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ABSTRACT 

 

Over the last 50 years, international trade has grown considerably, and this growth has 

strained the global supply chains and their underlying support infrastructures.  

Consequently, shippers and receivers have to look for more efficient ways to transport their 

goods.  In recent years, intermodal transport is becoming an increasingly attractive 

alternative to shippers, and this trend is likely to continue as governmental agencies are 

considering policies to induce a freight modal shift from road to intermodal to alleviate 

highway congestion and emissions.  Intermodal freight transport involves using more than 

one mode, and thus, it is a more complex transport process.  The factors that affect the 

overall efficiency of intermodal transport include, but not limited to: 1) cost of each mode, 

2) trip time of each mode, 3) transfer time to another mode, and 4) location of that transfer 

(intermodal terminal).  One of the reasons for the inefficiencies in intermodal freight 

transportation is the lack of planning on where to locate intermodal facilities in the 

transportation network and which infrastructure to expand to accommodate growth.  This 

dissertation focuses on the intermodal network design problem and it extends previous 

works in three aspects: 1) address competition among intermodal service providers, 2) 

incorporate uncertainty of demand and supply in the design, and 3) incorporate mult i-

period planning into investment decisions. The following provides an overview of the 

works that have been completed in this dissertation.
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This work formulated robust optimization models for the problem of finding near-

optimal locations for new intermodal terminals and their capacities for a railroad company, 

which operates an intermodal network in a competitive environment with uncertain 

demands.  To solve the robust models, a Simulated Annealing (SA) algorithm was 

developed.  Experimental results indicated that the SA solutions (i.e. objective function 

values) are comparable to those obtained using GAMS, but the SA algorithm can obtain 

solutions faster and can solve much larger problems.  Also, the results verified that 

solutions obtained from the robust models are more effective in dealing with uncertain 

demand scenarios. 

In a second study, a robust Mixed-Integer Linear Program (MILP) was developed to 

assist railroad operators with intermodal network expansion decisions.  Specifically, the 

objective of the model was to identify critical rail links to retrofit, locations to establish 

new terminals, and existing terminals to expand, where the intermoda l freight network is 

subject to demand and supply uncertainties.  Addition considerations by the model include d 

a finite overall budget for investment, limited capacities on network links and at intermoda l 

terminals, and due dates for shipments. A hybrid genetic algorithm was developed to solve 

the proposed MILP.  It utilized a column generation algorithm for freight flow assignment 

and a shortest path labeling algorithm for routing decisions.  Experimental results indicate d 

that the developed algorithm can produce optimal solutions efficiently for both small-s ized 

and large-sized intermodal freight networks.  The results also verified that the developed 

model outperformed the traditional network design model with no uncertainty in terms of 

total network cost.   
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The last study investigated the impact of multi-period approach in intermodal network 

expansion and routing decisions.  A multi-period network design model was proposed to 

find when and where to locate new terminals, expand existing terminals and retrofit weaker 

links of the network over an extended planning period.  Unlike the traditional static model, 

the planning horizon was divided into multiple periods in the multi-period model with 

different time scales for routing and design decisions.  Expansion decisions were subject 

to budget constraints, demand uncertainty and network disruptions.  A hybrid Simulated 

Annealing algorithm was developed to solve this NP-hard model.  Model and algorithm’s 

application were investigated with two numerical case studies.  The results verified the 

superiority of the multi-period model versus the single-period one in terms of total 

transportation cost and capacity utilization. 
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CHAPTER 1: INTRODUCTION 

 

An efficient transportation strategy with the minimum social and environmental costs is 

very important due to the increasing need of freight transport and concerns for the global 

warming. Intermodal transportation is the transportation of goods in the same loading unit 

with successive modes of transport and without handling the goods while transferring them 

between modes at intermodal terminals. It has the advantage of accessibility of road, load 

capacity of rail, speed of air and economies of scale of barge. Containers are highly 

standard loading units extensively used for intermodal freight transportation. Although the 

use of more than one mode in intermodal transportation can reduce the carbon foot print 

and total transportation costs, the road transportation dominates the other 

modes/combination of modes for transporting goods over short and/or medium distances. 

A significant portion of intermodal transportation costs is from transfer of loads at 

terminals. Although the transportation cost per ton/mile is less for the intermodal option, it 

cannot compensate the transfer cost while moving cargo over short and/or medium 

distances. Hence, it becomes an option for moving the freights over the long distances.   

In early ages of intermodal logistics, the most freight belonged to domestic sector 

which did not entail the long distances. Therefore, intermodal transportation was not as 
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common as road transportation with shorter average travel times. However, the market 

globalization raised the need of intermodal transportation as an alternative shipping option 

for moving the freights over the long distances, i.e. between the countries and continents. 

The huge amount of global freights also generated the domestic demands. This increased 

the need for intermodal transportation in the countries with expanded lands, such as U.S. 

The success of an intermodal network mainly depends on comprehensive collaboration of 

its different modes due to their inherent differences in terms of cost, capacity, emission and 

accessibility. The low level of maturity of intermodal transportation stems from poor 

selection of terminal locations and connectivity of modes. Intermodal logistic providers 

need to realign their existing networks to reach the maximum costs reduction, connectivity 

and efficiency.   

The primary objective of this research is to address multiple real-world criteria in 

intermodal network design and expansion decisions, which compared to traditiona lly 

designed projects, can provide cost savings for intermodal service providers. Three 

mathematical models are developed and the appropriate meta-heuristic algorithms are 

proposed to solve these models.  These models are, 1) competitive intermodal network 

expansion with uncertain demands, 2) reliable intermodal network expansion with demand 

uncertainties and network disruptions, and 3) reliable multi-period intermodal network 

expansion problem.  These models are concerned with location optimization, freight flow 

assignment and shared common objectives, such as minimizing the total cost (which may 

include transportation, establishment and loss costs of unmet demand) or maximizing the 

provider’s market share. 
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1.1 RESEARCH TOPIC 1- INTERMODAL NETWORK EXPANSION IN A 

COMPETITIVE ENVIRONMENT WITH UNCERTAIN DEMANDS 

The location of terminals is important for success of an intermodal transportation system 

since the terminals transfer costs and times are the main portions of total transportation 

cost and time of intermodal shipments. If a railroad company intends to build the new 

terminals, it is important to consider the competitors offering the same service in 

overlapping service areas. That company should not lose the business of its existing 

terminals by building the new ones either. The first study of this dissertation addresses the 

intermodal network expansion problem, including the networks competition. A robust 

model is proposed to consider the uncertainty of future demand. Since this model is NP-

hard (non-deterministic polynomial-time hard), a Simulated Annealing (SA) approach is 

proposed to solve it for large size instances. The experimental results verify that this 

algorithm can find optimal results faster than a well-known optimization solver (GAMS). 

Readers are referred to chapter 3 of this dissertation for a comprehensive problem 

description. A review of related background is also discussed along with the developed 

methodologies to formulate and solve this problem in order to implement them for the 

related case studies.  

1.2 RESEARCH TOPIC 2- RELIABLE INTERMODAL FREIGHT NETWORK 

EXPANSION WITH DEMAND UNCERTAINITIES AND NETWORK 

DISRUPTIONS 

An intermodal network is composed of links and terminals. Despite the critical effect of 

terminals on the network efficiency, the expansion or maintenance of terminals connecting 

links are very important as each network reliability stems from reliability of both links and 

nodes. The second part of this dissertation studies the possible investment decisions for an 

intermodal network expansion. This includes the expansion of existing terminals and 
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retrofit of higher-risk links in addition to building the new terminals. Natural or human-

made disasters occur in every infrastructure. Thus, a robust mathematical model is 

proposed to include such future disruptions in network elements as well as uncertain future 

demands. A hybrid Genetic Algorithm (GA) embedded with an intermodal label setting 

algorithm is proposed to solve this NP-hard model. The experimental results of small size 

case studies verify that it is faster than an Exhaustive Enumeration (EE) method to find the 

optimal solutions (EE cannot find any solutions for medium and large size problems 

either). The model and GA applications are also discussed for a large size case study. The 

results confirm that this model can reduce the total network cost of an intermodal service 

provider by considering the parameter uncertainties for investment decisions. Chapter 4 of 

this dissertation presents the details of this problem, its related background and proposed 

model with its algorithm. It also discusses the relevant results as well.     

1.3 RESEARCH TOPIC 3- A RELIABLE MULTI-PERIOD INTERMODAL 

FREIGHT NETWORK EXPANSION PROBLEM 

Network expansion is typically a long term and time-consuming project requiring a high 

investment budget.  In the classical network expansion problems, all the decisions are made 

at the beginning of the planning horizon within a short time. However, in a practical 

situation, the companies start with a small network configuration and utilize the revenue 

gained from goods transportation for capital investment needed for further network 

expansions.  This mitigates the financial burden on the company for such a comprehens ive 

project as well as better network design due to changes in locations and amount of demand 

over the planning horizon. The third work of this dissertation develops a model that 

dynamically locates new intermodal terminals, expands existing intermodal terminals and 

retrofits weaker links in an intermodal transportation network over several time periods 
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with limited budgets.  It is assumed that network capacity might be reduced due to the 

disruptions that might happen during expansion intervals. A shorter time scale is 

considered for routing decisions in order to control the uncertainties of the network under 

expansion intervals. The objective is minimization of total transportation and establishment 

costs over all time periods. A hybrid SA algorithm embedded with a heuristic for freight 

flow assignment is proposed to solve this model. The chapter 5 of this dissertation gives a 

comprehensive overview of the proposed model and algorithm as well as their applications 

in different networks.  

1.4 LIST OF PAPERS AND STRUCTURE OF DISSERTATION  

This dissertation is written following a manuscript format. Chapter 2 provides a brief 

overview of intermodal network and highlights related studies. Chapters 3, 4 and 5 are the 

works of the following research articles published and submitted in peer-reviewed journals.  

1. Fotuhi, F., Huynh, N. (2015) Intermodal network expansion in a competitive 

environment with uncertain demands. International Journal of Industrial Engineering 

Computations, 6 (2): 285-304. 

2. Fotuhi, F., Huynh, N. (2016) Reliable Intermodal Freight Network Expansion with 

Demand Uncertainties and Network Disruptions. Networks and Spatial Economics, 1-

29. 

3. Fotuhi, F., Huynh, N. A Reliable Multi-Period Intermodal Network Expansion 

Problem.  Submitted to Journal of Computers and Industrial Engineering. March 

2017.  

Chapter 6 provides the concluding remarks of this dissertation. 
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

 

This chapter presents an overview of intermodal network components and operations with 

a review of related studies as well as the contribution of this dissertation to this field.   

2.1 INTERMODAL FREIGHT TRANSPORTATION   

Intermodal freight transportation involves at least two modes of transport. Figure 2.1 

illustrates a simple depiction of intermodal network that consists of shipping origins and 

destinations, a highway network that connects all origins and all destinations, limited 

number of intermodal terminals, and rail, air or barge networks that connect the various 

intermodal terminals. Freight can be directly shipped only through the highway mode or 

first shipped to a nearby intermodal terminal with truck, then to another intermoda l 

terminal near the destination through another mode, such as rail, air or barge, and fina lly 

delivered to the destination with truck. Drayage is the trucking part of this trip while the 

transport among intermodal terminals is called long-haul. The optimal shipment method 

depends on the distance between origin and destination, proximity of intermodal termina ls 

to them, type of available intermodal terminal (i.e. rail, air or barge), and transportation 
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and transfer costs. This dissertation considers road and rail as the only operation modes of 

an intermodal network. 

 

 

Figure 2.1. Illustration of an intermodal freight network. 

Intermodal transportation is an interesting business option due to its low costs, such 

as transportation, environmental and social costs. In a consolidation system, the low 

volume cargos are moved to consolidation centers and bundled into the larger packages.  

Then, rail, air and/or barge transport the shipments between intermodal terminals as high-

frequency and capacity transport modes with lower cost per load (discounted cost).  

Consolidation centers are known as hubs. In traditional hub-and-spoke networks, each pair 

of origins and destinations could use at most two hubs with no direct shipment between 

them. Although intermodal transportation can be considered as a hub-based system, the 

various network topologies other than hub-and-spoke can represent it (Figure 2.2). The 

type of commodity is important for choosing the type of appropriate intermodal topology 

(SteadieSeifi et al., 2014) especially for multi-commodity shipping businesses. Intermodal 

option is not an option for some commodities, such as perishable items and live animals, 

Highway link
Shipping 
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Shipping 
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Intermodal 
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Intermodal 
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Rail, air, or barge link
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due to long travel times. Thus, a direct shipment option is needed where trucks move these 

specific cargo that the hub-and-spoke networks with no direct option cannot work for.  This 

research focuses more on connected hubs and dynamic routes topology of intermoda l 

network design problems. However, the related studies about hub network design are 

addressed in this dissertation due to similarities of intermodal and network design 

problems. 

  

 

Figure 2.2. Six options to move cargo between an OD pair (Woxenius, 2007). 

The intermodal transportation involves multiple operators, such as drayage, termina l, 

network and intermodal operators (Macharis and Bontekoning 2004). Drayage operators 

schedule and plan the truck operations between terminals, shippers and/or receivers. The 

terminal operators control the transfers between modes of a terminal. Network operators 

are responsible for infrastructure planning and operations while the intermodal operators 

select the route to move the freight in network.   

Intermodal network design involves strategic, tactical and operational planning levels 

(SteadieSeifi et al. 2014). Strategic planning relates with investment decisions for 

infrastructure establishment. It requires huge capital investment and a long implementa t ion 

time. It is also difficult to change the strategic plans once a network is configured. Termina l 
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layout design and construction of terminal and links are a few of these decisions. Tactical 

planning uses the given infrastructure over the month or week time scales. For examp le, 

choosing transportation modes, scheduling their trips and frequencies, and allocation of 

their capacities to shipments are some of these decisions. Operational planning is about the 

day-to-day decisions for a network. Like tactical level, the goal is finding the itinerar ies 

and best allocation of shipments for an existing infrastructure. However, it is more flexib le 

for real time changes in network elements and operators which can be due to availability 

of terminal or link, labor or driver, and train or truck. Accidents, weather changes, 

equipment failure, labor strikes and employee sick days can cause routing plans changes. 

This dissertation is mainly focused on strategic and tactical decisions however an 

operational decision is studied in one of its models.   

Arnold et al. (2001) proposed one of the very first intermodal network design models. 

Their Mixed Integer Linear Programming (MILP) model found the optimal locations of 

intermodal terminals and routed the freight over a network by minimizing the total 

establishment and routing costs. Each demand has one set of origin and destination (shipper 

and receiver) with truck and intermodal shipping options. Later in 2004, they proposed an 

alternative model that considered intermodal terminals as network edges. This led to a huge 

reduction in number of decision variables. Racunica and Wynter (2005) developed a model 

to find the optimal locations of intermodal terminals in a rail/road network as well as train 

frequencies over it. They also showed how much market a terminal can capture from road-

only option if added to the network. Groothedde et al. (2005) proposed an initial model for 

road/inland-barge intermodal network. The barge was selected as an alternative mode due 

to its economies of scale. They compared their model with a road-only option for a case 
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study in Netherland. The results revealed that barge is more suitable for the stable part of 

the trip and the road is more beneficial where dealing with variations in the demand over a 

short period of time. Limbourg and Jourquin (2009) proposed a p-hub median model for 

intermodal terminal location problem. Their model optimally locates p intermoda l 

terminals over the network by minimizing the total transportation cost. They used the 

demand density to choose potential locations of intermodal terminals in a European 

intermodal network. All the aforementioned studies intended to minimize the system costs.  

Intermodal transportation outperforms the road option in terms of total transportation 

cost but it has longer travel time due to dwell time of terminals. Dwell time is the waiting 

time of a container at a terminal while being transferred between modes.  Based on a recent 

study in US, the dwell time at a terminal is 24 hours by average (ITIC document).  Ishfaq 

and Sox (2010) added a time window constraint to their intermodal network design model 

to prevent intermodal routes with long travel times. Each demand should arrive at its 

destination no later than a predefined time window. Moreover, they considered more than 

two modes in their model. Despite terminal locations decision and freight assignment, their 

model chose which mode should operate in each terminal. A piecewise linear cost function 

was considered for long-haul truck shipments as it decreases over the miles traveled. The 

objective was to minimize total fixed cost of building terminals, transportation and modal 

connectivity costs at terminals.  Later, they formulated a hub location-allocation model for 

intermodal network design ignoring the truck-only option (Ishfaq and Sox 2011).  

Limited storage for containers and labor at terminals can cause limited capacity at 

intermodal terminals in real life applications. By relaxing this constraint, the closest 

terminal is always selected for each OD pair. Incorporating this important feature in 
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intermodal network design models can significantly change freight allocation to the 

network. Sorensen et al. (2012) improved Ishfaq and Sox (2011) model by adding the 

capacity constraint at terminals. They also let shipments select truck-only option to avoid 

lost demand due to limited capacity at intermodal routes. However, they did not incorporate 

time window constraint in their model.  Due to limited capacity, different fractions of a 

specific order can use different routes.  Lin et al. (2014) proposed an alternative model for 

Sorensen et al. (2012) ones by reducing a huge set of decision variables.  They showed that 

the new model can find optimal solutions for larger size instances compared to the 

Sorensen ones.  

2.2 COMPETITION BETWEEN INTERMODAL SERVICE PROVIDERS 

Most studies in intermodal network design assumed a central entity managing an unified 

network of multiple intermodal service providers from different countries (Case of 

European network). However, a different common case exists for network of regional or 

large countries with extended lands (like US). Private railroad companies with 

decentralized management offer intermodal services in this case. Although their init ia l 

network had serviced different areas, their service areas started to overlap as their networks 

and business were expanding. Figure 2.3 depicts a map of intermodal networks for five 

class 1 railroad companies in US and one covering Canada. Norfolk Southern Rail Road 

(NSRR), and CSX move freight within the East Coast and South East of US. Burlington 

Northern Santa Fe (BNSF) and Union Pacific Rail Road (UPRR) covers the rest of US.  

Canadian Pacific Rail Road (CPRR) starts from North part of US and goes all the way to 

Canada.  Lastly, Canadian National Rail Road (CNRR) serves eastern Canada.  It is evident 
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that these companies have overlapping service areas and they compete to attract more 

demand to their own terminals in those areas to increase their market shares.   

This example shows two real-world criteria which have not received enough attention 

in previous studies of intermodal network design. First, most companies have existing 

terminals operating in a network. Their main concern is how to expand their network by 

locating the new intermodal terminals in order to survive in such a competitive market 

rather than building a network from scratch (Gelareh et al. 2010). Second, the private 

companies compete to attract more demand to their intermodal networks, specially those 

having overlapping service areas. This criterion does not exist in networks operated by a 

central entity. 

 

Figure 1.3 North America rail road companies intermodal network map 

(http://www.oocl.com) 
 

http://www.oocl.com/
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Although a remarkable number of papers studied competition for facility location 

problems, less work have been done for hub-type location problems.  In 1999, Marianov 

et al. presented the first model for competitive hub location problem. A new coming 

company decided to build its network in an overlapping area with another company 

offering the same service.  The demand for each OD pair was captured by the new coming 

company if its transportation cost was less than the competing company’s one. The 

objective of this model was to come up with optimal locations for hubs to maximize the 

market captured by the new company. Gelareh et al. (2010) developed a model for 

competitive liner shipping hub network design. They assumed a new liner shipping 

provider comes to a market and competes with an existing liner shipping company in terms 

of transportation cost and service time.  The new company intended to locate p new ports 

in the network to capture the demand from the existing company and attract new demands 

to its network.  The objective was to minimize total cost and transportation time for the 

new service provider.  

In an early work, Huff (1964) studied the attraction of different markets for customers.  

He developed a methodology (Huff’s gravity model) showing that attraction of an area has 

a direct connection with attractiveness of that area (i.e. Size and variety of stores in a 

shopping mall) and is inversely impacted by the distance (travel time) of that area to 

customer’s location. Although his model was utilized mostly for retail store location 

decisions, it was recently utilized for location decision of transportation hubs of an airline 

company (Eiselt and Marianov 2009).  They used this model to optimize market share for 

a new coming airline company to a market competing with existing airline companies.  

Their model found locations for new hubs that maximized market share for the newcomer.   
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However, the model was limited to new-coming airline companies with no existing hubs.  

This work uses a similar technique to find with locations for new intermodal terminals for 

an intermodal service provider (Railway Company) with existing intermodal network. 

2.3 DECISION MAKING UNDER UNCERTAINITY 

Decision making environment is categorized as certainty, risk and uncertainty (Snyder 

2006). Unlike a certain situation where all parameters are known, both risk and uncertainty 

conditions are random. Stochastic optimization problems pertain to risk situations where 

there is a known probability distribution for random/unknown parameters. The goal of this 

type of solutions is to optimize the expected value of an objective function. Under the 

uncertainty situation, the parameters are unknown and there is no information about their 

probabilities. Robust optimization arose to manage this type of problem with the goal of 

optimizing the performance of worst-case scenario.   

Both methods attempt to find a solution which performs well under any realizat ion of 

the unknown parameter. If the decision maker knows what probability distribution an 

unknown parameter follows, he can use stochastic optimization. Otherwise, robust 

optimization will be utilized by considering a set of scenarios for possible values of an 

unknown parameter. Robust optimization can address more problems despite its 

disadvantages. Its main drawback is identifying the appropriate number of scenarios which 

can comprehensively include all the possible future values of the unknown parameter(s).  

On the other hand, the final solution optimizes the worst-case scenario which may have a 

very low chance of occurrence. However, it is easy to implement and it allows the 

correlation of unknown parameters, which is not applicable for stochastic optimizat ion. 

Including the scenarios with higher chance of occurrence can compensate the weakness of 
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robust optimization. Scenario relaxation algorithms are also useful to expedite the solution 

time for these types of problems (Assavapokee et al. 2008). Real world historical freight 

data is not easily accessible. Hence it is not possible to draw the appropriate distribution 

for the uncertain parameters. Accordingly, this study utilizes the robust optimization to 

address multiple uncertainties in the developed models.     

2.4 UNCERTAINITY IN INTERMODAL NETWORK DESIGN 

Design decisions (as long term plans) affect the fluctuations of the problem parameters, 

such as cost, demand and supply over time. Moreover, these need huge investments with 

less flexibility for the change over time. On the other hand, it is hardly possible to 

accurately estimate the future values of unknown parameters. These confirm the need to 

include the uncertainty in design problems. This work considers the demand and supply 

uncertainties as discussed in the next sections.  

2.4.1 DEMAND UNCERTAINITY 

The demand for freight transport derives from commodity movements between shippers 

and receivers. Variations in economic conditions, technological innovations and market 

globalization lead to continuous fluctuations in freight demand over space and time as well 

as modal share changes for demand movements. More companies are becoming interested 

in intermodal option due to its cost, accessibility, and carbon emission benefits. Numerous 

models have been developed to forecast the future amounts and locations of freight 

demand, but their accuracy are still an unknown question (Lange & Huber 2015).  

A few papers have considered the demand uncertainty in network design with 

consolidation centers (terminals/hubs). Marianov and Serra (2003) developed a stochastic 

model to find the location of hubs for an airline company. They assumed that passenger 
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demand follows a Poisson distribution. They solved their model with a tabu search 

algorithm. Yang (2009) also considered the demand uncertainty in locating the hubs for an 

airline company.  He used the historical data from air freight market in China and Taiwan 

and considered three levels for them (high, medium and low). Including the probabilit ies 

of occurrence of each demand level, the two stages stochastic model minimized the total 

fixed cost of opening hubs and expected routing costs of freight flow over the network.  

Alumur et al. (2012) were among the first researchers who utilized the robust optimiza t ion 

in hub network design problems. They included multiple scenarios to address uncertainty 

of the demand and set-up cost for hubs establishment. They showed how the results vary 

for an uncertain situation compared to deterministic cases. Ghaffari-Nasab et al. (2015) 

developed an alternate model for Alumur et al. (2012) by using a different robust 

optimization approach. They only included the demand uncertainty and added the capacity 

constraint at hubs to their model.   

2.4.2 SUPPLY UNCERTAINITY 

Capacity variations in network elements cause the supply uncertainty. These variations 

stem from scheduled or unscheduled events. Natural and/or human-made disasters are 

among the unscheduled cases which can cause the most dramatic changes in infrastruc ture 

capacities.  On the other hand, maintenance and/or replacement projects due to aging of 

existing infrastructure are other sources of capacity reduction whose occurrences the 

network planner should know the time and location of.  This study focuses on unscheduled 

events since those are unexpected and inevitable to happen.  Moreover, losses and damages 

caused by these events may have a significant impact on economy of the disrupted area as 
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well as other areas doing businesses with it. Additionally, that area takes a long time and 

needs a budget to recover from the disaster.    

Ham et al. (2005) provided a brief overview of the impact of an earthquake in Midwest 

on economy of US. They mentioned that almost 40% of commodity flows in US pertains 

to Midwest, including the States of Illinois, Indiana, Iowa, Kentucky, Michigan, Missouri, 

Ohio, Tennessee and West Virginia. About 45% of these commodities are transferred 

between these states inside the Midwest region. The rest of commodities are 

transported/received to/from other states in the US. The New Madrid Seismic Zone located 

close to Memphis, Tennessee is a major earthquake zone which had the largest earthquake 

of the US history in 1811. If the same earthquake happens there, it can ruin the 

transportation network and production companies within the whole Midwest area. Limited 

accessibility to areas far from the disrupted region due to the disruption in transportation 

network affects the movement of commodities between the Midwest and the rest of US.  

The results showed that the value of commodity flow decreases by one billion dollars due 

to this earthquake. The mean shipment distance increases by 40 miles per shipment, which 

increases the transportation cost. Although it might not look significant, this will be 

remarkable for all the shipments through the whole network.   

Pre-disaster and post-disaster mitigation strategies can reduce the vulnerability of the 

network to the unforeseen incidents. Pre-disaster (protection) strategies identify the most 

critical network components to reinforce them or adding new elements around them (i.e. 

adding new links) within a limited budget available for the project (Snediker et al. 2008).    

Post-disaster (recovery) actions use the limited recovery resources to reconstruct the 

disrupted components as well as keeping the disrupted network at its optimum service 



18 

 

capacity during the recovery actions (Orabi et al. 2009). This study addresses the pre-

disaster activities that can improve the network resiliency facing the future disruptions. 

A remarkable number of researchers studied the disruption’s impacts on transportation 

networks and analyzed the pre-disaster projects. They showed how the protection projects 

increased the network survivability and reduced the lost market as well as post-disaster 

reconstruction costs. In an early work, Sohn et al. (2003) investigated the impact of a 

hypothetical earthquake on demand loss of highway links. The analysis identified more 

critical links to retrofit so they stay resilient if an earthquake happens in future. Later in 

2006, Sohn analyzed the impact of a hypothetical flood in highway networks of Maryland. 

To withstand the future floods, the different links were prioritized for retrofit based on 

distance-only and distance-traffic criteria.  

To find the most critical links of a network at the time of a hypothetical disaster, 

Matisziw and Murray (2009) developed a mathematical model that evaluated the severity 

of absence of a link in the network performance. Their model found the links which 

maximized the commodity flow (connectivity) disruptions through the whole network. 

This objective identified the links which may have the worst-case effect on the network 

performance. To evaluate their model, they used the data of highway networks in the State 

of Ohio as a case study.  

Research in intermodal network disruptions area is still in its early stages. In an earlier 

work, Miller-Hooks et al (2012) developed a mathematical model to identify which 

preparedness (pre-disaster) or recovery (post-disaster) activities to select in order to 

maximize the delivery of total demand to their destinations in case of disruptions. They 

assumed a limited budget for mitigation activities as well as limited capacities of network 
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links and terminals. Burgholzer et al. (2013) developed a micro-simulation model to 

identify the higher-risk links in an intermodal network with both passenger and freight 

transport units. Unlike the previous studies, they simulated the transport of each individua l 

unit to address the real-time congestion of network links due to the disruptions. For these 

situations, they also tracked the total delay and individual routes taken by each entity. In 

2014, Marufuzzaman et al. formulated a multimodal biofuel supply chain system that 

considered the disruption risks in intermodal terminals. The objective was to minimize the 

total expected transportation cost in normal and disrupted situations as well as the fixed 

cost of opening new intermodal terminals. They tested their model on a new biofuel supply 

chain network in the US Southeast region (with high risk of hurricane and flooding). This 

case study concluded that their model preferred to locate the intermodal terminals far from 

the higher risk areas.      

2.5 MULTI-PERIOD PLANNING 

Expansion decisions are multi-period in nature since it may not be practical to build or 

expand enough terminals within a short time. The main reason is the limited investment 

budget in the beginning of planning horizon. On the other hand, the intermodal service 

provider will not invest until the adequate demand exists for its intermodal network. Multi-

period programming helps the planner to gradually build the network over time. It breaks 

the planning horizon into multiple periods and identifies the optimum expansion plan at 

each period. This approach is beneficial in three folds. First, it removes the burden of huge 

capital investment for expansion of the whole network within a short time. Secondly, it 

provides the sufficient time for implementation of the expansion project without any 

interruptions in the network. Third, the investor can obtain the funds for expansion of 
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network with the revenue generated from the goods transportation through its existing 

network. The expansion decisions are integrated with routing of freight flow over the 

network, which is more volatile to changing demand and capacity. Disruptions cause the 

variations of capacities. Multi-period planning expands the network over time so it can 

better incorporate the recovery progress of disrupted infrastructure for the flow assignment.   

There are a few research papers in the field of multi-period hub location concept. 

Contreras et al. (2011) proposed the first model in this area.  Their objective was locating 

a set of un-capacitated hubs in a network over the planning horizon. They identified the 

time of opening a hub and closing an open hub as well as allocation of the demand to the 

pairs of hubs in each period. There was no direct shipment option between a shipper and a 

receiver in their model. Later, Taghipourian et al. (2012) used the multi-per iod 

optimization to locate the virtual hubs in an airline network. Virtual hubs are spokes which 

become a hub when the major hubs are out of service due to disruptions. In their model, 

their hubs capacity is not limited and those hubs opened in one period might be closed in 

the next periods. Gelareh et al. (2015) proposed a multi-period hub location problem for a 

liner shipping provider. They assumed that hubs are not constructed in the liner shipping 

industry but are leased to the liner service providers by their owners. Their objective was 

identification of opening time, location and terms of contract of leased hubs. Alumur et al. 

(2015) proposed a multi-period model for single and multiple allocation hub location 

problems. They assumed that once a hub is opened, it never closes until the end of the 

planning horizon. They minimized the total fixed cost of opening new hubs, capacity 

expansion cost of existing hubs and transportation cost of the flow over the network. Their 

model did not include the direct shipping of a commodity between its origin and 
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destination. To the extent of author’s knowledge, there is only one work which studied the 

multi-period intermodal network expansion problem (Benedyk et al. 2016). They proposed 

a model to find the best expansion plan for each period by considering its variable demands. 

The strategic variables of this model were the location of new terminals and expansion 

sizes of existing terminals.  Once these variables were determined, the OD pairs were 

allocated to the network.  

Although multi-period planning can better incorporate the real world uncertaintie s, 

different time scales should be considered for strategic and operational decisions.  Strategic 

decisions are more stable over time while operational decisions are variable (Nagy and 

Salhi, 2007). Albareda-Sambola et al. (2012) proposed a location-routing model with 

different time scales for location and routing decisions. In their model, the planning horizon 

is divided into multiple periods for routing decisions while location decisions are made in 

a subset of these periods. Up to now, there is no published research for the topic of mult i-

period planning with different time scales for intermodal hub network design and 

expansion problems.  

2.6 CONTRIBUTIONS TO LITERATURE 

Previous works have applied the operations research techniques to the intermodal network 

design and expansion problems. The current research has included the following 

considerations from the real-world for modeling of the intermodal network expansion 

problems.  

1) competition of intermodal service providers (to maximize profit); 

2) uncertainty in demand and supply (to minimize total cost) with robust optimization; 

3) multi-period time frames for construction decisions. (to minimize total cost) 
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This dissertation also developed a number of meta-heuristic algorithms to solve the larger-

size examples of these models. These contributions are addressed in the following research 

papers.  

2.6.1 INTERMODAL NETWORK EXPANSION IN A COMPETITIVE 

ENVIRONMENT WITH UNCERTAIN DEMANDS 

Contributions of this study to the literature are: by 1) a new mathematical model for 

intermodal network expansion, 2) incorporating competition between intermodal service 

providers, 3) including demand uncertainty in expansion decision, 4) developing a new SA 

algorithm to solve this model which could significantly reduce computational time 

compared to general optimization solvers, 5) studing practical aspects of the model using 

a real world case study to investigate model’s real world application.  

2.6.2 RELIABLE INTERMODAL FREIGHT NETWORK EXPANSION WITH 
DEMAND UNCERTAINITIES AND NETWORK DISRUPTIONS 

This work contributed to the literature by: 1) a new integrated model for intermoda l 

network expansion considering addition of new terminals, expanding existing termina ls 

and retrofitting higher risk links of the network with a limited budget, 2) considering 

demand and supply uncertainties, 3) developing GA for strategic decisions with a new 

chromosome representation, 4) developing a new intermodal routing algorithm for freight 

flow assignment, 5) bringing practical aspects of the model by using a real world 

intermodal network and presenting managerial insights for intermodal service providers.   

The results verified that this model can significantly reduce future costs for the network 

planer if any disruption happens in the network.   
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2.6.3 RELIABLE MULTI-PERIOD INTERMODAL FREIGHT NETWORK 
EXPANSION PROBLEM 

The last work in this dissertation improves the previous model by considering the following 

contributions: 1) considering multiple periods for expansion decisions, 2) assuming shorter 

periods for routing decisions, 3) proposing a new SA algorithm to solve the mathematica l 

model proposed for this problem ,4) studying different practical aspects of the proposed 

model by using a real size case study and 5) proving the efficiency of multi-period decision 

making in total network costs and resource utilization compared to the existing models in 

the literature
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CHAPTER 3: INTERMODAL NETWORK EXPANSION IN A 

COMPETITIVE ENVIRONMENT WITH UNCERTAIN DEMAND1 

   

 

  

       

 

 

 

 

                                                                 
1 Fotuhi F., N. Huynh. International Journal of Industrial Engineering and Computations. Vol. 6, no. 2, 

2015, pp. 285–304. Reprinted here with permission of publisher. 
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ABSTRACT 

This paper formulated robust optimization models for the problem of finding near-optima l 

locations for new intermodal terminals and their capacities for a railroad company, which 

operates an intermodal network in a competitive environment with uncertain demands.  To 

solve the robust models, a SA algorithm was developed.  Experimental results indicated 

that the SA solutions (i.e. objective function values) are comparable to those obtained using 

GAMS, but the SA algorithm can obtain solutions faster and can solve much larger 

problems.  Also, the results verified that solutions obtained from the robust models are 

more effective in dealing with uncertain demand scenarios. 

3.1 INTRODUCTION 

Intermodal freight transport is the movement of goods in one and the same loading unit or 

road vehicle, which uses successively two or more modes of transport without handling the 

goods themselves in changing modes (United Nations, 2001).  This research deals with the 

locations of rail-highway intermodal terminals where the modal shift occurs.  A significant 

portion of the total cost and time in intermodal services is attributed to the drayage 

movements and intermodal terminal operations.  Thus, the location of an intermoda l 

terminal plays an important role in improving efficiency and attractiveness of intermoda l 

services (Sorensen, Vanovermeire and Busschaert, 2012).    

Most of the intermodal terminal location studies in the literature solve for the optimal 

locations without considering existing terminals in the network.  This assumption is not 

realistic in practice as pointed out by Gelareh, Nickel and Pisinger (2010).  In today’
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 competitive environment, railroad companies are constantly looking to expand their 

intermodal networks to meet customers’ demands and to increase market share.  This is 

often accomplished by incrementally adding a few new terminals at a time.  Solving the 

location problem that takes into account a company’s existing terminals as well as those of 

competitors is more challenging. This study seeks to fill this gap in existing literature by 

developing a mathematical model that addresses competition in intermodal termina l 

location decisions. Competition involves new incoming terminals competing against 

existing terminals in the network for market share. 

There are a few additional challenges involved in developing the proposed model.  The 

first is uncertainty in demand.  Demand for an intermodal terminal is the result of the 

commodity flow originated or terminated in the region where the terminal is located 

(Chiranjivi, 2008).  Accurate long-range prediction of commodity flow is difficult because 

of uncertainty in economic situations and changes in supply chain decisions, infrastructure, 

and regulations.  For example, most freight-related forecasts failed to predict the global 

recession that started in 2009.  Thus, it is crucial for a strategic model to explicitly account 

for uncertainty in demand.  The second challenge is determining the appropriate throughput 

capacity for the new terminal to avoid the situation of under-equipping the terminal which 

would lead to delays at the terminal (Nocera, 2009) or over-equipping the terminal which 

would lead to underutilized staff and resources.  Throughput capacity is the total number 

of containers that can be processed by a terminal in a year and is usually expressed in TEUs 

(Twenty-foot Equivalent Units) (Bassan, 2007).   

The objective of this work is to develop a mathematical optimization model which 

addresses all of the challenges and issues mentioned above.  Specifically, the model seeks 



27 

 

to determine the locations for the new intermodal terminals and their throughput capacities 

while considering competition and uncertainty in freight demands.  The developed model 

contributes to the existing body of work on intermodal terminal location by explicit ly 

incorporating competition and uncertainty in freight demand in the formulation. The 

proposed model is applicable for intermodal networks where private rail carriers are 

responsible for their own maintenance and improvement projects; the U.S. intermoda l 

networks operate under this model.   

3.2 LITERATURE REVIEW AND BACKGROUND 

3.2.1 RAIL-HIGHWAY INTERMODAL TERMINAL LOCATION PROBLEM 

Studies of terminal locations are performed at strategic planning level (Crainic, 1998) 

which involves different stakeholders with different objectives (Sirikijpanichkul and 

Ferreira, 2005).  Over the years, the hub-based network structure has emerged as the 

preferred method for moving intermodal shipments (Ishfaq and Sox, 2011). A hub is a 

location where flow are aggregated/disaggregated, collected and redistributed (Arnold, 

Dominique and Isabelle, 2004).   Similar to hubs, intermodal terminals are the transfer 

points at which containers are sorted and transferred between different modes (Meng and 

Wang, 2011).  The emergence of hub based intermodal networks indicates that economies 

of scale are the principle force behind their preferred design (Slack, 1990).  Also, because 

intermodal networks are combinations of their respective modal networks, it is natural that 

the hub network has emerged as the most suitable network design for intermodal logist ics 

(Bookbinder and Fox, 1998). 

In an intermodal hub network, smaller shipments are gathered and consolidated at 

distribution centers.  At the next step, all consolidated containers are collected from these 
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distribution centers and shipped to the terminals via drayage and then between a set of 

transfer terminals (i.e. rail-highway intermodal terminals).  Finally, trucks transport loaded 

containers to their final destinations (Ishfaq and Sox, 2011).  Rutten (1995) was the first to 

find terminal locations which will attract enough freight volume to schedule daily trains to 

and from the terminal. Arnold et al. (2004) developed a rail-highway intermodal termina l 

location problem with each mode as a sub-graph and considered transfer links to connect 

these sub-graphs to each other.  Racunica and Wynter (2005) developed a model to find 

terminals in a rail-highway intermodal network.  They considered a nonlinear concave-cost 

function to find these optimal hubs.  Groothedde et al. (2005) developed a hub-based 

network for the consumer goods market.  They compared the single highway mode with a 

highway-water intermodal.  They showed that the intermodal approach is more effective 

than the unimodal approach (with just highway).  Limbourg and Jourquin (2009) proposed 

a model to find hub locations in a rail-highway intermodal network.  They developed a 

heuristic to find hub locations for a road network and found rail links which passes through 

these hubs. Meng and Wang (2011) proposed a mathematical program for a hub-and-spoke 

intermodal network.  The main difference between their model and earlier works is that it 

considered more than one pair of hubs for moving containers from an origin to a 

destination.  Their work considered a chain of terminals to move shipments with different 

types of containers.   

Mode choice has been incorporated into the hub location models.  Ishfaq and Sox 

(2010) developed an integrated model for an intermodal network dealing with air, highway 

and rail modes.  Their model allowed for direct shipment between origin and destination 

pairs using highway.  It found the optimal locations for intermodal terminals and 



29 

 

distribution of shipments among pairs of intermodal terminals by minimizing the total 

transportation cost, transfer cost at the terminal and fixed cost of opening a hub.  In their 

later work, they proposed a rail-highway hub intermodal location-allocation problem 

(Ishfaq and Sox, 2011).  Their model found the optimal location of hubs as well as optimal 

allocation of shipments for an OD pair to selected hubs.  Their model considered the fixed 

cost of opening a terminal, transportation cost, and the cost of delay at terminals.  Sorensen, 

Vanovermeire and Busschaert (2012) modeled a hub-based rail-highway intermoda l 

network with the option of direct shipment.  Different fraction of shipments for an OD pair 

can use highway only or a combination of highway and rail (i.e. intermodal).  Fotuhi and 

Huynh (2013) proposed a model which jointly selected terminal location, shipping modes 

and optimal routes for shipping different types of commodities.  Their model allowed 

decision makers to evaluate scenarios with more than two modes. 

3.2.2 TERMINAL THROUGHPUT CAPACITY 

The traditional capacitated facility location problem in which facilities have limited 

capacities has been studied extensively.  Drezner (1995) provided a survey of facility 

location studies with limited capacity.  Some researchers have investigated the location 

planning problems with variable capacities. Verter and Dincer (1995) were the first to 

integrate location decision and variable capacity planning for a new facility.  They 

developed a model to minimize the fixed cost of opening a new facility, variable cost for 

capacity acquisition, and total transportation cost. In the transportation domain, Taniguchi, 

Noritake and Izumitani (1999) were the first to integrate location decision and capacity 

planning (number of berths) for public logistic terminals in urban areas that serve only the 

truck mode.  Their proposed model selected logistic terminals from a set of predefined 
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candidate locations and found the optimal number of berths for each terminal.  Tang et al. 

(2013) developed a model to find the best location for a logistics park, size of park and 

allocation of customers to it.  They considered different layouts for the park and their model 

selected a lay out which can serve all demands.  There has been limited work in capacity 

planning of intermodal terminals (Ballis and Golias, 2004, Nocera, 2009).  To date, no 

study has examined intermodal terminal location and terminal size jointly. 

3.2.3 COMPETITIVE LOCATION 

All the aforementioned studies addressed the problem of designing a new network without 

consideration of existing road networks and rail terminals.  In 1999, Marianov et al. 

developed a competitive hub location model that considered existing terminals in the 

network. They assigned the demand for each OD pair to a pair of potential hubs to 

maximize this newcomer’s market share.  Transportation cost was the main factor for these 

assignments.  In 2009, Eiselt and Marianov proposed a model of competitive hub location 

problem by incorporating a gravity model based on the work of Huff (1964).  They 

allocated the demand to pairs of new hubs based on their attractions to maximize market 

share for the new hubs.  Huff’s gravity model is a popular approach for estimating the 

captured market share by a facility.  Based on this model, the probability that a customer 

chooses a facility is proportional to the attractiveness of the facility and is inversely 

proportional to the distance to the facility.  Eiselt and Marianov (2009) mentioned that their 

model is suitable for a new incoming airline that has to compete with existing airlines.  

Chiranjivi (2008) studied the environmental impact of adding a new terminal to an existing 

rail-highway network.  They introduced factors that made a terminal attractive and 

investigated the effects of the new terminal on accessibility and mobility of the intermoda l 
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network.  Gelareh et al. (2010) studied the competitive hub location for a liner shipping 

network.  They considered a newcomer liner service provider which has to compete with 

existing liner service companies.  They introduced an attraction function to estimate the 

total captured market share by a new terminal by considering the travel time from the origin 

to the destination using that specific terminal and transportation rate.  Lüer-Villagra and 

Marianov (2013) formulated a new competitive hub location problem to find optimal 

locations for a new airline company and optimal pricing to maximize their profits.  They 

modeled consumers’ behaviors using the Logit discrete choice model.  

Table 3.1 provides a summary of capabilities of previous models and this study’s 

proposed model, which extends the work of Eiselt and Marianov (2009) by considering 

more than one mode for a competitive p-hub network as well as uncertainty in demand.  It 

enhances previous models in the area of intermodal terminal location problem by 

considering competition.  As explained previously, competition involves new incoming 

terminals competing against existing terminals in the network for market share.  Although 

Limbourg and Jourquin (2009) considered existing intermodal terminals in their model, 

they did not consider competition between the new terminals and existing ones. To our 

knowledge, competition has not been addressed in any intermodal network design studies.  

As indicated in Table 1, this paper advances the modeling of intermodal network design 

by considering competition and the joint location and terminal throughput capacity 

decisions. Additionally, it is the first intermodal network design study to use robust 

optimization to address uncertainty in demand.  A brief overview of robust optimization as 

well as relevant literature is presented in the next subsection.  

3.2.4 BACKGROUND (ROBUST OPTIMIZATION) 
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In developing models for real world systems, researchers often face incomplete and noisy 

data (Mulvey et al., 1995).  To address uncertainty in data, researchers have developed a 

technique called robust optimization.  It deals with uncertainty by considering a set of finite 

discrete scenarios for the parameter with noisy data and finds a solution that is near-optima l 

for any realization of scenarios (Snyder and Daskin, 2005).  

Min-max regret and minimum expected regret are the two common robust optimiza t ion 

approaches (Kouvelis and Gu, 1997).  To understand these approaches, consider a situation 

where S denote a set of s finite scenarios for the uncertain parameter and x represents a 

feasible solution for the robust problem.  Let  )( xZ s
 represents the solution of the feasible 

point x in scenario s and 
* sZ  represents the optimal solution for scenario s (over all x).  The 

min-max regret finds a solution which minimizes the maximum “regret” value for all 

scenarios and is formulated as follows.  

)))((( *

ss
SsXx

ZxZMaxMin 


        (3.1)  

The “regret” represents the difference between )(xZ s
 and *

sZ .  For maximizat ion 

problems, the regret is negative for each scenario; thus, for these problems, the objective 

of the robust model is to maximize the minimum regret.  For situations where there is 

information about the probability of each scenario occurring, the minimum expected regret 

approach is preferred, which will find the near-optimal solution by minimizing the 

expected regrets over all scenarios (Daskin et al., 1997).   
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            Table 3.1 Comparison of current paper’s and related studies’ capabilities 
 

Reference Model Features Variables Goals 

Parameter Competitive Mode location capacity allocation responsiveness profit cost 

certain uncertain single intermodal 

Marianov et al., (1999)            

Taniguchi et al., (1999)            

Arnold et al., (2004)            

Groothedde et al., (2005)            

Racunica and Wynter (2005)            

Eiselt and Marianov (2009)            

Huang and Wang (2009)            

Limbourg and Jourquin 

(2009) 

           

Gelareh et al., (2010)            

Ishfaq and Sox (2011)            

Meng and Wang (2011)            

Makui et al. (2012)            

Sorensen et al., (2012)             

Lüer-Villagra and Marianov 

(2013) 

           

Current paper            
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There are a few studies in the literature that have utilized robust optimization to 

address uncertainty for hub location problems.  Huang and Wang (2009) were the first to 

use robust optimization to find the near-optimal hub-and-spoke network design for an 

airline given uncertain demands and costs. They developed a multi-objective model and 

minimized total cost for all scenarios.  Makui et al. (2012) developed a robust optimiza t ion 

model for the multi-objective capacitated p-hub location problem to deal with uncertainty 

in the demands for each OD pair and the processing time for each commodity at a hub.  In 

the area of competitive location problem, Ashtiani et al. (2013) were the first to develop a 

robust optimization model for the leader-follower competitive facility location problem.  

This class of problems deals with the situation where the leader and follower have existing 

facilities, and the follower wants to open some new facilities, but the number of new 

facilities for the follower to open is uncertain.  The objective of the leader-follower model 

is to maximize the market share for the leader after the follower has opened its new 

facilities.  

3.3 MODELING FORMULATION 

Consider a railroad company’s rail-highway intermodal network that has competing 

railroad companies’ infrastructure.  Let ),( 11 ANG  and ),( 22 ANG  represent road and rail 

networks, respectively.  Thus, 
1N  represent cities, and 

2N  represent intermodal termina ls 

in the rail network.  Similarly, 
1A  represent the highway links in the highway network, and 

2A  represent the railway links in the rail network.  A shipment from origin i to destinat ion 

j can be transported either directly by truck only via links on 1A or by a combination of 

truck and rail (i.e. intermodal).  The intermodal option involves trucks transporting cargo 
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from origin i to terminal k via links on 
1A , then trains transporting cargo from terminal k 

to terminal m via links on 
2A , and finally trucks transporting cargo from terminal k to 

destination j via links on
1A .  Let W represent the set of selected OD pairs with demands 

between them from 
1N cities. 

Suppose a railroad company decided to expand its network by opening q new 

terminals from 
newN  candidate locations. It wants the new terminals to attract as much 

demand as possible (i.e. increase its market share).  However, the railroad company already 

has 
eoN  terminals in the proximity of the market area for candidate locations and its 

competitors have 
ecN terminals in the same area.  Although there are more termina ls 

operating in the network, the new incoming terminals only have to compete against those 

in the sets
eoN  and 

ecN ; it is assumed that only those terminals located in the proximity 

of the candidate locations will have a direct impact on the market share of new incoming 

terminals. Thus, 
2N , as defined previously, includes the railroad company’s and 

competitors’ existing terminals around candidate locations, the new terminals at candidate 

locations, and all other terminals in the network.  Logically, the company should locate the 

new terminals at some distance, M, away from its existing ones to avoid serving the same 

market.  Note that M may have different values based on the demographics of different 

parts of the network.  According to Cunningham (2012) M has a value of 100 miles for the 

Eastern parts of the U.S. and 250 miles for the Western parts. Thus, the decision that the 

railroad company has to make is where to open the new terminal(s).  Let this decision be 

defined by the binary decision variable ky , which is equal to 1 if the candidate termina l 

newNk   is selected.  In a prescreening process, candidate terminals with a distance of less 
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than M from the company’s existing terminals are excluded from the list of eligib le 

candidate terminals. If location k is selected, then the binary decision variable 
kmx  indicates 

whether there is a connection between terminals k and m.  If neither k nor m is open, then 

kmx  cannot be 1.  For existing terminals ),( mk , 
kmx  is 1. 

Shipments going from origin i to destination j can be transported via multiple routes 

if there are several intermodal terminals available.  The utility (i.e. attractiveness) of the 

intermodal option via the pair of terminals ),( mk  for shipments going from origin i to 

destination j can be defined as follows.  

)(

1

mjkmik

ijkm
ddd

u


         (3.2) 

where 
mjik dd  and  denote the delivery and pickup drayage distances, respectively, and 

kmd  

is the line-haul distance.  The term α in Equation 3.2 can be used to give less significance 

to those facilities that are far from the origin and/or destination (Huff, 1964).  In this study, 

a simple inversely proportional relationship is assumed; thus  is set to 1.  Similarly, the 

utility of the truck-only option for shipments going from origin i and destination j is defined 

as follows. 

ij

ij
d

v
1

     (3.3) 

The Huff gravity functions, Equations 3.2 and 3.3, can be used to compute the utilit ie s 

of the two competing modes, intermodal and truck-only.  Using these utilities, the 

probability that a shipper chooses a particular mode can be calculated using the Logit 

choice model.  The probability that a shipper uses the intermodal option via termina ls 

),( mk  to transport cargo from origin i to destination j is: 
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Similarly, the probability that shippers choose the truck-only option to move their cargo is: 



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

}{),(}{)or  ( 2 newnew NNmk

ijkmijkm

Nmk

kmijkm

ij

ij
vxuxu

v
p       (3.5)  

It is assumed that all demands are met.  That is, for a specific OD pair (i,j), the sum of all 

probabilities is equal to 1 ( 1
),(

 ij

mk

ijkm pp ).  

In this study, we accounted for the fact that future freight demand is uncertain and that 

we have a finite set of demand scenarios.  Let these scenarios be denoted as }..1{ sS  .  The 

demand for OD pair ),( ji  under scenario s is denoted as
s

ijh .  The probability that demand 

between nodes i and j is served by the intermodal option via terminals ),( mk  is 
ijkmp . It 

follows that the total demand (i.e. market share) captured by terminals ),( mk  for OD pair 

(i, j) under scenario s is ijkm

s

ij ph .  The higher the probabilities for pairs of terminals ),( mk  

as computed by Equation (3.4), the more demand the company will attract and thus increase 

its market share when either k or m is a new terminal.  

In addition to determining the locations for the new terminals, our model also seeks to 

determine the annual throughput capacity, kz , for the new terminal k which depends on its 

total attracted demand.  This capacity needs to be sufficiently large to accommodate all 

demand scenarios. The objective of this problem is to maximize the new terminals’ profits 

for all scenarios by maximizing the minimum regret.  The revenue generated by terminal k 

per container is denoted as kr .  It is a fee that a shipper pays to the terminal for handling 
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the container.  There is an annual fixed cost 
kf  to operate the terminal, in addition to an 

operating cost 
kc for handling the container.  

3.3.1 MATHEMATICAL FORMULATION 

The mathematical model for the max-min intermodal terminal location problem in a 

competitive environment can be formulated as follows (P1). 

P1: 

 ZMax           (3.6) 

SsZOzcyfrph s

Nk

kk

Nk

kkk

NmkWji

ijkm
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ij

newnewnew
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          ,



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k qy          (3.9) 

2,          , NmNkyx newkkm         (3.10) 

2,          , NkNmyx newmkm         (3.11) 

SsNkzhphp newk

s

ijijmk

NmWji

s

ijijkm 


,,)(
2,),(

    (3.12) 

2,,0},1,0{, NmNkzxy newkkmk        (3.13)  

The objective function (3.6) maximizes the minimum regret. *

sO  in constraints (3.7) 

is the optimal objective function for scenario s that is obtained by considering scenario s 

alone. The regret associated with each scenario is the difference between the total profit of 

new terminals comprising all scenarios and *

sO .  Constraints (3.7) show that each scenario’s 

regret is greater than a minimum regret.  Constraints (3.8) compute the probability that the 
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intermodal option is used with the demand allocated to each pair of open termina ls. 

Constraints (3.9) guarantee that q terminals will be selected. Constraints (3.10) and (3.11) 

ensure that the variable 
kmx  is 0 if either terminal k or m is not selected.  Constraints (3.12) 

define throughput capacities of selected terminals.  Constraints (3.13) define the range of 

the decision variables. To obtain the regret of scenario s in constraints (3.7), *

sO  is 

determined by solving the following model (P2). 

P2: 





newnewnew Nk

kk

Nk

kkk

NmkWji

ijkm

s

ijs zcyfrphMaxO
)or  (,),(

:      (3.14) 

s.t: )13.3()8.3( . Eqs           

The first term in objective function (3.14) is the total revenue generated by the new 

terminals.  The second term is the annual fixed cost of operating the terminals, and the third 

term is the variable cost of operating the terminal. 

If the decision maker knows the probability of each scenario occurring, then the 

objective of the robust optimization model would be to minimize the expected regret.  As 

mentioned previously, the regret for problems with maximization objective is negative so 

the robust model’s objective function is to maximize the expected regret.  If scenario s 

occurs with probability s  and sR shows its related regret, then the maximum expected 

regret model is defined as follows (P3). 

P3: 


s
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)13.3()8.3.( Eqs           

expO  in Equation (3.15) maximizes the expected regret over all scenarios and 
sR in 

Equation (3.16) is the regret of each scenario.  

3.4 SOLUTION METHOD 

The aforementioned model is a nonlinear integer program, which is NP-hard (Krumke, 

2004) and is not solvable by standard Mixed Integer Nonlinear Programing solvers (Eiselt 

and Marianov, 2009) while it may be possible to find the exact solutions for realistic-s ized 

problems by exhaustive enumeration, such an approach will likely take days to solve, even 

with today’s high performance desktops and workstations.  For this reason, there is an 

increasing body of work that focuses on researching efficient algorithms using meta-

heuristics such as tabu search and genetic algorithm to find the exact solutions for strategic 

problems (e.g., Ishfaq and Sox, 2011, Meng and Wang, 2011).  In this research, a simulated 

annealing algorithm is proposed to find the optimal solutions for the three models discussed 

above: P1, P2 and P3.   

3.4.1 BACKGROUND ON SIMULATED ANEALING (SA) ALGORITHM 

Kirkpatrick, Gelatt and Vecchi (1983) were the first to propose SA to solve combinator ia l 

optimization problems.  The SA algorithm begins with an initial feasible solution and then 

its neighborhood is randomly searched for improvement.  If the objective function 

improves, the solution is accepted and it becomes the new solution from which the search 

continues.  Otherwise, it will accept a non-improving solution with a probability 

determined by the Boltzmann function exp(-D /T ), where   is the difference between 

the objective functions of two consecutive iterations and T is the temperature at that 

iteration.  This probability is high at the beginning of the algorithm.  It increases the chance 
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of accepting a worse solution to avoid getting trapped in a local solution, but it decreases 

as the algorithm proceeds (i.e. cools down to its frozen temperature).  Readers are referred 

to Kirkpatrick et al. (1983) for a complete description of the SA algorithm.  

For SA, the cooling schedule requires a starting temperature 
0T , cooling rate  , 

maximum number of iterations at each temperature
maxK  and the stopping number  . 

0T  

is selected so that the probability of accepting non-improving solutions is 
0P .  A number 

of non-improving neighborhoods for the initial solution which is a fraction of the 

neighborhood size (5% to 10%) are evaluated and their average cost increase (for cost 

minimization problems) C is computed. Then 
0T  is computed based on this formula 

0
0

)exp( P
T

C   [39].  A simple decay function of the parameter   updates the 

temperature at the end of each epoch r; i.e. )()1( rTrT  . The value of   is typically 

between 0.85 and 0.95, with higher values generating more accurate results but with a 

lower convergence rate.  The number of iterations 
maxK is determined by the neighborhood 

size. The algorithm terminates when no improvement is found in a specific number of 

temperatures  .   

SA has been applied to a number of facility location problems and hub location 

problems (Murray and Church, 1996, Ernst and Krishnamoorthy, 1999, Arostegui et al., 

2006).  Drezner et al. (2002) were the first to apply SA for solving Huff-like competitive 

facility location problems. They proposed five different algorithms and showed that SA 

has promising results.  The next subsection discusses how the SA algorithm was applied to 

solve the developed models. 

 

http://link.springer.com/search?facet-author=%22A.T.+Ernst%22
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3.4.2 PROPOSED SIMULATED ANEALING ALGORITHM 

In this subsection, how the SA was adapted to solve P2 is first discussed.  Then, how it was 

modified to solve P1 and P3 is presented. 

A feasible solution for P2 is any configuration of q new terminals and their capacities. 

Thus, among the candidate locations, the ones that are furthest from the company’s existing 

terminals are selected as the initial set of terminals.  In this problem, constraints (3.10) and 

(3.11) may be replaced by the following equation: 

newmkkm Nmkyyx  )or  (},min{       (3.17) 

Equation (3.17) indicates that 
kmx values are determined based on the initial terminal set. 

The parameters
ijkmu , 

ijkmp  and 
kz  are computed based on y and x values. 

ijkmu  values are 

determined based on the distances to terminals regardless of the terminal being open or not; 

thus, they remain constant through the end of the algorithm.  The complete neighborhood 

for a solution is the set of all solutions found by closing one terminal and opening a closed 

terminal from the set of unselected terminals.  For this problem, the neighborhood size is 

q* )( qNnew  . Given an incumbent solution, one of the neighboring solutions is selected by 

closing the terminal with the highest fixed and variable costs and opening a candidate 

terminal that is furthest from the set of unselected terminals. From this new terminal set 

(solution), the kmx , 
ijkmp  and kz values are computed and objective function (3.14) is 

evaluated.   

For this problem, 10% of a neighborhood is evaluated to compute 0T . Initial testing 

found that the SA algorithm obtained optimal solutions for small cases with 9.0  and 
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3 . Thus, these values were used for larger problems as well, but with a small increase 

in   based on the problem size. The overall algorithm for P2 is outlined in Figure 3.1.  

1,,, *

0  KyyOOTT initialinitial
, 00  , 

res temperatuimprovingNon  :max     
initialbest OO  , reTemperetauFrozen :minT  

     Repeat while 
max0min    orTT  

         Repeat while 
maxKK   

                ),,( newnewnew Ozy  = Generate a neighborhood  

                *OOnew   

                If 0  

                   
newnew OOyy  *,  

                Else if  rande T  /
 

                    
newyy   

                 End 

           If *OObest   

                100   

           Else 

                 *OObest   

            End 

          TTK  ,1  

 

Figure 3.1 Simulated annealing algorithm for solving P2. 

The SA algorithm discussed above can also be used to solve P1 and P3 with a minor 

change.  The capacity constraints (3.12) in P1 and P3 determine the throughput capacity of 

open terminals under each scenario.  It should be sufficiently large to accommodate any 
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realization of demand values; thus, at each iteration of the SA algorithm the throughput 

capacity 
kz  for terminal k with 1ky  is computed as ))((max

2,),(

s

ijijmk

Nmwji

s

ijijkm
S

hphp 


.   

3.5 COMPUTATIONAL EXPERIMENTS 

The SA algorithm was coded in MATLAB R2012a, and the developed algorithm for P2 

was tested on several randomly generated networks.  Its performance was compared against 

GAMS/BARON solutions. The Branch-And-Reduce Optimization Navigator (BARON) is 

a GAMS commercial solver designed to find the global solution of Non-Linear Programs 

(NLP) and Mixed Integer Non-Linear Programs (MINLP) (Sahindis, 2013).  All 

experiments were run on a desktop computer with an Intel Core 2 Duo 2.66 GHz processor 

and 8 GB of RAM and their computational times were reported.  

       Table 3.2 Values of parameters used in numerical experiments. 
 

Parameter  Value 

Highway miles Normal(1,000, 100) 

Line haul miles Normal(700, 100) 

Drayage miles Normal(450, 100) 

Fixed cost ($ per year) Uniform(10,000, 30,000) 

Variable cost ($ per container) Uniform(10, 20) 

Revenue ($ per container) Uniform(20, 30) 

Distance (miles) between competing terminals (existing and new) Normal(400, 100) 

Demand (containers) Uniform(100, 300) 

 

In order to examine the performance of SA for P2, 20 experiments with different 

problem sizes were randomly generated.  The parameters for these problems are given in 

Table 3.2.  These values were selected to reflect real world scenarios.  The size of the test 

networks range from 4 to 15 existing terminals, 2 to 15 candidate locations, and 1 to 4 new 

terminals to open.    Theoretically, q can be changed from 1 to N_new.  However, in reality, 

it is likely that the number of terminals that can be opened and be profitable based on the 

demand OD pair pattern, shipper’s expenditures, existing terminals in the market area, and 
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terminal costs will be fewer than N_new.  Thus, for each test network, only a limited range 

of q is solved to find their optimal locations.     

Table 3.3 summarizes the results of the test problems. Column 1 indicates the 

experiment number. Columns 2, 3, and 4 show number of existing terminals in the 

competition area, number of existing terminals far from the competition area, and number 

of candidate locations for the new terminals, respectively.  q in column 5 indicates the 

number of new terminals to be opened.  Columns 6 and 7 show the objective function 

values found by SA (
SAZ ) and GAMS (

GAMSZ ) respectively.  Column 8 shows the gap 

between the ZSA and ZGAMS; gap is computed as )(*100
GAMS

SAGAMS

z

zz 
.  The last two columns 

show the execution time in seconds of SA (
SAt ) and GAMS (

GAMSt ), respectively.  

It can be seen in Table 3.3 that the developed SA obtained the same objective function 

values as GAMS for all experiments. The asterisk in column 6 indicates that the network 

with the corresponding q new terminals yield the optimal profit.  For example, for a 

network with 5 existing terminals and 5 candidate locations (experiment number 6 to 9), 3 

new terminals yield the maximum profit for the company. The execution times indicated 

that the SA algorithm can obtain solutions in much shorter time than GAMS for larger 

problems.  The execution time for GAMS grows exponentially with the problem size. It 

takes more than 6 hours for GAMS to find the optimal solution for a problem with 50 OD 

pairs, 10 existing terminals and 15 candidate locations for the new terminals while SA 

obtains the same results in a few seconds.  GAMS was not able to obtain a solution for 

problems with more than 10 existing terminals and 15 candidate locations due to out of 

memory error.  To show the application of the developed model for larger problems, the 
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two case studies discussed in the next subsections are solved using our developed SA 

method.  

3.5.1 LARGER SIZED INSTANCES 

The robust models P1 and P3 were applied to two larger-sized case studies. The first case 

study involves an actual intermodal network in the U.S. and a set of freight demand 

scenarios derived from the Freight Analysis Framework (FAF3) (Battelle, 2011).  The 

FAF3 database is provided by the U.S. Department of Transportation and it provides 

estimates of freight tonnage, value, and domestic ton-miles by region of origin and 

destination, commodity type, and mode, as well as state-to-state flows.   To demonstrate 

the usability and generality of the developed model and solution approach, the second case 

study uses a larger random network configuration, as well as random demand volume and 

OD patterns.   

3.5.1.1 CASE STUDY 1 

This case study involves an actual intermodal network in the U.S., east of the Mississ ipp i 

River.  In the study area, there are two Class 1 railroad companies, A and B.  Company A 

is considering expanding its network by adding a new terminal in South Carolina (SC).  

The candidate locations are Greenville, North Augusta, Lexington, and Florence.  

According to FAF3, these cities have the highest freight flow in South Carolina. They also 

have a good accessibility to interstates.  Currently, both railroad companies have 4 to 5 

terminals in South Carolina and neighboring states and a total of 18 in the study network.  

The goal of this analysis is to identify the optimal location for the new terminal and its 

throughput capacity.  Figure 3.2 depicts the study area.  
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Table 3.3 Performance of SA compared against GAMS for test problems. 
 

Exp. 
competitinexistingN 

 
otherexistingN 

 
newN  q 

SAZ  
GAMSZ  Ga

p 
(s)  SAt  )(  GAMS st  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

1 2 2 2 1 6,810* 6,810 0 1.6 1 

2 2 2 2 2 1,425 1,425 0 1.2 0.55 

3 3 2 3 1 17,715 17,715 0 2.6 14.18 

4 3 2 3 2 25,205* 25,205 0 3.1 14.45 

5 3 2 3 3 19,816 19,816 0 3.05 37 

6 3 2 5 1 18,558 18,558 0 2.09 25.3 

7 3 2 5 2 25,194 25,194 0 2.18 27.1 

8 3 2 5 3 26,133* 26,133 0 2.15 28.2 

9 3 2 5 4 18,859 18,859 0 2.1 32 

10 4 5 6 1 21,548 21,548 0 2.33 367 

11 4 5 6 2 32,354* 32,354 0 2.19 440 

12 4 5 6 3 31,097 31,097 0 2.44 520 

13 5 7 8 1 24,494 24,494 0 3.7 3663 

14 5 7 8 2 39,303* 39,303 0 2.97 3605 

15 5 7 8 3 31,850 31,850 0 2.6 3720 

16 7 8 10 1 14,214 14,214 0 3.4 15121 

17 7 8 10 2 20,343* 20,343 0 3.25 14700 

18 7 8 10 3 19,384 19,384 0 3.29 16850 

19 7 3 15 1 4,802* 4,802 0 3.2 18050 

20 7 3 15 2 1,272.6 1,272.6 0 5.6 25265 

*Optimal for specified network 

 

The analysis considered only domestic shipments that would use the intermoda l 

option, which are those that need to be transported more than 750 miles and has an annual 

tonnage of more than 125 tons (ITIC manual, 2005).  Live animals/fish, specific 

agricultural products, meat/seafood, alcoholic beverages, pharmaceuticals, plastics/rubber, 

wood products, newsprint/paper, paper articles, printed products, base metals, machinery, 

and furniture are the non-eligible commodities for intermodal transportation, and thus, 

were excluded from the analysis. After disaggregating the FAF3 data for 2040 using the 

proportional weighting method and using population as the surrogate variable, 482 eligib le 

OD pairs were identified from/to SC counties to/from 16 states outside SC.  Considering 

an average of 80,000 lbs as the maximum allowable weight for a 40-foot container, FAF3 

commodity flows were converted to their equivalent container units.   
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Figure 3.2 Map of study area for case study 1. 
 

Figure 3.3 shows the quantity of 2040 demand in number of containers for SC 

counties.  As shown, Greenville, Charleston and their neighboring counties have the 

highest forecasted freight movement. Lexington and Richland counties are also forecasted 

to have high freight movement. Cost-of-living index was used to determine the relative 

relationship between the fixed costs and operating costs between the four candidate 

locations.  Based on this index, Lexington is the most expensive county and parameters for 

the other three locations were computed based on the index.  Google Maps was used to 

determine the drayage and line-haul distances. 
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             Figure 3.3 FAF3 2040 predicted freight demand for SC counties. 

Ten demand scenarios were considered, based on the FAF3 predicted values for 2040.  

Scenario 1 is the FAF3 2040 demand estimate.  Scenarios 2 to 4 are those with demands 5, 

10 and 20% over the 2040 estimate.  Scenarios 5 to 7 are those with demands 5, 10, and 

20% under the 2040 estimate.  Scenarios 8 to 10 considered the possibility of new 

developments that may take place in the industrial counties.   

Table 3.4 shows the best location and its associated capacity for each scenario. If 

investment decisions are made using only the 2040 forecasted demand, then Greenville 

with a throughput capacity of 41,176 TEUs is the optimal location and size.  However, that 

is not the case when other demand scenarios are considered, as illustrated in Table 3.4.  If 

a terminal with a capacity of 41,176 TEU is built (based on the 2040 demand estimate) and 
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scenario 2 occurred, then the terminal will not have enough capacity to meet the demand, 

43,235 TEUs.  This result shows that decision makers need to explicitly account for the  

different demand scenarios.  The analysis showed that even if company A had the budget 

to build more than one new terminal, building just one new terminal is optimal because the 

profit decreases with each additional terminal. 

Table 3.4 Results for individual scenarios. 
 

Row Scenario 
Selected 

terminal 

Capacity 

(TEU) 

1 FAF3 predicted demand for 2040 Greenville 41,176 

2 5% increase in the demand for 2040  Greenville 43,235 

3 10% increase in the demand for 2040 Lexington 44,850 

4 20% increase in the demand for 2040 Lexington 48,927 

5 5% decrease in the demand for 2040 Greenville 39,118 

6 10% decrease in the demand for 2040 Greenville 37,059 

7 20% decrease in the demand for 2040 Greenville 32,941 

8 50% increase in the demand in Charleston, Horry, 

Beaufort and Berkeley counties  

Lexington 46,595 

9 50% increase in the demand in Lexington, Richland and 

Aiken counties 

Greenville 42,960 

10 30% increase in the demand in Greenville, Spartanburg, 

York, Richland, Lexington, Charleston, Berkeley, 

Beaufort and Horry counties 

Lexington 50,215 

 

Table 3.5 presents the results for the robust models P1 and P3.  Column 1 shows how 

many scenarios are considered for each experiment. Column 2 shows which scenarios are 

considered, i.e. 1-3 refers to scenarios 1 to 3.  Columns 3 and 4 indicate the optimal 

objective functions for P1 and P3, respectively.  The selected site by P1 and P3 are 

presented in columns 5 and 6 and their associated capacities are shown in columns 7 and 

8, respectively.  The last two columns show the execution times of P1 and P3, respectively. 

Greenville is the optimal location, but its capacity changes with inclusion of different 

scenarios in the decision for both models.  These results indicated that the demand 

scenarios play a key role in determining the throughput capacity of the terminal for both 

robust models.  It is noted that in scenario 1 (row 1 of Table 3.4), almost half of the freight 
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demands reside in the northern counties (i.e. Greenville, Spartanburg, York, Pickens and 

Anderson).  Thus, Greenville was a suitable location to meet the demand for scenario 1 

since it is located furthest north among the candidate locations. 

Table 3.5 Solutions of the robust models: Z for P1 and O for P3. 
 

# of 

scenarios 

scenarios *Z  
*

expO  
)(Zy  )( expOy  )(Zz  )( expOz  

Zt  
expOt  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

2 1-2 -146690 -110020 Greenville Greenville 43235 43235 8.62 7.26 
3 1-3 -293380 -212850 Greenville Greenville 45294 45294 9.71 9.04 

4 1-4 -586760 -491980 Greenville Greenville 49412 49412 10.14 10.31 
5 1-5 -733460 -505480 Greenville Greenville 49412 49412 11.36 11.83 
6 1-6 -880150 -552190 Greenville Greenville 49412 49412 12.76 13.83 

7 1-7 -1173500 -587500 Greenville Greenville 49412 49412 15.18 14.55 
8 1-8 -1173500 -508380 Greenville Greenville 49412 49412 48.78 16.35 
9 1-9 -1173500 -476940 Greenville Greenville 49412 49412 50 17 

10 1-10 -1267200 -432180 Greenville Greenville 50726 50726 87 20 

   

To illustrate the impact of probabilities on site selection using P3, a set of four 

scenarios (1, 8, 9 and 10) with various probabilities was considered and the results were 

compared to those obtained by P1.  Recall that Greenville was the optimal site for P1 

regardless of probability values. It can be observed in Table 3.6 that Greenville is the 

optimal location with higher probabilities for scenarios 1 and 9, but Lexington became the 

optimal site when scenarios 8 and 10 have higher probabilities (highlighted in Table 3.6).  

This is because of the higher freight demands in central and southern counties (Richland, 

Lexington, Charleston, Berkeley, Beaufort and Horry) in scenarios 8 and 10. These results 

verified that demand scenarios and their probability values are significant factors in site 

selection. 
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Table 3.6 Impact of scenario probabilities on terminal selection. 
 

Experiment Scenario probabilities Selected 

Terminal Scenario 1 Scenario 8 Scenario 9 Scenario 10 

1 0.5 0.1 0.1 0.3 Greenville 

2 0.4 0.1 0.1 0.4 Greenville 

3 0.3 0.1 0.1 0.5 Greenville 

4 0.2 0.1 0.1 0.6 Greenville 

5 0.1 0.1 0.1 0.7 Lexington 

6 0.1 0.3 0.2 0.4 Lexington 

7 0.2 0.15 0.05 0.6 Lexington 

 

3.5.1.2 CASE STUDY 2 

While case study 1 involves an actual intermodal network, its characteristics led to 

predictable results.  To gain additional insights, case study 2 used a random network with 

various scenarios of OD pair patterns and demand volumes.  The random network, 

generated on a 1,000 by 1,000 miles grid, has 15 existing terminals and 15 candidate 

locations. The objective was to find the optimal locations for up to 5 new terminals and 

their corresponding throughput capacities.  Figure 3.4 depicts the intermodal network 

utilized in case study 2, with the 15 candidate locations (with their IDs labeled) and 15 

existing terminals.  It was assumed that there exists 20 cities, located randomly within a 

radius of 100 miles around each existing and candidate terminal.  Given a combined total 

of 30 existing and candidate terminals, there is a total 600 cities in the intermodal network.  

The locations of the cities, represented by (x, y) coordinates, were generated as follows. 

 sin,cos  tt yyxx  

 

where β is a random number between 0 and 100 which defines the distance (in miles) 

between the city and the terminal t, and θ is a random number between 0 and 360 degree. 

),( tt yx denotes the coordinates of the terminal t.  1000 OD pairs were randomly generated 
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from the 600 cities with a Euclidean distance of more than 500 miles because the 

intermodal option is not applicable for shorter distances.  Note that although there are 15 

existing terminals in the network, each candidate terminal only has to compete with those 

located within a 300 miles radius from it.  

 
                    Figure 3.4 Network layout for case study 2. 
 

Monte Carlo simulation was used to generate up to 45 scenarios for the OD patterns 

and their demand volumes.  Each scenario involves a different set of OD demand patterns 

and demand volume.  The OD pairs were randomly selected from the set of 600 cities, and 

the demand volume was randomly generated from the distribution U[1,000, 30,000].  The 

case study consists of 9 experiments, with experiment 1 having 5 scenarios and each 

subsequent experiment has an additional 5 scenarios.  It was assumed that shippers will not 

select the intermodal option if it has a drayage distance (either pickup or delivery) of more 

than 250 miles.   

Table 3.7 presents the results of the case study. Column 1 shows the experiment 

number.  Column 2 presents how many scenarios were considered for the robust problem.  

Columns 3 and 4 present the optimal terminals and their sizes, respectively.  The results 
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show that locations 9 and 11 were never selected because they are located in isolated areas 

of the network.  Since they both have a much smaller market, it would not be profitable to 

open new terminals at these locations.  On the other hand, locations 4, 7, 8, 10 and 15 were 

included in the optimal set in more than 50% of the experiments.  Due to the randomness 

in OD patterns, the decision of where to locate new terminals is more complicated than 

when the OD patterns do not change.  The results indicate that as the number of scenarios 

increases, the results of the robust model becomes more consistent.  It be can be seen in 

Table 3.7 that as the number of scenarios gets higher, the solutions converge to a set of 

similar candidate locations.  Specifically, it indicates that regardless of the scenario, 

candidate terminals 4, 7, 10 and 15 should be selected.  An interesting observation from 

this case study is that the optimal locations could be identified using a smaller set of 

scenarios, but the optimal throughput capacities will need to use a much larger set of 

scenarios.  In reality, it is unlikely to have scenarios where the OD demand patterns and 

demand volume differ drastically.  Thus, it is expected that the developed robust model 

will be able to identify both optimal locations and terminal sizes using a relatively small 

number of scenarios.  

Table 3.7 Solution of the robust model P1 for case study 2. 
 

Experiment 

# 

# of 

scenarios 

Selected 

terminals 
Throughput capacity (TEU) 

1 5 7, 10, 14 8,408,300;4,445,800;7,434,700 

2 10 1, 4, 7, 10, 15 4,872,100; 2,817,200; 7,779,800; 5,130,000; 441,300 

3 15 1, 6, 10, 14, 15 625,199; 7,735,600; 3,596,500; 6,790,600; 3,813,900 

4 20 3, 4, 7, 8, 12 6,898,000; 4,335,000; 7,472,000; 15,674,000; 799,400 

5 25 5, 8, 10, 12, 15 15,008,000; 73,300,000; 4,576,000; 7,224,000; 5,156,000 

6 30 2, 7, 8, 10, 15 3,482,000; 8,353,000; 15,369,000; 4,119,000; 5,344,000 

7 35 3, 4, 7, 8, 12 7,430,000; 4,469,000; 15,616,000; 7,961,000; 7,812,000 

8 40 4, 7, 8, 10, 15 5,759,000; 15,224,000; 8,557,000; 5,436,000; 4,985,000 

9 45 4, 7, 10, 13, 15 15,325,000; 15,623,000; 4,225,000; 3,481,000; 3,276,000 
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3.6 MANEGERIAL IMPLICATIONS 

To gain insights on the implications of different managerial actions, two additiona l 

situations were analyzed.  The first involves investigating the sensitivity of drayage 

distance on a terminal’s ability to capture market share, and the second involves 

investigating the managerial option of closing an existing terminal and opening 1 or 2 new 

terminals at the candidate locations.  The analysis was applied using the same network used 

for case study 1 and the 2040 FAF3 predicted freight flow for South Carolina. 

In the proposed model, shipments going from i to j are allocated to terminals (k, m) 

based on their utility.  The longer the drayage distances, from origin i to terminal k and 

from terminal m to destination k, the less attractive the terminal pair (k, m) is to shippers.   

To test the sensitivity of drayage distance on a terminal’s ability to capture market share, 

we analyzed scenarios where shippers have a threshold on the maximum drayage distance 

they are willing to consider.  In other words, we considered scenarios where shippers will 

only consider a terminal pair if their resulting drayage distances is less than their desired 

threshold.  From the modeling standpoint, we effectively set the utility of terminals (k, m) 

to 0 if its drayage distances exceed the threshold.  Table 3.8 presents the results of this 

analysis.  Column 1 shows the different drayage distance thresholds considered. Column 2 

shows how many new terminals will be opened. Columns 3 and 4 present the company’s 

intermodal share and the competitor’s intermodal share, respectively.  Column 5 shows the 

remaining percentage of shipments using the truck-only option. The last column shows the 

obtained best locations for new terminals.  
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Table 3.8 Effect of drayage distance thresholds on intermodal market shares and 
locations 
 

Drayage 

Distance 

threshold  

(miles) 

# of new 

terminals 

Own 

company’s 

intermodal 

share 

Competitor’s 

intermodal 

share 

Truck only 

modal 

share 

Selected terminals 

100 

1 27% 19% 54% Greenville 

2 33% 18% 49% 
Greenville, 

Florence 

3 35% 18% 47% 
Greenville, 

Florence, Augusta 

4 37% 17% 46% All 

250 

1 50% 30% 20% Lexington 

2 53% 27% 20% 
Lexington, 

Augusta 

3 56% 24% 20% 

Lexington, 

Augusta, 

Greenville 

4 59% 22% 19% All 

350 

1 50% 31% 19% Lexington 

2 53% 28% 19% 
Augusta, 

Lexington 

3 56% 26% 18% 

Lexington, 

Augusta, 

Greenville 

4 58% 24% 18% All 

500 

1 51% 31% 18% Augusta 

2 54% 29% 17% 
Augusta, 

Lexington 

3 56% 27% 17% 

Florence, 

Augusta, 

Lexington 

4 58% 25% 17% All 

 

It can be seen in Table 3.8 that when the drayage threshold is low (i.e. 100 miles), the 

truck uni-mode is generally preferred over intermodal.  This is because the lower the 

threshold, the fewer opportunities there are for the intermodal option.  In scenarios which 

have a higher number of new terminals, the railroad company has a better chance to 

increase its market share. The results indicate that when the drayage distance threshold 

ranges from 250 to 500, there is little difference in market share for intermodal and truck 

uni-mode.  However, increasing the number of new terminals will increase the market share 
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for the railroad company.  It is also worth mentioning that different drayage distance 

thresholds affect the optimal location selection.  As shown in Table 3.8, Greenville is the 

optimal terminal location when there is 1 new terminal and the drayage distance threshold 

is 100 miles, but Lexington becomes the optimal location when the drayage distance 

threshold is 250 and 350 miles.  Thus, an important design consideration in determining 

the optimal locations is the shippers’ drayage distance threshold.  Such information could 

be easily obtained via survey and be incorporated into the model. 

Typically, a railroad company would expand its network by opening new termina ls.  

Another option the manager may want to consider is closing an existing terminal which is 

not attracting enough demand and opening new terminals in more attractive locations.  

Such a situation was investigated.  Two sets of experiments were conducted.  The first 

involves closing one existing terminal and opening one new terminal, and the second one 

involves closing one existing terminal and opening two new terminals. The base case (BC) 

scenario for the first set of experiments involves closing no existing terminal and opening 

no new terminal, and the BC for the second set of experiments involves closing no existing 

terminal and opening one new terminal.  The results shown in Figure 3.5 indicate that by 

closing any of the existing terminals at the indicated locations (see x-axis labels) and 

opening 1 or 2 new terminals, the railroad company will gain market share compared to 

the base case.  The only exception is Charleston.  Note that the market share when closing 

the Charleston terminal is 49.2 % compared to 49.9% of the BC.  Closing the termina l 

located in Atlanta has the highest impact on market share for both cases (opening 1 or 2 

new terminals).  This result suggests that Atlanta terminal is the least attractive termina l 

among the existing terminals.  It should be noted that the greatest increase in the total 
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market share is about 3% (scenario involving closing the Atlanta terminal and opening one 

new terminal).  Thus, the manager will need to conduct a benefit-cost analysis to determine 

whether it is beneficial to close an existing terminal and open a new one.  

 

                    Figure 3.5 Change in market share by closing one existing terminal and opening 
new terminals.  

 

3.7 CONCLUSIONS 

This paper developed a mixed integer nonlinear programming model to find the best 

locations for new intermodal terminals and their capacities in a competitive environment 

with uncertain demand.  Robust optimization models with min-max regret and minimum 

expected regret criteria were used to find solutions which are near optimal for any 

realization of demand scenarios.  A simulated annealing algorithm was developed to solve 

the developed models.  Computational experiments showed that the developed SA 

algorithm was able to find solutions with 0% gap compared to GAMS solutions, but in 

much shorter time for midsize problems.  Moreover, the developed SA algorithm was able 

to solve larger-sized problems that GAMS could not (on a computer with 8 GB of RAM). 
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The results verified that location and capacity decision is more robust when considering 

different scenarios of freight demands.  

This work contributed to the literature of intermodal terminal location problem by 

considering competition between existing terminals and new terminals, terminal capacity, 

and uncertainty in freight demands.  In future work, there are several potential areas for 

improvement.  In the area of competition, it could be enhanced by considering utility 

functions based on transportation rates and multi-period travel times.  In the area of 

terminal capacity, it could be enhanced by considering capacity expansion for existing 

terminals based on predicted freight demands.  Lastly, it could be enhanced by utilizing 

fuzzy or stochastic approaches to deal with uncertainty in freight demands. 

While the proposed model and solution approach have been validated via case studies, 

key limitations should be considered when reviewing study results.  These included: 1) 

choice of network topology and size, 2) accuracy of FAF3 predicted freight flows, 3) 

design of the scenarios and experiments, and 4) objective of the optimization model that 

considers only profit from the new terminal.
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CHAPTER 4: RELIABLE INTERMODAL FREIGHT NETWORK 
EXPANSION WITH DEMAND UNCERTAINITIES AND NETWORK 

DISRUPTIONS2 

 

 

 

 

 

 

 

 

 

 

                                                                 
2 Fotuhi. F and Huynh. N. Networks and Spatial Economics , 2016, pp. 1-29. Reprinted here with 

permission of publisher 
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ABSTRACT 

This paper develops a robust Mixed-Integer Linear Program (MILP) to assist railroad 

operators with intermodal network expansion decisions.  Specifically, the objective of the 

model is to identify critical rail links to retrofit, locations to establish new terminals, and 

existing terminals to expand, where the intermodal freight network is subject to demand 

and supply uncertainties.  Additional considerations by the model include a finite overall 

budget for investment, limited capacities on network links and at intermodal terminals, and 

time window constraints for shipments. A hybrid Genetic Algorithm (GA) is developed to 

solve the proposed MILP.  It utilizes a column generation algorithm to solve the freight  

flow assignment problem and a multi-modal shortest path label-setting algorithm to solve 

the pricing sub-problems.  An exact exhaustive enumeration method is used to validate the 

GA results.  Experimental results indicate that the developed algorithm is capable of 

producing optimal solutions efficiently for small-sized intermodal freight networks.  The 

impact of uncertainty on network configuration is discussed for a larger-sized case study.  

4.1 INTRODUCTION 

A robust freight transport system is a key contributor to the success of the U.S. economy 

(Ortiz et al., 2007).  However, the existing freight transport system is running at its capacity 

due to increase of trades and an aging infrastructure. Thus, it has a limited buffer to handle 

the severe disruptions (Ortiz et al., 2007).  Disruptions can range from frequent events with 

short term impacts, such as adverse weather, accidents and loading/unloading delays at 

intermodal terminals, to catastrophic natural and man-made disasters with long term 

impacts which can drastically degrade the transport capacity (Ortiz et al., 2007; Miller -

Hooks et al., 2012).  Examples of catastrophic disasters with long term impacts are 
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Hurricane Katrina, which damaged the transportation infrastructure of Gulf Coast area 

(Godoy, 2007) and the West Coast port labor strike which disrupted the U.S. freight supply 

chain (D’Amico, 2002).  Thus, in order for the freight transport system to be able to handle 

such disruptions, there is a need to increase its capacity by incorporating redundant 

resources and backup facilities, and retrofitting existing infrastructure (Peeta et al., 2010; 

Liu et al., 2009). 

Intermodal network design is a strategic level planning problem which finds the 

location of intermodal terminals and assignment of freight flow to the network.  Strategic 

planning decisions deal with network infrastructure creation or expansion (SteadieSeifi, 

2014).  SteadieSeifi et al. (2014) recently provided a comprehensive overview of models 

and algorithms developed for strategic, tactical and operational multi-modal freight 

transport planning problems.  According to this review, most strategic studies neglected 

two important practical aspects.  The first is that the design does not consider existing 

intermodal infrastructure, which is not realistic in practice.  It is more realistic to expand 

an existing freight transport network rather than designing a system from scratch (Gelareh 

et al., 2010).  The second is that prior strategic studies neglected the possible changes in 

demand and supply that may occur over the planning period.  Demand changes are to be 

expected as a result of pricing and supply changes over time, as well as the influx of new 

users in the system (Melese et al., 2016).  Also, as new terminals come online, demands 

and freight flow patterns may be very different from what was envisioned at the network 

design phase (Taner and Kara, 2015).  This research seeks to fill these gaps by developing 

a mathematical model to address expansion of an existing intermodal freight network and 

making it reliable; reliability means that the network can continue delivering service when 
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faced with shocks, such as influx in freight demands or disasters that reduce capacity of 

network links and intermodal terminals.   

This study deals with a rail-road intermodal network expansion problem for a private 

rail carrier that is responsible for its own maintenance and improvement projects, typical 

of U.S. Class 1 railroads.  The strategic decision involves identifying locations for the new 

intermodal terminals, expanding the existing terminals and retrofitting the existing rail 

links in the network to enhance its survivability, given a finite budget.  The strategic 

decision will subsequently affect the operational decision concerning freight flow 

assignment through the network. Thus, the routing decision is factored in the investment 

decision in the proposed model.  A robust optimization approach is utilized to account for 

forecast demand errors and potential supply disruptions.  The optimal decision seeks to 

minimize the total expansion, transport and lost-sale costs of the railroad company; lost-

sale cost is incurred to the railroad company when it fails to deliver shipments on time.   

The rest of the paper is organized as follows.  Section 2 provides a summary of related 

studies.  Section 3 presents the developed mathematical model.  Section 4 discusses the 

proposed solution algorithm to solve the model.  Section 5 discusses the results of the 

numerical experiments.  Lastly, Section 6 provides concluding remarks and future research.   

4.2 LITERATURE REVIEW AND BACKGROUND 

4.2.1 LITERATURE REVIEW 

Intermodal network design has become an emerging body of research within the 

transportation field (Bontekoning et al., 2004).  In an intermodal network, smaller 

shipments are collected and consolidated at distribution centers.  Then, all consolidated 

shipments are loaded into containers and shipped to the intermodal terminals with trucks.  
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The containers are then transported to the destination intermodal terminal using modes 

other than truck (i.e. rail, air, or water).  Finally, the containers are delivered to their final 

destinations with trucks (Ishfaq and Sox, 2011).  In an early work, Arnold et al. (2004) 

developed a model to select optimal locations for rail-road intermodal terminals from a set 

of candidate nodes and to assign the freight flow in the network.  They developed a 

heuristic which utilized a shortest path algorithm for each Origin-Destination (OD) pair.  

Racunica and Wynter (2005) proposed a model for rail-road intermodal hub-and-spoke 

network design with 0, 1, and 2 hubs.  Groothedde et al. (2005) developed a hub-based 

network for a road-barge intermodal network and compared their results with a truck-only 

network.  They showed that the road-barge network is more efficient when the demand is 

steady, while the truck-only network is more capable of handling variations in the demand.  

Limbourg and Jourquin (2009) proposed a model to find terminal locations in a rail-road 

intermodal network.  Their proposed heuristic found terminals for a road network and 

found rail links which pass through these terminals (also referred to as hubs).  Ishfaq and 

Sox (2010) developed a model for an integrated network of rail, road and air which sought 

to determine the optional terminal locations, modes of operation at each terminal, and 

allocation of freight flow to the selected terminals. Later, they proposed a rail-road 

intermodal network design model which incorporated the costs of establishment, 

transportation and delay at intermodal terminals.  They used the all-or-nothing assignment 

approach to assign demands between a certain OD to one pair of terminals which could 

meet the required time window for the shipment (Ishfaq and Sox, 2011).  Sorensen et al. 

(2012) enhanced the work of Ishfaq and Sox (2011) by incorporating the direct shipment 

option in their model.  They also improved upon the all-or-nothing assignment approach 
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by enabling the model to assign different fractions of shipments for an OD pair to truck-

only or rail-road intermodal option.  Vidovic et al. (2011) proposed a model to find optimal 

locations for intermodal terminals by considering the hub catchment area.  They assumed 

that each terminal will attract the demand within a specific radius from it.  They used 

simulation to come up with freight demand due to the limited real world freight data.  

Fotuhi and Huynh (2013) developed an intermodal model that considered more than two 

modes of transport. Their model jointly selected terminal location, shipping modes and 

optimal routes for shipping different types of commodities.  Peker et al. (2015) proposed a 

data-driven approach to find optimal locations for transportation hubs based on demand 

density and spatial features of potential hubs.  They used a clustering-based heuristic to 

find the optimal locations.  Recently, Meng and Wang (2011) proposed a model for 

expanding an intermodal network and taking the existing infrastructure into account.  They 

proposed a model to optimally expand existing links and transshipment lines, as well as 

establishment of new hubs and links given a limited budget, while minimizing the total 

transportation and expansion costs.  Their work is the first study to address the intermoda l 

network expansion problem.  Fotuhi and Huynh (2015) proposed a model to find locations 

for new intermodal terminals by considering terminal’s catchment areas, uncertain demand 

and competition in the network.  In their study a private intermodal service provider 

assumed to expand its network and intend to attract more demand from a competing 

company that has overlapping service areas with it.  

The aforementioned works did not consider the possibility of failures in network 

elements.  However, the occurrence of natural or man-made disasters in any transportation 

network is inevitable.  A number of researchers have studied vulnerability of uni-moda l 
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transportation networks where a disaster could significantly reduce the capability of 

network to meet the demands.  Berdica (2002) studied a vulnerable road network as a 

system that is sensitive to disruptions which could cause significant reduction in 

accessibility and disturbances of traffic.  D'Este and Taylor (2003) noted that it is important 

to identify and strengthen the weakest elements of a network to decrease its vulnerability.  

This is feasible by including reliability criteria in the network design decisions, such as 

what investments to make to strengthen the network pre-disaster and what investments 

needed to enhance post-disaster recovery (Dayanim, 1991). 

In recent years, there is a growing body of work that addresses disruptions in the 

context of network design.  Almost all of these studies considered uni-modal transportation 

networks with risk of link failures.  In an earlier work, Rios et al. (2000) studied a 

capacitated network design problem with arc failure risk.  Their model determined which 

set of links to open and determined their capacities so that the network survives disruptions, 

with the goal of fixed costs minimization.  Viswanath and Peeta (2003) proposed a mult i-

commodity maximal covering network design model for identifying critical routes and 

retrofitting bridges on these routes within a limited budget for earthquake response.  Garg 

and Smith (2008) formulated a survivable multi-commodity network design model with 

arc failures to determine which arcs to construct so that the network survives the future 

disruptions.  In a more general work, Desai and Sen (2010) formulated a reliable network 

design model with arc failure risks which minimized network design costs as well as 

resource allocation cost of mitigating higher risk arcs.  A few researchers have studied the 

retrofitting decision for the existing links of a network.  These studies deal with the tactical 

planning problem of optimally using the existing infrastructure (SteadieSeifi et al., 2014).  
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Liu et al. (2009) developed a model to allocate limited budget to retrofit more critical 

bridges in a network.  They assumed that if a bridge is retrofitted, it would not collapse in 

case of disasters.   Peeta et al. (2010) also proposed a pre-disaster investment model to 

retrofit more critical links in a highway network. 

Disruptions may also affect facilities in a network.  Snyder and Daskin (2005) were 

among the first to study the reliable p-median and uncapacitated facility location problems 

with facility failures.  Their models sought to find location of warehouses to minimize 

transportation cost in normal situations and expected failure cost in disrupted situations.  

They assumed that unreliable facilities have the same failure probability.  Cui et al. (2010) 

relaxed the identical failure probability assumption in Snyder and Daskin (2005) and 

considered facility–dependent failure probabilities in their model.  Shishebori et al. (2014) 

proposed a model for combined facility location and network design problem by 

considering system reliability.  They assumed that failures only happen in network nodes.  

However, their model decided which facilities to open and which links to construct to 

compensate for disruptions.  The risk of facility failures have also been addressed in the 

context of logistics and transportation network design.  Peng et al. (2011) developed a 

reliable logistic network design model with supplier and distribution center failures.  Hatefi 

and Jolai (2014) developed a reliable forward-reverse logistics network model with 

distribution center failure risk.  They considered uncertain demand as well as possible 

disruptions in their model.  An et al. (2011) developed a hub network design model with 

hub failures.  Unlike previously mentioned studies, disrupted facilities in this work were 

transshipment nodes.  Their model identified hubs that can serve as backup hubs for 

disrupted situations.  Their model’s objective sought to minimize the expected cost of 
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routing all flows in normal situations as well as disrupted situations.  Marufuzzaman et al. 

(2014) developed a model for biofuel supply chain design with intermodal termina l 

disruptions.   Their model’s objective was to find locations for intermodal terminals and 

bio-refineries while minimizing total establishment and transportation costs.  The Miller-

Hooks et al. (2012) study is the only prior work that considers disruptions of both links and 

nodes in a transportation network.  They developed a stochastic two-stage model to allocate 

limited budget to improve the resiliency of an intermodal network by choosing a set of pre-

disaster and recovery activities.  This is a tactical planning model which aimed to improve 

the existing infrastructure.  

This work extends the work of Meng and Wang (2011) by considering uncertainty in 

both demand and supply.  Additionally, it combines the tactical planning retrofitt ing 

decisions addressed by Miller-Hooks et al. (2012) with the strategic planning decision.  

This is the first study to jointly address tactical and strategic decisions in the context of 

intermodal network resiliency.  In summary, this work contributes to the literature of 

intermodal network design and expansion by including demand and supply uncertaint ies 

and incorporating retrofitting decisions in the design phase.  As such, these are its technical 

contributions. 

1. A new model for the intermodal freight network expansion problem that jointly 

considers strategic network decisions, tactical retrofitting decisions, and 

operational freight flow assignment. 

2. A robust and reliable model for intermodal network design/expansion, which 

simultaneously takes into account uncertain freight demands and infrastruc ture 

disruptions. 
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3. A hybrid genetic algorithm that is capable of solving the proposed model for 

realistic-sized networks in a reasonable amount of time. A modified version of the 

well-known label setting algorithm is proposed to consider problem-specific 

constraints for routing decisions.  

4.2.2 BACKGROUND (ROBUST OPTIMIZATION)  

Robust Optimization (RO) is an approach to modeling optimization problems under 

uncertainty.  Rather than treating the problem as stochastic, RO treats the problem as 

deterministic and set-based.  That is, instead of seeking an optimal solution in some 

probabilistic sense, RO constructs a solution that is feasible for any realization of the 

uncertainty in a given set.  The motivation for this approach is twofold. First, in many 

applications a set-based approach is appropriate for capturing parameter uncertainty. 

Second, RO makes the problem computational tractable.   

One of the more common approaches in RO is min-max regret which was first 

developed by Kouvelis and Yu (1997). It finds the solution with less distance from the 

optimal values of all scenarios.   This distance is called regret that is the loss incurred for 

not choosing the optimal design for each scenario.  This criterion is suitable in situations 

where the decision maker may feel “regret” if he/she makes a wrong decision. Thus, he/she 

thus takes this anticipated regret into account when deciding a solution.  For example, in 

finance, an investor may have the opportunity to invest in a number of portfolios. Under 

the min-max regret approach, he/she would choose a portfolio that minimizes the 

maximum difference between his/her portfolio’s performance and that of other portfolios.  

In some situations, the min-max criteria is too pessimistic for those decision makers who 

are willing to accept some degree of risk because its solution is affected by the worst case 
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scenarios which are sometimes unlikely to occur.  However, this issue could be addressed 

at the modelling stage by including only relevant scenarios in the scenario set.  The reader 

may refer to the work of Ben-Tal and Nemirovski (2002) and Bertsimas et al. (2011) for 

more information about robust optimization. The followings are basic principles of min-

max regret.   

Let S represent a set of s finite scenarios for an uncertain parameter (e.g. demand, link 

capacity) and x denote a feasible solution for the robust problem. )(xOs is the objective 

function value of scenario s at feasible point x and  *
sO  is the optimal solution for scenario 

s (for all x in the set X).  Regret is represented by the difference between )(xOs  and *

sO .  

The min-max regret obtains a solution which minimizes the maximum regret over all 

scenarios and is formulated as follows. 

)))((( *

ss
SsXx

OxOMaxMin 


 (4.1) 

A few studies in the literature have used the min-max regret approach for facility 

location and supply chain design problems (e.g., Daskin et al., 1997; Ramezani et al., 

2013).  To our knowledge, this is the first study to apply robust optimization to the 

intermodal network design and expansion problem. 

4.3 MODELING FRAMEWORK 

This section presents the formulation of the model that addresses the rail-road intermoda l 

network expansion with network disruptions and demand variations.  This model extends 

the classical intermodal network design problem by considering existing infrastructure.  As 

explained previously, its goal is to identify locations for new intermodal terminals, existing 

terminals to expand, and rail links to retrofit so that the total transportation cost and lost-

sales cost is minimized for normal and disrupted situations. 
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Consider a railroad company which intends to expand its intermodal network.  The 

network representation for this company is given by ),( ANG , where N is the set of nodes 

and A is the set of arcs.  G consists of sub-networks, ),( 11 ANG  and ),( 22 ANG for road and 

rail networks, respectively.  Transfer between modes takes place at intermodal termina ls.  

1N  represents cities, and 
2N  represents intermodal terminals in the rail network.  

2N  

includes existing terminals (
3N ) and candidate terminals (

4N ).  
1A  and 

2A  represent 

highway and rail arcs, respectively.  The network enables freight shipments to be 

transported between OD pairs represented by W  either by truck-only or intermodal.  A set 

of paths 
wP  comprising a chain of arcs is given for each OD pair Ww .  The travel time 

for an intermodal path is computed using the individual links’ travel times and transfer 

times at intermodal terminals.  Note that some paths might be infeasible due to time 

window constraints or because they include candidate terminals that have not been selected 

to be built. 

The proposed model makes the following assumptions: (1) the expanded intermoda l 

terminals, the newly established terminals, and the retrofitted rail links are able to withstand 

disruptions, (2) shipments with late delivery are considered as lost-demand and incur a 

penalty cost, (3) if the shortest path cost for a shipment is higher than the penalty cost for 

lost-demand, the shipment is considered as an unmet-demand, and (4) there is no delay for 

shipments passing through an intermodal terminal that do not require a changing of mode.  

It is assumed that a few expansion designs jj Ll  with a given cost of 
jlj

C
,

and capacity 

of 
jljv ,

 are available for existing terminals 3Nj .  
jlj

C
,

 denotes the cost for labor, 

equipment, and storage space to handle additional 
jljv ,

   containers.  S is a set of scenarios, 
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each of which represents a normal or disrupted situation.  Other parameters used in the 

formulation of the Reliable Intermodal Network Expansion Problem (RINEP) include: 

Parameters 

at :  travel time on link a 

j :  transfer time at intermodal terminal j 

wT :  delivery due date for OD pair w 

ae :  capacity of link a 

j :  capacity of intermodal terminal j 

s
a :  disruption percentage for link a under scenario s 

s
j :  disruption percentage for terminal j under scenario s 

B : available budget for investment decisions 

s
wd :  demand of OD pair w under scenario s 

jF :  fixed cost of opening a new terminal at location j 

ah  : retrofitting cost for rail link a 

w
ak : path-arc incidence (= 1 if link a is used in path k for OD pair w; 0 otherwise) 

w
jk :  path-terminal incidence (=1 if shipments change mode at terminal j in path k for 

OD pair w; 0 otherwise)  

The decision variables are as follows. 

Strategic and Tactical Decision Variables 



 


                                                                              Otherwise0

                              ;locationat  opend is  terminala If1 4N
y

 j
j  



 


                                               Otherwise0

                     d;retroffite islink  If1 2A
z

a
a  
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

 


                                                                                         Otherwise    0

        terminalexistingfor  selected is design expansion  If1 ;
' 3

,

Nl
v

jj

jlj
 

Once the strategic and tactical decision variables are determined, the freight flow is 

assigned to the network.  The flow assignment step considers the following decision 

variables which are scenario dependent. 






                                            Otherwise  0

; scenarioin  path  uses pair  D If1 skwOws
kx  

skwws
kf  scenariofor  path on  pair  ODfor  flowfreight  ofAmount   :  

RINEP Formulation 

ZMinimize                 (4.2) 

Subject to: 

SsZOcfhzCvyF s

wk

k
ws

k

Nj Nj Aa

aaljljjj jj
   

  

,)'( *

,

,,

4 3 2

     (4.3) 
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The objective function (4.2) minimizes the maximum regret over all scenarios.  

Constraints (4.3) ensure that the regret for each scenario is greater than the minimum regret.  

Constraints (4.4) and (4.5) guarantee that the capacity of existing and new terminals are 

not violated, respectively.  Constraint (4.6) ensures the amount of money used for 

establishment of new terminals, expansion of existing terminals, and retrofitting of rail 

links is within the available budget B.  Constraints (4.7) ensure that at most one expansion 

design can be selected for existing terminals.  Constraints (4.8) and (4.9) prevent highway 

and rail link capacities from being exceeded.  Constraints (4.10) assign flows to the paths 

to meet delivery due dates.  These constraints only hold if path k is used for OD pair w.  

Constraints (4.11) and (4.12) ensure that flows are assigned to selected paths and open 

terminals, respectively.  Constraints (4.13) ensure that the total flow shipped over all 

feasible paths between an OD pair equals to the demand for this OD pair.  Constraints 

(4.14) impose non-negativity and integrality on the decision variables.  A Determinis t ic 

Intermodal Network Expansion Problem (DINEP) is used to obtain *

sO  for scenario s which 

can be expressed as follows. 

DINEP: 

   
   wk

k

ws

k

Nj Nj Aa

aaljljjjs cfhzCvyFMinimizeO
jj

,

,,

*

4 3 2

'       (4.15) 
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s.t.: (4.4)-(4.14)                                 

The objective function (4.15) minimizes the total cost, which consists of the cost of 

opening new terminals, cost of expanding existing terminals, cost of retrofitting rail links, 

and transport cost. 

4.4 SOLUTION METHOD 

RINEP and DINEP are both classes of the discrete network design problem which is NP-

hard (Meng and Wang, 2011).  A few researchers have developed algorithms based on 

Lagrangian relaxation and Benders decomposition to solve the robust network design 

problems (Miller-Hooks et al., 2012; Snyder and Daskin, 2006a).  These algorithms 

provide exact solutions; however, as the number of scenarios and network size increase the 

algorithm become less efficient.  For larger-sized problems, it may take several days to 

find a feasible solution, with no optimality guaranteed (Miller-Hooks et al., 2012).  In this 

paper, a new algorithm is proposed in an effort to identify more efficient solution 

algorithms for this class of problems. The proposed algorithm uses GA which has been 

widely implemented due to its ability to find optimal or near-optimal solutions for large-

sized problems (Holland, 1975).  Recently, a few researchers have used GA to solve the 

bi-level network design problems (Meng and Wang, 2011; Peng et al., 2011; Ko and Evans, 

2007).  In these papers, the strategic planning variables were first determined by GA, and 

subsequently the corresponding transportation sub-problems were solved using the 

problem-specific algorithms.  A similar approach is adopted in this paper. 

The proposed algorithm incorporates GA and the Column Generation (CG) method.  

The GA component is used to find values for the strategic decision variables.  Once the 

values for these variables are determined, the flows are assigned to the network by solving 
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a Capacitated Multi-Commodity Intermodal Network Flow Problem with Time Windows 

(CMCINFPTW) for scenario s to find *
sO .  The CG method is used to solve the 

CMCINFPTW.  For the robust problem, S  CMCINFPTW are solved to find sO . There 

are some differences in the GA component for solving RINEP and DINEP; these details 

are provided in subsequent sections.  

4.4.1 CHROMOSOME REPRESENTATION 

The proposed GA comprises a three-part chromosome with binary and integer genes to 

represent the strategic planning variables.  The first part represents the set of candidate 

terminals to open.  The second part represents the rail links to retrofit, and the last part 

represents the existing terminals to expand.  Figure 4.1 illustrates the chromosome 

representation for a solution.  As shown, this chromosome indicates that the problem deals 

with 3 candidate locations for new terminals, 8 rail links to be considered for retrofitt ing, 

and 3 existing terminals to be considered for expansion.  The first part of the chromosome 

indicates that among the 3 potential locations, a new terminal should be opened at location 

2 (=1).  The second part of the chromosome indicates that rail links 3 and 8 should be 

retrofitted (=1).  The last part of the chromosome indicates that expansion designs 2, 1, and 

3 should be selected for the three existing terminals, respectively.  

Note that in the formulation, binary variables are used to determine which expansion 

design to select for an existing terminal.  Thus, an existing terminal with m available 

designs needs m binary genes.  To reduce the number of genes in the chromosome, each 

gene in third part of chromosome stores an integer value rather than a binary value.  The 

integer value denotes the expansion design to select for the existing terminal.  Using this 

representation, for the example illustrated in Figure 4.1, the number of genes in the third 
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part of the chromosome is reduced from 9 (3 terminals x 3 possible expansion designs) to 

3.  

 

 

     

   Figure 4.1 Chromosome representation 

4.4.2 INITIAL POPULATION GENERATION 

Alander (1992) suggested that an appropriate population size for a problem with n decision 

variables in a chromosome is between n and 2n.  Preliminary experiments were conducted 

over this range (n to 2n) and the results indicated that an initial population size of n is 

sufficient.   For the robust model (RINEP), the initial population is generated by includ ing 

the optimal chromosomes of each scenario which are obtained by optimally solving DINEP 

for each scenario separately.  If the number of scenarios is more than n, then n scenarios 

are randomly considered for the initial population.  If the number of scenarios is less than 

n, additional chromosomes are generated by using crossover and mutation operators to 

make the initial population size to be n. Chromosomes (i.e. solutions) that violate the 

budget constraint are discarded from a population.   

4.4.3 GA OPERATORS 

Roulette wheel selection and tournament selection are the two most common GA selection 

methods.  In this study, the binary tournament selection method is used instead because it 

has been shown to generate better solutions for the class of problems considered in this 

study (Chu and Beasley, 1997).  Preliminary experiments tested several crossover 

operators, including one-point crossover, two-point crossover, uniform crossover, and 

0 1 0 0 0 1 0 0 0 0 1 2 1 3 

Part 1 Part 2 Part 3 
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multipoint crossover.  The two-point crossover with 0.8 crossover probability was found 

to generate better solutions and thus adopted in our solution approach.  The mutation 

operation used in this study is that the binary genes have a probability of 0.1 to change 

from 1 to 0 or vice-versa and integer genes (in part 3 of chromosome) have equal 

probability of taking on a value from 0 to the number of available expansion designs.  

4.4.4 FITNESS FUNCTION 

The fitness value (i.e. the objective function value) can be determined given a chromosome 

(solution).  In this study, the fitness value for RINEP and DINEP are computed using 

objective functions (4.2) and (4.15), respectively.  Specifically, after obtaining a solution 

for the strategic problem ),,( zvy  , |S| CMCINFPTW are solved with CG to find flow 

assignment for demands between each OD pair.  Once all the flows are determined, sO  can 

be computed using Equation (4.15) and regret values can be computed for each scenario 

using Equation (4.2). 

As mentioned previously, by fixing the design variables ),,( zvy  , DINEP becomes 

CMCINFPTW.  The CMCINFPTW finds the least cost paths for each OD pair such that 

the capacity of the arcs and intermodal terminals are not exceeded and no delivery delay is 

incurred.  If no such path can be found, a penalty cost is incurred.  This is accomplished by 

assuming that in the network there exists a hypothetical path between the origin and 

destination for the shipment, and that the path has infinite capacity and instantaneous travel 

time (Peng et al., 2011).  The cost of the hypothetical path is set to be the penalty cost for 

each unit of unmet demand.  

CMCINFPTW is a class of the well-known Capacitated Multi-Commodity Network 

Flow Problem (CMNFP) with additional constraints.   CMNFP is NP-hard but can be 
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solved by CG (Ahuja et al., 1993; Yaghini et al., 2012).  CG incorporates a master problem 

which finds the optimal objective value by considering a portion of decision variables as 

basic variables and a pricing problem to find decision variables that can improve the 

objective function if they enter the basis.  This study adapts the CG method proposed by 

Ahuja et al. (1993) to solve the CMCINFPTW for each scenario.  Ahuja et al. (1993) stated 

that the pricing problem for CMNFP is a constrained shortest path problem; one for each 

OD pair which can be solved using the well-known label-setting algorithm from mult i-

period programming.  Hence, an intermodal label-setting algorithm is proposed in this 

paper to solve CMCINFPTW.   

4.4.4.1 INTERMODAL LABEL SETTING ALGORITHM 

Cho et al. (2012) was among the first to propose a label setting algorithm for a mult i-

objective intermodal routing problem with time windows.  Their algorithm sought to find 

the route with the minimum total cost and minimum travel time.  It attached a label to each 

node which included travel time as a constraint and travel cost as the objective function.  

This study adapts their algorithm by adding “capacity” and “mode” to the label to enable 

the modeling of network disruptions as well as consideration of the transfer time and 

transfer cost at intermodal terminals.  “Capacity” is used to check for possible disruptions 

of network elements (link or node).  If the network element is not functional, then the label 

would contain a value of zero for capacity.  “Mode” is used to determine if there is a change 

of mode at an intermodal terminal.  If so, then the transfer time and transfer cost at the 

intermodal terminal are added to the path’s cost and time.  Nodes with a capacity of zero 

and/or a transfer time that leads to a violation of the time window constraints are eliminated 

from further consideration in the algorithm. 
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4.4.5 TERMINATION CRITERIA 

A maximum of 100 (Num_G) generations is used as a termination criterion for the GA.  

The algorithm also terminates if it cannot improve the objective function value for 10 (k) 

consecutive generations.  The key algorithmic steps are presented below. 

Step 0: Set 0,0  kt  

Step 1: Randomly generate n distinct chromosomes satisfying budget constraint. Compute 

fitness value for each chromosome.  Let )( ,, ttt zvy   be the best chromosome in the 

population; let )( **,*, zvy   be the incumbent solution (i.e., 0)( **,*,  zvy ).  

Step 2: If *)*,*,(),,( zvyfzvyf ttt  , then set ),,(*)*,*,( ttt zvyzvy  . 

Step 3: Make a new generation by performing a two-point crossover with a probability of 

cp and mutation with a probability of mp  on selected chromosomes with Binary 

Tournament selection. Check the feasibility of new chromosomes (discard those that 

violate the budget constraint).  Compute fitness value of new chromosomes using Equation 

15. 

Step 4:  Let ),,(/)),,(),,(( 111111   ttttttttt zvyfzvyfzvyf .  If   then set 1kk

Step 5: If maxkk  or GNumt _ , go to step 6.  Otherwise, let 1 tt and go to step 2. 

Step 6: If *)*,*,(),,( zvyfzvyf ttt  , then set ),,(*)*,*,( ttt zvyzvy   and return the best 

solution *)*,*,( zvy  .  

Figure 4.2 represents a flowchart of the hybrid algorithm.  
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      Figure 4.2 Flowchart of the hybrid GA_CG algorithm 

4.5 NUMERICAL EXPERIMENTS 

The proposed hybrid GA algorithm was coded using MATLAB R2014 and the experiments 

were run on a desktop computer with an Intel Core 2 Duo 2.66 GHz processor and 8 GB 

of RAM.  A set of small-sized networks and a larger realistic-sized network were used to 

validate the proposed model and algorithm.  The validation is done by comparing the GA 

results against the EE algorithm results in terms of computational time and objective 

function value.   

4.5.1 SMALL SIZED NETWORK 

To illustrate the consistency of the proposed model, a small hypothetical network is first 

presented and analyzed.  Figure 4.3 depicts the network which includes three existing 
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terminals (nodes 1 to 3), five candidate terminals (nodes 4 to 8), six cities (nodes 9 to 14) 

and thirty links.  Five random OD pairs are selected from cities.   

 
 

  
 

 
 

                    Figure 4.3 Network of the small case study. 

Table 4.1 presents the parameters of the given network.  An incident is assumed to 

happen in node 3 (existing terminal 3) that caused capacity reductions in the four rail links 

connected to this node as well.   

      :: City                                        : Candidate terminal                   : Highway link 

: Existing terminal                    : Rail link                                   : Drayage link 
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Table 4.1 Values of parameters used in small networks 

Parameter  Value  

Travel cost of highway links  

Travel cost of rail links  

Transfer cost at intermodal terminals  

Travel time of highway links 

Travel time of rail links 

Transfer time at intermodal terminals  

Capacity of highway links 

Capacity of rail links 

Capacity of intermodal terminals  

Fixed cost of opening new terminals  

Cost of retrofitting links  

Cost of expanding existing terminals  

Uniform(2,4) 

Uniform(0.1,1.1) 

Uniform(2,3) 

Uniform(1,3) 

Uniform(5,10) 

Uniform(10,30) 

Uniform(1000,3000) 

Uniform(10000,20000) 

Uniform(30000,50000) 

Uniform(500000,1000000) 

Uniform(300000,400000) 

Uniform(200000,300000) 

 

The optimal solution includes building three new terminals in candidate nodes 5, 6 

and 8 as well as expanding node 3 which is the disrupted node.  Table 4.2 presents the 

routing results corresponding to each OD pair.  Column 1 shows nodes selected as origins 

and destinations of ODs.  Columns 2 and 3 depict total demand and delivery time window 

of each OD.  Column 4 presents multiple paths found for each OD pair due to capacity 

limitations of nodes and links. Otherwise, each OD would only use its shortest path.  

Column 5, 6 and 7 show path cost and time and quantity of demand passing through each 

path, respectively.  The travel time of selected paths are within the time window for each 

OD.  Sum of column 7 which shows the quantity of the demand passing through the path 

of each OD equals with total demand of that OD.  The initial capacity of node 3 was 31248 

and 80% of it is assumed to decrease due to disruption.  The remaining capacity is 6249.  

Regarding this limited capacity, only four paths with total flow of 3885 units pass this node 

in the final solution.  To compensate the lack of node 3 capacity, a new terminal should be 

built in node 6 and node 3 terminal must be expanded.   

To validate the GA algorithm for small size networks, five random networks with 6 to 

20 highway nodes, 5 to 7 existing terminals, 3 to 7 candidate locations for new termina ls, 
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30 to 100 links (including rail links), and 5 to 30 demand OD pairs were generated.  Their 

parameters were selected as mentioned in Table 4.1.    

Table 4.2 Routing results of the small case study 

 

OD  Total 

Demand 

Delivery Time 

Window (h) 

Selected Paths Path 

Cost 

Path Travel 

Time (h) 

Flow on 

Path 

9-11 6395 122 9-10-11 

9-1-2-11 

9-10-2-11 

9-5-2-11 

9-14-13-11 

9-14-6-13-11 

9-5-6-3-12-11 

Lost demand 

6.11 

9.59 

7.42 

11.1 

10.41 

11.71 

17.14 

5000 

4.51 

56.81 

6.02 

55.67 

7.06 

8.66 

73.49 

0 

1380 

1067 

20 

906 

1158 

629 

1022 

211 

12-9 15777 131 12-11-10-9 

12-3-6-1-9 

12-3-6-5-9 

12-8-2-5-9 

Lost demand 

9.32 
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Table 4.3 shows the validation results for these five small-sized networks.  Column 1 

shows the structure of the network.  The five numbers in the parenthesis denote the number 

of highway nodes, number of candidate terminals, number of existing terminals, number 

of links, and number of OD pairs.  Columns 2 and 3 indicate the computational time of the 

GA and EE, respectively.  Column 4 shows the gap between the GA objective function 

value and the EE objective function value.  As shown, the proposed GA algorithm was able 

to find the same optimal solution as the EE algorithm, but in a much shorter time.  The 

largest problem among these small-sized networks took the EE algorithm almost four days 
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to obtain the solution while the GA algorithm was able to obtain the same solution within 

a few minutes.  These results demonstrate the efficiency and accuracy of the proposed GA 

for solving the DINEP. 

         Table 4.3 Comparison of proposed hybrid GA algorithm versus EE algorithm for 

solving DINEP 
 

Problem Size GA time (sec) EE time (sec) Gap (%)* 
(6-3-5-30-5) 20 1,100 0.00 
(10-5-5-50-10) 45 1,287 0.00 
(20-5-7-100-20) 135 16,650 0.00 
(20-5-7-100-25) 170 151,350 0.00 
(20-7-7-100-30) 258 232,808 0.00 

EEEEGA ObjObjObj )(*100*Gap      

 

4.5.2 LARGER REALISTIC-SIZE NETWORKS 

To demonstrate the potential real-world application of the proposed model and algorithm, 

a test case is created using a realistic-sized intermodal and highway network and actual 

freight demands.  As mentioned, RINEP and DINEP are both NP-hard problems and 

although EE is able to find the exact solution, a small increase in the network size will 

exponentially increase its computational time and/or lead to insufficient memory on a 

typical desktop computer with 8 GB of RAM (Meng and Wang, 2011).  For this test case, 

the EE algorithm was unable to obtain a solution, and thus, only the GA results are reported. 

The test case involves an intermodal network of a Class 1 railroad which operates in 

the Midwest and on the western side of the U.S.  It is assumed that this company wishes to 

gain a competitive advantage by improving and expanding its network.  Additionally, to 

make its business more attractive to shippers, this company wishes to strengthen its 

network to withstand demand variations and network disruptions.  The options to 
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strengthen the network include opening new intermodal terminals, expanding existing 

terminals, and/or retrofitting existing rail links.   

This company currently has 20 terminals in its intermodal network and it is 

considering establishing new terminals at 10 potential locations.  These candidate locations 

are chosen because they are located near areas with higher disaster risks or freight demands.  

As such, terminals at these locations could serve as backup terminals to deal with demand 

influx and disruptions.  The network includes 45 major cities which are connected via U.S. 

interstates.  Figures 4.4(a) and 4.4(b) show the intermodal rail network and the highway 

network used for the test case, respectively. 

For the purpose of this test case, highway distances and travel times were obtained 

using Google Maps.  Rail miles between intermodal terminals were obtained from the 

railroad company’s website.  It is assumed that the trains move at an average speed of 35 

miles per hour.  Terminals are assumed to operate 24/7 (24 hours per day, 7 days per week) 

and that shipments incur a 24-hour dwell time at the terminal.  The dwell time is 30 hours 

for terminals that are opened 24/5.  The various costs involved in intermodal transport were 

taken from the ITIC Manual (2005).   These include $0.7 transport cost per mile for rail 

movements and $3.64 per mile for truck.  A $150 transfer cost per container at an 

intermodal terminal is used based on a South Carolina freight study.   

The test case used a set of freight demand scenarios from the Freight Analysis 

Framework (FAF3) (Battelle, 2011).  Five demand scenarios were considered based on the 

FAF3 freight forecast demands for the years 2020, 2025, 2030, 2035 and 2040.  The test 

case considers only those shipments that are likely to use intermodal transport, which are 

those with an annual tonnage of more than 125 tons and a distance of more than 750 miles 
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(ITIC manual, 2005).  Assuming an average of 80,000 lbs. weight limit for a 40-foot 

container, FAF3 data were converted to their equivalent container units.  

The test case considered eight disruption scenarios: (1) Burlington Rail Bridge 

collapse (in Iowa), (2) hurricane in Southeast, (3) tornado in Midwest, (4) earthquake in 

Northwest (Washington and Oregon), (5) ice storm in North and Midwest, (6) labor strike 

at Los Angeles and Chicago terminals, (7) disaster in Texas, and (8) rail maintenance in 

Texas and Arizona.  For the scenarios with disrupted links, links which are directly 

connected to the disrupted links had their capacities reduced but their reductions were 

smaller than the disrupted links themselves.   A total of 22 experiments involving different 

disruption and demand scenarios were considered.  We first solved the discrete problem 

(DINEP) for the 22 experiments separately and then investigated the impact of integrat ing 

all experiments for the final decision using the robust problem (RINEP).  

4.5.2.1 EXPERIMENTAL RESULTS FOR DISCRETE PROBLEM 

To investigate the impact of expansion on cost savings, each experiment’s optimal 

cost with expansion is compared against the total transportation cost of the experiment with 

no expansion (case 1) and expansion for only nominal-scenario (case 2); the nomina l 

scenario is the scenario most likely to occur.   

The results are shown in Table 4.4.  Column 1 in Table 4.4 shows the experiment 

number.  Column 2 provides the demand and disruption scenarios considered for the 

experiment.   
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(a) 

 

 
(b) 

 

Figure 4.4 Test case network: (a) Intermodal rail network; (b) Highway network 
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Column 3 provides the difference between the total transportation cost of No-

expansion (case 1) for the experiment and the optimal cost of the experiment with 

expansion, column 4 provides the difference between the total transportation cost of the 

Nominal-scenario expansion (case 2) for the experiment and the optimal cost of the 

experiment with expansion, and column 5 presents the computational time of GA. The 

nominal scenario (Experiment #0 in Table 4.4) is one that considers the demand for 2040, 

but does not account for network disruption.   

The results shown in Table 4.4 indicate that the railroad company will pay an extra 

$250 million (average value of column 3) on average annually if it does not strengthen its 

network to accommodate the growth in freight demand and future disruptions.  This result 

suggests that doing nothing will end up costing the company a significant amount of 

money.  By making some investments to strengthen the network to accommodate the 

nominal scenario, the cost difference decreases to $113 million (average value of column 

4).  These results indicate that it is better (less costly over the long run) for the railroad 

company to make the extra investments to strengthen the infrastructure than not to.  Note 

that some experiments do not incur extra cost compared to the nominal scenario because 

their optimal expansion design is identical to that of the nominal experiment.   

The optimal design of each scenario includes at most two new termina ls.  Brookings 

is selected in 90% (20 out of 22), Fort Smith in 18% (4 out of 22) and St. George in 10% 

(2 out of 22) of experiments.  Since around 80% of demand originates or ends in California, 

a new terminal in Brookings as a backup for Los Angeles and Oakland will significantly 

reduce the burden of congestion in these two terminals to deal with fluctuations in demand 

and possible disruptions.  Optimal links to retrofit and terminals to expand are more 
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affected by disruption that are different for each scenario rather than demand fluctuations.  

The results of each disruption scenario are discussed in detail to justify this conclusion.  

Experiment 1 considers scenario 1 with Burlington rail bridge collapse which makes 

the Omaha-Chicago rail link out of service.  The optimal solution allocates budget to build 

a new terminal in Brookings and to retrofit Omaha-Chicago rail link. Brookings termina l 

will accommodate the growth in future demand and retrofitting of the disrupted link 

(replacing the bridge with a new one) will avoid the further collapse.   

Considering experiment 2 with scenario 2 involving a hurricane in Louisiana and 

Florida (it specifically impacts New Orleans terminal and links in Louisiana and Florida), 

the optimal design concludes the establishment of two new terminals in Brookings and Fort 

Smith.  The new terminal in Fort Smith provides extra capacity to an alternate route for the 

“Houston-New Orleans-Birmingham” route which is impacted by Hurricane and can be a 

backup terminal for New Orleans.      

Scenario 3 includes tornado occurring in Oklahoma, Arkansas, Nebraska, Missouri, 

and Kansas states.  It affects terminals in Omaha, Kansas City and St. Louis as well as 

multiple rail and highway links in those states.  The optimal design opens a new termina l 

in Brookings, expands the terminal in Billings and retrofits six disrupted links.  Expanding 

a terminal in Billings will provide more capacity for an alternate route.  Retrofitting six 

disrupted links will mitigate the capacity reduction of these links in case of tornado.      

The impact of expansion on network configuration can be understood by considering 

experiment 4 with demand values for 2040 and disruption scenario 4 (Earthquake in North 

part of Oregon and west side of Washington). In this scenario, the earthquake severely 

degrades the capacity of Portland and Seattle terminals, as well as their connecting rail 
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links.  It also reduces the capacity of highway links in those areas.  The optimal solution 

indicates that the expansion should include building a new terminal in Brookings, OR and 

retrofitting the Portland-Seattle rail link.  This is deemed reasonable as the Brookings 

terminal can be considered as a backup terminal for the Portland terminal and retrofitt ing 

Portland-Seattle link will ensure sufficient capacity to facilitate freight shipments to the 

Brookings terminal. 

Experiment 5 is impacted by disruption scenario 5 which is an ice storm in Midwest 

of US.  It impacts multiple states, including Utah, South Dakota, Wyoming, Montana, 

Nebraska and Colorado, with similar severities.  The optimal solution stablishes a new 

terminal in Brookings, expands existing terminals in Seattle, Los Angeles, Oakland, St 

Louis and St Paul and retrofits Billings-Spokane rail link.  The Brookings terminal is a 

backup to accommodate the increase of future demand in more demanding areas of the 

network.   Expanding terminals in Seattle, Los Angeles, Oakland and St Paul as well as 

retrofitting Billings-Spokane rail link provides more capacity for the alternate route to 

move east-west freight from the northern part of US rather than the disrupted Midwest part.  

Expansion of St Louis also provides more capacity for the alternate route passing through 

South of US.   

The optimal design for experiment 6 with strike in Chicago and Los Angeles termina ls 

suggests to open a new terminal in Brookings and expands the Los Angeles, Chicago, 

Oakland and Kansas City terminals.  This provides extra capacity in these terminals in case 

of strike.   
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Experiment 7 deals with scenario 7 which considers a terrorist attack in Texas.  It 

affects terminals in Dallas and Houston and three rail links of that state.  The optimal design 

expands the terminal in Houston and retrofits the three disrupted links in that area.   

The last experiment (scenario 8) considers the maintenance of Amarillo-Phoenix and Los 

Angeles-Phoenix rails.  The maintenance impacts congestion and capacity reduction in 

multiple rail links in Texas.  Although this scenario is not a natural or human-made 

disruption, it deals with capacity reduction in a part of network due to inappropriate 

planning for preventive maintenance.  The optimal design suggests that despite building a 

terminal in Brookings, the five disrupted rail links should be retrofitted to avoid long delays 

in an important route through the west side of US. 

Table 4.4 Experimental results for single scenarios 
 

Experiment 

# 

Scenario  

(demand year – 

disruption 

scenario) 

Cost difference between no 

expansion scenario and 

experiment dependent 

expansion 

($) 

Cost difference between 

nominal scenario expansion 

and experiment dependent 

expansion 

($) 

0 2040-No disruption 158,104,588 0 

1 2040-1 194,538,858 56,350,037 

2 2040-2 164,814,523 0 

3 2040-3 434,214,619 235,102,514 

4 2040-4 137,980,502 49,480,200 

5 2040-5 329,777,079 152,963,709 

6 2040-6 373,592,268 292,797,864 

7 2040-7 188,425,909 53,189,468 

8 2020-No disruption 123,276,865 0 

9 2020-1 203,866,442 63,880,608 

10 2020-2 130,568,534 0 

11 2020-3 344,788,771 179,283,058 

12 2020-4 91,130,686 32,430,269 

13 2020-5 284,051,633 129,664,657 

14 2020-6 329,979,654 285,053,957 

15 2020-7 151,825,758 27,523,964 

16 2025-4 108,040,635 43,145,123 

17 2030-6 148,169,117 0 

18 2030-3 372,588,044 183,072,192 

19 2035-2 152,989,073 0 

20 2035-7 390,940,396 315,499,366 

21 2040-8 652,125,611 395,066,849 
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 In this work, it is assumed that expanded intermodal terminals can withstand disruptions.  

However, in reality, there may be situations that are impossible to plan for, such as a labor 

strike that shut down the entire terminal.  From a modeling perspective, these situations 

can be accounted for by relaxing the resiliency assumption of expanded terminals for 

specific scenarios and replacing constraint 4.4 with the following constraint for both 

optimization models. 
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To better clarify this point, the experiment 6 that involves a labor strike at Los Angeles 

and Chicago terminals can be considered.  As mentioned before, the optimal design with 

the initial assumption (expanded terminals are able to withstand disruptions) resulted in 

expansion of Los Angeles, Chicago, Oakland and Kansas City terminals.  This result is 

reasonable because by expanding the terminals in Los Angeles and Chicago they will be 

able to withstand the impact of disruptions.  When the resiliency assumption for expanded 

terminals is relaxed (i.e. replacing constraint 4.4 with constraint 4.16), it is surmised that 

there is no benefit in expanding the terminals at Los Angeles and Chicago.  Indeed, the 

optimal design resulted in opening a new terminal in Las Vegas which is in close proximity 

to Los Angeles and thus can serve as a backup terminal for the Los Angeles terminal.  The 

results indicated that opening a new terminal close to Los Angeles generates more profit 

than opening a new terminal near Chicago.  This is because for the test case more than 80% 

of the freight shipments have origins or destinations in California. 

To understand the need to include both types of risks (demand uncertainty and network 

disruptions) in the robust decision, consider experiments 3, 11 and 18 with identica l 

disruption scenario “3” but different demand scenarios.  The optimal solution indicates that 
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a terminal should be opened at Brookings, OR for all three experiments.  However, the 

expanded terminals differ for each of these three experiments.  “Billings”, “Houston”, 

“Denver and Billings” are selected for expansion for experiments 3, 11, and 18, 

respectively.  These results validate that the optimal design for each disruption scenario is 

demand-dependent.  Similarly, consider experiments 0 to 8 that have identical demand 

values but different disruption scenarios.  The optimal solution for experiment 0 involves 

opening two terminals, one at Brookings and one at Fort Smith. The optimal solution for 

experiment 1 involves opening only one terminal at Brookings and retrofitting “Omaha -

Chicago”, “Omaha-Billings” and “Chicago-St. Paul” rail links.  This is because the full 

disruption of the rail bridge in Iowa disconnects the route from Omaha to Chicago and the 

train should reroute to deliver the freight to Chicago.  Hence, retrofitting Omaha-Chicago 

link (which includes replacing the old bridge with a new one) will diminish the chance of 

further disruptions remarkably.  Retrofitting “Omaha-Billings” and “Chicago-St. Paul” (By 

increasing their capacity) can make them to be an alternate route once the “Omaha-

Chicago” connection is disrupted.  These results indicate the need to include different 

demand and disruption scenarios in the network design problem.  In other words, the robust 

solution which considers various demand and disruption scenarios is necessary. 

4.5.2.2 EXPERIMENTAL RESULTS FOR ROBUST PROBLEM 

Table 4.5 shows the average increase in annual cost savings if all experiments were 

included in the investment decision rather than only the nominal scenario by utilizing 

RINEP.  Column 1 in Table 4.5 shows the experiment number.  Column 2 shows the 

optimal objective function values of DINEP for each experiment.  Columns 3 and 4 show 

the regret values obtained from solving RINEP in term of cost and percentage for each 
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experiment, respectively.  Regret shows the difference between the transportation cost of 

the experiment under No-expansion, Nominal-expansion and robust expansion and the 

transportation cost of the experiment with its own optimal expansion design.  The results 

show that the railroad company will incur an average of $73 million (average value of 

column 3) extra in cost annually for each experiment under the robust design.  This average 

cost difference is almost 35% less on average (compared to average value of column 4 in 

Table 4.4) compared to the case that considered only the nominal-scenario for expansion 

decision. 

Figure 4.5 depicts regret percentages of each experiment under the cases of No-

expansion, expansion considering only the nominal scenario and robust problem includ ing 

all experiments.  It can be seen in Figure 4.5 that out of the 22 experiments, the regret of 

the robust expansion case is lower than the regret of the No-expansion case for all 

experiments and lower than the regret of the Nominal-expansion case for 7 experiments.  

It should be noted that although the regret for Nominal-expansion case is lower compared 

to the robust expansion case for 70% of experiments, its regret is significantly higher for 

the remaining 30% of the experiments (e.g. experiments 6, 14, and 20).  The benefit of the 

robust expansion case lies in the fact that it accounts for the worst case scenarios.  The 

average regret/cost ratio of 0.65% for the robust expansion case versus 0.96% for the 
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Nominal-expansion case confirms the overall advantage of the robust expansion case. 

 

    Figure 4.5 Regret for each experiment 

 The optimal design of the robust problem establishes a new terminal in Brookings.  

This is a reasonable decision since almost 80% of the freight starts or ends in California.  

Two terminals in Kansas City and Denver are selected for expansion.  Since mult ip le 

scenarios are included in the robust problem, the robust solution will work for any scenario.  

Thus, the expansion of terminals in Kansas City and Denver can compensate the capacity 

reduction in case of Ice Storm and Tornado scenarios in Midwest.  Moreover, those can 

provide extra capacity for an alternate route passing through Midwest if any scenario 

happens in North and South of US (southern states are in danger of hurricane and 

earthquakes are more likely in northwest and west states).  The robust problem is more 

sensitive to worst case scenario.  Hence, the final results are more impacted by the worst 

case scenario which in this case study is experiment 21 with scenario 8 (disruptions 

happening in Texas and Arizona).  The final links chosen for retrofitting verifies this 

statement.  Out of six rail links chosen to be retrofitted in the optimal solution, five of them 
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pass through Texas.  Those are Houston-New Orleans, Houston-Amarillo, Dallas-  

Houston, Phoenix-Amarillo and Dallas-Amarillo.  The planner will benefit from this 

decision in two folds.  First, it improves the resiliency of the southern route in case of any 

disruptions in Southern states, specifically if the worst case scenario happens (scenario 8).  

Second, this makes the southern route a reliable alternative if any disaster happens in 

Midwest and Northern states.  Chicago-St. Paul is the sixth link in the optimal design to 

retrofit as 30% of orders start or end in Chicago. This also improves the resiliency of the 

route ending or staring from Chicago.  

Table 4.5 Robust problem results 

 
Experiment  # *

sO ($) Regret ($) Regret (% ) 

0 16,542,321,527 11,163,213 0.07 

1 16,553,001,838 85,842,258 0.52 

2 16,550,281,391 29,196,426 0.18 

3 16,554,666,496 164,646,494 0.99 

4 16,569,423,659 78,826,799 0.48 

5 16,557,288,485 176,262,511 1.06 

6 16,553,050,966 96,787,324 0.58 

7 16,553,016,517 59,947,876 0.36 

8 7,620,998,025 14,006,736 0.18 

9 7,630,861,372 81,625,026 1.07 

10 7,634,230,809 17,966,755 0.24 

11 7,668,495,535 117,622,713 1.53 

12 7,659,882,813 44,990,212 0.59 

13 7,635,051,519 145,639,333 1.91 

14 7,634,721,012 85,889,871 1.12 

15 7,634,536,576 50,736,989 0.66 

16 9,557,474,545 58,282,051 0.61 

17 11,616,846,502 22,059,076 0.19 

18 11,655,954,662 129,678,603 1.11 

19 13,608,715,581 17,730,949 0.13 

20 13,609,371,300 113,291,957 0.83 

21 16,553,325,372 2,105,791 0.01 

 

To better understand how the network is affected by a single type of disaster instead 

of a combination of disasters, additional analyses were performed where earthquakes and 

tornadoes are analyzed separately.  Figure 4.6 shows the U.S. earthquake risk map.  As 
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shown, California, Washington, and a few of the Midwest states (Tennessee, Missouri, 

Arkansas and Kentucky) have high risks of earthquakes.  Five disruption scenarios with 

different severities in these three areas are considered to assess the impact to the network 

due to earthquakes only.  Specifically, two scenarios consider earthquakes in California 

with different severities (moderate and extensive damages), two consider earthquakes in 

the Midwest (moderate and extensive damages), and one consider extreme earthquakes in 

Washington and northern part of Oregon.  Considering five demand scenarios for each 

earthquake scenario, the robust problem has a total of 25 experiments.  The robust solution 

for this set of experiments indicate that a new terminal should be established in St. George, 

Utah and to retrofit three rail links: Memphis-Birmingham, St. Louis-Kansas City, and 

Memphis-Fort Smith.  The result for the location to establish a new terminal is intuitive in 

that St. George is closest to California (big market) but it is not in a high risk zone.  

Therefore, this location would be ideal as a backup terminal for the California market; 

should there be a disruption to terminals in California, this terminal can be used to send or 

receive shipments from the rest of the U.S.  Although terminals in Phoenix and St. Louis 

are likely to be damaged severely in the event of an earthquake, they are located in smaller 

markets, and thus, it is more cost-effective to retrofit potentially disrupted rail links in those 

areas than to establish backup terminals.    

Figure 4.7 shows the U.S. tornado risk map.  As shown, the Midwest and Southern 

states are more vulnerable to tornadoes.  The tornado region stretches from North Texas to 

Canada, with the core centers around Oklahoma, Kansas and Northern Texas, as well as 

Alabama, Mississippi and Tennessee.  Three tornado scenarios with different severities are 

considered.  The first scenario considers tornado in the East Tornado Alley, includ ing 
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Illinois, Kentucky, Tennessee, Alabama and Mississippi.  The second scenario expands the 

previous scenario by including Oklahoma, Arkansas, Nebraska, Missouri and Kansas.  The 

third scenario considers tornadoes in Oklahoma, Arkansas, Nebraska, Missouri, and 

Kansas.   

 
         Figure 4.6 Earthquake risk map of US (http://geology.usgs.gov/) 

  

 Considering five demand scenarios for each tornado scenario, there is a total of 15 

experiments in the robust problem.  The robust solution for this set of experiments indicate 

that a new terminal should be established in Brookings and to retrofit six rail links: 

Memphis-Birmingham, Memphis-St. Louis, Atlanta-Birmingham, Amarillo-Kansas City, 

Kansas City-Chicago, and Denver-Omaha.  In contrast to the results from the earthquake 

experiments, among the terminals close to California, Brookings is more desirable because 

it is furthest away from the tornado region.  Similar to the earthquake results, it is more 

cost-effective to retrofit the aforementioned selected links than to establish backup 

terminals in the tornado region. 
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       Figure 4.7 Tornado risk map in US (http://strangesounds.org/) 

 Based on the results on the case study, it can be concluded that rail operators should 

consider the following guidelines: (1) new terminals should be established close to a large 

market area which is less likely to be disrupted and be located as far away from the exact 

location of potential disruption in that area (e.g. position the terminal as far as inland as 

possible if the market area has the potential to incur a storm surge); (2) within a disrupted 

area, it is more beneficial to retrofit a high-risk link than to expand an existing terminal (it 

is counterproductive to  expand a terminal that is not accessible by rail  whereas a retrofitted 

link will enable trains to get to an alternate terminal); (3) among the existing termina ls, 

those located close to higher risk areas should be expanded (these expanded terminals can 
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serve as alternate terminals for cargo that are planned to originate or terminate at the 

disrupted terminals. 

 It should be noted that our policy recommendations are drawn from the set of scenarios 

that we examined, and thus, they may or may not reflect the actual operating conditions 

faced by the railroad operator.  However, the developed model can be used to examine 

other types of scenarios.    Moreover, the developed model can be used to perform 

sensitivity analyses to gain insights into different expansion strategies (e.g. what is the 

benefit of adding one versus two new terminals to the network). 

4.6 CONCLUSIONS  

This paper developed a robust and reliable mixed-integer linear model for expanding an 

intermodal freight network which can cope with fluctuations in demands and disruptions 

with infrastructure.  The model employs a min-max regret approach to identify a network 

design that is best suited to safe guard against the worst case scenario.   A hybrid genetic 

algorithm which uses column generation to determine the freight flows was developed to 

solve the proposed model.  The proposed algorithm was found to perform well in terms of 

solution quality and computational time compared against an exhaustive enumerat ion 

algorithm for a set of small-sized networks and a larger realistic-size intermodal/highway 

network in US.   The results indicated that it is better (less costly over the long run) to make 

the extra investments to strengthen the infrastructure than not to.  It also indicated that 

when deciding on the infrastructure strengthening options, it is best to include as many 

demand and supply scenarios as possible.  

 This work can be extended by including other modes of transportation and by 

considering scheduled time tables at intermodal terminals. An additional challenge that 
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could be considered includes utilizing queuing models to account for capacity constraint at 

intermodal terminals.  Lastly, this work can be improved by developing exact algorithms 

to solve the model.   

Long term, this model and its subsequent enhancements could be used by railroad 

operators as well as transportation planners to identify weak links in the intermodal freight 

network and to evaluate the capacity of the existing infrastructure.  This is particular ly 

important for disaster planning in terms of quantifying the resiliency of the network and 

improving the network’s resiliency and reliability under extreme events. Another aspect of 

the model that can be improved is to consider explicitly the temporal dimension; that is, 

consider how the network is affected by the incremental supply and demand changes over 

time. 
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CHAPTER 5: A RELIABLE MULTI-PERIOD INTERMODAL 
FREIGHT NETWORK EXPANSION PROBLEM3 

 

 
 

                                                                 
3 Fotuhi, F., and Huynh, N., Submitted to Journal of Computers and Industrial Engineering, 3-14-2017 
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ABSTRACT 

This paper addresses the intermodal freight network expansion problem consisting of 

multiple periods.  In each period, the objective is to determine the locations of new 

intermodal terminals, the amount of capacity to add to existing terminals, and the existing 

rail links to retrofit.  The multi-period planning problem has the added complexity of 

determining which period a particular improvement should be made given a limited budget 

for each time period.  A probabilistic robust mathematical model is proposed to address 

these decisions and uncertainties in the network.  Due to the complexity of this model, a 

hybrid Simulated Annealing (SA) algorithm is proposed to solve the problem and its 

applicability is demonstrated via two numerical examples.  Important managerial insights 

are drawn and discussed on the benefits of utilizing the multi-period approach. 

5.1 INTRODUCTION 

An efficient freight transportation system is crucial to the competitiveness of the U.S. in 

global trade (Ortiz et al., 2007).  In the last few decades, tax regulations, green policies 

(Macharis et al., 2011) and alternative options to move freight at a lower cost have 

promoted the use of intermodal transportation.  Intermodal transportation is defined as 

movement of goods in the same load units with more than one mode of transport without 

handling goods themselves while transferring between modes at intermodal terminals (Lin 

et al., 2014).  Around 40% of the total freight volume in U.S. are intermodal shipments.  

This volume is forecasted to increase 3.25 times by 2040 (Bureau of Transportation 

Statistics, 2012).  To cope with the increasing freight demands and aging infrastructure, 

intermodal service providers need to continually plan for upgrades of their existing 

networks, as well as plan for expansion to grow their market share. These expansion plans 
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are long term and are subject to various uncertainties such as changing demands and 

infrastructure changes.   Additionally, the supply capacity of the network may be impacted 

by natural or man-made disruptions, such as the U.S. West Coast labor dispute in 2002 and 

damages to oil storage tanks in states of Texas and Louisiana due to hurricane Katrina in 

2005 (D’ Amico, 2002; Sarkar et al., 2002; Godoy, 2007).  Moreover, there are potential 

new markets which may not have been considered in freight prediction models such as the 

Freight Analysis Framework (Fotuhi and Huynh, 2015).  These factors necessitate the 

consideration of demand and supply uncertainties in network expansion plans.  

One of the principal features of intermodal network design and expansion models is 

their multi-period nature due to their variable parameters over time (cost, demand, and 

resources) (Contreras et al., 2011).  Additionally, expansion projects require extensive 

capital investment which may not be available to the stakeholder at the beginning of the 

planning horizon.  These facts are often ignored in the traditional single-period network 

design problems (Melo et al., 2006).    In the multi-period expansion problem, the planning 

horizon is divided into multiple time periods and the network is incrementally expanded 

over the planning period, much like how Class 1 railroad companies expand their network 

over time. Recent examples include CSX building new terminals in Montreal, Pittsburg, 

and Central Florida. The multi-period approach provides the stakeholder benefits.  First, it 

mitigates the financial burden on the company to acquire significant capital in a short 

period of time to expand the network. Second, it improves resource management by 

building terminals “just-in-time,” that is, terminals are built only when they are needed.  

Third and lastly, a more accurate route planning can be done for different time periods 

utilizing the available resources at that period.   
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Nagy and Salhi (2007) introduced the concept of multi-period location-routing 

problems considering different time scales for location and routing decisions.  They 

indicated that a multi-period location-routing framework with shorter routing periods 

within location decision periods is a better approach to modeling real world location-

routing decisions. Their motivation for adopting the multi-period decision problem is the 

frequent changes in cost and demand over time which significantly impact routing 

decisions.  The same case can be made for intermodal freight network expansion problem.  

A few studies have addressed the intermodal network expansion problem (Meng and 

Wang, 2011; Fotuhi and Huynh, 2016); However, to date, there has been only one study 

that used the multi-period approach for the intermodal network expansion problem 

(Benedyk et al, 2016).  In their study, a new model was proposed to evaluate different 

expansion scenarios over multiple time periods. Their model finds the optimal location for 

new terminals, determines the optimal capacities for existing terminals and determines the 

allocation of origin-destination (OD) demand pairs to terminals.  Note that in their model, 

expansion and allocation decisions are made within the same period regardless of possible 

disruptions that might happen in the network 

The specific objective of this paper is to develop a model for Reliable Multi-Period 

Intermodal Network Expansion Problem (RMPINEP).  An inherent challenge with 

developing such a model is that expansion and routing decisions are made at different time 

periods.  To model this, it is assumed that the planning horizon is divided into a set of short 

time periods for routing decisions.  However, expansion decisions are made at a subset of 

these periods and they remain unchanged throughout the planning horizon. It is also 

assumed that disruptions only happen at expansion time periods and the network recovers 
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from them through the subsequent routing periods until the next expansion period. A robust 

optimization approach is used to account for forecasted demand errors and possible 

disruptions during the planning horizon. The contributions of this paper are: (1) 

development of a new model for multi-period intermodal freight network expansion 

problem, (2) the developed model considers different time periods for expansion and 

routing decisions, (3) the developed model incorporates different sources of uncertainty, 

and (4) development of a meta-heuristic to solve the developed model for large-sized 

instances. 

5.2 LITERATURE REVIEW 

Recently, SteadieSeifi et al. (2014) provided a comprehensive review of previous studies 

in multimodal freight transportation planning classified into strategic, tactical and 

operational planning levels.  Strategic decisions deal with investment in infrastruc ture 

which may involve adding and/or maintaining intermodal terminals and network links.  The 

intermodal terminal location problem was first studied by Arnold, Peeters, Thomas and 

Marchand (2001).  They proposed a model to find optimal locations of uncapacitated 

intermodal terminals in a rail-road intermodal network with unimodal (direct) and 

intermodal shipping options.  In a follow-up work, they improved their previous model by 

considering intermodal terminals as network arcs to reduce number of decision variables 

in their model (Arnold et al., 2004).  Ishfaq and Sox (2011) formulated a model for finding 

the optimal locations of intermodal terminals and allocation of commodities with limited 

time windows to pairs of terminals.  Their model ignored the direct shipping option 

between origins and destinations.  Sörensen et al. (2012) added limited capacity at 

intermodal terminals and direct shipping option to the Ishfaq and Sox (2011) model, but 
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ignored the time window constraints for shipments.  Their model was modified by Lin et 

al. (2014) to reduce redundant variables.   

The aforementioned articles assumed there is no uncertainty involved in problem 

parameters.  However, terminal locations are long-term decisions with many uncertaint ies 

arising from changes in demand, cost, capacity, and network disruptions.  Uncertainty in 

demand have been widely investigated in network design problems in the last decade.  

Atamturk and Zhang (2007) proposed a robust two-stage network design model with 

uncertain demands.  The binary link design variables were defined in the first stage and 

flow was assigned to the network after the actual values of the demand were revealed in 

the second stage.  Yang (2009) formulated a stochastic two-stage air freight hub network 

design problem.  He assumed that the demand is uncertain and varies seasonally.  Its model 

found the optimal number and location of hubs in the first stage and subsequently 

determined the freight routes in the second stage.  Contreras et al. (2011) proposed a model 

for stochastic uncapacitated hub location problem with uncertain demand and 

transportation costs.  Shahabi and Unnikrishnan (2014) considered uncertain demand 

within a hub network design problem and showed that more hubs should be opened 

compared to the deterministic hub network design decisions.  Fotuhi and Huynh (2015) 

were the first to consider uncertain demand for competitive intermodal terminal location 

problem.  They proposed a robust model to find the optimal number, location and size of 

intermodal terminals and allocation of freight flow to the network for a private rail road 

company.  They showed that terminals that have larger capacities are better equipped in 

dealing with demand variations.  
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Capacity is another source of uncertainty which may be caused by natural or human-

made disasters in network elements (links or nodes).  These disruptions can lead to delay 

in order delivery, loss of market share, and higher transportation costs.   For this reason, it 

is recommended that capacity be included in models to incorporate reliability in network 

design decisions (Peng et al., 2011).  D'Este and Taylor (2003) suggested that it is best to 

invest on the weakest elements in the network to reduce network vulnerability to 

disruptions. Several studies have incorporated disruptions in transportation network design 

decisions.  Rios et al. (2000) formulated a capacitated network design problem with 

disruptions to network links.  Their model determined which set of links to open and their 

corresponding capacities to guarantee network survival in case of disruptions.  Viswanath 

and Peeta (2003) proposed a multi-commodity maximal covering network design model to 

address network risks due to earthquakes.  Their model identified critical routes in the 

network and higher risk bridges within those routes that need to be retrofitted.  Desai and 

Sen (2010) considered link failure risk in a reliable network design model which allocated 

resources to mitigate the disruption impacts on higher risk links in the network.  Peeta et 

al. (2010) formulated an investment model to retrofit higher risk links in a highway 

network.  A few studies have incorporated facility (node) disruptions in logistics and 

transportation network design problems. Peng et al. (2011) proposed a model for reliable 

logistics network design problem with disruption risk at suppliers and distribution centers.  

Their model found optimal locations for these facilities and flow allocation to the 

corresponding network minimizing disruption risks.  An et al. (2011) considered 

disruptions in transshipment nodes for a hub-and-spoke network design problem.  Their 

model found the optimal locations of backup hubs while minimizing the expected 
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transportation cost for normal and disrupted situations.  Marufuzzaman et al. (2014) 

incorporated disruptions at intermodal terminals in a biofuel supply chain design problem.   

Their model found locations of intermodal terminals and bio-refineries while minimizing 

total fixed and transportation costs.  Miller-Hooks et al. (2012) considered disruptions in 

both network links and terminals of an intermodal network design problem.  They found 

best recovery and pre-disaster policies to maximize network resiliency against disruptions.  

Fotuhi and Huynh (2016) proposed a model for intermodal network expansion problem 

considering link and terminal failures.  They also included uncertain demand in their 

expansion and routing decisions as well.  Their model found optimal locations of new 

intermodal terminals, existing terminals to expand and less resilient links of the network to 

retrofit to increase network resiliency to disruptions.   

One of the main characteristics of network design models which have been neglected 

in the aforementioned studies is their dynamic nature (i.e., multi-period planning).  The 

literature on multi-period transportation network design is scarce.  Contreras et al. (2011) 

were the first to model a multi-period hub location problem.  Their model identified when 

and where to open new hubs and to close open hubs as well as flow assignment to pairs of 

open hubs.  They assumed that the flow fluctuates over time.  Taghipourian et al. (2012) 

employed the concept of multi-period planning for a virtual hub network design problem 

of airline industries.  They also assumed that hubs are uncapcitated and hubs opened in one 

period might be closed in later periods.  Recently, Gelareh et al. (2015) developed an 

uncapacitated multi-period hub location model for a liner shipping provider.  They assumed 

that the service provider will lease one hub in a period and will end the lease in another 

period.  The objective of their model is to determine when to lease a new hub and when to 
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end the lease for an operating hub.  They considered a limited budget available to lease 

new hubs and operation of existing hubs in the system for each period.  Alumur et al. (2015) 

formulated multi-period single and multiple-allocation hub location problems with limited 

capacities at hubs. The objective of their model is to determine when and where to locate 

a new hub and which open hubs to expand to minimize total construction, expansion and 

routing costs.  They assumed that once a hub is opened in a period it will remain open 

throughout the entire planning horizon.  In a recent work, Benedyk et al. (2016) proposed 

a location-allocation model for intermodal network expansion problem over multiple time 

periods with uncertain demands.  They considered new intermodal terminals to add to the 

network and expanding existing terminals. They demonstrated their model on a sample 

freight network within the U.S. and evaluated a few expansion scenarios on a 10-year 

planning horizon.  Their model found optimal allocation of shippers and receivers to 

transfer points (intermodal terminals and ports) but did not find specific routes for them.  

This work extends the work of Fotuhi and Huynh (2016) and incorporates the mult i-

period planning approach proposed by Benedyk et al. (2016) for intermodal freight 

networks.  It also incorporates the idea from Albareda-Sambola et al. (2012) of considering 

different routing and design time scales.  To the best of the authors’ knowledge, this is the 

first work in intermodal freight network expansion that considers multi-period planning 

with different time scales for expansion and routing decisions and considering demand and 

supply uncertainties.  

5.3 PROBLEM STATEMENT 

RMPINEP is a network expansion problem of an existing rail-road intermodal network 

with a finite planning horizon, uncertain demand and disruption risk at network termina ls 
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and links. Commodities are delivered to the customers using intermodal option via a set of 

intermodal terminals or directly with trucks. The network features 1N , sets of existing 

terminals, 2N , sets of candidate nodes for installing new terminals, 1A , sets of highway 

links, and 2A , sets of rail links.  The planning horizon is divided into T time periods (years, 

quarters of years).  As mentioned before, two different time scales are considered for 

routing and expansion decisions. While routing decisions are made at each time Tt , a IT

subset of time periods of the planning horizon, TTI  , are selected for strategic expansion 

decisions.  At each period Tt , the demand for tW sets of Origin-Destination (OD) pairs 

selected from 3N , sets of highway nodes (cities) is routed through the network.  t
wK is the 

set of paths for OD pair tWw  at routing period Tt .    

This work considers the following assumptions: 

 Terminals opened at each expansion period stay opened through the planning horizon. 

 Capacity of expanded terminals is not reduced through the planning horizon.  

 Transfer time and cost are only considered for terminals that the shipment changes 

mode. 

 It is assumed that capacity modules with different sizes are available for each existing 

terminal. At each expansion period, at most one capacity module can be selected from 

a predefined set of capacity modules.  t
jL
 is the set of capacity modules for termina l 

1Nj  at expansion period ITt  . 

 A penalty cost is considered for shipments violating delivery time windows. 

 OD pairs pattern and their corresponding flows change during the planning horizon.  

 There is a limited budget tB  for expansion decisions at each expansion period ITt  .  
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 Expansion and routing decisions are affected by a set of disruption and demand 

scenarios, tS   for each expansion period ITt  and its underlying routing periods.  It is 

assumed that disruption damages decrease through the routing sub-periods of an 

expansion period.  

The optimal decision seeks to find when and where to open new intermodal termina ls, 

when to expand an existing intermodal terminal and its optimal capacity module, and 

retrofitting priority of higher risk links in each expansion period as well as routing of fre ight 

flow at each routing period minimizing total expansion costs and expected routing costs 

over all scenarios. 

5.3.1 ILLUSTRATIVE EXAMPLE 

Figure 5.1 depicts a sample solution of RMPINEP.  The network has 3 existing termina ls, 

3 rail links, 3 candidate terminals, 4 cities, 2 OD pairs (1-3,2-4), 4 time periods and 

}4,2{IT .  Blue lines show the optimal routes for each OD pair.  As illustrated in fig. 1, 

one terminal is fully disrupted at t=2. Hence the demand for OD pair (1-3) is rerouted by 

utilizing a new terminal which is opened at this period.  Time 3 is a routing period and the 

disrupted terminal is partially recovered.  Accordingly, the demand for OD pair (1-3) is 

partially met by the disrupted terminal.  At t=4, the demand for OD pair (1-3) is increased 

and one link in one of its optimal routes in the previous period is out of operation.  

However, one terminal in the other route is expanded to fully meet the demand for this OD.   
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5.4 MATHEMATICAL MODEL 

A robust path-based mixed integer model is proposed for RMPINEP. Model parameters 

and notations are mentioned as follows: 

Parameters 

at : Average travel time on link )( 21 AAa   

j : Average transfer time at terminal )( 21 NNj   

ts
wT
 : Time window for OD pair tWw  under scenario s at expansion period ITt   

t
jF

: Annual fixed cost of opening candidate terminal 2Nj  at expansion period ITt   

t
ac : Travel cost per unit of flow on link )( 21 AAa   at routing period Tt  

1 

t=1 t=2 

t=3 t=4 

      : Candidate terminals;        : Existing terminals;          : Existing rail links;    : Candidate rail links 

      : Cities (Origins/Destinations);     : Expanded terminals;      : Disruption at terminals;     : Disruption at 

links      

2 3 

4 1 
4 

2 
3 

1 

2 

4 

3 

1 

2 

4 

3 

Figure 5.1 A sample solution of the problem. 
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t
jc : Transfer cost at terminal )( 21 NNj  per unit of flow at routing period Tt  

t
jl

jC


: Capacity expansion cost for module t
j

t
j Ll


  at terminal 1Nj   

jv : Current capacity of existing terminal and capacity of new terminals )( 21 NNj   

ae : Capacity of link )( 21 AAa   

ts
w

td  : Demand of OD pair tWw  under scenario tt Ss    at routing period Tt  

ts
j
t  : Disruption percentage of terminal )( 21 NNj   under scenario ts  at routing period 

Tt  

ts
a

t  : Disruption percentage of link )( 21 AAa   under scenario ts  at routing period Tt  

t
ah
 : Hardening cost of link 2Aa   at expansion period ITt   

ts 
 : If expanded terminals withstand disruptions under scenario tt Ss    

ts 
 : If retrofitted rail links withstand disruptions under scenario tt Ss    

tsp

: Probability of occurrence of scenario tt Ss   at expansion period ITt   

tws

akt
 : path-arc incidence (= 1 if link )( 21 AAa   is used in path k for OD pair tWw  under 

scenario tt Ss   at routing period Tt ; 0 otherwise) 

tws

jkt
 : path-terminal incidence (=1 if shipments change mode at terminal )( 21 NNj   in 

path k for OD pair tWw  under scenario tt Ss   at routing period Tt ; 0 otherwise) 

RMPINEP encompasses strategic (expansion) and operational (routing) decision 

variables.  Once strategic decision variables are determined at each expansion period, 

routing decision variables are found for subsequent routing periods.  The decision variables 

are as follows: 

Decision Variables 
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 t
jy : 1, if a terminal is opened at node 2Nj  at expansion period  ITt  ; 0, otherwise  

t

lj t
j

v



,

' : 1, if expansion design t
jl
 is selected for terminal 1Nj   at expansion period ITt  ; 0,   

otherwise 

t
az
 : 1, If link 2Aa  is hardened at expansion period ITt  ;0, otherwise 

tws

ktx  : 1, if a shipment for OD pair tWw  uses path k under scenario tt Ss   at routing period 

Tt  

tws

ktf   : Amount of freight flow for OD pair tWw  on path k under scenario tt Ss   at routing 

period Tt  

Using the aforementioned variables and parameters, RMPINEP is formulated as 

follows: 
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Objective function (5-1) minimizes total expansion cost and expected routing cost over 

all scenarios and routing periods.  Constraints (5-2) and (5-3) ensure that capacity of 

existing terminals are not violated for all routing periods.  If expanded terminals stay 

resilient under a specific scenario at later periods, constraints (5-2) are activated. 

Otherwise, Constraints (5-3) are utilized.  Constraints (5-4) guarantee that capacity of new 

terminals are not violated for all routing periods.  Constraints (5-5) limit expansion 

decisions by the available budget at each expansion period.  Constraints (5-6) ensure that 

at most one capacity module can be selected for existing terminals.  Constraints (5-7) 

prohibits capacity violation of highway links.  Constraints (5-8) and (5-9) guarantee that 

capacity of rail links are not violated.  Like the assumption for constraints (5-2) and (5-3), 
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constraints (5-8) are activated if hardened links stay resilient in case of disruptions and 

constraints (5-9) are activated in the opposite case. Constraints (5-10) ensure that time 

windows are not violated.  Constraints (5-11) and (5-12) assure that freight flow are 

assigned to open terminals.  Constraints (5-13) guarantees that all demand is met for each 

OD pair. Due to capacity limitations and time windows, such an assumption is not realistic.  

Hence, unmet demand for each OD pair is considered as the amount of flow over a 

hypothetical path between origin and destination of an OD pair with a penalty cost.  

Constraints (5-14) ensure that a candidate node can be opened at most once over all 

expansion periods.  Similarly, constraints (5-15) guarantee that each rail link is retrofitted 

at most once over the planning horizon.  Constraints (5-16) are the integrality of decision 

variables.  

5.5 SOLUTION METHOD 

RMPINEP reduces to the discrete network design problem when considering single period 

with no uncertainty in parameters.  Since the discrete network design problem is NP-hard 

(Meng and Wang, 2011), RMPINEP is NP-hard as well.  This problem is computationa lly 

intractable due to the following reasons. First,  ||*|*|*||)*1|(| 212 1
ALNNT NjI   possible 

configurations of strategic decision variables should be examined for optimal decision.  

Although budget constraint limits this number, a remarkable set of configurations stay 

feasible for evaluation.  On the other hand, there is a huge number of possible paths for 

each OD pair.  It is difficult and computationally expensive to enumerate all of them for 

each configuration involving multiple scenarios and their corresponding routing periods.  

Traditional optimization solvers are not able to solve this problem even for very small 

networks due to the huge number of variables and constraint.  Hence, a hybrid Simulated 
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Annealing (SA) algorithm integrated with Column Generation (CG) for routing decisions 

is proposed to solve the problem.  SA finds optimal values for strategic decision variables.  

Once these variables are determined, CG is used to find freight flow assignment for each 

routing period under each scenario.   

SA was inspired by the annealing process in metals.  The metal is heated to a high 

temperature and is gradually cooled down to attain to its optimal shape.  Molecules can 

move freely in high temperatures but they are stuck in lower temperatures.  SA, a 

probabilistic search algorithm, starts with an initial solution at a high temperature and 

explores the nearby solutions.  If the neighbor solution is better, then it is accepted as the 

current solution.  Otherwise, the algorithm accepts a worse solution with a probability.  As 

it cools down, this probability becomes lower.  The idea of accepting a non-improving 

solution is to escape from local optima.  A complete overview of the algorithm can be 

found in Kirkpatrick et al. (1983).  

5.5.1 SOLUTION REPRESENTATION 

The feasible strategic solutions are coded as integer single dimensional arrays.  Each array 

consists of two sections for new terminal location and link retrofitting decisions and || IT  

sections for capacity expansion of existing terminals.  Figure 5.2 depicts a sample 

representation of a solution considering a network with 3 existing terminals, 2 candidate 

terminals, 4 links and 2 expansion periods.  As shown, candidate terminal 1 never opens 

through the planning horizon while candidate terminal 2 will be opened at period 1.  Links 

1 and 3 are not retrofitted while links 2 and 4 are retrofitted at periods 2 and 1, respectively.  

In expansion period 1T , capacity module 1 is selected for existing terminal 1.  Existing 

terminals 2 and 3 are not expanded at this period.  Capacity modules 1 and 2 are selected 
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for existing terminals 2 and 3 at time 2T , respectively.  Existing terminal 1 is not expanded 

at this period.  Each configuration is checked to avoid budget violation.  The algorithm 

generates a random initial solution and checks its feasibility regarding budget constraint.  

Once the strategic variables are fixed, RMPINEP reduces to the Capacitated Multi-

Commodity Intermodal Network Flow Problem with Time Windows (CMINFPT), one for 

each routing period and scenario.  The CG algorithm embedded with an intermodal label 

setting algorithm proposed by Fotuhi and Huynh (2016) is used to assign freight flow to 

the network. The objective function is computed once routing subproblems are solved.  

 

 

 

 

 

5.5.2 NEIGHBORHOOD SEARCH MECHANISM  

For each solution, a neighboring solution is generated as follows: 

Step 1: Select a random strategic variable (candidate terminal, link or existing termina l), 

xx and a random period, tt.  

Step 2: If xx is a candidate terminal, 

 If the corresponding value of xx equals tt,  

Fixed-cost/capacity ratio ( vF tt / ) is computed for candidate terminals which are 

not opened at tt.  Terminal with lowest ratio is opened at tt and xx is closed for 

the whole planning horizon.  If there is no terminal opened at other time periods, 

xx is closed and no terminal is selected to open at tt. 

Candidate  

Terminals Links 

0 1 0 2 0 1 1 0 0 0 1 2 

Existing Terminals 

 

Figure 5.2 A sample representation of a solution. 
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Else, 

Fixed-cost/capacity ratio ( vF tt / ) is computed for candidate terminals opened at 

tt.  Terminal with highest ratio is closed for the whole planning horizon and xx 

is opened at tt.  If there is no new terminal at tt, xx will be opened at this time 

period.  

           Else if xx is an existing terminal, 

                Two options are available for neighborhood search: 

1. Randomly change the capacity module of xx at time tt to a different one from 

its available modules.  

2. Swap the capacity modules of xx and a random existing terminal, yy, at tt.  

Modules can be exchanged if they are within the maximum number of 

eligible modules of the alternate terminal at tt. 

           Else, 

 If the corresponding value of xx equals tt,  

Harden-cost/capacity ratio ( ehtt / ) is computed for links which are not retrofitted 

at tt.  Link with lowest ratio is retrofitted at tt and xx is not maintained for the 

whole planning horizon.  If there is no link which is retrofitted at other time 

periods, xx is not maintained and no link is selected for maintenance at tt. 

Else, 

Harden-cost/capacity ratio ( ehtt / ) is computed for retrofitted links at tt.  Link 

with highest ratio is not retrofitted for the whole planning horizon and xx is 

retrofitted at tt.  If there is no retrofitted link at tt, xx will be retrofitted at this 

period.  
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Step 3: Check the budget constraint for the new configuration.  If the configuration is not 

feasible, discard it and go to step 1.  

5.5.3 EVALUATE THE NEIGHBORING SOLUTION 

Once a feasible neighboring solution is generated, freight flow is assigned to the network 

for all routing periods and the objective function value (C(λ)) of this configuration is 

computed.  If C(λ) <= C(λ0), C(λ0) is the objective function of the current solution, the new 

configuration is accepted as the current solution and C(λ0)=C(λ).  Otherwise, the 

probability of accepting this non-improving solution is determined by Boltzman function 

/e .  is the difference between C(λ0) and C(λ) and   is the current temperature. A 

random number ]1,0[  is generated.  The inferior neighboring solution is accepted if 

/ e .  Otherwise the current solution stays the same.  If C(λ) is smaller than C(λ*), the 

best solution found so far, C(λ*)=C(λ).   

5.5.4 COOLING SCHEDULE 

A predefined number of solutions K, known as neighborhood size, are generated and 

evaluated at each temperature.  The temperature is decreased with the following function 

after k neighboring solutions are evaluated.   

ii  *1             

Where )1,0( is the cooling rate by which the temperature is decreased.  The algorithm 

terminates if 0 i , 0  is the frozen temperature. It may also terminate if the solution is 

not improved for a predefined number of iterations.  

5.6 COMPUTATIONAL EXPERIMENTS 

The proposed solution algorithm is coded in MATLAB R2016 and all experiments are run 

on a desktop computer with an Intel Core 2 Duo 2.66 GHz processor and 24 GB of RAM.  
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A random small network is used to validate the proposed model and algorithm in terms of 

optimality and computational time.   The application of the model on real-sized network is 

also investigated.  

5.6.1 SMALL SIZE NETWORK 

A small hypothetical network with 10 cities, 3 existing terminals, 4 candidate terminals, 10 

periods including 2 expansion periods and 10 routing periods (10 years) is considered.  

Expansion decisions are made at periods 1 and 6 with 4 and 3 scenarios respectively.  At 

each routing period, 6 to 10 random OD pairs are selected from the cities. Figure 5.3 

illustrates the network. It is assumed that with 85% chance, no disruption happens at the 

first expansion period but there is a 5% chance of disruption at existing terminal 3 and all 

links connected to it, 5% chance of disruption at existing terminal 1 and all its inbound and 

outbound links and a 5% chance of disruptions at all outbound links from city 2.  The 

second expansion period faces 90% chance of no disruption, 5% chance of disruption at 

terminal 2 and all links connected to it and 5% chance of disruption at outbound links from 

cities 1 and 3.  Table 5.1 presents the problem parameters considered for the small 

hypothetical network. 

This example is solved with both SA and Exhaustive Enumeration (EE).  SA could find 

the optimal solution in 1 hour while it took the EE more than one day to find the optimal 

solution.  The optimal solution involves opening candidate terminals 4 and 2 at the first 

and second expansion periods, respectively.  Figure 5.4 illustrates the impact of mult i-

period planning on routing decisions.  Specifically, it shows the routing results of one of 

OD pairs (1-10) under the second expansion period for the second scenario.  
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Table 5.1 parameters of small hypothetical network 

Parameter  Value  

Travel cost on highway links  

Travel cost on rail links  

Transfer cost at intermodal terminals  

Travel time on highway links 

Travel time on rail links 

Transfer time at intermodal terminals  

Capacity of highway links 

Capacity of rail links 

Capacity of intermodal terminals  

Fixed cost of opening new terminals  

Cost of retrofitting links  

Cost of expanding existing terminals  

Uniform(2,4) 

Uniform(0.1,1.1) 

Uniform(2,3) 

Uniform(1,3) 

Uniform(5,10) 

Uniform(10,30) 

Uniform(1000,3000) 

Uniform(10000,20000) 

Uniform(30000,50000) 

Uniform(500000,1000000) 

Uniform(300000,400000) 

Uniform(200000,300000) 

 

 

 

 

 

 

 

Figure 5.3 Network of the small case study. 

       
: Existing Terminal : Candidate Terminal : City 

: Highway Links : Drayage Links : Rail Links 
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As shown in Figure 5.4, four different paths are selected for this OD pair through the 

routing subperiods.  Routing periods 1, 3 and 4 have the same set of routes while periods 

2 and 5 have one route in common with the other three routing periods.  The orange route 

which is selected for all periods is the shortest path for this OD pair.  However, due to 

limited capacity, the flow is partially covered by this route and the rest is moved via 

alternative routes.  Different set of routes for different routing periods verify the init ia l 

theory of considering shorter routing periods within expansion periods because the variable 

demand, cost and capacities can significantly impact routing decisions which cannot be 

accounted for in traditional single-period models.  

 

  

Routing Period 1 Routing Period 2 
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Routing Period 3 Routing Period 4 

 

Routing Period 5 

 

Figure 5.4 routing results of one OD pair under all outing subperiods of one expansion 
period for small case study. 
 

To demonstrate the benefits of utilizing the multi-period approach to make network 

expansion decisions, a comparison is made against the single-period approach which 

involves only one expansion and routing period.  The single-period model is solved 
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considering all OD pairs for different periods of the original problem and assumed the 

worst case scenario: highest demand and smallest time windows for corresponding OD 

pairs.  It also considers the highest disruption percentages for links and terminals for all 

scenarios.  The reason behind this approach is to emulate a manager’s decision to expand 

the network to accommodate the worst case scenario within the planning period.  The 

budget for the single-period model is the sum of the budget of all expansion periods of the 

original problem.  The solution to the optimal single-period model involves opening two 

new terminals at candidate nodes 2 and 3 at the beginning of the planning horizon.  

Candidate terminal 2 is also selected under the multi-period case; however, it will not be 

opened until the second expansion period.  The multi-period approach outperforms the 

single-period one in three folds. It reduces the total routing cost by 18%, increases capacity 

utilization by 5%, and reduces lost demand by 15% for the entire planning horizon.  Note 

that the multi-period model also has the advantage of not presuming that the entire budget 

is available at the beginning of the planning horizon.  Accordingly, the multi-period version 

of network expansion is more efficient in terms of overall cost, budget availability and 

resource utilization.  

5.6.2 LARGE SIZE NETWORK 

In this section, RMPINEP is applied to a realistic-sized intermodal network of a railroad 

company in U.S.  As shown in previous section, this problem is computationally too 

expensive for even small size networks with EE thus this large size network in only solved 

with SA.   

The network consists of a rail network of a class 1 railroad company with 20 existing 

terminals which covers Midwest and Western side of the U.S.  It also includes a highway 
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network of 44 major cities in the same geographic area with interstates between them. The 

company decides to increase its operational capacity by opening new terminals from 10 

candidate nodes, expanding its existing terminals and retroffiting weaker rail links in its 

network.  Candidate terminals are in a good proximity of areas with higher demand 

quantities and disruptions risks.  Selected terminals can serve as back up terminals in case 

of disruptions and fluctuations in the demand.  Figures 5.5(a) and 5.5(b) depict the 

aforementioned rail and highway networks, respectively. 

 

 

(a) 
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(b) 

Figure 5.5 Test case network: (a) Intermodal rail network; (b) Highway network. 

Highway distances and their corresponding travel times were drawn from Google 

Maps.  Railroad company’s website provided rail mile distances between intermoda l 

terminals.  Travel times on rail links were computed by assuming an average speed of 35 

miles per hour for trains.  A 24 hours dwell time was assumed for terminals operating 24/7 

(24 hours per days, 7 days per week) and it was increased to 30 hours for terminals that 

were open 24/5. There was a charge of $0.7 per mile for rail shipments and a $3.64 per 

mile for truck shipments (Fotuhi and Huynh, 2016).  There was also a $150 transfer cost 

for containers that change mode at intermodal terminals.   

The company plans to expand the network for the next 20 years over three expansion 

periods at years 2020, 2025 and 2030.  The expansions affect 15 annual routing periods 

from 2020 to 2035. 50 to 65 different OD pairs are selected from 44 major cities in U.S. 
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and their forecasted demand quantities are drawn from Freight Analysis Framework 

(FAF4) database. The origin and destination of these OD pairs are at least 750 miles apart 

and their corresponding demand values are more than 125 lb per year.  These two 

conditions are required to make shipments eligible for intermodal shipping option (Fotuhi 

and Huynh, 2015). FAF4 includes forecasted freight volumes between different zones 

within U.S for every five years from 2015 to 2045.  There is no information available for 

the forecasted demand of routing periods between expansion periods.  Hence, the demand 

scenarios for these periods are estimated based on the predicted values of demand at 

expansion periods available at FAF4.  Since FAF4 data are in kilo tons, they are converted 

to their equivalent 40-foot Container units as they are the most standardized units for 

intermodal shipping.  

 50 to 200 intermodal trains each carrying 100 to 200 40-foot containers pass major rail 

corridors of this company per day (C Systematics, 2007).  8500 daily number of trucks 

move containers on major freight highway corridors (US Department of Transportation).  

Accordingly, it is assumed that the capacity of roads for freight movement can range from 

1000 for rural roads to 8500 for major interstates. Annual demand of each OD pair is 

divided by 365 to find their average daily demand. Accordingly, the routing subproblems 

found optimal daily routes for each OD pair based on the average daily demand and 

capacities of infrastructure.  The annual transportation cost is then computed by 

multiplying the optimal daily routing cost and number of days in a year.  Unlike traditiona l 

strategic location-routing studies, this method can better capture the traffic congestion 

(corridor capacities) impact on routing decisions.   
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The test case considers 5, 4 and 3 disruption and demand scenarios for the first, second 

and third expansion periods, respectively. The first scenario of each expansion period with 

the highest chance of occurrence assumes the normal situation in which no disruption 

happens in the network.  Hurricane in New Orleans and Florida, earthquake in state of 

Washington and Oregon, Ice storm in Midwest and tornado in Midwest are the other 4 

scenarios of the first expansion period.  There is a small chance of earthquake in California, 

tornado in Midwest and flooding in lower part of Mississippi river in the second expansion 

period. Apart from the normal situation, the third expansion period includes two more 

scenarios as coastal flooding in California and ice storm in Midwest. Each disruption 

scenario has the maximum severity at the beginning of its corresponding expansion period 

and the severity is diminished through the routing subperiods.  As an example, consider 

scenario 2 of the first expansion period. The capacity of the terminal in New Orleans is 

degraded by 80% due to the hurricane at the beginning of the period.  For the first routing 

subperiod of this expansion period (the first year), only 20% of the capacity of terminals is 

available for routing of freight.  Moving to the next routing period which is the second 

year, the terminal is partially recovered from damages and 50% of its capacity is available 

for the routing decisions. The same framework exists for the subsequent routing subperiods 

of this expansion period.  It is assumed that disrupted infrastructure is fully recovered by 

the last routing subperiod of an expansion period.  It should be noted that access to real 

world freight data is not possible so the results are valid for the type of data that this paper 

considered. Different assumptions in terms of number of expansion and routing periods 

and problem parameters may change the results.  

5.6.2.1 IMPACT OF MULTI-PERIOD PLANNING ON NETWORK 
REPRESENTATION 
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To investigate the impact of multiple expansion time periods on total transportation cost 

and terminal’s capacity utilization, the multi-period model is compared to the single-per iod 

case. Like the small case study, the single-period problem considers maximum number of 

OD patterns and their corresponding demand quantities as well as maximum disruption 

percentages for disrupted infrastructure over all scenarios and time periods.  The expansion 

budget is sum of the budget of all expansion periods.   

As depicted in Figure 5.6, the optimal decision for single-period problem opens a new 

terminal in Fort Smith, AR, expands terminals in Seattle, WA; Phoenix, AZ; Birmingham, 

AL; Kansas City, KS; Denver, CO; Chicago, IL and Spokane, WA.  It also retrofits two 

rail links including Seattle-Spokane and Omaha-Chicago.  However, the multi-per iod 

framework with three expansion periods has a different optimal design.  It opens three new 

terminals in Boise, ID; Fort Smith, AR; and Jackson, MS in the first, second and third 

expansion periods, respectively.  Birmingham, AL; Denver, CO and Chicago, IL are the 

three terminals selected for expansion at the first period.  No terminal is selected for 

expansion in the second period and Spokane, WA is the only expanded terminal in the third 

period. Unlike the single-period design, no budget is spent to retrofit any links in the 

network.  These results show that a remarkable portion of the budget is spent on expanding 

existing terminals rather than building new ones which is a different finding compared to 

the multi-priod case.  Both designs have mutual new terminals and expanded existing 

terminals.  However, the decisions are made in different time spans for the multi-per iod 

case.  It is worth mentioning that no link is retrofitted in the multi-period case due to the 

low chance of disruptions which is relaxed in the single-period case.   
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To address the benefit of considering different time scales for expansion and routing, 

the results of multi-period model with single time scale is compared to the ones for the 

multi-period model with multiple time scales.  The multi-period model with single time 

scale features the following parameters.  It assumes that the demand for each expansion 

period is the maximum number of ODs and their corresponding quantities over the routing 

subperiods of that period.  The disruption percentages of each expansion period is assumed 

to be the highest values over the routing subperiods of that period.   

The optimal design of the multi-period model with single time scale opens terminals in 

Fort Smith, AR and Jackson, MS in the second and third time periods, respectively.  The 

whole budget is spent to expand existing terminals in Dallas, TX; New Orleans, LA; 

Birimingham, AL; Denver, CO; Omaha, NB; Chicago, IL and Billings, ID in the first 

period.  Terminal in Seattle, WA is the only one selected for expansion in the second 

period. The remaining budget in the third period is spent to expand terminals in Billings, 

MT and Denver, CO.  Like the multi-period model with multiple time scales, no link is 

retrofitted due to the low chance of disruptions at all periods.   

  

a) Single-period model b) Multi-period model- multiple time scales 

(LT=1) 
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c) Multi-period model- multiple time scales 

(LT=2) 

d) Multi-period model- multiple time scales 

(LT=3) 

  

e) Multi-period model-single time scale 

(LT=1) 

f) Multi-period model-single time scale 

(LT=2) 

 

 

 

 

 

g) Multi-period model-single time scale 

(LT=3) 

 

Figure 5.6 Optimal network representations of the case study. 
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5.6.2.2 IMAPCT OF MULTI-PERIOD PLANNING ON CAPACITY UTILIZATION 

As depicted in Figure 5.6, a significant portion of the budget is spent to expand 7 termina ls 

and open a new one in the beginning of the planning horizon for the single-period problem.  

However, this additional capacity is gradually provided over multiple time periods under 

the multi-period approach.  Figure 5.7 depicts the average capacity utilization increase of 

all open terminals under the multi-period model against the single-period ones for all 

scenarios under the three expansion periods.  In average the daily utilization is increased 

by 1 to 2 percent.  This is reasonable since the multi-period model can better accommodate 

the continues change in the demand over the planning horizon.  Instead of providing extra 

capacity within a short time (traditional single-period model), the multi-period model adds 

the extra capacity in the appropriate infrastructure and period.  A daily 1% increase can 

generate a huge revenue for the whole planning horizon.  Consider a terminal with a 

capacity of handling 5000 containers daily.  A 1% increase means handling 50 more 

containers in a day, 18250 more containers in a year and 273750 more containers for the 

whole planning horizon.  If each container can produce 150$ revenue for the intermoda l 

service provider, the total opportunity revenue for the company is about 40 million dollars.  

Note that the case study is only considering 50 OD pairs within Midwest and Western part 

of US. Hence, the overall capacity usage of the terminals is low. This will significantly 

increase by considering all possible OD pairs in the whole US.   

5.6.2.3 IMPACT OF MULTI-PERIODPLANNING ON TRANSPORTATION COST 

AND ROUTING DECISIONS 

The single-period model finds a conservative network that can survive worst case scenarios 

with highest disruptions and maximum number of OD pairs with their highest demand 

quantities over the planning horizon.  This design disregards the low occurrence chance of 
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disruptions and gradual recovery of disrupted infrastructure over time.  Accordingly, the 

total transportation cost under this design is almost 1 billion dollars more for the whole 

planning horizon which is around 50 million dollars annually compared to the multi-per iod 

case with multiple time scales.  In a similar situation, the multi-period model with single 

time scale spends 600 million dollars more in transportation cost for the whole planning 

horizon which is around 40 million dollars annually.  The reason behind such an increase 

in total cost is ignoring network recovery from disruptions.  The gradual capacity recovery 

of disrupted infrastructure can only be considered in the multi-period model with mult ip le 

time scales.  When facilities regain their initial capacities through the routing subperiods, 

more shipments can be transported over their cheapest paths leading to lower overall 

transportation cost.  To clarify this fact, the routing results of one OD pair is discussed in 

the following.    

   

Figure 5.7 Capacity utilization comparison under the multi-period and the Single-period 

expansion designs 
 

The resulting routing decisions of one OD pair (Los Angeles, CA - Seattle, WA) is 

depicted in Table 5.2.  These routes correspond to five routing subperiods of the first 

expansion period under the third scenario.  As mentioned before, this scenario involves 

earthquake in states of Washington and Oregon impacting terminals in Seattle and 

Portland.  There is a huge capacity reduction in rail and highway links within these states 
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as well.  As shown in Table 5.2, 86% of the demand is routed via an alternative route 

passing through nearby states with no disruptions in the first routing subperiod with highest 

disruption severities. Only 14% of the flow is assigned to the shortest path of this OD pair 

which included links within disrupted states.  A remarkable portion of the demand is shifted 

to the shortest path in the second routing subperiod due to the extensive recovery of 

disrupted infrastructure.  Once the disruption impact is fully resolved in the third routing 

subperiod, all the flow is assigned to the shortest path for the subsequent routing subperiods 

of this expansion period.  These results verify the benefit of including shorter routing 

periods in expansion decisions to better consider disruption impacts on routing of freight 

flow over the network.   

Table 5.2 Routing results for a specific OD pair under one expansion period. 

Rt Routes Percent of 

flow  

    1 Los Angeles-Las Vegas- St George- Salt Lake City- Boise- Seattle 86% 

Los Angeles- Oakland- Medford- Portland- Seattle 14% 

    2 Los Angeles- Oakland- Medford- Portland- Seattle 73% 

Los Angeles-Las Vegas- St George- Salt Lake City- Boise- Spokane- Seattle 27% 

3 Los Angeles- Oakland- Medford- Portland- Seattle 100% 

4 Los Angeles- Oakland- Medford- Portland- Seattle 100% 

5 Los Angeles- Oakland- Medford- Portland- Seattle 100% 

 

5.7 CONCOLUSIONS 

This paper developed a mixed integer probabilistic robust model that addresses the 

intermodal freight network expansion problem using a multi-period planning approach.  

The model incorporated uncertainties in demand and supply as well as different time scales 

for expansion and routing decisions.  A hybrid simulated annealing algorithm was 

developed to solve the developed model.  The results verified the quality and time 
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efficiency of the algorithm compared to exhaustive enumeration for small-sized and large-

sized networks.     

             The results showed that the multi-period planning approach can significantly reduce 

the total transportation cost and improve capacity utilization of intermodal termina ls 

compared to the traditional single-period planning approach.  They also verified that by 

considering different time scales for routing and expansion decisions compared to mult i-

period planning with single time scale a lower transportation cost can be obtained.  The 

results also indicated that the available funds are best used to expand existing terminals or 

build new ones rather than retrofit weaker links in the network due to the low assumed 

probability of disruptions.   

This work can be extended by incorporating correlated failures in disrupted 

infrastructure which is more realistic in nature.  Furthermore, the model can be generalized 

to include other transport modes which is necessary if the scope extends to internationa l 

freight movements. Providing a distribution free model to deal with uncertainties is another 

important area that can be considered in future work.     Incorporating the discounted value 

of money over time is another important factor that can make the problem more realistic. 

Instead of assuming the value of currency to stay constant over time, there can be a 

discounted factor impacting that value. 
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CHAPTER 6: CONCLUSIONS 

 

In this dissertation, three completed research studies are presented to address real world 

criteria in intermodal freight network design and expansion. These studies present 

significant cost reduction and revenue increase for intermodal service providers against 

traditional models. 

The primary objective of an intermodal service provider is to build a network which 

can operate for a long time with less changes over its operational life.  It also must provide 

the maximum amount of revenue for the provider and satisfy the customer by fully meeting 

its demand within a predefined delivery due date. 

Including competition among intermodal service providers leads to more revenue for 

a company intending to expand its existing intermodal network. Chapter 3 of this 

dissertation focuses on proposing a model to find locations of new intermodal termina ls 

for a railroad company which competes with companies offering the same service with 

overlapping service areas.  The model also encounters uncertainty in future demand to find 

reliable locations which can respond to future changes of the demand immediately. A new 

SA algorithm is also developed to solve larger sized instances of the model to make the 

model practical for real life applications. The results from a set of random networks verify 

efficiency of SA in terms of solution quality and computational time.  From a practical 
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perspective, the model finds optimal number of new terminals and their locations that can 

provide maximum revenue for a railroad company operating in US for the next 30 years. 

 Chapter 4 presents a new model for intermodal network expansion by addressing 

uncertainty in both demand and supply. Supply uncertainty stems from natural or human-

made disasters that might happen in the network and can make a network element (link or 

terminal) out of order or significantly reduces its capacity. So, it is important to include 

these incidents when expanding an intermodal network to mitigate their possible risks.  The 

decisions include locations for new terminals, existing terminals to expand and rail links 

to retrofit. A hybrid GA algorithm is also proposed to solve this model for large size 

instances. The numerical results showed algorithm’s efficiency in finding optimal solutions 

in much shorter time compared to commercial optimization solvers. Managerial insights 

are also drawn from a real world case study. The results show that the company can 

significantly save cost if they include disruption risks and demand uncertainties in their 

expansion decisions.  It also provides policy recommendations for practitioners of how to 

spend a limited expansion budget while deciding where to locate new terminals, which 

existing terminals to expand and which higher risk rail links to retrofit.  

Chapter 5 improves the previous model by incorporating the dynamic nature of 

expansion projects due to limited investment capital. The idea is to gradually expand the 

network over the planning horizon which is divided into multiple periods.  It also features 

shorter periods for routing versus expansion due to the frequent changes in demand, cost 

and network capacities which can significantly impact routing costs. The model decides 

when and where to locate new terminals, expand existing ones and retrofit weak links as 

well as routing of freight flow over the network.  Due to the complexity of this model, a 
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SA algorithm is proposed to solve it for real size networks.  The numerical results on a 

small case study show the efficiency of the algorithm in terms of computational time and 

optimality gap.  The application of the model on a real size network verifies that the mult i-

period model leads to lower total transportation cost, higher capacity utilization with lower 

loss of demand due to disruptions.  The results also show the superiority of the multi-per iod 

model with different time scales for routing and expansion versus a multi-period model 

with identical time scales in terms of total transportation cost and capacity utilization.  

The case study results recommended different practical actions for the third research 

paper compared to the second one. Utilizing different robust optimization approaches 

caused the different policy recommendations. The min-max regret approach assumed 

identical chance of occurrence for all scenarios (Including normal situation and 

disruptions) and tried to find a solution for the worst case scenario. However, the third case 

assumed a more realistic situation in which the chance of disruption occurrence is very low 

and the final decision is more focused on normal situation with no disruptions.  

It is also important to note that the goal of this dissertation was to investigate the 

impact of incorporating different real world parameters in intermodal network expansion 

decisions and cost reductions. Since, real world data is not easily accessible, the case study 

results are not generalizable in terms of the final designs and they depended on the data set 

that was used. Different data and parameters may lead to different results. However, it is 

proved that the proposed models can significantly reduce cost, improve routing decisions 

and accommodate future disruptions and demand fluctuations. 
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