Hz . . . . . . . . . 129

Figure 5.46 Concrete Floor Retest Experiment Example Accelerations . . . . 131

Figure 5.47 Difference Between Force Magnitude Estimation And Measured
Hammer Force for Implementation Retest Experiment . . . . . . 133

Figure 5.48 Error Between Force Magnitude Estimation And Measured Ham-
mer Force for Implementation Retest Experiment . . . . . . . . . 133

Figure 6.1 EFFECT Pedagogical Structure [49, 50, 51] . . . . . . . . . . . . 138

Figure 6.2 EFFECT Developmental Structure [55] . . . . . . . . . . . . . . . 139

Figure 6.3 Distribution of Responses Broken Down by Students’ Expected
Grade for Question 3 “Indicate How Conducive to Learning The
Following Course Activities Were” . . . . . . . . . . . . . . . . . . 146

Figure 6.4 Distribution of Responses Broken Down by Students’ Expected
Grade for Question 6.a “Did The Lab Visit Make The Connec-
tion Between Math and Physics Easier to Understand?” . . . . . 147

xxiii



Figure 6.5 Distribution of Responses Broken Down by Students’ Expected
Grade for Question 4 “How Confident Do You Feel About The
Following Topics?” . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Figure B.1 Fall Event 2013-06-17 21:57:19 | Sensor D4E1 . . . . . . . . . . . 168

Figure B.2 Fall Event 2013-06-17 21:57:19 | Sensor B3B0 . . . . . . . . . . . 169

Figure B.3 Fall Event 2013-06-17 21:58:54 | Sensor BB46 . . . . . . . . . . . 169

Figure B.4 Fall Event 2013-06-17 21:58:54 | Sensor BB87 . . . . . . . . . . . 170

Figure B.5 Fall Event 2013-06-17 22:03:19 | Sensor BB87 . . . . . . . . . . . 170

Figure B.6 Fall Event 2013-06-17 22:10:07 | Sensor BB87 . . . . . . . . . . . 171

Figure B.7 Fall Event 2013-06-20 17:14:23 | Sensor D4E1 . . . . . . . . . . . 172

Figure B.8 Fall Event 2013-06-20 17:14:23 | Sensor BB46 . . . . . . . . . . . 172

Figure B.9 Fall Event 2013-06-28 23:23:57 | Sensor 8D2C . . . . . . . . . . . 173

Figure B.10 Fall Event 2013-06-28 23:24:42 | Sensor 8D2C . . . . . . . . . . . 173

Figure B.11 Fall Event 2013-06-28 23:28:42 | Sensor 8D2C . . . . . . . . . . . 174

Figure B.12 Fall Event 2013-06-28 23:30:38 | Sensor 8D2C . . . . . . . . . . . 174

Figure B.13 Fall Event 2013-07-25 17:49:29 | Sensor B3A1 . . . . . . . . . . . 175

Figure B.14 Fall Event 2013-07-25 17:49:29 | Sensor BB7E . . . . . . . . . . . 175

Figure B.15 Fall Event 2013-07-30 04:45:49 | Sensor BB48 . . . . . . . . . . . 176

Figure B.16 Fall Event 2013-08-27 10:58:35 | Sensor BB48 . . . . . . . . . . . 177

Figure B.17 Fall Event 2013-08-27 10:58:35 | Sensor E0A8 . . . . . . . . . . . 177

Figure B.18 Fall Event 2013-08-27 10:58:35 | Sensor E7EC . . . . . . . . . . . 178

Figure B.19 Fall Event 2013-08-27 10:58:35 | Sensor 3496 . . . . . . . . . . . . 178

Figure B.20 Fall Event 2013-08-29 14:48:57 | Sensor E7DB . . . . . . . . . . . 179

xxiv



Figure B.21 Fall Event 2013-08-29 14:48:57 | Sensor 3493 . . . . . . . . . . . . 179

Figure B.22 Fall Event 2013-08-31 18:07:07 | Sensor B3A5 . . . . . . . . . . . 180

Figure B.23 Fall Event 2013-08-31 18:07:07 | Sensor E7DB . . . . . . . . . . . 180

Figure B.24 Fall Event 2013-08-31 18:07:07 | Sensor 8D2C . . . . . . . . . . . 181

Figure B.25 Fall Event 2013-09-22 02:45:21 | Sensor C7AE . . . . . . . . . . . 182

Figure B.26 Fall Event 2013-09-22 02:45:21 | Sensor DC67 . . . . . . . . . . . 182

Figure B.27 Fall Event 2013-09-22 02:45:21 | Sensor 2E73 . . . . . . . . . . . . 183

Figure B.28 Fall Event 2013-10-03 12:34:31 | Sensor B3A5 . . . . . . . . . . . 184

Figure B.29 Fall Event 2013-10-22 20:02:20 | Sensor E7EC . . . . . . . . . . . 185

Figure B.30 Fall Event 2013-10-26 07:34:28 | Sensor E7EC . . . . . . . . . . . 186

Figure B.31 Fall Event 2013-10-28 23:25:33 | Sensor E0A8 . . . . . . . . . . . 187

Figure B.32 Fall Event 2013-11-25 17:33:49 | Sensor B3A5 . . . . . . . . . . . 188

Figure B.33 Fall Event 2013-11-25 17:33:49 | Sensor BB7C . . . . . . . . . . . 188

Figure B.34 Fall Event 2013-11-25 17:33:49 | Sensor 3087 . . . . . . . . . . . . 189

Figure B.35 Fall Event 2013-11-25 17:33:49 | Sensor 3493 . . . . . . . . . . . . 189

Figure B.36 Fall Event 2013-12-03 03:47:22 | Sensor B3A5 . . . . . . . . . . . 190

Figure B.37 Fall Event 2013-12-09 04:59:04 | Sensor B3A5 . . . . . . . . . . . 191

Figure B.38 Fall Event 2013-12-09 04:59:04 | Sensor BB45 . . . . . . . . . . . 191

Figure B.39 Fall Event 2013-12-09 04:59:04 | Sensor 8D2C . . . . . . . . . . . 192

Figure B.40 Fall Event 2013-12-09 04:59:04 | Sensor 8F1E . . . . . . . . . . . 192

Figure D.1 SVM 3rd Degree Polynomial Kernel Metric Combination Hy-
perplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

xxv



Figure D.2 Score Distribution for 3rd Degree Polynomial Kernel Metric
Combinations (100 Trials) . . . . . . . . . . . . . . . . . . . . . . 205

Figure E.1 Score Distribution for Sigmoid Kernel Metric Combinations (100
Trials) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Figure H.1 Force Estimates by Node for an Impact on Node 3 . . . . . . . . 231

Figure H.2 Li for an Impact on Node 3 . . . . . . . . . . . . . . . . . . . . . 231

Figure H.3 Force Estimates by Node for an Impact on Node 6 . . . . . . . . 233

Figure H.4 Li for an Impact on Node 6 . . . . . . . . . . . . . . . . . . . . . 233

Figure H.5 Force Estimates by Node for an Impact on Node 7 . . . . . . . . 235

Figure H.6 Li for an Impact on Node 7 . . . . . . . . . . . . . . . . . . . . . 235

Figure H.7 Force Estimates by Node for an Impact on Node 10 . . . . . . . . 237

Figure H.8 Li for an Impact on Node 10 . . . . . . . . . . . . . . . . . . . . . 237

Figure H.9 Force Estimates by Node for an Impact on Node 11 . . . . . . . . 239

Figure H.10 Li for an Impact on Node 11 . . . . . . . . . . . . . . . . . . . . . 239

Figure H.11 Force Estimates By Node for An Impact On Node 14 . . . . . . . 241

Figure H.12 Li for an Impact on Node 14 . . . . . . . . . . . . . . . . . . . . . 241

Figure H.13 Force Estimates by Node for an Impact on Node 15 . . . . . . . . 243

Figure H.14 Li for an Impact on Node 15 . . . . . . . . . . . . . . . . . . . . . 243

Figure I.1 Hammer Impact Force Estimations for an Impact on Location 2 . 245

Figure I.2 Hammer Impact Li for an Impact on Location 2 . . . . . . . . . . 246

Figure I.3 Hammer on Location 2 Accelerations . . . . . . . . . . . . . . . . 246

Figure I.4 Hammer Impact Force Estimations for an Impact on Location 3 . 247

xxvi



Figure I.5 Hammer Impact Li for an Impact on Location 3 . . . . . . . . . . 248

Figure I.6 Hammer on Location 3 Accelerations . . . . . . . . . . . . . . . . 248

Figure I.7 Hammer Impact Force Estimations for an Impact on Location 4 . 249

Figure I.8 Hammer Impact Li for an Impact on Location 4 . . . . . . . . . . 250

Figure I.9 Hammer on Location 4 Accelerations . . . . . . . . . . . . . . . . 250

Figure I.10 Hammer Impact Force Estimations for an Impact on Location 5 . 251

Figure I.11 Hammer Impact Li for an Impact on Location 5 . . . . . . . . . . 252

Figure I.12 Hammer on Location 5 Accelerations . . . . . . . . . . . . . . . . 252

xxvii



List of Symbols

Amax maximum value of amplitude present in a signal

Es signal energy in a signal processing sense

FSnew new sampling rate

FSold original sampling rate

∆ (accelerometer unit conversion) offset value;

(RoD) window shift

∆t signal delay time

Γ raw 1 g value for the sensor axis

Γ−1 the last calculated raw 1 g value for the sensor axis

αi regularization parameter in the range of 0 ≤ αi ≤C

γ (SVM) shape parameter;

(Weibull distribution) scale parameter

F̂ force magnitude estimation for an acceleration event

F̂i,j force magnitude estimation for the i-th location and j-sensor

L̂ coefficient which indicates the impact’s location

λ failure rate[
F̂i,j

]
matrix containing force estimations for the i-th locations and j-

sensors

Pxx(f) power spectral density of x

Pxy(f) power spectral density of x to y

Pyx(f) power spectral density of y to x

Pyy(f) power spectral density of y

T̂(f) transfer function estimate

xxviii



µ mean

ρ independent intercept parameter

ρnan density of NaN present in a signal

ρxy Pearson product-moment correlation coefficient

σ standard deviation

σ‡ vector of standard deviations

τ offset integer

τF̂i,j
data point in the signal of the peak in the force estimate

τF̂i,j
data point in the signal of the peak in the force estimate

{Li} vector of location coefficients

{F̂i,j} force estimation vector for the i-th location and j-sensor

no number of overlapping points per window

ns number of points present in a signal

nw number of points per window

nnan number of NaN present in a signal

x′ training data

yi vector of the form y ∈ {−1, 1}n

yi,g i-th accelerometer value in units of gravity

yi,raw i-th raw value (i.e. before conversion to gravity units) read from the

accelerometer

C (accelerometer unit conversion) scale value for an accelerometer axis;

(SVM) penalty parameter

D signal sorted in descending order

d signal delay

f number of failures

xxix



i (FEEL) location;

(MADr) index of signal;

(RoD) point in acceleration signal

j (FEEL) sensor;

(RoD) window adjusting integer

K support vector machine kernel function

k (Weibull distribution) shape parameter;

(deviation method) point in
[
F̂i,j

]
being compared

N number of coefficients in the filter

n (event localization) number of points in window;

(signal energy) last time step;

(SVM) number of points of x

S detrended acceleration signal

T sensor acceleration trigger threshold

t (log-normal distribution) time value of interest;

(normal distribution) time value of interest;

(reliability) time period that failures f occurred in;

(signal processing) time;

(Weibull distribution) time value of interest

x (SVM) testing data or data to be classified;

(FEEL) force input

y acceleration output

xxx



List of Abbreviations

ABET . . . . . . . . . . . . . . . . . . . . . . . Accreditation Board for Engineering and Technology

ASCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . American Society of Civil Engineers

COV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Covariance

DAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Acquisition System

DOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drawn Over Mandrel

DR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dispersion Ratio

EFFECT. . . . . . . . . . . . . . . . . .Environments For Fostering Effective Critical Thinking

FEEL . . . . . . . . . . . . . . . . . . . . . . . . Force Estimation and Event Localization Algorithm

FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fast Fourier Transform

FIR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Finite Impulse Response

IFFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inverse Fast Fourier Transform

LAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Local Area Network

MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Modal Assurance Criterion

MAC Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Media Access Control Address

MAD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Maximum Amplitude Difference

MADr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Maximum Amplitude Difference Ratio

MTBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mean Time Between Failure

xxxi



MTTF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mean Time To Failure

MULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mobile Ubiquitous LAN Extension

NaN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Not a Number

PC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Personal Computer

PH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Palmetto Health Hospital

QQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Quantile-Quantile

RBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Radial Basis Function

RoD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rate of Dispersion

SDII . . . . . . . . . . . . . . . Structural Dynamics and Intelligent Infrastructure Laboratory

SDOF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Single Degree of Freedom

SVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Support Vector Machine

UDP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .User Datagram Protocol

US . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . United States of America

USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal Serial Bus

USC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . University of South Carolina

VAMC. . . .William Jennings Bryan Dorn Veteran’s Administration Medical Center

xxxii



Chapter 1

Introduction

1.1 Motivation

In the US alone, 20% of citizens will be over the age of 65 by the year 2030 [2]; the

largest challenge facing this growing demographic is not a new disease but a simple

motion - the fall. These events are the premier cause of fatal and nonfatal injuries

[2, 3, 4], and hospital trauma admissions among older adults [2]. They affect one in

three age 65+ every year [2, 4] and over half of those age 80+ [4]. In fact, a fall is so

common that every 17 seconds an older adult is treated for fall-related injuries, and

every 30 minutes, an older adult dies from fall complications [3].

This accounts for “25% of all hospital admissions and 40% of all nursing home

admissions” [4]. Of the population admitted, “40% [...] do not return to independent

living [and] 25% die within a year” [4]. That means 65% of those experiencing a fall

cannot return to their previous quality of independent living.

Costs stemming from falls are high. Direct medical costs “adjusted for inflation,

were $30 billion” in 2012 with an expected increase of annual direct and indirect costs

to $67.7 billion (in 2012 dollars) by the year 2020 [3].

The expense does not stop there but further continues to the health impact on

the person who fell. Moderate to severe injuries can result from an incident. These

include “lacerations, hip fractures, and head traumas” which “can make it hard to

get around or live independently, and increase the risk of early death” [2].

Even though only 20-30% of falls result in moderate to severe injuries [2], “a
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large percentage of non-injured fallers (47%) cannot get up without assistance” [4].

The time spent immobile directly affects the person’s health outcome. Within 30-

60 minutes of compression from a fall, muscle cells begin to breakdown potentially

resulting in dehydration, pressure sores, hypothermia, and pneumonia [4].

Thus, the outcome of a fall becomes dependent upon the immediate response and

rescue of those immobile persons [5, 6]. Help after an immobilizing fall increases

survival rates by 80% and the probability for the person to return to independent

living [4]. If one could largely reduce response time, more older adults could return to

their residences in a healthy state rather than sacrifice their individual independence.

Rapid response would decrease the medical costs associated with falls, along with the

amount of nursing home admissions, and more importantly, the amount of fatalities

due to falls.

Those who fall can develop a fear of falling, even if no injuries were sustained.

The person may be driven by this fear to limit their activity. Risk of falling conse-

quently increases because of the person’s reduced mobility and physical fitness [2, 3].

Several health problems are associated with impaired mobility “including depression,

cardiovascular disease, cancer, and injuries secondary to falls and automobile crashes”

[2]. Fear can tug at the person’s mind, causing “feelings of helplessness and social

isolation” to further complicate one’s health state [3].

Combating falls is harder than prevention techniques alone. Restraints have been

used to restrict a patient’s movements in an effort to reduce the chance of falling.

However, forcefully limiting movement has a similar outcome as the patient voluntar-

ily limiting his activity due to fear. It does not work. Muscles weaken and physical

function declines which increases the falling risk rather than reduce it [3]. Prevention

must be done in ways that do not restrict mobility, but the chance of falling remains

because every movement has that potential implicitly.
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1.2 Current State of Fall Detection Technology

The ever present fall risk directs development towards methods other than pre-

vention. Commercial solutions utilizing worn pendants, like Life Alert, remove the

need to be near a phone to call for aid after a fall event. Effectiveness of the system

shows when a Life Alert member goes to a retirement home, members go “six years

later than an equivalent aged senior” [7]. The system also impacts mental health as

87% of Life Alert users say the protection provided is a main or important factor in

the decision to stay at home [7]. However, the system is still limited because of user

dependence. Users need to be conscious to press the pendant and need to be wearing

the pendant in the first place.

Computer vision techniques with machine learning have been used successfully to

92% accuracy when using simulated falls by able-bodied participants in home envi-

ronments [8]. Visual techniques are computationally intensive and intrusive, bringing

concerns of processing power and user privacy. The machine-learning component

when applied to human activity (i.e. a person’s normal schedule) has the possibility

to predict a fall and could be used as part of a preemptive measure.

An alternative to using cameras is to use infrared technology which is somewhat

less privacy-intrusive [9]. However, household residents’ perception is one of “being

watched” so the privacy concern persists [5]. The system utilized was based on user

activity and was only 35.7% successful in detection [9]. They described falls that

required aid as those where the observed was inactive. Challenges arise as aid may

be required in situations where the observed is not completely inactive. For instance,

one can break a hip and crawl across the floor in an effort to get to a phone, but in

the end the phone is out of reach because the person cannot get up to reach it. The

observed in this case needs medical assistance, but by the concept presented, this

person would not receive aid.

Worn accelerometers have been suggested as a good way to differentiate between
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human activities. Rybina et al correctly identified hopping, jumping, and skipping in

all cases, running and balancing in 11 out of 12 cases using the Time Domain Correla-

tion Coefficient in a laboratory setting [10]. Other research suggests the method used

has a medium/high uncertainty without time synchronization, making it not ideal

for fall detection [11]. Another worn accelerometer method using a Hidden Markov

Model successfully detected 68 of 74 human falls in laboratory testing [12]. While

privacy issues dissipate using acceleration data, other challenges arise from wearing

devices. The assumption that the device remains in a fixed position to the wearer

does not fully account for devices moving around during human activities. More

importantly, compliance issues abound as “patients have low will to wear devices

for detecting falls because they feel well before a fall occurs” or consider the device

intrusive [6].

The previous directs research towards a less intrusive solution. Floor vibrations

have been previously proposed as a way to detect falls, and dummies were used for

laboratory testing of the algorithms [5, 13]. One team developed and patented a

special device for use in fall detection [5]. However, little information is publicly

available to determine the effectiveness of this device.

Techniques presented by Zigel et al added microphones as an additional input

to recognize a fall [13]. However, energy methods were employed, which presents

challenges if the event is near or far from a sensor. Different transient wave forms

can produce the same amount of energy and lead to incorrect identification or missed

events. Damping ratios are often assumed by the spectrum employed by Zigel et al,

opening the possibility of further error as the characteristics of the structure are not

fully realized [14].
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1.3 What’s Next?

The author seeks to overcome the challenges of other methods towards the ideal

human-induced vibration monitoring system. We begin this journey by describing

what the ideal system would be:

(1) user-independent to remove the need for any specific user information or user
input;

(2) environmentally-based, removing the need for the user to wear any devices and
the challenges associated with worn devices;

(3) able to operate on devices that are naturally unobtrusive;

(4) privacy respecting;

(5) inexpensive to operate and maintain, both monetarily and computationally;

(6) and adaptive to any environment (e.g. registers event regardless of distance
from event to sensor).

This ideal can be extended when one looks at human fall detection from the angle

of structural vibrations for a potential product implementation. The system should

additionally seek to:

(1) not require modifications to the structure;

(2) not require modifications to the electrical network of the buildings;

(3) not interfere with normal network operation in the building;

(4) and easy to install.

The natural sensor choice for the ideal system is a wireless smart accelerometer.

These sensors are small and can be easily attached anywhere on a structure, allowing

them to be unobtrusive whilst monitoring the environment of the user. They are

typically inexpensive to operate and maintain (e.g. smart phones often come equipped

with an accelerometer), and can perform some analytics on their own. No structural

or electrical modifications of the building are needed.
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This work utilizes wireless accelerometers to design and implement a human-

induced vibration monitoring system towards the end goal of developing the ideal

human fall detection system. Systems are installed in two different real world en-

vironments - a hospital and a private family residence - resulting in the capture of

several fall events. The information is cared for according to a data management

plan based with a relational database design to provide flexibility for the future as

research progresses.

A human fall detection system using structural vibrations would require the ability

for the system to sort good from bad signals, ideally on the sensor level. Signal se-

lection as a preprocessing operation, reduces the amount of information for detection

algorithms to work through making the system as a whole more efficient. Methods

for using machine learning through Support Vector Machine (SVM) with new signal

metrics are developed to enable individual sensors to decide signal quality.

The challenge after initial signal selection thus becomes detecting an impact from

a human fall. Acceleration amplitudes the sensor experiences will vary based on the

distance between a sensor and an impact. Thus any algorithm for fall detection based

in vibrations has to overcome distance to be effective, and ideally would not require

time synchronization or estimate structural properties whilst doing so. This led to

the development of the Force Estimation and Event Localization Algorithm (FEEL)

which accomplishes all those goals and is additionally designed to scale with any

number of sensors, which increases the robustness of the system.

FEEL utilizes the frequency domain as part of relating accelerations to a force and

location. The concept of frequency domain can be hard to grasp, leading the author

to include an education module for teaching the concept. The Environments For

Fostering Effective Critical Thinking (EFFECT) framework was chosen for creating

the module due to the focus on critical thinking and increasing knowledge transfer,

whilst encouraging the student to improve other beneficial professional skills.
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Chapter 2

System Design and Implementation

2.1 Introduction

A robust, automated system must be designed for deployment in the real world

in order to learn more about human activity through vibrations. The system should

emulate the ideals for a human fall detection system as outlined in Section 1.3, so that

the system may operate in diverse environments. In a hospital environment like that

of William Jennings Bryan Dorn Veteran’s Administration Medical Center (VAMC),

the additional implementation requirements of the system are very important due to

the nature of hospital equipment. The VAMC has numerous networks running and

machines operating on various frequency bands that a monitoring system, not being

aware of this fact, could interfere with and affect the normal health care operations

of the hospital. For the case of private residences, an owner would not necessarily

want to alter his home nor have installation personnel spending a large amount of

time interrupting his day.

Initial research into a system was conducted by Davis et al [15], and is where the

ultimate system design draws its basis. Various network configurations employing

wireless accelerometers were explored, ultimately resulting in an adaptive network

that allows the capturing of human-induced vibrations within the bounds of the ideal

system. This work puts forth a standard for all human activity monitoring systems

that has been vetted through installations at both VAMC and a private residence.

The goal for developing this system focused on capturing real world fall events
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through structural vibrations, with many human falls being captured during the

study period. Several fall events are showcased with discussion relating what is seen

in the acceleration plots to that of the reported incidents’ descriptions, showing the

possibility of fall detection through structural vibrations. In addition, the author

explores features of the signals and vibration activity trends that closely match the

general schedule of the people at each installation location which can lead to broader

human activity monitoring for other health care applications.

2.2 Wireless Accelerometer Validation

Before any system was installed, the wireless accelerometer on the Intel Agua

Mansa V2.0 sensor board needed to be validated as operating to the wired accelerom-

eter standard. The two accelerometers were sitting side by side on a steel frame table,

where a tennis ball was dropped and allowed to come to rest on the table. A NI-9234

DAQ operated a PCB Piezotronics 333B50 accelerometer with 1019 mV/g collecting

data at 1651.7 Hz for the wired accelerometer standard. Data was collected for both

accelerometers simultaneously as the ball bounced on the table. Time vectors were

generated for each signal with the Agua Mansa’s time vector being adjusted until a

match was obtained between the two signals. The Agua Mansa accelerometer was

found to be operating at approximately 316 Hz and matching the wired accelerome-

ter very well as seen in Figure 2.1. Differences in amplitude are due to the sensors

having two different sampling rates, which causes the sensors to see different parts of

the waveform.

The experiment was repeated using another Agua Mansa sensor, with the results

being the same as the first trial. Thus the remainder of the sensors are considered to

be operating at the same rate.
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Figure 2.1: PCB 33B50 Wired Accelerometer vs Intel Agua Mansa
V2.0

2.3 Installation Details

2.3.1 System

The systems utilized the proposed star network sensing framework with a multi-

agent system architecture outlined by Davis et al [15]. The Intel Camp Hill V2.1

processor/radio board in conjunction with the Intel Agua Mansa V2.0 sensor board

were employed as the leaf nodes. A multi-agent system architecture was employed

allowing each sensor to respond individually to its environment, which in turn aids

in reducing false-positives that an interesting event occurred. For example, a sensor

located near a household appliance such as a dishwasher would experience lots of

vibrations due to the machine’s operation. That sensor would have to adjust its

beliefs as to what is normal, with this normal being different from that of a sensor

that is in a comparatively quiet vibration zone. If both sensors operated under the

same beliefs, then every time the dishwasher was operated, the sensor would be telling
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the base station that an interesting event occurred when all it really was is noise

generated by a machine. Accelerometers on board the Agua Mansa had a resolution

of 4000 pts/g and a range of ±2 g. Data was sampled at 316 Hz with 12.7 s windows

(∼6.35 s of data before and after the event). The large window was chosen in an

attempt to capture what happened leading up to an event and motions following.

Master
Node

Leaf
Node

Leaf
Node

Leaf
Node

Leaf
Node

Leaf
Node

Figure 2.2: System Star Network Topogra-
phy

Calibration of the wireless sensors was performed in accordance with a static

technique from the University of Illinois at Urbana-Champaign [16]. The scale value

C for each accelerometer axis is the difference between the 0 g reading and 1 g reading

on each respective axis, and the offset value ∆ is simply the 0 g reading for the axis.

Values reported by the accelerometer would be converted into units of gravity

before being saved into the sensor’s buffer. This calculation was performed using

Equation 2.1 where yi,g is the i-th acceleration value in gravity units, yi,raw is the i-th

raw value (i.e. before conversion to gravity units) read from the accelerometer, ∆ is

the offset value for the axis, and C is the scale value for the axis. The offset and scale

values are determined from static calibration for the accelerometer axis where yi,raw

was read [16].
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yi,g = yi,raw − ∆
C

(2.1)

A threshold level of ±50 pts (typically 0.0125 g) served to indicate a vibration

event of note (threshold choice discussed more in Section 2.4). The system is triggered

if the condition presented in Equation 2.2 where Γ is the raw 1 g value for the sensor

axis, yi,raw is the current (or i-th) raw value read from the accelerometer on the axis,

and T is the threshold for the axis.

|Γ − yi,raw| ≥ T (2.2)

The value of Γ for each sensor axis changes depending on the orientation of the

sensor. Initially, Γ is determined by filling up the sensor’s buffer once under “at rest”

conditions, and then taking the average of those values. Each time a new value is

read from the accelerometer, Γ updates using a version of a running average seen in

Equation 2.3 where Γ raw 1 g value for the sensor axis, Γ−1 is the last calculated raw

1 g value for the sensor axis, and yi,raw is the i-th raw value (i.e. before conversion to

gravity units) read from the accelerometer.

Γ = Γ−1 · yi,raw

2 (2.3)

Each leaf node streamed data over an User Datagram Protocol (UDP) wireless

local area network connection provided by the base station computer where all pro-

cessing was handled, including buffering, triggering, and local storage. UDP con-

nections, by its nature, sometimes lose data when communicating between entities

leaving gaps in the signal (see Figure 2.3). The platform combats this by adding in

synchronization packages that allow for tracking how many data points should have

been seen, that way the unreliable nature of UDP connections can be overcome.

11



0 2 4 6 8 10 12
Time (s)

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

Ac
ce

ler
at

io
n

(g
)

Figure 2.3: Example Signal With Missing Data

Base station roles of the wireless network were fulfilled by Asus Eee PCs running

Windows 7 and secured by TrueCrypt encryption software. A custom application

developed in PHP Script served to control communication with the sensors, record

signal data, and system operational data. A local MySQL database stored all data;

an outline is presented in Figure 2.4.

The home installation provided an Internet connection allowing the remote send-

ing of collected acceleration data to a centralized server at the University of South

Carolina (USC). In the hospital installation, Internet access was not permitted to the

systems, thus, a Data Mobile Ubiquitous LAN Extension (MULE) was employed to

ferry data from the hospital and back to the USC server [17]. The Data MULE was an

Asus Eee PC running Windows 7 and would use data retrieval software to download

information stored on the Base Station laptops in the hospital. Manual data retrieval

occurred every two weeks. Data would then be transfered to the main servers and

stored in aggregate with all other systems. Figure 2.5 shows the operational flow.
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2.3.2 Home Environment

The home installation occurred on the first story of a two story wood-framed

house located in Columbia, South Carolina. A family of four resided there, including

two identical twin toddlers 2.5 years of age. Sensors were installed in the living room

of the home, a location chosen for its high human activity. Sensors were attached to

hardwood floors using double-sided duct tape. Figure 2.6 provides a diagram of the

home installation.
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Figure 2.6: Home Layout

2.3.3 Hospital Environment

Systems were installed on the fourth floor of the hospital whose flooring was

vinyl layered on top of reinforced concrete. The particular wing monitored contained
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20 patient rooms with two beds per room. They centered around a nurses’ island

containing offices, staging areas, and four nurse stations. Sensors were placed out of

site when possible, with two per room attached with double-sided duct tape. Base

Stations were placed in equipment closets and locked to high metal shelving. Each

base station served six to eight leaf node sensors. Figure 2.7 shows a diagram of a

typical patient room in the hospital.
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Figure 2.7: Typical Patient
Room at Hospital

The hospital wing typically admitted patients who were generally at risk of falling,

allowing the systems the best possible chance to catch a fall event. Visitors were

permitted between the hours of 8:00 am and 8:30 pm. Hospital personnel moved

through daily with 10-20 Medical Doctors, 3-4 Therapists, 1-2 Pharmacists, 2-3 Social

Workers, 1-2 Dieticians, and 2 Food Service Staff. In addition, nurses worked 3
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shifts/day with about 4 nurses per shift. Numerous patients rotate through as well.

This brings a lot of variability to the system and challenges in deployment discussed

in Section 2.4.1.

2.4 Common Challenges

The challenges faced by the floor monitoring system have the potential to be very

complex as the research not only looks at the structure vibrations itself but aims at

inferring the activities that people perform as they interact with their environment

and those objects in it. These challenges are augmented when the sensors are in-

stalled in a hospital setting where patients and visitors can directly interact with the

system. The challenges of having a successful monitoring system are discussed in

three categories: (1) Environment, focusing on installed location; and (2) Hardware

focusing on the sensing system itself.

2.4.1 Environment Challenges

One of the first challenges phased during sensor installation was the limitation of

which outlets were available for use. This limited the location of the sensors as the

cables for power were kept to a minimal distance. Spare outlets out of the way, say

behind a bed, were few. Sensors were not permitted in particular outlets because

they were for emergency power, medical equipment, etc. This left mostly outlet

that were in the open or in a hallway where a higher probability of tampering exists

because of the visibility of the phone chargers used to power the sensors. Sensors

in these areas could also be accidentally hit when a hospital bed is wheeled out of a

room or someone thinks the power source is a complementary charger provided by

the hospital and attempt to use it. Many of the sensors experiencing the USB Port

Detached failure mode discussed in Section 2.5 were found in unprotected areas (e.g.

hallway). When the sensors were hidden, people had more of a ‘out of sight, out of
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mind’ mentality as they did not know the sensors or their chargers existed.

The user interaction with the sensors changed when sensors were installed in

patients’ homes. Each patient was advised to not touch the equipment. There were

zero USB Port Detached failure modes in patient homes even when sensors were

easily visible. In comparison, only hospital staff (e.g. nurses) were informed about

the system equipment in the hospital setting. Movement of patients through the

hospital is variable, and sometimes rapid, making informing each individual patient

impractical for the research team. The conclusion drawn is that equipment used in

a hospital setting needs to look foreign enough to patients that they do not tamper

with it, or at the very least, all equipment needs to be well hidden out of the view of

patients and visitors.

Another challenge was the low amount of vibrations transfered through the rein-

forced concrete flooring present in the hospital. The floors design of hospitals tend to

be stricter on the amount of vibration allowed because of potentially sensitive med-

ical instruments and patient comfort [18]. Hence, each patient room needed several

sensors and a lower threshold level to adequately detect signals.

2.4.2 Hardware Challenges

The use of a star network as outlined in [15], provides challenges due to the

operation of a base station in the form of a laptop. Restrictions placed by the hospital

removed the possibility of sending data through the Internet to a centralized server.

Thus, a laptop was required to collect and store data from the wireless sensors. The

limited laptop WiFi range increased the number of laptops required to cover the entire

hospital wing to six. This becomes one more item, and a very vital data collection

piece, to keep functional; something that can be removed with access to hospital

WiFi.

The maintenance of the laptop meant monitoring battery health (to keep system
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running when electricity goes out) and cleaning out dust accumulation. In addition,

the computers needed to be hidden to prevent tampering, locked down to prevent

theft, and thoroughly encrypted to protect the data according to the hospital’s reg-

ulations. These devices were undisturbed to the best of our knowledge due to the

proactive stance taken to secure the equipment.

The sensors themselves experienced significant failures over their operating life

span. Failures include wireless communication errors and accelerometer reading fail-

ures with the Mean Time To Failure (MTTF) of the sensors being approximately 170

days. These failures are most likely because the type of sensors used are prototypes

for research purposes and not a commercial standard. The reliability of the sensors

can be improved when using industrial level sensors. More on this is discussed in

Section 2.5.

Various operational errors of the sensors lead to false-positives as readings crossed

the threshold level. Some sensors reported extremely rapid oscillations to the maxi-

mum swing level of the hardware as depicted in Figure 2.8. These were certainly not

generated by any human activity as the cycling rate is extremely high.

Accelerometers were sometimes over-clocked or malfunctioned to produce a single

high value point reading that would trigger the system. Figure 2.9 displays the error.

The plot shows that the trigger could not have been caused by human activity as

there is no oscillation around zero which would be expected from a floor excitation.

2.5 Sensor Failure Modes

The Camp Hill and Agua Mansa boards experienced several different modes of

failure during the life of this study, both physical hardware damage and software

issues. Failure modes are presented in order of most common to least for each board

in Table 2.1. The sensors installed in a hospital setting mainly experienced the USB

Port Detached and the Network Failure modes.
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Figure 2.8: Accelerometer Rapid Oscillation
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Figure 2.9: Accelerometer Spike
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Table 2.1: Sensor Failure Modes

Type Description
C

am
p

H
ill

USB Port Detached The USB port is ripped off the Camp Hill board

Network Failure Camp Hill does not connect to host or drops from
network to never rejoin

Serial Port
Communication
Failure

Unable to communicate with the processor board
using the serial port which prevents programming
of the board

Data Transmission
Failure

The Camp Hill connects to the host but does not
transmit data

A
gu

a
M

an
sa Accelerometer

Reading Failure
The Agua Mansa is not sending acceleration
signals for the Camp Hill to read

As seen in Figure 2.10, there were numerous compliance issues resulting in the

physical damaging of the sensors. USB wall chargers were adapted for use to power

the sensors on location; however, some patients did not abide by the warning labels

and attempted to unplug the sensors so that they could use the charger for their

phone or other device. The result was the detachment of the USB port used to power

the sensor.

The second ranked mode, Network Failure, and the last ranked mode, Data Trans-

mission Failure, are due to issues in the WiFly chip or software on the Camp Hill

boards. Additionally, there may be some signals operating in the same band as the

Camp Hill causing the network communication issues. Cell phones and medical de-

vices in the hospital were checked to remove the possibility of interference but with

the constant influx of patients, anyone could have brought in a device that interfered.

A Serial Port Communication Failure arises during the preparation of the sensor

for deployment and is an expected defect of the microprocessor. The Accelerometer

Reading Failure develops from manufacturing defects or the degradation of the Agua

Mansa board.
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Figure 2.10: Sensor Failure Modes in a Hospital Setting for a Total
of 46,214 Sensor Hours

Instrumentation in private rooms showed signs of higher compliance noted in a

large reduction in the USB Port Detached mode due to the education of the residents

whereas in a hospital setting, every new patient would need to be informed about

the system. This presented quite a challenge. Software failures were more common

in private rooms suggesting the sensors degraded over their lifespan rather than were

destroyed due to patient compliance.

Another interesting result is the life time of the sensors in the failure modes tended

largely to remain under 100 days of operation as seen in Figure 2.11. Patient stays in

the hospital are often not very long. Hence, the USB Port Detached failure mode is

more likely to occur because the high turnover rate and the impracticality to inform

each patient about the system.
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Figure 2.11: Life Time of Failed Sensors in a Hospital Setting (Out
of 100 Sensors)

2.6 Sensor Reliability

Before looking at the acquired data, signals containing sensor operational errors

were filtered out. These errors are discussed in detail in Section 2.4.2.

2.6.1 Time Distribution

The installation in the household lasted for 167 days, and totaled 6450 sensor

monitored hours. Figure 2.12 displays the amount of sensors active per day of the

study. Two sensors were active for the majority of the study. Sensors would be

restarted and reconnected to the Base Station when maintenance checks of the system

occurred, which is evident in the figure by the change in the amount of active sensors.

Systems installed in the hospital operated for 511 days and totaling more than

46,214 sensor monitored hours. Figure 2.13 displays the amount of sensors active

each day during the study. The beginning months have many days where only a few
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Figure 2.12: Home Installation’s Active Sensors
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Figure 2.13: Hospital Installation’s Active Sensors
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sensors were operational due to an initial development phase where a prototype sys-

tem was deployed to find an optimum monitoring setup. The number of sensors

fluctuated as sensors stopped working or were re-assigned to a new location. Moni-

toring was fairly consistent with about 25 sensors operating daily.

For reliability calculations, only the sensors in the hospital were considered. The

household only had three sensors installed, and the conditions for operation are dif-

ferent than that of the hospital. Hence, the sensor sets cannot be mixed. Multiple

household installations are needed to generate reliability information for a those sen-

sors installed in an home environment.

2.6.2 Reliability

Failure rate is calculated using Equation 2.4 where f is the number of failures and

t is the time period those failures occurred in [19, 20].

λ = f

t
(2.4)

The Mean Time Between Failure (MTBF) is calculated using Equation 2.5 where

λ is the failure rate from Equation 2.4 [19, 20].

MTBF = 1
λ

(2.5)

Traditionally, a Weibull distribution is used to model failure rates, and in this

case, models the sensors better than other distributions tried. Equation 2.6 provides

the formula for the Weibull distribution where t is the time value of interest, γ is the

scale parameter, and k is the shape parameter.
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P (t) =


k
γ

(
t
γ

)k−1
e−
(

t
γ

)k

t > 0

0 t ≤ 0
(2.6)

The Weibull distribution was fitted using the weibull_min function from SciPy

[21], and a Quantile-Quantile (QQ) plot produced in Figure 2.14 showing a relatively

linear trend. This indicates the distribution is a good fit for the Camp Hill failures.
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Figure 2.14: QQ Plot for a Weibull Distribution Describing the Fail-
ure Rate

A truncated normal distribution was tried as in Equation 2.7 where σ is the

standard deviation, µ is the mean, and t is the time value of interest. In this case,

the standard deviation was 110.6 days, and the mean was 170.7 days.

P (t) =


1

σ
√

2π
e−(t−µ)2/

(
2σ2
)

t > 0

0 t ≤ 0
(2.7)
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The truncated normal distribution was fitted using the norm function from SciPy

[21], and then a QQ plot produced in Figure 2.15 that shows the quantiles following

a linear pattern. The R2 value is slightly less than that of the Weibull, making this

distribution less suitable to model the failures.
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Figure 2.15: QQ Plot for a Truncated Normal Distribution Describing
the Failure Rate

A log-normal distribution was tried as in Equation 2.8 where σ is the standard

deviation, and t is the time value of interest.

P (t) = 1
tσ

√
2π

e− 1
2 (log t/σ)2

(2.8)

The log-normal distribution was fitted using the lognorm function from SciPy

[21], and then a QQ plot produced in Figure 2.16 that shows the quantiles following

a nonlinear pattern. The R2 value indicates this is not a good fit for the failure data.

The Weibull distribution proved to be the best fit to model the failures. Fig-

ure 2.17 plots the Weibull failure model against the sensor failure data. The slight
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Figure 2.16: QQ Plot for a Log-Normal Distribution Describing the
Failure Rate

increase in failures around 300 days is not well modeled by the Weibull and con-

tributes to the nonlinear right tail of the Weibull QQ Plot in Figure 2.14. A wear out

failure trend as exhibited in Figure 2.18 was experienced by the sensors. The overall

failure rate is 5.06 × 10−3 failures
hour , and the MTBF is 197.7 hours.

Expanding this in a probabilistic sense for the likelihood of measuring a fall that

produced a vibration measurable by the sensor, we find that the chance is directly

related to the sensor failure rate as demonstrated in Equation 2.9.

P (Measuring Fall | Measurable Vibration) = P (Sensor Working)

= 1 − P (Sensor Failure)
(2.9)

The assumption made here is that a sensor that is operating correctly will have the

capability to correctly identify the impact (identification is being explored in other

research), and the fall occurs in the sensor’s area of influence.
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Figure 2.17: Weibull Distribution Failure Model Vs. Sensor Failures
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Figure 2.18: Sensor Failure Rate Bathtub Curve
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Using the Weibull distribution fitted above, the likelihood of measuring a fall in

a year using these sensors is 4.9%. This assumes that the algorithms are completely

reliable, and the fall creates measurable accelerations. The MTBF to achieve 99%

likelihood comes out to be 8642.4 hours. This equates to 1.16 × 10−4 failures
hour as an

overall failure rate for a sensor, which is what a manufacturer should aim for when

producing sensors for a fall detection application.

2.7 Description of Collected Data

A total of 21,413 events were captured in the household. Figure 2.19 displays the

distribution of sensor activations during this time period. The beginning of this period

experienced around 260 activations a day, while the end of the period experienced

around 60 events a day. This disparity has to do with system operational issues

towards the end of the study. The laptop started to degrade in performance, and

consequently, the ability to receive and store data. In addition, the residents took a

vacation from May 19 until June 1 as marked on the graph, which, during this time,

no activity was recorded.

Taking all of the activations and compressing them into a week, human activity

trends show a discernible pattern as illustrated in Figure 2.20. Three bands of higher

activity appear around the hours of 8, 12, and 18. These, evidently correspond

with typical daily meal times when there would naturally be a lot of activity in the

household preparing dinner and wrangling children to the dinner table. The sensors

were located in the first floor in the room next to the kitchen and dinning room,

which supports this conclusion. Lighter activity is seen throughout the day time and

almost zero activity is seen during typical sleeping hours (between hours of 22 and

6). The twins regularly took naps around the hours of 10 and 15, which are shown

to be times of lower activity as well. Also, the family attends Sunday church services

around the hours of 9 and 10, which, as the graph displays, have almost zero events.
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Figure 2.19: Home Installation’s Sensor Activations

The patterns demonstrate the potential of using floor vibrations for determining

the probability of a specific human activity given a time and day of the week. The

probability of specific human activities can be estimated based on prior behavior and

the data collected by the sensors. For instance, if an object fell during the middle of

the night when the household is typically asleep, the probability that the resulting

vibrations were caused by a human jumping will be extremely low.

Over the course of the hospital study, a total of 25,415 acceleration events were

collected. Figure 2.21 shows the distribution of events to be fairly regular after 2013

April 13, when the final system was installed. The VAMC system recorded around

1500 acceleration events per day after this time. There are some days that have an

extremely high amount of events captured. These days experienced a high number

of sensor errors (see Section 2.5). These days appear with a high number of events

because only the records containing the sensor errors were filtered out of the data set

(i.e. data from one sensor), leaving the data from the other sensors. The remaining
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Figure 2.20: Home Installation’s Activity Density

signals are low magnitude signals with a small signal to noise ratio.

A distinct pattern develops when the entire data set is broken down by hour

of the day and overlapped; a pattern which matches what one would expect to see

in a hospital setting (see Figure 2.22). A large amount of events were recorded

during normal business hours on the weekdays and a smaller amount of events are

present on the weekends during all hours. This demonstrates the possibility of using

floor vibrations to study a high traffic area’s activity patterns. These patterns could

further be used for a number of uses. For example, to refine any human fall detection

methodology by introducing probabilities of falls based on the hospital’s routines.

For instance, if a large amount of activity is present around hour 10 normally, then

the probability that a fall would go unnoticed at this time is low, but if a spike of

acceleration occurred at hour 23, then there would be a higher probability of fall

going unnoticed and a monitoring system would raise an alarm.

Different environments produce different activity patterns, which means systems
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Figure 2.21: Hospital Installation’s Sensor Activations

of sensors will need to learn their own specific environment in order to accurately

identify and even predict actions such as a human falls. This can be vividly seen by

comparing Figure 2.20 and Figure 2.22. For instance, during the nap time hours of

the household, there is little activity because the twins are asleep; however, during

those same hours in the hospital, things are still very much happening as the hospital

never fully sleeps.

2.8 Features of Collected Data

Before looking at the acquired data, signals containing sensor operational errors

were filtered out. The errors are discussed in Section 2.4.

2.8.1 Features Explored

Two typical signal features were used to explore trends in the collected data:

maximum amplitude and signal energy.
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Figure 2.22: Hospital Installation’s Activity Density

Maximum Amplitude The maximum value of amplitude present in the signal,

calculated using Equation 2.10 where S(t) is the detrended acceleration signal, and t

is time.

Amax = max(|S(t)|) (2.10)

Signal Energy The energy of the signal, in a signal processing scope, calculated

using Equation 2.11 where S(t) is the detrended acceleration signal, t is time, and n

is the last time step. The trapezoidal rule for numerical integration was utilized.

Es =
∫ n

0
|S(t)|2dt (2.11)
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2.8.2 Features of Home Data

Most of the amplitudes seen during the home installation, were under 0.5 g. This

is to be expected considering the main activity in the household was two three year

olds running around and jumping. Their floor impacts would be small due to their

size. There were a few larger amplitudes seen, which probably correspond to the two

parents. Of particular interest, is even though one parent stayed at home with the

children, there were not many large vibrations. This indicates that most day-to-day

activity in a household causes very little acceleration on the floor structure.

The overall trend points towards the use of sensors with good resolution and a

±2 g range. A smaller sensor range could potentially be used for home installations,

but would risk missing larger amplitude signals such as those caused by a human fall.

Note that amplitudes present in recorded signals that were below 0.05 g were ignored

in Figure 2.23 as they are considered to be noisy signals, and the few values that were

above 2 g as these are outside the range of the sensor, likely sensor malfunctions.
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Figure 2.23: Home Installation’s Maximum Amplitude per Record
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The signal energy for each record was calculated to give a measure of how much

activity a sensor caught in each record. The majority of signals, a lot of which are

noise, had very low signal energy, while those with activity tended to have relatively

higher values. Figure 2.24 displays this trend. Note that outlier values, those above

0.0005 g2 s are not displayed. There were very few of these signals and corresponded

with records containing cyclic patterns, which are most likely caused by a machine,

and thus were not included here.

The two signal features were plotted against each other in Figure 2.25 to see

if there was a correlation between the two. Groupings would allow machine learn-

ing techniques coupled with probabilistic methods to generate the likelihood a fall

occurred and other activities occurred. Research is ongoing in this regard.
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Figure 2.24: Home Installation’s Signal Energy Per Record
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Figure 2.25: Home Installation’s Maximum Amplitude Vs. Signal
Energy

2.8.3 Features of Hospital Data

Amplitudes present in records capture from the hospital tended to be small in

magnitude (<0.5 g), with a bunch of outlying records having around 2 g. The lower

amplitudes were expected due to the nature of the stiffness of reinforced concrete

flooring, and the tight regulations on hospitals to limit vibrations [18]. The larger

amplitudes were caused by a mixture of impacts close to the location of the sensor,

and patients picking up the sensors, perhaps thinking they USB power sources were

chargers for their phones (see Section 2.4).

The overall trend points towards the use of sensors with good resolution and a

±2 g range. Note that amplitudes present in recorded signals that were below 0.05 g

were ignored in Figure 2.26 as they are considered to be noisy signals, and the few

values that were above 2 g as these are outside the range of the sensor, likely sensor

malfunctions.
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Figure 2.26: Hospital Installation’s Maximum Amplitude Per Record
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Figure 2.27: Hospital Installation’s Signal Energy Per Record
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Figure 2.28: Hospital Installation’s Maximum Amplitude Vs. Signal
Energy

Signal energy present in the hospital installation are grouped mostly between 8 g2 s

and 15 g2 s, indicating accelerations observed have a similar amount of activity. Note

that values below 0.1 g2 s were removed as records with those values are considered

to be noise.

The two signal features were plotted against each other in Figure 2.28 to see

if there was a correlation between the two. Groupings would allow machine learn-

ing techniques coupled with probabilistic methods to generate the likelihood a fall

occurred and other activities occurred. Research is ongoing in this regard.

2.9 Hospital Reported Human Falls

For the length of the study, 50 fall events were reported by the hospital staff (see

Table A.1). The estimated time of each fall was given to researchers to be used to

correlate with collected acceleration records. Challenges arose because the of human
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error when reporting the time and because the times reported are the time the patient

was found and not necessarily the actual time of the event. Hospital patients are

monitored on a regular schedule along with constant patrols and emergency pendants

the patients can press to call for nurse assistance which aids to reduce reported time

error. Additionally, the base station computers’ time may also be off since they were

not connected to the Internet where the computers could get constant time updates

based on an atomic clock. Researchers thus look at a ±1 hour window based on

the reported time to account for these potentials for error. Of those 50 reported,

four occurred before the room had a system installed and one did not have enough

information to identify the system that would have recorded the event. Researchers

found records correlating with 16 reports of the remaining 45 records.
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Figure 2.29: Comparison of Hospital Reported Falls to System Cap-
tured Falls

Sometimes during operations, the sensors would fail (see Section 2.5) and become

inactive leading to missed fall events, and other times, the event was missed entirely
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even though the sensors were active. The latter may be due to the larger error in time

reporting than accounted for (discussed above) or the impact from the fall resulting

in a slight vibration that the sensors could not detect. Figure 2.29 demonstrates these

challenges. Sensors were active during 26 reported events, but only capturing 16 of

those 26. This equates to a ∼62% successful capture rate.

2.10 Real Falls vs Recorded Falls

2.10.1 Recorded Falls

Table 2.2 compares the reported to the collected events and rates the researcher’s

confidence (0 being no confidence, 5 being very confident) that the fall event was

captured based on the collection time and the actual signal. Figure 2.30 visualizes

the dates demonstrating human error in the reporting process.
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Figure 2.30: Visualization of Reported Falls Vs. Captured Falls

40



Table 2.2: Reported Falls Vs. Recorded Data Events

ID Records ±1 hr Confidence (0-5) Figures

16 2013-06-17 21:57:19
2013-06-17 21:58:54
2013-06-17 22:03:19
2013-06-17 22:10:07

4 Section B.1

18 2013-06-20 17:14:23 5 Section B.2

20 2013-06-28 23:23:57
2013-06-28 23:24:42
2013-06-28 23:28:42
2013-06-28 23:30:38

5 Section 2.10.2, Section B.3

26 2013-07-25 17:49:29 5 Section B.4

28 2013-07-30 04:45:49 5 Section B.5

32 2013-08-27 10:58:35 2 Section B.6

33 2013-08-29 14:48:57 5 Section 2.10.2, Section B.7

34 2013-08-31 18:07:07 5 Section B.8

35 2013-09-22 02:45:21 5 Section B.9

36 2013-10-03 12:34:31 3 Section B.10

39 2013-10-22 20:02:20 0 Section B.11

41 2013-10-26 07:34:28 1 Section B.12

42 2013-10-28 23:25:33 1 Section B.13

44 2013-11-25 17:33:49 5 Section 2.10.2, Section B.14

46 2013-12-03 03:47:22 1 Section B.15

48 2013-12-09 04:59:04 1 Section B.16
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2.10.2 Sample Records

A few collected records stand out to the research team and are presented in this

section. The remainder of collected fall events are presented in Appendix B.

Fall Reported on 2013-06-28 23:20 (ID 20)

According the description of this event, the patient was found kneeling next to

the bed after attempting to get up and walk around. This is an interesting sequence

of events with several captured records in close proximity to the reported time the

fall occurred. The first signal shown in Figure 2.31 looks like a jostling movement

which is interpreted to be the patient shifting towards the edge of the bed.

The patient attempted to get up to stretch his legs after shifting to the edge of

the bed. Instead, he fell to the floor to land (we assume) on his knees. Figure 2.32

shows a signal that looks like one knee hit with the majority of the person’s weight,

and another knee followed more gently after the initial impact of the first.
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Figure 2.31: Fall Event 2013-06-28 23:23:57

42



0 2 4 6 8 10 12
Time (s)

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ac
ce

ler
at

io
n

(g
)

Figure 2.32: Fall Event 2013-06-28 23:24:42
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Figure 2.33: Fall Event 2013-06-28 23:28:42
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Within a few minutes, the patient may have attempted to get back up onto the bed

but was unsuccessful leading to another impact on the floor as he dropped back down.

Figure 2.33 shows a downward impact with a slightly higher downward amplitude

(∼0.08 g) than the first time the patient fell in Figure 2.32 which suggests more force

was applied to the floor, like the full weight of the patient.

Fall Reported on 2013-08-29 14:40 (ID 33)

A nurse was helping the patient, in this instance, to the bedside commode. They

did not make all the way and the patient lost balance falling to the floor. The fall

was broken by the nurse who eased the patient onto the floor lessening the impact.

What is of interest for this event the mode which involves one person ‘damping’ the

impact and that two sensors, one inside (Figure 2.34) and one outside of the room

(Figure 2.35), showed similar acceleration patterns.
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Figure 2.34: Fall Event 2013-08-29 14:48:57 - Sensor Inside Room
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Figure 2.35: Fall Event 2013-08-29 14:48:57 - Sensor Outside Room

Notice how each sensor picked up three consecutive hits at approximately the

same time within the record, with the sensor that is in the room of the event expe-

riencing slightly higher accelerations than that of the sensor outside the room. The

response demonstrates the low reliability of determining a fall directly from ampli-

tude alone but points towards the possibility of using records from multiple sensors to

develop a probability that the event occurred. A research topic the team is currently

investigating.

Fall Reported on 2013-11-25 17:45 (ID 44)

The patient in this scenario bent over to pick up some trash off the floor before

losing his balance and falling down. Assuming the he bent at the waist and tumbled

in the direction of his bending, the natural defensive response would be to attempt to

break the fall using ones arms before the rest of the body lands. Figure 2.36’s signal

displays that pattern with the first peak being smaller than the second.
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Figure 2.36: Fall Event 2013-11-25 17:33:49

2.11 Conclusion

The star network system used appears to work well for gathering vibration data

from human activities whilst emulating the ideal system. Allowing each sensor to

operate independently, enabled the sensors to dynamically adjust their threshold

levels based on noise (electronic and environmental) without affecting the operation

of the whole system. The Camp Hill/Agua Mansa sensors had a low success rate

(∼62%) when it came to capturing human falls, with falls being based on hospital

reports alone. Falls missed whilst the sensors are operating were likely due to low-

force impacts which would not result in severe injury. The remaining falls were missed

due to inactivity of the sensors that stemmed from several failure modes, the largest of

which involved a person mistaking the sensor’s power supply for a phone charger they

could use and physically damaging the sensor when attempting to detach the power

cord. Overall, the sensors experienced a wear out failure trend with a failure rate of
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5.06×10−3 failures
hour and a MTBF is 197.7 hours. The likelihood of this sensor to capture

a fall in its current state is 4.9%. In order to have a 99% likelihood of capturing a

fall, a sensor’s MTBF should be 8642.4 hours based on a Weibull distribution.

Other aspects of the sensor emerged, including recommendations of buffer size,

sampling rate, and sensitivity for wireless accelerometers for human activity monitor-

ing, in particular human fall detection. These factors are chosen as they are general

enough that every wireless sensor working with human-induced vibrations would uti-

lize them. Factors such as operational temperature range are not explored as they

are specific to the environment one would install the sensor and should be made on

a case-by-case basis.

The current recommendation for a buffer size (e.g. amount of time needed to fully

capture a vibrations from a fall) is 3 s [6]. This suggestion holds up when looking

at the 16 fall events captured by the system for purely capturing the vibrations of

the fall. One may wish to increase the buffer size for handling various fall detection

algorithms, however. Sampling rate of the sensors was 316 Hz, working well in both

the home and hospital installations. This rate is not a typical hardware enabled

rate for wireless accelerometers, so it is suggested to use the more common rate of

400 Hz which will also give signals some more definition. Sensitivity of the installed

sensors, the remaining aspect, was 0.25 mg resolution and a range of ±2 g. The range

proved more than enough in the falls the systems experienced, with no cutting off

of the signals. However, the resolution was not enough in several of the cases, and

several events were missed potentially due to the fall having low-force which a higher

resolution sensor could have registered. A suggested resolution of 1 µg is put forth to

have better definition in the signal, particularly for falls resulting in low amplitude

vibrations.

Preliminary looks at human activity monitoring through structural vibrations

shows promise. Schedules of the people in hospital and the home installations match
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closely to what the system saw in vibrations as seen in the heat maps presented.

Further research into predictive activity models would open up many avenues for

development of privacy-respecting technology towards more intelligent infrastructure.
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Chapter 3

Data Management For Structural Vibration

Monitoring of Human Activity

3.1 Introduction

A large amount of data is produced from a large scale installation of the vibra-

tion monitoring system described in Chapter 2. Thus, a way to keep track of all the

data in a meaningful way so that researchers can focus more on analysis and not on

organization of all the data is needed. This is called data curation and is “the ac-

tive and ongoing management of data through its life cycle of interest and usefulness

to scholarship, science, and education” [22]. The field itself “includes authentica-

tion, archiving, management, preservation, retrieval, and representation” [22]. As a

first step towards curation of the data generated by this work, a data management

plan was devised and implemented. The devised strategy focused on flexibility for

scalability through a relational database architecture, as well as leveraging secure

websites interfaces for tracking other information related to the project. Addition-

ally, a Python package was created to streamline access to the database allowing for

researchers to gather information with ease.

3.2 Management Plan

All data gathered and generated is housed on servers of the Structural Dynamics

and Intelligent Infrastructure Laboratory (SDII) at the University of South Carolina

(USC). The following sections describe the data being collected and its management.
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3.2.1 Data from Installed Systems

Monitoring human-induced vibrations in multiple locations across multiple in-

stalled systems produces a large amount of data, which needs to be well managed

so researchers can easily access and draw conclusions from the data. The first is the

operational data from the systems themselves including acceleration data from the

sensors, orientation of the sensors, and logs of system activity. Next, the participant

reported fall events need to be housed in relation to the collected data so information

the systems collected can be directly related to each fall. Both of these data types

are managed in a database using the architecture described in Section 3.3.

In addition to the data collected and generated by the installed monitoring sys-

tems, information about each sensor installation (e.g. hospital room or a private

residence) is recorded. Approximate location of the sensors are marked on a diagram

of the particular area, and the type of construction for the building is included. This

data is maintained both on physical paper and digital documents on the servers with-

out any identifiable patient information. Researchers visit installations to maintain

the systems periodically. The trips often included some discussion with participants.

Both the researchers’ check of the systems and participants’ comments are recorded in

a Drupal-based website [23]. Identifiable participant information (e.g. weight, height,

or age) is not recorded as the goal of the dataset is to capture a fall irrespective of

the physical characteristics of the person who fell.

3.2.2 Data from Researchers

Researchers working with the database need the capability of appending data to

the main database. This includes quantitative and qualitative data generated when

exploring the data. Therefore, additional tables were designed to allow researchers

this extra capability. The event_parameters table, for example, provides a simpli-

fied way to relate this information to the various acceleration events captured. See
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Section 3.3 for more discussion and description about this and other tables.

3.2.3 Data Access

Access to the data is controlled through log in credentials for each user. This

allows for the control of what each user can do with the database so as to prevent

accidental changes. In addition, each installed system maintains a local database that

mirrors the one housed with SDII as an additional precaution. A Python package

(ssh_database_utilities) standardizes data access to the database which additionally

aids in reducing unwanted accidental changes to stored information. The package

documentation is available in Appendix M. For those given more direct access to the

database, sample queries are provided in Appendix C.

3.3 Database Architecture

A relational database was chosen to store and access the experimental data, using

MySQL as the backend [24]. The enhanced entity relationship diagram is presented

in Figure 3.1. This database structure is used at the site where data is collected in

the base stations and in the main database. The following paragraphs describe the

tables in more detail, and are organized in alphabetical order for easy reference. The

term ‘event’ means the monitoring system was triggered to record accelerations from

its sensors thus indicating one or more recorded signals, and the term ‘hit’ means an

impact present in a signal.
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sensor_mac CHAR(16) PK
date DATETIME PK
z_offset FLOAT(5,1)
z_scale FLOAT(5,1)

calibration
sensor_mac CHAR(16) PK
date DATETIME PK
vertical_axis TINYTEXT
data LONGTEXT
system TINYTEXT
system_activation DATETIME

accel_events
mac CHAR(16) PK
system CHAR(7) PK
date DATETIME PK
parameter CHAR(50) PK
value TINYTEXT

system_log

name VARCHAR(255) PK
description LONGTEXT

parameters system CHAR(7) PK
event_date DATETIME PK
mac CHAR(16) PK
parameter VARCHAR(255) FK

value VARCHAR(255)

event_parameters

system CHAR(7) PK
date DATETIME PK
name TINYTEXT
from_date DATETIME
to_date DATETIME

downloads
date DATETIME PK
location VARCHAR(45) PK
type VARCHAR(45)
comments LONGTEXT
system CHAR(7)

events

Related

One to Many

PK = Primary Key

FK = Foriegn Key

Figure 3.1: Enhanced Entity Relationship Diagram for Human Activity Database
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accel_events Here, all the data collected from the sensors is stored including

information about the orientation of the sensor and the system the sensor belongs

to. Each table row has a system and system_activation for referencing items stored

in the system_log table. Knowing when the system was activated allows one to grab

information from the log pertaining to a specific operational period of the system.

The acceleration data captured is first converted into units of gravity through the

calibration table, and then, is stored as a space delimited string in the field data.

calibration The Agua Mansa sensors report data to the base station in pts/g,

where the data needs to be converted into units of acceleration. This table stores

the calibration information with the base station using the latest dated calibration

values for unit conversion. Sensor Media Access Control Addresses (MAC Addresses)

must be available in the calibration table before data is recorded into the accel_event

table. Base station programs enforce this policy. For more information on calibration

and conversion formulas see Section 2.3.1.

downloads This table is used to track when data from a system for a specific

time period has been transfered from the base station to the SDII servers. When

downloading data, the user enters his name or, in the case of the web service, the name

webservice is entered. Subsequent downloads of data from a base station reference

the table to reduce the amount of data to transfer in each download, and thus the

amount of time it takes for the download process. This is used in the base station for

use with the Data Mobile Ubiquitous LAN Extension (MULE), and the main server

for use with the web service (see Section 2.3.1 for more details).

events All reported human-induced vibration events are recorded here with in-

formation on the system that saw the event, the date and time the event occurred,

comments from the reporter, and the location of installation. No patient information
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(e.g. name, weight) is stored to protect privacy. The field type intentionally is flexible

if other significant human activity besides a human fall is reported as this can be of

interest for refining fall detection algorithms or research into other activity.

event_parameters Acceleration events have various parameters, or metrics, that

can be used to describe them. Calculated metrics from the parameters table are

stored in this table for signals present in accel_events. This includes parameters

like maximum amplitude and signal category. Access the parameters database table

for a current list of available metrics created by this research and their descriptions.

Table 3.1 provides the parameters available at the time of this writing.

parameters The parameter table defines parameters and removes the chance that

a it can be misspelled. Other tables reference this one via foreign keys to ensure

integrity. Table 3.1 describes the parameters, available as of 2016 February 1, in

alphabetical order by their database names.

Table 3.1: Acceleration Parameters

Name DB Name Description

Amplitude Hits amphit Amplitude within the record (g);
There is one number per hit

Maximum Amplitude ampmax Max of the absolute value of the
signal (g); See Section 4.2.2

Manual Category category-manual Category of signal manually clas-
sified: (0) not sure what category,
(1) noise, (2) some activity but in-
distinct peaks or shape, (3) dis-
tinct peaks and shape, (4) sensor
error; Used for training an SVM

continued on next page. . .
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Name DB Name Description

SVM Category category-svm Category of signal created by the
SVM: (0) not sure what category,
(1) noise, (2) some activity but in-
distinct peaks or shape, (3) dis-
tinct peaks and shape; See Chap-
ter 4

Dispersion Ratio dr The ratio of desired signal to envi-
ronmental noise; See Section 4.2.5

Error errornorm Normalized error of the exponen-
tial curve

Location location Location of the event; For exam-
ple, a specific room in a house

Max Amplitude
Difference mad The max change between descend-

ing sorted, absolute values of the
signal (g); NaN are ignored; See
Section 4.2.3

Accepted Hits naccept Number of hits accepted during
analysis

NaN Density nandensity The density of NaN values in the
record; See Section 4.2.1

Number Rejected nreject Number of potential hits rejected
during analysis

Rate of Dispersion rod How much dispersion is present
within a signal; See Section 4.2.4

Signal Energy senergy Energy present in a signal process-
ing sense (g2 s); See Section 2.8.1

Hit Time thit Time of impacts within the record
(in seconds since the beginning of
the record); There is one number
per hit

Natural Freq. and
Damping wnzetahit Estimation of ωnζ for each hit

within the record
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system_log The system log tracks activity of the system, including errors and

installation dates, during a system’s operation. This is for both the base station and

the sensors themselves. Base stations (i.e. the laptops) store a blank string, 0, or

their MAC Addresses for the field mac. Sensors store in the log using their own MAC

Addresses so parameters such as reliability or actual sampling rate can be determined

(see Chapter 2). The table does not reference another table by foreign key unlike that

of the parameter and event_parameter table relationship. This allows for maximum

flexibility when programming the system so that new log info can be added at will.

Thus, parameter names in this table tend to be more verbose and self-descriptive for

clarity. Table 3.2 describes the parameters in the system logs, as of 2016 February 1,

in alphabetical order of their database names.

Table 3.2: Parameters in the System Log Table

DB Name Description

data_received Number of data points received from
the sensor in the time span er-
ror_log_length

error_log_length Length of time between system log
saves (s); Saved when system starts

installed Indicates system installed, reference
the date of the log for when the install
occurred

lost_sync Number of times the base station lost
synchronization with a sensor in the
time span error_log_length

malformed_data Number of bad data packets received
by the base station for the sensor in
the time span error_log_length

continued on next page. . .
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DB Name Description

malformed_sync Number of bad synchronization pack-
ets received by the base station for
the sensor in the time span er-
ror_log_length

maximum threshold Indicates the maximum threshold for
the bandpass acceleration threshold
(pts/g); Saved when system starts

minimum threshold Indicates the minimum threshold for
the bandpass acceleration threshold
(pts/g); Saved when system starts

overflow Number of times the accelerometer
overflowed the sensor’s buffer in the
time span error_log_length

reset Number of times a sensor reset itself
in the time span error_log_length

sample_rate The expected sample rate; Saved when
system starts

soft_version Base station software version; depre-
cated

suite_version System Tool Suite Version; Saved
when system starts

sync_received Number of synchronization packets re-
ceived by the base station for the sen-
sor in the time span error_log_length

threshold Acceleration threshold to cross for ac-
tivation (pts/g); Saved when system
starts

trigger_count Number of times a sensor was
triggered in the time span er-
ror_log_length

trigger_level Acceleration value that triggered the
sensor (pts/g)

uninstall Indicates the end of a system’s instal-
lation period, reference the date of the
log for when the install occurred

continued on next page. . .
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DB Name Description

webservice-accel_events-duplicates Number of duplicate acceleration
event records the web service tried to
upload

webservice-accel_events-failure Indicates the web service failed to up-
load acceleration events

webservice-accel_events-sent Number of acceleration event records
the web service sent

webservice-accel_events-timeout Number of timeouts the web service
had when trying to send acceleration
event data

webservice-calibration-duplicates Number of duplicate calibration
records the web service tried to
upload

webservice-calibration-failure Indicates the web service failed to up-
load calibrations

webservice-calibration-sent Number of calibration records the web
service sent

webservice-calibration-timeout Number of timeouts the web service
had when trying to send calibration
data

webservice-downloads-duplicates Number of duplicate download records
the web service tried to upload

webservice-downloads-failure Indicates the web service failed to up-
load downloads

webservice-downloads-sent Number of download records the web
service sent

webservice-downloads-timeout Number of timeouts the web service
had when trying to send downloads
data

webservice-system_log-duplicates Number of duplicate system log
records the web service tried to upload

webservice-system_log-failure Indicates the web service failed to up-
load system logs

continued on next page. . .
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DB Name Description

webservice-system_log-sent Number of system log records the web
service sent

webservice-system_log-timeout Number of timeouts the web service
had when trying to send system logs
data

3.4 Conclusion

The data management plan outlined in this chapter, has worked well over the

many years of the human activity through structural vibrations study and provides

a foundation for future data curation. Researchers have the infrastructure to handle

and analyze the multitude of acceleration records collected, as well as tools for easy

access to data while mitigating the possibility of accidental changes in the data.

Identifiable participant information is not recorded, providing privacy and promoting

research towards user-independent fall detection. The flexibility and scalability of

this plan will provide valuable research infrastructure for years to come.
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Chapter 4

Acceleration Event Filtering

4.1 Introduction

The Structural Dynamics and Intelligent Infrastructure Laboratory (SDII) at the

University of South Carolina (USC) houses 536,686 acceleration records constitut-

ing 220,597 distinct events as of 2016 February 1, with more being gathered daily.

These records are collected as a joint effort between SDII, Palmetto Health Hospi-

tal (PH), and the William Jennings Bryan Dorn Veteran’s Administration Medical

Center (VAMC) to capture human-induced vibrations from a variety of environments

including hospitals, nursing homes, and personal residences. The aim of the effort

is to investigate human activity as it relates to changes in medical conditions using

vibrations of the structural as the sole point of reference. Needless to say, vibration

based human monitoring systems produce a considerable amount of data which create

the challenge of identifying relevant records to study or consider for further action.

Data is often collected using wireless accelerometers, and with that comes addi-

tional challenges as wireless communication is not always reliable leading to dropped

packets on the network meaning parts of the signals can be missing. Another chal-

lenge comes from the reliability of the sensors which can degrade over time under con-

tinuous operation and transmit error-ridden data (details discussed in Section 2.5).

Hence, signal metrics were developed and employed through a Support Vector Ma-

chine (SVM) to sort the database of signals into categories, greatly reducing the

amount of human labor required to get to the ‘meat’ of the database.
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4.2 Acceleration Signal Metrics

In addition to typical characteristics of the signal such as amplitude, several met-

rics were developed for describing the records which would then be used by the SVM

to learn what the researcher judged to be a good signal. The metrics NaN Density

and MADr served to indicate the cleanliness of the signal with respect to potential

sensor errors. The remainder of the metrics were used to describe the level of activity

present. A signal with little activity is often unwanted for processing techniques as

the data does not contain much information beyond what the sensor quantization

levels are, hence, a way to filter out weak signals is necessary to help the analyst find

quality signals quickly or for computer code to select signals autonomously. All these

metrics are calculated after the mean of the signal has been subtracted to each point.

4.2.1 NaN Density

Sometimes with wireless accelerometers, there will be lost data because of dropped

communication packets. Synchronization techniques allow for the host to determine

missing packets and how many data points are lost. The lost data points are replaced

with a place-holder such as the symbol NaN which stands for ‘Not a Number.’ The

more missing packets, the less reliable the data is. In an effort to easily identify the

signals with a multitude of missing data points, the metric NaN Density was created.

It simply counts the number of NaN place-holders and ratios it to the number of

points in the entirety of the record. Equation 4.1 displays the calculation where nnan

is the number of points in the signal that indicate missing data, and ns are the total

number of points in the acceleration signal.

ρnan = nnan

ns

(4.1)
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As can be seen from above, the lower the amount of lost data packets, the lower

the ratio with 0.0 being a record without any missing packets. See Figure 2.3 for a

signal missing data.

4.2.2 Maximum Amplitude

This is a simple metric that determines the maximum absolute value of the signal

as shown in Equation 4.2 where max() is the maximum value function, S(t) is the

detrended acceleration signal, and t is time.

Amax = max (|S(t)|) (4.2)

4.2.3 Maximum Amplitude Difference Ratio (MADr)

This metric determines the maximum change between values of consecutive points

within the acceleration signal. Sometimes, the accelerometer may malfunction and

produce a fictitious high-value amplitude point or a ‘spike’ (see Figure 2.9). Accel-

eration records from real events would follow a shape similar to an impulse response

function. Thus the Maximum Amplitude Difference (MAD) gives a sense of discon-

tinuities in the signal that are not due to a physical action.

First, the descending-sorted absolute value of the acceleration signal S(t) is cal-

culated using Equation 4.3 where desc() is the descending order sorting function.

D = desc (|S(t)|) (4.3)

Next, Equation 4.4 expresses the calculation of Maximum Amplitude Difference

(MAD) where max() is the maximum value function, Di is calculated in Equation 4.3,

and i is the index within D.
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MAD = max (Di − Di−1) (4.4)

Finally, take this value in ratio with the maximum amplitude like in Equation 4.5

where MAD is the maximum amplitude difference calculated using Equation 4.4, and

Amax is the maximum amplitude in the signal calculated using Equation 4.2.

MADr = MAD
Amax

(4.5)

The closer the MADr is to 1.0, the sharper the change between consecutive points

is. Typically, a ratio greater than 0.95 indicates a ‘spike’ in the data.

4.2.4 Rate of Dispersion (RoD)

The maximum change of the dispersion present of the signal can serve as an indi-

cation of how spread the acceleration signal is. First, a vector of standard deviations

σ‡ is computed like in Equation 4.6 where σ() is the standard deviation, Si is the i-th

point of the acceleration signal, and j is an integer that adjusts the window location

where the standard deviation is calculated.

{σ‡} =



σ (Si:i+nw)

σ (Si+∆:i+∆+nw)
...

σ (Si+j∆:i+j∆+nw)


(4.6)

The window shift ∆ is calculated using Equation 4.7

∆ = nw − no (4.7)
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where nw is the number of points per window, and no is the number of overlapping

points per window. RoD is calculated using Equation 4.8 where τ is an integer.

RoD = max
(∣∣∣σ‡

i+τ − σ‡
i

∣∣∣) (4.8)

An example of what the metric calculation process looks like is presented in the

following with two signal examples to demonstrate how the rate changes: free vibra-

tion (Signal A) in Figure 4.1a, and a harmonic vibration (Signal B) in Figure 4.1b.

For the example, the value of nw is 250, no is 249, and τ is 100. Notice how the Rate

of Dispersion (RoD) in Signal A is several magnitudes higher than that of the more

regular vibration of Signal B which has more regular dispersion of data points (Fig-

ure 4.1e and Figure 4.1f). This demonstrates how changes in accelerations present in

a signal can be indicated using RoD.

4.2.5 Dispersion Ratio (DR)

This metric attempts to characterize the strength of the desired signal compared

against other sources of vibration considered ‘environmental noise.’ In the case of

human activity, environmental noise would be something like a washing machine

running, and a desired signal would be free vibration wave forms resulting from

impacts. One challenge associated with evaluating the amount of environmental noise

is that one needs to have a record that is only noise. The amount of environmental

noise is different for each sensor installation, and it might even change as a function of

time. It is not practical to manually study noisy signals for each case and determine

the level of environmental noise. An alternative method is presented here where the

vector of standard deviations is calculated using Equation 4.6 and values are extracted

to create a ratio between the signal of interest and the environmental noise in the

same record. The dispersion ratio is defined in Equation 4.9 where max() is
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Figure 4.1: Example of How to Calculate RoD
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the maximum value function, min() is the minimum value function, and σ‡ is the

vector calculated using Equation 4.6.

DR =
max

(
σ‡
)

min (σ‡) (4.9)

The idea is that the shifting window will grab segments with only environmental

noise present and some windows that have data of interest. Environmental noise is

then considered to be where a smaller standard deviation is present (e.g. base line

readings of a sensor when no activity is present), and good signal is where the data

has higher variations which results in a larger standard deviation value.

Figure 4.2 presents an example for calculating DR using the same parameters as

in the example for RoD (Section 4.2.4). In Figure 4.2a, the environmental noise and

signal of interest are identified. The calculation of σ‡ occurs, and then the ratio of

maximum to minimum values of σ‡ is taken to determine DR in Figure 4.2b.

4.3 Support Vector Machines

The concept of SVMs was first developed by researchers of AT&T Bell Labo-

ratories as “a training algorithm that maximizes the margin between the training

patterns and the decision boundary” [25]. Further research would develop the base

algorithm into a flexible and accurate machine learning technique providing the ability

for classification, and it would see use in financial forecasting, predicting medication

adherence, and mobile communications [26, 27, 28, 29, 30]. The algorithm can be

trained, or learn by example, much like a human-being which gives SVMs the ability

to label, and hence classify, information presented to it. Metrics can be gathered

from an entity in question, which the SVM can use to ‘connect the dots’ indicating

the entity in question belongs to which group [31].
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SVMs can use many kernel functions for designing boundaries with the train-

ing data [26, 32]. The four kernels tested were linear, radial basis function (RBF),

polynomial (3rd degree), and sigmoid. The RBF outperformed the other kernels in

robustness, and had the most highest scoring best training sets (see Section 4.4).

The linear kernel came in second place in both aspects considered. Therefore, the

following discussion is presented with the linear and RBF.

The linear kernel is described by

K (x, x′) = x · x′ (4.10)

where x′ is the training and x is the testing data. The RBF is described by

K (x, x′) = e−γ|x−x′|2 (4.11)

where x′ and x represent the training and testing data respectively. These are

regulated by the shape parameter γ [26, 32, 33]. This “projects data from a low-

dimensional space to a space of higher dimension” [31] which increases the ability

of the SVM to determine decision boundaries, and thus increase the accuracy of

classification.

Kernels are fed into a decision function having the form of

f (x) = sign
(

n∑
i=1

yiαiK (x, x′) + ρ

)
(4.12)

where sign () is the function described by Equation 4.13, x is the data to be classified, n

is the number of points of x, yi is a vector of form y ∈ {−1, 1}n, αi is the regularization

parameter in the range of 0 ≤ αi ≤ C with C being the penalty parameter, K (x, x′)

is the kernel function, and ρ is an independent intercept parameter [32]. Python

package Scikit-Learn v0.16.1 provides SVM functions used here [32].
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sign (x) =



−1 if x ≤ 0

0 if x = 0

1 if x ≥ 0

(4.13)

4.4 Filtering of Acceleration Signals

Metrics from Section 4.2 were generated for all the available data and saved into

a relational database for future access. Data was first filtered using MADr to ignore

signals with data caused by sensor malfunctions (MADr < 0.95) and the NaN Den-

sity metric to find complete signals (ρnan = 0), that being the signals not having

any missing data points. Researchers then randomly selected 200 signals from the

database without knowing the metric values. The signals were plotted and manually

categorized using the following categories shown in Table 4.1.

Table 4.1: Signal Categories

Category Description Count
1 Exhibiting lots of noise with little to no data 160
2 Some activity but indistinct peaks or shape 22
3 Distinct peaks or shape 18

In this way, the SVM can learn the categories assigned by the researcher. The

SVM would relate categories to metric values and be able to sort the remainder of

the 536,686 records of the database. Examples of the categories from Table 4.1 are

presented in Figure 4.3.

The Pareto Principle, a guideline often used in economics and has seen use in

computer science, was chosen to validate the method where the split of the data set

becomes 80% training and 20% validation [34]. Data was randomly split into the

training and validation categories using the Scikit-Learn function train_test_split()
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Figure 4.3: Signal Category Examples

for 100 times changing the pseudo-random number generator state each iteration

from 0-99. The effectiveness of all possible combinations of Amax, RoD, and DR (see

Section 4.2) were evaluated. The accuracy stats of each combination for the linear

kernel is presented in Table 4.2, and RBF kernel is presented in Table 4.3. The other

two kernels are presented in Table D.1 and Table E.1.

The RBF performed better than the linear, and in two cases (Amax; Amax, RoD)

significantly better by about 10%. RoD provided the lowest performance by having

the lowest mean accuracy and highest standard deviation of all the combinations.

The best metric combinations included DR as it had the highest mean accuracy and

lowest standard deviations.
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Table 4.2: SVM Linear Kernel Metric
Combination Stats (100 Trials)

Accuracy (%)
Metric Combinations Mean St. Dev.
Amax 83.9 5.6
RoD 80.0 6.3
DR 95.7 3.3
Amax, RoD 84.0 5.6
RoD, DR 95.7 3.3
Amax, DR 95.7 3.2
Amax, RoD, DR 95.7 3.2

Table 4.3: SVM RBF Kernel Metric Com-
bination Stats (100 Trials)

Accuracy (%)
Metric Combinations Mean St. Dev.
Amax 94.3 3.9
RoD 83.8 5.6
DR 96.4 3.3
Amax, RoD 94.7 3.9
RoD, DR 96.4 3.3
Amax, DR 96.8 3.4
Amax, RoD, DR 96.8 3.4

Figure 4.4 and Figure 4.5 offer insight into the distribution of scoring for the

trials of the linear and RBF kernel, respectively; the other two kernels are presented

in Figure D.2 for the polynomial and Figure E.1 for the sigmoid. Both kernels had

a larger distribution of scores for metrics Amax and RoD, with the combination of

there of tending towards a distribution like that of Amax. This phenomenon is also

seen with the introduction of DR, the best performing metric, where combinations

including DR tend to have score distributions, like that of DR alone.
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Figure 4.4: Score Distribution for Linear Kernel Metric Combinations
(100 Trials)
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Figure 4.5: Score Distribution for RBF Kernel Metric Combinations
(100 Trials)
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Figure 4.6 visually explores each metric, to aid in understanding category sepa-

ration using the metrics. The diagonal bar plots show the distribution of categories

with respect to a particular metric. As one looks from the first bar plot with Amax

and on down to DR, groupings of values for each category can be seen. The scatter

plots off the diagonal, display the relationship between each metric. RoD and DR,

being derived from the same base function, show a near linear relationship; whereas

comparing them with Amax shows a slight dispersion along a straight line.
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Figure 4.6: Metric Comparison of Manually Categorized Records

SVMs are sensitive to the category split among the training data. Thus, it is pos-

sible to have extremely high accuracy (97% and above) when classifying signals. The

best combination for training data, being defined as training the SVM to reach the

highest accuracy, is presented in Table 4.4 for the linear kernel and Table 4.5 for the

RBF kernel. The other two kernels are presented in Table D.2 and Table E.2. Every

combination achieved very high accuracy, with the results again pointing towards DR

being the best metric, achieving 100% for every combination it is involved in.
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Table 4.4: SVM Linear Kernel Best Training Set for Each
Metric Combination

Metric Combinations C1 C2 C3 Accuracy (%)
Amax 121 21 18 97.5
RoD 121 21 18 97.5
DR 129 18 13 100.0
Amax, RoD 121 21 18 97.5
RoD, DR 129 18 13 100.0
Amax, DR 129 18 13 100.0
Amax, RoD, DR 129 18 13 100.0

Table 4.5: SVM RBF Kernel Best Training Set for Each
Metric Combination

Metric Combinations C1 C2 C3 Accuracy (%)
Amax 121 21 18 100.0
RoD 121 21 18 97.5
DR 128 18 14 100.0
Amax, RoD 121 21 18 100.0
RoD, DR 128 18 14 100.0
Amax, DR 128 18 14 100.0
Amax, RoD, DR 128 18 14 100.0

Table 4.6 and Table 4.7 display the worst scoring category split observed during

the trials for the linear and RBF kernels, respectively. The remaining two kernels are

presented in Table D.3 and Table E.3. From these results, one can further see the

robustness of each metric for the SVM to better determine the hyperplanes between

categories.

Table 4.6: SVM Linear Kernel Worst Training Set for
Each Metric Combination

Metric Combinations C1 C2 C3 Accuracy (%)
Amax 134 11 15 67.5
RoD 134 15 11 65.0
DR 131 15 14 87.5
Amax, RoD 134 11 15 67.5
RoD, DR 131 15 14 87.5
Amax, DR 131 15 14 87.5
Amax, RoD, DR 131 15 14 87.5
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Table 4.7: SVM RBF Kernel Worst Training Set for Each
Metric Combination

Metric Combinations C1 C2 C3 Accuracy (%)
Amax 132 16 12 82.5
RoD 134 11 15 70.0
DR 132 16 12 85.0
Amax, RoD 132 16 12 82.5
RoD, DR 132 16 12 85.0
Amax, DR 127 17 16 85.0
Amax, RoD, DR 127 17 16 85.0

The following two figures are provided as an example of how the hyperplanes

formed for the linear and RBF kernels. Both kernels perform well in finding regions

that indicate a category, with only a few manually categorized signals crossing the

hyperplane into another category’s region.
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Figure 4.7: SVM Linear Kernel Metric Combination Hyperplanes
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Figure 4.8: SVM RBF Kernel Metric Combination Hyperplanes

4.5 Conclusion

At the time of this writing, the SVM, using the DR metric, has worked through

all 536,686 acceleration records much faster than if the same records were processed

manually. Preprocessing removed 273,422 records that were missing data points or

were identified as sensor malfunctions. This leaves 203,964 records in category one;

33,972 in category two; 25,321 in category three; and 7 records ignored as the value

of DR was infinity indicating a signal containing all the same value, something that

could also be filtered out in preprocessing in the future. Examples of SVM classified

signals are seen in Figure 4.9. Relatively few manually classified training samples are

required for the SVM to learn from, making this a very time-efficient method not

requiring much user input. In the case of this study, only 200 signals were used for

training - a mere 0.04% of the entire dataset.
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Figure 4.9: SVM Classified Signal Category Examples

The following metric comparison plot in Figure 4.10 shows the breakdown of SVM

classified categories when the RBF kernel was trained using DR only, as this setup

is considered optimal based on accuracy score, standard deviation, and number of

metrics in a combination. The results are interesting in that one can see a more

distinct separation of categories classified for DR, whereas the other categories have

significant overlap.

Of interest to the author is the ability of the SVM to filter out signals with lots

of environmental noise in a human fall detection application while retaining signals

with possible fall events in them. Figure 4.11 takes the fall signals that have been

identified in the database during the VAMC hospital study (see Appendix A) and
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Figure 4.10: Metric Comparison of SVM Classified Records Where
DR Was Used for Training

indicates what the SVM classified each signal from the sensors in the system that

observed the event verse what the author categorized the signal to be. A more

detailed breakdown is available in Table F.1 for this data with figures indicated in

the table for easy reference. Note that signals marked as environmental noise by the

author are not included in the bar graph but are included in the table. A few sensor’s

signals that researchers have visually identified as having fall data where ignored

during preprocessing as they had missing a few data points, and preprocessing was

set to strictly ignore signals missing data points. The effectiveness of the SVM could

still be high if this rule was relaxed some, something to be explored in future work.

In all other cases, fall signals were identified in either category two or three with only

one signal being classified as category one, closely matching that of the manually

designated categories. The SVM results demonstrate a desirable outcome for a fall

detection application.
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Support Vector Machines appear to be effective and viable approach to sorting

through massive amounts of data generated from a vibration monitoring system given

metrics that are descriptive of the signals being classified. RoD was the worst per-

forming metric explored, having low mean accuracy for both linear and RBF kernels.

Amax was the second best performing metric in this study as higher amplitude signals

typically indicated real data in our study. Ultimately DR came out to be the most

robust and effective metric in this study. Combining metrics together can produce a

slight increase in the overall accuracy.

Part of having an effective SVM, is to choose the right kernel using the right met-

rics for the application. Being a new approach, the research explored four kernels to

find that the radial basis function performed the best not only in robustness (defined

as having high mean accuracy and low standard deviation over 100 trials), but also

in having extremely high accuracy possible using each metric with a specific training

set.
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Chapter 5

The FEEL Algorithm

5.1 Introduction

An important part for treatment and rescue pertaining to fall detection is estimat-

ing the magnitude of the impact and its location within the structure. Doctors could

utilize the force information to determine the severity of injuries and take appropri-

ate action to prevent further exacerbation. Diagnosis and treatment of injuries thus

have the potential to be quicker with the impact’s force magnitude. Rescuers can use

the impact location information to more quickly find the fallen person, a useful tool

particularly when the fallen cannot yell for help. In addition, the force estimate can

also be used to differentiate between a person falling and objects being dropped.

The challenges of current state-of-the-art fall detection algorithms using structural

vibrations (discussed in Section 1.2) stem from the estimation of properties that vary

by structure (e.g. energy methods use structural damping estimations). Even with

ample experimentation and modeling of a structural system, the physical properties,

such as stiffness and damping, are still challenging to obtain. Thus, an algorithm

using floor vibrations should intrinsically embed within itself the attributes of any

structure.

5.2 Force Estimation and Event Localization (FEEL) Algorithm

The FEEL Algorithm was designed to intrinsically embed structural properties

into transfer function estimates between calibrated locations and sensors. Forces
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and the dynamic response of the structure are related during the calibration process,

which eliminates challenges with distance between a sensor and an impact’s location

assuming the response is measurable. Time synchronization of sensors can be difficult,

thus FEEL was designed to not require it. The algorithm becomes more easily scalable

because of this. Scalability also brings with it greater robustness as more sensors can

be added to the mix to provide more information. A minimum of two sensors are

required to apply FEEL due to the pair matching method for estimating the location

and force of impact. FEEL has been implemented as the Python package feel with

documentation being provided in Appendix N and has been filed as U.S. Patent

Application No. 62/324,468 [35]. The process diagram for navigating the algorithm’s

operation is shown in Figure 5.1, with more detail on each step provided in the

following sections.

Calibrate
T̂i,j

Capture
Vibrations

Estimate
Forces
{F̂i,j}

Localize
Event L̂

Estimate
Force Mag-
nitude F̂

Figure 5.1: FEEL Algorithm Process Diagram

5.2.1 Calibration

The FEEL Algorithm works by first dynamically characterizing the structure.

Calibration yields transfer functions between forces at plausible fall locations and

accelerations at the sensor locations. Force records obtained from an impulse hammer

and the resulting floor vibrations are recorded for use in the transfer function estimate

presented in Equation 5.1

T̂(f) = Txy(f) + Tyx(f)
2 (5.1)
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where

Txy(f) = Pxy(f)
Pxx(f) (5.2)

Tyx(f) = Pyy(f)
Pyx(f) (5.3)

x is input (force), y is output (accelerations), Pxy(f) is the cross power spectral

density of x to y, Pxx(f) is the power spectral density of x, Pyy(f) is the power

spectral density of y, and Pyx(f) is the cross power spectral density of y to x [36, 37].

The averaging of Txy(f) and Tyx(f) reduces the amount of noise and measurement

error present in the transfer function estimate.

5.2.2 Force Estimation

To estimate the force, one takes the acceleration signal S and applies the T̂(f) for

the each location of impact as seen in the following

[Ii,j] = FFT(S)[
T̂i,j(f)

] (5.4)

[
F̂i,j

]
= IFFT ([Ii,j]) (5.5)

where FFT() is the Fast Fourier Transform, IFFT() is the Inverse Fast Fourier Trans-

form,
[
F̂i,j

]
is the force estimation matrix, i is the location, and j is the sensor.

5.2.3 Event Localization

The location of events in other disciplines has traditionally been treated as a

‘time of flight’ problem. Sensors are time synchronized and the difference between
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the arrival of a wave is used for localization [38, 39]. This technique has proven

successful in other areas of engineering but has significant challenges. In particular,

the sensors need to be synchronized and the wave speed needs to be known. This

would increase the complexity of the sensing system, and ultimately the potential

cost of production. Therefore, the author aimed at developing a method that does

not depend on time. The method compares force estimates for different locations

using data from different sensors. The location that estimates the same force, likely

corresponds to the location of impact.

The FEEL Algorithm event localization requires at least two sensors. The author

attempted many methods to compare the force estimates and found the use of the

Correlated Force Estimates Method to be the most robust due to its redundancy,

with reliability increasing with the more sensors used. Other techniques explored

during the development of the FEEL Algorithm are presented in Appendix G.

Correlated Force Estimates Method

The method begins by determining the window of the force estimation to consider

based on the maximum amplitude within the acceleration window. Alternatively, one

could use a threshold crossing method to choose a window within the force estimate,

like taking the time where the signal first crosses out of a ‘noise’ level previously

defined.

Symmetrical or asymmetrical windows may be used. The windows may also be

taken on a per sensor basis, by choosing one sensor as a reference and using its

window for all the sensors, or any combination thereof. The author suggests using

a symmetrical window and using one sensor as a reference. This is due to the fact

that the FEEL Algorithm is time-independent, meaning the force estimates at each

sensor will show peaks at the same time across all estimates, and the method is based

on the shape of the peak in the force estimates, making a symmetrical window ideal
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for capturing the similarity of symmetrical peaks. The force estimates do usually

maintain a similar shape at the location of impact, which lends localization towards

this method.

After portions of each force estimate are selected, the normalized correlation co-

efficient matrix is formed using only the real portion of the force estimate like in

Equation 5.6

{Li} = max



0 ρxy(F̂i,1(n), F̂i,2(n)) · · · ρxy(F̂i,1(n), F̂i,j(n))

0 · · · ρxy(F̂i,2(n), F̂i,j(n))
. . . ...

sym. 0


(5.6)

where

ρxy = COV (x, y)
√

σxσy

(5.7)

is the Pearson product-moment correlation coefficient, cov() is the covariance, σ is the

standard deviation, x and y are vectors, {Li} is the vector of maximum normalized

correlation coefficient for each location i, max() is the maximum value function, F̂i,j

is the force estimation of the i-th location at the j-th sensor, and n is the number of

points in the window [21, 40].

The normalized correlation coefficients are then compared by location with the

largest value being the location of impact as in Equation 5.8 where L̂ is the highest

correlation coefficient, and max() is the maximum value function.

L̂ = max({Li}) (5.8)
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The advantage of this approach stems from the pair matching in the correlation

matrix. Each force estimate is compared to the other, providing redundancy when

more sensors and consequently, more force estimates are available. There may be

times when very poor force estimates appear, so by taking the best pair of estimates

(i.e. the pair having the highest correlation value), error in locating the impact reduce

greatly. Furthermore, the acceleration records do not have to be time-synchronized,

reducing the complexity of the data acquisition system. The Correlated Force Esti-

mates Method thus provided the more robust localization of the methods tested.

5.2.4 Force Magnitude Estimation

Once the location has been identified as in Section 5.2.3, the two closest matching

pair of force vectors are used to estimate the force magnitude. The estimation of the

force can be biased with a constant value in the acceleration measurements. Yet, the

force magnitude estimate of the i-th location and j-th sensor can be estimated using

F̂i,j = max
(
{F̂i,j}

)
− min

(
{F̂i,j}

)
(5.9)

where max() is the maximum value function, {F̂i,j} is the real portion of the force

estimation vector produced by Equation 5.5, and min() is the minimum value func-

tion. Figure 5.2 demonstrates a biased force estimation. Applying Equation 5.9, one

can see the accuracy of the force magnitude estimate increases for the location and

sensor.

The force magnitude for the specific acceleration event is taken to be the average

of the two sensor’s force estimation magnitudes whose force estimation vectors more

closely match as seen in Equation 5.10

F̂ = F̂i,1 + F̂i,2

2 (5.10)
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where F̂i,1 and F̂i,2 are the two force estimate magnitudes who closely match relative

to other pairings at the identified impact location i.
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Figure 5.2: Biased Force Estimate Example

5.3 Low-Pass Finite Impulse Response Filter Design and Fourier

Method Resampling

Sometimes, before processing signals, it is desirable to apply a low-pass filter to

reduce noise from high frequencies and prevent aliasing in the signal during resampling

[41]. A low-pass Finite Impulse Response (FIR) filter was thus designed using the

window method for use in processing acceleration signals before applying FEEL [42,

43]. The Kaiser Window Function was used to apply the filter [44] with a beta value

of 16.67 and window order of 8682. Figure 5.3 displays the frequency response of the

filter having a transition band of 10 Hz, a stop band attenuation of 160 dB, a cutoff

frequency of 208 Hz, and based on a signal sampling rate of 2049 Hz.

Resampling was performed using the Fourier Method to reduce sampling rates to
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Figure 5.3: Low-Pass FIR Filter Frequency Response

400 Hz after the filter was applied to the data [21, 45]. A signal delay was calculated

using Equation 5.11 where N is the number of coefficients in the filter, d is the number

of data points in the delay, FSnew is the new sampling rate, and FSold is the original

sample rate of the signal [21].

d =
(

N − 1
2

)(
FSnew

FSold

)
(5.11)

The above signal delay equations give the number of samples the filtering process

have been affected by the filter’s initial conditions, and it is suggested to round the

values if a whole number is not produced from the equations. To get the amount

of time the signal delay equates to, use Equation 5.12 where d is the signal delay

calculated in Equation 5.11.

∆t = d

FSnew

(5.12)
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The filter and resampling mentioned here are both provided in the feel Python

package for convenient use. See Appendix N for more details.

5.4 Verification Experiments

The FEEL Algorithm was tested on a small scale steel structure at the Structural

Dynamics and Intelligent Infrastructure Laboratory (SDII) at the University of South

Carolina (USC) in two trials. The structure is shown in Figure 5.4 and was built using

3.18 cm (1.25 in) outer diameter, 0.478 cm (0.188 in) wall DOM cold-rolled tube steel

as the beams and 2.54 cm (1 in) NC 2C threaded rods to connect the beams to the

6.35 cm (2.5 in) cubic 1018 cold-rolled bar. The tubes and cubes were thread in an

20.32 cm (8 in) pitch. The structure is suspended on steel supports and allowed to

rotate around the horizontal axis using mounted bearings. Even though the dynamic

characteristics of the structure do not match those of a residential dwelling, the

objective of the tests described here is to verify if the algorithm would work before

moving to a full scale structure. Three PCB Piezotronics 333B50 accelerometers with

a sensitivity of 1000 mV/g were attached to the structure using magnetic mounts at

nodes 8, 9, and 12. A 2.22 N (0.5 lb) PCB Piezotronics Impulse Force Hammer having

a sensitivity of 2.33 mV/N (10.35 mV/lb) was used to excite the structure,. Data was

collected at a rate of 2049 Hz, filtered using a FIR, and downsampled to 400 Hz as in

Section 5.3. The lower rate was chosen in order to model a more realistic scenario.

5.4.1 Preliminary Trial

The first trial served to indicate the viability of the FEEL Algorithm. Transfer

functions were calculated using the method outlined in Section 5.2.1 at node 7 (Fig-

ure 5.5) and node 10 (Figure 5.6) for all three sensors using a nfft value of 2048 and

a noverlap value of 1024. The data used for the transfer functions was captured in one

continuous record containing forces and accelerations. Five impacts were performed,
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Figure 5.4: Steel Test Frame Layout

with the structure being allowed to return to rest after each hammer hit.

The transfer functions were then used to estimate the force of impact using the

method in Section 5.2.2. Figure 5.7 displays the node 7 impact results, and Figure 5.8

displays the node 10 impact results. The force estimations for both impacts were used

to identify the location of an impact based on the Correlated Force Estimates Method

in Section 5.2.3. The location results for node 7’s impact are displayed in Figure 5.9,

and node 10’s impact displayed in Figure 5.10. The correct location is highlighted in

orange. The force magnitude was calculated as in Section 5.2.4 and results displayed

in Table 5.1. FEEL was successful in identifying the location and force of the impacts.
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Figure 5.6: T̂10,j for j From 1 to 3
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Figure 5.7: Force Estimations for an Impact on Node 7
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Figure 5.8: Force Estimations for an Impact on Node 10

93



Node 7 Node 10
Location

0.0

0.2

0.4

0.6

0.8

1.0

Fo
rc

e
Co

rr
ela

tio
n

Co
effi

cie
nt

Figure 5.9: Li for an Impact on Node 7
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Figure 5.10: Li for an Impact on Node 10
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Table 5.1: Steel Frame Prelimi-
nary Trial Force Magnitude Es-
timate Results

Impact Actual (N) F̂ (N)
Node 7 78.8 80.0
Node 10 97.0 91.7

5.4.2 Trial Using Eight Locations

The FEEL Algorithm was applied, when impacts were exerted, to 8 of the 16

nodes present on the steel frame in Figure 5.4. Nodes 1, 4, 5, 8, 9, 12, 13, and 16

were not taken into consideration as they were assumed to be under a wall. Each of the

remaining nodes was excited 20 times using the impulse force hammer, with 10 records

being used to generate transfer functions. Each hit was stored as a record containing

10 s of data from the time of impact. The rest of the procedure progressed as in

Section 5.4.1. Transfer functions are presented in Figure 5.11. Note that the transfer

functions from Node 7 and Node 10 look different that those from the steel frame

preliminary trial of Section 5.4.1. This is due to the different techniques for combining

data for the generation of each transfer function. Here, the transfer functions were

generated using several records spliced together (one for each impact), whereas in the

preliminary trial, the record was continuous.

An impact on node 2 is presented as an sample of this trial. Figure 5.12 shows

the force estimates for all locations, and Figure 5.13 shows the force correlations by

location with the identified location being highlighted in orange. The methodology

was successful in estimating the location of impact as well as the force. The remaining

impacts may be found in Appendix H, and a summary of results is provided in

Table 5.2.
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Figure 5.11: Steel Frame Transfer Functions
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Figure 5.12: Force Estimates by Node for an Impact on Node 2

97



Nod
e 2

Nod
e 3

Nod
e 6

Nod
e 7

Nod
e 10

Nod
e 11

Nod
e 14

Nod
e 15

Location

0.0

0.2

0.4

0.6

0.8

1.0

Fo
rc

e
Co

rr
ela

tio
n

Co
effi

cie
nt

Figure 5.13: Li for an Impact on Node 2

The results from the steel frame indicate the viability of the FEEL Algorithm.

Each impact set correctly identified the node the impact occurred on, and closely

estimated the maximum force of the impact. Sometimes a node near the impact,

such as node 2 in Figure H.1, shows some convergence of the three sensors. This

demonstrates that each transfer function has an area of influence, which will be

explored in future work.

Table 5.2: Steel Frame Trial Using Eight
Locations Results Summary

Impact L̂ Actual (N) F̂ (N)
Node 2 Node 2 72.7 63.4
Node 3 Node 3 13.6 10.7
Node 6 Node 6 26.0 22.5
Node 7 Node 7 88.4 83.9
Node 10 Node 10 12.9 11.1
Node 11 Node 11 18.0 19.0
Node 14 Node 14 24.4 23.7
Node 15 Node 15 38.5 29.6
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5.5 Implementation Experiments

This section discusses the performance of the FEEL Algorithm in a full scale

structural environment based on the human-induced vibration benchmark dataset

developed by Arocha [46]. The experiments were performed in the second story office

of the USC Structures Laboratory, measuring 777 cm (25.5 ft) by 638 cm (20.9 ft),

that has reinforced concrete floors covered in vinyl tiles. The experimental layout

is presented in Figure 5.14. Three PCB Piezotronics 333B50 accelerometers with

sensitivity of 1000 mV/g were installed on the floor near the walls. Data was collected

at a rate of 1651.7 Hz with 2 s windows. Five locations were chosen on the floor for

the experiment. A total of 3575 impact events of eight different types were available.

The events include hammer impacts (Section 5.5.1), ball drops (Section 5.5.2), bag
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Figure 5.14: Implementation Experimental Layout
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drops (Section 5.5.3), and human jumps (Section 5.5.4). Event types are outline in

Table 5.3 and example acceleration records are provided in Figure 5.15.

Table 5.3: Implementation Experiment
Event Types

Event Name Mass (kg) Details
hammer 5.49
ball-low 0.56 1.42 m drop
ball-high 0.56 2.10 m drop
bag-low 0.45 1.42 m drop
bag-high 0.45 2.10 m drop
d-jump 80 male
j-jump 55 female
w-jump 85 male

5.5.1 Force Hammer Trials

Transfer functions were developed for each of the five locations (see Figure 5.16)

using a PCB Piezotronics Impulse Force Hammer Model 086D50 with a sensitivity of

0.2305 mV/N (1.025 mV/lb) and the ability to excite to a frequencies up to 800 Hz.

Five separate impacts were combined into one long force vector for calculation of

the transfer functions as seen in Figure 5.16. Then, 15 separate impacts per loca-

tion (total of 75 impacts) were used to validate the FEEL Algorithm. Results for a

single impact on location one are presented where Figure 5.15h displays the accel-

eration signals, Figure 5.17 displays force estimations, and Figure 5.18 displays the

force correlation coefficients with the identified location in orange. Examples for the

remaining locations are presented in Appendix I.

A histogram of the difference between the estimated force magnitudes and those

measured with the force hammer are shown in Figure 5.19, with a mean of 183.9 N

(41.3 lb) and a standard deviation of of 184.3 N (41.4 lb). The estimates largely tend

to be within 200 N (45 lb) of the measured force for each impact, with 72.0% of

estimates falling within this range. Figure 5.20 displays the distribution of the force
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Figure 5.15: Implementation Experiment Example Accelerations
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Figure 5.16: Concrete Floor Transfer Functions

102



0.00 0.02 0.03 0.05 0.06
Time (s)

−500

500

1500

2500

3500

Fo
rc

e
(N

)
Sensor 1
Sensor 2
Sensor 3
Sensor 4
Actual

(a) F̂1,j

0.00 0.02 0.03 0.05 0.06
Time (s)

−500

500

1500

2500

3500

Fo
rc

e
(N

)

Sensor 1
Sensor 2
Sensor 3
Sensor 4
Actual

(b) F̂2,j

0.00 0.02 0.03 0.05 0.06
Time (s)

−500

500

1500

2500

3500

Fo
rc

e
(N

)

Sensor 1
Sensor 2
Sensor 3
Sensor 4
Actual

(c) F̂3,j

0.00 0.02 0.03 0.05 0.06
Time (s)

−500

500

1500

2500

3500

Fo
rc

e
(N

)

Sensor 1
Sensor 2
Sensor 3
Sensor 4
Actual

(d) F̂4,j

0.00 0.02 0.03 0.05 0.06
Time (s)

−500

500

1500

2500

3500

Fo
rc

e
(N

)

Sensor 1
Sensor 2
Sensor 3
Sensor 4
Actual

(e) F̂5,j

Figure 5.17: Hammer Impact Force Estimations for an Impact on Location 1
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Figure 5.18: Hammer Impact Li for an Impact on Location 1

magnitude estimate error which has a mean of -2.0% and a standard deviation of

4.4%. This gives a 99% confidence interval for the force magnitude estimate being

within -2.0% ± 1.3% of the actual force magnitude.

A confusion matrix was developed to determine how well the FEEL Algorithm

determined the location of each hit, which is presented in Table 5.4. All 75 hammer

impacts were correctly located.

Table 5.4: Confusion Matrix for Locating Hammer Impacts

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 15 0 0 0 0
Location 2 0 15 0 0 0
Location 3 0 0 15 0 0
Location 4 0 0 0 15 0
Location 5 0 0 0 0 15
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Figure 5.19: Hammer Impacts Force Magnitude Estimation Differ-
ence

−15 −10 −5 0 5 10
Force Magnitude Error (%)

0

2

4

6

8

10

12

14

16

18

O
cc

ur
re

nc
es

Figure 5.20: Hammer Impacts Force Magnitude Estimation Error
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5.5.2 Ball Drop Trials

A basketball weighing 0.56 kg (1.23 lb) was dropped from two different heights at

each location for 100 repetitions. The trial named ball-low indicates a drop height

of 1.42 m (4.63 ft), and the trial named ball-high indicates a drop height of 2.10 m

(6.89 ft).

A sample impact for ball-low at location one is presented with Figure 5.15a show-

ing the vibrations the floor experienced, Figure 5.22 showing the force estimations at

each location, and Figure 5.21 showing the resulting correlation coefficients where the

orange bar is the identified location. Note that unlike with the hammer excitation,

no force record is available for comparison.

Lo
cat

ion
1

Lo
cat

ion
2

Lo
cat

ion
3

Lo
cat

ion
4

Lo
cat

ion
5

0.0

0.2

0.4

0.6

0.8

1.0

Fo
rc

e
Co

rr
ela

tio
n

Co
effi

cie
nt

Figure 5.21: Ball-Low Li for an Impact on Location 1

A confusion matrix was generated to demonstrate the accuracy of the FEEL

Algorithm for location when the impact was caused by ball-low in Table 5.5. All 500

ball-low impacts were correctly identified giving a 100% success rate.

106



0.00 0.02 0.04 0.07 0.09
Time (s)

−200

−40

120

280

440

600

Fo
rc

e
(N

)
Sensor 1
Sensor 2
Sensor 3
Sensor 4

(a) F̂1,j

0.00 0.02 0.04 0.07 0.09
Time (s)

−200

−40

120

280

440

600

Fo
rc

e
(N

)

Sensor 1
Sensor 2
Sensor 3
Sensor 4

(b) F̂2,j

0.00 0.02 0.04 0.07 0.09
Time (s)

−200

−40

120

280

440

600

Fo
rc

e
(N

)

Sensor 1
Sensor 2
Sensor 3
Sensor 4

(c) F̂3,j

0.00 0.02 0.04 0.07 0.09
Time (s)

−200

−40

120

280

440

600

Fo
rc

e
(N

)

Sensor 1
Sensor 2
Sensor 3
Sensor 4

(d) F̂4,j

0.00 0.02 0.04 0.07 0.09
Time (s)

−200

−40

120

280

440

600

Fo
rc

e
(N

)

Sensor 1
Sensor 2
Sensor 3
Sensor 4

(e) F̂5,j

Figure 5.22: Ball-Low Force Estimations for an Impact on Location 1
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Table 5.5: Confusion Matrix for Locating Ball-Low Impacts

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 100 0 0 0 0
Location 2 0 100 0 0 0
Location 3 0 0 100 0 0
Location 4 0 0 0 100 0
Location 5 0 0 0 0 100

A histogram of the estimated force magnitudes shown in Figure 5.23 demonstrates

a tight grouping of the force estimates around 500 N-600 N (123 lb-135 lb) having a

mean of 569.5 N (128.0 lb) and standard deviation of 41.3 N (11.5 lb). The variation

in estimates is due to how the ball drop experiment was performed as well as errors

in FEEL. The experiment was performed by a person holding and releasing the ball.

This means there will be some variation in the force as the person holds the ball at a

slightly different heights, and the ball bounces at slightly different spots each time.
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Figure 5.23: Ball-Low Force Magnitude Estimation Histogram
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A sample impact for ball-high at location four is presented with Figure 5.15b

showing the vibrations the floor experienced, Figure 5.25 showing the force estima-

tions at each location, and Figure 5.24 showing the resulting correlation coefficients

where the orange bar is the identified location.

Lo
cat

ion
1

Lo
cat

ion
2

Lo
cat

ion
3

Lo
cat

ion
4

Lo
cat

ion
5

0.0

0.2

0.4

0.6

0.8

1.0

Fo
rc

e
Co

rr
ela

tio
n

Co
effi

cie
nt

Figure 5.24: Ball-High Li for an Impact on Location 1

A confusion matrix was generated to demonstrate the accuracy of the FEEL

Algorithm for localization in the case of ball-high in Table 5.6. Of the 500 ball-high

impacts, 499 were correctly identified which is a 99.8% success rate.

Table 5.6: Confusion Matrix for Locating Ball-High Impacts

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 100 0 0 0 0
Location 2 0 100 0 0 0
Location 3 1 0 99 0 0
Location 4 0 0 0 100 0
Location 5 0 0 0 0 100
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Figure 5.25: Ball-High Force Estimations for an Impact on Location 1
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The force estimations center around 700 N (157 lb) having a mean of 713.2 N

(160.3 lb) and standard deviation of 56.5 N (12.7 lb). Variations in the estimates here

stem from how the ball-high trial was performed, like that of the ball-low trial, where

a person held the ball at approximately the same height each time.
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Figure 5.26: Ball-High Force Magnitude Estimation Histogram

5.5.3 Bag Drop Trials

A bag of k’nex weighing 0.45 kg (0.99 lb) was dropped from two different heights

at each location for 100 repetitions. The trial named bag-low indicates a drop height

of 1.42 m (4.63 ft), and the trial named bag-high indicates a drop height of 2.10 m

(6.89 ft). This bag was selected because it provides an impact with a very different

coefficient of restitution than the basketball.

A sample impact for bag-low at location two is presented with Figure 5.15c show-

ing the vibrations the floor experienced, Figure 5.27 showing the force estimations at

each location, and Figure 5.28 showing the resulting correlation coefficients where
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Figure 5.27: Bag-Low Force Estimations for an Impact on Location 2
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the orange bar is the identified location. Notice that the force correlation coefficient

for the k’nex bag was much smaller than those found for the basketball. However,

the method was still successful at determining the location of impact.

Lo
cat

ion
1

Lo
cat

ion
2

Lo
cat

ion
3

Lo
cat

ion
4

Lo
cat

ion
5

0.0

0.2

0.4

0.6

0.8

1.0
Fo

rc
e

Co
rr

ela
tio

n
Co

effi
cie

nt

Figure 5.28: Bag-Low Li for an Impact on Location 2

A confusion matrix was generated to demonstrate the accuracy of the FEEL

Algorithm for localization with the bag-low test in Table 5.7. Of the 500 bag-low

impacts, 498 were correctly identified which is a 99.6% success rate.

Table 5.7: Confusion Matrix for Locating Bag-Low Impacts

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 98 1 0 0 1
Location 2 0 100 0 0 0
Location 3 0 0 100 0 0
Location 4 0 0 0 100 0
Location 5 0 0 0 0 100
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The force estimations center around 300 N-400 N (67 lb-90 lb), having a mean of

356.6 N (80.2 lb) and standard deviation of 158.7 N (35.7 lb) as in Figure 5.29.
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Figure 5.29: Bag-Low Force Magnitude Estimation Histogram

A sample impact for bag-high at location five is presented with Figure 5.15d show-

ing the vibrations the floor experienced, Figure 5.30 showing the force estimations

at each location, and Figure 5.31 showing the resulting correlation coefficients where

the orange bar is the identified location.

The location confusion matrix was generated to demonstrate the accuracy of the

FEEL Algorithm for localization for bag-high in Table 5.8. Of the 500 bag-high

impacts, 494 were correctly identified which is a 98.8% success rate.

The force estimations center around 300 N-400 N (67 lb-90 lb), having a mean of

444.7 N (100.0 lb) and standard deviation of 314.1 N (70.6 lb) as in Figure 5.32.
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Figure 5.30: Bag-High Force Estimations for an Impact on Location 5
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Figure 5.31: Bag-High Li for an Impact on Location 5
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Figure 5.32: Bag-High Force Magnitude Estimation Histogram
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Table 5.8: Confusion Matrix for Locating Bag-High Impacts

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 96 2 1 0 1
Location 2 0 100 0 0 0
Location 3 0 1 98 0 1
Location 4 0 0 0 100 0
Location 5 0 0 0 0 100

5.5.4 Human Jump Trials

Three different people jumped at each location 100 times. The trial names indicate

the following: d-jump is a male weighing 80 kg (176 lb), j-jump is a female weighing

55 kg (121 lb), w-jump is a male weighing 85 kg (187 lb). The jump height of each

person varied, and the way the person landed varied as well. This allowed for testing

the FEEL Algorithm and exploring its robustness.

A sample impact for d-jump at location one is presented with Figure 5.15e showing

the vibrations the floor experienced, Figure 5.33 showing the force estimations at

each location, and Figure 5.34 showing the resulting correlation coefficients where

the orange bar is the identified location.

The location confusion matrix was generated to demonstrate the accuracy of the

FEEL Algorithm for localization for the d-jump test in Table 5.9. Of the 500 d-jump

impacts, 476 were correctly identified which is a 95.2% success rate. The algorithm

had the most error at location one where it only had 86% success.

The force estimations center around 700 N-800 N (157 lb-180 lb), having a mean of

711.4 N (159.9 lb) and standard deviation of 226.9 N (51.0 lb) as in Figure 5.35. Since

this trial is record of human-induced vibrations, there is bound to be some variation

as the person jumping would not have jumped to the same height every time. The

spread of estimates is closer together than that of the bag-high trials.
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Figure 5.33: D-Jump Force Estimations for an Impact on Location 1
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Figure 5.34: D-Jump Li for an Impact on Location 1
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Figure 5.35: D-Jump Force Magnitude Estimation Histogram
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Table 5.9: Confusion Matrix for Locating D-Jump Impacts

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 86 0 0 2 12
Location 2 0 100 0 0 0
Location 3 0 0 91 1 8
Location 4 0 0 0 99 1
Location 5 0 0 0 0 100

A sample impact for j-jump at location two is presented with Figure 5.15f showing

the vibrations the floor experienced, Figure 5.37 showing the force estimations at

each location, and Figure 5.36 showing the resulting correlation coefficients where

the orange bar is the identified location.
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Figure 5.36: J-Jump Li for an Impact on Location 3

The location confusion matrix was generated to demonstrate the accuracy of the

FEEL Algorithm for localization in Table 5.10. Of the 500 j-jump impacts, 477 were

correctly identified which is a 95.4% success rate. Location one continued to be the

lowest performing location of those tested.
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Figure 5.37: J-Jump Force Estimations for an Impact on Location 3
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Table 5.10: Confusion Matrix for Locating J-Jump Impacts

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 92 3 0 0 5
Location 2 0 100 0 0 0
Location 3 2 0 98 0 0
Location 4 0 2 1 94 3
Location 5 2 4 0 1 93

The force estimations tend to be around 100 N-200 N (22 lb-45 lb), having a mean

of 227.1 N (51.1 lb) and standard deviation of 244.8 N (55.0 lb) as in Figure 5.38. The

variation reason is the same as that of d-jump. The interesting point here is that the

estimates tend to be lower in magnitude which makes sense considering the lighter

weight of the person jumping compared to the other two jumpers.
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Figure 5.38: J-Jump Force Magnitude Estimation Histogram

A sample impact for w-jump at location four is presented with Figure 5.15g show-

ing the vibrations the floor experienced, Figure 5.39 showing the force estimations
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Figure 5.39: W-Jump Force Estimations for an Impact on Location 4
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at each location, and Figure 5.40 showing the resulting correlation coefficients where

the orange bar is the identified location.

Notice how in Figure 5.39 how the shapes of the force are quite similar. This is

reflected in Figure 5.40 where the correlations are also very similar. A possibility

arises here that there could be few calibration points in an area. The force could

possibly be estimated, and the room identified as the location of impact from less

information. This will be explored in future work.
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Figure 5.40: W-Jump Li for an Impact on Location 4

The location confusion matrix was generated to demonstrate the accuracy of the

FEEL Algorithm for localization for w-jump in Table 5.11. Of the 500 w-jump im-

pacts, 428 were correctly identified which is a 85.6% success rate. Location one again

had the lowest performance of the locations tested.
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Table 5.11: Confusion Matrix for Locating W-Jump Impacts

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 45 6 4 13 32
Location 2 1 98 0 0 1
Location 3 3 3 90 0 4
Location 4 0 0 1 96 3
Location 5 0 1 0 0 99

The force estimations center around 900 N-1000 N (202 lb-225 lb), having a mean

of 947.1 N (212.9 lb) and standard deviation of 421.5 N (97.8 lb) as in Figure 5.41. The

variation in magnitudes is due to the same reason as that of d-jump and j-jump trials.

This test had the heaviest person jumping which the histogram demonstrates with

the majority of jumps being higher in magnitude than the other two participants.
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Figure 5.41: W-Jump Force Estimation Histogram
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5.6 Implementation Experiment Resampled

The following describes the effect of resampling on the performance of FEEL.

5.6.1 Using Sampling Frequency of 400 Hz

The data collected during the experiment presented in Section 5.5, was downsam-

pled to 400 Hz using the Fourier Method [21, 45]. This would determine if the higher

frequencies present in the data affect the force estimate and event localization. The

results presented below point towards the new rate being more effective than the orig-

inal sampling rate. It is then verified that the FEEL Algorithm can be implemented

at a relatively low sampling frequency to reduce computational cost.

The experiment first started with the force estimate difference for the hammer

impacts as a signifier of force magnitude estimation accuracy shown in Figure 5.42.

With the new sampling frequency of 400 Hz, the differences became much smaller

having a mean of 109.9 N (24.7 lb) and standard deviation of 99.1 N (22.3 lb). The

accuracy improved placing 85.3% of force differences within the 200 N (45 lb) range,

an increase of 13.3% from the original estimates presented in Figure 5.19. The 99%

confidence interval for force magnitude estimation error also improved becoming -1.7%

± 1.0% based on Figure 5.43 where the mean is -1.7% and the standard deviation is

3.5%.

The next measure was event localization accuracy which is displayed in a confusion

matrix of Table 5.12. Originally across all action types, there were 3447 correctly

located out of 3575 records for a 96.4% overall accuracy rate. Resampling brought the

location accuracy down to 90.7% correct, or 3244 out of 3575. The event localization

accuracy still remains very high showing that the FEEL Algorithm can be used for

localization at lower sampling rates.

The results indicate that as one lowers the sampling rate, the location accuracy

decreases, while the force magnitude estimation accuracy increases. Sampling rate
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Figure 5.42: Force Magnitude Estimation Difference for Concrete
Floor Impacts Using Data Downsampled to 400 Hz
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Figure 5.43: Force Magnitude Estimation Error for Concrete Floor
Impacts Using Data Downsampled to 400 Hz
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Table 5.12: Concrete Floor Confusion Matrix for Location Using Data Downsam-
pled to 400 Hz

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 499 14 18 60 124
Location 2 8 700 0 3 4
Location 3 8 13 668 14 12
Location 4 0 5 0 699 11
Location 5 6 20 2 9 678

optimization is outside the scope of this scholarly work but is something to be looked

into if the desired application of the FEEL Algorithm requires the highest possible

accuracy for both force estimation and event localization.

5.6.2 Upsampling From 400 Hz to 1651.7 Hz For Force Accuracy

When all data in the concrete floor experiment was downsampled to 400 Hz using

the Fourier Method [21, 45], the recorded force magnitude from the impulse hammer

was consequently also reduced. The accuracy might have improved between the

downsampled data, but in actuality the real, true force magnitude was not there.

Thus, to overcome this challenge, the 400 Hz data from Section 5.6.1 was upsampled to

the original sampling frequency of 1651.7 Hz. The transfer functions used to estimate

the force were generated from the original data that used the 1651.7 Hz sampling rate.

Resulting was an accuracy rate near to that seen using just the original data (see

Section 5.5), with 61.3% of estimations being within 200 N (45 lb) as in Figure 5.44.

The results had a mean of 291.7 N (65.6 lb) and standard deviation of 406.5 N (91.4 lb).

This is a 10.7% difference in accuracy than that of using the original data which

had 72% of force differences fall within that range. Figure 5.45 displays the force

magnitude estimate error having a mean is -4.5% and the standard deviation is 4.8%.

The 99% confidence interval for the force magnitude estimate error is thus -4.5% ±

1.4%.
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Figure 5.44: Force Magnitude Estimation for Concrete Floor Impacts
Using Data Upsampled From 400 Hz to 1651.7 Hz
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Figure 5.45: orce Magnitude Estimation Error for Concrete Floor
Impacts Using Data Upsampled From 400 Hz to 1651.7 Hz
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The location confusion matrix is displayed in Table 5.13. Using the upsampled

data, the location accuracy decreased from 96.4%, seen in the original dataset, to

35.2%. The conclusion here is that data can be sampled at a low frequency and then

upsampled to capture a magnitude closer to that of the real true impact force with

a small loss in accuracy, but location accuracy significantly decreases when data is

upsampled.

Table 5.13: Concrete Floor Confusion Matrix for Location Using Data Upsampled
From 400 Hz to 1651.7 Hz

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 314 109 109 93 90
Location 2 132 305 138 34 106
Location 3 149 164 236 88 78
Location 4 196 116 104 197 102
Location 5 130 160 149 70 206

5.7 Implementation Retest Experiment

Two years after the original concrete floor experiment seen in Section 5.5 was

performed, a second set of experiments were performed to explore the effect that

different arrangement of furniture and people has on the transfer functions. The

experiment was set up to use the same equipment, sampling rate, and experimental

layout (see Figure 5.14) as the first time. Various actions akin to those in the original

were performed. A summary is presented in Table 5.14.

Table 5.14: Concrete Floor Retest Exper-
iment Event Types

Event Name Mass (kg) Details
ball 0.6 100 cm drop

e-jump 85 female
g-jump 73 male
hammer 5.5
l-jump 51 female
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Figure 5.46: Concrete Floor Retest Experiment Example Accelerations
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Each event type had five repetitions performed at five different locations for a

total of 25 records per event, and giving 125 available records in total. Figure 5.46

gives example accelerations for each event type.

The transfer functions from the original dataset (Section 5.5) were applied to

the 125 records of the retest dataset. Table 5.15 provides the confusion matrix for

location identification, with the shaded regions indicating local areas. The ability to

identify location dropped from average 96.8% correct to 70.4% with locations four

and five showing the most change. With large redistribution of the loading in the

room, the transfer functions have thus changed significantly at locations 4 and 5.

Local area identification demonstrates 80% accuracy and indicates a good ability to

perform regional localization in the face of significant change in loading.

Table 5.15: Implementation Retest Confusion Matrix for Location

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 20 1 1 1 2
Location 2 0 25 0 0 0
Location 3 0 6 19 0 0
Location 4 1 1 1 11 11
Location 5 5 0 7 0 13

Force magnitude estimation is compared to the measured hammer force in Fig-

ure 5.47. The differences had a mean of 1533.1 N (344.7 lb) and a standard deviation

of 1736.7 N (390.4 lb), indicating FEEL was having difficulty in estimating force of

impact under the new loading conditions. This is further backed by Figure 5.48 which

gives the 99% confidence interval for force magnitude estimation error as 16.2% ±

8.4%. In conclusion, the transfer functions should be re-calibrated when significant

furniture rearrangement is done.
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Figure 5.47: Difference Between Force Magnitude Estimation And
Measured Hammer Force for Implementation Retest Experiment
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Figure 5.48: Error Between Force Magnitude Estimation And Mea-
sured Hammer Force for Implementation Retest Experiment
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5.8 Conclusion

Most of the challenges faced by current detection systems based in structural vi-

brations are overcome through the application of the Force Estimation and Event

Localization (FEEL) Algorithm. Structural vibrations, which naturally contain the

dynamic attributes of the structure, are directly related to the impact force and loca-

tion. Challenges arising from structural property variation are thus eliminated, and

challenges of distance between a sensor and an event are overcome. Time synchro-

nization is not required for applying FEEL, making implementation easier than other

methods.

The algorithm exhibits great performance with 96.4% average accuracy in recog-

nizing impact location in over 3575 impacts of eight different types, and having a

force magnitude estimation error of -2.0% ± 1.3% for the 99% confidence interval. A

brief look how FEEL works at a lower sampling rate, 400 Hz in this case, indicates

that location accuracy decreases and force magnitude estimation accuracy increases

when compared to a higher sampling rate of 1651.7 Hz. However, the force actually

experienced by the structure is larger than what the signal captured at the lower

sampling rate sees. Data can be captured at a low sampling rate and upsampled

to close the gap between the force magnitude estimation and the force experienced

by the structure to alleviate this problem. Upsampling, however, does not increase

localization accuracy, but instead decreases it. In addition for long term implementa-

tions, there is a need to re-calibrate the transfer functions when significant furniture

rearranging in an area is done to maintain FEEL’s high accuracy.
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Chapter 6

EFFECT Active Learning Module For The

Frequency Domain

6.1 Introduction

Traditionally research dissertations focus on reporting a contribution to a spe-

cific area. However, the job of an academician goes beyond the discovery of new

knowledge to disseminating that knowledge through education. Dr. Juan M. Caicedo

encourages doctoral students that are interested in academia to apply to programs

such as the Preparing Future Faculty program and explore other aspects of the aca-

demic life such as teaching and service [47]. He also encourages students to explore

the use of effective teaching techniques by including a chapter in their dissertation

focusing in education rather than research. This chapter should not be an island of

the dissertation, and the topics should be relevant to those covered in the rest of the

work. This chapter discusses the use of active learning, “defined as any instructional

method that engages students in the learning process” [48], to teach concepts that

are difficult to conceptualize in structural dynamics. These concepts are particularly

important to understand the rest of the work presented herein.

Material such as that provided within this work can be difficult to grasp for stu-

dents without prior knowledge in dynamics due to the complexity of many of the

basic concepts. The Environments For Fostering Effective Critical Thinking (EF-

FECT) framework is used here to engage critical thinking skills and improve the

transfer of knowledge [49, 50, 51]. EFFECT was originally created in 2008 with a
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focus on freshmen engineering students to increase retention and improve outcomes

in the aforementioned areas and has since seen expansion to other college levels [49,

52, 53, 54]. Accreditation Board for Engineering and Technology (ABET) and Amer-

ican Society of Civil Engineers (ASCE) student outcomes can be addressed by each

full EFFECT making it a natural choice for engineering education, particularly in

the realms of communication skills, teamwork, and knowledge of contemporary is-

sues [53]. The EFFECT developmental framework provides a procedure that guides

instructors in creation of an EFFECT. The framework, in summary, follows this pro-

cedure: (1) critical concepts should be identified, (2) active learning modules are

developed for those concepts, (3) context provided for the EFFECT, and (4) a driv-

ing question and supporting question for a decision worksheet are developed [55]. It

is highly recommended that instructors test and perfect the active learning modules

before continuing with providing a context and designing a decision worksheet.

In this work, only the first two steps are completed. The outcome is an active

learning module for the concept of frequency domain representation of signals, a

concept heavily used in the FEEL Algorithm seen in Chapter 5. The module pro-

vides a foundation on which to expand into a full EFFECT for areas that work

with frequency domain based analysis, and will be provided on the EFFECT website

(https://sdii.ce.sc.edu/effects/).

6.2 The EFFECT Pedagogical Framework

EFFECT’s pedagogical framework, presented in Figure 6.1, “links the two critical

elements of active learning and reflective writing” [51] to stimulate the learner to

think critically about a topic presented [49, 51] and is what students experience in

class. An EFFECT begins with a decision worksheet where students thoughts are

framed in a design problem individually and then in concert with a group. The groups

discuss their varying opinions and provide support for their arguments. Everyone has

136

https://sdii.ce.sc.edu/effects/


a different knowledge set, thus this encourages students to think through each others’

ideas which in itself requires critical thinking or meta-cognition of what factors they

do not know. Driving questions are then supported by any number of interchangeable

active learning modules designed to give hands on experience to explore topics. The

modules can challenge students’ preconceived notions which may vary well be mis-

conceptions, encouraging self-discovery of knowledge. After each module, students

submit journal entries about class activities addressing the hows and whys the new

material can aid them in the design problem. This further directs students to think

deeply about a concept. The end of an EFFECT is a group and class discussion

about everything that was learned to come up with their new answers to the driving

question after they have corrected any misconceptions and expanded their knowledge

base. Afterwards, students submit final reports with their designs [49, 50, 51].

6.3 The EFFECT Developmental Framework

The developmental framework, outlined in Figure 6.2, takes a “think big, start

small” approach to creating a full EFFECT [55]. Individual elements of an EFFECT

are implemented first, and then refined in an iterative process based on feedback from

students and teacher evaluations of both self and the class. Items like how well did

the activity work in getting the understanding across or was the activity engaging

enough to encourage students to use critical thinking are of particular interest. Over

time, all the individual components of an EFFECT are combined to create the full

EFFECT and are linked together through a decision worksheet which has a context

and a set of driving and guiding questions to direct students on the learning process

[55].

The first step to creating a full EFFECT begins by the instructor identifying

concepts to be taught. Following this, active learning modules are created to demon-

strate the concepts through hands-on experiences, jigsaw class, or other engaging
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active learning techniques [56, 57, 58, 59, 60, 61, 62, 63]. These two steps are done

iteratively for several classes to improve upon the active learning modules so that

knowledge transfer is maximized and critical thinking is engaged. The third step is

to connect the concepts to a real world application. This aids in deep learning as

students link what they are seeing to something they are more familiar with or is

138



more tangible to them. After this, a context for the application is identified, ideally

an event or item that is contemporary. Finally, driving and guiding questions are

created. These questions serve as a launching point for the full EFFECT to get the

student engaged in a problem, and then direct their thinking through the problem.

One can think of the driving question as the main goal and the guiding questions as

hints to get the student thinking about the details needed to solve the main goal. The

combination of the driving question, guiding questions, and context are the decision

worksheet, and is what ultimately would begins a full EFFECT [55].

Driving
Question

Guiding
Questions

Concepts

Active
Learning
Modules

Application
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Decision Worksheet

Step 1

Step 2
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Step 5

Figure 6.2: EFFECT Developmental Structure [55]
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6.4 Concept Selection

Meetings with Dr. Juan M. Caicedo were spent discussing topics explored in this

work to select concepts that were, based on his instruction experience, difficult for

students to grasp. The concept of frequency domain representation of signals, some-

thing used heavily in the FEEL Algorithm, was identified as a difficult concept for

students and is the subject of the active learning module presented in Section 6.5 [47].

Frequency domain is not as utilized or explored in basic structural dynamics classes

as time domain is, and students typically think in terms of time instead of excitation

frequency to the overall signal. Hence, the selected topic was chosen as the subject

of an active learning module so that students can learn the concept effectively.

6.5 Active Learning Module

As a step towards creating a full EFFECT, the following active learning mod-

ule was created based on the format provided from the EFFECT website [54]. The

module focuses on the use of a steel frame test structure at the University of South

Carolina (USC) seen in Section 5.4; however, any structure can be used provided

that it has more visible responses to loading (e.g. large displacements) and one knows

or can estimate the first natural frequency. This ensures the students can both feel

and see what is happening with the structure. The module additionally provides the

opportunity for students to improve communication and teamwork skills through a

jigsaw-styled class where some students become ‘experts’ in the mathematical for-

mulas and others in the physical results, enabling the students to teach one another.

This method places emphasis on cooperation as the student group is less likely to

succeed without everyone coming together as a team, thus encouraging everyone’s

engagement with the subject matter [62]. Due to the potential demands of the expe-

rience, this module is designed for pairs of ‘experts’ so that students can share the
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demands for each piece. Students are additionally encouraged to take notes in the

focus groups to additionally ease the social demand [57].

Concept Frequency domain representation of signals

Audience College Junior/Senior

Estimated Time 75 minutes

Materials

1. Steel frame (or other structure). See Section 5.4.

2. DAQ. Used NI 9234 Module.

3. Accelerometer. Used PCB 333B50.

4. Computer (to operate DAQ).

5. Hammer (for impulse excitation). Used PCB 086C03.

6. Graph paper.

Description Begin by splitting class into two halves. One half will remain in

the classroom where an instructor will introduce the concept using typical classroom

instruction. The other half will proceed to the location of the steel frame for a hands

on explanation of the concept.

Classroom: Explain what is frequency domain is, and how it differs from the time

domain we often see. Talk about how any signal can be broken down into multiple

sines and cosines having their own frequency and amplitude. In other words, multiple

waveforms combine together to form a signal much like multiple instruments make

up an orchestra, and one hears all the instruments together or can focus in on one

particular instrument, i.e. a specific waveform within the greater signal. Talk about

the math for converting a time domain signal into frequency domain through the
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Fourier Transform. A handout to aid with instruction on the topic is provided in

Appendix J.

Laboratory: Start by explaining what frequency domain is, and how it differs from

the time domain we often see. Talk about how any signal can be broken down into

multiple waveforms having their own frequency. Have the students plot their predic-

tion of what a 1 Hz harmonic loading would look like in the frequency domain. Then

ask the students to push the frame at an approximate rate of 1 Hz, recording the ac-

celerations. Using software such as Signal Express, convert the recorded time domain

data into frequency domain and plot for the students to see. Prompt them to talk

about the differences between their predictions and the result from the experiment.

Repeat the prediction and experiment for two other excitation frequencies: 5 Hz and

10 Hz.

If using a different structure than the steel frame, choose three rates where one

is less than the first natural frequency, one about the first natural frequency, and

finally, one after the first natural frequency. This will give the same outcome as the

steel frame.

Combined Groups: After each respective group (classroom and laboratory) is

done, bring the laboratory group back to the classroom. Take groups of four with

two from the initial classroom group and two from the initial laboratory group. Have

the student groups relate the classroom instruction to the instruction the laboratory

students had. Have the students come up with an idea of what is happening in various

parts of the graph. Students will then present what they have learned to the class,

with the instructors prompting for other groups who have different explanations.

The groups will then be asked to come up with an estimate of what would happen

if the steel frame came under simultaneous loadings, one loading at each of the rates

used previously (1 Hz, 5 Hz, 10 Hz). Then ask them what they would expect a hammer

hit would look like in the frequency domain. Each group should generate a new set
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of response vs. frequency plots for the two cases. Instructor prompts for groups to

describe their plots and reasoning for their expected results.

Take the whole class back to the laboratory with the steel frame. Have three

different students apply a loading at the three rates simultaneously. On Signal Ex-

press, the frequency representation of the signal can be updated in real time so that

the students may compare their estimates to reality. Ask them about the differences

between what they thought and what the results are showing. Why do the results

look that way?

Repeat the experiment using the hammer to excite the structure. Plot the fre-

quency domain representation of the signal. Ask the students about the differences

between what they thought and what the results are showing. Why do the results

look that way? What do the peaks in the frequency domain mean? Discuss what the

students observed and how/why their thinking differs from reality.

Expected Outcomes The expected outcomes include students learning about

that signals can be represented in different domains, the frequency domain in partic-

ular. Students are expected to begin to understand a relationship between structural

response in the time domain and power in the frequency domain, and that one signal

can be broken into multiple sinusoidals that have their own frequencies. The concept

of superposition can be reinforced with discussions on why multiple signals can be

combined into one as well.

Students are expected to begin answering questions about the frequency domain

as if it is the time domain. After a few experiments and discuss, students then are ex-

pected to realize the frequency domain operates differently than the time domain and

be able to correctly predict what the signal representation in the frequency domain

looks like.
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6.6 Conclusion

The active learning module was used in a structural vibrations engineering class

at USC having fifteen students. In the class period after the module, an anonymous

survey (see Appendix K) was administered to gain feedback from students on how to

improve the module and nine students responded. Survey responses are provided in

Appendix L, and a summary of scores is provided in Table 6.1 where a score of one

is not conducive/confident and a score of five is conducive/confident.

A post-class interview with the instructor indicated that the scores presented in

Table 6.1 were representative of exam performance in each topic [64]. Confidence

scores for Single Degree of Freedom (SDOF) Periodic Excitation and Frequency Do-

main Signal Representation confirms that they are topics that are challenging for

students, i.e. they perceive the topics as being challenging, as thought by the instruc-

tor. Surveys were not taken in prior years, so a similar survey needs to be done in

subsequent years (longitudinal study) to see if student mean confidence increases.

The breakdown of scores by students’ expected grades are displayed in Figure 6.3.

All students regardless of expected grade thought the class lectures were all very

conducive to their learning. In-class homeworks were not regarded as conducive with

a student commenting on how he felt the format was more like a quiz than a homework

with the instructor not providing much aid. The project was considered conducive,

however, some students wanted more guidance or instruction before tackling the

assignment.

Experiments and lab visits were regarded as conducive, with student responses to

Question 6 (Did the lab visit make the connection between math and physics easier to

understand? How or why?) reinforcing scores in Question 3 (Indicate how conducive

to learning the following course activities were.). Figure 6.4 displays the breakdown of

responses for Question 6.a where students were asked if the lab visit allowed them to
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Table 6.1: Question Statistics for Conducive/Confidence Ques-
tions

Question Mean St. Dev.
Indicate how conducive to learning the fol-
lowing course activities were.
(a) Lectures 5.0 0.0
(b) In-Class Homework 4.0 1.2
(c) Experiments and Lab Visits 4.1 0.8
(d) Project 4.2 0.7
How confident do you feel about the following
topics?
(a) SDOF Free Vibration 4.7 0.5
(b) SDOF Harmonic Excitation 4.7 0.5
(c) SDOF Periodic Excitation 2.7 1.2
(d) SDOF Impulse Excitation 4.2 1.1
(e) SDOF Arbitrary Excitation 4.1 1.1
(f) Applying the Central Difference Method 3.1 1.1
(g) Frequency Domain Signal Representation 2.0 0.9

*number of survey responses = 9

grasp the connection between math and physics. Seven out of nine students indicated

‘yes’ with comments suggesting that seeing the structure respond to the excitation

and then seeing the recorded data displayed graphically gave a better sense of the

physics that the math was describing. The two students answering ‘no’ indicated they

felt like they did not have enough time to discuss what was happening and did not get

to see the whole experiment. These two students were likely in the classroom group

who only got to see half of the experiments. What group the survey taker participated

in was not asked for on the survey but should be added in future surveys so further

insights can be made. Interestingly enough, students who thought they would receive

a grade of C or D in the class responded ‘yes’ along with all of the students expecting

a grade of A suggesting hands-on learning is an effective teaching tool. Potentially

by adding more hands-on activities to classes, students who otherwise would expect

a low grade (i.e. <B) would become more engaged with the material [65, 66].

When looking at Question 4 (How confident do you feel about the following top-
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Figure 6.3: Distribution of Responses Broken Down by Students’ Ex-
pected Grade for Question 3 “Indicate How Conducive to Learning The
Following Course Activities Were”

ics.) which served to indicate how confident students felt on their grasp of concepts

presented in the class, there were mixed results as seen in Figure 6.5. Free vibration

and harmonic excitation are topics the students felt confident about, and are also

topics taught at the beginning of the semester. Periodic and impulse excitation are

more complex topics, with the students reporting varying levels of confidence levels.

Students reported having more confidence with arbitrary excitation even though this

topic is ‘an extension’ of impulse excitation. The central difference method had an

mean score of 3.1 showing students had a moderate confidence level about the topic.

Of particular interest to the author is the scores for the frequency domain represen-

tation which was only taught through the active learning module for a single class

period. Students reported not being very confident (score ≤ 3) which suggests some
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Figure 6.4: Distribution of Responses Broken Down by Students’
Expected Grade for Question 6.a “Did The Lab Visit Make The
Connection Between Math and Physics Easier to Understand?”

refinement in the module or additional modules are required to aid learning in the

subject. In addition, the survey should be administered in the future to determine

how the active learning module affects students perceptions on this topic.

Student responses to Question 2 (What have you learned in this class?) provided

some insight into what topics students retained. There were many mentions of learn-

ing about various types of excitation and structural properties, which were taught

throughout the semesters. Interestingly, a student mentioned the Fourier Transform

by name, another about experimentally testing structures, and another about what

causes failure in a structure. These are things taught in the single class period using

the active learning module, which suggests the module aided in engaging students.

When asked to suggest improvements to the class, some students responded with

praise for the hands-on activities finding “them useful and engaging” and the “ex-

tracurricular feel [...] adds to the course.” Other suggestions included for the instruc-
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tor to give an overview of concepts to be thinking about during the experiments or to

have more class discussion in addition to the ‘expert’ groups. A few responses asked

for more time to work with the material and to get to see all of the experiments. This

thought is further backed by instructors’ observation that the classroom group of stu-

dents asked more questions to gain understanding of the base concepts whereas the

experiment group was able to piece the concepts together and ask more application
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Figure 6.5: Distribution of Responses Broken Down by Students’ Ex-
pected Grade for Question 4 “How Confident Do You Feel About The
Following Topics?”

questions. In the future, it is suggested to split the module across two class periods

where the whole class can have a chance to do all the experiments and get all of the

classroom instruction before teams are formed for the final experiment. This will

enable each student to gain more experience and time with the concepts presented.

Another outcome of the class is that the students were able to connect the concept

of superposition to why signals can be broken down into multiple sinusoidals having

their own frequency, and further acknowledge that superposition only works in the

case of linear structures. They continued this thinking and asked questions about if

a structure will fail if an earthquake with large enough amplitude, as shown in the

frequency domain representation, excites the structure.

Students were observed in the experimental group progressively understanding

that the frequency domain works differently from the time domain. For the first ex-

periment to excite the structure, students predicted the time domain response with

a signal having a sinusoidal shape and the frequency domain response as having

much the same look. The third experiment (harmonic excitation of about 10 Hz)

saw predictions for the time domain and frequency domain being correct, with the

experimental results validating the students predictions. One of the whole class ex-
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periments was not performed due to time constraints, but the impulse experiment

saw students connecting how an impulse excites the natural frequencies of a structure

and further seeing students realize a structure has many natural frequencies, not just

one.

Overall, the active learning module appears to have encouraged students’ critical

thinking and engagement. Future iterations to better refine the module are suggested

to (1) expand the module over two class periods, (2) to allow the entire class to cycle

through the experiments, and (3) provide ample time for discussion and demonstra-

tions during classroom instruction.
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Chapter 7

Conclusion

Wireless smart accelerometers were implemented in system boasting a star net-

work topology which allowed for each sensor to operate independently to dynamically

adjust to their respective local environment. The sensors themselves, had a success

rate of 62% in capturing the falls reported by the study participants. Falls missed

by the sensors were likely due to low-force impacts that would not have resulted in

severe injury. The remaining fall events missed were due to several failures modes,

the most predominant of which being the power supply to the sensors being mistaken

for a phone charger. Together, the accelerometers experienced a wear out failure

trend with a 5.06 × 10−3 failures
hour failure rate and a 197.7 hours Mean Time Between

Failure (MTBF). This equates to a 4.9% chance to capture a human fall in a year. A

successful system would instead need a 99% chance to capture a fall, which means a

MTBF of 8642.4 hours is required for the sensors.

Other characteristic recommendations for the wireless accelerometers emerged

when working with the vibration monitoring system. The 16 human fall events cap-

tured by the system indicate a buffer size of 3 s suggested by Yu is sufficient to capture

the full waveform, and important aspect when dealing with limited resources of an

embedded sensor [6]. A sampling rate of 316 Hz was used by the Camp Hill/Agua

Mansa and worked well. The more common sampling rate of 400 Hz is suggested

as it is a more typical rate and will provide more definition in the signal. Installed

sensors operated using 0.25 mg resolution and ±2 g range. The range proved to be

large enough based on the falls recorded. The resolution, however, was not sharp
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enough in several cases and may have contributed to the sensors missing low-force

falls. A resolution of 1 µg would provide greater definition, and a better chance for

registering human falls resulting in low amplitude accelerations. These three general

characteristics were chosen as they are applicable in any situation. Sensor charac-

teristics like operational temperature range are not explored since they are related

to the environment a sensor would be in, thus making those characteristics better

chosen by case.

Large amounts of data were generated whilst monitoring structural vibrations at

both the hospital and private home. A data management plan was developed using

a relation database architecture and online tools, and accompanied by a Python

package to streamline access to the information. The plan proved to be robust and

provided much needed infrastructure to handle the information generated by the

study. In fact, the infrastructure allowed for the researchers to discover the possible

connection between vibrations and human activity.

The installed systems recorded data that demonstrated a potential way to analyze

human activity patterns from the structural vibrations produced. General schedules

of those in the hospital and private residence closely relate to the amount of acceler-

ations seen by installed sensors, indicating the possibility. This area of study could

result in predictive activity models that could create more intelligent infrastructure

to adjust to the needs of the human residing.

A way to choose quality acceleration signals became of interest in the face of a

human activity database comprising 536,686 acceleration records. Machine learning

through Support Vector Machine (SVM) utilizing typical and new signal metrics were

used with high accuracy in the classification results. The radial basis function (RBF)

kernel was the most robust of the kernels tested, reaching a mean accuracy of 96.8%

with a standard deviation of 3.4% in 100 trials. The linear kernel came in second,

reaching a mean accuracy of 95.7% with a standard deviation of 3.2% in 100 trials.
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Of the metric combinations used, the Dispersion Ratio (DR) proved to be the best

one its own. DR scored higher than the other metrics when used on its own in the

linear and RBF kernels, and increased the score of the metric combinations it was

involved in. When looking at the score distributions for each metric combination,

this becomes apparent as one can see that combinations with DR have distributions

like that of DR alone, placing accuracy scores almost entirely in the 95%-100% range.

The RBF kernel was used in combination with the DR metric to classify all the

acceleration records in the human activity database using only 200 manually classified

records for training - a mere 0.04% of the entire database. The small amount of

training records required make this machine learning method very time-efficient to

implement. Preprocessing of records with sensor errors or records with missing data

points resulted in the removal of 273,422 records from the dataset. The remaining

were classified as exhibiting lots of noise with little to no data (category one: 203,964),

having some activity but indistinct peaks or shape (category two: 33,972), and having

distinct peaks or shape (category three: 25,321). Seven records were ignored as their

value of DR was infinity indicating a signal having one value for every time step. This,

and the low computational cost of SVMs and the DR metric, indicates the possibility

that the SVM could also be implemented at the sensor level to great effect, reducing

the amount of data to be processed at a centralized hub.

Investigating how the SVM classified researcher’s identified human fall vibration

events was of particular interest to the author. The fall records were classified primar-

ily as category two and category three, which, in an implementation scenario, would

indicate the data was good for analysis. A few acceleration records were ignored as

preprocessing identified them as having a missing data point. The effectiveness of the

SVM could still be high if the rule on missing data points was relaxed some, and is

something to be explored in the future.

The development of the Force Estimation and Event Localization (FEEL) Algo-
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rithm furthers knowledge of structural dynamics and overcomes most challenges of

other fall detection techniques based in structural vibrations, including the estimation

of structural characteristics such as stiffness and acceleration amplitudes experienced

by the sensors being affected by distance to the impact. FEEL operates by first

calibrating likely fall locations around a structure and directly relating structural

vibrations, which naturally contain the dynamic characteristics of the structure, to

force and location of an impact - thus overcoming the aforementioned challenges. Ad-

ditionally, sensors do not need to be time-synchronized as FEEL primarily operates

in the frequency domain, which makes the algorithm easier to implement and less

costly, computation-wise, to use.

FEEL was tested using more than 3500 combined impacts on a concrete floor

at five different locations and of eight different types (e.g. ball drop, human jump),

showing great performance. Impact location was identified with an average of 96.4%

accuracy, and the force magnitude estimate error was -2.0% ± 1.3% for the 99%

confidence interval.

Sampling rates were shown to have an effect on performance of FEEL. Lower

rates reduce location accuracy and increase force magnitude accuracy, yet, the force

actually experienced by the structure is larger than that recorded at a lower sampling

rate. This is because the lower sampling rate can miss part of the true signal. To

alleviate this issue, data can be resampled to a higher rate to get closer to the true

force magnitude quantity. Upsampling from the lower rate does not improve location

accuracy however.

The Environments For Fostering Effective Critical Thinking (EFFECT) active

learning module on the frequency domain representation of signals had interesting

outcomes. Students surveyed found experiments and lab visits to be conducive to

learning. A large majority additionally indicated that lab visits made the connec-

tion between math and physics easier to understand, suggesting hands-on learning
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is an effective teaching tool. Instructor observations reinforce this idea as they no-

ticed students who were in the lab group grasped the concepts better based on their

responses to questions. Yet, frequency domain signal representation on a scale of

1 (not confident) to 5 (confident) scored the lowest of all the topics surveyed hav-

ing a mean confidence score of 2 and a 0.9 standard deviation. Students found the

activity “useful and engaging” while that having an “extracurricular feel [...] adds

to the course”, with a few responses indicating students would like more time with

the material which could possibly increase their confidence with the concept. In the

future, splitting the module across multiple class periods so that each student group

gets time in the classroom and the lab could be beneficial to learning.

Another outcome of the module was that students connected the concept of su-

perposition to why the Fourier Transform can break a signal down into multiple

sinusoidals each having its own frequency, and they further were able to acknowledge

that superposition can only be used in linear structures. More thinking on the topic

and students arrived at questions about if a structure will fail during an earthquake

if a large enough amplitude, shown in the frequency domain representation, excites

the structure. Students also began to realize that structures have multiple natural

frequencies, not just one as they had seen previously in Single Degree of Freedom

(SDOF) cases.

The whole of this contribution provides deeper knowledge into vibrations from

human activity, and in particular, human fall detection using force of impact. The

system design and data management plans pave the way for implementation and en-

able further collection of vibration-based analysis of human activity, whilst serving

as guidelines for other projects. The human activity database housed at the Struc-

tural Dynamics and Intelligent Infrastructure Laboratory (SDII) at the University of

South Carolina (USC) provides a large conglomerate of structural vibration records,

including 16 human fall events, for future researchers to analyze and test new algo-
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rithms against. Acceleration event classification reduces the amount of data to be

processed, so a system can operate more efficiently or relevant data can be chosen

effectively. Information provided by FEEL can reduce response times to fall events

and give doctors more insight to the incident, and, more broadly, enable analysis of

other types of impacts on structures.

7.1 Future Work

Research into modeling human activity from structural vibrations would provide

avenues for predicting a condition change of the user, such as the possibility of an

oncoming fall. More work into using SVM classifiers for signal selection, such as

manually categorizing more records in the human activity database and comparing

to the SVM results, would provide more insight into effectiveness of the method.

Exploring how to optimize signal preprocessing before applying the SVM, would also

be of interest. Forays into how to best place and use calibration points for FEEL

would be a great addition to it’s body of knowledge. Finally, capturing falls in a room

calibrated by FEEL and applying the algorithm, would validate FEEL in regards to

human fall detection.
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Appendix A

Hospital Reported Falls and Descriptions

Table A.1: Hospital Reported Fall Events

ID Reported Time Description Active
Sensors

Record
(±1 hr)

1 2013-01-18 11:00 Slid down from chair 0

2 2013-01-24 06:50 Fell against wall when trying to sit
on toilet

0

3 2013-01-26 11:25 Slid off wheelchair 0

4 2013-01-27 01:45 - 0

5 2013-04-11 00:30 - 0

6 2013-04-17 06:00 - 4

7 2013-04-19 08:55 - 0

8 2013-04-25 05:00 - 0

9 2013-04-25 07:05 - 0

10 2013-04-28 15:45 - 0

11 2013-05-17 08:55 - 0

12 2013-05-23 11:30 - 0

13 2013-05-27 13:05 - 5

14 2013-05-27 18:10 - 6

15 2013-06-06 13:45 - 6

16 2013-06-17 22:00 Putting right sandal on and lost
balance

4 x

continued on next page. . .

164



ID Reported Time Description Active
Sensors

Record
(±1 hr)

17 2013-06-20 13:00 Patient fell forward in bed hitting
his lower chest

4

18 2013-06-20 17:15 CNA was helping patient to bath-
room and he fell and hit his head

4 x

19 2013-06-20 21:30 Patient fell in bathroom 4

20 2013-06-28 23:20 Observed on his knees with both
hands holding onto the bed. Side
rails were up. Patient stated he
just wanted to get out bed and
walk

7 x

21 2013-07-02 21:00 Patient got up from BCS unas-
sisted and fell

0

22 2013-07-05 18:25 Patient found on floor 7

23 2013-07-07 19:15 Patient found on floor at beside
his bed

3

24 2013-07-13 21:00 Shower head railing broke and pa-
tient fell to BSC in shower

7

25 2013-07-24 19:45 Patient had incontinent episode
while going to bathroom and
slipped on urine on the floor

0

26 2013-07-25 18:00 Transferring from bed to chair and
fell on buttocks

5 x

27 2013-07-26 13:10 Did not lock rollator while putting
on clothes

3

28 2013-07-30 04:50 Patient found on floor in room 6 x

29 2013-07-30 10:50 Patient was using bathroom and
left the bathroom where his legs
gave out

0

30 2013-08-02 23:20 Patient found on floor at the foot
of the bed

0

31 2013-08-04 01:00 Patient found on floor beside of
his bed

?

continued on next page. . .

165



ID Reported Time Description Active
Sensors

Record
(±1 hr)

32 2013-08-27 11:00 Patient was found on the floor by
a Med Student. Patient states
that he was walking, slipped, and
then fell

5 x

33 2013-08-29 14:40 Nurse was helping patient to the
bedside commode from a chair
and she could not make it. The
nurse then eased her to floor

7 x

34 2013-08-31 18:08 Patient was observed falling down,
face first onto bathroom floor

7 x

35 2013-09-22 03:05 Patient went to bathroom where
he slipped and fell

5 x

36 2013-10-03 12:55 Patient found sitting on floor next
to bed

6 x

37 2013-10-17 14:45 Slid to floor while trying to trans-
fer from wheelchair to bed

0

38 2013-10-20 04:30 Patient stated he was on his way
back from bathroom when his leg
gave out

0

39 2013-10-22 20:10 Patient fell while trying to put on
pajamas

5 x

40 2013-10-25 11:30 Patient reported he was trying to
stand and leg gave out

0

41 2013-10-26 07:30 Patient stated he walked to door,
when he turned around his foot
got locked

4 x

42 2013-10-28 23:23 Patient was pulling his pants
down when walker slipped and he
fell

5 x

43 2013-11-22 22:20 Patient found sitting on floor next
to bed

0

44 2013-11-25 17:45 Bent over to pick up trash off
floor, lost balance, and fell

7 x

45 2013-12-03 02:40 Found patient on floor beside bed 0

continued on next page. . .
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ID Reported Time Description Active
Sensors

Record
(±1 hr)

46 2013-12-03 03:55 Patient stated he was trying to go
to the sink and fell

8 x

47 2013-12-06 11:45 Patient stated he stumbled when
returning to bed from bathroom

0

48 2013-12-09 04:15 Patient’s top half on bed facing
mattress, legs on floor

7 x

49 2013-12-09 12:00 Patient had sitter in room but
wanted to use the bathroom. Sit-
ter was outside bathroom when he
heard a thump. Found on floor

0

50 2013-12-28 12:00 Found bedside bed on all fours 0
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Appendix B

Captured Human Fall Acceleration Records

The following are acceleration versus time plots of the signals corresponding to

events highlighted in Table 2.2 that were recorded using sensors in the flooring. Sensor

signals showing little to no data are not displayed. The full list of reported falls and

their descriptions are found in Table A.1.

B.1 Fall Reported on 2013-06-17 22:00 (ID 16)
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Figure B.1: Fall Event 2013-06-17 21:57:19 | Sensor D4E1
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Figure B.2: Fall Event 2013-06-17 21:57:19 | Sensor B3B0
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Figure B.3: Fall Event 2013-06-17 21:58:54 | Sensor BB46
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Figure B.4: Fall Event 2013-06-17 21:58:54 | Sensor BB87
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Figure B.5: Fall Event 2013-06-17 22:03:19 | Sensor BB87
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Figure B.6: Fall Event 2013-06-17 22:10:07 | Sensor BB87
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B.2 Fall Reported on 2013-06-20 17:15 (ID 18)
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Figure B.7: Fall Event 2013-06-20 17:14:23 | Sensor D4E1
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Figure B.8: Fall Event 2013-06-20 17:14:23 | Sensor BB46
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B.3 Fall Reported on 2013-06-28 23:20 (ID 20)
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Figure B.9: Fall Event 2013-06-28 23:23:57 | Sensor 8D2C
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Figure B.10: Fall Event 2013-06-28 23:24:42 | Sensor 8D2C
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Figure B.11: Fall Event 2013-06-28 23:28:42 | Sensor 8D2C
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Figure B.12: Fall Event 2013-06-28 23:30:38 | Sensor 8D2C
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B.4 Fall Reported on 2013-07-25 18:00 (ID 26)
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Figure B.13: Fall Event 2013-07-25 17:49:29 | Sensor B3A1
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Figure B.14: Fall Event 2013-07-25 17:49:29 | Sensor BB7E
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B.5 Fall Reported on 2013-07-30 04:50 (ID 28)
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Figure B.15: Fall Event 2013-07-30 04:45:49 | Sensor BB48
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B.6 Fall Reported on 2013-08-27 11:00 (ID 32)
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Figure B.16: Fall Event 2013-08-27 10:58:35 | Sensor BB48
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Figure B.17: Fall Event 2013-08-27 10:58:35 | Sensor E0A8
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Figure B.18: Fall Event 2013-08-27 10:58:35 | Sensor E7EC
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Figure B.19: Fall Event 2013-08-27 10:58:35 | Sensor 3496
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B.7 Fall Reported on 2013-08-29 14:40 (ID 33)
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Figure B.20: Fall Event 2013-08-29 14:48:57 | Sensor E7DB
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Figure B.21: Fall Event 2013-08-29 14:48:57 | Sensor 3493
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B.8 Fall Reported on 2013-08-31 18:08 (ID 34)
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Figure B.22: Fall Event 2013-08-31 18:07:07 | Sensor B3A5
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Figure B.23: Fall Event 2013-08-31 18:07:07 | Sensor E7DB
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Figure B.24: Fall Event 2013-08-31 18:07:07 | Sensor 8D2C
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B.9 Fall Reported on 2013-09-22 03:05 (ID 35)
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Figure B.25: Fall Event 2013-09-22 02:45:21 | Sensor C7AE
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Figure B.26: Fall Event 2013-09-22 02:45:21 | Sensor DC67
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Figure B.27: Fall Event 2013-09-22 02:45:21 | Sensor 2E73
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B.10 Fall Reported on 2013-10-03 12:55 (ID 36)
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Figure B.28: Fall Event 2013-10-03 12:34:31 | Sensor B3A5
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B.11 Fall Reported on 2013-10-22 20:10 (ID 39)
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Figure B.29: Fall Event 2013-10-22 20:02:20 | Sensor E7EC
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B.12 Fall Reported on 2013-10-26 07:30 (ID 41)
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Figure B.30: Fall Event 2013-10-26 07:34:28 | Sensor E7EC
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B.13 Fall Reported on 2013-10-28 23:23 (ID 42)
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Figure B.31: Fall Event 2013-10-28 23:25:33 | Sensor E0A8
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B.14 Fall Reported on 2013-11-25 17:45 (ID 44)
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Figure B.32: Fall Event 2013-11-25 17:33:49 | Sensor B3A5
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Figure B.33: Fall Event 2013-11-25 17:33:49 | Sensor BB7C
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Figure B.34: Fall Event 2013-11-25 17:33:49 | Sensor 3087
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Figure B.35: Fall Event 2013-11-25 17:33:49 | Sensor 3493
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B.15 Fall Reported on 2013-12-03 03:55 (ID 46)
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Figure B.36: Fall Event 2013-12-03 03:47:22 | Sensor B3A5
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B.16 Fall Reported on 2013-12-09 04:15 (ID 48)
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Figure B.37: Fall Event 2013-12-09 04:59:04 | Sensor B3A5
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Figure B.38: Fall Event 2013-12-09 04:59:04 | Sensor BB45
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Figure B.39: Fall Event 2013-12-09 04:59:04 | Sensor 8D2C
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Figure B.40: Fall Event 2013-12-09 04:59:04 | Sensor 8F1E
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Appendix C

Sample Human Activity Database Queries

The following presents example Human Activity Database queries grouped by

informational type. This is part of the data management plan discussed in Chapter 3.

C.1 Database Table Information

Getting a list of column names in a database table. If another table is desired, simply

replace accel_events with your desired table.

Code Snippet C.1: List Columns of a Table

SELECT COLUMN_NAME
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_SCHEMA = "main_ssh"

AND TABLE_NAME = "accel_events";

C.2 Sensor Related Queries

Find calibration records for a particular sensor. Replace the sensor_mac value with

the Media Access Control Address (MAC Address) of the sensor desired.

Code Snippet C.2: Find The Calibration Record of a Sensor

SELECT *
FROM calibration
WHERE sensor_mac = "0006661495C0";
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To cross reference max amplitude of an event with specific sensors for a date use the

following. This is particularly useful when trying to find out which room an event

occurred in when a system computer services multiple rooms.

Code Snippet C.3: Find Which Sensor Was Closest to The Acceleration Event

SELECT *
FROM accel_events t1
INNER JOIN (SELECT system, event_date, mac

FROM event_parameters t3
WHERE parameter="ampmax"

AND value = (SELECT MAX(value+0.0)
FROM event_parameters t4
WHERE t3.system = t4.system
AND t3.event_date = t4.event_date
AND t3.parameter = t4.parameter)) t2

ON t1.system = t2.system
AND t1.date = t2.event_date
AND t1.sensor_mac = t2.mac

WHERE t1.date = "2014-03-02 09:29:39"
AND (t1.sensor_mac="000666303492"

OR t1.sensor_mac="00066614E241"
OR t1.sensor_mac="00066614998E");

To find the number of sensor monitored hours, use the following. Adjust the date

range by replacing the values for date, and replace the system value for the system

of interest. Note this assumes an hour offset in between system log saves.
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Code Snippet C.4: Find Number of Sensor Monitored Hours For a Date Range and
System

SELECT SUM(t1.nsensor)
FROM (SELECT YEAR(date) AS y,

MONTH(date) AS m,
DAY(date) AS d,
HOUR(date) AS h,
COUNT(DISTINCT mac) AS nsensor

FROM system_log
WHERE date>="2013-01-23"

AND date<="2013-07-09"
AND system="SSH-5"

GROUP BY y, m, d, h
ORDER BY y, m, d, h) AS t1;

Determine sensor activity by day for the period requested. Gives an idea of how

well the sensors were operating. The date parameters can be replaced to choose a

specific range, and the system parameter can be changed to choose an a different

system or can be left out to get all systems. The mac parameter must include that is

currently there as to ignore system_logs pertaining to the base station. If one wishes

to specific a MAC Address for a sensor, use the OR MySQL command to add onto

the mac argument.
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Code Snippet C.5: Determine Sensor Activity by Day For a Period

SELECT DAY(date) AS d,
MONTH(date) AS m,
YEAR(date) AS y,
COUNT(DISTINCT mac),
SUBSTRING(MONTHNAME(date),1,3)

FROM system_log
WHERE date >= "2013-01-23"

AND date <= "2013-07-09"
AND mac != ""
AND system = "SSH-15"

GROUP BY y, m, d
ORDER BY y, m, d;

C.3 System Related Queries

Getting a list of systems.

Code Snippet C.6: List Systems

SELECT DISTINCT(system)
FROM accel_events;

Getting a list of sensors and their associated systems. Note that this assumes each

sensor only sees use with one system.

Code Snippet C.7: List Sensors And Their Systems

SELECT DISTINCT(sensor_mac), system
FROM accel_events;

Find the parameter names available in the system logs. These are not permanently

set, so new parameters may be added over time.
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Code Snippet C.8: Available System Log Parameters

SELECT DISTINCT(parameter)
FROM system_log;

Access system logs for a particular sensor.

Code Snippet C.9: Access System Logs For a Sensor

SELECT *
FROM system_log
WHERE mac = "00066614B3A1";

Access system logs for the system base station.

Code Snippet C.10: Access System Logs For a Sensor

SELECT *
FROM system_log
WHERE system = "SSH-36"
AND mac = "";

Access download information for a particular system. Gives insight into how the data

was sent to the database.

Code Snippet C.11: Access Download Information For a System

SELECT *
FROM downloads
WHERE system = "SSH-5";
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C.4 Acceleration Event Related Queries

Determine the number of available events in the database. This is useful as the

database is expected to grow with time.

Code Snippet C.12: Find The Number of Events

SELECT COUNT(DISTINCT date)
FROM accel_events;

Grab a specific acceleration event. Replace date with the desired event’s date.

Code Snippet C.13: Access a Specific Acceleration Event

SELECT *
FROM accel_events
WHERE date = "2013-01-18 13:54:55";

Get the available parameters used to describe the acceleration signals.

Code Snippet C.14: Get Event Parameters For Describing Acceleration Signals

SELECT *
FROM parameters;

Gather the metrics for a specific event and sensor. Replace the sensor_mac value

with the MAC Address of the sensor desired, and replace the value of event_date

with the specific event desired.
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Code Snippet C.15: Find the Signal Metrics For an Event and Sensor

SELECT *
FROM event_parameters
WHERE mac = "00066614B3AA"

AND event_date = "2013-07-20 02:44:25";

To find a flat signal (i.e. one with little to no excitation), set the amplitude value low

for ampmax like in the following.

Code Snippet C.16: Find a Flat Acceleration Signal

SELECT t1.*, t2.value AS ampmax
FROM accel_events t1
INNER JOIN event_parameters t2 ON m1.date = t2.event_date

AND t1.sensor_mac = t2.mac
WHERE t2.parameter = "ampmax"

AND t2.value < 0.0125;

Find a spike signal (i.e. a sensor error that reads only one high value). See Sec-

tion 2.4.2 for more details.

Code Snippet C.17: Find a Spike Acceleration Signal

SELECT t1.*
FROM event_parameters t1
INNER JOIN event_parameters t2 ON t1.event_date = t2.event_date

AND t1.mac = t2.mac
INNER JOIN accel_events ON accel_events.date = t1.event_date

AND accel_events.sensor_mac = t1.mac
WHERE t1.parameter = "metric1"

AND t2.parameter = "ampmax"
AND t2.value > 0.5
AND t1.value/t2.value > 0.95;
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Find the maximum parameter value for a period, simply replace ampmax with the

desired parameter, replace the event_date ranges, and replace the system.

Code Snippet C.18: Find Maximum Parameter Value For a System and Date Range

SELECT tt.*
FROM event_parameters tt
INNER JOIN (SELECT system,

event_date,
mac,
parameter,
MAX(value+0.0) AS MaxVal

FROM event_parameters
WHERE parameter= "ampmax"

AND event_date >= "2013-01-18"
AND event_date <= "2014-06-14"
AND system = "SSH-36"

GROUP BY event_date) groupedtt
ON tt.event_date = groupedtt.event_date

AND tt.value = groupedtt.MaxVal
ORDER BY event_date;

Getting the number of events by day can give a sense of how activity is distributed

across a period of time. The date parameters can be replaced to choose a specific

range, and the system parameter can be changed to choose an a different system or

can be left out to get all systems. The mac parameter must include that is currently

there as to ignore system_logs pertaining to the base station. If one wishes to specific

a MAC Address for a sensor, use the OR MySQL command to add onto the mac

argument.
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Code Snippet C.19: Get The Acceleration Events by Day

SELECT YEAR(date) AS y
MONTH(date) AS m,
DAY(date) AS d,
COUNT(DISTINCT date),
SUBSTRING(MONTHNAME(date),1,3)

FROM accel_events
WHERE date >= "2013-01-23"

AND date <= "2013-07-09"
AND mac != ""
AND system = "SSH-39";

Vibration activity in an area can be useful for determining patterns. The activity

density information can be determined using the following database query.

Code Snippet C.20: Get The Acceleration Activity Density

SELECT DAYOFWEEK(date),
HOUR(date),
COUNT(HOUR(date))

FROM accel_events
WHERE system = "SSH-36"

AND date >= "2013-01-23"
AND date <= "2013-07-09"

GROUP BY DAYOFWEEK(date), HOUR(date);

Signals collected can have a variety of errors in them due hardware and wireless

communication problems. Thus it is desirable to find signals without any errors. The

following query enables the user to find and error-free signal based on the definition

outlined in Chapter 4.
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Code Snippet C.21: Find Error-Free Signals

SELECT ae.sensor_mac, ae.date, ae.data
FROM accel_events ae
WHERE NOT EXISTS (

SELECT NULL
FROM event_parameters ep1
INNER JOIN event_parameters ep2

ON ep1.mac = ep2.mac
AND ep1.event_date = ep2.event_date

INNER JOIN event_parameters ep3
ON ep1.mac = ep3.mac
AND ep1.event_date = ep3.event_date

WHERE ae.date = ep1.event_date
AND ae.sensor_mac = ep1.mac
AND ep1.parameter = "nandensity"
AND ep2.parameter = "ampmax"
AND ep3.parameter = "mad"
AND (ep1.value+0.0 > 0.0

OR (ep3.value+0.0)/(ep2.value+0.0) > 0.95
OR LOWER(ep2.value) = "nan"
OR LOWER(ep3.value) = "nan")

)
AND ae.data <> ’No Data’
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Appendix D

SVM 3rd Degree Polynomial Kernel Results

for Event Filtering

The polynomial kernel was also evaluated as a possibility for acceleration event

filtering as seen in Chapter 4. The following figures and tables present the results for

the kernel.

Table D.1: SVM 3rd Degree Polynomial
Kernel Metric Combination Stats (100 Tri-
als)

Accuracy (%)
Metric Combinations Mean St. Dev.
Amax 82.7 5.8
RoD 79.9 6.3
DR 69.9 27.5
Amax, RoD 82.7 5.8
RoD, DR 81.4 16.7
Amax, DR 84.8 15.1
Amax, RoD, DR 87.0 11.0

Table D.2: SVM 3rd Degree Polynomial Kernel Best
Training Set for Each Metric Combination

Metric Combinations C1 C2 C3 Accuracy (%)
Amax 121 21 18 97.5
RoD 121 21 18 97.5
DR 125 18 17 97.5
Amax, RoD 121 21 18 100.0
RoD, DR 126 21 13 100.0
Amax, DR 121 21 18 100.0
Amax, RoD, DR 125 19 16 100.0
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Table D.3: SVM 3rd Degree Polynomial Kernel Worst
Training Set for Each Metric Combination

Metric Combinations C1 C2 C3 Accuracy (%)
Amax 134 11 15 67.5
RoD 134 15 11 65.0
DR 121 21 18 0.0
Amax, RoD 134 11 15 67.5
RoD, DR 130 17 13 15.0
Amax, DR 127 17 16 17.5
Amax, RoD, DR 126 21 13 10.0
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Figure D.1: SVM 3rd Degree Polynomial Kernel Metric Combination
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Figure D.2: Score Distribution for 3rd Degree Polynomial Kernel Metric
Combinations (100 Trials)
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Appendix E

SVM Sigmoid Kernel Results for Event

Filtering

The sigmoid kernel was also evaluated as a possibility for acceleration event fil-

tering as seen in Chapter 4. The following figures and tables present the results for

the kernel.

Table E.1: SVM Sigmoid Kernel Metric
Combination Stats (100 Trials)

Accuracy (%)
Metric Combinations Mean St. Dev.
Amax 93.6 3.7
RoD 81.3 6.1
DR 79.9 6.3
Amax, RoD 93.4 3.7
RoD, DR 79.9 6.3
Amax, DR 79.9 6.3
Amax, RoD, DR 79.9 6.3

Table E.2: SVM Sigmoid Kernel Best Training Set for
Each Metric Combination

Metric Combinations C1 C2 C3 Accuracy (%)
Amax 121 21 18 100.0
RoD 121 21 18 97.5
DR 121 21 18 97.5
Amax, RoD 121 21 18 100.0
RoD, DR 121 21 18 97.5
Amax, DR 121 21 18 97.5
Amax, RoD, DR 121 21 18 97.5
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Table E.3: SVM Sigmoid Kernel Worst Training Set for
Each Metric Combination

Metric Combinations C1 C2 C3 Accuracy (%)
Amax 132 16 12 82.5
RoD 134 11 15 67.5
DR 134 15 11 65.0
Amax, RoD 132 16 12 82.5
RoD, DR 134 15 11 65.0
Amax, DR 134 15 11 65.0
Amax, RoD, DR 134 15 11 65.0
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Figure E.1: Score Distribution for Sigmoid Kernel Metric Combinations
(100 Trials)
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Appendix F

Manual Vs. SVM Classified Categories for

Recorded Fall Events

The recorded fall data presented in Appendix B were manually filtered. To get

an idea of the effectiveness of the Support Vector Machine (SVM) when filtering

acceleration events for a fall detection application, the SVM’s classified category is

compared against the manual classification in Table F.1. More discussion is available

in Chapter 4.

Table F.1: Recorded Fall Events SVM Classified Categories

ID Records ±1 hr Sensor Category Figures

16

2013-06-17 21:57:19
D4E1 2 Figure B.1

B3B0 2 Figure B.2

others 1 -

2013-06-17 21:58:54
BB46 2 Figure B.3

BB87 2 Figure B.4

2013-06-17 22:03:19
BB87 2 Figure B.5

others 1 -

2013-06-17 22:10:07
BB87 2 Figure B.6

others 1 -
continued on next page. . .
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ID Records ±1 hr Sensor Category Figures

18 2013-06-20 17:14:23
D4E1 2 Figure B.7

BB46 2 Figure B.8

others 1 -

20

2013-06-28 23:23:57
8D2C 3 Figure B.9

others 1 -

2013-06-28 23:24:42
8D2C - Figure B.10

others 1 -

2013-06-28 23:28:42
8D2C - Figure B.11

others 1 -

2013-06-28 23:30:38
8D2C 3 Figure B.12

others 1 -

26 2013-07-25 17:49:29
B3A1 2 Figure B.13

BB7E - Figure B.14

others 1 -

28 2013-07-30 04:45:49
BB48 3 Figure B.15

others 1 -

32 2013-08-27 10:58:35

BB48 2 Figure B.16

E0A8 2 Figure B.17

E7EC 3 Figure B.18

3496 1 Figure B.19

others 1 -

33 2013-08-29 14:48:57
E7DB 3 Figure B.20

3493 2 Figure B.21

others 1 or 2 -

34 2013-08-31 18:07:07

B3A5 2 Figure B.22

E7DB - Figure B.23

8D2C - Figure B.24

others 1 -
continued on next page. . .
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ID Records ±1 hr Sensor Category Figures

35 2013-09-22 02:45:21

C7AE 3 Figure B.25

DC67 3 Figure B.26

2E73 3 Figure B.27

others - -

36 2013-10-03 12:34:31
B3A5 2 Figure B.28

others 1 -

39 2013-10-22 20:02:20
E7EC - Figure B.29

others 1 -

41 2013-10-26 07:34:28
E7EC - Figure B.30

others 2 -

42 2013-10-28 23:25:33
E0A8 2 Figure B.31

others - -

44 2013-11-25 17:33:49

B3A5 3 Figure B.32

BB7C 2 Figure B.33

3087 3 Figure B.34

3493 2 Figure B.35

others 2 -

46 2013-12-03 03:47:22
B3A5 2 Figure B.36

others 1,2 -

48 2013-12-09 04:59:04

B3A5 2 Figure B.37

BB45 3 Figure B.38

8D2C 3 Figure B.39

8F1E - Figure B.40

others 1 -
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Appendix G

Event Localization Method Attempts

This section describes the attempted methods towards determine the location

of an impact from a force estimate generated by Equation 5.5 whilst developing

the FEEL Algorithm. All methods have the flexibility of window choice like in the

Correlated Force Estimates Method of Section 5.2.3.

G.1 Deviation Method

Following the selection of a window, the standard deviation is taken between the

resulting real portions of the force estimations from each sensor to each location,

point by point within the window. Equation G.1 demonstrates this step with {Li}

being a vector of maximum standard deviations σ for each location, F̂i,j(k) being

the force estimate for the i-th location and j-th sensor, k being the point within the

force estimate vector being compared, and n being the number of points in the force

estimate window.

{Li} = max



σ( F̂i,1(k) F̂i,2(k) · · · F̂i,j(k) )

σ( F̂i,1(k + 1) F̂i,2(k + 1) · · · F̂i,j(k + 1) )
... ... ... . . . ...

σ( F̂i,1(k + n) F̂i,2(k + n) · · · F̂i,j(k + n) )


(G.1)

The maximum standard deviation of the force at each location is then compared

in Equation G.2 where L̂ is the lowest standard deviation, which indicates the impact
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location estimation, and min() is the minimum value function.

L̂ = min({Li}) (G.2)

The reasoning is that the location’s force estimates that more closely match in

magnitude for the specified window, indicates the location of impact. This works

very well for impulse forces, but begins to have challenges when applied to other

force impacts such as a person jumping as seen in the following tables.

Table G.1: Confusion Matrix for Locating Ball-Low Impacts Using The Deviation
Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 100 0 0 0 0
Location 2 0 100 0 0 0
Location 3 0 0 100 0 0
Location 4 0 0 0 100 0
Location 5 0 1 0 0 99

Table G.2: Confusion Matrix for Locating Ball-High Impacts Using The Deviation
Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 100 0 0 0 0
Location 2 0 100 0 0 0
Location 3 0 1 99 0 0
Location 4 0 0 0 100 0
Location 5 0 0 0 0 100
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Table G.3: Confusion Matrix for Locating Bag-Low Impacts Using The Deviation
Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 91 0 0 9 0
Location 2 2 98 0 0 0
Location 3 60 0 4 36 0
Location 4 1 1 0 98 0
Location 5 20 65 0 0 15

Table G.4: Confusion Matrix for Locating Bag-High Impacts Using The Deviation
Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 84 1 0 15 0
Location 2 0 100 0 0 0
Location 3 51 0 6 43 0
Location 4 2 8 0 90 0
Location 5 24 70 0 0 6

Table G.5: Confusion Matrix for Locating D-Jump Impacts Using The Deviation
Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 89 0 0 9 2
Location 2 1 99 0 0 0
Location 3 0 0 97 3 0
Location 4 0 0 0 100 0
Location 5 0 0 0 4 96
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Table G.6: Confusion Matrix for Locating J-Jump Impacts Using The Deviation
Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 95 0 1 4 0
Location 2 17 79 1 3 0
Location 3 1 0 95 4 0
Location 4 2 0 0 98 0
Location 5 29 10 0 24 37

Table G.7: Confusion Matrix for Locating W-Jump Impacts Using The Deviation
Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 54 0 0 46 0
Location 2 86 11 0 3 0
Location 3 30 0 56 14 0
Location 4 0 0 0 100 0
Location 5 34 0 0 53 13

G.2 Deviation of Normalized Force Estimates

This method is similar to the Deviation Method discussed in Section G.1, but

normalizes the force before making the standard deviation calculations. Equation G.3

normalizes each force estimate where F̂i,j is the force estimate for the i-th location

and j-th sensor, and max() is the maximum value function.

||F̂i,j|| = F̂i,j

max
(∣∣∣F̂i,j

∣∣∣) (G.3)

The standard deviation is then taken point by point for a chosen window in

Equation G.4 where {Li} is a vector of maximum standard deviations σ for each

location, ||F̂i,j|| being the normalized force estimate for the i-th location and j-th
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sensor, k being the point within the force estimate vector being compared, and n

being the number of points in the normalized force estimate window.

{Li} = max



σ( ||F̂i,1(k)|| ||F̂i,2(k)|| · · · ||F̂i,j(k)|| )

σ( ||F̂i,1(k + 1)|| ||F̂i,2(k + 1)|| · · · ||F̂i,j(k + 1)|| )
... ... ... . . . ...

σ( ||F̂i,1(k + n)|| ||F̂i,2(k + n)|| · · · ||F̂i,j(k + n)|| )


(G.4)

Finally, the location is identified as being the location with lowest standard devi-

ation value as seen in Equation G.5.

L̂ = min({Li}) (G.5)

Since the peak magnitudes varied a lot between the sensors, the thought became

to normalized each signal so that the maximum value was one. In theory, this would

move the shapes of the force closer together for the actual location. See the confusion

matrices below for results.

Table G.8: Confusion Matrix for Locating Ball-Low Impacts Using The Deviation
of Normalized Force Estimates Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 100 0 0 0 0
Location 2 0 100 0 0 0
Location 3 0 0 100 0 0
Location 4 0 0 0 100 0
Location 5 0 0 0 0 100
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Table G.9: Confusion Matrix for Locating Ball-High Impacts Using The Deviation
of Normalized Force Estimates Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 100 0 0 0 0
Location 2 0 100 0 0 0
Location 3 0 1 99 0 0
Location 4 0 0 0 100 0
Location 5 0 0 0 0 100

Table G.10: Confusion Matrix for Locating Bag-Low Impacts Using The Deviation
of Normalized Force Estimates Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 100 0 0 0 0
Location 2 0 96 0 4 0
Location 3 0 25 11 55 0
Location 4 0 1 0 99 0
Location 5 0 3 0 2 95

Table G.11: Confusion Matrix for Locating Bag-High Impacts Using The Deviation
of Normalized Force Estimates Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 95 4 1 0 0
Location 2 0 98 0 1 1
Location 3 0 23 21 48 8
Location 4 0 5 0 95 0
Location 5 0 2 0 5 93
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Table G.12: Confusion Matrix for Locating D-Jump Impacts Using The Deviation
of Normalized Force Estimates Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 62 0 0 3 35
Location 2 1 97 1 1 0
Location 3 2 0 96 1 1
Location 4 0 0 0 98 2
Location 5 0 0 0 0 100

Table G.13: Confusion Matrix for Locating J-Jump Impacts Using The Deviation
of Normalized Force Estimates Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 65 2 4 6 23
Location 2 5 71 2 17 5
Location 3 0 0 79 6 15
Location 4 0 0 0 93 7
Location 5 3 0 2 14 81

Table G.14: Confusion Matrix for Locating W-Jump Impacts Using The Deviation
of Normalized Force Estimates Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 38 1 8 49 4
Location 2 30 54 1 14 1
Location 3 2 1 72 21 4
Location 4 1 0 0 99 0
Location 5 2 0 0 12 86

G.3 Modal Assurance Criterion of Force Estimates

Taking an idea from the modal analysis play book that looks at the similarity of

mode shapes, the Modal Assurance Criterion (MAC) was adapted to be applied to

pairs of force estimates in a similar manner as that of the Correlated Force Estimates

Method in Section 5.2.3. Equation G.6 is the original equation for MAC [67]. This

218



was adapted so that {A} is one force estimate and {X} is another, with n being the

number of points within the force estimate window being considered.

MAC(A, X) =

∣∣∣∑n
j=1{Aj}{Xj}

∣∣∣(∑n
j=1{Aj}2

) (∑n
j=1{Xj}2

) (G.6)

Using the MAC equation, all force estimate combinations would be compared and

the maximum value taken as that location’s MAC value. Equation G.7 shows this

procedure where {Li} is the maximum MAC value of all the combinations of the i-th

location, max() is the maximum value function, F̂i,j is the force estimate of the i-th

location at the j-th sensor, and n is the number of points within the window.

{Li} = max



0 MAC
(
F̂i,1(n), F̂i,2(n)

)
· · · MAC

(
F̂i,1(n), F̂i,j(n)

)
0 · · · MAC

(
F̂i,2(n), F̂i,j(n)

)
. . . ...

sym. MAC
(
F̂i,j(n), F̂i,j(n)

)


(G.7)

The location is then determined by whichever location has the largest MAC value

as in Equation G.8.

L̂ = max({Li}) (G.8)

MAC is used in Modal Analysis to compare the shapes of multiple mode shapes.

As experiments continued to more varied impacts, the shape of the force became

more important that then magnitude for localization. Hence, MAC was adapted for

the Force Estimation and Event Localization (FEEL) Algorithm. The results are

presented below in confusion matrices.
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Table G.15: Confusion Matrix for Locating Ball-Low Impacts Using The MAC of
Force Estimates Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 100 0 0 0 0
Location 2 0 100 0 0 0
Location 3 0 0 100 0 0
Location 4 0 0 0 100 0
Location 5 0 1 0 0 99

Table G.16: Confusion Matrix for Locating Ball-High Impacts Using The MAC of
Force Estimates Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 100 0 0 0 0
Location 2 0 100 0 0 0
Location 3 0 0 99 0 1
Location 4 0 0 0 100 0
Location 5 0 0 0 0 100

Table G.17: Confusion Matrix for Locating Bag-Low Impacts Using The MAC of
Force Estimates Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 77 4 11 3 5
Location 2 0 100 0 0 0
Location 3 5 2 50 1 42
Location 4 0 0 0 99 1
Location 5 1 0 0 0 99
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Table G.18: Confusion Matrix for Locating Bag-High Impacts Using The MAC of
Force Estimates Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 77 2 12 2 7
Location 2 0 100 0 0 0
Location 3 2 3 69 0 26
Location 4 0 0 0 99 1
Location 5 0 1 0 0 99

Table G.19: Confusion Matrix for Locating D-Jump Impacts Using The MAC of
Force Estimates Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 68 0 0 2 30
Location 2 0 100 0 0 0
Location 3 0 0 97 2 1
Location 4 0 0 0 97 3
Location 5 0 5 0 1 94

Table G.20: Confusion Matrix for Locating J-Jump Impacts Using The MAC of
Force Estimates Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 69 10 0 3 18
Location 2 5 88 1 4 2
Location 3 4 14 75 0 7
Location 4 1 1 3 74 21
Location 5 5 9 1 3 82
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Table G.21: Confusion Matrix for Locating W-Jump Impacts Using The MAC of
Force Estimates Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 32 5 8 21 34
Location 2 4 84 2 4 6
Location 3 4 1 81 3 11
Location 4 0 1 0 91 8
Location 5 1 4 0 1 94

G.4 Time Shift Method

Time shifting looks at the location of peaks within the force estimates, and if the

peaks of the sensors align. The thought is that the location whose force estimates

have peaks that more closely align is where the impact occurred since the FEEL

Algorithm is time-independent. The standard deviation σ is taken of each point in

time τF̂i,j
where the peak in the force estimate occurred as in Equation G.9 where i

is the location, and j is the sensor.

{Li} = σ



τF̂i,1

τF̂i,2
...

τF̂i,j


(G.9)

The location of impact is consequently the location having the lowest standard

deviation value as this indicates the time in the force estimate the peaks occur are

more closely aligned as in Equation G.10.

L̂ = min({Li}) (G.10)

Results of this method are presented in the following confusion matrices.
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Table G.22: Confusion Matrix for Locating Ball-Low Impacts Using The Time
Shift Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 100 0 0 0 0
Location 2 0 99 0 0 1
Location 3 0 0 100 0 0
Location 4 0 0 0 100 0
Location 5 0 0 0 0 100

Table G.23: Confusion Matrix for Locating Ball-High Impacts Using The Time
Shift Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 100 0 0 0 0
Location 2 0 100 0 0 0
Location 3 0 0 100 0 0
Location 4 0 0 0 98 2
Location 5 0 0 0 0 100

Table G.24: Confusion Matrix for Locating Bag-Low Impacts Using The Time Shift
Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 87 3 2 7 1
Location 2 0 91 3 3 3
Location 3 9 72 13 2 4
Location 4 0 0 0 98 2
Location 5 2 7 5 3 83
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Table G.25: Confusion Matrix for Locating Bag-High Impacts Using The Time
Shift Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 81 10 1 4 4
Location 2 0 99 0 0 1
Location 3 16 62 20 1 1
Location 4 1 2 1 94 2
Location 5 6 9 12 4 69

Table G.26: Confusion Matrix for Locating D-Jump Impacts Using The Time Shift
Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 73 5 2 14 6
Location 2 0 99 0 0 1
Location 3 1 2 76 10 11
Location 4 6 4 5 82 3
Location 5 10 2 0 6 82

Table G.27: Confusion Matrix for Locating J-Jump Impacts Using The Time Shift
Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 81 1 8 3 7
Location 2 11 75 4 7 3
Location 3 20 7 55 14 4
Location 4 1 0 3 86 10
Location 5 29 3 24 16 28
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Table G.28: Confusion Matrix for Locating W-Jump Impacts Using The Time Shift
Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 51 10 2 15 22
Location 2 5 93 0 2 0
Location 3 5 4 87 3 1
Location 4 1 0 3 86 10
Location 5 20 2 0 2 76

G.5 Residual Analysis Method

Residuals consist of interpreting if the dispersion of the data matches the model.

In this case, it is used to compare the real portion of the force estimates to each

other in order to indicate how well they match with the thought being the actual

location would have the best coherence, and thus lowest covariance, between all its

force estimates. Equation G.11 demonstrates the procedure with cov() being the

covariance function, F̂i,j being the force estimate of the i-th location at the j-th

sensor, k is the point being considered in the force estimate, and µ is the average of

the force estimate vector.

{Li} = cov



F̂i,1(k) − µF̂i,1
F̂i,2(k) − µF̂i,2

· · · F̂i,j(k) − µF̂i,j

F̂i,1(k + 1) − µF̂1,j
F̂i,2(k + 1) − µF̂i,2

· · · F̂i,j(k + 1) − µF̂i,j

... ... ... ...

F̂i,1(k + n) − µF̂1,j
F̂i,2(k + n) − µF̂i,2

· · · F̂i,j(k + n) − µF̂i,j


(G.11)

The location of impact is thus the location with the lowest covariance value as

seen in Equation G.12 where min() is the minimum value function.

L̂ = min({Li}) (G.12)
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Table G.29: Confusion Matrix for Locating Ball-Low Impacts Using The Residual
Analysis Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 100 0 0 0 0
Location 2 1 99 0 0 0
Location 3 0 0 100 0 0
Location 4 0 0 0 100 0
Location 5 43 57 0 0 0

Table G.30: Confusion Matrix for Locating Ball-High Impacts Using The Residual
Analysis Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 100 0 0 0 0
Location 2 0 100 0 0 0
Location 3 0 1 99 0 0
Location 4 0 0 0 100 0
Location 5 13 87 0 0 0

Table G.31: Confusion Matrix for Locating Bag-Low Impacts Using The Residual
Analysis Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 93 0 0 7 0
Location 2 13 87 0 0 0
Location 3 93 1 6 0 0
Location 4 13 4 0 83 0
Location 5 57 43 0 0 0
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Table G.32: Confusion Matrix for Locating Bag-High Impacts Using The Residual
Analysis Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 90 0 0 10 0
Location 2 6 94 0 0 0
Location 3 93 0 7 0 0
Location 4 5 11 0 84 0
Location 5 51 49 0 0 0

Table G.33: Confusion Matrix for Locating D-Jump Impacts Using The Residual
Analysis Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 96 0 0 4 0
Location 2 44 46 0 10 0
Location 3 69 0 17 14 0
Location 4 4 0 0 96 0
Location 5 53 45 0 2 0

Table G.34: Confusion Matrix for Locating J-Jump Impacts Using The Residual
Analysis Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 94 0 0 6 0
Location 2 77 21 0 2 0
Location 3 61 0 36 3 0
Location 4 21 0 0 79 0
Location 5 99 0 0 1 0
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Table G.35: Confusion Matrix for Locating W-Jump Impacts Using The Residual
Analysis Method

Identified
Location 1 Location 2 Location 3 Location 4 Location 5

A
ct

ua
l

Location 1 98 0 0 2 0
Location 2 93 0 0 7 0
Location 3 99 0 0 1 0
Location 4 98 0 0 2 0
Location 5 100 0 0 0 0
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Appendix H

Verification Experiments Additional Results

The following presents results from impacts that occurred on the remaining nodes

from the steel frame eight node trial in Section 5.4.2. Force estimates and force

correlations are presented for each case. FEEL Algorithm was successful in force and

location estimation in all cases.
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Figure H.1: Force Estimates by Node for an Impact on Node 3
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Figure H.2: Li for an Impact on Node 3
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H.2 Node 6 Impact
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Figure H.3: Force Estimates by Node for an Impact on Node 6
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Figure H.4: Li for an Impact on Node 6
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H.3 Node 7 Impact
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Figure H.5: Force Estimates by Node for an Impact on Node 7
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Figure H.6: Li for an Impact on Node 7
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H.4 Node 10 Impact
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Figure H.7: Force Estimates by Node for an Impact on Node 10
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Figure H.8: Li for an Impact on Node 10
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H.5 Node 11 Impact
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Figure H.9: Force Estimates by Node for an Impact on Node 11
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Figure H.10: Li for an Impact on Node 11
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H.6 Node 14 Impact
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Figure H.11: Force Estimates By Node for An Impact On Node 14
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Figure H.12: Li for an Impact on Node 14
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H.7 Node 15 Impact
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Figure H.13: Force Estimates by Node for an Impact on Node 15
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Figure H.14: Li for an Impact on Node 15
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Appendix I

Implementation Experiment Force Hammer

Trial Additional Results

The following presents results from impacts that occurred on the remaining loca-

tions in the force hammer trial of the implementation experiments in Section 5.5.1.

Force estimates and force correlations are presented for each case. The FEEL Algo-

rithm was successful in force and location estimation in all cases.
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I.1 Location 2 Impact
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Figure I.1: Hammer Impact Force Estimations for an Impact on Location 2
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Figure I.2: Hammer Impact Li for an Impact on Location 2

0.0 0.5 1.0 1.5 2.0
Time (s)

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Ac
ce

ler
at

io
n

(g
)

Sensor 1
Sensor 2
Sensor 3
Sensor 4

Figure I.3: Hammer on Location 2 Accelerations
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I.2 Location 3 Impact
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Figure I.4: Hammer Impact Force Estimations for an Impact on Location 3
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Figure I.5: Hammer Impact Li for an Impact on Location 3
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Figure I.6: Hammer on Location 3 Accelerations
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I.3 Location 4 Impact
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Figure I.7: Hammer Impact Force Estimations for an Impact on Location 4
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Figure I.8: Hammer Impact Li for an Impact on Location 4
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Figure I.9: Hammer on Location 4 Accelerations
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I.4 Location 5 Impact
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Figure I.10: Hammer Impact Force Estimations for an Impact on Location 5
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Figure I.11: Hammer Impact Li for an Impact on Location 5
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Figure I.12: Hammer on Location 5 Accelerations
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Appendix J

EFFECT Active Learning Module Frequency

Domain Handout

This section contains a handout used in the EFFECT active learning module

discussed in Chapter 6.
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EFFECT: Introduction to Frequency Domain by: Benjamin T. Davis, EIT

What is frequency domain?

“Put simply, a time-domain graph shows how a signal changes over time, whereas a frequency-

domain graph shows how much of the signal lies within each given frequency band over a range

of frequencies” [1].

You may have heard of the Fourier Series and its use in representing periodic signals through a summation

of cosine and sine terms. As a reminder, Equation 1 presents the Fourier Series [2].

S(t) = a0 +

∞∑
j=1

aj cos (jω0t) +

∞∑
j=1

bj sin (jω0t) (1)

This series is fundamental in creating a function for a periodic signal allowing for further analysis and

modeling. Taking a closer look at the series, one can see the theory that signals contain many sinusoidals of

varying amplitudes and frequencies. The larger the amplitude, the greater power that particular waveform

contributes to overall signal. This concept is what the frequency domain representation of a signal emulates

- frequencies present within a signal and how much each frequency contributes to the signal as a whole.

As an example, let’s take a sinusoidal loading that has a frequency of 10Hz and an amplitude of 20N. In

the time domain, this looks like a typical sine wave that has ten cycles in a second as in Figure 1a; however,

in the frequency domain (see Figure 1b) the frequency present in the signal, 10Hz, will create a peak as it

is rate with a large contribution (i.e. highest power).
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Figure 1: Signal Representations
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Given the frequency domain representation in Figure 2a, can you draw the time domain signal?
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Figure 2: Transforming Frequency Domain into Time Domain Problem
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How to transform a time domain signal to frequency domain?

The Fourier Transform “is a generalization of the complex Fourier Series” [3] that enables the decomposition

of a periodic signal into its frequency components, or, in other words, “takes a time-based pattern, measures

every possible cycle, and returns the overall ‘cycle recipe’ (the strength, offset, and rotation speed for every

cycle that was found)” [4]. One can liken the concept to listening to an orchestra. The orchestra combines

multiple waveforms from the many instruments that make up its whole into one audio signal. Now, if you

were to focus in on an individual instrument within the orchestra, you would be focusing on one audio

signal. This is essentially what the Fourier Transform does. It breaks down the orchestra into individual

instruments each having their own frequency to create the frequency domain representation of the entire

orchestra’s sound. Equation 2 presents the Fourier Transform [3, 5]

F (ξ) =

∫ ∞

−∞
S(t)e2πiξtdt (2)

where

ξ = frequency, Hz

S(t) = signal being evaluated with respect to time t

t = time, s

How to handle transforming more complex signals into the fre-

quency domain?

That first example wasn’t so rough, right? What if you had to decompose the signal in Figure 3a? A lot

more difficult to do by hand.
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Figure 3: Complex Signal Example

Enter the Fast Fourier Transform (FFT) for machine calculations created by James Cooley and John Tukey

to make the transformation from time domain to frequency domain simple to do by computer [6]. Equation 3

presents the FFT [4, 6]

University of South Carolina, Columbia Page 3 of 5
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F (ξ) =

N−1∑
n=0

S(n)e2πiξ(n/N) (3)

where

ξ = frequency, Hz

S(n) = signal being evaluated with respect to point n

n = data point

N = total number of data points

Fortunately for us, a lot of programming languages come with FFT built in. Take a look at the numpy

package available in Python in Code Snippet 1. Pretty easy, right?

1 import numpy as np

2

3 N = 200 # number of points in signal

4 dt = 1.0 / N # the time step between each data point of signal for one cycle

5

6 x = np.linspace(0, 2*np.pi, N) # in radians as np.sin() works in radians only

7 signal = 20*np.sin(10*x) + 50*np.sin(50*x) # the values of your signal

8 time = np.arange(0, len(signal)/dt, dt) # the time vector of the signal

9

10 sp = np.fft.fft(signal, len(signal)) # calculate the FFT for the discrete signal

11 freq = np.fft.fftfreq(time.shape[-1], dt) # grab the frequencies FFT evaluated

Code Snippet 1: Example of FFT Using Python Package NumPy

Using the code above on the complex signal in Figure 3a transforms the signal in the frequency domain

seen in Figure 3b. Notice how there is a peak at both 10Hz and 50Hz and that directly comes from the

frequencies in the sine functions used to create the signal. Additionally, pay attention to the decibel values

of the peaks. How does this relate to the amplitudes of each sine term that composes the signal?

University of South Carolina, Columbia Page 4 of 5
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Appendix K

EFFECT Active Learning Module Survey

This section contains the survey given to evaluate the EFFECT active learning

module discussed in Chapter 6.

259



ECIV 524 Structural Vibrations Survey

This is an anonymous survey, so do not write or sign your name. Please answer the following
questions honestly.

1. What is your expected grade in this class? 2 A 2 B 2 C 2 D 2 F

2. What have you learned in this class?

3. Indicate how conducive to learning the following course activities were.

a. Lectures not conducive 2—2—2—2—2 conducive

b. In-Class Homework not conducive 2—2—2—2—2 conducive

c. Experiments and Lab Visits not conducive 2—2—2—2—2 conducive

d. Project not conducive 2—2—2—2—2 conducive

4. How confident do you feel about the following topics?

a. SDOF Free Vibration not confident 2—2—2—2—2 confident

b. SDOF Harmonic Excitation not confident 2—2—2—2—2 confident

c. SDOF Periodic Excitation not confident 2—2—2—2—2 confident

d. SDOF Impulse Excitation not confident 2—2—2—2—2 confident

e. SDOF Arbitrary Excitation not confident 2—2—2—2—2 confident

f. Applying the Central Difference Method not confident 2—2—2—2—2 confident

g. Frequency Domain Signal Representation not confident 2—2—2—2—2 confident

University of South Carolina 1 of 2
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ECIV 524 Structural Vibrations Survey

5. What did you learn during the lab visit?

6a. Did the lab visit make the connection between math and physics easier to
understand? 2 Yes 2 No

6b. How or why?

7. How would you improve the activities during the lab visit?

University of South Carolina 2 of 2
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Appendix L

EFFECT Survey Responses

The following are responses given by students to the survey in Appendix K to

evaluate the EFFECT active learning module in Chapter 6. The check boxes for

questions three and four were given numeric values where one is not conducive/con-

fident and five is conducive/confident.
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L.1 Student A

1. B

2. Structures have a natural frequency and will undergo damping. There are
different types of excitations that can be applied to a structure and each one
will have a different impact on the structure’s properties.

3. a) 5
b) 4
c) 3
d) 4

4. a) 5
b) 5
c) 4
d) 2
e) 2
f) 3
g) 3

5. A structure can have more than one natural frequency, and when these are
excited you see peaks on the frequency vs. amplitude graph. A structure can
only have so much power done on it before it will break (max amplitude).

6. a) Yes
b) Seeing the data graphically after an actual experiment helped relate the

concepts.

7. Some of the concepts were still pretty confusing, even after some explanation.
Maybe give an overview of the basic concepts to keep in mind before doing the
actual experiment.

263



L.2 Student B

1. A

2. We have learned a lot about the response of a SDoF to different forms of exci-
tation including free vibrations, harmonic, impulse, and arbitrary. We studied
the displacement, the velocity, and acceleration of the structures in question. I
also learned how much this upper level class calls upon information we learned
in other classes. I liked that because it makes the effort in previous years feel
worth it.

3. a) 5
b) 2
c) 4
d) 3

4. a) 5
b) 5
c) 4
d) 5
e) 5
f) 1
g) 1

5. I was absent the day of the lab visit so I went on my own. I was able to
manipulate the structure myself by pushing on it and “felt” how strong it was.
I was also able to observe the structure in vibration. Finally, we used a slow
motion camera and a ruler to determine displacement at certain time intervals
which we used to calculate ζ.

6. a) Yes
b) It helps to see the actual 3D structure in front of you. It gives you a mental

check while performing calculations. You know what the structure should
do so you can say your math would or would not match up with what you
think it should do.

7. Again, I wasn’t there but I feel if the entire class is struggling to calculate
stiffness then the teacher should help us out. Our project was made more
difficult because we could not find k and neither could anyone else. Also, in
class homeworks are awful. Its basically a quiz because the teacher would
not answer any questions even if we were totally lost. Take home homework
we could bring to the teacher and ask for further explanation (teaching) of a
certain topic.
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L.3 Student C

1. A

2. I’ve learned about classifying systems and the process behind solving for those
systems. We have gotten a chance to see how you would experimentally test
structures and how to take data from them.

3. a) 5
b) 4
c) 4
d) 5

4. a) 5
b) 5
c) 4
d) 5
e) 4
f) 3
g) 3

5. I learned how to test a structure as well as saw how to graph and visualize lab
data. From the last visit, I was able to see how a structure can be excited at
all frequencies when struck by an impulse hammer.

6. a) Yes
b) It helped to make the connection because the results nearly mimicked

the theoretical numbers and it confirmed that the physics was true and
accurately described structures.

7. The last lab was confusing dealing with frequency domain response mainly
because I didn’t see David run through the simulations with the group that
went to the lab. The theory helped solve the problem at the end, but I took a
minute to grasp the physics behind exciting certain frequencies.
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L.4 Student D

1. B

2. I have learned about different frequencies and how these frequencies come into
play when trying to find the displacement, velocity, and acceleration of differ-
ent structures. Also, how different types of excitations effect the structures
differently from each other.

3. a) 5
b) 2
c) 4
d) 4

4. a) 5
b) 4
c) 2
d) 5
e) 5
f) 3
g) 2

5. I learned that without using time in the graphs, it was easier to see how much
and how little the different frequencies were.

6. a) Yes
b) To perform an actual test and see the results was helpful. On the other

hand the results from the real world simulation aren’t perfect graphs which
is what the book usually deals with.

7. I’m sure there is a way to improve, but I found them useful and engaging.
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L.5 Student E

1. B (student reported B+ which was not an option; changed to B)

2. Learned about SDOF systems and the many excitations a system can have and
the effects of them.

3. a) 5
b) 4
c) 3
d) 4

4. a) 4
b) 5
c) 2
d) 5
e) 5
f) 3
g) 1

5. Learned that superposition is only valid with a linear system.

6. a) No
b) Because I guess I had not been involved in the lab during the whole dura-

tion of the experiment. It’s kinda hard to go in and learn in an hour and
a half.

7. Not really sure. However, the lab visits do have an extracurricular feel and I
feel it adds to the course.
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L.6 Student F

1. A

2. How to model a single degree of freedom vibration due to arbitrary excitations.

3. a) 5
b) 5
c) 5
d) 5

4. a) 5
b) 5
c) 1
d) 5
e) 5
f) 5
g) 3

5. How a structure reacts to various frequencies. Natural frequencies can be found
with a simple impulse hammer test.

6. a) Yes
b) It allowed myself to physically see what was going on.

7. Allow more brainstorming among the entire class versus working in pairs.
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L.7 Student G

1. C

2. I have learned what damping ratios are, a better understanding of degrees of
freedom. I’ve learned these are different types of vibrations and most can be
calculated.

3. a) 5
b) 5
c) 4
d) 4

4. a) 5
b) 5
c) 1
d) 3
e) 3
f) 4
g) 1

5. I learned that even such a large structure moves when enough force is applied.
I also learned the structure moves not only up and down, but left and right
slightly.

6. a) Yes
b) We got to physically see the vibrating of the structure happen.

7. I cannot think of anything at the moment.
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L.8 Student H

1. D

2. The concepts of vibrations in structures with single degrees of freedom. The
tools/methods to use to analyze structural vibrations and what counts as failure.

3. a) 5
b) 5
c) 5
d) 5

4. a) 4
b) 4
c) 3
d) 4
e) 4
f) 3
g) 2

5. That there are other methods/data to analyze experiments with rather than
just something with time domain.

6. a) Yes
b) The actual observation of the experiment allowed a firm connection be-

tween the concept and the math.

7. Perhaps a different experiment included, maybe a small demonstration in excel
on what was one can analyze the data to reach conclusions for the key variables
necessary for the math equations.
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L.9 Student I

1. B

2. Dynamics of Structures, SDOF, free vibrations through undamped structures,
viscously damped, and coloumb damped. SDOF harmonic excitations on struc-
tures. Arbitrary and impulse responses. The central difference method and
Fourier series (a little bit).

3. a) 5
b) 5
c) 5
d) 4

4. a) 4
b) 4
c) 3
d) 4
e) 4
f) 3
g) 2

5. We learned about frequency-domain responses. Basically, the representation of
a response of a system through amplitudes and frequency.

6. a) No
b) I thought we didn’t have a lot of time to further discuss the subject.

7. Make it a two-three day lecture/lab visit so we have more time for questions/ex-
amples.
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Appendix M

SSH Database Utilities Documentation

This presents the documentation for the Python package for interacting with the

database presented in Chapter 3.
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SSH Database Utilities Documentation
Release 1.0.0

Benjamin T. Davis

May 04, 2016
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CHAPTER

ONE

LICENSE

Copyright (c) 2016 Benjamin T. Davis. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-
ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-
ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1

276



CHAPTER

TWO

ACTIVITY DENSITY

Authors: Benjamin T. Davis, NSF Graduate Research Fellow

Date: 2014 August 20

Activity density is a tool to show how activity and area is by compressing acceleration events into
an hour by week format. This allows the user to easily see patterns of activity and give the user
and idea of how dense a time is for activity.

2
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activity_density.get(sys=’all’, start=‘2010-01-01’, end=None, mac=None)
Collects the activity density data from the SSH Database for specified systems for the spec-
ified dates and specified sensor macs

Parameters

• sys (str or list) – The system group as a string being either

– va : VA Hospital Systems

– ph : Palmetto Health Systems

– all : all available systems

or a custom list of strings with each string having the form SSH-##

• start (str or datetime | default = ‘2010-01-01’) – The starting date to
consider with form YYYY-MM-DD or YYYY-MM-DD HH:MM:SS

• end (str or datetime | default = ‘2010-01-01’) – The ending date to con-
sider with form YYYY-MM-DD or YYYY-MM-DD HH:MM:SS

• mac (list | default = None) – The unique machine address of the sensor if
only a specific sensors are requested. Otherwise all sensors correspond-
ing to a specific date will be returned

Returns activity (list) – The activity density information with row being and en-
try and columns having form [0]dayOfWeekNumber, [1]hour, [2]numberO-
fEvents

Notes

•uses the ‘accel_events’ table

•adapted from SSH Data analysis/Database_utils_py/ActivityDensity/

3
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activity_density.plot(activity)
Plots the data received from activity_density.get() as a heatmap

Parameters activity (list) – The activity density information with row being
and entry and columns having form [0]dayOfWeekNumber, [1]hour, [2]num-
berOfEvents

Returns axis (<matplotlib.axes.AxesSubplot>) – The handle for the plot axis

Notes

•The axis default to light gray in color

•Change various features of the plot using axis; e.g.

>>> pyplot.setp(axis.lines, color='r', linewidth=2.0, linestyle='-')

•adapted from SSH Data analysis/Database_utils_py/ActivityDensity/

4
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CHAPTER

THREE

DATA DUMPER

Authors: Benjamin T. Davis, NSF Graduate Research Fellow

Date: 2016 April 07

Grabs the specified system group’s data and saves to a csv file.

5
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data_dumper.run(username, password, sys=’all’, tables=[’accel_events’, ‘sys-
tem_log’, ‘downloads’, ‘events’], nrows=2000, savedir=’./’)

Dumps the database into a series of csv files, each file containing nrows of data

Parameters

• username (str) – The username having admin rights for the human ac-
tivity database

• password (str) – The password for the username

• sys (list | default = ‘all’) – The system group as a string being either

– va : VA Hospital Systems

– ph : Palmetto Health Systems

– all : all available systems

or a custom list of strings with each string having the form SSH-##

• tables (list | default = [’accel_events’, ‘system_log’, ‘downloads’,
‘events’]) – A list of table name strings that should be dumped

• nrows (int | default = 2000) – The number of rows to dump into the csv
file at a time; this prevents possible errors from server timeouts on large
datasets

• savedir (str | default = ‘./’) – The directory to save in csv files in; string
should end with ‘/’

Notes

•Saves the csv files to the server housing the MySQL database based on the savedir
directory

6
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data_dumper.make_system_options(systems)
Makes the MySQL where clause for choosing selected systems

Parameters systems (list) – the system names

7
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CHAPTER

FOUR

DISPERSION RATIO

Authors: Benjamin T. Davis, NSF Graduate Research Fellow

Date: 2015 March 24

8
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dispersion_ratio.calc(data, window=250, noverlap=249)
Calculates the dispersion ratio which is defined as max(std_wave) / min(std_wave)

Parameters

• data (list) – data to perform the operation on (e.g. accelerometer data)

• window (int | default = 250) – the number of points to use per operation;
must be less than len(data)

• noverlap (int | default = 249) – number of points to overlap per window;
must be less than window

Returns dr (float) – the dispersion ratio

Notes

•performs calculation as if NaN was not present. Meaning that data=[1,2,3,NaN,4,5]
and x=[0,1,2,3,4,5] would be treated as data=[1,2,3,4,5] and x=[0,1,2,4,5], respectively

•adapted from SSH Data Analysis/Database_utils_py/StandardDeviationSNR/

9
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CHAPTER

FIVE

EVENT

Author: Benjamin T. Davis, NSF Graduate Research Fellow <btdavis@email.sc.edu>

Date: 2015 July 2
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event.get(system, event_date, mac=None)
Grabs an acceleration event from the SSH database

Parameters

• system (str) – The system that saw the event using the format SSH-##.
Systems may be obtained from the sys_group module

• event_date (str or datetime) – The full string or datetime object of form
YYYY-MM-DD HH:MM:SS

• mac (str | default = None) – The unique machine address of the sensor if
only a specific sensor is requested. Otherwise all sensors corresponding
to a specific date will be returned.

Returns event (list) – where each slot contains a sublist of the form
[0]event_date, [1]sensor_mac, [2]vertical_axis, [3]accelerationData, [4]sys-
tem, [5]system_activation

Notes

•uses the ‘accel_events’ table

•only returns one event at a time

•adapted from SSH Data analysis/Database_utils_py/AccelEventPlot/
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event.plot(event, fs=1, one_plot=False)
Plots the event gathered by event.get()

Parameters

• event (list) – The list of event data features from event.get()

• fs (float | default = 1) – The sampling rate of the data in Hz

• one_plot (boolean | default = False) – If you want the data to be plotted
in one window or each sensor to be plotted in its own window

Returns axis (list or <matplotlib.axes.AxesSubplot>) – If one_plot was set to
True, this will be a list of <matplotlib.axes.AxesSubplot> objects, one for
each sensor’s plot. Otherwise this will be a single object

Notes

•The axis default to light gray in color

•Change various features of the plot using axis; e.g.

>>> pyplot.setp(axis.lines, color='r', linewidth=2.0, linestyle='-')

•adapted from SSH Data analysis/Database_utils_py/AccelEventPlot/
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CHAPTER

SIX

EVENT PROCESSOR

Authors: Benjamin T. Davis, NSF Graduate Research Fellow

Date: 2016 February 09

The event processor works through records processes said records for the various metrics. The
results are stored in the human-induced vibration activity database.
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event_processor.insert_or_update_parameter(cursor, system, event_date,
mac, parameter, value)

Attempts to insert, or failing that update, the parameter value in the event_parameters table

Parameters

• cursor (pymysql.cursors.Cursor) – The pymysql cursor object for exe-
cuting queries

• system (str) – The system relating to the parameter

• event_date (str or datetime) – The event date with form YYYY-MM-DD
or YYYY-MM-DD HH:MM:SS

• mac (str) – The MAC address relating to this parameter

• parameter (str) – The parameter to insert or update

• value (str) – The value of the parameter

14

289



SSH Database Utilities Documentation, Release 1.0.0

event_processor.mark_event_parameter_processed(cursor, event_date,
mac, parameter)

Marks an event’s parameter as processed in event_processing table

Parameters

• cursor (pymysql.cursors.Cursor) – The pymysql cursor object for exe-
cuting queries

• event_date (str or datetime) – The event date with form YYYY-MM-DD
or YYYY-MM-DD HH:MM:SS

• mac (str) – The MAC address relating to this parameter

• parameter (str) – The parameter to insert or update

Note:
•Switching the value of ‘processed’ from 0 to 1 indicates the event has has been pro-
cessed. In other words, 0 indicated unprocessed and 1 indicates processed.
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event_processor.all_records(metric=’ampmax’, start=‘2010-01-01’,
end=None)

Generates processing information in the event_processing table for all acceleration records
in accel_events for a date range

Parameters

• metric (str | default = ‘ampmax’) – The metric to process. Metrics are
defined in the parameters table

• start (str or datetime | default = ‘2010-01-01’) – The starting date to
consider with form YYYY-MM-DD or YYYY-MM-DD HH:MM:SS

• end (str or datetime | default = None) – The ending date to consider with
form YYYY-MM-DD or YYYY-MM-DD HH:MM:SS

Note:
•Ignores records saying ‘No Data’
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event_processor.all_records_category_svm(start=‘2010-01-01’,
end=None)

Adds all records processing information to the event_processing table for generated the
SVM-defined category

Parameters

• start (str or datetime | default = ‘2010-01-01’) – The starting date to
consider with form YYYY-MM-DD or YYYY-MM-DD HH:MM:SS

• end (str or datetime | default = None) – The ending date to consider with
form YYYY-MM-DD or YYYY-MM-DD HH:MM:SS

Note:
•Ignores records saying ‘No Data’

•Ignores records with ‘NaN’ present, i.e. incomplete records

•Ignores records with a MADr greater than 0.95 as these are considered sensor errors

•Ignores records that have already been categorized with category-manual as these are
considered training records for the SVM
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event_processor.records_missing_metric(metric=’ampmax’, start=‘2010-
01-01’, end=None)

Looks for records missing the specified metric in the events_parameters table and then gen-
erates processing information in the event_processing table

Parameters

• metric (str | default = ‘ampmax’) – The metric to process. Metrics are
defined in the parameters table

• start (str or datetime | default = ‘2010-01-01’) – The starting date to
consider with form YYYY-MM-DD or YYYY-MM-DD HH:MM:SS

• end (str or datetime | default = None) – The ending date to consider with
form YYYY-MM-DD or YYYY-MM-DD HH:MM:SS

Note:
•Ignores records saying ‘No Data’
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event_processor.records_missing_category_svm(start=‘2010-01-01’,
end=None)

Looks for records missing an SVM-defined category in the events_parameters table and then
generates processing information in the event_processing table

Parameters

• start (str or datetime | default = ‘2010-01-01’) – The starting date to
consider with form YYYY-MM-DD or YYYY-MM-DD HH:MM:SS

• end (str or datetime | default = None) – The ending date to consider with
form YYYY-MM-DD or YYYY-MM-DD HH:MM:SS

Note:
•Ignores records saying ‘No Data’

•Ignores records with ‘NaN’ present, i.e. incomplete records

•Ignores records with a MADr greater than 0.95 as these are considered sensor errors

•Ignores records that have already been categorized with category-manual as these are
considered training records for the SVM
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event_processor.generate_metric(metric=’ampmax’, fs=316.0, window=250,
noverlap=249)

Generates the specified metric based on the table event_processing which is generated using
all_records() or records_missing_metric()

Parameters

• metric (str | default = ‘ampmax’) – The metric to process. Metrics are
defined in the parameters table

• fs (float | default = 316.0) – The sampling rate (Hz) of the records being
evaluated. This is set to 316 Hz which was shown by Benjamin T. Davis
in his PhD dissertation to be the frequency of the Camp Hill sensor; used
for senergy

• window (int | default = 250) – The number of points to use per operation;
must be less than len(data); used for stdsnr

• noverlap (int | default = 249) – Number of points to overlap per window;
must be less than window; used for stdsnr
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event_processor.svm_categorize()
Categorizes records using a SVM from Benjamin T. Davis’s dissertation, Characterization of
Human-Induced Vibrations, that learns based on category-manual. It operates using the table
event_processing which is generated using records_missing_category_svm()

Note:
•The SVM learns based on category-manual. The radial basis function kernel using the
Disperion Ratio metric was found to be the best, and is what the SVM provided here
utilizes.

•if DR = infinity, category is marked as 0 for unsure. These are typically signals con-
taining all the same values.
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CHAPTER

SEVEN

EVENTS BY DAY

Authors: Benjamin T. Davis, NSF Graduate Research Fellow

Date: 2014 August 14

Events by day shows how many acceleration events occur on each month of each day which gives
the viewer an idea of how active an area is. This is a version of Activity Density.
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events_by_day.get(sys=’all’, start=‘2010-01-01’, end=None, mac=None)
Collects the event data from the SSH Database specified systems for the specified dates and
specified sensor macs

Parameters

• sys (str or list) – The system group as a string being either

– va : VA Hospital Systems

– ph : Palmetto Health Systems

– all : all available systems

or a custom list of strings with each string having the form SSH-##

• start (str or datetime | default = ‘2010-01-01’) – The starting date to
consider with form YYYY-MM-DD or YYYY-MM-DD HH:MM:SS

• end (str or datetime | default = ‘2010-01-01’) – The ending date to con-
sider with form YYYY-MM-DD or YYYY-MM-DD HH:MM:SS

• mac (list | default = None) – The unique machine address of the sensor if
only a specific sensors are requested. Otherwise all sensors correspond-
ing to a specific date will be returned

Returns events (list) – events by day with columns having the form [0]year,
[1]month, [2]day, [3]event count, [4]month abbreviation

Notes

•uses the ‘accel_events’ table

•adapted from SSH Data analysis/Database_utils_py/EventsByDay/
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events_by_day.plot(events, logscale=False)
Plots the data received from events_by_day.get() as a heatmap

Parameters

• events (list) – events by day with columns having the form [0]year,
[1]month, [2]day, [3]event count, [4]month abbreviation

• logscale (boolean | default = False) – determines if output should be in
log scale

Returns axis (<matplotlib.axes.AxesSubplot>) – The handle for the plot axis

Notes

•The axis default to light gray in color

•Change various features of the plot using axis; e.g.

>>> pyplot.setp(axis.lines, color='r', linewidth=2.0, linestyle='-')

•adapted from SSH Data analysis/Database_utils_py/ActivityDensity/
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EIGHT

MAX AMPLITUDE

Authors: Benjamin T. Davis, NSF Graduate Research Fellow

Date: 2015 January 16
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max_amplitude.calc(data)
Finds the maximum amplitude of the data determined by max(abs(data))

Parameters data (list) – data to perform the operation on (e.g. accelerometer
data)

Returns max_amplitude (float) – the maximum amplitude present in the data
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max_amplitude.difference(data)
Finds the maximum amplitude difference (MAD) of the data which is the max change of the
absolute values of the descending sorted data

Parameters data (numpy.array) – data to perform the operation on (e.g. ac-
celerometer data)

Returns mad (float) – the maximum amplitude difference present in the data
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max_amplitude.get(systemDate)
Finds the maximum amplitudes of the events given based on metric2 in the SSH Database

Parameters systemDate (2D list) – a list with system names as the first column
and an event date as the second column

>>> systemDate = [[['SSH-36'], ['2013-04-25 16:48:03']],
[['SSH-37'], ['2014-06-01 00:32:24']]]

Returns amplitudes (2D array) – an array containing the results for all the sys-
tem and date combinations from systemDate with each row having the form
[[0] system, [1] date, [2] mac, [3] amplitude]. The mac slot corresponds to
the mac of the sensor that has the maximum amplitude. The amplitude slot
contains the max amplitude value.

Notes

•adapted from SSH Data Analysis/Database_utils_py/maxAmplitude/
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NINE

METRICS

Authors: Benjamin T. Davis, NSF Graduate Research Fellow

Date: 2015 November 05

Metrics provides functions for grabbing signal metric information that is stored in the database.
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metrics.get(sys=’all’, start=‘2010-01-01’, end=None, param=’all’, mac=None)
Collects the specified signal metrics

Parameters

• sys (str or list) – The system group as a string being either

– va : VA Hospital Systems

– ph : Palmetto Health Systems

– all : all available systems

or a custom list of strings with each string having the form SSH-##

• start (str or datetime | default = ‘2010-01-01’) – The starting date to
consider with form YYYY-MM-DD or YYYY-MM-DD HH:MM:SS

• end (str or datetime | default = ‘2010-01-01’) – The ending date to con-
sider with form YYYY-MM-DD or YYYY-MM-DD HH:MM:SS

• param (list | default = ‘all’) – The name of the metrics in the database
to retrieve or ‘all’ to grab everything

• mac (list | default = None) – The unique machine address of the sensor if
only a specific sensors are requested. Otherwise all sensors correspond-
ing to a specific date will be returned

Returns metrics (list) – The list of metrics requested where [0]system, [1]date
[2]sensor mac, [3]param1 value, [4]param2 value,...

Notes

•uses the ‘event_parameters’ table

•uses the ‘parameters’ table

•adapted from SSH Data analysis/Database_utils_py/SignalMetricPlot/
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metrics.getGrouped(sys=’all’, start=‘2010-01-01’, end=None, param=’all’,
mac=None)

Collects the specified signal metrics as a group. The grouping only returns records that
contain the metrics listed after applying a filter to the values to ignore “NaN” and empty.

Parameters

• sys (str or list) – The system group as a string being either

– va : VA Hospital Systems

– ph : Palmetto Health Systems

– all : all available systems

or a custom list of strings with each string having the form SSH-##

• start (str or datetime | default = ‘2010-01-01’) – The starting date to
consider with form YYYY-MM-DD or YYYY-MM-DD HH:MM:SS

• end (str or datetime | default = ‘2010-01-01’) – The ending date to con-
sider with form YYYY-MM-DD or YYYY-MM-DD HH:MM:SS

• param (list | default = ‘all’) – The name of the metrics in the database
to retrieve or ‘all’ to grab everything

• mac (list | default = None) – The unique machine address of the sensor if
only a specific sensors are requested. Otherwise all sensors correspond-
ing to a specific date will be returned

Returns metrics (list) – The list of metrics requested where [0]system, [1]date
[2]sensor mac, [3]param1 value, [4]param2 value,...

Notes

•uses the ‘event_parameters’ table

•uses the ‘parameters’ table

•adapted from SSH Data analysis/Database_utils_py/SignalMetricPlot/
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TEN

MONITORED DAYS

Authors: Benjamin T. Davis, NSF Graduate Research Fellow

Date: 2014 September 29

Monitored Days displays how many sensors were active by day. Gives user an idea of how well a
system and its sensors are operating.
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monitored_days.get(sys=’all’, start=‘2010-01-01’, end=None, mac=None)
Collects the monitored day data from the SSH Database for specified systems for the speci-
fied dates and specified sensor macs

Parameters

• sys (str or list) – The system group as a string being either

– va : VA Hospital Systems

– ph : Palmetto Health Systems

– all : all available systems

or a custom list of strings with each string having the form SSH-##

• start (str or datetime | default = ‘2010-01-01’) – The starting date to
consider with form YYYY-MM-DD or YYYY-MM-DD HH:MM:SS

• end (str or datetime | default = ‘2010-01-01’) – The ending date to con-
sider with form YYYY-MM-DD or YYYY-MM-DD HH:MM:SS

• mac (list | default = None) – The unique machine address of the sensor if
only a specific sensors are requested. Otherwise all sensors correspond-
ing to a specific date will be returned

Returns sensors_active (list) – The monitored day information with row being
and entry and columns having form [0]day, [1]month, [2]year, [3]numberOf-
Sensors, [4]monthName

Notes

•uses the ‘system_log’ table

•adapted from SSH Data Analysis/Database_utils_py/MonitoredDays/
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monitored_days.plot(sensors_active)
Plots the data received from monitored_days.get() as a heatmap

Parameters sensors_active (list) – The monitored day information with row be-
ing and entry and columns having form [0]day, [1]month, [2]year, [3]num-
berOfSensors, [4]monthName

Returns axis (<matplotlib.axes.AxesSubplot>) – The handle for the plot axis

Notes

•The axis default to light gray in color

•Change various features of the plot using axis; e.g.

>>> pyplot.setp(axis.lines, color='r', linewidth=2.0, linestyle='-')

•adapted from SSH Data Analysis/Database_utils_py/MonitoredDays/
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ELEVEN

NAN DENSITY

Authors: Benjamin T. Davis, NSF Graduate Research Fellow

Date: 2015 March 20
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nan_density.calc(data)
Calculates the density of nan values in a data set. The equation is # nan / total points

Parameters data (list) – data to perform the operation on (e.g. accelerometer
data)

Returns density (float) – the density of NaN in the data

Notes

•adapted from SSH Data Analysis/Database_utils_py/nanDensity/
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TWELVE

RECORD CATEGORIZER

Authors: Benjamin T. Davis, NSF Graduate Research Fellow

Date: 2015 March 26

Browses falls database at random and allows user to categorize the signal
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record_categorize.run()
Runs the categorizer and guides the user through the process while saving the user’s re-
sponses to the database in table event_parameters with the parameter name being category-
manual

Notes

•uses the ‘accel_events’ table

•adapted from SSH Data analysis/Database_utils_py/manualRecordCategorizer/
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THIRTEEN

SIGNAL ENERGY

Authors: Benjamin T. Davis, NSF Graduate Research Fellow

Date: 2015 April 02
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signal_energy.calc(y, x=None, dx=1.0)
Determines the signal energy (signal processing version). This is defined to be inte-
gral(data^2).The integration scheme used here is the trapezoidal rule.

Parameters

• y (list) – the y values of the signal

• x (list | default = None) – the x coordinates corresponding to data

• dx (float | default = 1.0) – the spacing between elements of data; if x is
not specified, dx is used

Returns senergy (float) – the signal energy

Notes

•https://en.wikipedia.org/wiki/Energy_(signal_processing)

•performs integration as if NaN was not present. Meaning that data=[1,2,3,NaN,4,5]
and x=[0,1,2,3,4,5] would be treated as data=[1,2,3,4,5] and x=[0,1,2,4,5], respectively

•adapted from SSH Data Analysis/Database_utils_py/signalEnergy/
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FOURTEEN

RATE OF DISPERSION

Author: Benjamin T. Davis, NSF Graduate Research Fellow <btdavis@email.sc.edu>

Date: 2015 March 05
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rate_of_dispersion.calc(data, window=250, noverlap=249, offset=100,
rv=’rod’)

Calculates the Rate of Dispersion (RoD) which is defined as max(jumps) / max(abs(data))

Parameters

• data (1D array like) – data to perform the operation on (i.e. accelerom-
eter data)

• window (int | default = 250) – the number of points to use per operation;
must be less than len(data)

• noverlap (int | default = 249) – number of points to overlap per window;
must be less than window

• offset (int | default = 100) – the number of points to offset for calculating
value jumps

• rv (str | default = ‘cd’) – values to return from the following options:

– cd : Coefficient of Deviation

– all : stdwave, jumps, cnd

Returns

• rod (float | if ‘rv = ‘cd’) – the rate of dispersion

• info (dict | if ‘rv = ‘all’) – dictionary containing the results of all the
calculations with the keys

– stdwave : standard deviation wave output

– jumps : the value jump output

– rod : Rate of Dispersion
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FIFTEEN

STANDARD DEVIATION WAVE

Author: Benjamin T. Davis, NSF Graduate Research Fellow <btdavis@email.sc.edu>

Date: 2015 March 05
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std_wave.calc(data, window=250, noverlap=249)
Windows the data and takes the standard deviation of those windows creating a wave like
effect moving through the data.

Parameters

• data (1D array like) – data to perform the operation on (e.g. accelerom-
eter data)

• window (int | default = 250) – the number of points to use per operation;
must be less than len(data)

• noverlap (int | default = 249) – number of points to overlap per window;
must be less than window

Returns std_wave (list) – contains the standard deviation wave through the sig-
nal of size len(signal)-noverlap
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SIXTEEN

SYSTEM GROUPS

The module provides some system groupings for various deployments. These groups are:
Group Name Variable
All Systems all

Palmetto Health Systems ph

VA Hospital Systems va

Here is the list of systems in each group in Python code.

all = ['SSH-1','SSH-2','SSH-3','SSH-4','SSH-5','SSH-6','SSH-7','SSH-9',
'SSH-10','SSH-11','SSH-12','SSH-13','SSH-14','SSH-15','SSH-16',
'SSH-17','SSH-18','SSH-19','SSH-20','SSH-21','SSH-22','SSH-23',
'SSH-24','SSH-25','SSH-26','SSH-27','SSH-28','SSH-29','SSH-30',
'SSH-31','SSH-32','SSH-33','SSH-34','SSH-35','SSH-36','SSH-37',
'SSH-38','SSH-39','SSH-40','SSH-41','SSH-42']

ph = ['SSH-1','SSH-2','SSH-3','SSH-4','SSH-5','SSH-6','SSH-7','SSH-9',
'SSH-10','SSH-11','SSH-12','SSH-13','SSH-14','SSH-15','SSH-16',
'SSH-17','SSH-18','SSH-19','SSH-20','SSH-21','SSH-22','SSH-23',
'SSH-24','SSH-25','SSH-26','SSH-27','SSH-28','SSH-29','SSH-30',
'SSH-31','SSH-32','SSH-33','SSH-34','SSH-35']

va = ['SSH-36','SSH-37','SSH-38','SSH-39','SSH-40','SSH-41','SSH-42']

These are all automatically loaded for you when you import the package and can be accessed like
so.

>>> ssh_database_utils.sys_groups.ph
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SEVENTEEN

VALUE JUMP

Author: Benjamin T. Davis, NSF Graduate Research Fellow <btdavis@email.sc.edu>

Date: 2015 March 05
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value_jump.calc(data, offset=100)
Calculates value jumps between points with an offset defining which points to use.

Parameters

• data (1D array_like) – data to perform the operation on (i.e. standard
deviation wave data)

• offset (int | default = 100) – the number of points to offset

Returns jumps (list) – contains the value jumps through the data; list of size
data-offset
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EIGHTEEN

VA ROOM INFO

Authors: Benjamin T. Davis, NSF Graduate Research Fellow

Date: 2014 July 24

Groups sensors by room for the VA installation from 2013-01-18 to 2014-06-13.
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The following shows the break down by room for the VA installation as seen in python code.
This is loaded as a variable when importing the package and can be accessed using the variable
va_room_info.

va_room_info = {103:{'system':'SSH-41',
'sensor':['00066614BB46',

'00066614E6AB',
'0006661405B2',
'000666149989',
'000666149946']

},

104:{'system':'SSH-41',
'sensor':['00066614B3B0',

'00066614B3BC',
'00066614E7E5',
'00066614B15A']

},

105:{'system':'SSH-41',
'sensor':['00066613D4E1',

'00066614BB87',
'00066614E2CC']

},

106:{'system':'SSH-40',
'sensor':['00066614BB81',

'00066614B3A9']
},

107:{'system':'SSH-40',
'sensor':['00066614E7EC',

'00066614E0A8',
'0006661438F5']

},

108:{'system':'SSH-40',
'sensor':['00066614BB48',

'000666303496',
'000666138D07',
'00066614E7E9',
'00066614986D']

},

109:{'system':'SSH-39',
'sensor':['000666303493',

'00066614E2CC',
'00066614E7DB',
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'000666143087',
'0006661497E3']

},

110:{'system':'SSH-39',
'sensor':['00066614BB7C',

'00066614E272',
'00066614B3A5',
'00066614394B',
'00066614996F',
'0006661497E8']

},

111:{'system':'SSH-39',
'sensor':['000666138F1E',

'000666138D2C',
'000666143081']

},

112:{'system':'SSH-39',
'sensor':['00066614B3B3',

'00066614BB45',
'00066614999F']

},

113:{'system':'SSH-38',
'sensor':['0006661400E5',

'00066614BB89',
'000666142F31',
'000666303486',
'00066614B3B5']

},

114:{'system':'SSH-38',
'sensor':['00066614C7AE',

'000666138D9C']
},

115:{'system':'SSH-38',
'sensor':['00066614DC67',

'000666142E73']
},

116:{'system':'SSH-37',
'sensor':['00066614BB90',

'00066613C925',
'0006661499A6']

50

325



SSH Database Utilities Documentation, Release 1.0.0

},

117:{'system':'SSH-37',
'sensor':['00066613D665',

'000666303495',
'0006661499B5',
'000666142F24']

},

118:{'system':'SSH-37',
'sensor':['00066614E6D0',

'00066614D0A3',
'000666139700',
'00066614B3B1',
'000666149983']

},

119:{'system':'SSH-37',
'sensor':['000666143B49',

'00066614B94A',
'0006661499B5',
'00066614B3A1',
'0006661499B6',
'0006661497A5']

},

120:{'system':'SSH-36',
'sensor':['000666303492',

'00066614E241',
'00066614998E']

},

120:{'system':'SSH-36',
'sensor':['000666303492',

'00066614E241',
'00066614998E']

},

121:{'system':'SSH-36',
'sensor':['00066614BB8F',

'00066614BB7E',
'000666303485',
'0006661499AF']

},

122:{'system':'SSH-36',
'sensor':['00066614E687',
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'00066614B3A1',
'00066614E687',
'000666149981']

},
}
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Appendix N

FEEL Python Package Documentation

This presents the documentation for the Python package that implements the

FEEL Algorithm presented in Chapter 5.
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CHAPTER

ONE

LICENSE

Copyright (c) 2016 Benjamin T. Davis. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIM-
ITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THE-
ORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-
ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1
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TWO

LOW-PASS FIR FILTER

Author: Benjamin T. Davis, NSF Graduate Research Fellow <btdavis@email.sc.edu>

Date: 2015 May 1
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lowpassfir.applyfilter(data, taps, a)
Applies a low-pass finite impulse response filter to clean digital acceleration and force data

Parameters

• data (array-like) – The detrended data captured from a system (e.g.
force) where column is the sensor and row is time step

• taps (1D array-like) – The values of the taps of the low pass FIR filter;
can get the taps using design()

• a (float) – The denominator coefficient for the filter; can get the taps
using design()

Returns

• fdata (array) – The filtered data

• delay (float) – The phase delay in points from the beginning of the sig-
nal; to get the delay in seconds, divide value by sampling frequency; the
filtering process corrupts part of the record, so shift the record by this
value like this fdata[delay:]

Notes

•The way the record shift is calculated here differs from that of the reference mate-
rial. This is due to some experimenting with the shifting value that determined force
estimations are more accurate with the version presented here.

References

http://wiki.scipy.org/Cookbook/FIRFilter
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lowpassfir.design(fs, trans_hz=10, ripple_db=160, cutoff_hz=208, rv=’filter’)
Designs a low-pass finite impulse response filter for cleaning digital acceleration and force
data

Parameters

• fs (float) – Sampling frequency for the data in Hz

• trans_hz (int or float | optional | default = 10) – Transition width from
pass to stop of the filter in Hz

• ripple_db (int or float | optional | default = 160) – Desired attenuation
of the stop band in dB

• cutoff_hz (int or float | optional | default = 208) – Cut off frequency for
the filter in Hz; it is recommended that this value is slightly higher than
the desired Nyquist Rate, e.g. (0.5*fs)+8

• rv (str | optional | default = ‘filter’) – Specified return values the user
wants filter -> taps, a params -> taps, a, width, beta

Returns

• taps (1D array-like) – The values of the taps of the low pass FIR filter

• a (float) – The denominator coefficient for the filter

• width (float) – Transition width relative to Nyquist Rate

• beta (float) – Kaiser window beta parameter used

References

http://wiki.scipy.org/Cookbook/FIRFilter
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lowpassfir.plotfiltercoeff(taps)
Plots the FIR filter coefficients

Parameters taps (1D array-like) – The values of the taps of the low pass FIR
filter; can get the taps using design()

Returns axis (<matplotlib.axes.AxesSubplot>) – The axis handle for the current
plot; can be used to adjust the plot visuals

Notes

•The axis default to light gray in color

•Change various features of the plot using axis; e.g.

>>> pyplot.setp(axis.lines, color='r', linewidth=2.0, linestyle='-')

References

http://wiki.scipy.org/Cookbook/FIRFilter

http://matplotlib.org/users/pyplot_tutorial.html
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lowpassfir.plotfreqresponse(taps, fs)
Plots the FIR filter frequency response

Parameters

• taps (1D array-like) – The values of the taps of the low pass FIR filter;
can get the taps using design()

• fs (int or float) – Sampling frequency for the data; same as used in
design()

Returns axis (<matplotlib.axes.AxesSubplot>) – The axis handle for the current
plot; can be used to adjust the plot visuals

Notes

•The axis default to light gray in color

•Change various features of the plot using axis; e.g.

>>> pyplot.setp(axis.lines, color='r', linewidth=2.0, linestyle='-')

References

http://wiki.scipy.org/Cookbook/FIRFilter

http://matplotlib.org/users/pyplot_tutorial.html
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RESAMPLE

Author: Benjamin T. Davis, NSF Graduate Research Fellow <btdavis@email.sc.edu>

Date: 2015 May 1
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resample.resample(data, oldfs, newfs, trans_hz=10, ripple_db=160, cutoff_hz=208)
Resamples data from and old rate to a new rate using the Fourier Method, after applying a
FIR filter to clean the data

Warning: Function has only been tested to work for downsampling!

Parameters

• data (array-like) – The detrended data captured from a system (e.g.
force) where column is the sensor and row is time step

• oldfs (float) – Original sampling frequency for the data in Hz

• newfs (float) – New sampling frequency for the data in Hz

• trans_hz (int or float | optional | default = 10) – Transition width from
pass to stop of the filter in Hz

• ripple_db (int or float | optional | default = 160) – Desired attenuation
of the stop band in dB

• cutoff_hz (int or float | optional | default = 208) – Cut off frequency for
the filter in Hz; it is recommended that this value is slightly higher than
the desired Nyquist Rate, e.g. (0.5*fs)+8

Returns rdata (1D array) – The resampled data that has been adjusted for phase
delay

Notes

•function has only been tested and verified to work when downsampling

•if you are interested in seeing more specifics about the filter, refer to lowpassfir func-
tions

References

http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.signal.resample.html
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Author: Benjamin T. Davis, NSF Graduate Research Fellow <btdavis@email.sc.edu>

Date: 2015 April 30
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tfestimate.tfestimate(x, y, fs, nfft=2048, noverlap=1024)
Estimates the transfer function using the average of two different methods to calculate the
transfer function

Parameters

• x (1D array-like) – The input for the system (e.g. force)

• y (1D array-like) – The output of the system (e.g. accelerations) corre-
sponding to the input x

• fs (int or float) – Sampling frequency for both the input and output

• nfft (int | optional | default = 2048) – Number of data points used in
each block for FFT

• noverlap (int | optional | default = 1024) – Number of overlapping data
points used for Welch’s Average Periodogram Method

Returns

• freq (1D array) – The frequencies corresponding to each point of the
transfer function estimate

• tfe (1D array) – The values of the transfer function estimate

Notes

•x and y should be captured at the same sampling frequency

•utilizes Welch‘s Average Periodogram Method

•typically one would want to display the transfer function in decibel units; to convert to
dB perform 20*log10(tfe)

References

http://matplotlib.org/api/mlab_api.html?highlight=psd#matplotlib.mlab.psd

http://matplotlib.org/api/mlab_api.html?highlight=psd#matplotlib.mlab.csd

Bendat, J. S., and Piersol, A. G. (2000). Random Data: Analysis and Measurement Proce-
dures. Wiley. New York.

Ewins, D.J. (2000). Modal Testing: Theory, Practice, and Application. Research Studies
Press Ltd. p.238-239.
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Author: Benjamin T. Davis, NSF Graduate Research Fellow <btdavis@email.sc.edu>

Date: 2015 April 30
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force.estimate(accel, tfe, nfft=2048, rmtrend=False)
Estimates the force of impact from acceleration data

Parameters

• accel (1D array-like) – The detrended accelerations captured from a sys-
tem

• tfe (1D array-like) – The values of the transfer function estimate relating
force and acceleration; these are found using feel.tfestimate()

• nfft (int | optional | default = 2048) – Number of data points used in the
FFT

• rmtrend (boolean | optional | default = False) – Whether or not to re-
move trend (detrend) of the force estimate before returning the data; uses
scipy.signal.detrend() with default settings

Returns f_hat (array) – The detrended impact force estimate

Notes

•Only uses the first n points of the acceleration signal, where n is the number of points
of the tfe

References

http://docs.scipy.org/doc/numpy/reference/routines.fft.html

http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.signal.detrend.html
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force.magnitude(f_hat)
Determines the magnitude of the force estimate. Grabs the two best matching force estimate
pairs (based on correlations) and uses the real part of the complex conjugate to calculate the
magnitude.

Parameters f_hat (array) – The force estimates for a location with rows being
the sensor and columns being the data points

Returns f (float) – The force estimate magnitude

Notes

•it is easiest to take the outputs from force_estimate and use
numpy.vstack((force1, force2)) to create the f_hats array

13
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LOCATION

Author: Benjamin T. Davis, NSF Graduate Research Fellow <btdavis@email.sc.edu>

Date: 2015 June 10
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location.forcedev(f_hats)
Calculates the deviation of force estimates for each provided location using real portion of
the estimate only

Parameters f_hats (dict) – The detrended impact force estimates for each sensor
at each location of form

>>> f_hats = {1: [force11 force12], 2:[force21 force22]}

where the dict key is the location designation, and the dict value is an array
where rows indicate sensor and column indicate points in the force estimates

Returns

L (dict) – The values for each location in f_hats of form

>>> L = {1: dev1, 2: dev2}

where lowest deviation value is the location of impact

Notes

•It is easiest to take the outputs from force_estimate and use numpy.vstack((force11,
force12)) to create each dictionary value

•It is also best to use this method by first taking a window around the peak of the force
estimate for each sensor record in f_hats

15
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location.forcecorr(f_hats)
Calculates the correlation of force estimates for each provided location by calculating the
correlation coefficents of pairs of signals and grabbing the largest coefficient as the correla-
tion for the location

Parameters f_hats (dict) – The detrended impact force estimates for each sensor
at each location of form

>>> f_hats = {1: [force11 force12], 2:[force21 force22]}

where the dict key is the location designation, and the dict value is an array
where rows indicate sensor and column indicate points in the force estimates

Returns

L (dict) – The values for each location in f_hats of form

>>> L = {1: corr1, 2: corr2}

where highest correlation value is the location of impact

Notes

•It is easiest to take the outputs from force_estimate and use
numpy.vstack((force11, force12)) to create each dictionary value

16
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location.locate(L, ctype=’corr’)
Determines the location of impact

Parameters

• L (dict) – The values for each location in f_hats of form {1: dev1, 2:
dev2}

• ctype (str) – The force comparision type used

std -> if results are from forcedev

corr -> if results are from forcecorr

Returns L_hat (any type) – The location of impact; type is dependent on the key
type given in the dictionary L

17
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SEVEN

HOW TO...?

Here are various topics to help you on your way to using the feel package to its fullest.

7.1 FIR Filter a Signal

Sometimes a signal contains a lot of high-frequency noise that is unnecessary for the FEEL Al-
gorithm and it just creates noisy transfer functions which in turn skew results. The feel package
provides a simple way to clean these signals using lowpassfir().

Let’s say you have acceleration data, named signal, collected at a rate of 2000 Hz, sees a lot of
noise once it passes the 500 Hz frequency. We would filter it like in the following.

from feel.lowpassfir import design, applyfilter

# design the filter
taps, a = design(fs=2000,

trans_hz=10,
ripple_db=160,
cutoff_hz=1008,
rv='filter')

# apply the filter
fdata, delay = applyfilter(data=signal,

taps=taps,
a=a)

FIR Filters have a linear phase delay which allows one to easily remove the phase from the filtered
signal. This is done like in the following.

s = fdata[delay:]

A good tip is to make the cut-off frequency slightly higher than the Nyquist Frequency, or in other
words slightly higher than half of the fs.

18
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7.2 Plot a FIR Filter

When reporting about the filter one used, it is sometimes beneficial to provide plots showing the
the filter coefficients and frequency response. The feel package provides a simple way to clean
these signals using lowpassfir().

7.2.1 Filter Coefficents

To plot the filter coefficients, do the following.

from feel.lowpassfir import design, plotfiltercoeff

# design the filter
taps, a = design(fs=2000,

trans_hz=10,
ripple_db=160,
cutoff_hz=208,
rv='filter')

# now for plotting
axis = plotfiltercoeff(taps)

Figure 7.1 shows an example of what the filter coefficients look like when plotted.

7.2. Plot a FIR Filter 19
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Fig. 7.1: Example Filter Coefficients

7.2.2 Frequency Response

To plot the frequency response, do the following.

from feel.lowpassfir import design, plotfreqresponse

fs = 2000

# design the filter
taps, a = design(fs=fs,

trans_hz=10,
ripple_db=160,
cutoff_hz=208,
rv='filter')

# now for plotting
axis = plotfreqresponse(taps,fs)

7.2. Plot a FIR Filter 20
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Figure 7.2 shows an example of what the frequency response looks when plotted.

Fig. 7.2: Example Frequency Response

7.2.3 Editing Plots

If you do not like the default display of the plots, you can adjust it using pyplot.setp() like below.

pyplot.setp(axis.lines, color='r', linewidth=2.0, linestyle='-')

7.3 Resample a Signal

If a lower sampling rate is desired, one can use scipy.signal.resample() which does not apply
a filter before resampling, or one can use resample() provided by the feel package. Us-
ing resample(), applies the filters available from lowpassfir() and then resamples using
scipy.signal.resample().

7.3. Resample a Signal 21
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For example, consider the following code where we want to resample the data from 2000 Hz to
400 Hz.

from feel import resample

rdata = resample(data,
oldfs=2000,
newfs=400,
trans_hz=10,
ripple_db=160,
cutoff_hz=208)

A good tip is to make the cut-off frequency slightly higher than the Nyquist Frequency, or in other
words slightly higher than half of the newfs.

7.4 Make a Transfer Function

The basis of the FEEL Algorithm is based in manipulation of transfer functions. So naturally a
function, called tfestimate(), to easily generate said function is provided in the package. See
the code snippet below where the variable input would the exciter of the system, and the variable
output would be the measured response of the system.

from feel import tfestimate

freq, tfe = tfestimate(x=input,
y=output,
fs=500,
nfft=2048,
noverlap=1024)

Typically you would want to have an noverlap of half of the nfft which helps smooth out the transfer
function.

7.5 Plot a Transfer Function

Transfer functions are often displayed using decibels for the power value and Hertz for the fre-
quency values. The code above gives freq in Hertz, but not tfe in decibels. For example, here is
how you would simply plot the output from tfestimate().

import numpy as np
from matplotlib import pyplot as plt

tfe_db = 20 * np.log10(tfe)

7.4. Make a Transfer Function 22
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plt.figure()
plt.plot(freq, tfe_db)
plt.ylabel('Power (dB)')
plt.xlabel('Frequency (Hz)')
plt.show()

Figure 7.3 shows an example of what a transfer function looks when plotted.

Fig. 7.3: Example Transfer Function Plot

7.6 Calculate Force

Force calculations are made simple using force().

7.6. Calculate Force 23
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7.6.1 Force Vector

The force vector is calculated as seen in the example below. This output will have a time step
equivalent to that of the transfer function tfe used to generate it. The acceleration signal should
have the same sampling rate as the data used to generate the transfer functions, and the nfft should
be the same as used to generate the tfe.

from feel import force

force = force.estimate(accel=signal,
tfe=tfe,
nfft=2048,
rmtrend=False)

Sometimes it may be desirable to utilize the scipy.signal.detrend function to straighten out the
force vector, be advised that this can return weird results.

Figure 7.4 shows an example of what force vectors look like when plotted. The force vectors
calculated for each sensor match the actual measured force.

Fig. 7.4: Example Force Vector Plot

7.6. Calculate Force 24
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7.6.2 Force Magnitude

Each force vector has a peak magnitude which is considered to be the force of impact. This is
calculated by taking the minimum value of the local peak area and subtracting it from the maximum
value of the local peak area. Luckily, feel provides a function to do just that. See the example
below.

from feel import force

magnitude = force.magnitude(force)

7.7 Find Impact Location

The location of impact can be determined using the force vectors from each sensor which ex-
perience the event. This method requires a minimum of two sensor’s force vectors to work.
Two techniques are shipped with the package. The author recommends the Force Correlation
Method provided by location.forcecorr() as it is more robust, and will be the example
presented. Alternatively, a second choice is to use the Force Deviation Method available from
location.forcedev().

7.7.1 Force Correlation Method

The author’s recommended method is demonstrated in the example below. Let’s start by getting
the force vectors (see force.estimate()) of two sensors who are s1 and s2 respectively, for
all two locations l1 and l2 using the transfer functions estimates (see tfestimate()) for each
of the locations to each of the sensors.

import numpy as np
from feel import force, location

# location 1
force_s1_l1 = force.estimate(accel=s1,

tfe=tfe_s1_l1,
nfft=2048,
rmtrend=False)

force_s2_l1 = force.estimate(accel=s2,
tfe=tfe_s2_l1,
nfft=2048,
rmtrend=False)

# location 2
force_s1_l2 = force.estimate(accel=s1,

7.7. Find Impact Location 25
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tfe=tfe_s1_l2,
nfft=2048,
rmtrend=False)

force_s2_l2 = force.estimate(accel=s2,
tfe=tfe_s2_l2,
nfft=2048,
rmtrend=False)

Then we make the f_hats dictionary where keys are location names and the values are the force
vectors of each sensor for that location.

f_hats = {l1: np.vstack((force_s1_l1, force_s1_l1))
l2: np.vstack((force_s1_l2, force_s1_l2))}

Once that is done, invoke the function for the Force Correlation Method (see
location.forcecorr()) to get correlation values for each location.

L = location.forcecorr(f_hats)

This will give a dictionary back where key is the location label and value is the correlation for that
location. Now apply the location.locate() function which will tell you which location the
impact occurred.

L_hat = location.locate(L,
ctype='corr')

7.7.2 Plotting the Force Correlation Method

To visualize the location correlations, the author suggests using a bar plot where the x axis is the
location labels (i.e. the keys of the L dictionary), and the y axis is the correlation value (i.e. the
values of the L dictionary). Highlighting the location where the algorithm thinks the event occurred
helps make the location’s bar pop. Something like in Figure 7.5.

7.7. Find Impact Location 26
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Fig. 7.5: Example Force Correlation Location Plot

7.7. Find Impact Location 27
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CHAPTER

EIGHT

CODE EXAMPLE

A working example is provided along with the feel package that demonstrates its use. Look in the
directory /feel/example/ for the Python code and the data files.

filename: example.py

"""
Example using the FEEL Algorithm toolsuite

Author: Benjamin T. Davis, NSF Graduate Research Fellow
Date Created: 2015 May 1
"""

import sys
import os
sys.path.insert(0, os.path.abspath('../../')) # path to feel package

# relative to example.py

import numpy as np
import scipy.signal as signal
from matplotlib import pyplot as plt

from feel import resample, tfestimate, force, location

#%% set constants
dt = 0.000488 # time step between samples

#%% Load data
'''
Location 1 Data
'''
# Acceleration
filename = './loc1/Acceleration.txt'
loc1_accel = np.loadtxt(fname=filename, dtype=float, skiprows=7)

28
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# Hammer (i.e. force)
filename = './loc1/Hammer.txt'
loc1_force = np.loadtxt(fname=filename, dtype=float, skiprows=7)

'''
location 2 Data
'''
# Acceleration
filename = './loc2/Acceleration.txt'
loc2_accel = np.loadtxt(fname=filename, dtype=float, skiprows=7)

# Hammer (i.e. force)
filename = './loc2/Hammer.txt'
loc2_force = np.loadtxt(fname=filename, dtype=float, skiprows=7)

#%% Detrend and resample data - this uses the lowpassfir functions
'''
If you did not need to resample, you would instead call

lowpassfir.design()
lowpassfir.applyFilter()

to clean the data.

Also, one can plot the filter using the functions

lowpassfir.plotfiltercoeff()
lowpassfir.plotfreqresponse()

See each function's help for more information
'''
newfs = 400.0 # desired new sampling rate, hz

# location 1
raccel_loc1 = np.empty((25776,3)) # cheating since I know the shape

for i in range(np.shape(loc1_accel)[1]):
raccel_loc1[:,i] = resample(signal.detrend(loc1_accel[:,i]),

oldfs=1.0/dt,
newfs=newfs,
trans_hz=10,
ripple_db=160,
cutoff_hz=208)

29
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rforce_loc1 = resample(signal.detrend(loc1_force),
oldfs=1.0/dt,
newfs=newfs,
trans_hz=10,
ripple_db=160,
cutoff_hz=208)

rforce_loc1 *= 10.350 # convert from volts to lb of force hammer

# plot location 1 data
plt.figure()
plt.subplot(4,1,1)
plt.plot(raccel_loc1[:,0])
plt.ylim((-0.6,0.6))
plt.xlim((0,len(raccel_loc1[:,0])))
plt.title('Location 1 - ai0')
plt.ylabel('Accel (g)')
plt.subplot(4,1,2)
plt.plot(raccel_loc1[:,1])
plt.ylim((-0.6,0.6))
plt.xlim((0,len(raccel_loc1[:,1])))
plt.title('Location 1 - ai1')
plt.ylabel('Accel (g)')
plt.subplot(4,1,3)
plt.plot(raccel_loc1[:,2])
plt.ylim((-0.6,0.6))
plt.xlim((0,len(raccel_loc1[:,2])))
plt.title('Location 1 - ai2')
plt.ylabel('Accel (g)')
plt.subplot(4,1,4)
plt.xlim((0,len(rforce_loc1)))
plt.plot(rforce_loc1)
plt.title('Location 1 - Force')
plt.ylabel('Force (lb)')
plt.xlabel('Points')
plt.tight_layout()
plt.show()

# location 2
raccel_loc2 = np.empty((25776,3)) # cheating since I know the shape

for i in range(np.shape(loc2_accel)[1]):
raccel_loc2[:,i] = resample(signal.detrend(loc2_accel[:,i]),

oldfs=1.0/dt,
newfs=newfs,
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trans_hz=10,
ripple_db=160,
cutoff_hz=208)

rforce_loc2 = resample(signal.detrend(loc2_force),
oldfs=1.0/dt,
newfs=newfs,
trans_hz=10,
ripple_db=160,
cutoff_hz=208)

rforce_loc2 *= 10.350 # convert from volts to lb of force hammer

# plot location 2 data
plt.figure()
plt.subplot(4,1,1)
plt.plot(raccel_loc2[:,0])
plt.ylim((-0.6,0.6))
plt.xlim((0,len(raccel_loc2[:,0])))
plt.title('Location 2 - ai0')
plt.ylabel('Accel (g)')
plt.subplot(4,1,2)
plt.plot(raccel_loc2[:,1])
plt.ylim((-0.6,0.6))
plt.xlim((0,len(raccel_loc2[:,1])))
plt.title('Location 2 - ai1')
plt.ylabel('Accel (g)')
plt.subplot(4,1,3)
plt.plot(raccel_loc2[:,2])
plt.ylim((-0.6,0.6))
plt.xlim((0,len(raccel_loc2[:,2])))
plt.title('Location 2 - ai2')
plt.ylabel('Accel (g)')
plt.subplot(4,1,4)
plt.xlim((0,len(rforce_loc2)))
plt.plot(rforce_loc2)
plt.title('Location 2 - Force')
plt.ylabel('Force (lb)')
plt.xlabel('Points')
plt.tight_layout()
plt.show()

#%% Estimate transfer functions
nfft = 2048 # size of FFT window, typically best as a power of 2
noverlap = nfft / 2 # overlap of Welch method, typically half of nfft
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# Location 1
freq_ai0, loc1_ai0_tf = tfestimate(x=rforce_loc1,

y=raccel_loc1[:,0],
fs=newfs,
nfft=nfft,
noverlap=noverlap)

freq_ai1, loc1_ai1_tf = tfestimate(x=rforce_loc1,
y=raccel_loc1[:,1],
fs=newfs,
nfft=nfft,
noverlap=noverlap)

freq_ai2, loc1_ai2_tf = tfestimate(x=rforce_loc1,
y=raccel_loc1[:,2],
fs=newfs,
nfft=nfft,
noverlap=noverlap)

# plot location 1 TF
plt.figure()
plt.plot(freq_ai0, 20*np.log10(loc1_ai0_tf), label='ai0')
plt.plot(freq_ai1, 20*np.log10(loc1_ai1_tf), label='ai1')
plt.plot(freq_ai2, 20*np.log10(loc1_ai2_tf), label='ai2')
plt.legend()
plt.title('Location 1 Transfer Functions')
plt.xlabel('Frequency (Hz)')
plt.ylabel('Power (dB)')
plt.show()

# Location 2
freq_ai0, loc2_ai0_tf = tfestimate(x=rforce_loc2,

y=raccel_loc2[:,0],
fs=newfs,
nfft=nfft,
noverlap=noverlap)

freq_ai1, loc2_ai1_tf = tfestimate(x=rforce_loc2,
y=raccel_loc2[:,1],
fs=newfs,
nfft=nfft,
noverlap=noverlap)

freq_ai2, loc2_ai2_tf = tfestimate(x=rforce_loc2,
y=raccel_loc2[:,2],
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fs=newfs,
nfft=nfft,
noverlap=noverlap)

# plot location 2 TF
plt.figure()
plt.plot(freq_ai0, 20*np.log10(loc2_ai0_tf), label='ai0')
plt.plot(freq_ai1, 20*np.log10(loc2_ai1_tf), label='ai1')
plt.plot(freq_ai2, 20*np.log10(loc2_ai2_tf), label='ai2')
plt.legend()
plt.title('Location 2 Transfer Functions')
plt.xlabel('Frequency (Hz)')
plt.ylabel('Power (dB)')
plt.show()

#%% Estimating the force with an impact at location 1
rlength = 1800
maxpoint = np.argmax(rforce_loc1)
f = rforce_loc1[maxpoint-50:maxpoint+rlength]
a0 = raccel_loc1[maxpoint-50:maxpoint+rlength,0]
a1 = raccel_loc1[maxpoint-50:maxpoint+rlength,1]
a2 = raccel_loc1[maxpoint-50:maxpoint+rlength,2]

# estimating using location 1 transfer functions
# f<location><sensor>
f11 = force.estimate(accel=a0,

tfe=loc1_ai0_tf,
nfft=nfft)

f12 = force.estimate(accel=a1,
tfe=loc1_ai1_tf,
nfft=nfft)

f13 = force.estimate(accel=a2,
tfe=loc1_ai2_tf,
nfft=nfft)

# estimating using location 2 transfer functions
# f<location><sensor>
f21 = force.estimate(accel=a0,

tfe=loc2_ai0_tf,
nfft=nfft)

f22 = force.estimate(accel=a1,
tfe=loc2_ai1_tf,
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nfft=nfft)

f23 = force.estimate(accel=a2,
tfe=loc2_ai2_tf,
nfft=nfft)

# form the dictionary for force_location
# location #: array((sensor) x (npoints in force_estimate))
# aka row is sensor, column is point in force estimate for each entry
f_hats = {1:np.vstack((f11,f12,f13)), 2:np.vstack((f21,f22,f23))}

L = location.forcecorr(f_hats) # determines the force correlations

x = []
y = []
for key, val in L.items():

x.append(key)
y.append(val)

time1 = np.array(range(0,len(f))) * dt
time2 = np.array(range(0,len(f11))) * dt * 2.0

plt.figure()

# plot actual force of impact
plt.subplot(4,1,1)
plt.plot(time1, f, label='Actual')
plt.title('Actual Impact at Location 1')
plt.xlabel('Time (s)')
plt.ylabel('Force (N)')

# plot location 1 force estimates
plt.subplot(4,1,2)
plt.plot(time2, f11, label='ai0')
plt.plot(time2, f12, label='ai1')
plt.plot(time2, f13, label='ai2')
plt.legend()
plt.title('Location 1 Force Estimates (L1 TF)')
plt.xlabel('Time (s)')
plt.ylabel('Force (N)')

# plot location 2 force estimates
plt.subplot(4,1,3)
plt.plot(time2, f21, label='ai0')
plt.plot(time2, f22, label='ai1')
plt.plot(time2, f23, label='ai2')
plt.legend()
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plt.title('Location 2 Force Estimates (L2 TF)')
plt.xlabel('Time (s)')
plt.ylabel('Force (N)')

# event localization
# locate function gives the location number
plt.subplot(4,1,4)
width = 0.8
plt.bar(x,y, width=0.8, align='center')
plt.title('Impact Occurred at Location %s' %location.locate(L))
plt.xlabel('Location')
plt.ylabel('Force Correlation')
axis = plt.gca()
axis.xaxis.set_ticks([1,2])
axis.xaxis.set_ticklabels(['Loc %s'%x[0],'Loc %s'%x[1]])

plt.tight_layout()

plt.show()

#%% Estimating the force with an impact at location 2
rlength = 1800
maxpoint = np.argmax(rforce_loc2)
f = rforce_loc2[maxpoint-50:maxpoint+rlength]
a0 = raccel_loc2[maxpoint-50:maxpoint+rlength,0]
a1 = raccel_loc2[maxpoint-50:maxpoint+rlength,1]
a2 = raccel_loc2[maxpoint-50:maxpoint+rlength,2]

# estimating using location 1 transfer functions
# f<location><sensor>
f11 = force.estimate(accel=a0,

tfe=loc1_ai0_tf,
nfft=nfft)

f12 = force.estimate(accel=a1,
tfe=loc1_ai1_tf,
nfft=nfft)

f13 = force.estimate(accel=a2,
tfe=loc1_ai2_tf,
nfft=nfft)

# estimating using location 2 transfer functions
# f<location><sensor>
f21 = force.estimate(accel=a0,
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tfe=loc2_ai0_tf,
nfft=nfft)

f22 = force.estimate(accel=a1,
tfe=loc2_ai1_tf,
nfft=nfft)

f23 = force.estimate(accel=a2,
tfe=loc2_ai2_tf,
nfft=nfft)

# form the dictionary for force_location
# location #: array((sensor) x (npoints in force_estimate))
# aka row is sensor, column is point in force estimate for each entry
f_hats = {1:np.vstack((f11,f12,f13)), 2:np.vstack((f21,f22,f23))}

L = location.forcecorr(f_hats) # determines the force correlations

x = []
y = []
for key, val in L.items():

x.append(key)
y.append(val)

time1 = np.array(range(0,len(f))) * dt
time2 = np.array(range(0,len(f11))) * dt * 2.0

plt.figure()

# plot actual force of impact
plt.subplot(4,1,1)
plt.plot(time1, f, label='Actual')
plt.title('Actual Impact at Location 1')
plt.xlabel('Time (s)')
plt.ylabel('Force (N)')

# plot location 1 force estimates
plt.subplot(4,1,2)
plt.plot(time2, f11, label='ai0')
plt.plot(time2, f12, label='ai1')
plt.plot(time2, f13, label='ai2')
plt.legend()
plt.title('Location 1 Force Estimates (L1 TF)')
plt.xlabel('Time (s)')
plt.ylabel('Force (N)')
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# plot location 2 force estimates
plt.subplot(4,1,3)
plt.plot(time2, f21, label='ai0')
plt.plot(time2, f22, label='ai1')
plt.plot(time2, f23, label='ai2')
plt.legend()
plt.title('Location 2 Force Estimates (L2 TF)')
plt.xlabel('Time (s)')
plt.ylabel('Force (N)')

# event localization
# locate function gives the location number
plt.subplot(4,1,4)
width = 0.8
plt.bar(x,y, width=0.8, align='center')
plt.title('Impact Occurred at Location %s' %location.locate(L))
plt.xlabel('Location')
plt.ylabel('Force Correlation')
axis = plt.gca()
axis.xaxis.set_ticks([1,2])
axis.xaxis.set_ticklabels(['Loc %s'%x[0],'Loc %s'%x[1]])

plt.tight_layout()

plt.show()
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