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ABSTRACT 

The prevalence of aging and deteriorating infrastructure in the U.S. has raised 

concerns regarding its level of serviceability, reliability, and vulnerability to natural 

disasters. This issue has gained attention recently and efforts are being conducted to 

accelerate the delivery of enhanced nondestructive testing (NDT) and structural health 

monitoring (SHM) methods. Acoustic emission (AE) is a strong candidate for these 

applications due to its high sensitivity and potential for damage detection in different 

materials. However, several challenges associated with the technique hinder the 

development of automated, reliable, real-time SHM using AE.  

This study aims to advance the use of AE for condition assessment of concrete 

structures by addressing two main challenges. The first is AE data filtering to exclude 

irrelevant noise and wave reflections. Effective filtering and data reduction enhances the 

quality of the data and lowers the cost of its transfer and analysis; ultimately increasing the 

reliability of the method. The second issue is detecting slow rate material degradation 

mechanisms in concrete. For example, alkali-silica reaction (ASR) affects civil 

infrastructure around the nation, and available condition assessment methods for this type 

of damage are either invasive or not feasible for field conditions. Despite the awareness of 

ASR concrete deterioration; there is lack of research investigating the ability of AE to 

detect and assess it. In addition, recent laboratory investigations have shown promising 

results in detecting and evaluating damage related to corrosion of steel in concrete using 

AE. However, the results have not been extended to field applications.
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This dissertation includes three studies that address the aforementioned issues. In 

the first study, wavelet analysis was used to study the distribution of energy in AE signals 

in the time-frequency domain. Criteria to differentiate between AE signals from artificial 

sources (pencil lead breaks) and wave reflections were developed. The results were tested 

and validated by applying the developed filters on data collected from actual cracking 

during load testing of a prestressed concrete beam. The second study presents a laboratory 

test conducted to assess the feasibility of using AE to detect ASR damage in concrete. 

Accelerated ASR testing was undertaken with a total of fifteen specimens tested; twelve 

ASR and three control specimens. The results of this study showed that AE has the potential 

to detect and classify ASR damage.  Relatively good agreement was obtained with standard 

ASR measurements of length change and petrographic examination. The third study 

discusses a field application for long-term, remote monitoring of damage due to corrosion 

of reinforcing steel and potential thermal cracking in a decommissioned nuclear facility. 

The structure was monitored for approximately one year and AE damage detection and 

classification methods were successfully applied to assess the damage at the monitored 

regions. This study also included an accelerated corrosion test conducted on a concrete 

block cut from a representative structure.  

The studies included in this dissertation provide: 1) an innovative approach for 

filtering AE data collected during cracking of concrete, 2) a proof of concept study on 

detecting ASR damage using AE, and 3) field application on AE monitoring of corrosion 

damage in aging structure. The outcomes of this research demonstrate the ability of AE for 

condition assessment, structural health monitoring, and damage prognosis for in-service 

structures. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

The state of infrastructure has a significant impact on the quality of life, economic 

prosperity, and development of communities. Existing infrastructure is subjected to 

growing burdens due to increasing populations and limited resources, which can affect both 

safety and reliability. An approach to address this issue is through the promotion of 

resilience and sustainability for newly constructed systems and implementing effective 

structural health monitoring and maintenance strategies for existing structures.   

Aging of infrastructure is an emerging problem in the U.S. as the majority of 

structures are either approaching, or have been used in excess of, their design service life. 

The American Society of Civil Engineers (ASCE) described the performance of the 

nation’s infrastructure as nearly failing with an assigned grade of D+ in its latest report 

card. Thus, there is a pressing need for investment to upgrade our infrastructure to avoid 

catastrophic failures such as the I-35W Bridge collapse in Minneapolis, MN in 2007. 

Educated decisions regarding funding prioritization and maintenance scheduling require 

reliable condition assessment and structural health monitoring techniques to evaluate the 

state of existing structures. 

Structural health monitoring (SHM) is the process of tracking the condition of a 

structure over time using arrays of sensors to collect data on parameters involved in the 

evaluation of the integrity of the structure. SHM provides several structural
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diagnostic approaches.  These include detection, localization, and assessment of the extent 

of damage. In addition, the temporal aspect of monitoring gives a historical database which 

enables structural prognosis (evolution of damage and remaining service life estimation). 

The later characteristic is the main advantage of modern SHM over traditional 

nondestructive testing (NDT) methods. Long term SHM can be used to periodically update 

information related to the reliability of a structure considering inevitable aging and related 

degradation arising by environmental conditions or extreme events. It can also alert the 

owner when certain parameters have reached preset values. The structural condition insight 

provided by SHM can greatly enhance maintenance and mitigation activities and 

potentially mitigate future failures of civil infrastructure.  

There are two approaches involved in SHM: a) global monitoring which provides 

information about the behavior of the structure as a whole, and b) local monitoring which 

provides information about behavior at critical locations in the structure. Depending on the 

objective of the SHM system and the information of interest, the decision on the best 

approach is made. There are multiple SHM systems and sensors that have been developed 

and applied; however, further investigations are needed to achieve reliable and cost 

effective SHM practices. 

Acoustic emission (AE) is a promising SHM technique due its passive nature and 

real time monitoring capability. Acoustic emission is defined as transient stress waves 

generated by a localized release of energy (active damage progression). The stress waves 

are detected and converted to electrical signals by means of piezoelectric sensors attached 

to the surface of, or embedded within, the structure. The signals are then analyzed for 

damage detection and classification. Technological advances have allowed the 



 

3 

 

development of wireless, low power AE systems which adds an advantage to the technique 

for field investigations. One of the main challenges associated with AE monitoring is data 

filtering as the high sensitivity of the sensors results in the collection of noise due to wave 

reflections and other spurious sources that are not directly related to damage propagation.  

As one of the main materials used in building infrastructure, damage detection in 

concrete has been previously investigated (Ziehl et al., 2008; Xu et al., 2013; Schumacher, 

2008; Nair and Cai, 2010). The high sensitivity of the method enables it to detect active 

cracks long before they become visible (micro-cracking). In addition to cracking due to 

excessive loading, concrete is susceptible to damage due to material degradation 

mechanisms including corrosion of reinforcing steel, freeze-thaw damage, chemical attack 

and alkali-silica reaction. Recently, the feasibility of using AE to detect and classify 

corrosion of reinforcing steel has been demonstrated through laboratory testing (Zdunek et 

al., 1995; Ohtsu and Tomoda, 2008; Mangual et al., 2013a; b; ElBatanouny et al., 2014a; 

Appalla et al., 2015). While research efforts are progressing in this area, the reliability of 

AE for real time monitoring of corrosion damage in field structures has not been 

established. Furthermore, there is a lack in research investigating the feasibility of using 

AE to detect damage due to other material degradation mechanisms such as alkali-silica 

reaction. This document aims to address these gaps as described in the following sections.   

1.2 RESEARCH SIGNIFICANCE 

The research in this study targets two of the main challenges associated with AE as 

a structural health monitoring and damage evaluation method. The first challenge is data 

reduction (rejection of noise) which is usually existent in AE data due to the high sensitivity 

of the method. Most available approaches for filtering irrelevant data are empirical and 
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subjective which increases the opportunity for deceptive results when operated by 

unexperienced users. Signal processing methods have the potential for uncovering the 

different signatures present in signals from different sources. This study implements 

wavelet analysis to develop an algorithm that can be used to differentiate target AE signals, 

due to cracking of prestressed concrete, from signals due to spurious sources such as waves 

due to reflections from cracked surfaces or boundaries.  

The second challenge is detecting slow rate (sometimes referred to as low-level) 

concrete degradation mechanisms such as damage due to corrosion of reinforcing steel and 

alkali-silica reaction (ASR) which affect numerous structures including bridges, buildings, 

and nuclear power plants. These degradation mechanisms have significant effects on 

durability, safety, and serviceability. There is very limited information available in the 

published literature related to monitoring of ASR damage with AE.  The second study in 

this research shows the results of accelerated ASR testing using small scale specimens. The 

results highlight the potential of AE to detect and classify ASR damage, which could 

broaden field applications of AE. 

Recent research efforts have established the potential of AE to detect and classify 

corrosion damage. However, the developed AE methods for corrosion damage evaluation 

are limited to well-controlled laboratory experiments and have not been extended to field 

conditions. The third study focuses on long term AE monitoring of critical locations in a 

decommissioned nuclear facility known to have corrosion damage. This application 

demonstrates the appropriateness of AE monitoring for field conditions and provides 

further insight for potential complications.  
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An important outcome of this research is that it demonstrates the potential of AE 

data reduction and damage assessment algorithms for assessing the condition of in-service 

structures. This addresses one of the main challenges associated with modern SHM 

techniques where large amounts of data are collected. Significant effort is usually needed 

to interpret and analyze this data. The data reduction and damage assessment methods 

developed through the course of this work can be easily programmed, thereby providing 

meaningful information to facility managers without the need for rigorous assessment of 

large data sets. This can subsequently help in maintenance planning and prioritization 

especially in large scale and complex infrastructure systems.  

1.3 OBJECTIVES 

The main objective of this work is to address some of the existing gaps in the 

research related to SHM and condition assessment of damage in concrete structures using 

AE. This can be summarized in two main topics: 1) developing a reliable filtering approach 

for AE data that can differentiate between damage related signals and signals due irrelevant 

sources, and 2) investigating the feasibility of using AE to detect slow rate damage related 

to concrete material degradation and assessing the use of AE for long-term structural health 

monitoring of in-service structures. 

Three independent studies were performed to target these topics; each study has its 

own sub-objectives as summarized below. 

1.3.1 Signal processing method for AE data filtering  

Wavelet analysis was employed to study the distribution of energy in AE signals 

generated from different sources in the time-frequency domain. The objectives of this study 

were to: 
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1. Investigate the use of wavelet analysis to develop filtering criteria to differentiate 

between induced target signals and noise. 

2. Verify the efficiency of the filters using data generated from cracking of a 

prestressed concrete beam and compare the results to those obtained with 

customary AE data filtering approaches.    

1.3.2 Detection and classification of alkali-silica reaction damage 

AE sensors were used to monitor small-scale concrete specimens during an 

accelerated ASR test. The objectives of this study were to: 

1. Investigate the use of AE for detection of ASR induced damage while comparing 

AE activity results to standard ASR diagnostic measurements.  

2. Develop ASR damage classification methods based on AE parameters; through 

correlating AE with ASR petrographic examination results. 

1.3.3 Remote monitoring of damage at a decommissioned nuclear facility 

Two AE systems were used to monitor different locations at a decommissioned 

nuclear facility. In addition, a block was cut from a representative aged concrete structure 

and tested under accelerated corrosion in laboratory. The objectives of this study were to: 

1. Validate the applicability of AE to remotely monitor damage related to corrosion 

of reinforcement and thermal cracking at an in-service structure.  

2. Examine the effect of environmental conditions such as rain and temperature on 

AE activity. 

3. Investigate the correlation between AE results and electrochemical measurements 

during an accelerated corrosion test of the concrete block.  
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4. Demonstrate possible approaches for estimating the sectional loss of reinforcing 

steel and remaining service life. 

1.4 LAYOUT OF DISSERTATION 

The dissertation consists of six chapters. Chapter 2 provides background 

information on the acoustic emission (AE) technique and review of available literature 

related to detection and quantification of damage related to corrosion of reinforcing steel 

and alkali-silica reaction. Background on commonly used AE data filtering methods as 

well as available research studies related to implementing signal processing for filtering 

AE data from concrete members is also discussed.  

Chapters 3 through 5 were written in paper format and submitted for publication as 

journal articles. Therefore, some AE basics and background information may be repeated 

in these chapters. 

Chapter 3 is titled “Signal Processing Techniques for Filtering Acoustic Emission 

Data in Prestressed Concrete” where wavelet analysis was used to develop four AE data 

filtering criteria based on data generated from artificial sources. The filtering criteria 

yielded improved results, in comparison to conventional methods, when applied to AE data 

from cracking of a prestressed concrete beam during load testing. 

Chapter 4 is titled “Classification of Alkali-Silica Reaction Damage Using Acoustic 

Emission: A Proof-of-Concept Study”. This chapter provides a proof of concept study that 

demonstrates the feasibility of using AE for monitoring ASR damage in concrete. The 

results showed the potential for the AE based method for quantification of the extent of 

damage caused by this degradation mechanism.  
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The title of chapter 5 is “Remote Monitoring and Evaluation of Damage at a 

Decommissioned Nuclear Facility”. This chapter demonstrates the feasibility of using AE 

for remote monitoring of in-service structures. The study extends the AE corrosion damage 

assessment methods developed in the laboratory to monitor damaged zones in a 

decommissioned nuclear facility. A complementary study of an accelerated corrosion test 

was performed on a block taken from a representative structure to provide deeper insight 

into the corrosion process. 

Chapter 6 summarizes the research conducted in this dissertation and provides the 

conclusions drawn. Recommendations for future research are also described. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

Acoustic emission (AE) is an emerging nondestructive evaluation (NDE) method 

that is suitable for long term real-time monitoring. AE is defined by the American Society 

of Testing and Materials (ASTM E1316-16) as ‘the class of phenomena whereby transient 

elastic waves are generated by the rapid release of energy from localized sources within a 

material’. AE sensors can detect transient stress waves emitted from deformations and 

fractures such as crack formation or growth and convert them to electrical signals that can 

be recorded and analyzed by data acquisition systems. Several parameters can be measured 

from the signal waveform which can later be used in data filtering and analysis. Figure 2.1 

shows a typical waveform with some of the parameters that are usually measured; followed 

by the definition of these parameters. Many studies have investigated the feasibility of 

using acoustic emission technique for condition assessment and structural health 

monitoring of concrete structures in the last two decades. The method can be used for 

detecting micro-cracks during load tests and/or due to concrete material degradation such 

as corrosion of steel in concrete (Ono, 2012; Abdelrahman, 2013). 

Signal amplitude: is the magnitude of the peak voltage of the largest excursion 

attained by the signal wave form from a single emission event, usually reported in dB. 

Duration: is the time between AE signal start and the signal end (the time between 

the first threshold crossing and the last threshold crossing of the signal).
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Rise-time: is the time between AE signal start and the peak amplitude of that AE 

signal (measured in microseconds).  

Signal strength: is the measured area of the rectified AE signal, with units 

proportional to volt-sec. 

Signal energy: is the energy contained in a detected acoustic emission burst signal 

with units usually reported in joules or values that can be expressed in logarithmic form 

(dB, decibels). 

Count: is the number of times the acoustic emission signal exceeds a preset 

threshold during any selected portion of a test, and the count rate is the number of counts 

during a fixed period of time. 

Frequency: is the number of cycles per second of the pressure variation in a wave. 

A detailed literature review of the main topics of this dissertation is presented in 

the following sections. 

 

Figure 2.1 AE signal features (Xu, 2008). 

2.2 AE DATA FILTERING 

Due to the high sensitivity of the method, AE datasets usually include noise 

resulting from wave reflections, mechanical rubbing, electromagnetic interference, moving 

traffic and environmental sources such as rain, wind-born debris, and hail. The high 
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presence of noise can result in large amounts of data that are hard to handle. Effective data 

filtering can help reduce the size of the data without losing any key information targeted 

through the monitoring process. The basic level of filtering is usually achieved through 

setting a threshold for data acquisition which gets rid of low amplitude signals and helps 

in noise reduction. Values for band-pass frequency filter, peak definition time (PDT), hit 

definition time (HDT) and hit lockout time (HLT) can be adjusted in the data acquisition 

system to define the collected signals and reduce signals due to wave reflections. Even with 

these data acquisition setup, the percentage of signals due to spurious sources is usually 

high in most datasets. These settings have been implemented solely in different studies 

related to investigating or developing damage detection algorithms for concrete structures 

(Xu, 2008; Schumacher, 2008; ElBatanouny et al., 2014b). However, further filtering is 

needed for: a) accurate source location, and b) data reduction to decrease the cost of data 

handling and analysis.  

2.2.1 Parameter-Based Filters 

Parameter-based filters are easy to apply using data acquisition software. However, 

filtering limits need to be decided on by experienced user as the limits are usually empirical. 

Noise due to electromagnetic interference can result from ground loops of AE cables or 

poorly connected ground power which may affect the quality of the data. These signals 

usually have very short duration with a single spike waveform. Duration filters are used in 

that situation by discarding all signal with very short duration (may be less than 10 micro-

seconds). Signal strength filter can also be used to filter electric noise with dramatically 

high signal strength. Some researchers also define frequency filter to discard signals with 

very low frequency (less than 20 kHz) as they are often associated with background noise, 
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vibration and machine noises (Beattie, 2013; Martinez-Gonzalez et al., 2013). A filtering 

criteria based on Root Mean Square (RMS) of AE waveforms was proposed by Sagasta et 

al. (2013) to distinguish between signals due to concrete cracking and signals due to 

mechanical friction collected during a dynamic test of concrete slab.  

The Swansong II filter (also referred to as duration-amplitude filter, D-A) is a 

commonly used filter to reduce noise related to reflections and external sources such as 

leaks or mechanical rubbing in the collected AE data (Tinkey et al., 2002). The hypothesis 

of this filter is that signals with low amplitude and long duration are associated with noise. 

Thus, this filter can be developed by plotting amplitude versus log duration and visually 

investigating the waveforms of the signals, as shown in Figure 2.2, to develop the filtering 

limits (Tinkey et al., 2002). Similar procedure was used in research studies to develop rise 

time-amplitude (R-A) filters to be used with the D-A filters to further improve the quality 

of the data (Abdelrahman et al., 2014; ElBatanouny et al., 2014b). Swansong II filters have 

generated good results in different studies for filtering AE data collected from cracking of 

concrete during load tests (Abdelrahman et al., 2014; ElBatanouny et al., 2014b; 2014d; 

Anay et al., 2015), damage related to corrosion of steel in concrete (ElBatanouny et al., 

2014), damage due to ASR deterioration in concrete (Abdelrahman et al., 2015) and fatigue 

crack growth in steel (Yu et al., 2011; Nemati et al., 2015; Hossain, 2013). Source location 

results of concrete cracking events were significantly enhanced using these filters and 

showed good agreement with visually detected cracks (ElBatanouny et al., 2014b; 2014d). 

However, this filtering technique is a post processing procedure and different limits are 

used depending on the researcher and the type of damage monitored.   
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Figure 2.2 AE amplitude versus log duration plot for developing Swansong II 

filters (Tinkey et al., 2002). 

2.2.2 Pattern Recognition Techniques 

Pattern recognition is the process by which patterns, regularities or significant 

features in the data are recognized to be used in categorizing the data into identifiable 

classes (source characterization). Thus, three steps are involved in the analysis: data 

perception, feature extraction, and classification (Sharma et al., 2015). The features, which 

are used in classifier design, can be readily measured parameters from the waveform 

(amplitude, rise time, RMS, etc.) or obtained through signal processing of the waveform 

(Fourier transform, wavelet analysis, etc.). Once features are extracted, the classification 

process is performed to assign each input to a class.  

There are two classification methodologies:  

1. Supervised pattern recognition where each new unknown pattern is 

classified to a predefined class. This involves a learning process where a 

training dataset of representative AE hits for each signal class (AE source) 

is used in the classifier design. This method is suitable when the type of 
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damage is known in advance. Different Supervised classifier algorithms can 

be used for AE data including K-nearest neighbors method (K-NN method) 

(Godin et al., 2004), the linear classifier and the Back Propagation Neural 

Network (Anastasopoulos, 2005). 

2. Unsupervised pattern recognition where data is classified into groups 

(number of clusters) depending on their features and similarities and these 

groups are defined as classes afterwards. This procedure does not implicate 

any prior knowledge or labeled database. However, it involves significant 

trialing by the user to achieve satisfactory results and the number of classes 

has to be defined. Popular unsupervised clustering methods include 

principal component analysis (PCA) (Jolliffe, 2002) and the k-means 

algorithm (Likas et al., 2003). 

The implementation of these methodologies on AE data have been mainly 

investigated for: a) classification of micro-failure mechanisms in composites such as fiber 

fracture, matrix cracking, splitting and delamination (Ono and Huang, 1997; Marec et al., 

2008; Hamdi et al., 2013; McCrory et al., 2015), b) identifying the progression of damage 

in concrete beams during load tests (Gołaski et al., 2006; Calabrese et al., 2010), and c) 

classification of damage due to corrosion of steel in a post-tensioned concrete beam 

(Calabrese et al., 2013). Kappatos and Dermatas (2009) utilized Neural Networks (NNs) 

to differentiate between two sources of AE signals, simulated cracking and drop signals, 

generated in steel plate. The presence of white-Gaussian noise with zero mean has been 

also investigated. The classification accuracy was high in the presence of low to medium 
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level of noise (higher than 90%). However, with higher level of noise the classification rate 

approaches the random selection rate (50%). 

Few research efforts have utilized clustering methods to identify data due to noise. 

Ercolino et al. (2015) used k-means method via PCA of AE features to detect wire breaking 

of prestressed strand during accelerated corrosion test. Swansong II filters were applied as 

an initial filtering process before pattern recognition analysis. The results of k-means 

method showed three clusters of data; one of them was associated with spurious AE data 

that created false alarms (includes signals with high amplitude that did not correspond to 

damage progression evidenced by the inspection of the strand). The separation of such data 

can help in eliminating false alarms regarding the monitored damage.  

Doan et al. (2014) investigated AE data collected during fatigue test on a carbon 

fiber reinforced polymer (CFRP) composite specimen. A noise model was developed from 

AE data collected before application of load using multivariate statistical approach. The 

model was used to delete AE events detected during the test and have similar characteristics 

to the modeled noise. A progressive feature selection and a clustering approach based on 

Gustafson-Kessel algorithm (GK) (Placet et al., 2013) was used for data classification. This 

resulted in defining five AE data clusters; one of them was linked to noise related to internal 

friction or fretting between faces of developed matrix cracking. 

Hinton (1999) investigated statistical pattern recognition approach to separate data 

due to crack extension and data due to noise generated from a 2024-T4 aluminum specimen 

with a straight-through notch tested under fatigue loading. Ma and Chen (2015) proposed 

a method based on wavelet transform and a pattern recognition method (RPF neural 

network) to differentiate between simulated AE signals for metal plate crack, corrosion, 
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and condensation (interference signals) data. However, the method was developed based 

only on small size datasets from simulated sources. 

2.2.3 Signal Processing Techniques 

Signal processing is usually used to develop a representation of the signal that 

makes certain characteristics more explicit. Since it is a waveform based analysis it is not 

affected by the threshold setting. Frequency analysis  (Fourier transform) and time-

frequency analysis (such as Short Time Fourier Transform (STFT), Wavelet analysis and 

Hilbert-Huang Transform (HHT) are the most common signal processing approaches 

utilized for AE data. These tools have been utilized in the classifier design for the pattern 

recognition analysis of AE data as described in the previous section (Hamdi et al., 2013; 

Marec et al., 2008; Zitto et al., 2012).  

Kaphle (2012) studied the distribution of energy in AE signals in different 

frequency bands using Short Time Fourier Transform (STFT) to discriminate between AE 

signals generated from pencil lead breaks (PLB) and AE signals from dropping steel balls 

(BD) on a steel beam. R15α sensors with resonant frequency of 150 kHz were used. High 

threshold value (60 dB) for data recording was used to minimize lower amplitude noise 

signals. It was observed that most of the energy resides around two peaks of 70 kHz and 

170 kHz for PLB signals and around 70 kHz only for the BD signals; which provides a 

guide to distinguish between different sources. In the same study, a three point bending 

load test was performed on a steel specimen and AE signals were collected from crack 

formation and extension. Same sensor type and acquisition threshold were used for that 

application. Ten representative AE signals were chosen by the researcher for each of three 

different AE sources during the test; cracking, impact and rubbing. It was observed from 
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STFT results of the thirty investigated signals that energy is distributed differently in the 

time-frequency domain for the different sources. This indicates that the energy distribution 

in the signals reveals information about the nature of the source. 

Background on wavelet transform, its advantage over STFT and related research 

are described in this section as the method has been investigated in the research presented 

in Chapter 3. 

2.2.3.1 Wavelet Analysis of AE data 

To analyze signals in the frequency domain, Fourier transform is usually applied 

by comparing the signal with complex sinusoidal functions that are spread over the entire 

time domain. However, this method was developed assuming that signals are stationary 

and it only describes the global frequency content of the signal. In an effort to overcome 

these drawbacks, the Short Time Fourier Transform (STFT) is employed to describe the 

signal’s local frequency properties by segmenting the signal and comparing each segment 

(assuming it is stationary) with a sliding window function using conventional Fourier 

transform; which is why STFT is also referred to as ‘windowed’ Fourier transform.  

The resolution in time and frequency are related by the uncertainty principle which 

lower bounds their product as shown in the equation ∆𝑡∆𝑓 ≥
1

4𝜋
, which means that short 

time duration frequency bandwidth cannot be attained simultaneously. STFT uses single 

window width in terms of time and frequency which results in resolution deficiencies in 

the time-frequency representation especially in the case of short duration high frequencies. 

Wavelet analysis offers better resolution by using short windows (high time resolution) at 

high frequencies and long windows (low time resolution) at low frequencies (Rioul and 

Vetterli, 1991). This makes the method suitable for analyzing transient signals such as 
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acoustic emission signals. As shown in Figure 2.3 the frequency bandwidth in STFT is 

constant while it changes logarithmically in the wavelet decomposition analysis. 

 

Figure 2.3 (a) Time-frequency resolution in Short Time Fourier Transform, and (b) 

Wavelet Transform (Ganesan et al., 2004). 

Wavelet transformation is a linear decomposition which is attained by comparing 

the signal with a set of elementary functions that are obtained by the time scaling and 

shifting of a mother function. Let the mother function be ψ(t) with a mean frequency of 

𝜔0, then the scaled and shifted function is 𝜓(𝑎−1(𝑡 − 𝑏)) with a frequency = 𝜔0/𝑎 where 

a is the scale index and b is the time shifting. Then the wavelet transform can be obtained 

as the inner product of the signal s(t) and 𝜓(𝑎−1(𝑡 − 𝑏)) as shown in Equation 2.1: 

𝐶𝑊𝑇(𝑎, 𝑏) =
1

√|𝑎|
∫ 𝑠(𝑡)𝜓 (

(𝑡−𝑏)

𝑎
) 𝑑𝑡         𝑎 ≠ 0  (2.1)   

As seen in Equation 2.1, the wavelet transform is a function of time (b) and 

frequency (𝜔0/𝑎). Thus, it can be used to define how the signal’s frequency content 

evolves in time which makes it ideal for analyzing non-stationary signals. 

Wavelet transform has been previously investigated for damage detection and 

classification in concrete (Yoon et al., 2000) and composite materials (Ni and Iwamoto, 
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2004; Loutas et al., 2006; Marec et al., 2008; Lu et al., 2011; Arumugam et al., 2013; 

Hamdi et al., 2013). Hamstad et al. (2002) implemented wavelet analysis to study the wave 

propagation properties of AE signals for source identification in aluminum plates. Grosse 

et al. (2004) indicated that wavelet transform can be used for denoising AE signals by 

extracting coefficients related to the low frequency noise (caused by loading devices) 

imposed in the signals. Denoising AE signals would enable accurate detection of signal 

arrival time which would improve AE source location. Wijaya and Kencanawati (2014) 

investigated discrete wavelet transform (DWT) to find the best wavelet base decomposition 

level for denoising AE signals for enhanced source location of micro-cracking events in 

concrete. However, the study did not provide enough evidence for the improvement 

achieved by denoising of AE signals. Kharrat et al. (2015) deployed DWT for denoising 

continuous AE signals collected during fatigue test of CFRP specimen (before sweeping 

the signals for potential hits). Continuous wavelet transform was employed by Zitto et al. 

(2012) for denoising AE signals generated during dynamic test on a concrete slab. The 

frequency band associated with concrete fracture (cracking) was statistically identified, and 

then the denoised signals were reconstructed using only the assigned scales for cracking. 

Since signal processing is a waveform-based approach, it involves large volumes 

of data (as waveforms have to be recorded not only signal parameters). However, as 

indicated previously, this gives it the advantage of being threshold independent approach. 

The studies found in literature for filtering AE data using wavelet analysis are mainly 

dedicated to denoising of AE signals. In other words the signal is decomposed by wavelet 

analysis at a selected decomposition level (N) and the detail coefficients are attained. Then 

a threshold method, based on noise modeling, is applied on the signal details and afterwards 
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the signal is reconstructed using the original approximation coefficients of the Nth level 

and the modified detail coefficients of all levels (Kharrat et al., 2015).  

Wavelet analysis has the potential to provide information about the nature of the 

signal source. The development of wavelet-based filters that enable the complete 

elimination of signals attributed to spurious sources, rather than denoising the signals, 

could allow effective data reduction without losing any key targeted information. This 

would significantly lower the cost of data handling and data analysis for damage 

evaluation. Data reduction is valuable for field applications where spurious signals (signals 

that have no correlation to the damage state), sometimes account for the majority of the 

collected data. 

It is noted that there are additional research efforts for filtering AE data that does 

not belong to the main three approaches (parameter-based filtering, pattern recognition and 

signal processing) described above. Niri et al. (2013) proposed a probabilistic approach 

based on nonlinear Kalman Filtering method for AE source location. The proposed method 

yield confidence interval for AE source location instead of a single point as it considers the 

uncertainty involved in the estimated time of flight. Martinez-Gonzalez et al. (2013) 

proposed a filtering approach based on the characteristics of the initial segment of the 

recorded AE signals. The filtering technique improved the damage evaluation of small steel 

specimens subjected to three point bending test; as verified by the inspection of the 

specimen using Confocal Microscope. 
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2.3 EVALUATING ALKALI-SILICA REACTION DETERIORATION IN 

CONCRETE 

Alkali-silica reaction (ASR) is a chemical reaction that occurs in concrete between 

alkali hydroxides in the pore solution and reactive siliceous minerals in certain aggregates. 

The reaction product is an expansive gel that swells with the absorption of moisture which 

leads to concrete cracking and ultimately affects the durability and serviceability of the 

structure. The extent of this deterioration is affected by the reactivity of the aggregate, 

alkali concentration, availability of moisture, and temperature (Williams et al., 2009). 

Research investigating ASR mechanism and subsequent damage has been conducted since 

the late 1930s (Stanton, 1940). Procedures to prevent its occurrence in new construction 

have been developed; including standard practice for determining the reactivity of 

aggregates (ASTM C1260; Thomas, 2009; AASHTO, 2011). However, ASR is currently 

affecting numerous concrete structures around the nation (Stark et al., 1993) and only few 

mitigation techniques are permitted for slowing the reaction in in-service structures. ASR 

damage has gained further attention for research after it has been detected in the Seabrook 

Station, nuclear power plant in New Hampshire, in 2010 almost 25 years after plant 

construction. Although considerable research has been performed to investigate possible 

mitigation measures for ASR deterioration, this section is limited to studies discussing the 

current practice and research related to detecting and monitoring of ASR damage. 

2.3.1 Current Practice for Evaluating ASR Damage 

ASR damage is currently assessed in field structures by visual inspection of cracks 

(crack mapping), length change measurements, and/or concrete coring with subsequent 

petrographic examination. A detailed protocol for detecting and evaluating ASR damage 
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in structures was described in FHWA report in 2010 (Fournier et al., 2010).  First, condition 

survey (visual inspection) was performed to assess the nature and the extent of the apparent 

signs of deterioration, exposure conditions, and the probability of ASR deterioration. 

Common visual signs of ASR include concrete expansion, cracking, surface discoloration 

and gel exudations. However, these symptoms can result from other degradation 

mechanisms and are not exclusively related to ASR. Classification system based on the 

visual condition survey is shown in Table 2.1 (after Fournier et al., 2009). Exposure 

conditions were used in conjunction with Table 2.1 to estimate the probability of ASR 

damage; as the potential for ASR is low in dry sheltered environments and high in concrete 

members with frequent exposure to moisture. In case of medium to high potential of ASR, 

further levels of investigation were carried on. The second level of investigation included 

gathering any available information regarding the age of the structure, concrete mixes and 

materials (including type and source of cement and aggregate and their proportions), 

building plans and drawings, previous inspections or testing, and other structures in the 

area constructed using same material. In addition, crack mapping was performed and the 

extent of cracks is estimated using the Cracking Index (CI) which involves measuring the 

crack widths. In cases where the cracking index exceeded certain criteria, more detailed 

investigations were warranted. Additional investigation included taking cores from the 

structure and performing expansion tests and petrographic examination to confirm the 

presence of alkali-silica reaction and quantify its damage using Damage Rating Index 

(DRI). Sometimes additional cores were taken to perform stiffness damage testing (SDT) 

which estimate the physical damage caused from ASR-induced cracks. Structures 

diagnosed with ASR damage were then instrumented for length change (expansion), 
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temperature, humidity and surface cracking measurements. Then decisions for 

mitigation/remediation measures were made based on the collective assessment of in-situ 

and laboratory investigations. Field applications for evaluating ASR damage using the 

aforementioned methods, on structures across the United States, can be found in a later 

report published by FHWA (Thomas et al., 2013a; 2013b). 

Length change measurement and petrographic examination are further discussed in 

this section; as these methods have been used as benchmarks for ASR damage detection in 

the study described in Chapter 4. 

Table 2.1 Classification system for the condition survey (after Fournier et al. 2010) 

Feature 
Potential for ASR 

Low Medium High 

Expansion 

and/or 

displacement of 

elements 

None 

Some evidence (e.g., 

closure of joints in 

pavements, jersey barriers, 

spalls, misalignments 

between structural 

members) 

Fair to extensive signs of 

volume increase leading to 

spalling at joints, 

displacement and/or 

misalignment of structural 

members 

Cracking and 

crack pattern 
None 

Some cracking pattern 

typical of ASR (e.g., map 

cracking or cracks aligned 

with major reinforcement 

or stress) 

Extensive map cracking or 

cracking aligned with major 

stress or reinforcement 

Surface 

discoloration 
None 

Slight surface discoloration 

associated with some 

cracks 

Many cracks with dark 

discoloration and adjacent 

zone of light colored 

concrete 

Exudations None 

White exudations around 

some cracks; possibility of 

colorless, jelly-like 

exudations 

Colorless, jelly-like 

exudations readily 

identifiable as ASR gel 

associated with several 

cracks 

 



 

24 

 

2.3.1.1 Length Change Measurements 

Field length change measurements are usually performed using demountable 

mechanical strain gauges (DEMEC) which consists of a standard or a digital dial gauge 

attached to an Invar bar. The DEMEC points, between which measurements are taken, are 

fixed or drilled into the surface of concrete members showing signs of ASR damage (Figure 

2.4) (Fournier et al., 2010). Initial length measurements can be taken 12 to 24 hours after 

installation of DEMEC points and the weather condition (temperature and humidity) 

should be documented. The measurements should be repeated periodically (2-3 times a 

year) (Fournier et al., 2010). However, there is inherent variability associated with length 

change measurements as well as vulnerability to weather conditions. 

(a) (b) (c) 

Figure 2.4 (a) Example of accessories used as DEMEC points, (b) and (c) Length-

change measurements in reinforced concrete columns affected by ASR (Fournier et 

al., 2010). 

Length change measurements are also performed in laboratory on cores taken from 

the structures to evaluate the potential for further expansion due to ASR (Expansion tests). 

These cores are kept at high temperature (38oC [100°F]) and humidity (> 95%  RH), similar 

to testing conditions of ASTM C1293. Length change measurements are taken periodically 

for a period of 6-12 months in order to attain sufficient data for investigating the expansion 

rates (Fournier et al., 2010). However, the results of the expansion tests are not necessarily 
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representative to the behavior of structure due to the different environmental and stress 

conditions. 

2.3.1.2 Petrographic Examination (Damage Rating Index) 

The basics of petrographic examination for ASR were introduced in the early 

1980’s by Blight et al. (1981) where polished concrete sections from drilled cores, from 

the affected members of structures, are examined visually and a scoring system is used to 

evaluate the condition of concrete. The petrographic score depends on the number of ASR 

features observed in the examined sections. Petrographic examination was advanced to be 

more damage quantifiable and the damage rating index (DRI) method was described by 

Grattan-Bellew and Danay (1992) in the 1990’s and applied on cores from different 

structures in Canada (Grattan-Bellew, 1995; Rivard et al., 2000) and the United States 

(Thomas et al., 2013a; 2013b). The process of petrographic assessment is performed by 

drawing a grid on the polished concrete sections and counting the number of ASR 

petrographic features observed under microscope (16x magnification). Each feature is 

counted and multiplied by weighing factor, as shown in Table 2.2, to account for its 

probable contribution to the concrete deterioration. The weighted values for each feature 

are then summed and the total value is normalized to a 100 cm2 (15.5 in.2) surface area to 

obtain the damage rating index (DRI). It is noted that researchers (Grattan-Bellew and 

Mitchell, 2006; Shrimer, 2006) have revised the weighing factors in an effort to correlate 

the relative importance of each feature to the measured expansion due to ASR, which is 

variable for different types of aggregates (Rivard et al., 2002). The DRI method provides 

a measure to the amount of deterioration of a given specimen such that the higher values 

of DRI indicate higher values of deterioration. However, the method is subjective, 
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dependent on the experience of the operator, and it is not currently standardized. In 

addition, there are no DRI limits for ASR damage classification to identify low, moderate 

or severe ASR damage. Thus, the method is considered semi-quantitative which is suitable 

for obtaining relative information when applied to a set of cores examined by the same 

petrographer.  

Table 2.2 DRI Weighing factors for each petrographic feature (Grattan-Bellew, 1995) 

Petrographic feature Weighing factor 

Coarse aggregate with crack (CA)  0.25 

Coarse aggregate with crack and gel (CAG)  2.0 

Coarse aggregate debonded (D)  3.0 

Reaction rim around aggregate (R)  0.5 

Cement paste with crack (CP)  2.0 

Cement paste with crack and gel (CPG)  4.0 

Air void lined with gel (AV)  0.5 

 

2.3.2 Research Related to Detecting ASR Aamage using NDE Methods  

Several NDE methods have been recently investigated for detecting ASR damage. 

The potential for using diffuse ultrasound to detect micro-cracks related to ASR was 

demonstrated in a previous study (Deroo et al., 2010). Microwave method has been used 

to differentiate between mortars containing alkali–silica reactive (ASR) aggregate and non-

reactive aggregate (Donnell et al., 2013; Hashemi et al., 2014). Distiguishing between ASR 

and non-ASR specimens was also achieved using ultrasonic method where frequency 

dependent attenuation was observed for ASR specimens (Gong et al., 2014a). Also a 

stretching factor method was able to detect the progress of ASR damage (Gong et al., 
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2014b). A systematic study using a series of ultrasonic techniques demonstrated that 

acoustic nonlinearity parameter can track ASR damage with higher sensitivity than wave 

speed and attenuation parameters. The results also showed a correlation between measured 

acoustic nonlinearity parameter and the reduction of compressive strength due to ASR 

damage (Qu et al., 2015). Nondestructive testing techniques: ultrasonic pulse-velocity 

(UPV), impact-echo, spectral analysis of surface waves (SASW) and surface wave 

transmission (SWT), were investigated on exposure site specimens for ASR detection. 

UPV and impact-echo tests were able to detect low levels of expansion from ASR 

(expansions less than 0.10%) but they showed poor results with higher levels of expansion.  

On the other hand, the results from surface wave methods, SASW and SWT, failed to show 

a clear indication of ASR damage presence. 

For acoustic emission, to the best of the writer’s knowledge, only one study is 

available for investigating its feasibility to monitor ASR damage. Pour-Ghaz et al. (2012) 

cast concrete specimens using reactive aggregates and placed the specimens in water for 

24 hours, after de-molding,  then placed the specimens in 1N NaOH solution at a 

temperature of 38 ±1 °C (100±1.8°F). The specimens were monitored using acoustic 

emission broadband sensors (375 kHz) and LVDTs for length change measurements. The 

results showed the possibility of using AE for early detection of ASR-induced damage 

(detected at five days of conditioning) as compared to length change measurements where 

the threshold of 0.1% expansion was reached after 18-20 days. It is noted that these 

measurements were collected from different specimens. However, AE activity plateaued 

after 22 days of conditioning. That observation was interpreted by the researcher to be a 

possible result of high signal attenuation caused by excessive cracking and/or gel formation 
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due to loss of surface contact between the sensor and the specimen. More research is, 

therefore, needed to investigate the feasibility of using AE for ASR damage detection and 

also to examine any hindrances to the method sensitivity caused by the gel formation.    

2.4 EVALUATING DAMAGE RELATED TO CORROSION OF STEEL IN 

CONCRETE 

Corrosion of steel reinforcement can significantly affect the durability of concrete 

structures which may lead to severe damage and catastrophic failures. This damage 

mechanism can be initiated due to exposure to moisture, high chloride content in concrete, 

insufficient cover, deicing salts, highly permeable mortar or poor grout quality; among 

other factors. Visual inspection is a commonly used method for assessment of 

infrastructure. However, corrosion of steel in concrete cannot be visually detected in its 

early stages. Electrochemical methods such as half-cell potential (HCP) and polarization 

resistance are established techniques for corrosion assessment and they have been 

implemented in field when corrosion damage is suspected (Flis et al., 1992; Videm, 1997).  

HCP method is invasive as it requires direct connection with the steel for reliable 

measurements which may be prohibited in nuclear facilities. Additionally, it only provides 

an estimate for the probability of corrosion at local positions and does not offer quantitative 

assessment. Linear polarization resistance (LPR) method is commonly used for estimating 

the corrosion rate (Andrade et al., 1990; Broomfield et al., 1994). However, this method 

assumes uniform corrosion and does not account for the presence of pitting corrosion. Also 

it yields sometimes unstable readings. A description on how these electrochemical 

measurements are performed is given below, followed by a review on the current literature 

for evaluating steel corrosion in concrete using acoustic emission.  
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2.4.1 Electrochemical Measurements 

2.4.1.1 Half-cell potential 

Half-cell potential (HCP) is a measure of the potential of a metal against a reference 

electrode. Copper/copper sulphate (CSE) and silver/silver chloride in potassium chloride 

solution are commonly used reference electrodes. This method is described in ASTM C876 

(ASTM C876-09) and is traditionally employed to determine the likelihood of corrosion 

activity as described in Table 2.3 (for a copper-copper sulfate reference electrode). Half-

cell potential is measured by connecting the steel reinforcement to the positive terminal of 

a voltmeter while connecting a reference electrode to the negative terminal as shown in 

Figure 2.5. The reference electrode must be in contact with dampened concrete at the 

position where the potential is measured. 

2.4.1.2 Linear Polarization Resistance 

Linear polarization resistance (LPR) is a method used to measure polarization 

resistance (Rp) which can be used to calculate corrosion current (Icorr), and corrosion current 

density (icorr). These parameters can give insight to the corrosion process by determining 

the corrosion rate (CR). Linear polarization resistance measurements may be performed 

using a potentiostat system which is connected through three cables to the steel 

reinforcement, copper plate, and copper-copper sulfate probe as the working, counter, and 

reference electrode (Figure 2.5). The reference electrode must maintain contact with the 

concrete surface adjacent to the targeted reinforcement, throughout the duration of the 

linear polarization resistance test, after dampening the concrete surface with a wet sponge.  

The potentiostat applies a linear voltage sweep by polarizing the working electrode 

±20 mV from the equilibrium potential (Ecorr) at a rate of 0.166 mV/s and measuring the 
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current response (ASTM G59-97 2014).  While recording the readings, the system plots a 

graph of the measured current on the x-axis and applied potential on the y-axis. The user 

selects a portion of the curve in the linear region and passes through the point of zero 

relative potential to equilibrium potential (approximately in the center of the region), and 

then the system estimates the corresponding slope (ΔE/ΔI); which is the Rp value (Equation 

2.2).  ΔE and ΔI in Equation 2.2 are the range of the potential and the corresponding current, 

respectively, in the linear portion of the graph. The measured Rp value has the unit of Ohms 

(as the potential is expressed in Volt and the current in Amperes). If the comparison of 

results with others from different specimens is needed, Rp values can be expressed in 

Ohm.cm2 by dividing the potential by the current density (current expressed per unit area). 

As Rp is an instantaneous measure of concrete resistivity, some fluctuations are to be 

expected in the readings. 

The corrosion current ( Icorr ) can be calculated from Equation 2.2 which can be 

applied to calculate the corrosion rate (CR) using Equation 2.3. 

Rp=
∆E

∆i
=

ba×bc

2.303× Icorr(ba+bc)
     (2.2) 

CR=
0.13×Icorr  ×EW

A × d
      (2.3) 

where Rp is the polarization resistance, Ω; ΔE is the change in applied potential 

relative to corrosion potential Ecorr, mV; Δi is the current response to applied potential 

spectrum, mA; Icorr is the corrosion current, µA; ba, bc are the anodic and cathodic Tafel 

slopes respectively, mV; CR is the corrosion rate in milli-inch per year (mpy); EW is the 

equivalent weight of iron, 27.92 g; A is the surface area of the anode, cm2; and d is the 

density of iron, 7.8 g/cm3. 
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Table 2.3 ASTM corrosion for Cu-CuSO4 reference electrode (ASTM C876-09) 

Potential Against Cu-CuSO4 Electrode Corrosion Condition 

>   – 200 mV Low Risk (10% probability of 

corrosion) 

– 200 to – 350 mV Intermediate corrosion risk 

<  – 350 mV High corrosion risk (90% probability) 

< – 500 mV Severe corrosion damage 

 

 

Figure 2.5  Schematic representations: (a) HCP test setup, and (b) LPR test setup. 

2.4.2 Acoustic Emission Monitoring 

The expansion associated with corrosion products creates stresses which result in 

concrete cracking. The high sensitivity of AE to crack formation makes it a well-suited 

method for detecting the micro-cracks related to corrosion initiation. Investigating the 

feasibility of detecting corrosion using AE dates back to 1980s (Dunn et al., 1983; Weng 

et al., 1982). Early studies have investigated measured AE parameters collected from 

accelerated corrosion tests of small reinforced concrete (RC) specimens and their 

correlation with the results of electrochemical measurements or physical examination of 
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test specimens (Dunn et al., 1983; Weng et al., 1982; Zdunek et al., 1995; Li et al., 1998; 

Idrissi and Limam, 2003; Assouli et al., 2005). The results of these studies indicated the 

feasibility of using AE for early corrosion detection.  

AE was used to monitor stress corrosion cracking (SCC) of steel strand in a 

simulated concrete pore (SCP) solution contaminated by sulphate, chloride, and 

thiocyanate ions (Ramadan et al., 2008). Three stages of damage were identified by 

investigating the accumulated AE hits; crack initiation, cracks growth and propagation, and 

steel failure. Deep pits and crevices associated with local corrosion were detected near the 

fracture using scanning electron microscope (SEM). 

Pattern recognition analysis (principal component analysis (PCA) and K-means 

method) of AE data was investigated to evaluate damage during an accelerated corrosion 

test of a prestressing strand under axial tensile load. The onset of wire breakage of the 

strand was identified using AE data clusters (Ercolino et al., 2015). Djeddi et al. (2013) 

utilized “Visual ClassTM” program which is a frequency domain pattern recognition 

system to classify signals due to possible AE sources occurred during SCC test of 

prestressing strand. Three signal groups were identified and the researcher inferred that 

they are due to hydrogen penetration, hydrogen gas evolution and crack propagation and 

rupture. AE data collected during SCC of a post-tensioned concrete beam was analyzed in 

another study using PCA and self-organizing map algorithms to monitor the evolution of 

the corrosion damage of steel wires. Three stages; initiation, propagation and rupture were 

identified and correlated to specific characteristics of the AE events. 

Ohtsu and Tomoda (2008) performed two corrosion tests; impressed current 

accelerated test and a cyclic wet/dry test on RC specimen while being continuously 
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monitored using AE and the number of AE events per hour was recorded. AE results of 

both tests indicated two high activity periods correlated to onset of corrosion and cracking 

initiation. For the cyclic corrosion test b-value parameter was also utilized to identify these 

two periods. HCP measurements indicated the high probability of corrosion after the 

second period was observed in both tests; which demonstrates the feasibility of using AE 

for early corrosion detection. The plots of RA (rise time/amplitude) versus average 

frequency (counts/duration) designated other-type cracks and tensile cracks occurred at the 

first and second high AE activity periods, respectively. These results were also verified 

through SEM observations of the reinforcing bar. Kawasaki et al. (2013) achieved similar 

AE trends as Ohtsu and Tomoda (2008), in terms of number of AE events per hour, RA 

and average frequency results, in a cyclic wet/dry test of RC beams. Lower Ib-values were 

also observed at the second stage which indicates large-scale cracks. SiGMA analysis 

showed shear cracks and mixed-mode cracks near the rebar in stage 1 (corrosion initiation) 

and mostly tensile cracks (corrosion-induced cracks) at stage 2. Results were verified by 

inspecting a specimen at the end of each stage using SEM and electron probe micro 

analyzer (EPMA). 

Two stages of depassivation of concrete (corrosion initiation) and cracking were 

also recognized by Patil et al. (2014) during impressed current accelerated corrosion test 

of RC cylinders. These stages were defined by sudden rises in AE cumulative signal 

strength (CSS).  The CSS was found to have similar trend to the phenomenological model 

of corrosion of steel in sea water described by Ohtsu and Tomoda (2008). The effect of 

concrete cracks on corrosion initiation was investigated by Di Benedetti et al. (2013) by 

testing pre-cracked small scale RC specimens past the steel bar with two different crack 
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widths and subjecting them to accelerated corrosion test. The specimens with the wider 

crack exhibited corrosion initiation earlier than specimens with finer crack, as evidenced 

by AE CSS and HCP results, which was attributed to the higher chloride penetration and 

chemical aggression. Similar results for corrosion initiation were obtained using AE 

average signal level (ASL) and absolute energy (AbE) parameters (time driven parameters) 

where sharp knee was observed for each parameter at the time of corrosion initiation. AE 

source location of corrosion events was performed by Mangual et al. (2013a; 2013b) from 

data collected during accelerated corrosion test on two sets of small scale concrete 

specimens with steel strands to investigate uniform and localized corrosion damage. 

The use of Intensity Analysis to detect and classify corrosion damage was proposed 

by ElBatanouny et al. (2012). Intensity analysis (IA) classification limits were developed 

by Mangual et al. (2013b) using results of accelerated corrosion test of pre-cracked small 

scale specimens with embedded strands. The chart was developed by plotting historic index 

(H(t)) versus severity (Sr) and classification limits were formed to divide the chart area into 

different regions that corresponds to different levels of damage. Historic index a form of 

trend analysis that compares the signal strength of the most recent hits to the average value 

of all hits (Equation 2.4). Severity is defined as the average signal strength for the 50 events 

having the largest numerical value of signal strength (Equation 2.5). 

H(t)= 
N

N-K

∑ Soi
 N
 i=K+1

∑ Soi
  N
 i=1

        (2.4) 

Sr= 
1

50
∑ Soi

i=50
i=1         (2.5) 

The maximum values of historic index and severity calculated from the results of 

each specimen was plotted and the chart was divided into different damage regions based 

on the physical damage state as determined through visual inspection, HCP, and section 
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loss of the prestressing strands (Figure 2.6). The classification limits were performed such 

that Region A for the passive condition, region B for depassivated steel (early corrosion) 

where measured sectional losses were less than 15%, region C for thin cracked specimens 

with steel sectional loss ranging to 21%, and region D for severely cracked specimens with 

sectional losses between 23 and 28%. 

 

Figure 2.6 Intensity Analysis corrosion classification 

chart (Mangual et al., 2013a). 

The developed IA chart was investigated by ElBatanouny et al. (2014) using data 

collected during accelerated corrosion test (wet/dry cycles) on medium scale prestressed 

concrete beams. Two of the three conditioned specimens were pre-cracked to different 

crack widths to facilitate chloride ingress and achieve different corrosion levels. This study 

used the same type of sensors as Mangual et al. (2013b), R6I resonant sensors, and the 

same limits of the IA chart were used to classify the damage. The classification results 

were in agreement with the actual damage occurred in the specimens as indicated by SEM 

analysis of the corroded strands. This shows the ability of the developed IA chart to classify 

damage independent of the scale of the specimens and the duration of the test. The same 

IA chart was also used to qualify corrosion damage in post-tensioned (PT) concrete 
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specimens (Appalla et al., 2015). Two sets of specimens were cast to simulate internal and 

external PT structures. The sensors were placed on the external surface of the specimens; 

ducts for the external PT and concrete for the internal PT. The results of the damage 

classification using AE agreed with electrochemical measurements collected during the 

test.  

Velez et al. (2015) qualified corrosion damage in specimens representative of 

prestressed concrete piles subjected to wet/dry cycles. The results reported after 

approximately one year of monitoring showed that corrosion initiated in two of the 

specimens. The same approach using IA was used to analyze the collected AE data. A 

parametric analysis was conducted to modify the constants used to calculate the historic 

index and severity parameters. A modification to the proposed IA chart limits was also 

proposed based on historic index results. 

Jagasivamani (2014) deployed AE sensors on reinforced concrete columns in a 

bridge in Virginia to investigate the applicability of acoustic emission to detect damage in 

regions with known corrosion deterioration in a setting with high ambient noise. The data 

was collected for short periods (4 hours each). It was found that RA value (rise 

time/amplitude) could help in differentiating between signals from ambient noise and 

corrosion related signals. The study did not include monitoring of ongoing damage using 

acoustic emission.  

The available literature indicates that acoustic emission monitoring for assessment 

of corrosion damage in general, and early corrosion damage in particular, is promising. 

Field applications, such as the one presented in Chapter 5 of this dissertation, are needed 
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to validate and further the development of the method as a real time monitoring and 

classification technique for corrosion damage in concrete structures. 
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CHAPTER 3 

SIGNAL PROCESSING TECHNIQUES FOR FILTERING ACOUSTIC 

EMISSION DATA IN PRESTRESSED CONCRETE1

                                                 

1Abdelrahman, M., M. ElBatanouny, J. Rose, and P. Ziehl. Submitted to Research in 

Nondestructive Evaluation (RNDE), 10/21/2016 
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3.1 ABSTRACT 

The current state of infrastructure in the United States and worldwide has raised the 

need for reliable structural health monitoring techniques. Piezoelectric sensing, such as 

acoustic emission, has recently gained attention due to its high sensitivity and associated 

capability for early detection of damage. The high sensitivity of this method, however, also 

results in the collection of data not directly related to damage growth. Current filtering 

procedures focus primarily on parametric analysis of the collected signals. This study 

focuses on developing more robust filtering techniques for acoustic emission data collected 

from a prestressed concrete specimen. Simulated data was generated to enable proper 

identification of the source of the collected signals. Filtering criteria were developed 

through characterization of the energy content using a wavelet transform. The developed 

filters were capable of separating the induced target signals from other signals with 

reasonable accuracy and the results were verified through source location. The developed 

filters were validated using acoustic emission data collected during a load test.  

3.2 INTRODUCTION 

Aging of infrastructure in the United States and worldwide has been the main drive 

for research in the area of structural health monitoring/nondestructive evaluation 

(SHM/NDE). This has resulted in the development or technology transfer of several 

SHM/NDE methods to assess damage in passively reinforced and prestressed/post-

tensioned concrete structures. Current SHM/NDE methods include: vibration measurement 

and modal analysis,1 radiography,2 magnetic flux leakage,3 impact-echo,4 ultrasonics,5 and 

acoustic emission.6,7 Acoustic emission is the main focus of this study. 
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Acoustic emission (AE) monitoring is based on the detection of transient stress 

waves generated by rapid release of energy within a material, such as that due to crack 

initiation or growth.8 The passive nature of sensing with acoustic emission monitoring 

allows for the development of low-power data acquisition systems that can be used to 

continuously monitor in-service structures. AE sensors operate in the kHz range which 

allows for the early detection of damage, but also leads to the generation of large data sets 

with false signals (or ‘noise’) from wave reflections and other sources. The main challenges 

associated with acoustic emission are: 1) development of filters to minimize the size of the 

data set while simultaneously improving its quality, and 2) developing correlations 

between AE data and the condition of the structural member under investigation.  

Previous research efforts have focused on development of damage assessment 

algorithms such as: Intensity Analysis,9-12 load ratio and calm ratio,13-15 b-value and Ib-

value analysis,16-18 and pattern recognition.19,20 However, most of these studies used data 

from controlled experiments and/or utilized guard sensors which minimized the noise. The 

current state of the art for AE data reduction (referred to herein as ‘data filtering’) includes: 

1) filters based on detection of AE events and source location (i.e. the same AE wave is 

detected by more than one sensor and can be located),21,22 2) parameter-based filters such 

as Swansong II filters 11,23-25 and root mean square filters developed for seismic loading,26,27 

and c) pattern recognition based filters.28 These filters are empirically based and, therefore, 

are applicable to specific materials and specimen geometries. 

A signal processing approach is proposed in this study to filter AE data gathered 

from a prestressed concrete beam specimen. Similar to voice recognition, acoustic 

signatures of actual cracking events should be different than those associated with wave 
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reflections or other noise. The wavelet transform can be used to better understand the 

characteristics of AE signals in the time-frequency domain.  

In this study an artificial acoustic emission source (Hsu-Nielsen source)29 was used 

to generate AE signals on a prestressed concrete beam instrumented with ten AE sensors. 

The artificial signals were generated at different horizontal and vertical locations to 

examine the effect of source-to-sensor distance on the data. Following each artificial signal, 

the data acquisition system continued monitoring to collect wave reflections. The signals 

generated from the application of the artificial source itself are hereafter referred to as 

“induced target signals” and signals due other sources including reflections and other 

signals not directly related to the source are referred to as “degraded signals”. AE signals 

collected during the test were analyzed using a wavelet transform. Four different filtering 

criteria are proposed based on the spatial characteristics of the AE signals in the time-

frequency domain. The reliability of the filters was assessed based on prior knowledge of 

the AE source. A parameter-based filter, similar to filters used in previous studies, was also 

developed to enable comparisons with the wavelet based filters. The data collected during 

load testing of a similar beam specimen was then used to test and verify the proposed 

filtering technique.  

3.3 RESEARCH SIGNIFICANCE 

Noise is present in AE data sets due to wave reflections, mechanical rubbing, and 

environmental sources such as rain, wind-born debris, and hail. Most approaches for 

excluding these signals are empirical and require the involvement of an AE expert. The 

current lack of reliable filtering techniques to reject noise in AE data may lead to deceptive 

results in source location and damage assessment. This realization raises the need for robust 



 

42 

 

data filters with predetermined filtering criteria that can be utilized by less experienced 

users with acceptable accuracy. This paper investigates the use of wavelet analysis of AE 

signals to develop algorithms for differentiation between induced target AE signals and 

degraded signals. The establishment of such an approach has the potential to broaden the 

use of acoustic emission monitoring and to enhance its reliability as a NDE/SHM 

technique.   

3.4 EXPERIMENTAL PROCEDURE 

3.4.1 Methodology: Wavelet transform 

Signal processing is usually used to develop a representation of the signal that 

makes certain characteristics more explicit. The Fourier transform and Short Time Fourier 

Transform (STFT) are common tools to express a signal as a function of frequency. 

Wavelet analysis offers better resolution than the aforementioned techniques as it uses 

short time windows (high time resolution) at high frequencies and long time windows (low 

time resolution) at low frequencies.30 This property makes it suitable for analyzing transient 

signals such as acoustic emission signals.   

The concept of continuous wavelet analysis was introduced in the 1980s by 

Grossman and Morlet,31 followed by the work of Mallat and Meyer of using the multi-

resolution analysis (varying the time and frequency resolutions on the time-frequency 

representation) for orthonormal wavelet bases.32-34 Daubechies’s research later promoted 

the use of wavelets in mathematics and engineering and developed the basis for the discrete 

wavelet transform.35-37  

Wavelet transformation is a linear decomposition which is attained by comparing 

the signal with a set of elementary functions obtained by the time scaling and shifting of a 
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mother function. Let the mother function be ψ(t) with a mean frequency of 𝜔0, then the 

scaled and shifted function is 𝜓(𝑎−1(𝑡 − 𝑏)) with a frequency = 𝜔0/𝑎 where a is the scale 

index and b is the time shifting. The wavelet transform can be obtained as the inner product 

of the signal s(t) and 𝜓(𝑎−1(𝑡 − 𝑏)) as follows: 

𝐶𝑊𝑇(𝑎, 𝑏) =
1

√|𝑎|
∫ 𝑠(𝑡)𝜓 (

(𝑡 − 𝑏)

𝑎
) 𝑑𝑡         𝑎 ≠ 0 

As seen in the above equation, the continuous wavelet transform (CWT) is a 

function of time (b) and frequency (𝜔0/𝑎). It can be used to define how frequency content 

of a signal evolves in time, making it ideal for the analysis of non-stationary signals. 

The mother wavelet used in the analysis described in this paper is the “Morlet 

wavelet” which is a sine wave multiplied by a Gaussian envelope. The Morlet wavelet is a 

commonly used mother wavelet that satisfies the conditions of localized time and 

frequency and zero mean. 

Wavelet transform has been previously investigated for AE data analysis for 

damage monitoring and classification in concrete,38 composite materials39-43 and 

galvanized steel coating.44 Wavelet analysis has also been implemented for de-noising of 

AE signals to improve the quality of the data.45,46 De-noising of AE signals generated 

during dynamic test on a concrete slab was investigated in a previous study by applying 

continuous wavelet transform and statistically identifying the frequency band associated 

with concrete fracture (cracking). The filtered data set can then be formed by reconstructing 

the signals using only the assigned scales for cracking.47,48 This paper focuses on applying 

the wavelet transform for filtering AE data through the elimination of signals related to 

reflections and other spurious sources rather than de-noising the signals. Data reduction is 
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valuable for field applications where spurious signals (signals that have no correlation to 

the damage state), sometimes account for the majority of the collected data. 

3.4.2 Test specimen and instrumentation 

A prestressed concrete T-beam with the cross section shown in Figure 3.1, similar 

to the specimens described in ElBatanouny et al.11, was used in this study. The specimen 

had two 13 mm (0.5 in.) low relaxation prestressing strands prestressed to 68% of the strand 

ultimate stress [fpu = 1,860 MPa (270 ksi)] and a span of 4.98 m (16 ft. 4in.). It was 

instrumented with ten R6I AE sensors with the layout shown in Figure 3.2 to enable 

investigation of different source-to-sensor distances. This sensor type includes a 40 dB 

preamplifier and has operating frequency of 40-100 kHz and resonant frequency of 55 kHz.  

The higher sensitivity of the resonant sensors makes them a more suitable choice for 

monitoring and detection of damage in concrete than wideband sensors. This can be 

attributed to high signal attenuation associated with the material since waves with higher 

frequency components propagate in concrete with higher attenuation.49 In addition, due to 

concrete heterogeneity and presence of aggregates (typically 20 mm or greater in size), AE 

waves with frequency higher than 100 kHz may be scattered due to the relation between 

the wavelength and the size of heterogeneity; 40 mm wavelength at 100 kHz assuming P-

wave speed of 4,000 m/s in concrete.50 The use of resonant sensors will affect the energy 

distribution in the frequency domain; however, the objective of this paper is to develop 

effective filters adapted to the commonly used sensor type for concrete. Filters that work 

effectively on resonant sensor data can be widely implemented considering the popularity 

of that type of AE sensors. 
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Figure 3.1 Schematic of geometric properties 

and reinforcement, dimensions in mm (1 inch 

= 25.4 mm). 

  

Figure 3.2 AE sensor layout, dimensions in mm (1 inch = 25.4 mm). 

The sensors were attached to the specimen using specialized two part epoxy to 

ensure appropriate acoustic coupling. The data acquisition system, a 16 channel Sensor 

Highway II system manufactured by Mistras Group Inc., was set with a fixed threshold of 

40 dB for all the channels, sampling rate of one million samples per second, pre-trigger of 

256 µs, and waveform length of 1024 sample points. Values for peak definition time (PDT), 

Hit definition time (HDT) and Hit lockout time (HLT) of 200 µs, 400 µs, and 800 µs, 

respectively, were used to define the collected hits and reduce reflections. All the channels 

were set to trigger independently from each other during the data collection period. The 
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described sensor layout and data acquisition setup was chosen to be similar to that 

described in ElBatanouny et al.11 

3.4.3 Generation of simulated data 

To minimize uncertainty regarding the source and nature of the data sets, simulated 

data sets with known sources and locations were generated. One conventional artificial 

source to simulate acoustic emission is the pencil lead break (PLB), also known as the AE 

Hsu-Nielsen source, as described in ASTM E976.29,51 PLBs were carefully conducted in 

the vicinity of the mid-span; six PLBs at each red dot with a total of 630 PLBs, as shown 

in Figure 3.3. For each PLB, one signal at each sensor for a total of 10 signals were 

separated from the data set based on time of arrival and these signals were retained in the 

target signal data set. Other signals resulting from reflections of the AE wave on the 

boundaries of the specimen and associated with this PLB were retained in the degraded 

signal data set. The degraded signals represent wave reflections or data that is not 

associated with the first wave emission from the pencil lead break event, such as the lead 

sleeve inadvertently impacting the concrete surface after the pencil lead break event has 

occurred. 
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Figure 3.3 Locations of artificial sources (pencil lead breaks), 

dimensions in mm (1 inch = 25.4 mm).  

3.5 DESCRIPTION OF DATA REDUCTION STRATEGY 

Data collected due to PLBs at the beam centerline (42 PLBs; 420 target signals and 

2,787 degraded signals) was designated as the ‘training data set’ and was used to develop 

the data reduction strategy, referred to as ‘data filtering’ or more simply ‘filters’. The 

developed filters were then investigated for appropriateness using data collected due to 

PLBs between sensors 1, 2, 3, and 4 (at a distance of 318 mm [12.5 in.] from sensors 1 and 

2), which are 42 PLBs (420 target signals and 1,651 degraded signals). This data was 

designated as the ‘testing data set’. Each data set was divided into two groups; ‘target signal 

data’ and ‘degraded signal data’ and wavelet analysis was performed on each group. Figure 

3.4 shows an example of the wavelet results for the target signal and the degraded signal 

data. The wavelet transform, as seen in this figure, provides the distribution of energy 

(mapped in color contours) in the time-frequency domain. The Y-axis represents the scale 

which is inversely proportional to the frequency as shown in Figure 3.5.  
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Figure 3.4 AE waveforms and wavelet transform for a target signal ((a) and (c), 

respectively) and a degraded signal ((b) and (d), respectively). 

  

Figure 3.5 Relationship between frequency and scale. 

Through visual observation of the wavelet transform results from the training data 

set, it was observed that high energy tends to be more localized in terms of time and 
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frequency in the target signal data as compared to data from degraded signals. To enable 

comparisons, a 3D representation of the wavelet coefficients was obtained as shown in 

Figure 3.6(a) and Figure 3.6(b) and the coefficient values less than 10% of the maximum 

value within the same wavelet were set equal to zero as shown in Figure 3.6(c) and Figure 

3.6(d). The remaining wavelet coefficients were labeled as ‘high energy zones’ and the 

centroid of the high energy zones was obtained and labelled as ‘energy density centroid’. 

Different spatial characteristics of the high energy in the 3D representation were examined 

as potential filtering criteria including the following: 

1. Normalized Area of High Energy (Criterion 1, referred to as ‘C1’): The total 

number of nodes (coefficients) with high energy was calculated and normalized 

to the summation of the coefficient values at these nodes. 

2. Normalized Average Distance (C2): The distance from each high energy node 

to the energy density centroid was calculated.  The average of these distances 

was normalized to the summation of the coefficient values at these nodes.   

3. Normalized Maximum Distance (C3): The maximum distance between high 

energy nodes and the energy density centroid was calculated and normalized to 

the summation of the coefficient values at these nodes. 

4. Summation of High Energy x Distance (C4): The summation of each high 

energy coefficient value multiplied by its distance to the energy density centroid 

was calculated. 



 

50 

 

 

Figure 3.6 3D representation of all wavelet coefficients and the absolute high energy 

coefficients for a target signal ((a) and (c), respectively) and a degraded signal ((b) 

and (d), respectively). 

3.6 RESULTS AND DISCUSSION 

The four candidate criteria described in the previous section were applied to target 

signal data and degraded signal data generated through PLBs at the centerline of the 

specimen. Figure 3.7 shows the filtering criteria values for each signal. The data formed 

two clusters which agree with their known source classification with the exception of a 

small number of outliers (less than 3%).  
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Figure 3.7 Values of criteria for signals obtained from pencil lead breaks at the 

centerline of the specimen.  

The criteria threshold limits were developed using a modified grid search to achieve 

the highest success rate in data classification. The threshold limit defines the boundary 

between signals interpreted as target signals and those interpreted as degraded signals.  

Grid searches normally determine a parameter by applying a uniform adjustment to the 

parameter and selecting the best value. In this grid search, for a given criterion (C1 - C4), 

the values calculated for target signals were sorted in ascending order, and each value was 

evaluated as a potential filtering limit. This approach reduces the search time, as any value 

between the limits investigated would increase the number of degraded signals attained in 

the filtered data without gaining additional target signals compared to the previously 

investigated limit. The success rate for each potential limit was then calculated as “the 

percentage of target signals correctly classified minus the percentage of degraded signals 
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incorrectly classified”. Figure 3.8 illustrates the values obtained along with the success rate 

when the criterion “Normalized Area of High Energy (C1)” was investigated. The same 

procedure was performed for the other three criteria and the limits with the highest success 

rate were chosen as thresholds for filtering as shown in Table 3.1. All proposed limits 

yielded relatively accurate classification of data in terms of target signal and degraded 

signal data. The success rate for each of the four proposed criteria exceeded 97% (Table 

3.1).  

 

Figure 3.8 Development of filtering limit for criterion C1: (a) percentages of 

correctly classified target signals and incorrectly classified degraded signals 

obtained using different limits, (b) success rate for each limit value. 

Table 3.1 The proposed limits for each criterion and associated success rates. 

Criterion Proposed limit Success rate (%) 

Normalized Area of High Energy 7.0 97 

Normalized Average Distance 0.13 98 

Normalized Maximum Distance 0.32 98 

Summation of High Energy x Distance 137,120 98 

 

The testing data set (PLBs between sensors 1-4) was used to evaluate the four 

criteria (C1 - C4). The success rate for each criterion, taking into consideration the 
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horizontal distance from the PLBs to the sensors, is given in Table 3.2. It can be seen that 

the filters were able to classify the data properly (higher than 90% success rate) within 775 

mm (30.5 in.) from the source. For farther distances from the source [1,867 mm (73.5 in.)], 

the first three criteria failed to detect some of the target signals, resulting in lower success 

rates. When examining the cause, it was observed that sensor 10 responded slightly 

differently from other sensors, especially with farther sources, in the sense that it continued 

to resonate for a longer time period in comparison to other sensors having the same source-

to-sensor distance. This behavior only affected the results of sensor 10. Prior to testing, 

each sensor was checked for relative sensitivity response through conducting PLBs and 

examining the peak amplitude response of the sensor, but as is customary this sensitivity 

test was conducted at 76 mm (3 in.) and 305 mm (12 in.) from each sensor. Appropriate 

sensor response was demonstrated as the average amplitude response of a sensor was 

within ± 3 dB of the average amplitude of the sensor group for the PLBs at each distance. 

This type of test did not reveal the difference related to sensor 10 at larger source-to-sensor 

distance.    

Table 3.2 Success rates for the testing data using proposed limits. 

Sensors  

Distance 

from source, 

mm (in.) 

Success rate for each criterion (%) 

C1 C2 C3 C4 

Limit=7.0 Limit=0.13 Limit=0.32 Limit= 137,120 

1,2,3,4 318 (12.5) 92 93 93 90 

5,6 775 (30.5) 94 95 95 91 

7,8 1,232 (48.5) 86 92 91 97 

9,10 1,867 (73.5) 45 51 40 84 
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Figure 3.9 Success rates for signals obtained at sensor 2 due to PLBs at different 

horizontal distances from the sensor. 

 

Figure 3.10 Success rates for signals obtained at sensor 2 due to PLBs at different 

vertical distances at a horizontal distance of 318 mm (12.5 in.) from the sensor. 

 

Figure 3.11 Success rates for signals obtained at sensor 2 due to PLBs at different 

vertical distances at a horizontal distance of 1,867 mm (73.5 in.) from the sensor. 
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To further investigate the effect of source-to-sensor distance, data collected from 

sensor 2 due to PLBs at different horizontal distances and the same vertical distance as 

sensor 2 (100 mm [4 in.] from the bottom of the specimen) was analyzed. As shown in 

Figure 3.9, all criteria yielded comparable results. These results indicate that the change of 

horizontal source-to-sensor distance does not affect the quality of the proposed filters 

within 1.8 m (6 feet) from the source. The same observation was also attained for sources 

at different vertical distance from sensor 2, placed at 101 mm (4 in.) from the bottom of 

the specimen. Figure 3.10 shows the success rates achieved for data collected by sensor 2 

due to PLBs at different vertical distances at a horizontal distance of 318 mm (12.5 in.) 

from the sensor. Figure 3.11 shows similar results at a different horizontal distance of 1,867 

mm (73.5 in.). This was done to illustrate the effect of a change in vertical distance at a 

small horizontal distance of 318 mm (12.5 in.) as well as the effect of combined large 

vertical and horizontal distances. In both cases, acceptable success rates were achieved at 

different vertical source-to-sensor distances. As expected, lower success rates were 

achieved when the target signal data was generated at the boundaries (i.e. top and bottom 

edges of the web). 

3.6.1 Comparison between parameter-based filtering approach and the proposed 

filters  

To investigate and quantify the potential improvements offered by the filtering 

approaches described above, the efficiency of these filters was compared to that of a 

commonly used parameter based AE filtering method and the results were verified based 

on known source location. One commonly used filtering method for fiber reinforced 

pressure vessels is the Swansong II approach discussed by Fowler et al.23 These filters are 
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based on the concept that target signals with high duration are associated with high 

amplitudes and vice versa. Based on this observation, limits based on duration-amplitude 

(D-A) relationships are set for minimizing non-relevant data. A similar approach is 

sometimes used for rise time-amplitude (R-A) relationships. 

To provide a means of comparison between filtering approaches, D-A/R-A filter 

limits were developed for the current study related to PLBs. The training and testing data 

sets described previously were used to develop limits for the D-A/R-A filters. The prior 

knowledge of the source of each signal (PLB or reflection) in the mentioned data sets was 

employed to train the filter limits to achieve the highest possible agreement between the 

filter classification and actual classification of the data. Different sets of limits were 

investigated as potential D-A/R-A filters and the one that yielded the highest success rate 

in source classification was chosen to be included in the comparison (Table 3.3). It is noted 

that the used D-A/R-A filtering limits misclassified most of the degraded signals in the 

training and testing data sets as target signals (74% and 81%, respectively) and correctly 

classified most of the target signals (96% and 87% of the training and testing data sets, 

respectively). However, any refinement to reach higher elimination of unwanted data 

resulted in higher rejection of target signal data. Thus, the limits mentioned in Table 3.3 

were chosen for this study.  

Figure 3.12(a) and Figure 3.12(b) show source location results of unfiltered data 

and data filtered using D-A/R-A filters, respectively. Source location was achieved using 

AEwin for sensor highway smart monitor software version E4.30, by Mistras Group Inc., 

based on arrival time (first crossing of data acquisition threshold) of one AE signal at a 

minimum of four sensors to produce an AE event; i.e. at least four sensors must be triggered 
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by the same source to produce an event. The AE wave speed in the specimen was measured 

experimentally using two sensors placed 152 mm (6 in.) apart and is equal to 3,714 m/s 

(146,200 in/s). The D-A/R-A filters did not provide much improvement to the data. In 

comparison, when the C2 criterion (normalized average distance) is applied (Figure 

3.12(c)), the accuracy of source location improved and the locations where PLBs were 

applied are more distinct. It is noted that more accurate source location results were 

achieved when the source was located at the centerline of the rectangular grids of the 

sensors; for example between sensors 1, 2, 3 and 4. This is attributed to the waves having 

almost identical propagation distances along the paths to the sensors.   

Table 3.4 shows the number of hits remaining after applying each of the approaches  

(C1 - C4 and D-A/R-A) on AE data generated due to all PLBs as well as their percentage 

from the raw unfiltered data (which includes 41,254 signals: 6,300 target signals and 

34,954 degraded signals). Data reduction achieved with the C1 - C4 criteria is significantly 

higher than that achieved using the D-A/R-A filters, as shown in Table 3.4. This data 

reduction may significantly decrease the cost of further analysis of the data.  

Table 3.3 Data rejection limits for D-A/R-A filters. 

D-A filters R-A filters 

Amplitude (dB) Duration (µs) Amplitude (dB) 
Rise time (µs) 

40-55 >1,500 40-45 
>300 

56-60 >5,000 46-50 
>400 

61-70 >7,500 51-60 
>500 

71-80 > 11,000 61-100 
>700 

81-100 >13,000  
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Figure 3.12 Source location results of (a) unfiltered data, (b) filtered data using D-

A/R-A filters, and (c) filtered data using normalized average distance (C2) filter. 

Table 3.4 Number of hits remaining after applying data filters and its percentage 

from raw data  

 
Raw 

data 
D-A/R-A C1 C2 C3 C4 

Number of hits 

remaining (after 

filtering) 

41,254 31,445 6,793 6,737 6,605 7,445 

Filtered/unfiltered 

hits (percentage) 
100% 76.2% 16.4% 16.3% 16.0% 18.0% 

 

For further comparison of the two filtering approaches, a data set of signals due to 

the 42 PLBs applied at the centerline of the beam specimen (2,490 mm [98 in.] from the 

left edge of the specimen) was filtered using both methods. This data set included 420 

target signals and 2,787 degraded signals. A confusion matrix showing actual data 

classification and that classified by different filters is shown in Table 3.5 for D-A/R-A 

filters and in Table 3.6 for the wavelet based filtering approach. Both filtering methods 

correctly classified most of the target signals as shown in the tables. However, in the case 

(a) 

(b) (c) 

Centerline

Centerline Centerline



 

59 

 

of D-A/R-A filters 74% of the degraded signals were incorrectly classified as target signals 

(false positive) which lowered the efficiency of the filters as a data reduction method. The 

wavelet based filters (criteria C1 – C4) generated better results, where less than 1.5% of 

the degraded signals were misclassified as target signals as shown in Table 3.6. The data 

set was reduced to 14% of the unfiltered data as compared to 77% when the D-A/R-A 

filters were used. 

The accuracy of the filtering process using wavelet based filters and D-A/R-A 

filters was assessed based on a version of the confusion matrix that includes values 

presented in number of signals instead of percentages. The accuracy term is calculated as 

the summation of values in the matrix diagonal (true positive and true negative), divided 

by the summation of all values within the confusion matrix. A perfect result is obtained if 

the accuracy is equal to 1.0. The confusion matrices in Table 3.5 and Table 3.6 are 

presented in percentages (not values) to enable interpretation of the data. 

Since the number of degraded signals in the AE data set is usually much greater 

than the number of target signals, the accuracy should not be used as the only measure of 

performance. For example, in a data set of 1,000 signals having only 20 target signals, if 

the filters eliminated all degraded signals and kept half of the target signals, the accuracy 

will be 99% even though the filters rejected 50% of the data of interest. Another measure 

that is commonly used in cases involving a high proportion of unwanted signals in a data 

set is sensitivity or true positive rate, which is the percentage of positive cases (target 

signals) that are correctly identified. In our case, this is equal to the true positive cell (top-

left cell) in the confusion matrix as the matrix values are presented as percentages. 

Therefore, both accuracy and true positive rate are used for evaluation as shown in Table 



 

60 

 

3.7. The wavelet based filters (C1 - C4) offered improved performance in comparison to 

the D-A/R-A filters. 

Table 3.5 Confusion matrix for data collected due to PLBs at 

the centerline of the specimen classified by D-A/R-A filters. 

 
Classified by D-A/R-A 

Target signals Degraded signals 

Actual 

Target signals 

(420 signals) 
95.7% 4.3% 

Degraded signals 

(2,787 signals) 
74.1% 25.9% 

 

 

Table 3.6 Confusion matrix for data collected due to PLBs at the centerline of the 

specimen classified by proposed filters. 

 Classified by 

C1 (%) 

Classified by 

C2 (%) 

Classified by 

C3 (%) 

Classified by 

C4 (%) 

TS  DS TS  DS TS  DS TS DS 

Actual TS* (420 

signals) 
98.3 1.7 98.3 1.7 98.3 1.7 98.3 1.7 

DS** (2,787  

signals) 
1.0 99.0 0.8 99.2 0.3 99.7 1.3 98.7 

*TS: Target signals; **DS: Degraded Signals 

 

Table 3.7 Accuracy and true positive rate for each filtering method. 

 D-A/R-A C1 C2 C3 C4 

Accuracy 0.350 0.990 0.991 0.995 0.987 

True positive rate 0.957 0.983 0.983 0.983 0.983 
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3.7 VERIFICATION OF PROPOSED APPROACH USING LOAD TEST DATA 

AE data of actual concrete cracking events collected during cyclic load testing 

(CLT) of a prestressed concrete beam (Figure 3.13), described in ElBatanouny et al.11, was 

used to examine the applicability of the proposed data reduction approach. The beam 

specimen is similar to that described in the experimental procedure section for the PLBs 

and was monitored using the same sensor type and layout. Data collected during the last 

load step in cycle 9, highlighted in red in Figure 3.14, was chosen for further analysis using 

the wavelet criteria (C1 - C4). This loading portion was selected as it is the last load step 

before the onset of visible cracking; thus, AE data related to micro-cracking is expected. 

D-A/R-A filters were developed based on detailed visual inspection of the collected 

waveforms in the previous study11, specifically for this specimen shape and loading 

protocol, to minimize data due to reflections. These D-A/R-A filters limits are considered 

in this paper for comparison; as they have demonstrated satisfactory source location results 

as seen in Figure 3.15. It is noted that the limits used for the D-A/R-A filters for the load 

test differ from those shown in Table 3.3, as those limits were developed for the specific 

case of PLB sources. The amplitude threshold was set to 40 dB for data acquisition and 60 

dB for waveform recording during the load test. ElBatanouny et al. employed an amplitude 

threshold filter of 60 dB prior to the D-A/R-A filters which will be included in the results 

described below for filtered data using D-A/R-A filters. The same amplitude filter is used 

in the wavelet based criteria as waveform data is needed to attain the wavelet transform. 

Table 3.8 shows the number of hits retained after applying each of the investigated data 

reduction methods on data collected during the last load step in cycle 9. As seen in the 
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table, the wavelet based criteria (C1 – C4) resulted in data reduction exceeding 90%, which 

is comparable to that achieved by D-A/R-A filters. 

 

Figure 3.13 Overview of the test setup. 

 

Figure 3.14 Load versus time for cyclic load test on a prestressed 

concrete beam. Data collected during the highlighted portion in cycle 

9 is investigated in this paper. 
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Figure 3.15 Visually detected cracks (plotted in black) superimposed with source 

location results (plotted as red dots) for acoustic emission data generated by load 

testing of prestressed concrete beam specimens: unfiltered data (above) and filtered 

data using D-A/R-A filter (below).11 Source: reprinted from ElBatanouny et al.11 with 

permission from Elsevier. 

Table 3.8 Number of hits remaining after applying investigated filters on data 

collected during the last load step of cycle 9. 

 
Raw 

data 

Data remaining after filtering 

D-A/R-A C1 C2 C3 C4 

Number of hits 44,023 3,652 3,065 3,299 2,863 4,292 

Percentage 

remaining 
100% 8.3% 7.0% 7.5% 6.5% 9.7% 

 

AE data of interest is related to plastic changes in the monitored material, which in 

concrete can be stated as the formation of micro-cracks. The relevancy of retained data to 

micro-cracking can be considered as a measure to assess the applicability of different 

filtering approaches. Following the hypothesis that micro-cracks are expected to expand 

and form visible cracks at higher loads, AE events that are in agreement with visible 

cracking, which forms after the micro-cracking events have been detected, are potentially 

related to genuine data. In other words, an assumption is made that the number of events 

located where visible cracks later form is related to the applicability of the filtering 

Unfiltered data

Filtered data
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approach. AE events are defined as local change in the material giving rise of AE activity 

that will cause multiple hits on different sensors, per ASTM E1316.8 

Figure 3.16 shows source location results of AE events detected during the last load 

step of cycle 9 as well as the visually detected cracks later observed at the highest load of 

cycle 11. AE events remaining after filtering with either the D-A/R-A filters or one of the 

wavelet based filters (C2) plotted close to the cracks that visually appeared afterwards; 

which suggests the correspondence of these events to micro-cracks. It is noted that more 

AE events were detected for the C2 filtered data (Figure 3.16c, 65 events) than that for the 

D-A/R-A filtered data (Figure 3.16b, 26 events) despite the lower number of hits (Table 

3.8). This indicates higher agreement between signals in the C2 filtered data set; as an event 

is only plotted if it is detected by four signals from four different sensors. The lower number 

of events associated with a higher number of hits, as observed for the D-A/R-A filtered 

data, can indicate loss of key information. 

Wavelet based filter C2 achieved high data reduction and good source location 

results, as did the D-A/R-A filters. However, the wavelet based filter C2 indicated a higher 

quality of data retained. In addition, the limits for the D-A/R-A filters were developed 

subjectively based on the AE expert analyzing the data. On the other hand, the limits for 

the wavelet based criteria C2 developed from PLB testing achieved good results when used 

on data collected during load testing of similar specimen and sensor layout. This suggests 

potential for further development of this approach as an objective filtering tool. Further 

investigation is recommended to verify the limits of the proposed criteria and to examine 

its effectiveness on different specimens in both laboratory and field settings.  
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Figure 3.16 Source location results of AE data collected during last load step of cycle 

9, superimposed on visually detected cracks. (a) Unfiltered data, (b) filtered data 

using D-A/R-A filters, and (c) filtered data using normalized average distance (C2) 

filter.  

In field applications, there is less control over possible sources of noise including 

wind with debris, rain, and hail. The wavelet based filtering approach described in this 

study appears to hold potential for field applications as it is suited for real-time filtering, 

thereby enhancing the efficiency of data storage and transfer, and potentially increasing the 

reliability of AE analysis. This is particularly true for the case of low level acoustic 

emission (acoustic emission monitoring of slow degradation mechanisms that produce few 

acoustic emission signals over long period of time) analysis.52 In this type of analysis, 

effective data reduction is crucial for detecting damage due to material degradation such 

as corrosion of steel in concrete or alkali-silica reaction damage at early stages.10, 53-55 

3.8 CONCLUSIONS 

A wavelet based approach for data reduction was developed and assessed for the 

case of controlled AE data that was generated by an artificial source. A realistically scaled 

and fabricated prestressed concrete beam served as a test specimen. The objective of the 

investigation was to assess the relative merits of the wavelet based approach when 

Centerline

Centerline Centerline

(a)

(b) (c)
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compared to more commonly used D-A/R-A filtering approaches for differentiation 

between induced target signals and degraded signals (noise).  Conclusions can be 

summarized as: 

1. Target signals from the artificial source (pencil lead breaks) have different 

characteristics in terms of high energy distribution in the time-frequency 

domain as compared to degraded signals (mainly reflections in this study). 

2. Data filters based on the wavelet transform were used to distinguish between 

induced target signals generated by PLBs and degraded signals. 

3. When applied to AE data due to PLBs, the developed wavelet based filters 

provided higher data reduction than the commonly used D-A/R-A filtering 

approach. The wavelet based approaches eliminated a significantly higher 

percentage of degraded signals and maintained a higher percentage of the 

signals in interest.   

4.  The applicability of one of the proposed filtering criteria was verified for AE 

data due to concrete cracking during load testing in a laboratory setting. The 

filters showed significant data reduction without affecting the key information 

related to material response.  

5. The use of the same filtering limits for the case of artificial source data and load 

testing data shows the potential of this approach to develop objective filters that 

can be used be less experienced users.  

The work described has been intentionally limited to the case of AE sources in a 

laboratory setting.  The proposed filtering approach should be investigated for filtering 

other sources of noise, including external sources in field environments such as rain and 
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hail. Further research is needed to verify the applicability of the proposed approach to low 

level acoustic emission associated with concrete material degradation, such as corrosion 

and alkali-silica reaction. 
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CHAPTER 4 

CLASSIFICATION OF ALKALI-SILICA REACTION DAMAGE USING 

ACOUSTIC EMISSION: A PROOF-OF-CONCEPT STUDY2

                                                 

2Abdelrahman, M., M. ElBatanouny, P. Ziehl, J. Fasl, C. Larosche, and J. Fraczek. 2015. 

Construction and Building Materials. V. 95: 406-413.  

Reprinted here with permission of publisher (Appendix C). 
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4.1 ABSTRACT 

Alkali-silica reaction (ASR) is a concrete degradation mechanism that generates 

internal cracks in concrete material as a result of volumetric expansion. This mechanism is 

currently affecting many structures throughout the United States, especially in Texas and 

the Pacific Northwest. In this study, an accelerated ASR test was implemented at the 

University of South Carolina Structures and Materials Laboratory on twelve specimens 

with dimensions of 3 x 3 x 11.25 in. (76 x 76 x 286 mm). The specimens were cast using 

reactive aggregate and mortar with a high alkali content and placed in a controlled 

environment with high humidity and temperature to accelerate the reaction, while being 

continuously monitored with acoustic emission. Length change measurements and 

petrographic examination were conducted periodically to serve as benchmarks for ASR 

damage detection. Micro-cracking associated with ASR damage was detected by AE and 

the rate of AE activity was correlated to the rate of ASR damage. An AE based Intensity 

Analysis chart that enables ASR damage classification in correlation with petrographic 

analysis was developed.  

4.2 INTRODUCTION 

Concrete degradation is one of the crucial issues that face infrastructure owners and 

the civil engineering community.  The heterogeneous nature and low tensile strength of 

concrete make it susceptible to cracking induced by service loads in addition to material 

degradation through various mechanisms including corrosion of reinforcement, sulfate 

attack, alkali-aggregate reaction (AAR), freeze-thaw cycling, leaching, radiation, elevated 

temperatures, salt crystallization, and microbiological attack [1]. Degradation of concrete 

often affects the safety and serviceability of structures which leads to economic losses and, 
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in some cases, catastrophic failures and fatalities. This has raised the need for advanced 

monitoring techniques to determine the current structural state of the concrete members 

and to assist in the evaluation of repairs.  

This study focuses on alkali-silica reaction (ASR) degradation, which is currently 

affecting many structures across the United States [2]. This degradation mechanism has 

gained more attention since the presence of ASR induced cracks in the Seabrook Nuclear 

Power Plant [3]. Figure 4.1 shows a map of states with ASR degradation and a photograph 

of ASR cracks in a highway bridge. ASR degradation is affected by material selection of 

the concrete matrix and initiates when certain types of reactive siliceous aggregates are 

combined with cement paste having high alkali content. The ASR mechanism requires as 

little as 80-percent relative humidity to occur and only permits a few mitigation techniques 

once the structure is in-service [4]. The reaction product is a gelatinous material that swells 

when moisture is absorbed and can cause expansion and cracking [5]. Figure 4.2 shows a 

schematic of the mechanism of ASR damage in concrete. 

(a) (b) 

Figure 4.1 (a) Map of states with ASR degradation [2], and (b) example of ASR 

induced cracks.  

SHRP C 343, 1993
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Figure 4.2 Mechanism of ASR damage in concrete 

[www.journal.hep.com.cn]. 

Currently ASR damage in field structures is evaluated through length change 

measurements, visual inspection of cracks, and/or concrete coring with subsequent 

petrographic examination [6]. Length change measurements can be inconsistent given the 

high precision required (in the micro-range) and their susceptibility to temperature 

changes. On the other hand, visual inspection is subjective and only detects damage after 

visual signs are apparent while the petrographic examination is a local, qualitative, and 

destructive method which may not be allowed in some structures, such as nuclear power 

plants. In addition, all the above methods, with exception to length change, are used for 

periodic inspection and are not suitable for continuous monitoring. Therefore, there is a 

need for a nondestructive evaluation/structural health monitoring (NDE/SHM) method to 

enable detection and monitoring of ASR degradation.   

Acoustic emission (AE) is a promising method for health monitoring of concrete 

structures which gained more attention in the last decade. AE is defined as transient stress 

waves produced by a sudden release of energy, such as crack formation or growth [7, 8]. 

The high sensitivity of the sensors, in the kHz range, enables it to detect cracks long before 

they are visible [9, 10]. This research effort is motivated by recent studies that show the 

ability of the method to detect other concrete degradation mechanisms, particular corrosion 

and cracking in reinforced and prestressed concrete specimens [11-17]. It is noted that a 
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previous study investigated the use of AE to detect ASR damage in cylindrical specimens 

[18]. The results of this study showed that AE can detect early cracking associated with 

ASR; however, the rate of AE activity plateaued at the end of the test.     

The study described herein examines the ability of AE to detect and classify ASR 

degradation. To achieve meaningful data within a reasonable period of time (one year), the 

laboratory test was intentionally accelerated in general conformance with ASTM C1293 

[19]. The test environment was carefully controlled to minimize variability and to maintain 

conformance with ASTM C1293. The specimens were continuously monitored using AE 

and two benchmark measurements for ASR degradation were used: discrete length change 

measurements to measure longitudinal expansion and petrographic examination (resulting 

in a damage rating index). The results of this study demonstrate the ability of AE to detect 

and assess the rate of ASR induced degradation in concrete structures. 

4.3 RESEARCH SIGNIFICANCE 

ASR degradation is currently affecting many structures in the United States 

including highway bridges and nuclear power plants (Figure 4.1). The excessive cracking 

associated with this degradation mechanism results in serviceability concerns which 

require repair or complete replacement of the affected structure. This study demonstrates 

the ability of AE, as a non-invasive SHM method, to detect and assess the extent of ASR 

damage. An algorithm for ASR damage classification was also developed, which can help 

infrastructure owners evaluate the current condition of the structure and assess the 

effectiveness of repairs.  
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4.4 EXPERIMENTAL PROGRAM  

4.4.1 Tests specimens 

An accelerated ASR test was designed to degrade the specimens in a reasonable 

time. The test program included twelve conditioned specimens and three control specimens 

(cast using nonreactive aggregate during an earlier study), all having dimensions 3 x 3 x 

11.25 inches (76 x 76 x 286 mm) similar to ASTM C1293 [19]. An alkalinity concentration 

of 5% Na2O(Eq) was used in the concrete mix of the ASR specimens, as opposed to the 

specified concentration of 1.25% in ASTM C1293. A highly reactive aggregate (Knife 

River) from Cheyenne, Wyoming was used in the ASR specimens. Table 4.1 and Table 4.2 

show the ASTM C1293 specifications and the concrete mix design used to cast the ASR 

specimens with a water/cement ratio of 0.48. The conditioned specimens were cast using 

two identical batches (six specimens per batch). The control specimens were cast with 

ordinary Portland cement and innocuous aggregates.  

All specimens were placed in a controlled environment with 100 ± 2˚F temperature 

and 100% relative humidity. An insulated chamber was constructed to control the 

temperature while sealed polypropylene containers, conforming to the specifications 

identified in section 5.2.2 of ASTM C1293, were used to achieve 100% relative humidity. 

Four containers were used with three specimens in each container (Figure 4.3).  

The duration of the test was one year. At ages of 14, 28, and 56 days, three 

specimens were removed for petrographic examination. The specimens are named in ‘XY-

Z’ format. ‘X’ specifies the type of specimen; S for ASR specimens and C for control 

specimen. ‘Y’ denotes the number of the specimen; specimens from batch one are 

numbered 1 through 6, while specimens from batch two are numbered 7 through 12. ‘Z’ 
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denotes the duration of conditioning in days. For example, S2-28 is an ASR specimen from 

batch one with 28 days of conditioning.   

Table 4.1 ASTM C1293 Specifications 

w/c ratio*= 0.45 

Cement content= 26.22 lb/ft3 

Volume of coarse aggregate per unit 

volume of concrete= 

0.70 

Alkali content**= 5.0% Na2Oeq 

*Based upon aggregate saturated surface dry conditions 

** Modified from ASTM C1293 (1.25% Na2Oeq) 

Table 4.2 Mix design 

Constituent Weight (lbs/cy) 

Cement 700 

Water 340 

Coarse Aggregate 1830 

Fine Aggregate 1100 

NaOH Admixture 40 

Total 4010 

 

 

Figure 4.3 Test setup. Controlled temperature chamber (left) 

and specimens placed in 100% relative humidity buckets (right). 
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4.4.2 Length Change measurements  

Length change measurements were taken at discrete intervals to quantify the degree 

of expansion. During the first two months of the test, the measurements were taken at 5, 

10, 14, 28, and 56 days of exposure. Additional readings were taken for the three specimens 

that continued the test for a period of one year. Length change measurements were 

compared to an initial reading at an age of 3 days (after conditioning). This was done to 

minimize the change in length due to thermal effects. Measurements were taken using a 

length comparator apparatus as specified in ASTM C157 [20]. However, the use of AE 

monitoring prohibited taking the measurements in strict conformance with Section 10.2.2 

of ASTM C1293 [19]. In particular, the specimens were not placed in a moist cabinet for 

16 hours in order to minimize the time of length change measurements, as AE data cannot 

be collected during this process. Rather, length change measurements were taken 

immediately after removing the specimens from the controlled environment and the 

specimens were kept moist with wet burlap after the reading was taken. Figure 4.4(a) shows 

a photograph of a specimen in the length comparator apparatus. 

 

 (a) (b) 

Figure 4.4 (a) Comparator length change 

measurements, and (b) photograph of 

specimens with AE sensors installed. 
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4.4.3 Petrographic examination 

Petrographic examination is a destructive testing method that can assess damage in 

concrete by visual inspection of concrete slices, usually extracted from concrete cores, 

under a microscope [21]. Petrographic examination was conducted at the Wiss, Janney, 

Elstner Associates, Inc., Austin office (WJE-Austin) using the Damage Rating Index (DRI) 

procedure. This method is used in Europe and Canada to semi-quantitatively define distress 

in concrete due to ASR. The Federal Highway Administration (FHWA) references this 

procedure in their published manual on concrete petrography [6]. DRI is estimated by 

measuring certain features and multiplying each of them by a correspondent weighting 

factor. There are many versions of the DRI method, differing mainly in the assignment of 

weighting factors. WJE has modified the method to include deterioration in the fine 

aggregate in the rating index. The modified distress features and the corresponding 

weighting factors, adopted from FHWA, are shown in Table 4.3.  

Table 4.3 ASR Damage Rating Index (DRI) Features and Weighting Factors 

Distress Feature Weighting Factor 

Cracks in either coarse or fine aggregate (CAgg) 0.25 

Cracks and gel in coarse or fine aggregate (C+GAgg) 2.0 

Aggregate debonded (DAgg) 3.0 

Reaction rims around aggregate (RR) 0.5 

Cracks in cement paste (CCP) 2.0 

Cracks and gel in cement paste (C+GCP) 4.0 

Air voids with gel (GAV) 0.5 
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The samples were prepared as for a typical petrographic examination, including 

curing and lapping. After the samples are lapped, the following two steps were taken:  

 A 0.156 in2 (1-cm square) transparency grid was overlaid on the lapped concrete 

surface. The transparency was trimmed to the size of the sample and securely 

taped to the concrete so that it will not move during examination.  

 The stereomicroscope was set to a magnification of 16X and a ring light was 

used to achieve uniform lighting. The magnification was adjusted as necessary 

to better assess the distress; however, all DRI measurements were done at 16X 

for consistency.   

The DRI was then calculated by moving across the sample and tallying each 

occurrence of each feature in each 0.156 in2 (1-cm square) and multiplying the tally for 

each feature with its weighting factor. A final DRI value is then obtained by averaging the 

results of all the 0.156 in2 (1-cm square) examined and multiplying by 100.  

4.4.4 Acoustic emission 

AE is defined as transient stress waves emitted from sudden release of energy, such 

as crack initiation or growth [8]. Each AE signal is called a ‘hit’ and is associated with a 

waveform that can be used to calculate different parameters such as amplitude, duration, 

rise time, absolute energy, and signal strength, along with different frequency parameters. 

Two types of sensors were used to monitor AE activity in the specimens. One 55 kHz 

resonant AE sensor having 40 dB integral pre-amplification (R6I) was used on each 

specimen and placed at the mid-length of the specimen. Four of the specimens were also 

instrumented with a broadband AE sensor (WDI). This study only focuses on the data 
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collected from the resonant sensors. Data collection threshold was set for amplitude of 40 

dB. 

A two part epoxy was used to attach the sensors to the surface of each specimen as 

shown in Figure 4.4(b). Due to the high temperature and humidity, the coupling between 

the sensors and some of the specimens was weakened. Therefore, after two weeks of 

exposure, a two part epoxy manufactured specifically for these conditions was used to re-

attach the sensors. AE data was recorded continuously during the test except for the short 

pauses when length change measurements were taken.   

4.5 RESULTS 

4.5.1 AE Data Filters 

Development of robust data filters is an essential step for AE data analysis to ensure 

minimizing of non-relevant data. A pre-test was conducted to check for ‘noise’ by placing 

AE sensors on control specimens in the environmental chamber. This test showed a 

minimal presence of mechanical and electrical noise. This test was also used to determine 

front end filters of hit definition time (HDT: enables determination of the end of the hit and 

closes out the measurement processes), and hit lockout time (HLT: inhibits the 

measurement of signals after the hit is stored to avoid measuring reflections) of 200 and 

800 microseconds, respectively. However, elimination of false data using only front end 

filters is not possible; therefore, post-processing filters are also needed. 

For the ASR test, the main source of noise in the AE data is from wave reflections, 

which is the primary concern in small scale specimens where the AE waves reflect from 

the specimen’s boundaries and do not attenuate within their small travel distance. 
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Therefore, an extensive filtering plan was adopted using different parameter based data 

filters.  

The first filter used is a duration-amplitude filter (D-A), also known as a Swansong 

II filter [9, 15, 22-25]. This filter is based on the fact that genuine AE hits with long 

durations are associated with high amplitudes and vice versa. The limits of the filter were 

determined through visual inspection of AE waveforms. The second filter is a rise time-

amplitude (R-A) filter and it follows the same logic as the D-A filter. The data limits for 

D-A and R-A filters are shown in Table 4.4. 

The third filter rejects data with a signal strength that exceeds 10,000,000 pVs 

(pico-volts second). Filter four is based on the relation between counts and amplitude, and 

it rejects data with low counts (less than 2) and amplitude exceeding 50 dB. The last two 

filters are frequency based and depend upon the operational frequency range of the sensor 

and the characteristics of acoustic emission in concrete. The first frequency based filter 

rejects data with average frequency not between 10 and 200 kHz while the second 

frequency filter rejects data with peak frequency less than 20 kHz. The limits of all 

described filters were based on in-depth inspection of AE waveforms.  

Figure 4.5 shows the filtered data for a control specimen (C1-365) and ASR 

specimen (S10-365), both were placed in the controlled environment for one year. As seen 

in the figure, minimal activity was measured in the control specimen as compared to the 

ASR specimen. The total number of hits detected in the control specimen is 117 hits while 

14,295 hits were detected in the ASR specimen. This indicates that the developed filters 

are effective and can eliminate the majority of noise collected during the test. In addition, 

the majority of the hits collected from the control specimen took place at the beginning of 
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their exposure (14 days after exposing the ASR specimens) and, therefore, can be attributed 

to the high relative humidity and temperature in the controlled environment which may 

lead to minor cracking in the concrete. A photograph of both specimens is shown in Figure 

4.6. 

Table 4.4 Data rejection limits for D-A and R-A filters 

D-A filter R-A filter 

Rejection limits Rejection limits Rejection limits 

Amp (dB) Duration 

(µs) 

Amp (dB) Duration 

(µs) 

Amp (dB) Rise time (µs) 

40-44 400 66-70 1,500 40-50 100 

45-48 500 71-75 2,500 51-60 200 

49-52 600 76-80 3,500 61-70 300 

53-56 700 81-95 5,000 71-100 400 

57-60 800 96-100 10,000 ----- ----- 

61-65 1,000 ----- ----- ----- ----- 

 

 

Figure 4.5 AE activity from control (C1-365) and ASR specimen (S10-365), CSS refers 

to cumulative signal strength of AE hits. 
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Figure 4.6 Photograph of control specimen (C1-365, left) and ASR specimen (S10-

365, right) after 365 days of exposure.   

4.5.2 AE versus Length Change measurements 

The results of AE cumulative signal strength (CSS) and length change 

measurements for all the conditioned specimens are shown in Figure 4.7. As seen in the 

figure, AE activity increases with the increase of the duration of exposure which shows the 

ability of the method to assess the rate of ASR damage. In addition, CSS continued to 

increase for the specimens that were conditioned for one year which proves that the sensors 

can detect generation of micro-cracks with progression of ASR damage, regardless of the 

attenuation caused by such cracks.  

Figure 4.7 also shows that length change measurements increase with the increase 

of duration of exposure, which agrees with the results of AE activity. The maximum length 

change was measured in specimen S10-365 with a value 0.044%. The ASTM C1293 

prescribes a 0.04% expansion after one year of testing as the threshold for identifying an 

aggregate as potentially susceptible to deleterious ASR expansion. Therefore, this 

measurement indicates that the aggregates used in the study are reactive which agrees with: 

a) the known reactivity of the type of aggregates used, and b) the petrographic analysis 

results which showed ASR damage as presented in the next section. 
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Figure 4.7 AE and length change measurement versus time for all the specimens (S5-

365 CSS=6.48e7 pVs). 
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The correlation coefficient of the results shown in Figure 4.7, length change 

measurements and CSS, was calculated as 0.81; which indicates a linear correlation 

between the two variables. This result shows that AE activity can be used to determine the 

rate of expansion associated with ASR damage and, therefore, may offer a useful tool for 

the detection and eventual quantification of this degradation mechanism.    

4.5.3 Petrographic examination 

The results of petrographic examination of six specimens (conducted after 14, 28, 

and 56 days; two specimens at each) are shown in Figure 4.8. The least DRI value was 

obtained from a specimen conditioned for 14 days while the highest value was obtained 

from a specimen condition for 56 days. It can also be seen that the average DRI value, for 

each exposure duration, increases with the increase in duration. For the tested specimens, 

the main ASR damage features were cracking of the cement paste, cracks with gel in the 

cement paste, formation of gel in air voids, and cracking of the aggregates. 

Table 4.5 shows length change results and DRI results for six specimens. It can be 

seen that some variability exists between the results of both methods for different 

specimens. This can be attributed to the qualitative nature of the DRI measurements and 

the high precision needed to measure the length change (differences in the comparator tool 

measurements are in terms of micrometers).  
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Figure 4.8 DRI measurements for six specimens. 

Table 4.5 Length change, DRI and AE results 

Specimen Duration 

(days) 

Length 

change* (%) 

DRI Historic 

index 

Severity (pVs) 

S7-14 14 0.006 91.0 1.5142 1.38E+04 

S8-14 0.009 67.2 1 1.40E+03** 

S2-28 28 0.018 96.1 1.7075 2.68E+04 

S11-28 0.017 105.0 2.9828 4.89E+04 

S6-56 56 0.018 105.1 2.1676 9.13E+04 

S9-56 0.014 152.0 3.2464 2.15E+05 

*Measured at the end of the exposure duration. 

**Average of signal strength from available hits as number of hits was less than 50. 

4.5.4 ASR damage quantification using AE 

AE Intensity Analysis (IA) was used to classify ASR damage. This approach was 

developed by Fowler et al. 1989 [23] to assess damage in fiber reinforced polymer vessels. 

The technique is listed in an ASTM standard for detection of damage in Fiberglass 

Reinforced Plastic Resin (FRP) Tanks/Vessels [26]. IA has been used to detect damage in 
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prestressed concrete structures during load tests [9, 27] and recently to classify corrosion 

damage in prestressing strands [14]. The method uses the signal strength to calculate two 

parameters: historic index and severity. Historic index, H(t), is a form of trend analysis that 

estimates the change of slope of CSS with respect to time while severity, Sr, is the average 

signal strength of the largest 50 hits. Historic index and severity can be calculated using 

Equation 4.1 and Equation 4.2 where: N is number of hits up to time (t), Soi is the signal 

strength of the i-th event, and K is an empirically derived factor that varies with the number 

of hits. In this study, the value of K was selected to be: a) N/A if N≤50, b) K=N-30 if 

51≤N≤200, c) K=0.85N if 201≤N≤500, and d) K=N-75 if N≥501 [28]. 

H(t)= 
N

N-K

∑ Soi
 N
 i=K+1

∑ Soi
  N
 i=1

        (4.1) 

Sr= 
1

50
∑ Soi

i=50
i=1         (4.2) 

IA chart is obtained by plotting the maximum severity and historic index acquired 

for each specimen during the test where the points plotted towards the top-right corner of 

the figure indicates more damage. Figure 4.9 shows the IA and DRI results for six 

specimens (only six specimens had DRI measurements). The specimen with the least DRI 

damage plotted in the bottom-left corner of the figure. As DRI measurements increase, IA 

data points trend towards the top-right corner of the figure indicating that more damage is 

occurring. Based on DRI results, the chart can be divided in three regions: A-No damage; 

B-Minor damage; and C-Moderate damage. No heavy damage was observed from 

available DRI results. It is noted that the specimens conditioned for 365 days are still in 

testing and have the highest IA results, except for S3-365. This indicates that more damage 

has occurred in these specimens, which is reasonable given their longer duration of 

exposure.   
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From Table 4.5, the correlation coefficient between the DRI measurements and 

historic index was calculated as 0.88 while the correlation coefficient between the DRI 

measurements and severity was found to be 0.95. These results show that DRI 

measurements have a stronger linear correlation with AE activity as compared to the length 

change measurements. It also validates the established relation between AE activity and 

DRI measurements as shown in Figure 4.9. 

 

Figure 4.9 ASR classification chart, Intensity Analysis and DRI results. 

4.6 SUMMARY AND CONCLUSIONS 

This study reports the results of acoustic emission monitoring for detection of ASR 

degradation in laboratory concrete specimens. AE activity as a result of ASR damage is 

compared to two standard ASR diagnostic measurements: length change and petrographic 

examination. Unlike the used ASR benchmarks, AE is a truly non-invasive technique 

which eliminates or limits the need for taking core samples for petrographic examination, 

which may be prohibited in some structures such as nuclear power plants. In addition, the 

method is virtually immune to changes in environmental conditions such as relative 
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humidity and temperature while measurements of length change should be corrected for 

such variations to avoid errors. The availability of self-powered and wireless AE equipment 

gives this technique additional advantage especially for purposes of long-term assessment 

and monitoring of ASR damage. The findings of this study can be summarized as follows: 

 Acoustic emission can detect ASR damage. Continual AE activity was recorded 

from the specimens conditioned for one year, which shows that formation of 

micro-cracks and ASR by-products do not inhibit collection of AE data.  

 The rate of AE activity can be related to the rate of ASR degradation as shown 

by the linear correlation between AE measurements and the used ASR 

benchmarks. This can help evaluate the efficiency of ASR mitigation strategies 

by comparing the rate of AE activity before and after the repair for a prescribed 

duration. 

 An acoustic emission Intensity Analysis chart for ASR damage classification 

was proposed by correlating AE results with petrographic examination (DRI 

measurements). This chart can be used for health monitoring to enable proper 

identification of the extent of ASR damage. More data is needed to validate the 

proposed limits and extend the chart to include heavy ASR damage.   

It is noted that immediate applications of the proposed method include verification 

of reactivity of aggregate/concrete mixture in conjunction with ASTM C1293 and 

assessment of repair techniques by comparing AE activity of active ASR specimens before 

and after repair. Future studies should investigate implementation of this method in field 

conditions where dimensions of the structures are different than the laboratory specimens. 

Environmental conditions in the field (such as rain or windborne debris) may result in noise 
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in the AE data set; therefore, the limits of the proposed filters should also be tested. 

Previous experience of the authors indicates that proper filters could be developed for these 

conditions; however, this is beyond the scope of the current work.   

Acoustic emission is a structural monitoring and assessment method, and therefore 

it is necessary to collect data over an extended period of time such as 20 days or more for 

ASR damage, depending on the application, to enable proper analysis of the data.  This has 

recently become more feasible due to the commercial availability of self-powered and 

wireless acoustic emission monitoring systems. 
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CHAPTER 5 

REMOTE MONITORING AND EVALUATION OF DAMAGE AT A 

DECOMMISSIONED NUCLEAR FACILITY USING ACOUSTIC 

EMISSION3

                                                 

3Abdelrahman, M., M. ElBatanouny, K. Dixon, M. Serrato and P. Ziehl. To be submitted 

to Journal of Performance of Constructed Facilities.  
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5.1 ABSTRACT 

Reinforced concrete systems used in the construction of nuclear reactor buildings, 

spent fuel pools, and related nuclear facilities are subject to degradation over the long term. 

Corrosion of steel reinforcement and thermal cracking are potential degradation 

mechanisms that adversely affect durability. Remote monitoring of such degradation can 

be used to enable informed decision making for facility maintenance operations and 

projecting remaining service life. Acoustic emission (AE) monitoring has been 

successfully employed for the detection and evaluation of damage related to cracking and 

material degradation in laboratory settings. This paper describes the use of AE sensing 

systems for remote monitoring of active corrosion regions in a decommissioned reactor 

facility for a period of approximately one year. In parallel, a representative block was cut 

from a wall at a similar nuclear facility and monitored during an accelerated corrosion test 

in the laboratory. Electrochemical measurements were recorded periodically during the test 

to correlate AE activity to quantifiable corrosion measurements and to allow for service 

life prediction. The results of both investigations demonstrate the feasibility of using AE 

for corrosion damage detection and classification as well as its potential as a remote 

monitoring technique for structural condition assessment and prognosis of aging structures. 

5.2 INTRODUCTION  

The vast presence of aging infrastructure throughout the nation, including 

transportation and energy-related infrastructure, has raised concerns regarding the level of 

service, reliability and vulnerability to natural disasters. The American Society of Civil 

Engineers (ASCE) latest Report Card stated a grade of “D+” for US infrastructure and an 

estimated investment of $3.6 trillion needed by 2020 for upkeep. One of the major 
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challenges facing decision makers is resource allocation which is dependent on available 

information related to the current state of each structure. Reliable monitoring techniques 

that can effectively assess the structural condition are needed to evaluate the robustness of 

such structures and the urgency of any repair, replacement or maintenance activities.  

Monitoring nuclear facilities, in particular, is of special interest due to safety 

considerations and the relatively long half-life of nuclear waste products. Reinforced 

concrete elements are used to construct several portions of nuclear facilities. Potential 

degradation mechanisms of reinforced concrete (Clifton 1991) include corrosion of 

reinforcement (Mangual et al., 2013a and b; ElBatanouny et al., 2014a; and Abdelrahman 

et al., 2016), alkali-silica reaction (Fournier et al., 2010; Abdelrahman et al., 2015; 

Abdelrahman et al., 2016), freeze-thaw cycling, sulfate attack, deformation mechanisms 

including creep and shrinkage, stresses due to structural constraint combined with seasonal 

effects such as thermal cycling and precipitation, and extreme events (Braverman et al., 

2007; Kojima, 2009; Abdelrahman et al., 2014).  

Advances in computing and data transfer over the last several decades have allowed 

for the development of wireless systems and remote monitoring. Acoustic emission (AE) 

is one emerging monitoring method that has proven potential for early damage detection 

through laboratory and field applications (Ono, 2010; Golaski, 2002). As a passive 

piezoelectric sensing technique, acoustic emission is able to detect stress waves (in the kHz 

range) emitted from sudden releases of energy such as cracking of the concrete matrix 

(ASTM E1316, 2016; Pollock, 1986). The method is suitable for real-time monitoring over 

the long term, and its high sensitivity enables it to detect active cracks long before they 

become visible (micro-cracking). 
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Corrosion of reinforcing steel is a degradation mechanism that affects the durability 

of concrete structures. The cracking of the concrete matrix associated with corrosion 

damage makes acoustic emission a well-suited method for monitoring its progression. 

Early investigations related to acoustic emission monitoring of corrosion damage in 

reinforced concrete date back to the 1980s (Weng et al., 1982; Dunn et al., 1983; Zdunek 

et al., 1995). Several investigations demonstrated the potential of utilizing AE for this 

degradation mechanism (Li et al., 1998; Assouli and Idrissi, 2005; Ohtsu and Tomoda, 

2008; James, 2003). However, the quantification of damage was not fully resolved. 

Quantification of corrosion damage in reinforced concrete structures has been more 

recently addressed in a series of publications using accelerated corrosion results in 

laboratory settings (Di Benedetti et al., 2013; Mangual et al., 2013a; Mangual et al., 2013b) 

as well as natural corrosion tests (ElBatanouny et al., 2014a; Velez et al., 2015; Appalla et 

al., 2015). 

This study investigates the applicability of deploying acoustic emission for the 

remote monitoring of selected areas at the Savannah River Site (SRS) 105-C Reactor 

Facility, Aiken, South Carolina (Figure 5.1). This is an inactive nuclear facility under 

surveillance and maintenance operations as well as deactivation and decommissioning 

operations. AE monitoring was conducted at areas known to have active corrosion damage 

and/or visible cracking. This allows for examining the applicability of previously 

developed AE methods for corrosion damage detection and classification.  

To aid in the development of damage algorithms and to provide a more controlled 

study, an aged reinforced concrete block specimen cut from a similar reactor facility was 

maintained and monitored in the University of South Carolina Structures and Materials 
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Laboratory for the majority of the project duration. This specimen was subjected to wet/dry 

cycling to accelerate the corrosion process. Electrochemical measurements were 

periodically recorded, whereas acoustic emission was monitored continuously.  

The activities undertaken and reported in this study represent a step toward the 

development of an acoustic emission based approach for assessment of reinforced concrete 

structural systems through remote monitoring.  

 
Figure 5.1 Reactor building 105-C at 

the Savannah River Site. 

The study is divided into two main activities: 1) Remote acoustic emission 

monitoring and analysis of data collected at the 105-C Reactor Facility, and 2) Accelerated 

corrosion testing to assess corrosion damage within an aged reinforced concrete block 

supplied by SRNS at the University of South Carolina Structures and Materials laboratory. 

5.3 EXPERIMENTAL PROGRAM: AE MONITORING AT THE 105-C 

REACTOR FACILITY 

5.3.1 Acoustic Emission Sensing Systems  

Two separate AE systems were utilized for remote monitoring at the 105-C Reactor 

Facility. These systems are referred to as a ‘wired’ AE system, and a ‘wireless’ AE system. 

All acoustic emission system components and software were manufactured by Mistras 

Group, Inc. of Princeton Junction, New Jersey. The wired system utilized both R6I (peak 



 

104 

 

resonance near 55 kHz) and WDI (relatively broadband) sensor types (calibration sheets 

for both sensor types are available in the manufacturer’s website). Both sensor types utilize 

integral pre-amplifiers within the stainless steel sensor housing. The resonant sensors are 

more sensitive to damage in reinforced concrete structures than the broadband sensors. 

However, the broadband sensors provide higher fidelity frequency data which can be useful 

for data reduction and interpretation. The sensors were connected to a 16-channel DiSP 

acoustic emission data acquisition system which utilizes four high speed data acquisition 

boards specifically designed and manufactured for the acquisition and processing of 

acoustic emission data as well as specialized software (AEWin).   

The wireless acoustic emission system (type 1284), includes 4-channels and utilizes 

low power PK6I acoustic emission sensors. These sensors are resonant in the vicinity of 

55 kHz and utilize integrated preamplifiers within the stainless steel housing. The sensors 

were connected to the 1284 system, where preliminary processing of the data is performed. 

The data is transmitted through an antenna and received through a base station module that 

is connected to a conventional laptop computer. Specialized wireless acoustic emission 

software (AEWin for Wireless) is used for controlling the data acquisition. This system 

was powered through solar panels connected to 12V DC batteries.  

5.3.2 Installation of Acoustic Emission Systems  

Prior to installation at the Savannah River Site (SRS), the consistency of the sensor 

readings was checked using pencil lead breaks on an acrylic rod (ASTM E 2075, 2015; 

ASTM E 2374, 2015). Six pencil lead breaks were performed for each sensor. Appropriate 

sensor response was demonstrated as the average amplitude response of a sensor type was 

within ± 6 dB of the average amplitude of the sensor group. A threshold of 40 dB was used 
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for data collection. An analog filter was used to collect signals with frequency between 1 

kHz and 1 MHz. The waveform sampling rate was 1 million samples per second (MSPS) 

with 256 micro-seconds pre-trigger and 1 kilobyte length. Peak definition time (PDT), hit 

definition time (HDT) and hit lock-out time (HLT) were set to 200, 400, and 200 micro-

seconds, respectively. Each AE system was connected to a cellular modem to allow for 

remote monitoring, and each system was remotely controlled though appropriate software. 

This allowed for altering system settings and saving of data at the University of South 

Carolina.  

Crane Maintenance Area: The wired AE system was installed to monitor the 

activity in this area of building 105-C with ten sensors; five resonant sensors (type R6I) 

and five broadband sensors (type WDI). The sensors were installed at three different 

locations. The first location was near a column to roof interface (referred to as the ‘vertical 

column to roof interface location’). This area had been visually assessed by Savannah River 

Nuclear Solutions/Savannah River National Laboratory (SRNS/SRNL) personnel and is 

known to have deteriorated in comparison to the majority of the structural system 

comprising the 105-C reactor building. Spalling has occurred in this area in the recent past 

and ongoing corrosion activity is suspected. The area has undergone at least one repair 

activity in the past. A total of six sensors (three resonant and three broadband) were 

installed at this location as shown in Figure 5.2. The locations of the sensors were chosen 

to be near exposed reinforcing bars showing visual signs of corrosion damage. The 

locations of the sensors with respect to the red dot shown in Figure 5.2 are provided in 

Table 5.1.  
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The second location was chosen on a horizontal beam that forms the connection 

with the previously described column (referred to as the ‘horizontal beam location’). Two 

sensors (one resonant and one broadband) were installed at a distance of twelve inches 

below the beam to roof interface where signs of deterioration were visually observed 

(Figure 5.3a). The spacing between the sensors was six inches. The third location was 

chosen at an area where no signs of damage were observed (referred to as the ‘control 

location’). Two sensors (one resonant and one broadband) were installed at this location as 

shown in Figure 5.3b. The horizontal distance between the two sensors is six inches. The 

data collected from the control location was used to evaluate the effectiveness of data 

reduction approaches.  

Table 5.1 Location of sensors shown in Figure 5.2. 

Sensor type - channel Horizontal dimension (in.) Vertical dimension (in.) 

WDI-9 0 -10.5* 

R6I-10 8.5 16 

R6I-11 5.5 9 

WDI-12 11 5.5 

R6I-13 14.5 16 

WDI-14 15.5 8.5 

*Positive dimension indicates below the red dot shown in Figure 5.2.  Negative dimension 

indicates above the red dot shown in Figure 5.2. 
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Figure 5.2 Photographs of the crane maintenance area: 

(a) main sensor grid, (b) close-up of sensor on side of 

column, and (c) view of main grid from floor level (red 

dot is at corner). 

 

Figure 5.3 Photograph of: (a) horizontal beam location, 

and (b) control location. 

+48 Level: The wireless AE system was installed at the +48 level to monitor a 

vertical crack that may penetrate an exterior wall, as shown in Figure 5.4, using four 

resonant sensors (type PK6I). Sensor layout and spacing is also shown in the figure. 

a b

a b
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Figure 5.4 Photographs at +48 level: (a) sensor grid from 

interior, and (b) vertical crack from exterior. 

5.4 RESULTS AND DISCUSSION: AE MONITORING AT THE 105-C 

REACTOR FACILITY 

5.4.1 Remote Monitoring at Crane Maintenance Area   

Remote monitoring at the Crane Maintenance Location was performed from 

September 10, 2014 (commencement of test) through August 25, 2015. A cellular 

connection was utilized to remotely operate the wired system. Data loss due to power 

outage at the system occurred between December 18, 2014 and January 20, 2015. The raw 

data was analyzed and appropriate filters were used to reject data arising from signals not 

related to initiation or growth of cracks, such as wave reflections. The filters are primarily 

parameter based filters that were developed based on visual inspection of AE waveforms, 

similar to those described in ElBatanouny et al. (2014a). The first is a Duration-Amplitude 

filter (D-A), also referred to as a Swansong II type filter, while the second is a Rise time-

Amplitude filter (R-A) as described in Table 5.2. Additional filters, Duration and RMS 

filters, were developed during this study to minimize electrical noise. The additional filters 

were developed based on data collected from the concrete block discussed in the following 

sections.  
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Table 5.2 Data rejection limits. 

D-A filter R-A filter 
Duration RMS filter (V) 

Amp (dB) Duration (µs) Amp (dB) Rise time (µs) 

45-50 > 500 45-50 > 40 ≤ 100 µs 0.0019-0.0041 

51-55 > 1000 51-65 > 100 ----- ----- 

56-65 > 2000 66-100 > 150 ----- ----- 

66-75 > 3000 ----- ----- ----- ----- 

76-100 > 4000 ----- ----- ----- ----- 

 

Figures 5.5 and 5.6 show the AE activity detected at the three monitored locations 

in the crane maintenance area for the resonant and broadband sensors, respectively. As 

shown in the figures, AE activity at the locations associated with visually observable 

damage (‘vertical column to roof interface location’ and ‘horizontal beam location’) was 

significantly higher than the AE activity at the control location. This indicates that the 

filters used were suitable for this application and also that intrinsic noise such as that 

potentially caused by electro-magnetic interference is not an obstacle for this application. 

The relatively high levels of AE activity indicate that damage (corrosion and related 

cracking) associated with aging of reinforced concrete is progressing at the vertical column 

to roof interface and horizontal beam locations.   
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Figure 5.5 Amplitude and temperature versus time for resonant sensors: 

(a) vertical column to roof interface location, (b) horizontal beam 

location, and (c) control location, and (d) rain versus time. 
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Figure 5.6 Amplitude and temperature versus time for broadband sensors: 

(a) vertical column to roof interface location, (b) horizontal beam location, 

and (c) control location, and (d) rain versus time. 
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Rain and temperature data were provided by SRNL to investigate the effect of 

environmental conditions on AE activity. Seasonal temperature fluctuations affected the 

data more significantly than daily temperature fluctuations. This may be attributed to the 

low coefficient of thermal expansion of concrete, causing volumetric changes to be 

associated with prolonged exposure to temperature differentials. As a general statement, 

increased AE activity was recorded when temperatures decreased during the winter 

months. Rain events were not as closely correlated to AE activity as were temperature 

fluctuations. However, associated moisture and repeated wet/dry cycling from rain events 

may lead to acceleration of the degradation process. During one of the site visits, remnants 

of a crack sealing material were found on the floor of the 105-C building, indicating one 

potential source of moisture intrusion in this area.  

The wired AE system was inactive between December 18, 2014 and January 20, 

2015 due to moisture related event that adversely affected the laptop. Sensors 

corresponding to channels 9 and 11 (both at the vertical column to roof interface location) 

detached from concrete surface on November 27, 2014 and November 23, 2014, 

respectively. Localized spalling that occurred at these locations during this time period is 

presumed to be the cause of the detachment. Both sensors were reattached on April 8, 2015.  

Three seismic events occurred during the monitoring period: September 14, 2014 

(M2.2); September 19, 2014 (M2.6); and May 22, 2015 (M1.96). Close inspection of data 

collected during this period did not reveal a correlation between these events and the AE 

data. Referring to the definition of acoustic emission (transient stress waves caused by a 

rapid release of energy within a material, ASTM E 1316c, 2013), AE sensors would 

potentially be capable of detecting crack growth events caused by a seismic event provided 
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the crack growth event or events occurred within the range of sensitivity of the sensors. In 

the application at 105-C, the range of sensitivity for minor crack growth events (similar in 

energy to that caused by a pencil lead break) is in the range of three to ten feet from each 

sensor. Due to the frequency range of AE sensors (30 kHz to 300 kHz), the sensors are not 

sensitive to global structural vibrations such as those potentially related to seismic activity. 

5.4.2 Evaluation of Data at Crane Maintenance Area   

Figure 5.7a and Figure 5.7b show the cumulative signal strength (abbreviated as 

CSS) at each monitored location for resonant and broadband sensors, respectively. Signal 

strength of an AE hit is a measure of the area under the recorded signal envelope 

(sometimes referred to as MARSE, Measured Area under the Rectified Signal Envelope) 

(ASTM E 1316c, 2013). Higher levels of signal strength are associated with higher levels 

of energy release due to crack growth events.  

While the signal strength of an AE hit is related to the intensity of damage growth 

at a particular instant in time, cumulative signal strength is related to increases in damage 

growth rates over a particular testing period. Rapid increases in the cumulative signal 

strength curve are related to rapid increases in damage growth. The relationship between 

rapid changes in the cumulative signal strength curve and damage growth has been utilized 

to assess damage in different structural systems (Fowler et al., 1989) including reinforced 

concrete bridges (Golaski et al., 2002) and corrosion damage in reinforced concrete 

laboratory specimens (Mangual et al., 2013a and 2013b).         



 

114 

 

 

Figure 5.7 Cumulative signal strength (CSS) of: (a) resonant sensor, 

and (b) broadband sensors. 

In both Figure 5.7a and Figure 5.7b, it is apparent that sharp changes in the slope 

of cumulative signal strength, indicating sharp increases in damage progression, related to 

the vertical column to roof interface location occurred in several different instances. For 

example, a sharp increase in damage growth is noticed at the end of November; between 

March 4, 2015 and March 13, 2015; and between April 8, 2015 and April 15, 2015. These 

sharp increases were noticed for both the resonant and broadband sensor types. As 

expected, the broadband sensors exhibit slightly lower values of cumulative signal strength 

owing to the relatively low sensitivity of this sensor type.    
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The highest change of slope for resonant and broadband sensors at the vertical 

column to roof interface occurred at the end of November, 2014. This sudden increase in 

cumulative signal strength was accompanied by localized spalling of concrete, which may 

have caused the detachment of two sensors as previously mentioned. This spalling supports 

the findings that significant damage occurred during this time period.   

To allow for comparison of AE activity from each sensor, the response of 

broadband sensors was normalized to that of resonant sensors. The normalization was 

determined based on the application of a simulated source (ASTM E 2374-15) applied at 

both resonant and broadband sensor locations on the reactor concrete block (described 

later). Pencil lead breaks (PLBs) were applied at different angles around a resonant sensor 

(0, 45, 90, 135 and 180 degrees) at distances of 3 in. and 6 in. in each direction; three PLBs 

were applied at each distance. The CSS recorded from PLBs applied at each distance was 

calculated separately. The same procedure was repeated for a broadband sensor. The ratio 

of CSS detected from the resonant sensor to the CSS from the broadband senor was 

calculated for the cases of 3 in. and 6 in. from the sensor. The average of the ratios achieved 

at the two distances was found to be approximately equal to 10. Thus, cumulative signal 

strength detected from WDI sensors was normalized using a factor of 10.  

Figure 5.8a is a visual representation of the intensity of damage at each sensor 

location using a contour plot. The plot is based on cumulative signal strength results (units 

of pico-Volt seconds), where high cumulative signal strength is plotted in red, indicating 

high damage, while low cumulative signal strength is plotted in blue, indicating lower 

damage. The contour plots show relative intensity of AE activity.  
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As seen in the plot, the highest normalized cumulative signal strength values were 

detected at the top left of the elevation face sensors and at sensor 9 at the side of the vertical 

column. The 2D source location results (for the data detected from the five sensors at the 

same plane) show that most AE events were also detected at the top left of the sensor grid, 

suggesting that damage is progressing at this location (Figure 5.8b). Figure 5.8c likewise 

indicates very high damage progression in the vicinity of sensor 9; with the highest value 

of normalized CSS detected at sensor 9.   

 

Figure 5.8 Vertical column to roof interface: (a) signal strength contour plot at 

elevation face sensors, (b) source location at elevation face sensors, and (c) signal 

strength contour plot at side face sensor.  
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Figure 5.9 shows similar contour plots at the horizontal beam and control locations. 

Similar to the vertical column to roof interface location, normalized data was used to 

generate the plot. The same contour scale as in Figure 5.8 was used to generate the plots. 

As seen in Figure 5.9, lower damage occurred at the horizontal beam location (Figure 5.9a) 

and the control location (Figure 5.9b) when compared to vertical column to roof interface 

location.  

 

Figure 5.9 Signal strength contour plot: (a) horizontal beam location, and (b) control 

location.  

5.4.3 Damage Classification using Acoustic Emission  

To provide a means for interpretation of the data, Intensity Analysis graphs were 

developed at each AE monitoring location. The method was first introduced by Fowler and 

others (Fowler et al., 1989) for the evaluation of fiber reinforced polymer vessels and is 

based entirely on signal strength. Intensity Analysis is a graphical method which differs 

from many other forms of acoustic emission assessment in the sense that it is focused on 

trends in the AE data as opposed to individual events. Intensity Analysis uses two 

parameters, both based on signal strength: a) historic index (plotted on the horizontal axis), 

and b) severity (plotted on the vertical axis).  

a

WDi-15R6i-16

b

WDi-2R6i-3



 

118 

 

Historic index and severity can be calculated using Equation 5.1 and Equation 5.2 

where N is the number of hits up to time (t), Soi is the signal strength of the i-th event, and 

K is an empirically derived factor that varies with the number of hits. The value of K has 

been previously selected in one case as: a) N/A if N ≤ 50, b) K = N -30 if 51 ≤ N ≤ 200, c) 

K = 0.85N if 201 ≤ N ≤ 500, and d) K = N -75 if N ≥ 501 (ElBatanouny et al., 2014a).  

H(t)= 
N

N-K

∑ Soi
 N
 i=K+1

∑ Soi
  N
 i=1

        (5.1) 

Sr= 
1

50
∑ Soi

i=50
i=1         (5.2) 

Historic index, H(t), is a form of trend analysis that incorporates historical data in 

the current measurement. It is sensitive to changes of slope in cumulative signal strength 

versus time and compares the signal strength of the most recent hits to a value of cumulative 

hits. Severity, Sr, is defined as the average signal strength for the 50 hits having the highest 

numerical value of signal strength. The intensity analysis method has been widely used for 

assessment of structural systems during load testing, including reinforced concrete systems 

(Golaski et al., 2002; Nair and Cai, 2010; ElBatanouny et al., 2014), and  has been extended 

to the case of corrosion damage in prestressed concrete specimens (Mangual et al., 2013a 

and 2013b; ElBatanouny et al., 2014a; Velez et al. 2015).   

By plotting the maximum historic index and severity values obtained over the 

duration of the test, an Intensity Analysis plot is generated. Due to the relationship between 

AE signal strength and damage growth, points that plot upward and to the right are 

associated with higher levels of damage.  
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(a)

(b) 

(c) 

Figure 5.10  Intensity Analysis results for resonant sensors: (a) 

roof to column interface, (b) horizontal beam location, and (c) 

control location. 
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(a) 

(b) 

(c) 

Figure 5.11  Intensity Analysis results for broadband 

sensors: (a) roof to column interface, (b) horizontal beam 

location, and (c) control location. 
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Because IA uses historical information, an initial point on the Intensity Analysis 

plot must be chosen. This may be approached through visual inspection, numerical 

modeling, electrochemical measurements (in the case of corrosion damage), coring and 

petrographic examination, and other methods including suitable nondestructive evaluation 

techniques. Only visual inspection was practicable for the monitored locations within 105-

C. Therefore the initial point was chosen based on visual inspection.  

The values of historic index and severity for the initial point were considered to 

account for pre-existing damage such that the historic index value at any time cannot be 

less than that for the initial point. For the severity, the distribution of the highest fifty signal 

strength values collected during the monitoring period, in terms of their scattering from the 

mean value, was used to develop the other fifty signal strength values with the same 

distribution but with a mean value equal to the severity of the initial point. Then the highest 

fifty numerical values from the collective set of one hundred signal strengths; fifty from 

the monitoring period and fifty developed from the initial point, are used to calculate an 

updated severity value that takes into account the pre-existing condition.   

Figure 5.10 and Figure 5.11 are plots of Intensity Analysis results from the period 

beginning September 10, 2014 and ending August 25, 2015 for data recorded from resonant 

and broadband sensors, respectively. For the majority of field applications, only resonant 

sensors would be utilized due to the increased sensitivity of this sensor type in comparison 

to broadband sensors. The use of resonant sensors therefore reduces the number of sensors 

needed for a given application. However, resonant sensors do not provide high fidelity 

representations of the frequency content in comparison to broadband sensors. One purpose 

of using the two different sensor types is to investigate the associated differences in the 
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results. The limits of the Intensity Analysis chart were developed based on data from 

resonant sensors (Mangual et al., 2013a), thus it is expected that data collected from 

broadband sensors may yield underestimated damage classification if the same limits are 

used. 

The preliminary estimation of damage was based on visual inspection during the 

initial visit to 105-C and was located near the border between the ‘no damage’ and the 

‘depassivation’ regions of the chart (severity = 300,000 and historic index = 2.0) for both 

the vertical column to roof interface location and the horizontal beam location. It is noted 

that this assumed level of damage underestimated the actual condition of the structures, 

since these areas are known to have ongoing corrosion damage. Ideally, this initial point 

would be established through a combination of methods including visual inspection and 

electrochemical methods. Electrochemical methods, however, were not collected during 

this part of the study. For the control location no damage was assumed and, therefore, the 

initial point was located at the left corner in the ‘no corrosion’ region of the chart.   

Acoustic emission activity during the monitoring period (approximately one year) 

at the vertical column to roof interface location indicated a progression from the initial state 

to the severe damage state for both sensor types. It is noted that the results of IA after 

approximately 2 months of monitoring (November 1, 2014) showed that corrosion is 

ongoing at this location. On December 1, 2014, Intensity Analysis results indicated that 

severe damage occurred. For monitoring over this relatively short duration, such a 

progression from the initial state to the ‘severe’ damage state is indicative of a relatively 

high level of ongoing damage growth in the monitored areas. For this plot, the term 

‘cracking’ refers to micro-cracking that is generally non-visible, whereas ‘severe damage’ 
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refers to visible cracking that may be accompanied by spalling. This result is supported by 

the spalling that occurred at this location during the monitoring period.  

Acoustic emission data from the resonant sensor and the broadband sensor at the 

horizontal beam location progressed from the initial state to the cracking state over the 

duration of the monitoring period. This result is also an indication of ongoing damage 

growth at this location when the relatively short monitoring period is considered. The 

broadband sensors results (Figure 5.11b) indicated less damage than the resonant sensor 

results (Figure 5.10b), especially during the first 3 months of monitoring. This can be 

attributed to the lower sensitivity of the broadband sensors.  

In contrast to the roof interface location and the horizontal beam location, the 

intensity analysis results for the control location indicate no damage progression during the 

monitoring period, and therefore the initial state and final state coincide (plot on top of one 

another) for the control location. 

5.4.4 Remote Monitoring at +48 Level  

A cellular connection was used to remotely operate the wireless acoustic emission 

data acquisition system. Data from the wireless system was collected between September 

9, 2014 (commencement of test) and November 13, 2014. Due to loss of power from the 

solar power/battery system, ten days of data were lost starting from September 11, 2014. 

The power was reconnected and the system continued to monitor until October 15, 2014 

when a thunderstorm caused a power outage and data was lost for another thirteen days. 

The system continued to collect data afterwards until the data acquisition laptop was 

damaged on November 13, 2014; most likely by moisture, and was not repairable. 
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As described for the wired system data, the raw data was analyzed and appropriate 

data filters were used to separate meaningful data from spurious emissions. The limits of 

the data filters are shown in Table 5.2. Figure 5.12 shows acoustic emission activity in 

terms of amplitude versus time (showing both rain and temperature data) collected between 

September 9, 2014 and November 13, 2014 from the wireless acoustic emission system. 

This data set contains a significant number of hits having amplitude exceeding 80 dB. 

These hits are of relatively high amplitude and may be correlated to ongoing damage.    

 

Figure 5.12 (a) Amplitude and temperature versus time for four wireless sensors at 

+48 level, and (b) rain versus time. 
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Figure 5.13 Cumulative signal strength (pVs) versus time 

(days) for four wireless sensors at +48 level.  

One objective of monitoring this location was to assess whether the large vertical 

crack in the wall is still active. This vertical crack has a width between 0.125 and 0.25 in. 

with several small hairline cracks extending from it in the horizontal direction. Figure 5.13 

plots the cumulative signal strength (units of pico-Volt seconds) versus time (days) for the 

collected signals over the monitoring period. An increasing trend in the acoustic emission 

activity is observed in the figures, indicating that damage may be progressing at this 

location.  

To further investigate the trends in this data set, triangulation algorithms were used 

to investigate if AE events were generated from crack growth. Figure 5.14 shows the source 

location results from filtered acoustic emission data. In this figure, each red dot indicates a 

located acoustic emission event, meaning that all four sensors received data with a 

specified time increment. The time increment was determined based on the characteristic 

wave speed of the structure, which was experimentally determined during the installation 

site visit, and the geometry of the sensor grid. Source location from raw data was 

inconclusive as it showed acoustic emission activity throughout the monitored area. Six 

acoustic emission events from the filtered data set were located in the vicinity of the vertical 
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crack. These results imply that crack growth or friction between crack surfaces was 

ongoing in this area during the monitoring period.   

 

Figure 5.14  Source location results at +48 level; red dots 

indicate located AE events. 

5.5 EXPERIMENTAL PROGRAM: ACCELERATED CORROSION TESTING 

OF THE REACTOR CONCRETE BLOCK 

A reinforced concrete block was cut from the reactor facility with a length, width, 

and depth of 7 ft. 4 in., 3 ft. and 3 ft. 4 in., respectively. Accelerated corrosion test was 

conducted to corrode three different areas over the course of this study. Three concrete 

cores were drilled (3 in. in diameter and 9 in. in length) at three locations to create different 

concrete cover thickness for three vertical steel reinforcing bars adjacent to the cores 

(Figure 5.15). During the coring process, a transverse reinforcing bar was unavoidably cut 

at a depth of approximately six inches from the surface of the concrete test block specimen.  

The test was initiated by placing 3% NaCl solution in the drilled holes to a depth 

of 3 in. on December 2, 2014. The solution was maintained in the drilled holes for two 

months to ensure that chloride concentration reached needed level for corrosion initiation 

(Nilsson et al., 2011; Vélez et al., 2012). Wet/dry cycles were then initiated (three days wet 

and four days dry) on February 19, 2015 to accelerate the corrosion process. A galvanic 
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cell was created during the wet days by inserting a copper plate in the cored locations. 

Figure 5.15d shows the ‘as measured’ concrete cover after the cores were drilled.    

The first location has a concrete cover of 0.25 in. and was monitored using three 

broadband sensors (WDI) and one resonant sensor (R15I) while the second location has a 

cover of 1.0 in. and was monitored using four resonant sensors (R6I). The third location 

has a cover of 0.125 in. and was monitored using eight resonant sensors (R6I). On May 22, 

2015 one of the sensors at the 1.0 inch cover location was removed from the test block and 

on May 27, 2015 it was placed on a small concrete specimen (control specimen) having 

dimensions of 3.0 in. x 3.0 in. x 11.25 in. The control specimen is not reinforced and 

therefore is known not to have corrosion activity. Data collected from the control specimen 

was used to verify the efficiency of the data filters developed during the course of the 

project. Acoustic emission activity was recorded continuously throughout the test period.    

Half-cell potential (HCP) and linear polarization resistance (LPR) measurements 

were recorded once a week with the objective of providing insight related to the corrosion 

process of targeted reinforcement locations. HCP method is described in ASTM C876 

(ASTM C876, 2009) and is traditionally employed to determine the likelihood of corrosion 

activity as described in Table 5.3. Linear polarization resistance (LPR) is a method used to 

measure polarization resistance (Rp) which can be used to calculate corrosion current 

(Icorr), and corrosion current density (icorr). These parameters can be used to estimate the 

corrosion rate (CR). Figure 5.16 shows a schematic of the test setup and acoustic emission 

sensor layout to monitor the corrosion process of the reinforcing bars. A schematic of the 

aged concrete block control specimen is also shown in this figure.  
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Figure 5.15 Aged concrete block specimen: (a) left side view, (b) front view, (c) right 

side view, (d) top view, and (e) control location. 

 

Figure 5.16 Schematic of aged reactor concrete test block: (a) left side view, (b) front 

view, (c) right side view, (d) top view, and (e) control location. 
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Table 5.3 ASTM corrosion for Cu-CuSO4 reference electrode (ASTM C876, 2009). 

Potential Against Cu-CuSO4 Electrode Corrosion Condition 

>   – 200 mV Low Risk (10% probability of corrosion) 

– 200 to – 350 mV Intermediate corrosion risk 

<  – 350 mV High corrosion risk (90% probability) 

< – 500 mV Severe corrosion damage 

 

5.6 RESULTS AND DISCUSSION: ACCELERATED CORROSION TESTING OF 

THE REACTOR CONCRETE BLOCK 

5.6.1 Electrochemical measurements 

Initial electrochemical measurements, half-cell potential, were taken prior to initiation of 

the conditioning period. These measurements indicated a passive state of the steel 

reinforcement. The NaCl solution was then placed in the cored areas on December 2, 2015 

and electrochemical readings were recorded weekly thereafter. As shown in Figure 5.17, 

three weeks after conditioning, half-cell potential values were observed to be more negative 

than -350 mV (referred to as the corrosion threshold) at all three locations. At the 

conclusion of the wet/dry cycles, half-cell potential readings indicated high corrosion risk 

in one of the three locations (0.25 in. cover location) and severe corrosion damage (more 

negative than -500 mV) in the other two locations (0.125 in. and 1.0 in. cover locations). 

The 1.0 in. cover location is known to have leakage associated with it as the NaCl solution 

drained continuously from this location from the commencement of the testing. While 

chloride diffusion is often assumed to be the primary initiator of corrosion damage, the 

presence of cracking in the concrete matrix may have a more profound effect on corrosion 

in some instances. The 0.125 in. cover and the 0.25 in. cover locations did not experience 
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similar issues with leakage. The bottom of the hole at the 1.0 in. cover location was sealed 

with epoxy in the first week of April, 2015.  

Figure 5.18 shows linear polarization resistance results at the three locations with a 

logarithmic fit of the data points. The x-axis in Figure 5.18 represents the number of days 

after the solution was placed in the cored areas (initiated on December 2, 2014). The results 

indicate that all locations had relatively high corrosion rates as the polarization resistance 

was less than 100 ohms (ElBatanouny et al., 2014a). As seen in the figure, data was not 

collected between December 24, 2014 and February 19, 2015 (between 22 and 79 days) 

due to a malfunction with the potentiostat/galvanostat cable over that time period. This was 

addressed and the testing was resumed after February 29, 2015.  Because these readings 

are taken weekly over a time span of 300 days, and due to the instantaneous nature of the 

readings, trends in the data set are more important than readings taken on a particular day. 

Therefore, trend lines with both upper and lower estimates are shown in the figures. A 

statistical method was used to eliminate outliers with low values to obtain the upper 

estimate and eliminate outliers with high values to obtain the lower estimate.  

5.6.2 Detection of Damage using Acoustic Emission 

Figure 5.19 shows the acoustic emission activity, in terms of amplitude versus time, 

recorded at locations monitored with resonant sensors (the 1.0 in. concrete cover location, 

the 0.125 in. concrete cover location, and the control location which initiated on May 27, 

2015). Figure 5.20 shows the acoustic emission activity recorded using broadband sensors 

at the 0.25 in. concrete cover location. The data shown in Figure 5.19 and Figure 5.20 was 

filtered using the data filters discussed in Table 5.2. An unusual amount of data that had 

characteristics related to electromagnetic interference was continually collected at the 
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control location, potentially due to damage in the sensor or cable during the removal and 

re-installation process. RMS and Duration data rejection limits were developed and were 

able to delete the majority of the false data without affecting data collected from other 

locations.  

As seen in Figure 5.19 and Figure 5.20, acoustic emission activity at the 1.0 in. 

concrete cover location and the 0.125 in. concrete cover location was higher than the 

acoustic emission activity at the 0.25 in. concrete cover location. This is attributed to the 

inherently higher sensitivity of the resonant sensors. It is noted that the rate of activity 

recorded at 1.0 in. concrete cover location decreased during wet days after sealing the 

bottom of the hole.  

To reduce the possibility of contaminating the acoustic emission data set with 

unrelated data generated from ongoing work in the University of South Carolina Structures 

and Materials Laboratory, the acoustic emission data acquisition system was intentionally 

paused on several occasions. Significant pauses in data acquisition are shown in the figures. 

A video camera monitoring system was utilized to cross-verify and to aid in the 

development of data filters that are specific to ongoing work in the laboratory environment. 
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Figure 5.17  Half-cell potential measurements at: (a) 0.25 inch concrete cover location, 

(b) 1.0 inch concrete cover location, and (c) 0.125 inch concrete cover locations. 
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Figure 5.18 Linear polarization resistance (LPR) measurements at: (a) 0.25 inch 

concrete cover location, (b) 1.0 inch concrete cover location, and (c) 0.125 inch 

concrete cover location. 
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Figure 5.19 AE data recorded from resonant sensors on the reactor concrete block 

specimen: (a) 1.0 inch concrete cover location, (b) 0.125 inch concrete cover location, 

and (c) control location. 



 

135 

 

 

Figure 5.20  AE data recorded from broadband sensors on the reactor concrete block 

specimen at the 0.25 inch concrete cover location.  

Figure 5.21 shows cumulative signal strength versus time at locations monitored 

using resonant sensors. It can be seen from this figure that cumulative signal strength 

increases rapidly at the beginning of the test, corresponding to a period of rapid damage 

growth associated with corrosion initiation, enters a dormant period, and then increases 

slightly near the end of the testing period for the 1.0 inch and 0.125 inch locations. This 

trend in the data mirrors a trend noticed in the linear polarization resistance plots. The 

magnitude of the cumulative signal strength is greater for the 1.0 inch location when 

compared to the 0.125 inch location, which indicates increased acoustic emission activity 

and therefore increased damage growth at the 1.0 inch location. This is consistent with the 

electrochemical readings at this location and may be attributable to the presence of cracking 

in this location. The control location has minimal cumulative signal strength magnitude as 

would be expected. The relatively low cumulative signal strength magnitude at the control 

location demonstrates that unwanted acoustic emission data caused by ongoing laboratory 

activities in the vicinity of the test block specimen were minimized in the data sets.  
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The broadband sensor data shows a similar trend of rapidly increasing damage early 

in the testing period, followed by a relatively dormant period at the 0.25 in. location, as 

shown in Figure 5.22.  The magnitude of cumulative signal strength from the broadband 

sensors is lower in comparison to the resonant sensors, as is expected due to the lower 

sensitivity of the broadband sensors. 

 

Figure 5.21 Cumulative signal strength from resonant sensors on the aged 

concrete block specimen. 

 
Figure 5.22 Cumulative signal strength versus time from broadband sensors 

on the aged concrete block specimen. 
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Figure 5.23 and Figure 5.24 show the Intensity Analysis results calculated at each 

location. The estimation of initial damage for the aged concrete block specimen, based on 

visual inspection and electrochemical results, was located near the border between the ‘no 

damage’ region and the ‘depassivation’ region of the chart. For the control location, a lower 

initial damage state was used since no corrosion damage is expected in this specimen. AE 

activity from the resonant sensors at the 1.0 in. concrete cover location progressed from 

the initial state to the severe damage zone over the duration of the monitoring period. AE 

activity from the resonant sensors at the 0.125 in. concrete cover location progressed from 

the initial state to the border of the cracking and severe damage zones. For the broadband 

sensors at the 0.25 in. concrete cover location, acoustic emission activity progressed from 

the initial state to the border of the cracking and severe damage zones.  

 

Figure 5.23 Intensity Analysis for resonant sensors on reactor concrete block 

specimen. 

1.00E+05

1.00E+06

1.00E+07

1 10

S
ev

er
it

y
 [

p
V

-s
]

Historic index

1 in. Location

(Oct. 25, 2015)

0.125 in. Location

(Oct. 25, 2015)

Initial state; block

(Dec. 2, 2014)"

Control Location

(Oct. 25, 2015)

Initial state; Control

(May 20, 2015)

Severe damage

No corrosion

Depassivation

Cracking



 

138 

 

 

Figure 5.24 Intensity Analysis for broadband sensors on reactor concrete block 

specimen. 

The above results are indicative of cracking in the concrete matrix due to corrosion 

activity at all three locations. As with the electrochemical measurements, the acoustic 

emission activity indicated that the most severe damage occurred at the 1.0 inch concrete 

cover location. As mentioned above, this location is affected by cracking as noticed through 

leakage of the NaCl solution at this location. While many degradation models for 

reinforced concrete are based on diffusion and therefore do not directly address the 

presence of cracking in the matrix, the effect of cracking in the matrix may nonetheless be 

significant. Similarly, many models assume a homogeneous concrete matrix. The lack of 

homogeneity in the concrete matrix for actual structures, such as the concrete test block, 

may also play a significant role in the results.  

5.6.3 Potential Approach for Service life Predication 

Many approaches are available in the literature for the prediction of remaining 

service life based on corrosion damage. In some cases, the end of functional service life is 

defined as first surface cracking due to corrosion activity (Maaddawy and Soudki, 2007). 

1.00E+05

1.00E+06

1.00E+07

1 10

S
ev

er
it

y
 [

p
V

-s
]

Historic index

0.25 in. location

(Oct. 25, 2015)

Initial state; block

(Dec. 2, 2014)

Severe damage

No corrosion

Depassivation

Cracking



 

139 

 

Prediction of first surface cracking is considered to be overly conservative for an 

application such as 105-C, where the structure is no longer in use and has been 

decommissioned.    

The approach taken for this investigation is based on calculations of the reduction 

in steel reinforcement cross-sectional area due to corrosion damage. Once the reduction in 

cross-sectional area is estimated, its effect on the load capacity of the member can be 

calculated. Service life prediction can then be performed based on this information 

combined with an agreed upon value of reduction in cross-section corresponding to the end 

of service life.  

To perform this process a particular corrosion deterioration model must be adopted. 

A commonly referenced model is that presented by Tuutti (1982) which consists of two 

main phases; a) initiation period where chlorides permeate the concrete cover until chloride 

concentration around the steel reaches the corrosion initiation threshold, and b) a corrosion 

propagation period as shown in Figure 5.25.  

Commercial software packages focusing on prediction of service life using time to 

corrosion initiation are available, for example Life-365 and STADIUM (Software for 

Transport and Degradation in Unsaturated Materials). Both software packages can be used 

to predict the initiation period based on concrete properties and exposure conditions; 

making use of diffusion models to predict initiation of chloride induced corrosion. These 

software packages were not utilized in this investigation as corrosion was accelerated and, 

based on HCP measurement, corrosion initiated within the first three weeks of exposure.  

Prediction of remaining service life once corrosion initiates (the propagation phase) 

is not covered in either software package. For bridges, as a reference, Tuutti’s 
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recommendations for time of corrosion propagation up to failure are 5 to 10 years for 

chloride initiated corrosion and 10 to 20 years for carbonation initiated corrosion.  

For corrosion propagation, Andrade et al. (1990) employed Tuutti’s conceptual 

model to estimate the loss in reinforcing bar cross section during the propagation period as 

shown in Equation 5.3. 

θ(t) = θi- 0.023*icorr*t      (5.3) 

where; 

  θ(t) : the rebar diameter at time t (mm) 

 θi: the initial diameter of the rebar (mm) 

 icorr: the corrosion current density or corrosion rate (μA/cm2) 

 t: the time after the beginning of the propagation period (years) 

0.023: The conversion factor of μA/cm2 into mm/year 

 

Figure 5.25 Schematic representation of 

conceptual model of corrosion of steel 

reinforcement in concrete (Tuutti, 1982). 

To demonstrate one approach that may be used for prediction of service life based 

on corrosion damage, Equation 5.3 was used to estimate the reduction in cross-sectional 

area of the steel reinforcement in the aged concrete block specimen. The initial diameter 
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of the vertical reinforcing bar in the concrete block is equal to 1.128 inches (No. 9 bar) 

with initial cross sectional area of 1.0 in2. The corrosion current, Icorr, was calculated from 

the linear polarization measurements using Equation 5.4, where B is a constant equal to 26 

for the active corrosion condition. The corrosion current density, icorr, was calculated by 

assuming a corroding surface area of the steel reinforcement.  

Rp=
∆E

∆i
=

ba×bc

2.303× Icorr(ba+bc)
= 

B

Icorr
    (5.4)  

This approach for calculating the reduction in cross-sectional area of steel 

reinforcement involves a number of assumptions:  

1. Uniform corrosion around the steel rebar surface; meaning no pitting or 

localized corrosion  

2. Constant corrosion rate once corrosion has initiated  

3. Linear relationship between the loss in rebar diameter and corrosion rate  

4. No loss in rebar diameter during the initiation process  

5. The corroding surface area of the steel rebar must be assumed to obtain icorr. For 

this study, the corroding surface area is assumed to be equal to the perimeter of 

the reinforcing bar multiplied by a length of 3 inches (this is equal to the depth 

of the NaCl solution during the wet days in the wet/dry cycles).  

6. The initiation period in this study was assumed to be 16 days which corresponds 

to half-cell potential measurements indicating 90% probability of corrosion 

activity at all three cored locations.  

To obtain representative corrosion rate values the weekly linear polarization 

measurements were used to develop an equation to model the trends at each location; as 

shown in Figure 5.18. Given the inherent variability in linear polarization measurements a 
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statistical approach was used to exclude outliers in the data and obtain upper and lower 

estimates for the LPR results. The equations of the trend lines were used to obtain upper 

and lower estimates for the corrosion rate and sectional area loss at each of the three cored 

locations.  

The vertical reinforcing bars diameters at September 17, 2015 (the last day of 

wet/dry cycles) for the three cored locations were estimated using the trend lines equations 

calculated at each location. The corresponding estimated cross-sectional areas of the 

vertical steel reinforcing bars are shown in Table 5.4. The 0.25 inch concrete cover location 

had the highest estimated loss in reinforcing bar cross-sectional area (11% loss, based on 

all LPR data points) and the 0.125 inch cover location had the lowest estimated loss (3% 

loss, also based on all LPR data points).    

The estimated number of years needed for the reinforcing bar cross-sectional area 

to reach 50% of its initial value was calculated for the three cored locations, with the results 

shown in Table 5.5. The calculation procedure is based on the assumptions listed above, 

including a constant corrosion rate after September 17, 2015.  

The values shown in Table 5.4 and Table 5.5 provide insight into procedures that 

may be utilized to estimate cross-sectional area loss due to corrosion activity based on 

electrochemical measurements.  The test period available to accelerate the corrosion 

process was significant but was not in the range that would be ideal to establish reliable 

trends in the electrochemical measurements. Therefore, a longer test period is 

recommended. The time associated with the longer testing period is dependent on the rate 

of the corrosion process. A reasonable estimate based on the data available is between one 

to two additional years of wet/dry cycles.   
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Table 5.4 Estimated reinforcement cross sectional area as percentage of the initial 

value (after 289 days of conditioning) 

 
Estimated remaining cross sectional area  (% ) 

0.25 inch location  1.0 inch location  0.125 inch location  

Lower estimate  83 93 97 

Upper estimate  91 95 97 

All data  89 94 97 

 

Table 5.5 Estimated number of years to reach 50% loss of cross-sectional area.  

 
Estimated number of years to reach 50% sectional area loss  

0.25 inch location  1.0 inch location  0.125 inch location  

Lower estimate  0.6 3.3 10.0 

Upper estimate  2.1 4.5 11.3 

All data  1.7 3.9 11.3 

 

5.7 SUMMARY AND CONCLUSIONS  

This investigation explores the implementation of acoustic emission monitoring as 

a remote structural assessment method. Acoustic emission systems were used to monitor 

corrosion damage and cracking in a decommissioned nuclear reactor facility as well as to 

monitor corrosion damage in a concrete block cut from the nuclear facility in laboratory 

conditions. The monitoring period in this study extended to approximately one year.  

The study showed that long-term remote monitoring of ongoing damage in large 

scale existing structures is feasible using acoustic emission systems. For the wired system, 

AC power and cellular network connection are required for successful operation of the 

system. No major issues were encountered in terms of electromagnetic interference with 
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the sensors, external noise and remote monitoring and data transfer. The wireless system 

used has the potential to be used with solar power paired with cellular connection for the 

remote monitoring which makes this approach well suited for long-term monitoring efforts. 

However, adequate protection to the electrical components is required especially in humid 

environments, as illustrated by the failure of the data acquisition laptop due to moisture 

damage.  

For the Reactor Building 105-C Crane Maintenance Area, the acoustic emission 

activity recorded at the ‘vertical column to roof interface location’ and ‘horizontal beam 

location’ varied throughout the monitoring period and tended to be associated with 

seasonal temperature fluctuations. The acoustic emission activity recorded at the ‘control 

location’ was significantly less when compared to the activity from the other two locations. 

Intensity Analysis was used to quantify the damage progression over the course of the 

monitoring period for both the broadband and resonant sensor types. The results of this 

method were in agreement with visually observed distress in the monitored locations. The 

assessed condition of the actively corroding areas progressed from the assumed condition 

of ‘no corrosion/approaching depassivation’ to ‘severe damage’ over the monitoring period 

while no change was observed in the state of the control location. It is noted that the 

assessed condition based on Intensity Analysis progressed to ‘cracking/severe damage’ 

within the first two months of monitoring. This shows the feasibility of this technique to 

successfully qualify active corrosion damage in structures in relatively small monitoring 

periods.  

For the Reactor Building 105-C +48 level, the acoustic emission activity at the +48 

location also varied with seasonal temperature fluctuations. This area contained a vertical 
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crack in the exterior wall and it is possible that crack growth or friction between surfaces 

of this crack was the cause of much of the acoustic emission activity. Source location was 

carried out at this location and events were located in the vicinity of the vertical crack 

which shows the feasibility of acoustic emission to detect and locate ongoing damage from 

cracking given that appropriate data filters are used.  

For the Aged Concrete Test Block, both electrochemical results and acoustic 

emission cumulative signal strength versus time indicated that the corrosion activity 

occurred primarily during the first three to four months of conditioning and then continued 

at a reduced rate. Intensity Analysis based on the acquired data indicated that damage 

progressed from the assumed initial condition of ‘no corrosion/approaching depassivation’, 

determined based on electrochemical results upon arrival at the laboratory, to 

‘cracking/severe damage’ over the monitoring period for all three locations and for both 

sensor types. This Intensity Analysis result is similar to that reported for the ‘vertical 

column to roof interface location’.  

One of the main areas that hinder wide implementation of structural health 

monitoring systems is the large amounts of data that is collected and the subsequent effort 

needed to interpret and analyze this data in order to produce meaningful assessment of the 

condition of the structures. An important contribution of this study is that it proved the 

ability of well-developed data reduction and damage assessment algorithms to provide 

accurate evaluation of the condition of the structures. The results of the study showed that 

the developed filtering techniques along with the Intensity Analysis chart used for 

corrosion damage classification were able to successfully qualify the damage in the 

monitored areas. These methods can be easily programed and used to provide meaningful 
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information to facility managers without the need of further assessment of large data sets. 

This can subsequently help in maintenance planning and prioritization especially in large 

scale and complex infrastructure systems.  
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

6.1 SUMMARY  

AE monitoring is a promising technique that can be used to assess and evaluate 

damage in aging infrastructure. The current state of practice does not allow for full 

implementation due to uncertainties related to reliability of data interpretation. In this 

research, three studies were conducted to further the development of AE as a monitoring 

and damage assessment tool for infrastructure. The studies focused on addressing current 

gaps associated with AE monitoring by a) developing an innovative AE data filtering 

technique to differentiate between data from actual cracking events and data from wave 

reflections or spurious noise sources, and b) developing and applying damage assessment 

algorithms for evaluation of concrete degradation mechanisms in laboratory and field 

structures. 

The first study was conducted to develop data reduction techniques to differentiate 

between AE signals related to damage (target AE signals) and other signals from noise or 

wave reflections (degraded signals). Artificial AE sources (pencil lead breaks) were used 

to generate the target AE signal dataset while wave reflections were used to form the 

degraded signal dataset. All tests were conducted on a medium-scale prestressed concrete 

specimen instrumented with ten AE sensors. Wavelet analysis was used to analyze the 

collected data in the time-frequency domain. The results showed that the characteristics of 

the target signals are different than those of the degraded signals in
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terms of energy distribution. These results were used to develop four different criteria for 

data filtering. Following the development of the data reduction criteria, AE data collected 

from concrete cracking during load testing was used to validate the method. The use of the 

same filtering limits for the case of artificial source data and load testing data shows the 

potential of this approach to develop objective filters that can be automated, therefore 

increasing the potential reliability of assessment based on AE data. 

The second study aimed to prove the feasibility of AE to detect ASR damage in 

concrete structures. ASR damage results in micro-cracks in the concrete matrix which can 

later extend into aggregates to develop visible damage. The test program included twelve 

ASR specimens and three control specimens. The ASR specimens were cast using reactive 

aggregate and elevated alkali content. All specimens were placed in a controlled 

environment with 100% relative humidity and a 100 ± 2 ⁰F environment to accelerate 

damage while AE was continuously monitored. The specimens were conditioned for 

different periods up to one year and standard ASR measurements (length change and 

petrographic analysis) were recorded periodically. The results of this study showed that 

damage due to ASR was apparent in the AE data at early stages, and also after considerable 

degradation occurred. An acoustic emission Intensity Analysis chart for ASR damage 

classification was proposed by correlating AE results with petrographic examination. This 

chart can be used for health monitoring to enable proper identification of the extent of ASR 

damage.  

The third study summarizes the results of AE monitoring of corrosion damage and 

thermal cracking in a decommissioned nuclear facility. Two AE systems were installed at 

different locations to monitor corrosion damage and thermal cracking in the structure for a 
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period of approximately one year. Previously developed data reduction and corrosion 

damage assessment algorithms were adapted for this application. A statistical technique 

was developed to extend the use of the damage assessment algorithm to the case of existing 

damage. This was performed through integration of the observed current state using other 

techniques as a prior in the algorithm. The results of the study showed the feasibility of AE 

to accurately assess existing and ongoing corrosion damage in the monitored locations. AE 

damage classification chart results indicated a condition of cracking/severe damage in the 

structure which was also indicated by concrete spalling that occurred during the monitoring 

period. This high level of damage was detected in the first two months of monitoring. 

Accelerated corrosion testing was also conducted on a concrete block cut from a similar 

nuclear facility. The results of this test reinforced the findings of the field study. In addition, 

an approach for estimating the sectional mass loss and predicting remaining service life 

was presented.  

6.2 CONCLUSIONS  

Several conclusions can be drawn from each of the studies:  

  The characteristics or signature of AE signals associated with cracking and 

signals due to noise differ from one another. Wavelet based criteria were 

developed and proposed, based on tests using simulated cracking events and 

wave reflections, to enable reliable filtering of AE data. 

 Results from the filtering study showed that higher data reduction was achieved 

using the developed wavelet based filters as compared to the commonly used 

Swansong II filtering approach. The wavelet based approaches eliminated a 
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significantly higher percentage of degraded signals and maintained a higher 

percentage of the signals of interest.   

 Data collected from formation of cracks during a load test was used to verify 

the applicability of the developed filtering criteria. Significant data reduction 

was observed without losing the key information related to material response. 

The use of the same filtering limits for the case of artificial source data and load 

testing data shows the potential of this approach to develop more objective 

filters, thereby increasing reliability of the interpretation.  

 The wavelet based filtering approach described in this study appears to hold 

potential for field applications as it is suited for real-time filtering, thereby 

enhancing the efficiency of data storage and transfer while also increasing the 

reliability of  interpretation. 

 Acoustic emission can be used to detect and classify ASR damage in concrete 

structures. This was shown by the filtering approach and damage classification 

chart developed to evaluate ASR damage in laboratory specimens and verified 

through more traditional means. 

 A linear correlation was observed between AE measurements and ASR 

benchmarks, indicating the feasibility of the method to detect the rate of ASR 

distress. This can help evaluate the efficiency of ASR mitigation strategies by 

comparing the rate of AE activity before and after the mitigation for a prescribed 

duration. 
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 The results of the ASR study show that formation of micro-cracks in the 

concrete matrix due to concrete material degradation does not preclude the 

ability of AE to detect ongoing damage.  

 AE is suitable for long-term, remote monitoring of concrete degradation in field 

structures. The data reduction and damage assessment algorithms simplified the 

analysis of the large datasets collected and can provide meaningful results after 

short periods of monitoring. This was shown through the results of a first-of-a-

kind monitoring study where ongoing corrosion damage in a decommissioned 

nuclear reactor building was qualified using AE data collected for a period of 

one year.  

 Daily temperature changes did not significantly affect the collected AE data 

while seasonal temperature changes caused slight variations in the collected AE 

data as indicated by the results of the field monitoring study. However, the 

effect of this variation does not appear to have impact on the damage 

classification algorithms as it is based on analysis of trends in the AE data over 

extended periods of time.  

 A technique for inclusion of existing corrosion damage in AE based corrosion 

damage assessment algorithms was developed. This has significant importance 

for evaluation of damage in aging structures with known or estimated degrees 

of deterioration.    

 Source location of damage was carried out at a location in the nuclear reactor 

where a vertical crack existed. AE events were located in the vicinity of the 
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vertical crack, indicating the potential of using AE data to detect and locate 

ongoing cracking provided that appropriate data filters are used. 

 An approach for service life prediction during accelerated corrosion of a 

concrete block taken from similar nuclear reactor building was presented. This 

approach utilized linear polarization resistance and corrosion rate 

measurements to estimate the sectional mass loss in the reinforcing steel and 

incorporates this information for damage prognosis. 

6.3 RECOMMENDATIONS AND FUTURE WORK  

This research aimed to build-on and augment previous research conducted in the 

area of condition assessment and structural health monitoring using AE. Future research to 

enhance the findings of this study includes: 

 The wavelet filtering criteria was developed and validated using data collected 

from artificial sources and cracking during load testing. The suitability of this 

approach for filtering data associated with low-level AE activity such as 

corrosion damage and alkali-silica reaction is unknown. This is especially true 

as the energy level and signal amplitude collected from low-level AE activity 

may be similar to that collected from wave reflections during load tests. 

Therefore, it is recommended to validate the proposed limits or propose new 

limits that are tied to the amount of energy detected in the AE signals. 

 The ASR damage classification chart is based on limited data collected from 

controlled testing that included fifteen specimens. More data is needed to 

validate the proposed limits and extend the chart to include heavy ASR damage. 

Future studies should also investigate the implementation of the proposed 
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method in field conditions. The appropriateness of the developed data filters to 

omit noise in the AE dataset from environmental conditions in the field (such 

as rain or windborne debris) should also be investigated. 

 AE was used to perform long-term, remote monitoring of corrosion damage in 

a decommissioned nuclear facility. A technique for inclusion of existing 

damage was developed and applied to the collected data. The results of this 

study showed the feasibility of AE to provide meaningful information regarding 

the state of damage in existing structures. Future studies are needed to verify 

and extend the proposed techniques to help with standardization of the method. 
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APPENDIX A – DISCRIMINATION BETWEEN LEAKAGE AND 

CORROSION DATA 

This work was performed as part of the accelerated corrosion testing of the reactor 

concrete block discussed in Chapter 5. To investigate the potential of utilizing acoustic 

emission data to assess leakage through reinforced concrete structural systems such as 

those found in spent fuel pools, data was plotted for the 1 in. cover location over two 

separate 12 hour periods. This location is known to have leakage as demonstrated by 

drainage of the sodium chloride solution.  The first 12 hour period investigated was early 

in the testing program, prior to the initiation of corrosion activity. The second 12 hour 

period investigated was during a dry period when leakage could not have occurred, but 

corrosion activity was still ongoing. 

The first investigation of the data was focused on the evaluation of acoustic 

emission parameters. Typical parameters associated with acoustic emission waveforms 

include amplitude, duration, rise time, counts, average frequency, energy, signal strength, 

and others (acoustic emission terminology is defined in ASTM E1316).  Data was plotted 

over each of the 12 hour periods mentioned above to enable direct comparisons. 

Figure A.1 demonstrates the correlation between rise time and amplitude for the 

leakage and corrosion periods. From these plots it is clear that some overlap in rise time is 

present. However, rise time events exceeding 370 µ-seconds and amplitude less than 50 

dB are associated with leakage only. 
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Figure A.1 Rise time versus amplitude: (a) due to leakage, and (b) due to corrosion. 

Figure A.2 demonstrates the correlation between duration and amplitude for the 

leakage and corrosion periods. From these plots it is clear that duration associated with 

leakage is generally longer than that associated with corrosion. Also, hits with duration 

exceeding 1,300 µ-seconds and amplitude less than 50 dB are associated with leakage 

rather than corrosion. 

  

Figure A.2 Duration versus amplitude: (a) due to leakage, and (b) due to corrosion. 

Figure A.3 demonstrates the correlation between energy and amplitude for the 

leakage and corrosion periods. From these plots it is clear that energy associated with 

leakage data is generally higher than that associated with corrosion data. This is to be 
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expected based on the previous finding that the duration of the signals is generally longer 

for the leakage data. The contrast between energy associated with leakage data and energy 

associated with corrosion data is not as stark as was the case for either rise time or duration 

associated with these two different datasets. This is in keeping with the general expectation 

that both of these mechanisms are of relatively low amplitude and, therefore, are not 

generally energetic, with the majority of the data occurring below 50 dB. This is to be 

expected as leakage will not result in crack formation and corrosion is expected to result in 

formation of micro-cracks at this early stage (nonvisible and located at the level of the steel 

reinforcement due to volumetric expansion).  From this data set it is possible to state that 

energy exceeding 60 Joules is associated only with leakage, however the overlap in the 

data sets is very significant in the case of energy and therefore this conclusion is not as 

strongly supported as for the cases of rise time and duration.   

 

Figure A.3 Energy versus amplitude: (a) due to leakage and (b) due to corrosion. 

Figure A.4 demonstrates the correlation between signal strength and time for the 

leakage and corrosion periods. Because these plots involve time, differences in the rate of 

acoustic emission data associated with leakage and corrosion become clear. It is observed 

from these plots that the rate of hits is much higher when leakage is ongoing. During the 
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two different 12 hour periods investigated, the leakage data had an average rate of 373 hits 

per hour compared to the corrosion data which had an average rate of 15 hits per hour.  It 

can also be observed that the rate of acoustic emission activity associated with leakage 

decayed as the hydraulic head was diminished.   

Because signal strength is closely related to energy in the sense that both parameters 

are related to measures of area under the signal envelope, it is to be expected that signal 

strength would likewise not serve as a particularly useful discriminator between leakage 

and corrosion data. This is in fact the case, as can be seen from Figure A.4, where 

significant overlap in the signal strength data sets is present.  

 

Figure A.4 Signal strength (pVs) versus time (seconds): (a) due to leakage, and (b) 

due to corrosion. 

If rise time is used as a discriminator, considering values exceeding 370 µ-seconds 

are related to leakage, Figures A.2 through A.4 can be re-plotted as shown in Figures A.5 

through A.7. Data points plotted in red represents hits with rise time values exceeding 370 

µ-seconds. 
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Figure A.5 Duration versus amplitude (hits with rise time higher than 370 µ-seconds 

plotted in red): (a) due to leakage, and (b) due to corrosion. 

  

Figure A.6 Energy versus amplitude (hits with rise time higher than 370 µ-seconds 

plotted in red): (a) due to leakage, and (b) due to corrosion. 

 

Figure A.7 Signal strength (pVs) versus time (seconds), (hits with rise time higher 

than 370 µ-seconds plotted in red): (a) due to leakage, and (b) due to corrosion. 
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A signal processing described in Chapter 3 was used to further investigate the data.  

Figure A.8 shows an example of a wavelet transform performed on a signal from each of 

the two data sets. The x-axis on the figure represents time within the signal duration, and 

the y-axis is inversely related to frequency.  The energy distribution is plotted as contours 

in the time-frequency domain. Criterion C4 that was developed to separate controlled 

source signals from reflections was investigated.  This criterion is based on the spatial 

distribution of energy within the wavelet transform. To calculate C4, the values of wavelet 

coefficients lower than 10% of the max coefficient value are set to equal zero. The 

remaining non-zero coefficients are considered high energy nodes and their center of mass 

in the x-y plane is determined. C4 is then calculated as the summation of each high energy 

coefficient value multiplied by its distance to the center of mass of the high energy zone 

and the resulting value is divided by the summation of values at the high energy nodes. For 

example, if we considered the circled nodes in Figure A.8a, with the values at each of the 

four nodes assumed equal to a, b, c and d respectively and the distance from each node to 

the center of mass is da, db, dc and dd respectively, C4 related to this portion of the grid is 

(a*da+b*db+c*dc+d*dd)/(a+b+c+d). 

The values of C4 were plotted for signals from both data sets as seen in Figure A.9.  

In this figure the data sets associated with leakage are plotted to the left while the data sets 

associated with corrosion are plotted to the right.  As seen in the figure there are similarities 

in criterion values from leakage data and corrosion related signals, suggesting that the 

energy distribution in the two different data sets are not significantly different. However, 

there are visually observable differences between Figure A.8a and Figure A.8b.  If a 

filtering limit of 4452 is used for C4 such that hits related to lower values are related to 
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corrosion dataset, the percentage of corrosion data remained is 61% and percentage of 

leakage data remained is 9%. Thus, the wavelet based approach does show clear differences 

in the majority of the dataset and the general wavelet based approach is promising. The 

wavelet coefficients may benefit from further development that is specifically tailored to 

this data set.   

 

Figure A.8 Example of wavelet transform for: (a) leakage signal, (b) corrosion signal 

and (c) a schematic for describing criterion C4. 

 

Figure A.9 Values of wavelet based criterion C4 for leakage dataset (left) and 

corrosion dataset (right). 
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To summarize the findings related to discrimination between acoustic emission data 

from the leakage and corrosion data sets: 

 Rise time and duration of the acoustic emission waveforms are promising 

for discrimination between leakage and corrosion mechanisms.   

 Both rise time and duration has higher values for leakage in comparison to 

corrosion. As expected, some overlap does exist in the data sets for these 

parameters. 

 Acoustic emission hits exceeding 370 µ-seconds in rise time were always 

associated with leakage. Acoustic emission hits exceeding 1,300 µ-seconds 

were likewise always associated with leakage. This finding provides clear 

threshold values for determination of leakage in a data set. 

 When averaged over a 12 hour period, the rate of acoustic emission activity 

was significantly higher (25 times higher) for the case of leakage in 

comparison to corrosion. This finding may be utilized as an alarm 

mechanism for determination of leakage. As an illustrative example, if the 

rate of acoustic emission activity increases by more the 10 times the 

baseline rate then leakage would be suspected. 

 The wavelet based approach showed differences in criterion C4 values.  

However, this approach may benefit from further development for this 

particular data set. 

The findings from this study are promising.  However, these findings are based on 

relatively small, yet highly relevant, data sets.  Further studies should be conducted and the 

findings verified through both laboratory and field studies. 
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APPENDIX B – MONITORING ASR DAMAGE IN CONCRETE 

BLOCKS (STORED AT WJE, AUSTIN) 

A feasibility study was conducted by the University of South Carolina, Wiss, 

Janney, Elstner Associates, Austin office (WJE, Austin), and Texas Department of 

Transportation (TxDOT) to extend and verify the controlled laboratory test results for 

alkali-silica reaction (ASR) damage evaluation using acoustic emission (AE). In this study, 

TxDOT provided four specimens; three specimens were cast in August 2014 while the 

fourth specimen was cast in 2012. The specimens were unreinforced concrete blocks with 

dimensions 14 x 14 x 14 inches and had different mix designs to promote ASR damage as 

follows: 

 Non-reactive (TxDOT Block Designation 939) – Cast August 2014 

 ASR 1293 mix reactive (TxDOT Block Designation 940) – Cast August 2014 

 ASR/DEF block (TxDOT Block Designation 941) – Cast August 2014 

 Low alkali mix with reactive aggregate (TxDOT Block Designation 409) – Cast 

2012 

All specimens were placed in an outdoor setting at WJE-Austin. The specimens 

were instrumented using DEMEC points to measure length change. Wireless AE sensors, 

PK6I resonant sensors (55 kHz resonant frequency), were also used to monitor the 

progression of ASR damage in the specimens. The monitoring results between August 

2014 and July 2015 are presented in this appendix. 
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As typical for monitoring of material degradation mechanisms using AE (also 

known as low-level AE), proper filters must be used to reduce the data. In this study a 

combination of parameter based filters was implemented including Duration-Amplitude 

filters and Rise time-Amplitude filters, similar to the filters presented in Chapter 4 of this 

dissertation. An additional filtering challenge in this study is the presence of AE activity 

from rain events in the collected data. To filter data from rain, cross-examining of the data 

from all channels was conducted and if a significant amount of data was collected on all 

channels at the same time the data was rejected. After   applying the above filters, it was 

found that the control specimen still contained a large amount of data. Therefore, a RMS 

based filter was developed based on the control data to delete all signals with RMS value 

between 0.00039 and 0.00041. The number of hits for unfiltered data (amplitude threshold 

exceeding 40 dB) and filtered data are shown in Figure B.1. As seen in the figure, the 

applied filters reduced the data significantly which indicates the importance of applying 

filters for low-level AE data. 

 

Figure B.1 Number of hits for unfiltered and filtered data. 
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Data from length change measurements is shown in Figure B.2 and indicate that 

the ASR specimen had the most expansion through all the specimens by an order of 

magnitude. It is noted that a different y-axis scale was used in the figure to allow for better 

visualization.  
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(d) 

Figure B.2 Length change measurements: (a) non-reactive block, (b) ASR 

specimen, (c) ASR/DEF specimen, and (d) low alkali mix specimen. 

AE data was collected starting on August 9, 2014. The system collected data for 

approximately one month then the system was inactive until late December 2014.  Data 

was collected afterwards until April 18, 2015. The amplitude versus time plots of the 

unfiltered and filtered AE data for the four specimens are shown in Figure B.4 and B.4, 

respectively. 

The cumulative signal strength (CSS) results of filtered AE data collected during 

the first month of monitoring are shown in Figure B.5. As seen in the figure, the ASR 

specimen had a higher AE activity during the first month compared to the other specimens. 

This agrees with the length change measurements which indicated a higher rate of 

expansion in the ASR specimen.  

 

0.0000

0.0050

0.0100

0.0150

0.0200

E
x
p

a
n

si
o

n
 (

%
)

Date 



 

183 

 

 (a) 

  (b) 

 (c) 

30

40

50

60

70

80

90

100

A
m

p
li

tu
d

e,
 d

B

Time, date

AE system inactive AE system inactive

30

40

50

60

70

80

90

100

A
m

p
li

tu
d

e,
 d

B

Time, date

AE system inactive AE system inactive

30

40

50

60

70

80

90

100

A
m

p
li

tu
d

e,
 d

B

Time, date

AE system inactive AE system inactive



 

184 

 

 (d) 

Figure B.3 Unfiltered AE data, amplitude versus time: (a) non-reactive 

block, (b) ASR specimen, (c) ASR/DEF specimen, and (d) low alkali mix 

specimen. 
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 (c) 

 (d) 

Figure B.4 Filtered AE data, amplitude versus time: (a) non-reactive 

block, (b) ASR specimen, (c) ASR/DEF specimen, and (d) low alkali mix 

specimen. 
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 (b) 

 (c) 

 (d) 

Figure B.5 AE CSS versus time: (a) non-reactive block, (b) ASR specimen, 

(c) ASR/DEF specimen, and (d) low alkali mix specimen. 

Intensity Analysis method was used to analyze data from all the specimens and the 

same limits proposed in Chapter 4 were used to classify damage. Data collected only during 

the first month of testing, before system malfunction, was used. As seen in Figure B.6, the 

highest damage was detected in the ASR specimen followed by the ASR/DEF specimen. 

This agrees with the expected results during the first month of monitoring. It is noted that 

the non-reactive specimen plotted in the ‘Minor damage’ zone. The data collected from 
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this specimen during the first month may be attributed to early age shrinkage cracking. 

Therefore, it is recommended that this effect is studied in future research. 

 

Figure B.6 Intensity Analysis ASR damage classification chart.
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