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ABSTRACT 

 This overall theme of this dissertation is to investigate the potential engineered 

application of low pressure membranes incorporated with single-walled carbon nanotubes 

(SWNTs) and forward osmosis (FO) membrane systems for the removal of synthetic 

organic compounds (SOCs) and natural organic matter (NOM) from drinking water 

sources. The focus is on the use of SWNTs-ultrafiltration (UF) and FO membrane 

systems to facilitate the removal of these compounds and potential applications of these 

membrane system designs for reducing the energy demands and membrane fouling in 

environmental water filtration process and seawater desalination. The SWNTs-UF results 

indicate that SOCs transport is influenced by NOM, which fouls the membrane through 

pore blockage and cake/gel formation. A strong linear correlation between the retention 

and adsorption of SOCs was observed, indicating that retention by the SWNTs-UF 

membranes is mainly due to the adsorption of SOCs onto the membrane, the SWNTs, 

and/or NOM. The performance of SWNTs–UF was also evaluated on the basis of a 

resistance-in-series model, filtration laws, and NOM transportation mechanisms. The 

addition of SWNTs to the UF process did not significantly exacerbate the permeate flux 

decline and total membrane resistances. Further, it appeared that the effect of SWNTs on 

membrane fouling is a function of hydrodynamic and operational conditions. The results 

suggest that the NOM transportation in SWNTs–UF systems depends, to a significant 

extent, on the concentration polarization and cake/gel layer formation at the membrane 

boundary. In the application for artificial seawater in SWNTs-UF, the presence of
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 SWNTs shows 20% increase in membrane flux and a strong linear correlation between 

retention and adsorption of SOCs was obtained. In FO membrane systems, the cellulose 

triacetate based FO membrane exhibited the better separation properties than that of 

polyamide based reverse osmosis (RO) membrane. And, in active layer (AL)-facing-feed 

solution (FS) configuration in FO mode, the RO membrane exhibited higher removal 

efficiency at the expense of severe internal concentration polarization (ICP) and flux 

reduction. Under higher cross-flow velocity operations in FO mode, both reduced 

external concentration polarization and retarded SOC diffusion from the reverse flux of 

sodium chloride contributed to the improved SOC removal performance. The FO 

membrane removal behavior was principally related to size exclusion, while the RO 

membrane removal behavior was related to interactions between hydrophobicity, size, 

and electrostatic repulsion. The results significantly confirmed the dominant role of ICP, 

and the trade-off between flux and removal efficiency depends on the porous supporting 

layer in AL-facing-FS configurations in the FO process. 
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CHAPTER 1 

INTRODUCTION AND MOTIVATION 

The synthetic organic compounds (SOCs), including endocrine disrupting compounds 

(EDCs), and pharmaceuticals and personal care products (PPCPs) have been detected in 

water supplies and wastewater effluents worldwide [1-4]. Some SOCs have documented 

adverse ecological impacts that have raised concern among public and regulatory groups 

about the fate of such compounds during potable water treatment, as well as human 

exposure to them in drinking water [5-7]. Some EDC/PPCPs are more polar than the 

currently regulated polyaromatic contaminants. This, coupled with their occurrence at 

trace levels (parts per trillion), creates unique challenges to analytical detection and the 

assessment of removal performance by potable water treatment plant processes [3]. 

Drinking water treatment relies primarily upon adsorptive and oxidative processes to 

remove or transform organic materials. Previous studies of selected groups of 

EDC/PPCPs, pesticides, and herbicides have indicated that coagulation, sedimentation, 

and filtration achieve minimal levels of removal [8-10]. 

Natural organic matter (NOM) has been related to the most problematic issue of 

water treatment. NOM can affect carcinogenic as a precursor to disinfection by-products 

and making complex it with metals and hydrophobic synthetic compounds, which are 

more difficult to remove it during water treatment processes. NOM cannot be 

significantly rejected during ultrafiltration (UF) since UF has relatively larger nominal 

molecular weight cut-off (MWCO) compared to the molecular size of NOM [11, 12]. 
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Furthermore, NOM has been well known as a major contributor to membrane fouling, 

which deteriorates the extensive application of UF process in advanced water systems, as 

it clogging the membrane pores or forming cake layer on the membrane surface [13-16]. 

But most of all, the humic acid (HA), major hydrophobic fractions of dissolved NOM 

(DOM), are usually considered to be responsible for severe membrane fouling [17, 18]. 

HA are anionic macromolecules having a wide range of molecular weights comprise both 

aromatic and aliphatic components with primarily carboxylic (carboxylic functional 

groups account for 60–90% of all functional groups) and phenolic functional groups in 

aquatic environments [19]. HA is found to have the largest impact on membrane fouling 

as causing great pore adsorption (irreversible fouling) onto membranes compared to other 

fractions of DOM. 

For over the past few decades, membrane filtration process has attracted increasing 

attention as a promising technology for the elimination of SOCs, including EDC/PPCPs 

from water and wastewater. The process of membrane filtration has significant 

advantages, because it is easy and safe to perform and produces a minimal amount of 

toxic byproducts. In recent years, low pressure membranes (LPMs) including UF and 

microfiltration (MF) are widely used as a separation technology in the filtration of 

aqueous mixtures for drinking water and wastewater treatment [20, 21]. LPM treatment 

has become one of the most important technologies for water treatment due to its 

outstanding efficacy in producing high quality water, its relatively small footprint, and its 

relatively low costs [21, 22]. However, membrane fouling associated with reversible and 

irreversible foulants (i.e., colloids, particles, algae, and bacteria) needs to be overcome 

for achieving water quality objectives [23]. 
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Seawater desalination is a general term for the process of removing salt from 

seawater to produce fresh water. For seawater desalination, reverse osmosis (RO) 

desalination installations have been significantly increasing and have accounted for 75% 

of new production capacity in 2003 [24]. Furthermore, forward osmosis (FO) using the 

osmotic pressure driving force has drawn special research attention by providing 

reasonably low cost and energy under a high recovery rate [25-30]. FO involves 

spontaneous water movement by means of a natural chemical gradient in which a 

solution tends to move from a state of lower osmotic pressure to a higher one through a 

semi permeable membrane, which can remove target solutes from the sample [31]. Also, 

the FO process depends more on the molar concentrations of the solutions instead of the 

actual identity of the solutes. This makes the overall process much more versatile in order 

to filter different kinds of solutions with the same system. Nevertheless, FO is not fully 

developed; thus, it cannot be used in commercial practice, but the whole process 

technology is in developing stages [31]. First of all, the specialized membranes (i.e. low 

internal concentration polarization) must be found in order to create the most efficient FO 

system along with high osmotic pressures for creating the high gradient for water to move 

from the feed solution. So far, only a handful studies have focused on FO mode runs for 

the retention of SOCs for the FO application to the environmental filtrations. 

The seawater sources often include particulate and colloidal contaminants, as well 

as hydrocarbons from oil contamination and biological contaminants (e.g., algal blooms 

and other microorganisms) [32].These foulants need to be pretreated to lower the fouling 

propensity of water in RO and FO membrane system. Conventional pretreatment 

processes (acid addition, coagulant/flocculant addition, and disinfection) have been 
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widely used for seawater and RO plants. However, various feed water chemistry 

conditions can cause variations in conventional pretreatment efficacy, since colloids and 

suspended particles often pass through conventional pretreatment and contribute to 

difficult to remove (and possibly irreversible) RO membrane fouling [33]. A new trend in 

pretreatment has been a movement towards the use of UF and MF membranes to pretreat 

of FO/RO feed water [32]. Commonly used pretreatments (i.e., coagulation, adsorption, 

and preoxidation) for LPM filtration can transform the physicochemical and/or biological 

properties of feed water and improve the performance of LPMs. 

The most intensively studied adsorbent for LPM filtration in water treatment is 

powdered activated carbon (PAC). The efficacy of PAC in removing organic 

contaminants is strongly dependent on PAC type [34, 35], dose, properties of the organics 

[10, 36], and the competition of other aquatic constituents [37]. Since their discovery in 

1991, carbon nanotubes (CNTs) have demonstrated such extraordinary mechanical, 

electrical, thermal, and chemical properties that they have become candidates for 

numerous applications, such as nanocomposites, energy storage, microelectronics, and 

medical devices [38, 39]. Several studies projected the production of CNTs at millions of 

tons in 2010, and a $1 trillion worldwide market for nanoproducts by 2015 [40, 41]. 

Studies have indicated that CNTs are good adsorbents, due to their high adsorption 

capacities for heavy metals [42], phenols [43], and other organic chemicals [44]. In 

addition, CNT technology has the potential to support point of use in water treatment 

since unlike many microporous adsorbents, CNTs possess fibrous shape with high aspect 

ratio, large accessible external surface area, and well developed mesopores, all contribute 

to the superior removal capacities of these macromolecular biomolecules and 
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microorganisms [45]. Due to these unique characteristics of CNTs, the potential 

applications of CNT-UF/MF can be enormous in water/wastewater treatment/reclamation 

and seawater desalination, although they have not been studied.    

Regardless of rapid growth in membrane-based water pretreatment capacity, the 

key disadvantages of each conventional pretreatment for LPMs include that (i) 

coagulation may exacerbate fouling and be ineffective in mitigating the fouling by 

hydrophilic neutral organics, (ii) adsorption possibly exacerbate LPM fouling, and (iii) 

preoxidation forms disinfection by-products and may damage membranes incompatible 

with oxidants [23]. This research, UF incorporated with SWNTs, can provide solutions to 

overcome the possible exacerbation of LPM fouling readily shown in conventional 

hybrid adsorbent-UF/MF processes, also it is include that the potential applications of FO 

membrane systems for reducing the energy demands and membrane fouling in the 

environmental filtration by efficiently removing SOCs with optimization of draw solution 

recovery in near future. 
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CHAPTER 2 

OBJECTIVES AND SCOPE 

In competing with conventional water treatment processes, the high removal pressure 

driven membrane technologies have been a long-standing issue for membrane fouling 

resistance. Thus, the single-walled carbon nanotubes (SWNTs)-UF membrane and FO 

membrane system have been drawn on the unique characteristics for improved flux, low 

fouling, and high removal efficiency of SOCs and NOM in water treatment and seawater 

desalination. The overall objective of this study is to evaluate UF membrane process 

coupled with the use of SWNTs and FO membrane system in order to understand the 

fate and transport of a representative selection of SOCs and NOM in water treatment 

and furthermore potentially apply to optimization of various pretreatment system 

designs for reducing the energy demands and membrane fouling in water treatment 

and seawater desalination process. This research entails the study and development of 

next-generation FO membrane processes to enhance micropollutants removal and 

membrane fouling reduction, which could have extensive applicability for sustainable 

water purification, including seawater desalination, as well as the aspects of fouling and 

energy consumption of drinking water and wastewater treatment. The novelty of using 

both ultrafiltration and SWNTs adsorption processes is, at one level, a relatively simple 

approach that involves the combination of two existing technologies (i.e., filtration 

process and adsorption). However, little work has been performed to specifically assess 

the influence of membrane fouling and SWNTs on the fate and transport of a broad range
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 of SOCs of emerging EDC/PPCPs and NOM. Also, it is currently unknown what 

mechanisms in FO process can affect to the transport of SOCs. The preliminary results 

about CNTs adsorption with micropollutants suggest that significant enhancement is 

feasible. In addition, this study provides benefits of FO membrane compared to that of 

RO membrane and offers SOCs removal behaviors in both FO- and RO-mode 

experiments under various operating conditions that have not been previously recognized. 

 

This research plan is guided by four hypothesis-driven studies. The hypotheses are drawn 

from both the preliminary results and relevant sources in the literature. 

 

Study I: Determination of Adsorption and Retention of EDCs on SWNTs-UF Systems 

 Hypothesis: The effect of the SWNTs adsorbent on membrane fouling may be a function 

of the physicochemical properties of the adsorbent (e.g., size, charge, and 

hydrophobicity), membrane characteristics (e.g., pore size, charge, and hydrophobicity), 

and solution water chemistry (e.g., pH and conductivity). SWNTs will be effective at 

removing the majority of hydrophobic EDCs through adsorption mechanisms. Although 

hydrogen bonding affinity and π-π EDA interactions are the key parameters used to 

predict the adsorption with SWNTs, this is somewhat difficult to ascertain for the 

emerging EDCs including BPA and EE2. Acknowledging these limitations, it is 

hypothesized that EDC removal will be related to the octanol–water partition coefficients 

(log Kow) of neutral compounds. The retention and adsorption trends of the EDCs in 

SWNTs-UF were significantly influenced by the interactions between NOM-SWNTs-UF 

and EDCs. In addition, the adsorption of EDCs onto UF membrane decreased in the 
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presence of NOM due to competition for adsorption sites and pore blockage by NOM in 

UF. 

 

Study II: Evaluation of SWNTs Contributions to Remove NOM in SWNTs-UF Systems 

Hypothesis: The SWNTs-UF will exhibit increased rejection trends as a result of SWNT 

binding sites adsorbing HA during volume concentration factor (VCF)-dependent fouling 

runs under various feed water hydrodynamic and solution conditions. Further, the 

addition of SWNTs to the UF process will not significantly exacerbate the permeate flux 

decline, which may be due to the stacking of SWNTs on the membrane surface, thereby 

maintaining a porous layer that permits the passage of water without any additional 

fouling resistance. In addition, while applying a resistance-in-series model, where HA 

fouling resistances will be mainly attributed to adsorptive fouling, and it appears likely 

that SWNTs-UF provides a greatly reduced membrane resistance per unit retained DOC 

mass, compared to UF alone. In addition, the characteristics of the fouling layer and 

resistances will be more dependent on HA deposition and/or HA adsorptive fouling rather 

than a fouling contribution from SWNTs; this is presumably because the SWNTs are too 

large to block the membrane pores. Overall, SWNTs-UF will be shown to be effective at 

improving membrane performance through neither attenuate flux nor total membrane 

resistances. 

 

Study III: Investigation of Potential Feasibility of SWNTs-UF as Pretreatment to 

Enhance the Removal of NOM, EDCs and Fouling Control in Seawater Environments 
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Hypothesis: As ionic strength increases in solution, adsorbent hydrophobicity generally 

increases, which may contribute to as the more hydrophobic non polar compound 

adsorption remain. It is hypothesized that adsorption of NOM and EDCs, and exchange 

of ions can be attributed to the hydrophobic CNTs functionalized and will thus increase 

as ionic strength increases. For seawater conditions, adsorption capacity of SWNTs will 

increases as ionic strength increases due to the "screening effect", which reduces 

electrostatic repulsions of surface charge. In addition, enhancing of hydrophobic-organic 

adsorption onto SWNTs could be affected by "salting-out effect", which increases 

adsorption capacity with decreasing solubility of organic compounds in aqueous salt 

solutions. However, detailed mechanisms associated with NOM, EDC, and ion removal 

by functionalized CNTs are still unclear with seawater. The information gained during 

this experiment will be incorporated into a process model that can be used to predict 

compound transport through SWNTs-seawater environments and UF membranes. 

 

Study IV: Investigation of the bench-scale FO and RO mode experiments with both FO 

and RO membranes in order to address the retention and adsorption behaviors of the 

relative hydrophilicities of several SOCs. 

Hypothesis: Previous studies have shown that RO and nanofiltration (NF) membranes are 

an effective approach to retain SOCs by retention mechanisms, such as size/steric 

exclusion, electrostatic repulsion, and hydrophobic interactions between solutes and 

membranes. Until now, very few studies on FO retention mechanisms of micropollutans 

have been reported in the literature. As a result, the understanding fouling and retention 

mechanisms of FO processes are basically unsure. Nevertheless, through next-generation 
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bench scale FO system setting, some of the critical and fundamental questions will be 

answered based on the assumption of that the FO-mode is not a pressure-driven process, 

but its retention mechanisms are expected to follow those of conventional RO processes: 

(1) whether various operating conditions process in FO mechanistically alters the 

membrane’s fouling and SOCs retention behaviors and (2) what mechanism is more 

dominant to remove those SOCs including solute parameters such as molecular weight 

(MW), hydrophobicity (log Kow), and solubility. It shall be tested that other aspects of a 

FO membrane process including the effect of internal concentration polarization (ICP), 

reverse salt flux, and specific water flux. 
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CHAPTER 3 

LITERATURE REVIEW AND BACKGROUND 

 

3.1 Mechanisms for Organic Solutes Retention through Membrane Treatment 

3.1.1 Hydrophobic Interaction (Adsorption) 

Partitioning will be the main phenomenon in hindered diffusion of organic compounds 

when partitioning is dominated by the hydrophobic interaction (adsorption) mechanism 

between the target hydrophobic compounds and hydrophobic membrane. In the previous 

study [46], model and natural waters were spiked with >30 EDC/PPCP compounds at 

environmentally relevant concentrations and subjected to membrane treatment using a 

dead-end stainless steel membrane system both tight NF (MWCO = 200 Daltons) and UF 

(MWCO = 8,000 Daltons) membranes. Contact angle and streaming potential (zeta 

potential) measurements showed that those membranes were relatively hydrophobic and 

negatively charged [47]. The molecular weight of the compounds ranged from 150 to 300 

Daltons except iopromide (790 Daltons). Therefore, it was expected that the NF 

membrane could reject greater than 90% of the compounds due to steric/size exclusions 

(Figure 3.1 – for spiked laboratory DI water). However, the retention was positively 

correlated with the hydrophobicity based on the octanol- water partition coefficient (log 

Kow) of the compounds. Furthermore, the negatively charged/hydrophobic UF 

membrane also removed greater than 70% of the relatively high hydrophobic compounds 

(e.g., oxybenzone, triclosan, fluoxetine, progesterone, erythromycin, gemfibrozilmore) 
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due to mainly hydrophobic adsorption and fairly electrostatic exclusion even though the 

membrane has much larger membrane pore size than the size of the compounds. The less 

hydrophobic compounds (iopromide, meprobamate, sulfamethoxazole, pentoxifylline, 

acetaminophen, and trimethoprim) were slightly rejected by the NF membrane. Log Kow 

values are reported for neutral molecules. Many of the compounds are deprotonated at the 

ambient pH tested. For example, the pKa values are < 8.0 for diazepam, diclofenac, 

dilantin, ibuprofen, naproxen, sulfamthoxazole, triclosan, trimethoprin, and TCEP; 

therefore a fraction of these compounds exist in ionic form susceptible to electrostatic 

interaction with membrane surfaces. The bench-scale data from similar dead-end 

membrane tests using a larger number of EDC/PPCP spiked compounds into Passaic 

Valley water (PVW; DOC = 3.5 mg/L, UVA254 = 0.09 1/cm, SUVA = 2.6 L/mg-m, 

conductivity = 40.7 mS/m, pH = 6.8) [48]. Although certainly, this NF membrane 

exhibited a greater retention than adsorption, many compounds had high adsorption, 

indicating that the retention of these compounds was controlled by adsorption. In addition, 

the effect of DOC in PVW decrease removals of some compounds, presumably as DOC 

competed with EDC/PPCPs for adsorption sites, and increased removal of other 

compounds during UF, presumably due to DOC changing the charge of the UF 

membrane surface. It can be concluded that the hindered diffusion of hydrophobic 

organic compounds can be significantly influenced by adsorption while the electrostatic 

repulsion mechanism is dominant for the hindered diffusion of anions through a 

negatively charged membrane. 
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Figure 3.1 EDC/PPCP percentage removed from spiked DI water (pH 7) in a dead-end 

membrane filtration system using a separate NF and UF membrane (From American 

Water Works Association Research Foundation - AwwaRF Project #2758).  

   

3.1.2 Membrane Batch Adsorption Tests  

The partition coefficient of the compounds between the membrane and the bulk solution 

was evaluated per unit volume of membrane (membrane area  membrane thickness) 

using the following equation:  

 

bC

Q
K                                                (Eq. 3.1) 

 

where K is the partition coefficient (dimensionless), Q is the adsorption amount per unit 

volume of membrane (g m
-3

), and Cb is the concentration of the compound in the bulk 

solution (g m
-3

). The membrane thickness, including the top layer and microporous 

support layer, was 200 m for UF5K, as measured using an electronic digital micrometer 
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(733xflz-3, Starrett, Athol, MA, U.S.A.), which has a measuring limit of 1.0 m. A 

previous study highlighted that the sorption experiments of pesticides, hydrophobic 

compounds, and humic acid should include not only the adsorption on the membrane 

surface, but also the adsorption by the membrane skin layer, the membrane support layer, 

and/or the membrane pore [49-51]. In a previous study by the Investigators the results of 

bench-scale membrane testing (NF & UF) with three EDCs was presented [52]. Two 

estrogenic compounds (17β-estradiol and fluoranthene) and a more polar compound 

(parachlorobenzoic acid (PCBA)) were investigated. 17β-estradiol (E2), fluoranthene 

(Flu), and PCBA were applied to the membrane in the presence and absence of NOM. 

Both batch adsorption and dead-end stirred-cell filtration experiments indicated that 

adsorption is an important mechanism for transport/removal of relatively hydrophobic 

compounds, and is related to the log Kow values. The three compounds had different 

extents of adsorption in the batch experiments (Figure 3.2). Partition coefficients (H) of 

0.44 to 4.86 measured in this study increased with log Kow and membrane pore size.  

 

 

Figure 3.2 Batch adsorption with ESNA membrane in the presence from deionized water 

and presence (4 mg L
-1

) of NOM (contact time = 72 h) [53]. 
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3.2 Dissolved Organic Matter (DOM) Transport Models  

The UF membrane process is regarded as the physical barrier that rejects macromolecules 

larger than the membrane pore size. HA rejections cannot be explained only by size 

exclusion mechanisms because HAs consist of various ranges of macromolecules with 

different functional groups influencing NOM charge and hydrophobicity. Thus, 

macromolecule rejection cannot be explained on the basis of size exclusion alone. In 

addition, various mechanisms such as electrostatic repulsion, hydrophobic interaction, 

and adsorption occur simultaneously during membrane filtration. Therefore, prediction of 

DOM transportation in UF is more complicated. To understand the DOM transportation 

mechanisms in various hydrodynamic conditions, resistance-in-series model, filtration 

laws, and DOM mass transfer mechanisms should be considered during membrane 

filtration.  

   

3.2.1 Resistance in Series Model 

Darcy’s law can be used to describe the permeate flux (Jv) for flow through UF 

membranes.  

 

   
  

    
                                                                              

 

where Jv is the volumetric water flux through porous membranes (L m
-2

 h
-1

), ΔP is the 

pressure drop across the membrane (bar), η is the dynamic viscosity of the fluid (kg m
-1

 s
-

1
), and Rm is the hydrodynamic resistance of the membrane. During membrane filtration, 

various factors contribute with different extent to the total resistance to flow; (i) 
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resistance as a result of adsorption or pore-blocking (Ra), (ii) cake resistance forming a 

gel and/or a porous cake as the buildup and accumulation of some solute on the 

membrane surface (Rc), and (iii) highly concentrated layer resistance toward mass 

transfer (i.e. concentration polarization) near the membrane surface (Rcp). These 

resistances totally depend on the source water qualities as well as the type of the 

membrane operating conditions and module. In most encountered UF application of 

water and wastewater treatment, this appears that the CP is not capable of any further 

effect to increase resistance, once forming the cake layer near the membrane surface [54]. 

This implies that Rcp becomes the negligible resistance factor to Jv. Hence, the typical 

forms of the resistance-in-series model for the quantification of the filtration 

characteristics through a UF membrane containing a cake layer can be expressed as 

shown resistances in Figure 3.3 and Eq. 3.3 [55, 56]; 

 

   
  

             
   

  

            
                                 

 

where RIR is the irreversible fouling resistance (m
-1

), RR is the reversible fouling 

resistance (m
-1

), Rc is the cake layer resistance (m
-1

), and Ra is the adsorptive fouling  

resistance. Consequently, in this study, Eq. 3.3 was used to evaluate the fractions of these 

different resistances (Rm, Rc, Ra). 
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Figure 3.3 Conceptual schematic of concentration polarization by film theory and cake 

layer formation; concentration profile under steady-state conditions. 
 
 

3.2.2 Concentration Polarization by Film Theory 

One of the critical factors affecting the ratio of solute rejection is the transportation 

mechanisms of DOM on the membrane surface. In the application of UF, the 
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concentration polarization (CP) is caused by increasing of the bulk solution concentration 

through inner membrane cell as the pressure-driven flow convectively transport solute to 

the upstream boundary layer. By the mass movement to meet the concentration balance 

between bulk concentration (Cb) and membrane concentration (Cm), it finally keeps the 

equilibrium between solvent flux (Jv) by applied pressure and back diffusion of the solute 

from the membrane surface to the bulk solution. The concentration of upstream 

membrane is reached the steady state conditions when the permeate flux, back diffusion 

caused by the accumulation of solute, and convective transportation of solute are in 

equilibrium as shown in Figure 3.3.  

This phenomenon can be expressed by the CP model derived from back diffusion of 

solute on membrane surface [56]. Depending on the mass-balance approach of 

constituent concentration (     ), convection through membrane pores (        ) and 

back diffusion (         ), CP model can be written as Eq. 3.4; 

 

  

  
    

  

  
   

   

  
                                                             

 

Eq. 3.4 can be integrated between the boundary conditions C = Cb at x = δ, C = Cm at x = 

0, under steady state conditions, yields Eq. 3.5; 

 

       (
     

     
)                                                                   
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where k is the mass transfer coefficient (m s
-1

) ; k = D δ
-1

 [D is the diffusion coefficient 

(m
2
 s

-1
), δ is the boundary layer (m

-1
)]. 

 

3.2.3 DOM Transport Parameters Estimations  

Mass transfer in UF membranes is influenced by the effects of solute CP on membrane 

surface and hindered partitioning and diffusion. Bulk flow comes in and convection 

occurred towards membrane and at the same time back diffusion occurred from the 

membrane surface by solvent flux flowing through membrane. Due to the CP on 

membrane surface, solute should come back from the area of membrane surface to bulk 

area. This is referred to the back diffusion phenomenon in the area of CP of membrane 

surface. What mechanism of mass transfer is more dominant in stirred membrane cells 

can be explained by the extended Nernst-Planck equation combined with a CP model. 

Bowen and Mohammad suggested more specifically how much contribution is influence 

to the mass transfer in membrane cells by the equation on the basis of the Nernst-Planck 

Equation [57].

 

And, to know the real rejection of membrane, we have to derive the 

diffusion coefficient of HA. Common equation about mass transfer coefficient (k) derived 

from the diffusion coefficient in the stirred cell can be expressed as Eq. 3.6 [58]; 
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where Deff is the effective diffusion coefficient, r the stirring radius, ω the stirring 

velocity, and ρ the solution density. And applying the CP model, we can find the 
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concentration of membrane surface and the real rejection (R) of membrane. Also, 

membrane selectivity (σ) and k are influenced with interactions between HA and 

membrane, which merit prediction of the HA transportations with respect to various 

operating conditions. However, we should not apply Eq. 3.6 for k (mass transfer 

coefficient) because the humic substances have the wide range of molecular weight. Thus, 

by applying similar approach of Tandon [59], it will produce the value of the 1/k and σ (it 

could be estimated with the regression analysis by plotting the ln(1-Robs/Robs) against Jv). 

Assuming that the local equilibrium of mass transfer in membrane cells with a 

thermodynamic point of view, the real rejection can be estimated by Kendem-Katchalsky 

(K-K) equation is as follows Eq. 3.7 [60]; 

 

 

 
 

 

 
 

  
    

                                                                 

 

where R is the real solute rejections, Pm is the solute diffusive permeability (m s
-1

). It was 

resulted in Eq. 3.8 [59, 61] by substituting Eq. 3.7 to Eq. 3.5 with Robs = (Cb-Cp)/Cb and R 

= (Cm-Cp)/Cm for the term of Robs; 
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In this thermodynamic approach (Eq. 3.8), it is very important note that the how much 

contribution is influence to the mass transfer in membrane cells by defining the Pe = 

Jv·(1-σ)/Pm (denoted pore Péclet number, Pe). Referring to the Pe, it is interesting to note 
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that if the Pe is much larger than 1, then the solute transport by convection will definitely 

control the mass transfer process. In the case of the Pe is much smaller than 1, then the 

diffusion mechanism is dominant to mass transfer in membrane process. Thus, the K-K 

equation simply expressed by neglecting that 1/(σ·Pe) ≈ 0 or Jv/k ≈ 0 and yields Eq. 3.9 

and 3.10 [59, 61]; 
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3.2.4 Membrane Fouling Blocking 

It was developed the four conceptual filtration, known as the blocking laws under specific 

laboratory operating conditions, such as constant pressure and straight identically 

cylindrical pore diameter and length with non-Newtonian fluids [62]. Also, that was 

applied the successive steps of blocking mechanisms during dead-end microfiltration 

(MF) mode with unstirred and constant TMP [63]. These blocking laws have been used 

for studying fouling mechanisms involving porous membrane filtration with NOM and 

microorganisms. The four different blocking models are; complete blocking, standard 

blocking, intermediate blocking and cake filtration, which can be expressed in a 

mathematical form given as Eq. 3.11 [62].  
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)
 

                                                                        

 

where V in the total permeate volume (L), t is time (s), and the exponent φ (blocking 

index, unit-less) describes the filtration model; φ = 0 for cake filtration, φ = 1 for 

intermediate blocking, φ = 1.5 for standard blocking, and φ =2 for complete blocking, 

respectively. The units of the constant β vary depending on φ of the model, which 

influenced by the initial flow rate and solute characteristics. Taking the logarithm of term 

in Eq. 3.11 can be expressed in linear form as Eq. 3.12. 

 

  (
   

   
)       (

  

  
)                                                            

 

By plotting ln(d
2
t/dV

2
) against ln(dt/dV), the blocking index φ can be determined in the 

filtration process. For complete blocking, it is thought that certain pore is blocked from 

each fouling particle, so no fluid can pass through this pore. Complete pore blocking 

leads to the presumption that particles are not superimposed upon one another, so the 

deposit is single layer. In case of standard blocking, it is assumed that the each particle 

arriving to the membrane, pore volume is decreased by proportional to particle depositing 

on the inner pore walls. Intermediate blocking is formed by the complete blocking, and 

increased with the single layer deposition by accumulating each other particles on 

membrane surface. For cake filtration, it is relevant to cake/gel layer on the membrane 

surface, and each particle was accumulated on the membrane surface in order to form a 

cake layer/gel due to the no rooms for direct accumulation on the membrane surface. 
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These blocking laws can be expressed with linearized form of empirical dead-end 

filtration [64]. 

 

3.2.5. Cake Filtration and Membrane Filtration Index (MFI) 

An alternative way to identifying the fouling mechanism is the application of the cake-

filtration model. Also, this cake filtration model widely used to assess the membrane 

filtration index (MFI) in UF, which originally obtained to perform fouling tests in reverse 

osmosis (RO) though. The MFI is defined as the slope of the straight line after an initial 

linear section by plotting between t/V versus V (t: filtration time, V: permeate volume). In 

this cake-filtration model, the solute is considered to be exerts the cake layer as retaining 

it on the membrane surface. The flux decline can be fully determined by a resistances-in-

series model, in which the growing cake layer buildup leads to a continuous flux decline. 

The flux across the membrane can be defined as the flux across two resistances in series, 

which is comprised of the cake resistance (Rc) and the membrane resistance (Rm). The 

cake-filtration model equation including MFI in constant pressure can be given as Eq. 

3.13 in the form of t/V against V [56]; 

 

 

 
 

    

    
  

      

    
   

    

    
                                               

 

where Cf is the AHA concentration in the feed (mg L
-1

), and α is defined as the specific 

cake resistance per unit thickness of cake layer, which is often expressed as Kozeny-

Carmen relationship (m g
-1

). In this study, the permeate flux modeling approach, which 

was used by Danis et al. [35], was applied to calculate MFI as one-fourth of the β 
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constant through Eq. 3.13 and Eq. 3.14 for the whole process, not only for linear slope 

after an initial section between t/V versus V [65]. 
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)   ]                                                         

 

where Eq. 3.14 can simply expressed in the form of J
2
 = (α + βt). Curve fitting 

determining model constants (α and β) are carried out using SigmaPlot
®
 11.2 (Systat 

Software, Inc.) for non-linear regression analysis [66]. 

 

3.3 Application of SWNT-UF in Water Treatment   

3.3.1 Characterization of SWNTs 

The HR-TEM image (Figure 3.4a) shows evidence of the single graphite layer, which 

consists of the aggregation of SWNTs. The majority of the SWNTs had few impurities; 

this observation also confirms the manufacturer’s claim of greater than 95% SWNT 

purity. Figure 3.4b displays the ZP as a function of pH for the SWNTs. The values of ZPs 

were found to range from -21 to -67 mV. The net charge present on the SWNTs is due to 

the formation of an electrical double layer that was a few angstroms thick. This layer 

prevents the aggregation of particles, resulting in the stabilization of the suspension. As 

the pH increases, the negative charge on the SWNTs also increases. Charge density on 

the SWNTs was determined using the pH of the solution because pH affects the extent of 

ionization and, therefore, adsorption. The properties of the SWNTs were further studied 

using the radial breathing mode (RBM) of Raman spectroscopy. Figure 3.4c shows the 

Raman spectra of the SWNTs. The RBM transition positions for the SWNTs at low 
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frequencies (< 300 cm
-1

) were found at 211.2 cm
-1

. The diameter of the SWNTs 

calculated using the following equation [67]: 

 

          14

75.223





d                                                           (         ) 

 

where d is the estimated diameter of the SWNTs (nm), and ω is the respective frequency 

(cm
-1

). Using this equation, the diameter of the SWNTs was calculated as 1.13 nm based 

on the peak observed at 211.2 cm
-1

 in the Raman spectrum, which can be justified by the 

data provided by the manufacturer. Figure 1c also shows a second group of Raman peaks, 

appearing at 1257.7 cm
-1

 and 1579.6 cm
-1

, which correspond to the D and G bands, 

respectively. Minor amorphous carbon and defective structures of hollow graphite 

cylinders induce the D band, while the strong intensity of the G band is related to the 

graphitization of the SWNTs [68, 69]. The hydrodynamic diameters of SWNTs 

aggregates are presented in Figure 3.4d. It was observed that the SWNTs aggregate size 

varies to around 1327 of SWNT with an average value of 1500 nm. 
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Figure 3.4 Characterization of single walled carbon nanotubes: (a) HR-TEM images of 

SWNTs aggregates; (b) zeta potential at pH 4.0, 7.5, and 11.0; (c) Raman spectra; and (d) 

SWNTs aggregate diameter [70]. 

 

 

3.3.2 Implications and Costs 

Low pressure membranes (LPMs) coupled with other pretreatment processes 

including coagulation/flocculation, adsorption, and oxidation have become more popular 

in drinking water and wastewater treatment to meet more stringent treatment goals. 

Practically, the results obtained in this SWNTs-UF study demonstrate the feasibility of 

SWNT applications to enhance membrane flux and removal efficiency in water and 

wastewater treatment. More specifically, in the case of removal efficiency due to 

adsorption using CNTs, several studies have reported that the adsorption capacities to 
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remove BPA, EE2, endrin, microcystins, Zinc and Cd were higher compared to those by 

activated carbons [71-74]. Therefore, SWNTs-UF systems can be beneficial to overcome 

the key disadvantages of LPMs coupled with those existing treatment processes: (i) 

Coagulation may exacerbate membrane fouling and be ineffective in removing the recent 

emerging micropollutants including  EDC/PPCPs, (ii) conventional adsorbents including 

activated carbons may exacerbate LPM fouling, and (iii) preoxidation forms disinfection 

by-products and may damage membranes [23, 46]. For SWNTs-UF field systems, it is 

expected that SWNTs be added to the feed raw water upstream for the removal of 

EDC/PPCPs, heavy metals, and synthetic organic compounds as well as taste and odors. 

Since SWNTs are considerably larger than UF membrane pores, the transport of SWNTs 

through UF membrane pores unlikely occurs. However, it should still be noted that one of 

the current major challenges of CNTs-UF use in large scale water treatment plants is the 

high cost of CNTs, since PAC costs approximately $0.5–1.8/kg while the price for CNTs 

is still quite high (approximately $10/kg) [45]. However, continuous mass production of 

CNTs will possibly provide large quantities of CNTs with economically viable prices for 

large scale applications in the near future [45]. 

 

3.4 Forward Osmosis solution-diffusion model and cross-flow test unit  

3.4.1 Solution-diffusion model in Forward Osmosis 

The basic properties of FO and RO membranes (i.e. ICP) can be characterized based 

upon the solution-diffusion (SD) model. Although, the SD model approach has been 

applied in detail in some recent FO studies, we briefly summarize some key equations for 

dilutive ICP. It can be shown that [28, 31]: 
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where K the solute resistance to diffusion within porous support layer, Wp the pure water 

permeability coefficient, Sp the salt permeability coefficient in active layer of membrane, 

R the salt rejection, ΔP the hydraulic pressure difference, Δπ osmotic pressure difference 

across the composite membrane and πHigh and πLow the osmotic pressures on draw and 

feed solution side, respectively. In these equations, K is related to the ratio of the solute 

diffusion coefficient over the membrane structural parameters (i.e., porosity, thickness 

and tortuosity of support layer), can be used to successfully predict to ICP based upon 

mass transfer of the solute from the concentration of the bulk feed and draw solution 

interfaces. 

 

3.4.2 Forward Osmosis cross-flow test unit 

In FO mode experiments, a bench-scale stainless steel plate and frame of FO cell 

coupled with a feed tank, a draw solution tank, a temperature controller (Fisher Scientific 

Isotemp Chillers, Pittsburgh, PA), variable gear pumps (Micropump, Vancouver, WA), 

and pressure transducer (Omega Eng., CT, USA) was employed as shown in Figure 3.5 

and 3.6. 
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Figure 3.5 Schematic diagram of bench-scale FO membrane system.  
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Figure 3.6 Bench-scale FO membrane system. 
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CHAPTER 4 

REMOVAL OF BPA AND EE2 IN SWNTS-UF MEMBRANE SYSTEMS* 

*Reprinted here with permission of publisher: Heo et al., Removal of bisphenol A and 

17-estradiol in single walled carbon nanotubes-ultrafiltration (SWNT-UF) membrane 

systems, Separation and Purification Technology 90 (2012) 39-52. 

  

Abstract 

The retention and adsorption of bisphenol A (BPA) and 17-estradiol (E2) were 

examined using three commercially available ultrafiltration (UF) membranes. A stirred 

cell operated within a batch dead-end stirred cell was employed to study the solute 

retention and the membrane flux of solutions both in the absence and presence of natural 

organic matter (NOM) and single-walled carbon nanotubes (SWNTs). The batch 

adsorption and stirred-cell filtration experiments indicated that adsorption was an 

important mechanism for the retention of hydrophobic compounds and was dependent on 

the octanol–water partition coefficient. The results also suggested that BPA and E2 

transport was influenced by NOM, which fouls the membrane through pore blockage and 

cake/gel formation. The NOM fouling was presumably attributed to the adsorptive 

hydrophobic interactions, which decreased the membrane pore size and caused the flux 

decline. A strong linear correlation between the retention and adsorption of BPA and E2 

was observed, indicating that retention by the UF membranes was mainly due to the 

adsorption of BPA and E2 onto the membrane, the SWNTs, and/or the NOM. Size
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exclusion is unlikely to be a key factor in the retention of E2, however, BPA retention 

showed a slight dependence on the membrane pore size. 

 

Keywords: Bisphenol A; 17-estradiol; Ultrafiltration; Single walled carbon nanotubes; 

Adsorption; Retention 

 

4.1 Introduction 

Endocrine-disrupting compounds (EDCs), pharmaceuticals, and personal care products 

(PPCPs) are an emerging group of trace contaminants detected in wastewater and water 

supplies worldwide [75-81]. Bisphenol A (BPA), one of the well-known EDCs, is a 

manufacturing intermediate in epoxy, polycarbonate, polysulfone, and certain polyester 

resins [82]. Previous studies have shown that BPA is released from polycarbonate flasks 

during autoclaving and displays estrogenic activity. Thus, the health effects of BPA are a 

controversial issue [83, 84]. The sex hormone, 17-estradiol (E2), is the most active 

estrogen and also a type of EDC [85].  

Numerous EDC/PPCPs including both BPA and E2 are frequently detected in water 

and wastewater [86-89], suggesting that conventional drinking and wastewater treatment 

plants cannot completely remove all EDCs and PPCPs [79]. Coagulation alone is 

generally ineffective for the removal of trace-level organic pollutants, but is effective for 

the removal of hydrophobic compounds associated with high organic carbon particulate 

or colloidal materials [10, 90, 91]. Various advanced technologies have been developed 

for the removal of EDCs and PPCPs from water and/or wastewater, such as biological 

degradation [92, 93], activated carbon adsorption [10, 37, 94], advanced oxidation 

processes [10, 95-97], and membrane filtration [48, 98]. 
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Nanofiltration (NF) and ultrafiltration (UF) membranes are used to recover drinking 

water from wastewater by removing micropollutants and natural organic matter (NOM). 

Several studies have shown that NF and UF membranes can effectively remove EDCs 

and PPCPs from drinking water and wastewater [48, 50, 51, 53, 99-104]. In these studies, 

various removal mechanisms, including hydrophobic adsorption, size/steric exclusion, 

and electrostatic repulsion were investigated. The NF membrane results suggested that 

the rejection of uncharged trace organics by the membranes was influenced by 

hydrophobic adsorption and steric hindrance, whereas the rejection of polar trace 

organics was due to electrostatic repulsion. For the UF membrane, steric exclusion was 

an important factor due to NOM adsorption even when the membrane pore size was 

reduced [53]. The increased retention resulting from the NOM-associated cake formation 

was attributed partly to micropollutant-NOM partitioning and subsequent NOM retention, 

and partly to the fouling layer acting as a second membrane [104]. The removal of 

various EDCs and PPCPs is dominated by hydrophobic adsorption, which correlates with 

the octanol-water partitioning coefficient (KOW), on NF and UF membranes [48]. 

Carbon nanotubes (CNTs) are hexagonal carbon lattices that are folded to form 

helical-like tubular structures. These structures have drawn special attention due to their 

unique physicochemical properties and variety of potential applications [105, 106]. 

Unlike many microporous adsorbents, CNT technology could potentially support point-

of-use water treatment. CNTs have a fibrous shape with a high aspect ratio, a large 

accessible external surface area, and well-developed mesopores [45, 106], which render 

CNTs superior in terms of their capacity to remove organic micropollutants and 

microorganisms. Further, CNTs have also shown high adsorption capacities for heavy 
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metals [107, 108] and organic chemicals [109-111]. Recently, researchers examined the 

adsorptive capacities and mechanisms of various EDCs onto single-walled carbon 

nanotubes (SWNTs) and/or multi-walled carbon nanotubes (MWNTs) [74, 112]. These 

studies have shown CNTs to be better adsorbents than the powdered activated carbon 

(PAC) due to higher adsorption capacities and shorter equilibrium times. However, it 

should be noted that despite the high adsorption capacities of CNTs in water treatment 

and purification, they still have several challenges including economic feasibility, health 

risks, and environmental impacts for practical implementations. Several researchers have 

reported that the release of CNTs into the environment may cause harmful impacts on 

ecosystem, such as damage of DNA and organs, due to their toxicity [45, 113, 114]. In 

particular, CNTs’ health effects on human life with water are still a controversial issue 

[45, 115, 116]. Also, for the CNT use in drinking water treatment plants, one of the 

possible problems is the escape of CNTs during the membrane filtration process. In 

addition, CNTs are still relatively expensive for large scale applications in water 

treatment. However, a recent study has reported that the bulk production cost of high 

quality CNTs becomes quite low (approximately $ 10/kg) [45]. 

The use of adsorbents such as PAC, heated aluminum oxide particles, aluminum 

sulfate, and ferric chloride in combination with UF and microfiltration (MF) membranes 

is an emerging technology for the removal of colloids, NOM, and/or organic 

micropollutants from drinking water [12, 117-122]. Nevertheless, these studies have 

shown somewhat contradictory results concerning the effect of the adsorbent on 

membrane fouling. Some studies revealed an enhancement of the permeate flux or longer 

filtration runs without chemical washing, while others showed similar flux behavior or an 
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exacerbated flux decline. The effect of the adsorbent on membrane fouling may be a 

function of the physicochemical properties of the adsorbent (e.g., size, charge, and 

hydrophobicity), membrane characteristics (e.g., pore size, charge, and hydrophobicity), 

and solution water chemistry (e.g., pH and conductivity). 

The purpose of this study is to investigate the role of SWNTs in controlling 

membrane fouling and to discuss the potential mechanisms for the removal of EDCs 

using membranes. In this study, two estrogenic compounds, BPA and E2, were added to 

model water samples. In the presence and absence of SWNTs and NOM, the water 

samples were filtered using commercially available UF membranes with varied 

membrane properties (e.g., pore size, charge, and hydrophobicity). In addition, the 

feasibility of adding SWNTs to conventional water treatment plants (WTPs) for the 

removal of selected estrogenic compounds was investigated. 

 

4.2 Materials and Methods 

4.2.1 UF Membranes  

Three commercially available UF membranes were evaluated in order to determine their 

BPA and E2 retention properties. The flat sheet membranes, made of polyethersulfone 

(PES), were obtained from Koch Membrane Systems Inc. (Wilmington, MA, USA) and 

have ionizable functional groups (e.g., carboxylic acids), as specified by the manufacturer 

(Table 4.1). The pure water permeabilities (PWPs) were measured at 827 kPa using a 

stirred cell, in the range of 0.59 to 2.23 L h
-1 

m
-2 

kPa
-1

. These relatively hydrophobic UF 

membranes, featuring different pore sizes based on their nominal molecular weight cut-

offs (MWCOs), were selected to allow for a systematic comparison of the hydrophobic 
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adsorption results and steric exclusion for BPA and E2 retention, but with the same 

material chemistry. The characteristics of the membranes are shown in Table 4.1. Each 

new membrane was soaked in ultrapure deionized (DI) water for at least 24 hours prior to 

use. During this period, the DI water was replaced several times with a new volume of 

pure DI water. The dissolved organic carbon (DOC) of the final rinse water was checked 

to ensure that it was at a negligible level. 

Table 4.1 Ultrafiltration membrane characteristics. 
 

Membrane 

 

MWCO 

(Daltons) 

Zeta 

potential 

(mV) 

Contact 

angle 

(°) 

Applied 

pressure 

(kPa) 

PWP
 a
 (L h

-1 
m

-2 
kPa

-1
) 

Average 
(min-

max) 
c.v.

b
(%) 

HFK-328 

(UF5K) 
5k -24.9 42 800 - 917 0.59 

0.55 - 

0.64 
5.5 

HFK-131 

(UF10K) 
10k -25.3 48 565 - 607 0.88 

0.85 - 

0.91 
4.8 

HFK-141 

(UF30K) 
30k -26.8 51 214 - 248 2.23 

2.07 - 

2.38 
9.9 

    a
PWP is pure water permeability. 

    b
c.v. is coefficient varianc 

 

4.2.2 Solutions 

BPA, E2, and humic acid were purchased from Sigma-Aldrich (Sigma, St. Louis, MO, 

USA). 1 mM stock solutions of BPA and E2 in methanol were initially prepared. The 

stock solutions of BPA and E2 were then diluted with DI water to five calibration 

concentrations of 10, 50, 100, 500, and 1,000 nM. Equimolar BPA and E2 solutions of 1 

µM concentration were placed in a separate beaker and the methanol was evaporated to 

minimize the DOC introduced into the experiments by the solvent. Table 4.2 describes 

the characteristics of the compounds used in this study. For batch adsorption experiments 

and membrane filtration measurements, BPA, which is a plasticizer, and E2, which is a 

natural estrogen, were introduced to the membranes in a model water sample with 1 mM 
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Na2HPO4. Experiments were conducted in a mixed compound solution. NOM, in the 

form of humic acid (8 mg L
-1

), was added in some experiments to represent the DOC. 

Stock solutions of the NOM isolate were filtered using a 0.7 m pore size Whatman GF/F 

glass fiber filters prior to use. The pH was adjusted to the desired values (4, 7.5, and 11) 

with NaOH or HCl and the conductivity of the solutions was adjusted to 500 S cm
-1

 

using NaCl. 

 

Table 4.2 Characteristics of BPA and E2.  

Common 

name 

(Abbreviation) 

Use 
Molecular 
weight 
(g mol

-1
) 

LogKOW pKa Structure 

Bisphenol A 

(BPA) 
Plasticizer 228.1 3.3 

9.6 to 

10.2 
 

17-estradiol 

(E2) 

Reproductive 

hormone 
272.3 3.9 ~10.5 

 

3D structure model 
c
 

  

Bisphenol A (BPA) 17-estradiol (E2) 
 

 c
 The geometry of 3D structure model is optimized at the level of Hartree-Fock (HF) 

using the STO-3G basis set in GAMESS (US). 

 

4.2.3 Analyses  
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BPA (228 g mol
-1

) and E2 (272 g mol
-1

) concentrations were determined using high-

performance liquid chromatography (HPLC). The HPLC method employed in this study 

was described previously [52]. In brief, the detection of BPA and E2 was accomplished 

using an Agilent 1200 Series (Santa Clara, CA, USA) fluorescence detector at an 

excitation wavelength of 280 nm and an emission wavelength of 310 nm. A Waters 5-m 

LiChrosorb RP18 analytical column (4.6 mm  100 mm) with a 100-L sample loop 

was used for the reverse-phase separation. The mobile-phase solvent profile was 45% DI 

water, acidified with 10 mM H3PO4, and 55% MeOH at a constant flow rate of 1 mL min
-

1
 for 30 min. The elution times of BPA and E2 were 9.4 and 20.3 minutes, respectively. 

The detection limits were 0.88 nM (201 ng L
-1

) for BPA and 0.96 nM (283 ng L
-1

) for E2. 

While these detection limits are higher than most occurrence levels, previous work from 

this group has demonstrated that the patterns observed at these concentrations are 

representative of the mechanisms occurring at lower concentrations [53]. 

 

4.2.4 Membrane Batch Adsorption Experiments and Partition Coefficient 

Determinations 

BPA and E2 were placed in contact with the membrane (UF5K, nominal MWCO = 

Daltons) in the presence and absence of NOM (8 mg L
-1

) and SWNTs (10 mg L
-1

) at 

room temperature (22  1 
o
C). The SWNTs (purity > 90%) were purchased from Cheap 

Tubes, Inc. (Brattleboro, VT, USA) and used without further purification. The SWNTs 

range in length from 5 to 30 µm and have an outer diameter of 1–2 nm, as stated by the 

manufacturer. The areas of the applied membranes ranged from no membrane to 15 cm
2
 

with two different contact times (3 and 72 h). For some experiments, duplicates were 
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conducted to account for experimental errors and to ensure the reproducibility of the 

measurements. Error bars were based on the standard deviation calculated from duplicate 

measurements. Amber vials (40 mL) served as the reactors, and were agitated on a shaker 

at 13.9 rpm. Control reactors contained the solutes but no membrane or SWNTs.  

 

Table 4.3 Equations and constants description of fitted isotherm models. 
 

Fitted  

Isotherm 

model 

Equation Constants description 

Langmuir 

   
      

       
 

qe  is the adsorbed amount per unit membrane area 

(g cm
-2

), Qo is the maximum adsorption capacity 

(g cm
-2

), KL is the Langmuir adsorption constant 

(L g
-1

) and Ce is the equilibrium liquid-phase 

concentration (g L
-1

). 

   
 

       
 

SL is the shape of the isotherms (unitless),  KL  is the 

Langmuir constant related to the energy of 

adsorption (L g
-1

) and C0 is the initial 

concentration (g L
-1

). 

Freundlich        
   

 

KF is the Freundlich adsorption capacity parameter 

(g cm
-2

) (L g
 -1

)
1/n

 and 1/n is the Freundlich 

adsorption intensity parameter (unitless). 

 

The membrane and SWNTs were removed from the samples for the HPLC-fluorescence 

analyses. The membrane adsorption isotherm of BPA and E2 in the presence and absence 

of NOM and SWNTs was obtained using batch adsorption experiments in pseudo-

equilibrium. The adsorbed amounts per unit membrane area were calculated through the 

difference between the initial and pseudo-equilibrium concentrations at 3 and 72 h. A 
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pseudo-equilibrium time period of 3 h was selected to determine the influence of BPA 

and E2 adsorption onto the membrane. Both Langmuir and Freundlich models were 

employed for data fitting of the membrane adsorption isotherms of BPA and E2. Table 

4.3 describes the equations and constants of the fitted isotherm models used in this study.  

The adsorption constant was calculated as follows:  

 

  
e

e
d

C

q
K                                         (Eq. 4.1) 

where Kd is the adsorption constant (L cm
-2

), qe is the adsorbed amount per unit 

membrane area (g cm
-2

), Ce is the equilibrium liquid-phase concentration (g L
-1

).  

 

4.2.5 SWNTs-UF Membrane Testing Unit 

In order to study the SWNTs-UF membrane, a commercial bench-scale stainless steel 

dead-end stirred-cell membrane unit (HP4750, SterliTech Corp., Kent WA, USA), 

coupled to a SWNT reactor, was used to evaluate the flat-sheet membrane specimens for 

retention and flux-decline. Figure 4.1 shows the schematic diagram of the dead-end 

bench-scale membrane system used in the SWNTs-UF experiments. 

This dead-end batch membrane system was used in previous studies to assess the 

removal of inorganic and organic compounds, and membrane fouling by NOM [14, 58, 

123]. BPA and E2, at an initial concentration of 1 M each, were mixed in the pre-reactor 

with NOM and/or SWNTs for 2 h before the membrane experiments. Many full-scale 

WTPs that use PAC employ contact times of 1–5 h and apply PAC dosages of 5–50 mg 

L
-1

 [52].  
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Figure 4.1 Schematic diagram of SWNTs-UF membrane testing unit. 

 

The cell accommodates 14.6 cm
2
 flat sheet specimens. A stirring speed of 300 rpm, 

various pH conditions, a constant initial pure water flux (12.3 m d
-1

), and pressures of 

800–917 kPa, 565–607 kPa, and 214–248 kPa for the UF5K, UF10K and UF30K 

membranes, respectively were used for the experimental conditions. A fresh membrane 

was used for each experiment. The membrane was pre-compacted with DI water at a 

pressure of 827 kPa for further stabilization prior to use. The pure water flux was then 

measured at a pressure of 800–917 kPa until a constant flux was obtained. At this time, 

the water in the stirred cell was replaced by the test solution. The stability of the 

membrane permeability during the experiment was checked by comparing the pure water 

flux before and after each experiment. Only membranes, with permeability changes less 

than 5% were included in the data presented here. An initial volume of 100 mL of a 

specific sample was passed through the membrane until 50 mL of permeate was obtained, 

Feed

Stir plate

N2

Retentate

collector

Permeate 

collector

P

Pressure gauge
SWNTs

Feed tank
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and the corresponding retentate was also obtained. This was repeated 10 times until a 

total of 500 mL of permeate was collected. The amount of the compound adsorbed onto 

the membrane was estimated by determining the concentration of compound in the 

permeate and retentate and subtracting the overall amount from the initial mass of 

compound in the solution.  

The amount of each compound that was removed was calculated and the flux-

decline monitored as a function of volume, time, and cumulative delivered or adsorbed 

mass [53]. Delivered mass is defined as the amount of solute delivered per unit area to the 

membrane, while adsorbed mass is defined as the amount of solute adsorbed per unit area 

onto/into the membrane within the stirred-cell, as defined by the following equations: 

 

AVCM ffdel /)(       (Eq. 4.2) 

 

AVCVCVCM rrppffads /)}](){()[(                           (Eq. 4.3) 

        

where Mdel is the delivered mass (g m
-2

), Cf is the feed concentration (g m
-3

), Vf is the 

feed volume (m
3
), A is the effective membrane area (m

2
), Mads is the adsorbed mass (g 

m
-2

), Cp is the permeate concentration (g m
-3

), Vp is the permeate volume (m
3
), Cr is the 

retentate concentration (g m
-3

), and Vr is the retentate volume (m
3
). The observed 

percentage of BPA and E2 retentions that were collected i times, Ri (%), was calculated 

using Eq. 4.4: 

% 100% ),( 



f

pf

i
C

CC
feedR        (Eq. 4.4) 
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4.2.6. Characterization of Membrane and SWNTs 

The membrane streaming and associated zeta potentials were determined using an 

established procedure [124] at pH 7.5 and a conductivity of 500 S cm
-1

 using an 

electrokinetic analyzer (ELS8000, Otsuka Electronics, Osaka, Japan). For the streaming 

potential measurements, membrane samples were cut to fit the measurement cell and then 

wetted in a NaCl solution under the same pH and conductivity conditions. The samples 

were stored in a refrigerator for the specified soaking time in the experimental design. 

Contact angles were measured using a type of sessile drop method called the water 

droplet method, which is based on measuring the contact angles between the water 

droplet and the membrane surface [124]. A goniometer (Rame-Hart Inc., Model 100, 

Netcong, NJ, USA) was used to measure the contact angle of the membrane. The rinsed 

membranes were dried in a desiccator prior to measurement. Membrane samples were cut 

into small pieces and mounted on a support. An approximately 20 L droplet of pure 

water was placed on the membrane specimen and the contact angle image was captured 

by a computer-connected camera and the angle was measured using appropriate software.  

A ZetaPALS analyzer (Brookhaven Instruments Corp., Holtsville, USA) was used 

to measure the zeta potential (ZP) of the SWNTs. The pH values of the SWNTs solutions 

were adjusted from 4.0 to 11.0 by adding either 1 M NaOH or 1 M HCl solution. The ZP 

was calculated from the electrophoretic mobilities using the following Smoluchowski 

equation: 

      oE
ZP



4
                                                           (Eq. 4.5) 
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where μ is the dynamic viscosity of water, ν is the electrophoretic mobility of the 

migrating particle, E is the electric field at the particle, and  and o are the permittivities 

for water and in vacuum, respectively. The Raman spectra of powdered SWNT samples 

were collected using a LabRam JY Horiba Raman spectrometer fitted with a confocal 

microscope, a thermoelectrically cooled charge-coupled device, and a 632.82 nm He-Ne 

laser for excitation (New Jersey, USA). The integration time was 15 s for each scan with 

each spectrum representing an average of five scans. High-resolution transmission 

electron microscopy (HR-TEM) was performed using dry SWNT samples. The SWNT 

samples were dispersed in ethyl alcohol (JT Baker, ACS Grade) and sonicated for 10 min 

using a sonic dismembrator (S-4000, Misonix). Suspensions were placed in a bath 

sonicator (Bransonic-12) for 5 min before the imaging was performed. A drop of the 

suspension was placed on a 200-mesh copper HR-TEM grid coated with an amorphous 

carbon holey film (SPI Supplies) and allowed to dry for 2 min. Any excess solvent was 

removed using filter paper. Images were collected using a JEOL JEM-2100F 200 kV 

Schottky field emission gun HR-TEM (JEOL Ltd., Tokyo, Japan) with a point resolution 

of 0.19 nm. The aggregation diameter of the SWNTs was obtained using a dynamic light 

scattering (DLS) instrument (AVL/CGS-3 system, Langen, Germany) with an optimized 

laser power of 10 mW. Samples were prepared by dispersing SWNTs in deionized water 

by mild ultrasonication and depositing them on a 200 mesh nickel grid coated with 

formvar. Atomic force microscopy (AFM, XE-100, PSIA, Seoul, South Korea) was used 

to analyze the surface morphology and roughness of the membrane. Small squares of the 

prepared membranes were cut and glued on a glass substrate. The membrane surfaces 

were imaged in a scan size of 10 μm  10 μm. 
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4.3. Results and Discussion 

4.3.1. Membrane Properties 

The ZP and contact angle values obtained from our experiments are presented in Table 

4.1. The ZPs of the UF membranes do not differ significantly, because as specified by the 

manufacturer each sample was made of the same material. The standard deviations reflect 

the relative uncertainty of the measurements. The MWCO data shows that the membranes 

have various pore sizes. The pure water permeabilities (PWPs) of the UF membranes 

follow the order of their nominal MWCOs, UF30K > UF10K > UF5K (see Table 4.1), as 

expected. Pure sulfonated PESs were typically considered hydrophobic materials based 

on previous contact angle measurements [14, 125]; these UF membranes exhibited 

similar contact angle values. 

  

4.3.2. Adsorption and Partition of BPA and E2 on the UF Membrane 

In the retention of hydrophobic compounds on the SWNTs-UF membrane, the 

adsorption of the compound on the UF membrane was used to evaluate the membrane 

performance. Therefore, the batch membrane adsorption experiments were conducted on 

the UF5K membrane (0–15 cm
2
) both in the absence and the presence of NOM (8 mg L

-1
) 

and SWNTs (10 mg L
-1

) with a contact time of 3 h (equivalent to the time of the SWNTs-

UF membrane experiments) for all samples. For the sample of DI water with only the 

membrane, a contact time of 72 h was employed to determine the adsorption capacity of 

UF membranes under equilibrium conditions. Generally, the degree of adsorption of both 

compounds increased with increasing membrane area, however BPA and E2 exhibited 

different adsorption trends. The adsorption of BPA was fairly constant in the presence of 
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NOM, with or without SWNTs, yet increased by approximately 10 to 40% in the 

presence of SWNTs only, depending on the membrane area, with a contact time of 3 h 

(Figure 4.2).  

 

 
Figure 4.2 Comparison of adsorption to UF5K membrane: (a) BPA and (b) E2 between 

the membrane area and the bulk solution in the absence and presence of NOM and 

SWNTs. Experimental conditions: DOC = 8 mg L
-1

; SWNTs = 10 mg L
-1

; conductivity = 

500 μS cm
-1

; contact time = 3 and 72 h; pH = 7.5.  
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The conditions that resulted in the highest adsorption of BPA were a contact time of 

72 h in the absence of both NOM and SWNTs. However, while the presence of NOM 

alone did not significantly impact E2 adsorption, the addition of SWNTs resulted in a 

significant increase in E2 adsorption. The highest E2 adsorption was obtained in the 

presence of SWNTs only, achieving over 99% adsorption with a membrane area greater 

than 6 cm
2
. It was reported that the adsorption of BPA and E2 by the UF membrane 

decreases in the presence of NOM, presumably due to competition of the adsorption sites 

and pore blockage by NOM. The trend in the percentage of the compound adsorbed in the 

presence of SWNTs alone and in the presence of NOM and SWNTs positively correlates 

with the hydrophobicity (log KOW) of each compound; E2 (3.9) > BPA (3.3).  

To further predict the trends and analyze the membrane adsorption systems in the 

presence of NOMs and SWNTs, it is essential to establish the most appropriate 

correlations between the batch pseudo-equilibrium data (3 h and 72 h) and adsorption 

isotherms. It is noted that contact times of up to 3 h and 72 h are inadequate for 

representing complete equilibrium. The isotherm of membrane adsorption was obtained 

by normalizing the adsorbed BPA and E2 capacity as a function of membrane area. This 

method was used because adsorption on the membrane is dominated by the surface area 

of membrane. The adsorbed capacity values normalized with membrane area results were 

well fitted to the Langmuir model and are shown in Figure 4.3 for the samples of BPA 

and E2 in the absence and presence of NOM and SWNTs. In addition, the fitting 

parameters of both the Langmuir and Freundlich model are listed in Table 4.4. In all 

cases, the Langmuir model yields a better linear correlation coefficient (R
2
 > 0.93) than 

the Freundlich model. The adsorption data was also analyzed using a partition-adsorption 
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model (data available on request), but fitting results were comparable to the Freundlich 

model.  

 
 

Figure 4.3 Isotherm model data fitting for BPA and E2 onto UF membrane: (a) Langmuir 

isotherm fit of data in no NOM/SWNTs; (b) linear form of Langmuir isotherm data in 

SWNTs only and NOM/SWNTs. Experimental conditions: DOC = 8 mg L
-1

; SWNTs = 

10 mg L
-1

; conductivity = 500 μS cm
-1

; contact time = 3 and 72 h; pH = 7.5. The data 

were obtained from Figure 4.2. 

 

Ce ( g L
-1

)

0 50 100 150 200

q
e
 (

g
 c

m
-2

)

0

1

2

3

4

5

6
BPA no NOM/SWNTs (3 h)

BPA no NOM/SWNTs (72 h)

E2 no NOM/SWNTs (3 h)

E2 no NOM/SWNTs (72 h)

Ce ( g L
-1

)

10 100

C
e
/q

e
 (

c
m

2
 L

-1
)

1

10

BPA NOM/SWNTs (3 h)

BPA SWNTs only (3 h)

E2 NOM/SWNTs (3 h)

E2 SWNTs only (3 h)

(a)

(b)



 

49 

The data confirms that only a monolayer accumulation of BPA and E2 occurs on the 

UF membrane and there is a homogeneous distribution of available sites on the 

membrane surface. This is based on the Langmuir equation, which assumes that the 

adsorbate-adsorbent interaction has a constant free-energy (             , R is the 

universal gas constant, T is the absolute temperature in Kevin, and KL is the Langmuir 

adsorption constant) for all sites.  

 

Table 4.4. The BPA and EE2 fitted isotherm models constants on membrane in the 

absence and presence of SWNTs and NOM. 
 

Fitted 
isotherm 
model  

Parameters 
no NOM/SWNTs (3h) 

no NOM/SWNTs 

(72h) 

BPA E2 BPA E2 

Langmuir Q o  (g cm
-2

)  1.22 1.62 4.21 3.11 

 KL (L g
-1

) 0.027 0.012 0.105 0.097 

 SL 0.141 0.235 0.040 0.037 

 R
2 
 0.94 0.93 0.97 0.99 

Freundlich 
KF  (g cm

-2
)  

(L g
 -1

)
1/n

 
0.166 0.115 0.755 0.644 

 1/n 0.359 0.436 0.357 0.315 

 R
2
 0.72 0.78 0.85 0.93 

      
Fitted 
isotherm 
model  

Parameters 
NOM/SWNTs (3h) SWNTs only (3h) 

BPA E2 BPA E2 

Langmuir Q o  (g cm
-2

)  3.75 9.53 5.91 10.43 

 KL (L g
-1

) 0.311 8.966 1.953 9.887 

 SL 0.014 0.0004 0.002 0.0004 

 R
2
 0.99 1.00 0.99 1.00 

Freundlich 
KF  (g cm

-2
)  

(L g
 -1

)
1/n

 
2.886 9.343 5.490 10.074 

 1/n 0.050 0.005 0.016 0.010 

 R
2
 0.69 0.73 0.75 0.83 

R
2 
is the square of the correlation coefficient between the experimental and modeled data. 

 

The separation factor in the Langmuir model also results in a range of 0 < SL < 1 

(Table 4.4), indicating favorable adsorption of BPA and E2 is occurring at the membrane 
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surface. As listed in Table 4.4, the Langmuir model fitted membrane adsorption capacity 

with no NOM/SWNTs, Qo, substantially increased from 1.22 g cm
-2

 (BPA) and 1.62 g 

cm
-2

 (E2) to 4.21 g cm
-2

 (BPA) and 3.11 g cm
-2

 (E2) with an increase in the large 

negative free energy interaction (              . The studies indicate that up to 3 h 

contact times provides available adsorption sites at the membrane surface, it is inadequate 

to reach equilibrium from a thermodynamic point of view.  

A higher adsorption capacity was obtained in the presence of SWNTs, which 

indicates that adsorption by the SWNTs is dominant in SWNTs-UF systems (the more 

specific adsorption mechanisms of SWNTs with BPA and E2 are discussed in the 

following section). The maximum adsorption capacity values for the Langmuir model 

and adsorption capacity values for the Freundlich model in the presence of SWNTs 

and/or NOM with a contact time of 3 h ranked in the following order: E2 (SWNTs only) 

> E2 (NOM/SWNTs) > BPA (SWNTs only) > BPA (NOM/SWNTs). The adsorption 

trends are proportional to the average adsorption constant (          as shown in 

Figure 4.4. The results indicate that in the presence of SWNTs, the adsorption of E2 onto 

the SWNTs is more favorable than BPA, while the adsorption of E2 onto UF membrane 

is less favorable than BPA without NOM/SWNTs. However, the adsorption of BPA and 

E2 were divergent under membrane only and membrane with NOM conditions, although 

the adsorption of the more hydrophobic E2 should be greater than BPA based on their log 

Kow values.  
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Figure 4.4 The average adsorption coefficients of BPA and E2 onto UF membrane in the 

absence and presence of NOM and SWNTs. Experimental conditions: DOC = 8 mg L
-1

; 

SWNTs = 10 mg L
-1

; conductivity = 500 μS cm
-1

; contact time = 3 and 72 h; pH = 7.5. 

 

These results suggest that hydrophobic interactions alone cannot completely explain 

the interactions among organic chemicals, membranes, NOMs, and SWNTs. The results 

can, however, be explained by combining the general observations of previous studies 

and the following phenomena. First, the PES membranes having oxygen in the form of 

sulphonyl groups (-SO2) adsorbed higher BPA than E2, suggesting that multiple 

mechanisms may occur simultaneously, mainly due to hydrophobic interactions and 

supramolecular interactions such as hydrogen bonding and π–π stacking (e.g., functional 

groups on the membrane, such as hydroxyl (-OH) and carboxyl (-COOH) groups, induce 

hydrogen bonding, which may cause the adsorption of EDCs onto the membrane) [126]. 

Second, in the case of E2 retention increased compared to BPA for the NOM/SWNTs, 
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indicating that more hydrophobic compounds are preferentially removed using membrane 

and SWNTs adsorption in the presence of NOM and SWNTs, which positively correlates 

with logKOW [53]. Third, during UF filtration, NOM competes for adsorption sites, 

resulting in a lower adsorption of EDCs in NOM-containing water, while there is the 

possibility of micropollutants partitioning onto NOM in solution followed by the 

retention of NOM [127, 128]. Finally, a high adsorptive capacity of EDCs can be 

achieved by SWNTs with hydrophobic interactions in evenly distributed hydrophobic 

sites and π–π electron donor-acceptor (EDA) interactions [105].   

The partition coefficient (logK) for the compounds is plotted as a function of the 

membrane area, shown in Figure 4.5. Although some variation was observed in the 

partition coefficient values due to the relatively small addition of membrane (1–6 cm
2
), 

the partition coefficient values were consistent for membrane areas in the range of 10–15 

cm
2
. Partition coefficient values varied for BPA and E2 depending on the absence or 

presence of NOM and SWNTs, which was expected. Based on the average logK values 

obtained for 1-15 cm
2
 membranes, the partitioning coefficients were lower in the 

presence of NOM (2.24 for BPA and 2.18 for E2) than without NOM (2.26 for BPA and 

2.23 for E2). This observation suggests that E2 and NOM compete for the membrane 

adsorption sites. A high partition coefficient was calculated with only the membrane and 

a contact time of 72 h (2.52 for BPA and 2.47 for E2). The partition coefficients 

increased further in the presence of SWNTs because of the adsorption of BPA and E2 

onto the SWNT surface. 
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Figure 4.5 Comparison of partition coefficient of (a) BPA and (b) E2 between the 

membrane and the bulk solution in the absence and presence of NOM and SWNTs. 

Operating conditions: DOC = 8 mg L
-1

; SWNTs = 10 mg L
-1

; conductivity = 500 μS cm
-1

; 

contact time = 3 and 72 h; pH = 7.5.  

 

The partition coefficients for the membrane in the presence of SWNTs and/or NOM 
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SWNTs (2.47 (BPA) and 2.56 (E2)) > NOM and SWNTs (2.37 (BPA) and 2.49 (E2)) > 

DI (membrane only, 2.26 (BPA) and 2.23 (E2)) > NOM (2.24 (BPA) and 2.18 (E2)).  

 

4.3.3 Adsorption and Retention of BPA and E2 by SWNTs-UF  

For the dead-end stirred-cell experiments, simple plots of solute retention and flux-

decline versus volume or time have limited scope in the evaluation of organic compound 

interactions, with NOM and/or SWNTs. This is a result of the variability of retention and 

flux decline depending on the delivered and adsorbed masses of solute, which are 

significantly influenced by the physicochemical conditions of the membrane and the 

solute at the membrane interface. Therefore, the delivered and adsorbed mass of the BPA 

and E2 per unit membrane area were introduced as more realistic parameters to obtain a 

reasonable comparison of removal and flux-decline trends. In previous studies, adsorbed 

mass was used to distinguish between adsorption on the NF and UF membranes and other 

interaction parameters (e.g., dipole moment, dielectric constant, water flux, molecular 

weight (MW), and/or octanol-water partition coefficient) [53, 129]. 

Mass balances of BPA and E2 in the permeate and retentate were conducted over 

time at various pH levels (4, 7.5 and 11) in experiments with the UF5K membrane. Any 

significant mass that was unaccounted for was assumed to be adsorbed onto the 

membrane, SWNTs, and/or NOM, since there was no loss of mass in the control 

experiments (without SWNTs and NOM). The percentage of BPA and E2 adsorption 

ranged from 7.3 to 95% depending upon solution pH and the absence or presence of 

NOM and SWNTs. Generally, while the adsorbed mass increased as the delivered mass 

of either BPA or E2 was increased, a greater adsorption of E2 than BPA was observed. 
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This is presumably a result of more hydrophobic interactions due to the larger 

partitioning coefficient value of E2. The amount of BPA and E2 adsorbed on the 

membranes, SWNTs, and/or NOM was quantified and plotted as delivered mass versus 

adsorbed mass, as shown in Figure 4.6a.  

The NOM considerably reduced the adsorption of both BPA and E2 when using the 

UF5K membrane, while their adsorption was significant in the presence of SWNTs only 

and SWNTs and NOM. The retention and adsorption trends of the EDCs in SWNTs-UF 

were significantly influenced by the interactions between NOM-SWNTs-UF and EDCs. 

As previously studied, a decrease in EDC adsorption is expected in the presence of NOM 

because both direct competition and NOM fractionation occur between the EDCs and the 

NOM for available interstitial channel sites of the SWNTs for adsorption [111, 130]. In 

addition, the adsorption of EDCs onto UF membrane decreased in the presence of NOM 

due to competition for adsorption sites and pore blockage by NOM in UF [53, 104]. 

The results indicate that in the presence of SWNTs, the adsorption of BPA and E2 

onto the SWNTs was dominant, with less adsorption occurring at the membrane surface 

and pores, as shown in Figure 4.6. The adsorption percentages of BPA and E2 as a result 

of filtration through the UF5K at pH of 7.5 were 27.8 and 18.4% (DI), 20.2 and 13.4% 

(NOM), 78.4 and 94.9% (SWNTs), and 60.4 and 79.7% (NOM and SWNTs), 

respectively. Although the literature suggests that the presence of NOM could enhance 

the adsorption of BPA and E2 due to NOM-partitioning of the micropollutants [104], our 

results have shown that competition for adsorption sites and pore blockage by NOM 

dominate. This results in an overall decrease in BPA and E2 adsorption on the membrane 

and SWNTs in the presence of NOM. 
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Figure 4.6 Comparison of (a) delivered and adsorbed mass accumulated and (b) adsorbed mass and retention for BPA and E2 in the 

UF5K filtration in the absence and presence of NOM and SWNTs. Operating conditions: P = 827 kPa (120 psi); stirring speed = 300 

rpm; recovery = 50%; DOC = 8 mg L
-1

; SWNTs = 10 mg L
-1

; conductivity = 500 μS cm
-1

; pre-contact time with SWNTs = 2 h. 
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Previous studies have reported that the adsorption and retention of hormones 

(estradiol and estrone) by NF membranes were strongly influenced by pH [103, 131]. The 

pH dependence of BPA and E2 adsorption and retention by the UF membranes are 

compared in Figure 4.6. The amounts of retained and adsorbed BPA and E2 showed 

similar decreasing trends at pH 4 and 7.5. However at pH 11, excluding the results 

pertaining to E2 with both NOM and SWNTs, both retention and adsorption were 

observed. Although the results varied significantly depending on the presence of NOM 

and SWNTs, the effect of varying the pH was attributed to the different log KOW values 

of each compound.  

The overall decrease in adsorption may be a result of the ionization of BPA and E2 

caused by the increase in pH, which reduced hydrophobic interactions with the SWNTs. 

At pH levels greater than ~10.5, the anionic BPA and E2 species dominates, whereas at 

pH levels < 10.5, the neutrally charged BPA and E2 species are the majority. At higher 

pH, the adsorption was expected to be lower due to charge repulsion between the 

negatively charged BPA or E2 molecules and the increasingly negatively charged 

membrane and SWNTs. Another mechanism for BPA and E2 adsorption may be aromatic, 

specifically π-π EDA interactions [105]. If the π-π EDA interactions contribute to the 

adsorption of BPA and E2, decreased adsorption should occur when the pH is greater 

than the pKa, because the chemicals and adsorbent experience increased electrostatic 

repulsion. In addition, numerous studies have shown that solute retention by the NF and 

UF membranes is governed by steric exclusion and/or adsorption for associated organic 

compounds [53, 132, 133] and by electrostatic exclusion for dissociated compounds [103, 

131, 134].  
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The BPA and E2 retention percentage by the UF5K membrane in the absence and 

presence of NOM and SWNTs at pH 7.5, with a cumulative permeate volume of 500 mL, 

were 20.2 and 10.3 (DI), 8.6 and 6.3 (NOM), 77.6 and 95.2 (SWNTs), and 62.8 and 80.6 

(NOM and SWNTs), respectively (Figure 4.6b). A strong linear correlation between the 

retention and adsorption of BPA and E2 was obtained, which indicates that retention by 

the UF membranes is primarily due to adsorption (Figure 4.7).  

 

 
 

Figure 4.7 Comparison of retention and adsorption for BPA and E2 in the UF5K end of 

filtration (cumulative permeate volume of 500 mL) in the absence and presence of NOM 

and SWNTs. Operating conditions: P = 827 kPa (120 psi); stirring speed = 300 rpm; 

recovery = 50%; DOC = 8 mg L
-1

; SWNTs = 10 mg L
-1

; conductivity = 500 μS cm
-1

; pre-

contact time with SWNTs = 2 h. 
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greater affinity of the membrane for E2, NOM, and SWNTs than for BPA. Despite the 

fact that similar relationships between retention and adsorption were observed at pH 4 

and 7.5, the retention and adsorption decreased significantly at pH 11 for all experiments 

(with the exception of E2 due to electrostatic repulsion, as described previously). At pH 

11, a slight increase (6%) in the retention of E2 was observed in the presence of SWNTs 

and NOM, while a decrease of 10% occurred without the NOM present, as compared to 

the results at pH 4 and 7.5. For BPA, the retention was reduced by 30% both in the 

presence of SWNTs and NOM and with SWNTs alone, upon increasing the pH to 11. 

These results indicate that the retention of the more hydrophobic E2 was less influenced 

by pH than that of BPA. A previous study demonstrated that the retention of E2 by the 

NF membrane increased from 15% in DI water to 70% in the presence of NOM, 

suggesting that steric exclusion became dominant due to the decreasing membrane pore 

size caused by the adsorption of the NOM on the membrane surface [53]. However, the 

results obtained in this study suggest that steric exclusion is minimal with the UF 

membrane.     

  

4.3.4. Effect of NOM and SWNTs on Fouling 

Flux decline trends for solutions in synthetic water containing BPA and E2 in 

combination with SWNTs and both SWNTs and NOM were observed with the 

accumulated adsorbed mass of the micropollutants at the end of membrane filtration 

(1,000 mL), as summarized in Table 4.5.  
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Table 4.5 Ultrafiltration flux declines with the accumulated adsorbed mass of the 

micropollutants by UF and SWNTs-UF processes in the absence and presence of NOM. 
 

Process 

Operating 

conditions J Jo
-1
 (%)

 d
 

Accumulated adsorbed mass (g cm
-2

) 

pH 

Applied 

pressure 

(kPa) 

BPA E2 

NOM free 
NOM 

8 mg 
NOM free 

NOM 

8 mg 

NOM 

free 

NOM 

8 mg 

UF         

UF5k 4 827 95.7 ± 0.7 20.2 ± 0.4 4.2 ± 0.13 4.1 ± 0.12 3.4 ± 0.10 
3.2 ± 

0.06 

UF5k 7.5 827 96.0 ± 0.4 75.2 ± 0.8 5.0 ± 0.17 3.3 ± 0.05 3.8 ± 0.09 
2.4 ± 

0.01 

UF5k 11 827 92.2 ± 0.7 76.7 ± 0.3 1.3 ± 0.06 1.1 ± 0.05 1.6 ± 0.02 
1.9 ± 

0.07 

UF10k 7.5 586 - 74.0 ± 0.2 - 3.8 ± 0.08 - 
2.6 ± 

0.01 

UF30k 7.5 228 - 67.4 ± 0.1 - 2.3 ± 0.03 - 
1.5 ± 

0.03 

         

SWNTs -UF       

UF5k 4 827 97.2 ± 0.8 28.2 ± 0.7 13.1 ± 0.91 8.2 ± 0.46 
16.6 ± 

1.22 

14.5 ± 

1.03 

UF5k 7.5 827 96.7 ± 0.1 78.6 ± 0.3 13.1 ± 0.92 10.1 ± 0.63 
16.8 ± 

1.24 

13.8 ± 

0.99 

UF5k 7.5 414 - 87.6 ± 0.2 - 7.8 ± 0.43 - 
14.6 ± 

1.05 

UF5k 7.5 137 - 90.1 ± 0.5 - 7.6 ± 0.42 - 
14.6 ± 

1.07 

UF5k 11 827 92.4 ± 0.0 78.6 ± 0.5 7.7 ± 0.56 5.7 ± 0.39 
16.4 ± 

1.22 

14.9 ± 

1.10 

UF10k 7.5 586 - 79.0 ± 0.7 - 8.4 ± 0.46 - 
16.9 ± 

1.24 

UF30k 7.5 228 - 70.4 ± 0.6 - 6.7 ± 0.38 - 
14.0 ± 

1.03 

d
 J Jo

-1
 (%) is the normalized flux value of the end of each membrane filtration (1,000 mL). 

The numbers in (±) are standard deviation. 
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As a general observation, the accumulated adsorbed mass of the micropollutants 

significantly increased in the presence of SWNTs, while it decreased in the presence of 

NOM over the same period. In addition, neither membrane exhibited significant flux 

decline in the absence of NOM and in the presence of SWNTs under different pH and 

applied pressure conditions. This is presumably because at an initial concentration of 1 

M, concentration polarization associated with each compound (in the absence of NOM) 

does not significantly reduce the membrane flux, but is completely adsorbed onto either 

membrane surface. 

In contrast to the NOM free data, a flux decline of 13 to 80% occurred in the 

presence of NOM and both NOM and SWNTs because of considerable concentration 

polarization associated with NOM adsorption at the membrane surface. Conversely, 

increased flux trends of 2-8% were observed in the presence of SWNTs, indicating that 

SWNTs are not potential foulants. The effect of SWNTs on fouling at 10 mg L
-1

 was 

insignificant, since the SWNT particles are somewhat too large to block membrane pores. 

Thus, the SWNTs particles can be stacked on the membrane surface to readily allow the 

transport of water [135]. Notably, there was an approximately 80% flux decline for the 

membrane in the presence of NOM alone, and an approximately 72% flux decline in the 

presence of both SWNTs and NOM for BPA and E2 at pH 4. This is more likely due to 

an increase in NOM adsorption to the membrane at the low pH. The Aldrich HA NOM 

filtration was characterized by an initially strong flux decline, followed by a weaker 

decline in a later filtration stage, indicating that fouling occurs by initial pore blockage 

and additional cake/gel formation at a later stage [136, 137]. Adsorption of the NOM 

molecules, which have hydroxyl and carboxyl functional groups, increases at low pH 
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when the charge on the membrane becomes less negative [14, 138]. Numerous studies 

have shown that NOM fouling is a major cause of membrane filtration flux decline [19, 

125, 139-142]. From the previous reports, it was assumed that the high aromatic content 

of the feed NOM in the water samples and the hydrophobicity of the UF membrane 

possibly combined to cause a greater driving force for membrane surface and pore mass 

adsorption. It was also proposed that humic acid could cause irreversible fouling 

specifically in the case of interactions between humic acid and hydrophobic membranes. 

The complete blocking, standard blocking, intermediate blocking and cake filtration 

fouling mechanisms (described in Table 4.6) were identified using an approach 

previously reported by Shen et al. [143], under constant pressure and dead-end filtration. 

The applied fouling models (Figure 4.8) shows that standard blocking affords an 

excellent fit (R
2
=0.999) to the experimental data in SWNTs-UF systems at ambient 

conditions. The other fittings did not show much variance in R
2
 values ranging from 

0.777 to 0.798. The data suggests that most of the foulant was associated with inner pore 

surfaces of the UF membranes. The flux modeling data suggests that HA fouling was 

associated with inner pore surfaces of the UF membranes (standard blocking), which 

decreased the membrane pore size related to the inner pore wall particle depositing and 

caused the flux decline. Specifically, pH=4.0, severe flux decline was strongly related to 

the adsorptive membrane fouling by standard blocking, allowing for the possibility of 

complete blocking as listed in Table 4.6 (blocking model results not shown).  
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Table 4.6 Equations of different fouling mechanisms for dead-end filtration [77].  
 

Models Equations Description 

Complete 

blocking 
J0 − J= AV 

Particles do not superimposed one upon 

another and particles arriving at the 

membranes will block pores : dparticle  

dpore  

Standard blocking 1/t + B = J0/V 

Particles do superimposed one upon 

another and particles accumulation 

increased with the single layer deposition 

on membrane surface : dparticle  dpore 

Intermediate 

blocking 
ln J0 − ln J = CV 

Pore diameter is decreased with 

proportional to permeate volume on the 

basis of particle depositing on the 

internal pore walls : dparticle « dpore 

Cake filtration (1/J) − (1/J0) = DV 

Particles are retained due to cake layer, 

and each particle was accumulated on the 

membrane surface in order to form a 

bridge like assemblage or a cake layer :  

dparticle > dpore 

Note: J, flux; J0, initial flux; V, filtrated volume; t, filtration time; A, B, C and D are constants, 

respectively. 
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Figure 4.8 The experimental data fitting of the flux decline using different fouling 

mechanisms: (a) complete blocking; (b) standard blocking; (c) intermediated blocking; and 

(d) cake filtration. Operating conditions: P = 827 kPa (120 psi); stirring speed = 300 rpm; 

recovery = 50%; DOC = 8 mg L
-1

; SWNTs = 10 mg L
-1

; conductivity = 500 μS cm
-1

; pre-

contact time with SWNTs = 2 h. 

 

4.3.5. Effect of Pressure on BPA and E2 Removal 

The BPA and E2 retention experiments were performed with pure water at a constant flux 

to minimize artifacts from mass transfer at the membrane interface (Figure 4.6). However, 

the retention of BPA and E2 varied with different applied pressures (138, 414, and 827 

kPa) in the presence of SWNTs (10 mg L
-1

) and NOM (8 mg L
-1

), as shown in Figure 4.9.  
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Figure 4.9 Comparison of (a) retained DOC and adsorption for  BPA and E2 and (b) 

applied pressure, DOC rejection, and retained DOC in the UF5K filtration in the presence 

of NOM and SWNTs. Operating conditions: P = 827 kPa (120 psi), 414 kPa (60 psi), 

138 kPa (20 psi); stirring speed = 300 rpm; recovery = 50%; DOC = 8 mg L
-1

; SWNTs = 

10 mg L
-1

; conductivity = 500 μS cm
-1

; pH = 7.5;  pre-contact time with SWNTs = 2 h.  

 

 

The adsorbed amounts of BPA and E2 increased linearly with increasing amounts 

of delivered BPA and E2. The adsorption of E2 is greater than BPA due to more 

hydrophobic interactions between E2 and the membrane and/or SWNTs. The E2 

adsorption was almost constant at all the measured pressures, while the adsorption of 

BPA was observed to reduce with decreasing pressure (Figure 4.9a). Also, BPA 

adsorption at an applied pressure of 827 kPa was higher than that at 138 and 414 kPa. 

The results were explained in terms of retained DOC and DOC rejection (Figure 4.9b). 

BPA and E2 adsorption decrease linearly with increasing retained DOC, while DOC 

rejection by the UF5K membrane was approximately 15-30% lower at an applied 

pressure of 827 kPa than at 414 and 138 kPa. As a result, more DOC was retained at the 

membrane surface at low applied pressures, resulting in greater competition for 

adsorption sites and greater pore blockage by DOC. This combination of factors was 

Retained DOC (mg)

0 2 4 6 8

B
P

A
, 
E

2
 a

d
s
o
rp

ti
o
n
 (

%
)

0

20

40

60

80

100

BPA at 827 kPa

E2 at 827 kPa

BPA at 414 kPa

E2 at 414 kPa

BPA at 138 kPa

E2 at 138 kPa

(a) 

Applied pressure

138kPa (20psi) 414kPa (60psi) 827kPa (120psi)

D
O

C
 r

e
je

c
ti
o
n
 (

%
)

0

40

50

60

70

80

90

100

R
e
ta

in
e
d
 D

O
C

 (
m

g
)

0

4

6

8

10

DOC rejection

Accu. retained DOC

(b) 



 

66 

responsible for lower adsorption capacity values for BPA, which is less hydrophobic than 

E2. From these results, it can be concluded that BPA and E2 adsorption and retention 

associated with NOM transport is significantly influenced by hydrodynamic operating 

conditions (in this case, the initial pure water flux associated with pressure), which cause 

varying concentration polarization at the membrane interface. However, the adsorption 

and retention of E2 are similar at various applied pressures, suggesting that the 

concentration polarization is insignificant for E2 transport.   

 

4.3.6. Effect of Membrane Pore Size on BPA and E2 Removal 

The water containing BPA and E2 at concentrations of 1 M was used for contaminant 

retention experiments through the UF5K, UF10K, and UF30K membranes in the absence 

and presence of NOM and SWNTs (with a pre-contact time of 2 h). In general, when the 

source water contains molecules smaller than the membrane pores, solute passes easily 

through the membrane pores. If only molecular weight and membrane pore size were 

considered, BPA and E2 retention by these membranes should be minimal. However, all 

of the membranes show significant retention of E2 (> 80%) and BPA (> 40%) due to 

adsorption on the membrane, the SWNTs, and/or NOM, while a significant decrease in 

retention (30-70%) was observed for BPA and E2 in the presence of NOM only (no 

SWNTs), as shown in Figure 4.10. All three UF membranes showed similar E2 retention, 

even though their membrane pore sizes were different. The retention of BPA varied 

predictably depending on membrane pore size, in the order of UF5K > UF10K > UF30K. 

These results may be explained in terms of: (1) E2 hydrophobic adsorption onto the 
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hydrophobic membranes and SWNTs and (2) BPA size-exclusion due to NOM-

partitioning.  

 
 

Figure 4.10 Comparison of delivered and adsorbed mass accumulated, and adsorbed 

mass and retention for  BPA and E2 in three UF (UF5K, UF10K, and UF30K) membrane 

filtration in  the presence of NOM and NOM+SWNTs. Operating conditions: P = 827 

kPa for UF5K, 586 kPa for UF10K, and 228 kPa for UF30K; stirring speed = 300 rpm; 

recovery = 50%; DOC = 8 mg L
-1

; SWNTs = 10mg L
-1

; conductivity = 500 μS cm
-1

; pH 

= 7.5;  pre-contact time with SWNTs = 2 h. 
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Three-dimensional AFM image analysis was employed to investigate the 

morphological changes of the fouled UF5K membrane associated with BPA, E2 and 

NOM in the absence and presence of SWNTs.  

 
 

Figure 4.11 Three-dimensional AFM image (a) cleaned membrane, (b) fouled in the 

absence of SWNTs, and (c) fouled membrane in the presence of SWNTs. Operating 

conditions: P = 827 kPa (120 psi); stirring speed = 300 rpm; recovery = 50%; DOC = 8 

mg L
-1

; SWNTs = 10 mg L
-1

; conductivity = 500 μS cm
-1

; pre-contact time with SWNTs 

= 2 h. 

 

(a)

(b)

(c)
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Figure 4.11 displays the AFM images of the clean and fouled membranes both in 

the absence and presence of SWNTs at a scan size of 10 m
2
 when imaged in air. The 

dark and light regions correspond to areas below and above the mean elevation, 

respectively. The images of the clean and fouled membranes were compared, based on 

their average roughness values: 30.7 nm (fouled in the absence of SWNTs) > 8.66 nm 

(fouled in the presence of SWNTs) > 2.43 nm (clean membrane). This suggests that 

SWNTs reduce membrane fouling, although there are contradictory results concerning 

the effect of other absorbents (e.g., PAC and aluminum/iron oxide particles) on 

membrane fouling.  

 

4.4 Conclusions 

In this study, flux decline measurements of model water samples containing EDCs (BPA 

or E2) were conducted using commercially available UF membranes. The sample 

retention and adsorption values were studied both in the absence and presence of NOM 

and SWNTs. Results show that the amount of BPA and E2 delivered and adsorbed per 

unit of membrane area is a better parameter than permeate volume and time, to provide a 

comparison of their trends in retention and flux decline. The following conclusions were 

drawn: (i) preferential removal by membrane adsorption occurred for the more 

hydrophobic E2, compared to BPA, under all of the experimental conditions; (ii) the 

addition of NOM during UF filtration led to competition for adsorption sites, resulting in 

lowered adsorption of micropollutants; (iii) membrane fouling by NOM considerably 

impacted the transport of BPA and E2 in the SWNTs-UF systems due to various NOM-

SWNTs-UF-BPA/E2 interactions in the solution; and (iv) SWNTs exhibited a high 
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adsorptive capacity for the micropollutants BPA and E2. Regarding the micropollutant 

feed concentration, although the experiments were conducted at high concentrations 

above typically reported levels in drinking water sources, the results still provide 

guidelines for SWNTs/UF hybrid membrane filtration since the retention of trace 

organics at parts per-billion or parts-per-trillion levels are independent of initial 

concentration [10, 144, 145]. 
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CHAPTER 5 

NATURAL ORGANIC MATTER REMOVAL IN SINGLE-WALLED CARBON 

NANOTUBES–ULTRAFILTRATION MEMBRANE SYSTEMS* 

 
*Reprinted here with permission of publisher: Heo et al., Natural organic matter removal 

in single-walled carbon nanotubes–ultrafiltration membrane systems, Desalination 298 

(2012) 75-84. 

 

Abstract 

Bench-scale ultrafiltration (UF) experiments were performed to address the effects of 

single- walled nanotubes (SWNTs) on flux and rejection of humic acid (HA) during 

fouling runs under various hydrodynamic and solution conditions. The performance of 

SWNTs–UF was also evaluated on the basis of a resistance-in-series model, filtration 

laws, and dissolved organic matter (DOM) transportation mechanisms. The addition of 

SWNTs to the UF process did not significantly exacerbate the permeate flux decline and 

total membrane resistances. Further, it appeared that the SWNTs did not likely increase 

total resistance because the HA fouling was mainly attributed to the total resistance. In 

addition, SWNTs–UF produced highly reduced membrane resistance per unit of retained 

DOM because SWNTs adsorbed some of the HA by offering binding sites. Significantly 

increased flux trends were observed with unstirred, low pH/high ionic strength, and low 

solvent flux/mass transfer coefficient (Jv/k) conditions. In addition, the rejection of HA 

increased up to 9–25% in SWNTs–UF. These results suggest that the effect of SWNTs on 

membrane fouling is a function of hydrodynamic and operational conditions. On the basis
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of a filtration laws approach, intermediate blocking was more dominant in the early 

stages; cake filtration became more dominant as filtration progressed, with development 

of a fouling layer. The first stages of filtration, unexpectedly, did not clearly show early 

inner pore blocking even though the main resistance was attributed to adsorptive fouling. 

DOM transport interactions significantly affected the flux decline and HA rejection 

trends, which were evaluated through a thermodynamic approach. The HA rejection 

trends in SWNTs–UF were observed to be higher than that in UF alone. The observed 

HA rejections of 63, 74, and 87% corresponded to Jv/k values of 1.7, 0.9, and 0.4, 

respectively, which indicates an overall reflection coefficient of 0.9 for SWNTs–UF. In 

addition, a high flux decline observed at high Jv/k values was due to concentration 

polarization (CP) and cake/gel layer formation, which hindered the transportation of 

DOM. It can be concluded that DOM transportation in SWNT–UF systems depends, to a 

significant extent, on the CP and cake/gel layer formation at the membrane boundary. 

 

Keywords: Ultrafiltration; Fouling; Humic Acid; Adsorption; Rejection; Single-Walled 

Carbon Nanotubes (SWNTs) 

 

5.1  Introduction 

Natural organic matter (NOM) plays an important role in the most problematic issue 

concerning water treatment. NOM is a precursor to carcinogenic disinfection byproducts 

and causes complexation with metals and hydrophobic synthetic compounds. NOM 

cannot be readily rejected during ultrafiltration (UF) since UF membranes have relatively 

large membrane pores compared to the molecular size of NOM [11, 12]. Furthermore, 
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NOM is well known as a major contributor to membrane fouling because it clogs 

membrane pores or forms a cake layer on the membrane surface. Thus, NOM is a barrier 

to the extensive application of the UF process in advanced water systems [13-16]. Humic 

acid (HA), a major hydrophobic fraction of dissolved NOM (DOM), is usually 

considered to be responsible for severe membrane fouling [17, 18]. HA consists of 

anionic macromolecules having a wide range of molecular weights. These 

macromolecules are comprised of both aromatic and aliphatic components with primarily 

carboxylic (60–90%) and phenolic functional groups in aquatic environments [19]. 

Compared to other fractions of DOM, HA is found to have the largest impact on 

membrane fouling because it causes extensive pore adsorption (irreversible fouling). 

The past few years have witnessed a significant amount of research interest in the 

development and use of various carbonaceous nanomaterials (CNMs) for potential 

environmental applications due to their unique characteristics. These applications include 

high flux and antifouling membranes, composite filters, sorbents, antimicrobial and 

antiviral agents, environmental sensing, and renewal energy storage [106, 146, 147]. 

Among CNMs, carbon nanotubes (CNTs) have been studied as a new sorbent to remove 

NOM and synthetic micropollutants from water based on the adsorptive capacity of 

CNTs [74, 148, 149]. CNTs share hexagonal carbon lattices that are a one-dimensional 

analogues of zero-dimensional spherical fullerene molecules [150]. Unlike many 

conventional adsorbents, CNTs have an exceptional fibrous shape with high aspect ratios, 

large surface area-to-volume ratios, and well developed mesopores [151]. These 

characteristics contribute to higher adsorption capacities [152, 153] and shorter 

equilibrium times [110, 154]. Previous researchers have studied the adsorption 
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mechanisms (e.g., hydrophobic interactions and π-π bonds) [105] and the adsorptive 

capacities of NOM onto CNTs
 
[155]. 

While the source waters are currently given to be in need of more challenging 

treatment, UF membranes coupled with adsorbents (e.g., powdered activated carbon and 

aluminum sulfate) are becoming a promising technology to meet stringent regulations 

[23]. Such integrated systems can be applied even more extensively to water treatment in 

response to increasing concerns over the removal of NOM. The current understanding of 

adsorption procedures and fouling of membranes in the presence of DOM clarify that 

adsorbent addition as a pretreatment may affect membrane performance. However, the 

effects of the adsorbent have shown somewhat contradictory results, especially in flux 

decline. These fouling effect scenarios mostly occur through adsorptive fouling from the 

interaction with HA, the most hydrophobic of the NOM, and the membrane, as noted 

earlier. On one hand, if the adsorbent successfully removes HA from solution that would 

otherwise more favorably adsorb onto a membrane surface and pores, membrane fouling 

is reduced. On the other hand, if the adsorbent itself behaves like the foulants, membrane 

fouling can be exacerbated. The adsorbent effect on membrane fouling can be a function 

of adsorbent physicochemical properties (size, charge, and hydrophobicity), membrane 

characteristics (pore size, charge, and hydrophobicity), and solution water chemistry (pH 

and conductivity) [12, 121, 156, 157]. 

The objective of this study is to investigate the feasibility of single-walled carbon 

nanotubes (SWNTs) contributing to membrane fouling control, and to evaluate potential 

mechanisms for HA removal in a hybrid system of UF in the presence of SWNTs 

(SWNTs-UF) under various hydrodynamic and solution conditions. To accomplish this, 
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the rejection of HA and flux decline in SWNTs-UF systems were investigated as a 

function of various solution and operating conditions, including extent of 

conductivity/ionic strength (IS), pH, applied pressure, and SWNT concentrations.  

 

5.2 Materials and methods 

5.2.1 NOM and UF feed solutions  

HA used in this study was obtained from Sigma-Aldrich Co. (St. Louis, MO, USA), 

which was used as the model NOM to simulate the hydrophobic constituents of NOM 

with high molar mass. The dissolved HA is a mixture of complex polyelectrolytes 

chemically formed by carboxylic and hydroxyl functional groups. Aldrich HA stock 

solution was prepared by dissolving HA in deionized (DI) ultrapure water. The solution 

was then sequentially filtered through GF/F (0.7 µm) glass microfiber filters (Whatman 

Inc., Piscataway, NJ, USA) and Durapore (0.45 µm) membrane filters (Millipore Inc., 

Billerica, MA, USA) to remove any impurities and particulate matter. The feed solution 

for the UF experiments was prepared by further dilution of HA stock solution with DI 

water to obtain a desired concentration of 8 mg L
-1

 as dissolved organic carbon (DOC). 

The conductivity was adjusted by adding NaCl to maintain a final background 

conductivity of nearly 300 µS cm
-1

 and up to 11,400 μS cm
-1

 (IS = 0.1 M). The pH was 

adjusted to 4, 7, and 10 by the addition of 0.1 M NaOH and 0.1 M HCl, as needed, then 

buffered with 1 mM phosphate buffer solution.  

 

5.2.2 Characteristics of SWNTs 
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SWNTs (1–2 nm diameter  5–30 µm length) with over 90% purity were obtained from 

Cheap Tubes Inc. (Brattleboro, VT, USA). According to the manufacturer, the SWNTs 

have a specific surface area of 407 m² g
-1

. SWNT characteristics have been described in 

detail in our previous study [158]. In brief, the electrophoretic mobility of SWNTs 

showed negative surface potential, and values of zeta potential (ZP) ranged from -21 to -

67 mV. The negative surface charge of SWNTs increased with increasing solution pH. 

The diameter of the SWNTs was calculated to be 1.13 nm based on the peak observed at 

211.2 cm
-1

 through the Raman spectrum. In addition, the aggregation hydrodynamic 

diameters of SWNTs were measured at approximately 1500 nm by dynamic light 

scattering [158].  

 

5.2.3 UF membrane 

One commercially available UF membrane having a nominal molecular weight cut-off 

(MWCO) of 10 kDa was selected to evaluate its NOM rejection and flux decline 

properties. The flat sheet membrane, made of polyethersulfone (PES), was obtained from 

Koch Membrane Systems Inc. (Wilmington, MA, USA). The detailed characteristics of 

the membrane are listed in Table 5.1. In particular, the PES UF membrane has aromatic 

rings with two methyl groups and ionizable functional groups (i.e., carboxylic acids), as 

specified by the manufacturer. Before UF experiments were conducted, each new 

membrane was soaked in DI water for at least 24 h at a room temperature of 21  1 
o
C to 

remove any preservative products prior to use. During this period, the DI water was 

replaced several times with a new volume of pure water. The DOC of the final rinse 

water was checked to assure that it was at a negligible level. 
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Table 5.1 Ultrafiltration membrane characteristics. 

 

PWP is pure water permeability.
  a

c.v. is coefficient variance.
 

 

5.2.4 SWNTs-UF experiments 

All UF filtration experiments were constituted by a feed volume of 300 mL dead-end 

stirred bench-scale UF cell (HP4750, Sterlitech Corporation, Kent, WA, USA) with an 

effective membrane area of 14.2 cm
2
. In this study, the filtration cell was coupled with an 

SWNT reactor and an initial concentration of 8 mg L
-1

 DOC as HA was mixed with 

SWNTs (20–50 mg L
-1

) in the reactor for 1 h prior to the UF experiments. The pre-

contact time and dosage were selected to simulate conditions at many full-scale water 

treatment plants that have employed powdered activated carbon (PAC) contact times of 

1–2 h and PAC dosages of 5–50 mg L
-1

 [35]. Basically, UF experiments were conducted 

with and without a stirring rate of 300 rpm to determine the effect of hydrodynamic 

conditions; transmembrane pressure (TMP) was kept constant at different levels: 1 bar 

(100 kPa), 3 bar (300 kPa), and 6 bar (600 kPa). Permeate was periodically collected in a 

Characteristics of Membrane PES 

Material Polyethersulfone 

MWCO (kDa) 10 

ZP (mV) at pH 7 -24.9 

Contact angle (°) 48 ± 2 

Applied pressure (kPa) 270 – 310 

  

PWP (L/hr-m
2
-kPa)  

Average 0.98 

(min-max) 0.93-1.07 

c.v.
a 

(%) 4.5 

  

Pure water membrane resistance 

(10
12 

m
-1

) 
3.74 
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graduated cylinder placed on a digital balance (AV8101, Ohaus, NJ, USA) and weighed. 

The experimental UF filtration protocol for fouling and rejection runs was performed 

with three steps: compaction, fouling/rejection, and reversibility. First, the membrane was 

compacted using high pressure (6 bar) with DI water, and the water flux was checked as a 

function of time until a stable flux state was obtained (usually within 30 min). Then, the 

TMP was adjusted to exhibit the desired same initial permeate flux (Jo) to ensure the least 

variation from the various hydrodynamic conditions. Only those membranes for which 

permeability variances were less than 5% were selected for further SWNTs-UF 

experiments. The designated UF experiments were conducted by collecting 

approximately 215 and 85 mL of permeate and retentate, respectively; at that point in 

time, a volume concentration factor (VCF) of 3.5 was reached.  

The observed percentage of HA rejection that was collected i times, Ri (%), was 

calculated using Eq. (5.1): 

 

           
       

  
                                                                          

 

where CF and CP,i are defined as the concentration of feed and i times permeate, 

respectively. The permeate flux (Jv) was evaluated in terms of the VCF using Eq. (5.2): 
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where VF, VR, and VP are defined as the volume of feed, retentate, and permeate, 

respectively. The concentration in the permeate was measured several times until VCF = 

1.0–3.5, corresponding to a recovery of 0–71.7%. The adsorbed mass of HA on SWNTs-

UF was calculated on the basis of the mass balance of HA in DOC. The adsorbed mass 

fraction of HA is equal to the HA mass in the feed minus the HA mass out in both the 

retentate and cumulative permeate, as defined by Eq. (3): 

 

      
     [∑                 ]

    
                                             

 

where Mads, VF, VP,i, VR, and CR are the adsorbed mass fraction, feed volume, i times 

permeate volume, retentate volume, and retentate concentration, respectively. Analyses of 

organic HA in the feed, permeate, and retentate of the solutions were performed using a 

DOC analyzer (Shimadzu Model TOC-5050A) and an ultraviolet absorption spectroscopy 

at a wavelength of 254 nm (UV254).  

 

5.3 Results and discussion 

5.3.1 The influence of SWNTs and hydrodynamic conditions on flux decline and HA 

rejection 

Bench-scale UF experiments were performed to evaluate the performance of both 

SWNTs–UF (with SWNTs) and the UF process alone (without SWNTs) in terms of flux 

decline profile and HA rejection. The rejection trends based on DOC and the normalized 

fluxes of both SWNTs–UF and UF alone are presented in Figure 5.1 as a function of VCF 

at pH 7 and conductivity of 300 μS cm
-1

. The VCF provides a more reasonable 
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comparison of HA rejection and flux decline than permeate volume or time because the 

retained HA concentration on the membrane surface in dead-end stirred cells is highly 

variable with respect to condensing volume. This variability significantly influences the 

physical and chemical properties of the membrane and solute at the interface of the 

membrane [58, 159]. 

 
 

Figure 5.1 Influence of SWNTs concentrations on flux decline and HA rejection. Flux 

decline and HA rejection as a function of SWNTs concentration for the 10 kDa PES 

membrane: (a) Flux decline at 300 rpm, (b) flux decline without stirring, (c) HA rejection 

based on UV254, and (d) HA rejection based on DOC. Operating conditions: P =  1 bar 

(300 kPa); DOC = 8 mg L
-1

; SWNTs = 20-50 mg L
-1

; conductivity = 300 μS cm
-1

; pH = 7;  

pre-contact time with SWNTs = 1 h (error bars represent standard deviations). 
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The normalized fluxes of 0, 20, and 50 mg L
-1

 SWNT concentrations demonstrate 

that SWNTs alone do not significantly affect the permeate flux decline in the presence of 

HA at a stirring speed of 300 rpm (Figure 5.1a) even though SWNTs are presumed to 

have a high possibility of fouling. Conversely, in the case of unstirred conditions, a slight 

increase in flux (7–9%) was observed in SWNTs–UF (Figure 5.1b) because SWNTs 

adsorb some amounts of HA. The levels of SWNT fouling observed under these 

hydrodynamic conditions are essentially caused by two factors. SWNT particles with 

lengths of 5–30 µm, outer diameter of 1–2 nm, and an average aggregation hydrodynamic 

diameter of approximately 1,500 nm are sufficiently large to block membrane pores with 

a nominal MWCO of 10 kDa. Therefore, the SWNTs stack on the membrane surface to 

form a porous layer that allows the passage of water with no additional fouling resistance. 

In particular, the deposition of SWNTs on the membrane surface in an unstirred condition 

forms a porous grid cell layer, which results in an increase in membrane flux without the 

addition of fouling resistance in the SWNT–UF system. In addition, the adsorption of HA 

onto SWNTs increases membrane flux in the unstirred condition, which also reduces 

membrane cake, gel, and concentration polarization (CP) layers. In general, other studies 

using adsorbent particles in conjunction with UF have shown considerable advantages in 

terms of fouling rate reduction and NOM removal efficiency [12, 13, 160]. 

Figure 5.1c and 5.1d shows the effects of SWNT concentrations and hydrodynamic 

conditions on HA rejection with the permeate fraction of VCF determined on the basis of 

UV254 and DOC. A 9–16% increase in HA rejection was obtained with increasing SWNT 

concentrations under stirred conditions. SWNT contributions to HA rejection were 

maximized at the highest permeate VCFs (2.5–3.5). A significant increase (29%) in HA 
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rejection was shown in terms of UV254 under unstirred conditions with SWNTs–UF over 

those with the UF process alone. In the comparison of stirred and unstirred conditions, 

approximately 13–24% less of the HA were rejected in the unstirred case in SWNTs–UF 

and UF alone, presumably because CP and cake/gel layers increased the concentration of 

HA on the membrane surface. In addition, the higher rejection in SWNTs–UF should be 

attributed to the adsorption of HA onto SWNTs under both unstirred and stirred 

conditions. As a result, the maximized SWNT adsorption effect for HA rejection was 

obtained for unstirred conditions. The adsorbed amount of HA was calculated using mass 

balance with the difference in HA concentration among feed, permeate, and retentate 

(data available on request). The SWNT–UF system showed approximately 30% more HA 

adsorption than the UF process alone because of HA adsorption onto 50 mg L
-1

 SWNTs. 

Mechanisms of HA adsorption onto SWNTs remain unclear because SWNTs exhibit 

characteristics of heterogeneity and multiple adsorption mechanisms over time. The 

adsorption of HA on SWNTs is caused by the energetics of surface reactions through Van 

der Waals forces and electrostatic repulsion. For example, although the SWNTs surface is 

electrically balanced, ion exchange can occur because of the energetics of surface 

reactions associated with electronic charge affinity with functional groups in HA. This 

phenomenon is part of the Coulombic energy charge, which varies with pH change and 

surface loading. Therefore, the driving force of SWNT adsorption with HA is a mixed 

mechanism of hydrophobicity (short range) and Coulombic interaction (longer range) 

[105, 161, 162]. 

 

5.3.2 Effects of solution pH and ionic strength 
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Figure 5.2 shows the effect of pH on HA rejection and flux decline in SWNTs–UF 

and in UF alone, as a function of VCF. As a general observation, pHs of 7 and 10 showed 

similar trends of flux decline and rejection of HA in both SWNTs–UF and UF alone. 

However, Figure 5.2a shows the worst flux decline with UF alone, with an approximate 

18–23% increase at pH 4 than that observed for pHs 7 and 10. In the SWNTs–UF process, 

the normalized flux at pH 4 increased approximately 6–7% over UF alone. In addition, 

both SWNTs–UF and UF alone showed a significantly high rejection range of 80–95% at 

pH 4, as compared with pHs 7 and 10 (Figure 5.2b). These rejections decreased with 

increasing VCF. Several factors can explain these results. The higher rejection at low pH 

is attributed to membrane pore size reduction through HA adsorption for the hydrophobic 

PES membrane. As shown in a previous study [163], a consequence of the smaller pore 

size is a high NOM rejection of 90–95% by UF membranes. These results suggest that 

HA adsorption occurs more strongly at low pH and that inner pore sites have the top 

priority for HA adsorption with hydrophobic membranes owing to the strong 

hydrophobic adsorption. In addition, the charges of the membrane surface and HA 

become less negative with a decrease in pH, which causes a decrease in the electrostatic 

repulsion between the membrane and HA. Moreover, the flux difference between 

SWNTs–UF and UF alone is largely due the adsorption ability of SWNTs, which 

increases approximately 40% at a low pH over values of 7 and 10. 
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Figure 5.2 Influence of pH on flux decline and HA rejection based on DOC in the 

absence and presence of SWNTs: (a) Normalized flux decline and (b) HA rejection based 

on DOC at different pH conditions. Operating conditions: P = 1 bar (300 kPa); DOC = 

8 mg L
-1

; SWNTs = 50 mg L
-1

; conductivity = 300 μS cm
-1

; pH = 7; pre-contact time 

with SWNTs = 1 h.   

 

 
Figure 5.3 Influence of ionic strengths on flux decline and HA rejection based on DOC 

in the absence and presence of SWNTs: (a) Normalized flux decline and (b) HA rejection 

based on DOC at different ionic strength conditions. Operating conditions: P = 3 bar 

(300 kPa); DOC = 8 mg L
-1

; SWNTs = 50 mg L
-1

; conductivity = 300 and 11,400 μS cm
-1

; 

pH = 7; pre-contact time with SWNTs = 1 h. 

  

In general, 0.1 M IS causes an 11–19% greater decrease in flux decline and 

rejection trends, compared with the no-salt conditions, as shown in Figure 5.3. The UF 

VCF

1.0 1.5 2.0 2.5 3.0 3.5

N
o

r
m

a
li
z
e
d

 f
lu

x

0.0

0.4

0.6

0.8

1.0

pH = 4 w/o SWNTs

pH = 4 w/ SWNTs

pH = 7 w/o SWNTs

pH = 7 w/ SWNTs

pH = 10 w/o SWNTs

pH = 10 w/ SWNTs

(a)

VCF

1 - 1.5 1.5 - 2.5 2.5 - 3.5

T
O

C
 r

e
je

c
ti

o
n

 (
%

)

0

40

60

80

100

pH = 4 w/o SWNTs
pH = 4 w/ SWNTs
pH = 7 w/o SWNTs pH = 7 w/ SWNTs

pH = 10 w/o SWNTs
pH = 10 w/ SWNTs(b)

VCF

1.0 1.5 2.0 2.5 3.0 3.5

N
o

r
m

a
li

z
e

d
 f

lu
x

0.0
0.2

0.4

0.6

0.8

1.0

No salt w/o SWNTs

No salt w/ SWNTs

IS = 0.1 M w/o SWNTs

IS = 0.1 M w/ SWNTs

(a)

VCF

1 - 1.5 1.5 - 2.5 2.5 - 3.5

T
O

C
 r

e
je

c
ti

o
n

 (
%

)

0
20

40

60

80

100 No salt w/o SWNTs

No salt w/ SWNTs

IS = 0.1 M w/o SWNTs

IS = 0.1 M w/ SWNTs

(b)



 

85 

process alone showed a larger flux decline of approximately 8% with 0.1 M IS, compared 

with the SWNTs-UF; the fluxes decreased approximately 32% for SWNTs–UF and 40% 

for the UF process alone. The HA rejection with 0.1 M IS was lower than that in the no-

salt condition, particularly for UF alone. The UF process alone showed the worst 

rejection, 45%, while the SWNTs–UF rejection was 68%. This phenomenon could be 

attributed to several factors. High IS can exacerbate fouling by compacting the cake/gel 

layer, thereby increasing the HA concentration on the membrane surface. In addition, 

condensing of the HA structure easily allows it to pass through membrane pores, which 

then leads to lower HA rejection trends [164]. Moreover, in the particular case of 

SWNTs–UF with a VCF of 2.5–3.5, no difference in rejection of HA was observed 

between the no-salt and 0.1 M IS conditions, indicating that the adsorption capacity of 

SWNTs increases as the ionic strength increases because of the screening effect. This, in 

turn, reduces electrostatic repulsions of surface charge by compressing the double layer 

with HA solutions [165]. Further, for the UF process alone, reduced electrostatic 

repulsion between the membrane surface and HA contributes to lower HA rejection 

trends. These results confirm that the adsorption of NOM on SWNTs varies with solution 

pH and ionic strength, which could affect the flux decline and rejection trends. In 

particular, previous reports [105, 166, 167] have determined that pH is the most 

important factor in the adsorption of NOM on SWNTs, which is related to the point of 

zero charge on SWNTs (overall net charge) in HA solutions because the adsorption of 

NOM on SWNTs is driven by electrostatic interactions. The adsorption of NOM on 

SWNTs in the lower pH range is more electrically balanced than that observed in the case 
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of high pH. In addition, as pH increases, the adsorbed amount of DOC decreases as a 

result of the competition between NOM and OH
-
 for the same CNT sites [152]. 

 

5.3.3 Resistances 

The effects of SWNT additions and various operating conditions applied by the 

resistance-in-series model, described in Background (Chapter III), was investigated to 

evaluate the fouling layer characteristics in terms of flux decline; the results of this 

analysis are summarized in Table 5.2.  

 

Table 5.2 Characteristics of the fouling layer and resistances as a function of unit 

retained DOC mass in the absence and presence of SWNTs and various operating 

conditions according to resistance in series model.  

Process 

Solution & operating 

conditions 
Characteristics of the fouling layer and resistances 

TMP 
(bar) 

pH IS  
Rm 

(10
12 

m
-

1
) 

Rt 

(10
12

m
-1

) 
Rc 

(10
12

m
-1

) 
Rc/Rt 

δ 
(10

12  

m g
-1

) 

UF 

3.0 

7.0 

No salts 

3.76 5.26 0.50 0.09 4.53 

7.0
*
 3.86 10.02 4.38 0.44 11.33 

4.0 3.37 8.12 1.92 0.24 6.46 

10.0 3.74 5.45 0.22 0.04 4.90 

3.0 7.0 0.1 M 3.85 8.18 0.25 0.03 8.82 

1.0 7.0 
No salts 

3.74 4.61 - - 3.34 

6.0 7.0 3.74 6.09 - - 5.66 

SWNT
s-UF 
(20  

mg L
-1

) 

3.0 7.0 No salts 3.64 5.03 0.09 0.02 3.95 

SWNT
s-UF 
(50  

mg L
-1

) 

 
3.0 

 
 

7.0 

No salts 

3.85 5.34 0.11 0.02 3.87 

7.0
*
 3.37 7.14 1.78 0.25 6.47 

4.0 3.74 7.27 1.45 0.20 5.09 

10.0 3.61 5.50 0.12 0.02 4.02 

3.5 7.0 0.1 M 4.49 7.27 0.17 0.02 5.75 

1.0 7.0 
No salts 

3.63 3.86 - - 2.67 

6.0 7.0 3.74 6.02 - - 4.53 

 *
 without stirring.   
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With the exception of the results for unstirred conditions, the total fouling resistance 

in SWNTs–UF and UF alone remained roughly similar, with relatively low pH, and high 

IS. The HA solution applied to the UF membrane in unstirred conditions increased the 

fouling resistance due to the formation of an additional CP layer or cake/gel layer, since a 

CP layer could act as one of the resistances for flux decline in the CP–cake/gel layer 

model [56]. In addition, the cake resistance ratio (Rc/Rt values) of the cake layer was well 

developed by increasing the concentration of HA on the UF membrane surface. The 

unstirred condition clearly showed the contribution of the added SWNTs for mitigating 

the total fouling resistances. These results, which indicate that the effect of HA 

adsorption onto the SWNTs is favorable for fouling resistance reduction, can be 

summarized by several factors. A highly penetrable layer with SWNTs with a less dense 

cake layer provided better water permeation and was maximized in unstirred conditions, 

which mitigated the CP effect. In addition, a high concentration of HA in the UF process 

alone could easily block the membrane by inner pore adsorption and formation of a cake 

layer. Moreover, during the UF process alone, CP and cake/gel layers provided higher 

fouling resistance than with SWNTs–UF because the former resulted in a relatively high 

HA concentration on the membrane surface layer. Regarding the effect of pH and IS, 

fouling resistances were increased with a low pH of 4 and a high IS of 0.1 M. However, 

the fouling resistances were significantly decreased in SWNTs–UF at the same values. 

Under these conditions, adsorption by SWNTs could reduce the larger amount of 

adsorptive fouling onto the PES membrane. This, in turn, led to lower compaction of HA 

on the membrane, which ultimately led to smaller increments of fouling resistance in 

SWNTs–UF. 
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In particular, the relatively small size of the cake resistance ratio (Rc/Rt) in stirred 

conditions indicated that the adsorptive fouling resistance was the main contributor to the 

total fouling resistance, rather than cake resistance. This result agrees well with findings 

of previous research on HA adsorption fouling with UF membranes [15, 18, 168]. In 

addition, the pure water flux was measured again after filtration to determine the effect of 

the irreversible fouling, which is consistent with the previous research. No significant 

difference in irreversible fouling resistance was observed between SWNTs–UF and UF 

alone.  

 

 
 

Figure 5.4. Comparison of UF fouling resistances as a function of unit retained DOC 

mass in the absence and presence of SWNTs. Operating conditions: P = 3 bar (300 kPa); 

DOC = 8 mg L
-1

; SWNTs = 20 and 50 mg L
-1

; conductivity = 300 and 11,400 μS cm
-1

; 

pH = 7; pre-contact time with SWNTs = 1 h. 

 

The HA deposited on the membrane surface appeared to correlate with the 

resistance of the cake layer. To observe this effect, the fouling resistance trends in both 
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SWNTs–UF and UF alone were quantified with membrane resistances per unit retained 

DOC mass (δ), which is conceptually similar to specific cake resistance [16, 169]. The 

UF alone and SWNTs–UF at a VCF of 3.5 yielded specific cake resistances per unit 

retained DOC of 4.53 × 10
12

 m g
-1

, 3.95 × 10
12

 m g
-1

, and 3.87 × 10
12

 m g
-1

 for 0, 20, and 

50 mg L
-1

 SWNTs, respectively. These values clearly showed specific fouling resistances, 

as plotted in Figure 5.4 and quantified in Table 5.2. After adsorption of HA, most 

SWNTs–UF cases showed a slightly lower Rc/Rt ratio than that observed for the UF 

process alone. Considering the specific fouling resistances, SWNTs–UF resulted in 

greatly reduced membrane resistances per unit retained DOC mass. It appears that the 

characteristics of the fouling layer were more dependent on the HA deposition and HA 

adsorptive fouling since single SWNTs with a length of 5–30 µm are somewhat too large 

to block the membrane pores. These results showed that membrane fouling resistances 

per unit retained DOC could be improved with the addition of SWNTs. 

 

5.3.4 Fouling mechanism and cake filtration 

To analyze the flux decline data of HA solutions during UF filtration, J
2
 versus time was 

plotted for both SWNTs–UF and UF alone in unstirred conditions, as shown in Figure 5a. 

As discussed in Background (Chapter III), model constants α and β were evaluated for 

experimental flux data by flux modeling, as applied in Eq. 3.14. It was previously 

mentioned that the linear slope after an initial filtration in t/V versus V was caused by the 

formation of a cake layer, and a membrane filtration index (MFI) was obtained to 

compare SWNTs–UF and UF alone throughout the filtration process, as listed in Table 
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5.3. The fitting results applied to the flux modeling were well matched, with R
2 

= 0.94 

and 0.99 for the UF process alone and for SWNTs–UF, respectively.  

 

Table 5.3 Membrane fouling analyses for HA filtration in UF and UF-SWNTs without 

stirring.  

  TMP = 3.0 bar 

 

It was evident that at higher HA concentrations with the UF process alone, the 

combined HA concentration increased on the membrane surface, and the resultant cake 

formation led to increasingly more dominant resistance for the solvent flux. This result 

was attributed to the higher MFI for the UF process alone because the MFI was in 

proportion to the cake layer formation. As previously stated, many researchers have 

reported that HA could be a dominant foulant and may cause irreversible fouling. In 

particular, adsorptive hydrophobic interactions between HA and hydrophobic membranes 

should cause significant membrane fouling. 

Pro-

cess 

Flux model Fouling model 

α 

(min
2
 

m
-2

) 

β 

(min 

m
-2

) 

r
2
 

MFI 

(min 

m
-2

) 

Intermediate 

 blocking 

Cake  

filtration 

a b r
2
 a b r

2
 

UF 53,893 4,899 
0.94

4 
1,225 

0.004

4 

0.004

8 

0.96

5 

11.4

7 

2.1

7 

0.92

1 

UF-

SWN

Ts 

47,284 3,170 
0.98

5 
793 

0.004

2 

0.004

0 

0.97

7 
8.78 

1.9

2 

0.91
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Figure 5.5 Flux decline analyses for HA filtration in the absence and presence of SWNTs: 

(a) Flux modeling and (b) membrane fouling analyses. Operating conditions: unstirred 

with constant P = 3 bar (300 kPa); DOC = 8 mg L
-1

; SWNTs = 50 mg L
-1

; conductivity 

= 300 μS cm
-1

; pH = 7; pre-contact time with SWNTs = 1 h. 
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Figure 5.5b. The formed curve was considered to exhibit the blocking behavior index φ 

(discussed in Background, Chapter III). When the experimental data were evaluated 

directly, the value of the blocking index φ was highly sensitive owing to the fluctuation 

of the flux data, which yielded negative φ values in some stages. This result was caused 

by the failure of fouling mechanisms to explain the experimental data, as shown by two 

symbols, in Figure 5.5b. Therefore, the simulated fitting polynomials with R
2
 values of 

more than 0.99 were applied to analyze the experimental data for the entire filtration 

process. The slope of the simulated data curve indicates the blocking index φ at that 

filtration stage. In the early stages of filtration under unstirred conditions, φ was 0.5 for 

both the SWNT–UF and UF-alone processes, which was close to that observed in the 

intermediate blocking model. Subsequent UF-alone filtrations showed a decreasing slope 

trend with φ values up to 0.4 and 0.3, and finally to 0 (simulated data) for SWNT–UF and 

UF-alone process. However, φ values of SWNTs–UF decreased more slowly than that 

observed in the UF-alone process. These facts roughly indicate that the early stages of UF 

filtrations were more dependent on intermediate blocking or a combination of 

intermediate blocking and cake filtration. However, cake filtration became the more 

dominant mechanism as filtration progressed and a fouling layer developed. In these 

subsequent filtrations, the first stages of both SWNTs–UF and UF alone did not clearly 

show early pore blocking even though the main resistance was attributed to adsorptive 

fouling. However, on the basis of blocking laws, when the HA concentration was 

comparatively high in the early stages, all of the membrane pores appeared to have been 

blocked quickly, and successive delivery of HA began to transition to cake/gel filtration. 

Cake/gel formation then dominated the entire filtration process, with subsequent HA 
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arriving at the cake/gel layer that previously formed on the membrane surface. These 

results complied well with the previous resistance-in-series model results, as tabulated in 

Table 5.2, in which the cake resistance in the unstirred conditions sharply increased with 

the buildup of the cake/gel layer. 

 

Table 5.4 Empirical dead-end filtration blocking laws in their linearized form with 

blocking indexes. 

Blocking Laws φ Linearized Equations 

Complete blocking 2 –ln (J/J0) =at + b 

Standard blocking 1.5 t/V = at + b 

Intermediate blocking 1 1/J = at + b 

Cake filtration 0 t/V = aV + b 

Note: J, flux; J0, initial flux; V, filtrated volume; t, filtration time; a and b are constants, respectively. 

 

The linear forms of filtration laws described in section S4 were applied to identify 

the fouling mechanism functioning with HA and the hydrophobic membrane under 

unstirred conditions, as summarized in Table 5.4. Further, to observe the stirring effect 

during filtration, constant pressure filtration laws were applied, as shown in Figure 5.6, 

that were similar to work previously performed using Aoustin’s approach [17]. As 

demonstrated in Figure 5.6, the effect of stirring was extremely high because both 

extensive CP during filtration and a high concentration were achieved prior to cake/gel 

formation. 
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Figure 5.6 Influence of stirring on filtration law analyses for HA filtration in UF-SWNTs: 

(a) Cake filtration and complete blocking analysis and (b) standard blocking and 

intermediate blocking analysis. Operating conditions: P = 3 bar (300 kPa); DOC = 8 mg 

L
-1

; SWNTs = 50 mg L
-1

; conductivity = 300 μS cm
-1

; pH = 7; pre-contact time with 

SWNTs = 1 h. 
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the experimental data at ambient conditions (Table 5.3). This finding could be in 

disagreement with that of previous authors such as Jucker and Clark [163], who reported 

that membrane inner pore sites have the top priority for the adsorption of humic 

substances on a hydrophobic membrane, indicating standard blocking. However, under 

unstirred conditions, it was noted that the fouling mechanisms of HA in SWNTs–UF 

were mainly linked to cake filtration in later stages, allowing for the possibility that 

complete blocking was to some extent responsible for membrane fouling due to the wide 

range of molecular weights in HA. 

 

5.3.5 DOM transport in UF-SWNTs system 

Figs. 5.7a and 5.7b show the results of normalized permeate flux and HA rejection trends 

under the influence of various applied pressures for SWNTs–UF (10 kDa and SWNTs of 

50 mg L 
-1

) and UF alone, respectively. Operational conditions 1, 2, and 3 correspond to 

the respective applied pressure values of 1 bar (100 kPa), 3 bars (300 kPa), and 6 bars 

(600 kPa). Figure 5.7a shows an important 11–13% increased flux result at 1 bar with 

SWNTs and an increased fouling potential of these adsorbents with higher applied 

pressure (higher permeability), which indicates that the adsorbent on membrane fouling 

could be a function of hydrodynamic and operational conditions. The average observed 

rejections of HA as DOC through overall VCF were 87, 74, and 63% in SWNTs–UF and 

82, 63, and 56% in UF alone at applied pressures of 1, 3, and 6 bars, respectively. The 3D 

plot of HA rejection trends in terms of both VCF and applied pressure clearly shows the 

effect of added SWNTs (Figure 5.8).  
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Figure 5.7 Influence of applied pressure on flux decline and HA rejection based on DOC 

in the absence and presence of SWNTs: (a) Normalized flux decline and (b) HA rejection 

at different applied pressures. Operating conditions: P = 1 bar (100 kPa), 3 bar (300 

kPa), and 6 bar (600 kPa); DOC = 8 mg L
-1

; SWNTs = 50 mg L
-1

; conductivity = 300 μS 

cm
-1

; pH = 7; pre-contact time with SWNTs = 1 h. 

 

SWNTs–UF clearly presented improved rejection trends compared to UF alone 

(Figure 5.8b). The observed HA rejections versus operating pressure were analyzed to 

match the linear parameter estimation of R² = 0.86–0.96, as described in Chapter III and 

shown in Figure 5.8. As the applied pressure was increased from 100 to 600 kPa, the 

rejections were dramatically reduced from 87 to 63% for SWNTs–UF and 82 to 56% for 

UF alone. It can be concluded that observed DOC rejections decrease when relatively 

high pressure is applied because such pressure can increase the Jv magnitude even though 

other operating conditions such as HA concentration, stirring speed, and VCF remain 

constant. Similar behavior was previously reported [14, 170] in which NOM rejection in 

UF membranes varied up to 50% with various applied pressures. 

These results could be more specifically explained by several factors. A large 

solvent flux magnitude with high applied pressure (6 bars) could cause more dominant 
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convective systems in NOM transport both in SWNTs–UF and UF alone. Therefore, back 

diffusion could not effectively contribute to observed DOC rejection because it was 

additionally affected by a stirring speed of 300 rpm. This result was in accordance with 

earlier studies by Lahoussine-Turcaud [171], which suggest that back transport of HA 

away from the membrane—essentially, back diffusion—was insufficient to overcome 

convective transport toward the membrane, leading to the buildup of a cake/gel layer of 

HA near the membrane surface.  
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Figure 5.8 Comparison of HA rejection trends with respect to both VCF and pressure in 

the absence and presence of SWNTs: (a) In the absence of SWNTs and (b) in the 

presence of SWNTs. Operating conditions: P = 1 bar (100 kPa), 3 bar (300 pKa), and 6 

bar (600 kPa); DOC = 8 mg L
-1

; SWNTs = 50 mg L
-1

; conductivity = 300 μS cm
-1

; pH = 

7;  pre-contact time with SWNTs = 1 h. 
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The extent of convective transport depends on flux; thus, its flux decline (J/Jo = 

71%) occurred more sharply at high applied pressure than that observed at low applied 

pressure (J/Jo = 87%). In addition, the high flux for SWNTs–UF and UF alone could 

cause severe CP and membrane–solute interaction or a cake/gel layer, even with stirring. 

When the membrane rejects the DOM, the concentration of DOM increases adjacent to 

the membrane surface rather than in the bulk solution, which in turn leads to the 

formation of a CP layer. If this CP layer gradually increases the hydraulic resistance 

across the membrane and limits the permeate flux, the rejection of NOM undergoes a new 

phase of reduced rejection trends due to the high concentration of NOM on the membrane 

surface. 

 

 
 

Figure 5.9 Application of transport mechanisms for real rejection trends and transport 

parameters (1/k and σ membrane selectivity) of humic acid with UF-SWNTs. Operating 

conditions: P = 1 bar (100 kPa), 3 bar (300 pKa), and 6 bar (600 kPa); DOC = 8 mg L
-1

; 

SWNTs = 50 mg L
-1

; conductivity = 300 μS cm
-1

; pH = 7;  pre-contact time with SWNTs 

= 1 h. 
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Table 5.5 Observed and real rejection results of HA in UF and UF-SWNTs according to 

concentration polarization model.  

Process 
TMP 
(bar) 

VCF 
Jv 

(LMH) 
Jv/k 

Cm 
(mg L

-1
) 

Robs Rreal σ 

UF 

1.0 

1 – 1.5 88.5 (2.1) 
0.34 

(0.01) 
10.7 (0.1) 0.85 0.89 

0.8
4 

1.5 – 2.5 81.5 (1.3) 0.31 (-) 10.3 (0.1) 0.82 0.86 

2.5 – 3.5 78.0 (-) 0.30 (-) 10.1 (0.1) 0.77 0.82 

3.0 

1 – 1.5 242.7 (7.2) 
0.92 

(0.03) 
17.1 (0.9) 0.67 0.83 

1.5 – 2.5 223.3 (8.3) 
0.85 

(0.03) 
15.4 (0.5) 0.61 0.78 

2.5 – 3.5 202.5 (3.5) 
0.77 

(0.01) 
13.7 (0.5) 0.53 0.71 

6.0 

1 – 1.5 
455.3 
(26.5) 

1.73 
(0.10) 

31.4 (4.1) 0.59 0.89 

1.5 – 2.5 
393.3 
(18.6) 

1.49 
(0.07) 

24.8 (2.1) 0.57 0.86 

2.5 – 3.5 358.0 (5.7) 
1.36 

(0.02) 
19.9 (0.4) 0.48 0.78 

SWNTs
-UF 

1.0 

1 – 1.5 98.3 (1.2) 0.40 (-) 8.9 (-) 0.89 0.92 

0.9
0 

1.5 – 2.5 97.0 (2.0) 
0.40 

(0.01) 
8.8 (0.1) 0.87 0.91 

2.5 – 3.5 97.0 (-) 0.40 (-) 8.7 (-) 0.85 0.90 

3.0 

1 – 1.5 242.7 (7.2) 
0.99 

(0.03) 
17.8 (4.1) 0.76 0.89 

1.5 – 2.5 223.3 (8.3) 
0.92 

(0.03) 
15.7 (4.1) 0.74 0.88 

2.5 – 3.5 202.5 (3.5) 
0.83 

(0.01) 
14.1 (4.1) 0.69 0.84 

6.0 

1 – 1.5 
480.4 
(24.9) 

1.97 
(0.10) 

36.0 (4.2) 0.71 0.95 

1.5 – 2.5 
407.3 
(22.7) 

1.67 
(0.09) 

25.2 (3.1) 0.64 0.90 

2.5 – 3.5 358.0 (5.7) 
1.47 

(0.02) 
18.9 (0.6) 0.55 0.84 

Standard deviations are indicated in parentheses. 

 

DOM transport characteristics for real rejection trends and transport could be 

quantified with transport parameters Jv/k and membrane reflection coefficient σ in both 

SWNTs–UF and UF alone, as described in Chapter III. Additionally, diffusive and 

convective transportation of DOM through membrane filtration could be quantitatively 
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achieved with the pore Péclet number (Pe). To investigate the NOM transport 

characteristics of both SWNTs–UF and UF alone in terms of DOC and UV254, ln (1-

Robs/Robs) against Jv was plotted to determine k (mass transfer coefficient) and σ 

(reflection coefficient), as shown in Figure 5.9. Similar analyses to determine k were also 

performed in stirred dead-end ultrafiltration or cross-flow ultrafiltration experiments by 

previous researchers [170, 172]. By applying Eq. 3.8, which neglects the diffusion 

portion from Tandon’s approach [Eq. 3.9] because DOM transport phenomenon showed 

only one trend (decreasing Robs with increasing Jv, as shown in Figure 5.7), the results 

show that DOM transport through UF was dominated by convection rather than diffusion 

in these UF filtration systems. This result could be confirmed by the determined pore Pe 

(Pe >> 1.0). Table 5 shows k and σ for SWNTs–UF and UF alone under initial conditions 

of DOC 8mg L
-1

, conductivity 300 µS cm
-2

, and pH 7.5. The results show 0.24 and 0.26 

m h
-1

 for k and 0.90 and 0.84 for σ, respectively. Thus, the membrane selectivity value of 

SWNTs–UF was higher than that for UF alone, as expected. This result implies that the 

selectivity of the SWNT–UF system for the DOM was quite high and that the convective 

transport of DOM largely progressed through SWNT–UF systems. (If σ is 1, DOM 

transport through the membrane is entirely convection-dependent.) A similar approach 

was also chosen by previous researchers [61], although their study was performed using 

an NF membrane. Lee et al. (2004) suggested that the reflection coefficient was not 

significantly influenced by the system’s hydrodynamic conditions in NF transport 

systems, which could be attributed to the supposition that the reflection coefficient is an 

intrinsic membrane characteristic parameter in NF, as is pure water permeability. Hence, 
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the value remains constant for a given solute–membrane system unless the feed water 

chemistry and temperature are changed. 

 

5.4 Conclusions  

On the basis of an investigation of SWNTs–UF with controlled membrane fouling and 

rejections, the following conclusions were derived: (i) The SWNTs–UF exhibited 

increased rejection trends as a result of SWNT binding site adsorption of HA during 

VCF-dependent fouling runs under various feed water hydrodynamic and solution 

conditions. Moreover, the addition of SWNTs to the UF process did not significantly 

exacerbate the permeate flux decline, which may be due to the stacking of SWNTs on the 

membrane surface, thereby maintaining a porous layer that permits the passage of water 

with no additional fouling resistance. (ii) The application of a resistance-in-series model, 

whereby HA fouling resistances are mainly attributed to adsorptive fouling, indicated that 

SWNTs–UF likely provides a greatly reduced membrane resistance per unit retained 

DOC mass, as compared to UF alone. Moreover, the characteristics of the fouling layer 

and resistances were more dependent on HA deposition and HA adsorptive fouling rather 

than fouling contribution from SWNTs because the SWNTs were too large to block the 

membrane pores. (iii) On the basis of blocking laws, the early stages of both SWNTs–UF 

and UF alone in unstirred conditions were more dependent on intermediate blocking or a 

combination of intermediate blocking and cake filtration, while cake filtration became the 

more dominant mechanism as filtration progressed. This result this was caused by the 

development of the fouling layer. (iv) The SWNTs–UF presented significantly improved 

rejection trends with various VCFs and applied pressures; this can be seen from the DOM 
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transport parameters. Overall, SWNTs–UF has been shown to be effective in the 

improvement of membrane performance through neither attenuate flux nor total 

membrane resistances. The use of SWNTs to control membrane fouling appears to be a 

function of hydrodynamic and operational conditions. Therefore, a hybrid membrane 

process using SWNTs should be useful for future applications to more challenging water 

treatment issues. 
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CHAPTER 6 

REMOVAL OF MICROPOLLUTANTS AND NOM IN SINGLE WALLED CARBON 

NANOTUBE-UF MEMBRANE SYSTEM FROM SEAWATER* 
 

*Reprinted here with permission of publisher: Heo et al., Removal of Micropollutants 

and NOM in Carbon Nanotube-UF Membrane System from Seawater, Water Science & 

Technology 63 (2011) 2737-2744. 

 

Abstract 

One of the main problems for seawater reverse osmosis desalination (SWRO) is 

membrane fouling associated with natural organic matter (NOM). Bisphenol-A (BPA) 

and 17α-ethinylestradiol (EE2) are well-known endocrine-disrupting compounds (EDCs) 

that have been detected in wastewater and seawater. In this study, the contribution of 

single walled carbon nanotubes (SWNTs, single-walled carbon nanotubes in this study) 

to membrane fouling control and the potential adsorption mechanisms of BPA and EE2 

were investigated using artificial seawater (ASW) in a bench scale ultrafiltration (UF) 

membrane coupled with SWNTs. For high ionic strength ASW, UVA254 nm is a good 

alternative for highly aromatic dissolved organic carbon (DOC) determination, with a 

very strong linear relationship (R
2
 ≥ 0.99) with increasing DOC concentrations. 

Approximately 80% of DOC in ASW was rejected by the SWNTs-UF system where 

DOC of 31% was removed due to adsorption by SWNTs. The presence of SWNTs shows 

a 20% increase in membrane flux in ASW. A strong linear correlation between retention 

and adsorption of BPA and EE2 was obtained. The percentage of adsorption/retention of
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 BPA and EE2 in UF-SWNTs follows the order: 94.0/96.6 (DI+SWNTs, EE2) > 

86.2/90.0 (ASW+SWNTs, EE2) > 73.6/78.9 (DI+SWNTs, BPA)  74.1/77.3 

(ASW+SWNTs, BPA) > 29.8/29.8 (ASW, EE2)  27.3/27.3 (ASW, BPA)  25.3/25.3 

(DI, EE2)  24.8/24.8 (DI, BPA). This indicates that retention by the UF-SWNTs system 

is mainly due to adsorption. Overall, EE2 adsorption was greater than BPA during the 

UF-SWNTs experiments, presumably due to the higher hydrophobicity of EE2 than BPA.  

 

Keywords: Bisphenol A; 17α-ethinylestradiol, Artificial seawater, Ultrafiltration, Single 

walled carbon nanotubes, Adsorption, Retention 

 

6.1 Introduction 

While water scarcity is common in arid regions, pollution and the use of groundwater 

aquifers and surface water have led to a reduction in the quantity and/or quality of 

available natural water resources in many countries. Both desalination and water reuse 

have been successfully implemented to provide fresh water to communities; these 

processes use conventional water treatment systems and require fresh water resources, 

respectively [173, 174]. The use of reverse osmosis (RO) membranes in seawater 

desalination has increased over the last decade, with materials improving and costs 

decreasing. One of the major problems for seawater RO (SWRO) is membrane fouling 

associated with natural organic matter (NOM) and inorganics. Therefore, there is a higher 

tendency for membrane fouling to occur when seawater and brackish water resources are 

treated than when surface water and groundwater resources are treated, and thus, sea and 

brackish water require extensive pretreatment [32]. 
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Organic micropollutants, such as endocrine disrupting compounds (EDCs) and 

pharmaceuticals and personal care products (PPCPs), can mimic natural hormones in the 

endocrine system and have been linked to a variety of adverse effects in both humans and 

animals [3, 175]. More recently, EDCs and PPCPs– groups of emerging contaminants – 

have been discovered in various surface, wastewater effluent, and seawater near big cities 

around the world. Some of these contaminants have been linked to ecological impacts at 

trace concentrations [81, 176-183]. In seawater, levels of several EDCs, including 

nonylphenolmixture, bisphenol A (BPA), and 17α-ethinylestradiol (EE2) ranged from 31 

to 1,777 ng/L, 11 to 777 ng/L, and 10 to 269 ng/L, respectively [183]. BPA, which is 

widely used as an important intermediate in the production of epoxy resins, 

polycarbonate plastics, polysulfone, and certain polyester resins, belongs to the well-

known phenolic EDCs [82]. Previous studies have shown that BPA leached out of 

polycarbonate plastic materials and epoxy resin during autoclaving. This has recently 

been a matter of interest due to the effects of low doses of BPA on human health, 

especially in early postnatal exposures [184, 185]. Moreover, 213.1 ng/g of BPA was also 

detected in locally purchased crab samples [176]. The synthetic estrogen EE2 represents 

the most active estrogen used in birth control and its toxicity is 10–50 times higher than 

17β-estradiol (a natural sex hormone) [186]. In an aquatic environment, EDCs are 

expected to accumulate in living organisms and negatively affect the reproductive system, 

such as male fish feminization, sexual disruption, and smoltification [187, 188].  

The discussion about the direct effect of EDC in seawater on human health is still 

controversial because the concentrations of EDCs are expected to be very low (pg to ng/L) 

due to the higher dilution and/or the short half-life of EDCs in the marine environment 
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[176, 177, 189, 190]. The release, fate, and potential effect of EDCs in the marine 

environment, however, have been investigated for the following reasons: (i) There is a 

potential of net uptake and accumulation of EDCs in living organisms [191], (ii) there is 

also a possibility for differences in concentration with respect to limited water exchange, 

different charges of wastewater treatment plant effluent water, and the high variability of 

water bodies [189], and (iii) due to EDCs’ hydrophobic nature, they have the potential for 

adsorption onto suspended and bed sediments in the marine environment and some of 

them are characterized as slowly biodegradable in natural and seawater [93, 192].  

Thus far, coagulation is the most popular treatment process used for the removal of 

potential foulants such as aqueous particulate and colloidal matter. However, 

conventional water treatment such as coagulation, chlorination, flocculation and 

sedimentation could not completely remove many EDCs and PPCPs [10, 79, 193]. As an 

advanced treatment technology, the membrane process employing ultrafiltration (UF) is 

widely used as a separation technology in the filtration of aqueous mixtures for drinking 

water, wastewater treatment, and seawater desalination. These membranes can remove 

micropollutants, pathogens and other microbes and natural organic matter (NOM). Also, 

since the conventional process needs to be carefully designed and diligently operated, 

there has been an increased tendency toward using UF membranes instead of 

conventional treatments to provide silt density index values well below 2, which thus 

enables an SWRO plant to perform at its original design capacity with reduced downtime 

[194]. Absorbents are favorable to UF membranes due to the membranes’ poor removal 

efficiency of small substances [195]. The most intensively studied adsorbent for UF 

filtration is powdered activated carbon (PAC). However, there are contradictory results 
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concerning the effect of PAC on membrane fouling. Some studies reported an 

improvement of permeate flux, longer filtration runs, or a reduced frequency of chemical 

cleaning [120, 157], while others reported similar flux performance or exacerbated flux 

decline compared to that of a UF membrane alone [122, 196]. 

Recently, carbon nanotubes (CNTs) have drawn special attention in the research 

community due to their unique properties and potential environmental applications: 

sorbents, high-flux membranes, depth filters, antimicrobial agents, environmental sensors, 

renewable energy technologies, and pollution prevention strategies [105, 106]. In addition, 

CNT technology has the potential to support point of use water treatment, since unlike 

many microporous adsorbents, CNTs possess a fibrous shape with a high aspect ratio, 

large accessible external surface area, and well developed mesopores, all contributing to 

the superior removal capacities of these macromolecular biomolecules and 

microorganisms [45]. Due to these unique characteristics of CNTs, the potential 

applications of CNT-UF can be enormous in water/wastewater treatment/reclamation and 

seawater desalination, although they have not yet been studied.  

The objective of this study is to determine the SWNTs contribution to the transport 

of micropollutants (BPA and EE2 in this study) and NOM across single-walled carbon 

nanotubes (SWNTs)-UF membrane treatment systems. Bench-scale experiments were 

conducted with synthetic seawater spiked with BPA and EE2 in the absence and presence 

of SWNTs. Seawater spiked with an EDC compound mixture was subjected to several 

parallel bench-scale experiments to determine the SWNT contribution to the BPA and 

EE2 removal and the fouling control of the UF membrane. To the best of our knowledge, 
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no work has been conducted to date to determine the removal of EDCs and NOM using 

CNT-UF hybrid systems for seawater. 

 

6.2 Materials and methods 

6.2.1 Model compounds 

High purity BPA and EE2 (>99%) were purchased from Sigma-Aldrich (Sigma, St. Louis, 

MO, USA). The physicochemical characteristics of these compounds are described in 

Table 6.1. For this study, BPA and EE2 were selected because they have been commonly 

detected in water, wastewater, and wastewater effluent influenced seawater. Because the 

BPA (plasticizer) and EE2 (synthetic estrogen) have different structure and functional 

groups, they show different characteristics of hydrophobicity (log KOW), solubility, and 

pKa values. The water solubility of BPA (300 mg/L) is significantly higher than that of 

EE2 (9.2 mg/L) at 25°C. Both compounds are neutral species at pH below approximately 

9.5 based on their pKa values. Stock solutions of BPA and EE2 were initially prepared in 

methanol at 1 mM each to obtain total soluble conditions. The stock solutions were then 

diluted with ultrapure deionized (DI) water to five different concentrations of 10, 50, 100, 

500, and 1,000 nM for the calibration run. The BPA and EE2 solutions, each with a 

concentration of 1 µM, were both placed in together in one beaker and the methanol was 

evaporated in order to minimize the dissolved organic carbon (DOC) from the solvent 

introduced into the experiments. 
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Table 6.1. Characteristics of BPA and EE2 

Common name 

(Abbreviation) 
Use 

MW 

(g/ 

mole) 

Log 

KOW 

 

pKa 

 

Water 

solubility 

(mg/L)
a
 

Structure 

Bisphenol A 

(BPA) 

 

Plasticizer 228.1 3.3 
9.6 to 

10.2 

300  

 

 

17α-

ethinylestradiol 

(EE2) 

 

Ovulation 

inhibitor 
296.2 3.7 ~10.5 

9.2 

 

 

a
[197].   

 

 

6.2.2 UF membranes 

A commercially available flat sheet UF membrane having a nominal molecular weight 

cut-off (MWCO) of 5,000 Daltons was obtained from Koch Membrane Systems Inc. 

(Wilmington, MA, USA). The UF membrane, made of polyethersulfone (PES), was 

selected to examine the effect of adsorption on BPA and EE2 retention. In addition, the 

UF membrane was desirable for the application of desalination pretreatment due to its 

durability in high salt environments, as specified by the manufacturer. The detailed 

characteristics of the membrane are shown in Table 6.2. The membrane zeta potential, 

associated with the streaming potential, was determined at pH 7.5 and a conductivity of 

Japan) following an established procedure [124]. The UF membrane is negatively 

charged based on its zeta potential value. A goniometer (Rame-Hart Inc., Model 100, 

Netcong, NJ, USA) was used to measure the contact angle of the membrane. Contact 

angles were measured by a sessile drop method – the water droplet method – based on 

measuring the contact angles between the water droplet and the membrane surface [124]. 
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According to the contact angle determination, the UF has relatively low hydrophobicity. 

Atomic force microscopy (AFM, XE-100, PSIA, Seoul, South Korea) was used to 

analyze the surface morphology and roughness of the membrane. Small squares of the 

prepared membranes were cut and glued on a glass substrate. The membrane surfaces 

were imaged in a scan size of 3 μm 3 μm. The pure water permeability (PWP) measured 

at 552 kPa using a stirred cell ranged from 0.38 to 0.44 L/hr-m-kPa. Each new membrane 

was soaked in DI water for at least 24 hr at a temperature of 211°C prior to use. During 

this period, the DI water was replaced several times with a new volume of pure water. 

The DOC of the final rinse water was checked to assure that it was at a negligible level. 

 

  Table 6.2. Ultrafiltration membrane characteristics 

Characteristics of membrane HFK-328 (UF) 

MWCO (Daltons) 5,000 

Zeta potential (mV) -24.9 

Contact angle (°) 42 

Applied pressure (kPa) 538– 601 

PWP (L/hr-m
2
-kPa)  

Average 0.42 

(min-max) 0.38-0.44 

c.v.
a 

(%) 6.5 

AFM image of clean membrane  

 

 
      PWP is pure water permeability.

    

        a
c.v. is coefficient variance. 

  

6.2.3 Preparation of artificial seawater  
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In order to investigate the removal of BPA, EE2, and NOM, a synthetic solution 

simulating artificial seawater (ASW) was used. The following salts of ASW were 

purchased from Sigma-Aldrich (Sigma, MO, USA) and Fisher Scientific (Fisher, MA, 

USA): NaCl, Na2SO4, KCl, NaHCO3, MgCl2, and CaCl2. ASW solutions were prepared 

using DI water according to the Kester and Duedall formula [198]. Trace components-

free ASW with a slightly different composition was used in 1 L DI water (23,926 mg 

NaCl, 4,008 mg Na2SO4, 677 mg KCl, 196 mg NaHCO3, 53.27 mM MgCl2·6H2O, 10.33 

mM CaCl2·2H2O). DOC (2 mg/L) was added in experiments as Suwannee River humic 

acid (SHA). SHA stock solutions were dissolved and filtered using a 0.45 µm 

polyvinylidene fluoride filter (Whatman, Buckinghamshire, UK) prior to use. Table 6.3 

describes the characteristics of the ASW. NaOH or HCl were added to adjust the solution 

pH. The salinity of ASW was measured using a conductivity meter. 

 

  Table 6.3. Characteristics of standard seawater salt and ionic composition of ASW  

Chemical Ion 

Standard seawater 

 % of total salt 

content 

Concentration  

(mg/L) 

Standard
 

seawater
a
 

Artificial seawater 

Cl
-
 55.0 19,345 19,346 

Na
+
 30.6 10,752 10,763 

SO4
2-

 7.6 2,701 2,711 

Mg
2+

 3.7 1,295 1,295 

Ca
2+

 1.2 416 414 

K
+
 1.1 390 355 

HCO
3-

 0.4 145 142 

Br
-
 0.2 66 - 

BO3
3-

 0.08 27 - 

Sr
2+

 0.04 13 - 

F
-
 0.003 1 - 

DOC - - 2 

TDS - 35,000 35,026 
               a

[198].  
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6.2.4 CNT-UF membrane testing unit 

BPA and E2 were put in contact with the UF membrane in the absence and presence of 

SWNTs of 10 mg/L at room temperature. The SWNTs (purity >90%) were purchased 

from Cheap Tubes, Inc. (Brattleboro, VT, USA) and used without further purification. 

The SWNTs had a length of 5–30 µm and an outer diameter of 1–2 nm, as provided by 

the manufacturer. In order to investigate SWNTs-UF, a commercially available bench-

scale stainless steel dead-end stirred-cell membrane unit (HP4750, SterliTech Corp., Kent 

WA, USA) coupled to a SWNTs reactor was used to evaluate flat-sheet membrane 

specimens for membrane retention and flux-decline. The cell accommodates 14.6 cm
2
 flat 

sheet specimens. All of the experiments were performed at a stirring speed of 300 rpm, a 

constant initial pure water flux (232 L/m
2
-hr), and pressures of 538–607 kPa. A fresh 

membrane was used for each experiment. The membrane was pre-compacted with DI 

water at a pressure of 827 kPa for 1 hr prior to use. The stability of the membrane 

permeability during the experiment was checked by comparing the pure water flux before 

and after each experiment. Only those membranes for which the permeability changes 

were less than 5% were included in the data presented here. A given sample with an 

initial volume of 100 mL was passed through the membrane until 40 mL of permeate 

were obtained, and the corresponding retentate was also obtained. This was repeated 10 

times until a total of 400 mL of permeate was obtained. A mass balance based on each 

compound concentration was calculated by measuring the concentration of permeate and 

retentate, providing an estimate, by difference, of the compound adsorbed both onto the 

membrane surface and into the membrane pores. The removal of each compound was 

calculated and the flux-decline monitored as a function of volume, time, and cumulative 
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delivered or adsorbed mass. Delivered mass is defined as the amount of solute delivered 

per unit area to the membrane. Adsorbed mass is defined as the amount of solute 

adsorbed per unit area onto/into the membrane within the stirred-cell. These calculations 

were described previously [53]. The BPA and EE2 observed retention, collected i times, 

Ri, based on feed concentration, was calculated using Eq. 6.1: 

 

% 100% ),( 



f

pf

i
C

CC
feedR

    (6.1) 

 

where Cf is the feed concentration (μg/L) and Cp is the permeate concentration (μg/L).  

 

 6.2.5 Analyses 

A total organic carbon analyzer (TOC-VCSN, Shimadzu, Columbia, MD, USA) with a 

detection limit of 0.1 mg/L was used to measure DOC by a non-purgeable organic carbon 

method with high temperature combustion. This method has been widely used with low 

salt samples, but for high ionic samples, it gives variable values and uncertainties. 

Therefore, for the high salinity samples, we used the ultraviolet absorbance (UVA) 

measurement to indirectly determine DOC since UVA gives a more reliable accuracy for 

highly aromatic organics particularly humic substances. A UV-Vis spectrometer (Agilent 

8453, Santa Clara, CA, USA) was used to determine DOC in ASW. Several membrane 

permeate and retentate samples were scanned with wavelengths ranging from 180 to 800 

nm. Three wavelengths of 200, 254, and 400 nm were selected to determine the DOC. 

High-performance liquid chromatography (HPLC) was employed to determine BPA and 

EE2 concentrations using an Agilent1200 Series (Santa Clara, CA, USA) at an excitation 
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wavelength of 280 nm and an emission wavelength of 310 nm for BPA and EE2. A 

Waters 5-μm LiChrosorb RP18 analytical column (4.6 mm 100 mm) was used for 

reverse-phase separations with a 100-μL sample loop. The mobile-phase solvent profile 

was 45% DI water, acidified with 10 mM H3PO4 and 55% MeOH for 30 min at a 

constant flow rate of 1 mL/min. The BPA and EE2 were eluted from the columns at 9.4 

and 20.3 minutes, respectively. The detection limits were 0.88 nM (201 ng/L) for BPA 

and 0.96 nM (283 ng/L) for EE2. 

 

6.3 Results and discussion 

6.3.1 Comparison of UVA with DOC 

Direct DOC analysis using the high temperature TOC analyzer in seawater has 

limitations due to the precision and the potential damage to the detector/catalyst of the 

measuring device. In addition, the limited precision makes it less suitable for analyzing 

low level DOC in ASW. This uncertainty and limitation of DOC analysis has been 

reported previously [199]. For DOC analysis with ASW samples, UVA is a good 

alternative providing high precision at low DOC levels. A similar method was also used 

in a previous study [200]. In the DI water aqueous conditions, the DOC concentrations of 

SHA were quantified by both the TOC analyzer and the UVA spectrophotometer.  

The correlations between DOC (SHA, 2 mg/L) and UVA at 210, 254, and 400 nm 

with DI water and ASW are shown in Figure 6.1. Those wavelengths were selected 

because (i) the NOM has different functional groups and aromatic rings, (ii) the wide 

absorption wavelengths are observed for aromatics, and (iii) there is recognizable 

absorption in these wavelengths [201]. For both DI water and ASW samples, UVA 
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increases with increasing DOC concentration and pH. The effect of pH on 254 nm 

absorbance in DI is minimal, while the UVA at 400 nm is slightly higher with increasing 

pH at relatively high DOC concentrations (≥6 mg/L). However, the UVA at 210 nm and 

pH 10.5 in DI water is approximately 15% greater than that at pH 4 and pH 8 due to the 

presence of OH
-
 ions. For ASW, even though it has very high conductivity (52,600 

μS/cm), UVA exhibits a strong linear relationship with increasing DOC concentrations at 

all conditions excluding pH 10.5 and 210 nm. The correlation between DOC and UVA is 

shown to have the strongest linear relationship at 254 nm and pH 8 in both DI water and 

ASW (R
2
 ≥ 0.99) due to the high aromaticity of SHA (42%) [202]. As a result, UVA at 

254 nm (UVA254) was selected to determine DOC in ASW with the highest accuracy for 

high salinity waters.  

 

 
Figure 6.1. The relationship between dissolved organic carbon (SHA) and UVA 

absorbance at various pH values in (a) DI water and (b) ASW. ( , 200 nm and pH 4.0; , 

210 nm and pH 8.0; , 210 nm and pH 10.5; , 254 nm and pH = 4.0; , 254 nm and pH 

8.0; , 254 nm and pH 10.5; △, 400 nm and pH 4.0; ▲, 400 nm and pH 8.0; , 400 nm 

and pH 10.5). 
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6.3.2 Adsorption and retention of BPA and EE2 by SWNTs-UF in DI water and 

ASW 

For the dead-end stirred-cell experiments, each amount of BPA and EE2 removal by the 

membrane and/or SWNTs was quantified during SWNTs-UF filtration runs with DI, 

DI+SWNTs, ASW, and ASW+SWNTs. Previous research has demonstrated that for 

organic compounds, the delivered and adsorbed mass of the solute affects the retention 

and permeate flux of the membrane. This is because the change of concentration 

associated with the adsorbed mass during membrane filtration should be influenced by 

the physicochemical conditions of the membrane (e.g., concentration polarization) and 

the solute transportation at the membrane interface [58]. The adsorbed/delivered mass 

accumulated and the retention with adsorbed mass were employed in this study to avoid 

significant variance depending on the delivered/adsorbed mass of solute and to 

distinguish between the adsorption on the membranes and other interaction parameters 

(e.g., dielectric constant, water flux, and octanol-water partition coefficient (log KOW)) 

[203]. In addition, in order to elucidate the SWNTs’ contribution to adsorption of BPA 

and EE2, the amounts of delivered/adsorbed mass in the permeate and retentate were 

quantified by mass balance over time with the UF membrane in a feed solution of DI 

water and ASW.  

The delivered and adsorbed mass for BPA and EE2, which is influenced by the feed 

solution and SWNTs presence, is compared in Figure 6.2a. The adsorbed mass of BPA 

(delivered mass, 16.1 μg/cm
2
) and EE2 (delivered mass, 20.9 μg/cm

2
) throughout the UF 

membrane filtration with an accumulated permeate volume of 400 mL and at a recovery 

of 40% was 4.27 μg/cm
2 

(DI, BPA), 5.39 μg/cm
2
 (DI, EE2), 11.62 μg/cm

2
 (DI+SWNTs, 
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BPA), 19.7 μg/cm
2
 (DI+SWNTs, EE2), 4.58 μg/cm

2
 (ASW, BPA), 6.37 μg/cm

2
 (ASW, 

EE2), 11.6 μg/cm
2
 (ASW+SWNTs, BPA), and 17.9 μg/cm

2 
(ASW+SWNTs, EE2). 

 

 
 

Figure 6.2. Comparison of (a) delivered and adsorbed mass accumulated, (b) adsorbed 

mass and retention, (c) adsorption and accumulated retention, and (d) mass of permeate, 

retentate, membrane adsorption, and SWNTs adsorption for  BPA and EE2 in the 

SWNTs-UF system with  DI water and ASW. Operating conditions: P = 552 kPa (80 

psi); stirring speed = 300 rpm; recovery = 40%; DOC = 2 mg/L; pH = 8; SWNTs = 10 

mg/L; conductivity = 200 μS/cm (DI), 53.2 mS/cm (ASW); pre-contact time with 

SWNTs = 2 h. ( , BPA (DI); , EE2 (DI); , BPA w/ SWNTs (DI); , EE2 w/ CNTs 

(DI); , BPA (ASW); , EE2 (ASW); △, BPA w/ SWNTs (ASW); ▲, EE2 w/ SWNTs 

(ASW). 
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The percentage of adsorption/retention of BPA and EE2 in UF-CNTs at the same 

conditions follows the order: 94.0/96.6 (DI+SWNTs, EE2) > 86.2/90.0 (ASW+SWNTs, 

EE2) > 73.6/78.9 (DI+SWNTs, BPA)  74.1/77.3 (ASW+SWNTs, BPA) > 29.8/29.8 

(ASW, EE2)  27.3/27.3 (ASW, BPA)  25.3/25.3 (DI, EE2)  24.8/24.8 (DI, BPA), as 

shown in Figs. 2b and 2c. While in general, the adsorbed mass increases with increasing 

delivered mass of BPA and EE2, EE2 retentions greater than BPA in both DI water and 

ASW in both the absence and presence of CNTs. The DI+SWNTs for EE2 shows the 

highest slope based on adsorbed/delivered mass. These results can be explained by a 

combination of the general observations of previous studies and the following phenomena: 

(i) the higher EE2 adsorption over BPA onto SWNTs is due to EE2’s higher 

hydrophobicity; EE2 (3.7) > BPA (3.3) [35, 74]. (ii) The adsorption coefficient 

normalized by the hexadecane-water partition coefficient (KHW) that causes the screening 

out of the hydrophobic effect, is 1.5 times higher onto SWNTs in EE2 than in BPA. This 

is despite BPA’s adsorption capacity being double that of EE2 due to the "butterfly" 

structure of BPA, with two benzene rings adsorbing on the surface, groove area, and 

interstitial pores of the SWNTs [74]. (iii) Organic compounds containing benzene rings 

may be strongly driven onto CNTs due to aromatic (π-π electron donor-acceptor) 

interactions [204]. For ASW, the adsorption capacity of carbonaceous materials increases 

as the ionic strength increases due to the "screening effect", which reduces electrostatic 

repulsions of surface charge [165]. In addition, the enhancement of hydrophobic-organic 

adsorption onto carbonaceous materials could be explained by the "salting-out effect", 

which increases adsorption capacity with decreasing solubility of organic compounds in 

aqueous salt solutions [205, 206]. However, increasing adsorption trends resulting from 
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high ionic strength was relatively insignificant for all those experiments. The percentage 

pre-adsorption of BPA/EE2 onto SWNTs for 2hrs prior to membrane filtration was 

56.8/88.3 (DI+SWNTs), and 58.4/73.1 (ASW+SWNTs). We presume that this 

phenomenon is due to NOM competition for available sites on the CNTs which could be 

a major governing mechanism of adsorption in ASW (2 mg/L SHA). This result is also 

somewhat in agreement with the previous study [111]. 

Unlike the case of UF-SWNTs, the adsorbed/delivered mass trends in the absence 

of CNTs (Figure 2a) show a flattening out from the steep part of the graph (at the initial 

stages of the filtration) to a horizontal line (at the end of the filtration) of the delivered 

mass increment throughout the membrane filtration. This indicates that the primary 

membrane filtration phase is not completely saturated with BPA and EE2 onto the 

membrane and that the end of the filtration should be almost saturated with the increment 

of BPA/EE2 delivered mass (longer filtration may be required for complete saturation of 

BPA/EE2 to membrane). As described previously, the ratio of adsorbed/delivered mass 

for BPA/EE2 follows the order: EE2 (ASW) > BPA (ASW) > EE2 (DI)  BPA (DI) 

throughout the membrane filtration process. These results are due to the fact that the 

preferential retention associated with the adsorption by the UF membrane adsorption sites, 

for hydrophobic compounds in the presence of NOM, is positively correlated with log 

KOW, while the electrostatic interaction at higher ionic strength is reduced due to the 

screening out between the organic compound and membrane surface, thus, lower 

retention was observed [207]. The results of this study show that the retention of BPA is 

similar in DI water and ASW, while the retention of EE2 was slightly higher in DI water. 

This result is inconsistent with previous studies, which reported that the organic 
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compound retention increases with high background salt concentrations that have a 

significant effect on humic acid fouling [208, 209]. In addition, calcium ions have a 

significant role in the binding between organic foulants and the membrane surface [210], 

which also contributed to the organic compound retention. This is presumably because 

the membrane type, NOM type, and background ions differ. Consequently, different 

retention of BPA and EE2 could be attributed to the canceling effects of these multiple 

mechanisms functioning at the same time. 

Overall, the results have shown that the BPA and EE2 retention by the UF 

membrane is more likely attributed to the adsorption of the CNTs and/or the membrane. 

This is because a different retention mechanism such as size exclusion is unlikely, due to 

the large pore size of the membrane (nominal MWCO = 5,000 Daltons) compared to the 

MWs (228.3 g/mol for BPA and 296.4 g/mol for EE2). The transport of BPA and EE2 

through the UF-SWNTs system consists of 4 parts with a total mass of 230 μg for BPA 

and 300 μg for EE2 with a 1 L feed solution, as shown in Figure 2d: permeate, retentate, 

adsorption onto membrane, and adsorption onto SWNTs. The BPA and EE2 had similar 

mass composition in both DI water and ASW. However, the adsorption of BPA and EE2 

on SWNTs is dominant for both waters in the UF-SWNTs system. The adsorption mass 

associated with membrane/SWNTs of BPA and EE2 in the presence of SWNTs in DI 

water and ASW during the filtration run was 38.7/131 μg (DI, BPA), 17.5/270 μg (DI, 

EE2), 35.9/134 μ  μg (ASW, EE2).The results clearly 

show that BPA and EE2 removal is dominant due to the adsorption by SWNTs.  

 

6.3.3 Effect of NOM and CNTs on fouling in UF-CNTs 
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Normalized flux decline and DOC rejection trends based on UVA254 with ASW in UF in 

the absence and presence of CNTs were monitored over permeate volume, as shown in 

Figure 6.3. Control experiments with DI water (pH 8 with 1 mM Na2HPO4 buffer) were 

performed to evaluate the implementations of the addition of CNT on UF fouling. As a 

general observation, the normalized fluxes of DI+SWNTs runs show insignificant flux 

decline, indicating that SWNTs are not potential foulants, even though it was originally 

assumed that SWNTs could have high affinitive with the UF membrane due to the 

hydrophobic interaction between CNTs and the membrane surface.  

Figure 6.3 shows that ASW had significantly greater flux decline (74%) in the UF-

only system than in the UF-SWNTs (54%). In ASW conditions, it is still somewhat 

controversial which mechanism influences flux decline. Nevertheless, this behavior could 

be explained by significant seawater characteristics. The seawater has relatively high 

osmotic pressure due to high ionic strength, which results in a significant decrease in 

membrane flux. The effect of high ionic strength has been observed in previous studies 

where flux decline increases with increasing ionic strength [19, 211, 212]. Secondly, 

multivalent cations such as Ca
2+

 and Mg
2+

in ASW play a significant role in humic acid 

fouling, which enhances the formation of a fouling layer, although typically inorganic 

fouling is insignificant to membranes [19, 163, 213]. Thirdly, standard blocking 

associated with humic acid adsorption onto the membrane might contribute to inside 

membrane pores [17, 163], which exacerbates more sever irreversible fouling. In general, 

it is assumed that the hydrophobic NOM (in this study – SHA), as a major foulant, 

adsorbs to the membrane surface and pores, and its adsorption increases gradually by 

collecting other NOM particles. Eventually, cake/gel formation occurs on the membrane 
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surface. However, only a small amount of NOM (2 mg/L) was introduced in this work. 

Therefore, only inner pore blocking may have occurred, without the formation of cake. 

 

 
 

Figure 6.3. Comparison of flux-decline, rejection trends based on UVA254 (a) ASW only  

and (b) ASW+SWNTs. Operating conditions: pH = 8.0; P = 552kPa (80 psi); stirring 

speed = 300 rpm; recovery = 40%; DOC = 2 mg/L; SWNTs = 10 mg/L; conductivity = 

200 μS/cm (DI), 53.2 mS/cm (ASW); pre-contact time with SWNTs = 2 h. ( , DOC 

rejection without CNTs; , DOC rejection with SWNTs; , flux decline w/o SWNTs 

(DI); , flux decline with SWNTs (DI); ◊, flux decline without SWNTs (ASW); , flux 

decline with SWNTs (ASW).  

 

The flux trends of ASW in the presence of SWNTs are20% higher than in the 

absence of SWNTs, even though DOC rejection (approximately 80%) exhibited similar 

trends for both ASW and ASW+CNTs (Figure 6.3b). The lower flux decline in the 

presence of SWNTs should be attributed to the effect of SWNTs adsorption with humic 

acid. As the NOM of 30.6% adsorbs onto the SWNTs surface during the 2hrs pre-contact 

period prior to the membrane filtration run, it contributes to mitigate membrane fouling 

associated with standard blocking. Even though the same adsorbent was used in the 

hybrid membrane filtration, the adsorbent fouling effect could be different with respect to 

0

20

40

60

80

100

0

20

40

60

80

100

0 100 200 300 400

D
O

C
 r
e
je

c
ti
o
n
 b

a
s
e
d
 o

n
 U

V
A

2
5
4
(%

)

Permeate volume (mL)

J
/J

o
 (
%

)
(a) 

0

20

40

60

80

100

0

20

40

60

80

100

0 100 200 300 400
D

O
C

 r
e
je

c
ti
o
n
 b

a
s
e
d
 o

n
 U

V
A

2
5

4
(%

)
Permeate volume (mL)

J
/J

o
 (
%

)

(b)

31 (%) DOC rejection  
with CNTs adsorption 



 

124 

physicochemical conditions such as membrane characteristics, solution water chemistry 

(pH and conductivity), and hydrodynamic conditions (operating pressure/flux, dosage, 

and stirring speed) [23]. In this work, the usage of SWNTs 10mg/L with the UF 

membrane was insignificant for membrane fouling. The SWNTs (with a length of 5–30 

µm and an outer diameter of 1–2 nm) are large enough to block membrane pores 

(nominal MWCO 5,000 Daltons). SWNTs should be stacked on the membrane surface 

maintaining a porous layer that allows the passage of water without fouling resistance. 

Three-dimensional AFM image analysis was employed to investigate the 

morphological changes of the fouled UF membrane associated with EDCs and NOM in 

the absence and presence of SWNTs. Figure 6.4 shows the AFM images of the clean and 

fouled membranes in the absence and presence of SWNTs with ASW at a scan size of 10 

2
 when imaged in air. The dark and light regions correspond to areas below and 

above the mean elevation, respectively. Comparing the images of the clean and fouled 

membranes, the fouled membrane in the absence of SWNTs appears to be rougher than 

the clean membrane and the fouled membrane in the presence of SWTNs based on 

average roughness values: 17.6 nm (fouled in the absence of CNTs) > 5.03 nm (fouled in 

the presence of CNTs) > 2.43 nm (clean membrane). This suggests that SWNTs reduce 

membrane fouling, although there are contradictory results concerning the effect of other 

absorbents (e.g., PAC and aluminum/iron oxide particles) on membrane fouling.  
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Figure 6.4. Three-dimensional AFM image (a) cleaned membrane, (b) fouled in the 

absence of SWNTs in ASW, and (c) fouled membrane in the presence of SWNTs (ASW).   

 

6.4 Conclusions 

This study investigated the mechanisms for adsorption and retention of hydrophobic 

compounds as well as the contribution of SWNTs to mitigating the NOM fouling during 

UF membrane filtration with ASW. The adsorbed/delivered mass for BPA and EE2 

derived from the mass-balance during membrane filtration provided a reasonable 

comparison of their retention and adsorption trends. In addition, UVA254 nm absorbance 

provides reasonable values as an alternative of TOC analysis for highly aromaticity SHA 

in ASW. The results show that adsorption with an UF membrane and SWNTs has the 

most significant impact on the retention of hydrophobic compounds in a UF-SWNTs 

system with ASW, and high adsorption of BPA and EE2 is achieved by the SWNTs. The 

adsorption of the relatively high hydrophobic EE2 onto SWNTs is more competitive than 

BPA in the presence of NOM in ASW. The UF-SWNTs system enhances membrane flux 

due to foulant (i.e., NOM) pre-removal, which also indicates that SWNTs are not 

potential foulants. Approximately 80% of the DOC in ASW was rejected by the UF-

SWNTs systems. These results suggest that this hybrid system can be applied as a 

pretreatment followed by SWRO. Overall, SWNTs have been shown to be effective in 

controlling NOM fouling and removing EDCs from seawater. The quantification of 

(a) (b) (c)
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solute adsorption and retention should be useful to develop an existing transport model 

that will facilitate improved quantitative predictions for other organic compounds which 

have similar physical and chemical properties to the compounds tested in this study. 

Future research in hybrid membrane processes using SWNTs should examine the 

adsorbent effect with respect to physicochemical and hydrodynamic conditions for the 

application of desalination pretreatment. 
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CHAPTER 7 

REMOVAL OF SYNTHETIC ORGANIC COMPOUNDS BY FORWARD OSMOSIS AND 

REVERSE OSMOSIS MEMBRANE* 

 
*Reprinted here with permission of publisher: Heo et al., Comparison of flux behavior 

and synthetic organic compound removal by forward osmosis and reverse osmosis 

membranes, Journal of Membrane Science 443 (2013) 68-82 

 

Abstract 

Bench-scale forward osmosis (FO) and reverse osmosis (RO) experiments with both FO 

and RO membranes were used to investigate the retention and adsorption behaviors and 

the relative hydrophilicities of several synthetic organic compounds (SOCs). In a 

comparison of membrane characteristics using the solution-diffusion model, the cellulose 

triacetate (CTA)-based FO membrane exhibited lower selectivity ratios, indicating that 

the FO membrane has better separation properties than the polyamide-based RO 

membrane. However, in active layer (AL)-facing-feed solution (FS) configuration in FO 

mode, the RO membrane exhibited higher removal efficiency at the expense of severe 

internal concentration polarization (ICP) and flux reduction. Under higher cross-flow 

velocity (CFV) operations in FO mode, both reduced external concentration polarization 

(ECP) and retarded SOC diffusion from the reverse flux of sodium chloride contributed 

to the improved SOC removal performance. The SOC removal percentage by the FO 

membrane with respect to molecular weight (MW) followed the order (MW, g mol
–1

; 

removal, %): sulfamethoxazole (296.4; 90%) > carbamazepine (236.3; 83%) >> atrazine
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 (215.7; 49%) > 4-chlorophenol (128.6; 39%) > phenol (94.1; 22%). For the FO 

membrane in RO-mode operation with SOCs of relatively small MW, breakthrough 

release was observed and was attributed to the FO membrane’s porous, mesh fabric 

supporting backing layer. In addition, the batch adsorption and computational modeling 

in molecular-level studies suggested that adsorption played a dominant role in the 

removal of SOCs and was generally correlated with the hydrophobicity (log Kow) of the 

membrane. It was demonstrated that the FO membrane removal behavior was principally 

related to size exclusion, while the RO membrane removal behavior was related to 

interactions between hydrophobicity, size, and electrostatic repulsion. 

   

Keywords: Forward osmosis; reverse osmosis; synthetic organic chemicals; retention; 

adsorption; internal concentration polarization 

 

7.1 Introduction 

Synthetic organic compounds (SOCs) are extensively discharged into conventional 

wastewater treatment plants because households and industries continue to consume and 

produce immense quantities of organic compounds [214-216]. SOCs are produced in the 

laboratory and as by-products of manufacturing for applications in industry, agriculture, 

burning, and other human activities. The reported human health effects of SOC exposure 

include damage to the nervous system, liver, and kidney, as well as possible carcinogenic 

and cancer risks [217-220]. For example, phenolic compounds have been reported to 

cause liver, cardiovascular system problems with renal papillary damage, and serious 

alterations of mucosal in sensitive cellular membranes including ocular organs [217]. In 
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addition, unexpected or uncontrolled exposure to many pharmaceutical SOCs may induce 

adverse effects in both wildlife and humans; for example, adverse effects have been 

reported for atrazine (ATZ), carbamazepine (CBM), and sulfamethoxazole (SMT). 

Extended exposure to ATZ may negatively influence the cardiovascular system as well as 

damage normal hormone production and reproductive functions [218]. Furthermore, low 

sperm counts are common in populations where a high concentration of ATZ is present, 

and damage to the walls of the digestive system are common. CBM and SMT, on the 

other hand, tend to increase cancer risks, and exposure to these pharmaceutical 

compounds without medical surveillance is dangerous due to the fragile health of high-

risk life forms such as developing fetuses, people with chemical sensitivities, or people 

with existing diseases taking medications that may adversely react with SOCs in their 

water source [219, 220]. 

Previous studies have shown that the use of reverse osmosis (RO) and nanofiltration 

(NF) membranes are effective approaches for reducing exposure to SOCs; these 

approaches employ filtration and retention mechanisms, such as size/steric exclusion, 

electrostatic repulsion, and hydrophobic interactions between solutes and membranes [48, 

58, 221, 222]. In these studies, the retention of uncharged organics was mainly controlled 

by steric hindrance and hydrophobic interactions, whereas the retention of charged 

organics was usually controlled by electrostatic repulsion [223, 224]. Although RO/NF 

membrane processes can be effective for retention and removal of SOCs from 

contaminated waters, these pressure-driven processes are hampered by membrane fouling 

and considerable energy consumption to maintain normal operation. Thus, forward 

osmosis (FO) presents a potential alternative to pressure-driven processes; FO provides 
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an energy-efficient, environmentally friendly membrane technology for sustainable water 

purification [31, 225]. 

In recent years, the study of FO has increased due to the need for more sustainable 

processes in water treatment, as well as in other fields such as desalination of seawater, 

food processing, electric power production, and pharmaceutical applications [226-228]. 

FO involves spontaneous water movement by means of a natural chemical gradient in 

which a solution tends to move from a state of lower osmotic pressure to higher osmotic 

pressure through a semi-permeable membrane, which can remove target solutes from the 

sample [31]. The FO process depends on the molar concentrations of the solutions instead 

of on the actual identity of the solutes. This dependence on concentration imparts 

versatility to the process and allows for the easy filtration of different kinds of solutions 

using the same system. Nevertheless, FO is not fully developed technologically; thus, it is 

not yet used widely in commercial practice [31]. First, specialized membranes (i.e., with 

low internal concentration polarization (ICP)) must be identified in order to create the 

most efficient FO system for use with the high osmotic pressures required for creating a 

high water gradient. 

The FO process tends to be much more spontaneous than the RO process; RO 

requires high hydraulic pressure, making it a much more costly process. In FO, the 

recovery of a filtered sample from the draw solution (DS) can often be achieved with 

only a fraction of the power used for the same purpose in RO. Furthermore, FO results in 

lower fouling propensity and a higher contaminant recovery rate [229]. While fouling still 

must be controlled in FO, it is typically easier to control than in RO. Currently, both FO-

only and hybrid FO/RO processes are being developed to enhance the filtration capability 
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in water treatment applications [230, 231]. For example, the FO process may be used as a 

pretreatment method in seawater desalination to reduce both the energy required and 

extent of fouling in the subsequent RO process. 

The adsorption characteristics of SOCs on the membrane play an important role in 

the retention mechanisms of FO and RO processes [127, 232-234]. It has been reported 

that hydrophobic attraction between SOCs and membranes may be the dominant short-

term removal mechanism in FO/RO processes. This hydrophobic adsorption may lead to 

the overestimation of SOC retention efficiency, because equilibrium is not achieved in 

the initial stages. Furthermore, hydrophobic adsorption of SOCs onto the polymeric 

membranes may adversely affect their ultimate retention efficiency by allowing solution 

diffusion of SOCs through the membrane polymer into the permeate side [127]. Although 

the effects of adsorption on RO retention behavior have been extensively reported in the 

literature, only a handful studies have focused on characterization of FO-mode 

experiments for the retention of SOCs [30, 235]. In addition, the solute parameters of 

SOC retention, such as molecular weight (MW), hydrophobicity (log Kow), dipole 

moment, and solubility, are considered important in FO process applications but are not 

as well understood. To the best of our knowledge, no work has been conducted to directly 

compare FO and RO membranes for SOC removal in both FO- and RO-mode 

experiments under various operating conditions. Therefore, the objective of this study 

was to conduct a comprehensive experiment to identify factors affecting the SOC 

retention in RO and FO membranes in both FO- and RO-mode experiments, including 

computational molecular modeling for membrane adsorption. 
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7.2 Materials and methods 

7.2.1 Tested SOC compound and solution chemistry 

High-purity (> 98%) SOCs, namely, phenol (PHN), 4-chlorophenol (4CP), ATZ, CBM, 

SMT, and 17α-ethinyl estradiol (EE2), were purchased from Sigma–Aldrich (Saint Louis, 

MO). MW, hydrophobicity, and water solubility were important factors when selecting 

these high-purity SOCs; environmental relevance was also considered. A summary of the 

selected key physicochemical properties and molecular structures of the SOCs studied are 

presented in Table 7.1. 

These values were obtained from the SRC PhysProp (SRC 2006) and ChemAxon 

(chemicalize.org 2011). All of the SOCs, except PHN and 4CP, were first prepared as a 

2-mM stock solution in pure methanol. Then, predetermined volumes of these SOC stock 

solutions equaling concentrations of 5 μM in feed solutions (FS) were placed in separate 

amber glass jars to minimize co-solvent effects from evaporating methanol solvent. PHN 

and 4CP were prepared as 5-μM stock solutions in Milli-Q®  water and pure acetonitrile 

solvent, respectively, and added to the FS directly. Stock solutions were stored below 4°C. 
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Table 7.1 Properties of the target compounds spiked to the feed solution.  

Compound ID 
MW 

(g/mol) 

Water 
solubility 
(mg/L)

a
 

Henry’s law 
constant

a
 

(atm m
3
/mol) 

Log 
Kow

b
 

pKa,b
b
 

Phenol PHN 94.1 8.2810
4
 3.3310

-7
 1.67 10.02 

4-Chlorophenol 4CP 128.6 2.410
4
 6.2710

-7
 2.27 8.96 

Atrazine ATZ 215.7 34.7 2.3610
-9

 2.20 3.20 

Carbamazepine CBM 236.3 17.7 1.0810
-10

 2.77 (-) 3.75 

Sulfamethoxazole SMT 253.3 610 6.4210
-13

 0.79 1.97, 7.66 

17α-ethinyl estradiol EE2 296.4 11.3 7.9410
-12

 3.90 10.33 

 

Structure
b
 Space-filling

c
 Structure

b
 Space-filling

c
 

 

 
 

 

PHN CBM 

 
 

 
 

4CP SMT 

    

ATZ EE2 

 

a Obtained from the Syracuse Research Corporation (SRC) PhysProp database (http://www.syrres.com). 

b Obtained from the chemicalize.org by ChemAxon (http://www.chemicalize.org). 

c By adjusting the sphere scale so that all target compounds are same scale in size to allow comparison of 

the overall size of molecules. 

 

 

 

7.2.2 Membranes and FO mode cross-flow test unit 
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Two different types of commercially available flat sheet membranes – FO (cellulose 

triacetate, CTA) and RO (BW30) membranes – were obtained from Hydration 

Technologies, Inc. (Albany, OR) and Dow FilmtecTM, Co. (Kentucky, USA), 

respectively. The RO membrane was preserved in a refrigerator at 4°C since its purchase 

in 2009. To reduce the ICP, FO membranes are made of a thin layer of an asymmetric 

CTA active layer (AL). Each membrane is also embedded with polyester mesh support 

layers, which vary according to the manufacturer. The RO membrane had a mainly cross-

linked aromatic polyamide AL on a polysulfone interlayer with a polyester support layer. 

A COXEM (CX-200, Daejeon, South Korea) scanning electron microscope (SEM) 

provided additional details of the supporting layer’s patterns and views of the membrane. 

Membrane samples were prepared with a uniform coating layer of silver conductor and 

scanned at an accelerating voltage of 20 kV and working distance (WD) of 50.9 to 53.9 

mm. In a previous study, the electrophoretic mobility of an FO membrane exhibited 

relatively less negative surface potential than the RO membrane; the values of zeta 

potential (ZP) ranged from -4 to -8 mV [235], while the RO membrane had ZPs ranging 

from -16 to -18 mV [236]. In addition, the RO membrane was more hydrophobic (contact 

angle of 76 ± 7°) [237] than the FO membrane (contact angle of 62 ± 7.2°) [238]. In FO-

mode experiments, a bench-scale stainless steel plate and frame of an FO cell coupled 

with an FS tank, a DS tank, a temperature controller (Fisher Scientific Isotemp Chillers, 

Pittsburgh, PA), variable gear pumps (Micropump, Vancouver, WA), and a pressure 

transducer (Omega Eng., CT, USA) were employed. Two channels on the sides of the 

membranes and mesh spacers shaped like diamonds were inserted for the purpose of 

supporting the FO membrane. Each channel had dimensions of 76 mm length, 27 mm 
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width, and 2 mm height, providing an effective membrane coupon area of 41.04 cm
2
. The 

DS tank was placed on a digital balance (AV8101, Ohaus, NJ, USA) and periodically 

weighed over time, and the co-current cross-flow velocities (CFVs) for both sides of the 

membrane were maintained at desirable velocities with a cross-flow meter (Dwyer, 

Michigan City, IN). 

 

7.2.3 SOCs retention experiments in FO cross-flow filtration mode 

All FO experiments were performed using the initial volumes of 3 L for the FS and 1 L 

for the DS; the pH was adjusted to 7 by addition of either 0.1 M NaOH or HCl as needed. 

The solution was supplemented with phosphate buffered solution (PBS) to maintain the 

desired pH. Analytical grade NaCl (Fisher Scientific, Pittsburgh, PA) was used to prepare 

the DS at a concentration of 1 M in Milli-Q®  water. The 5-µM solutions of SOCs were 

added to FS. Solutions with concentrations higher than environmental levels were used 

due to the low effective concentrations of solutes passing through the FO membrane after 

being diluted in the DS. Therefore, lower concentrations would be difficult to read in the 

DS in FO-mode operation; in other words, environmental conditions are not ideal to 

obtain results in FO bench-scale experiments. Each experiment was conducted using a 

new membrane coupon, and the temperatures of the FS and DS were kept constant at 20 

± 1°C using a recirculating chiller/heater. High-performance liquid chromatography 

(HPLC) was performed on 1-mL samples from the FS and DS tanks. In addition, pH and 

temperature were measured throughout testing at regular time intervals. Retention of 

SOCs in FO processes was measured i times at a specified interval, R(i), based on the feed 

and draw SOC concentrations; retention was calculated using Eq. 7.1; 
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where CF(i) and CP(i) are defined as the concentration of feed and permeate at i times, 

respectively. By taking into account dilution effects in the DS, the real permeate 

concentrations (CP(i)) were obtained by differentiated values of the collected DS samples. 

Mass versus time data were evaluated using Eq. 7.2, which was also used in a previous 

study [239]; 

 

       
                             

     
                                                    

 

where VP(i), VDS(i), and VDS(i–1) are the permeate and DS volumes at i times and DS 

volumes at i–1 times; CP(i), CDS(i), and CDS(i–1) are the permeate and DS concentrations at i 

times and DS concentrations at i–1 times, respectively. The mass balance calculation for 

reverse solute flux of draw solute in FO mode was introduced using an electric compact 

Thermo Scientific conductivity meter based on the background calibration curves of 

NaCl (R² > 0.99).  

 

7.2.4 FO and RO membrane adsorption experiments 

Membrane adsorption tests were performed with each type of FO and RO membrane 

(HTI-CTA, BW-30). The 10 cm × 10 cm membranes were cut into 1 cm × 1 cm sections 

and then placed in reactors (200-mL amber bottles with Teflon lined screw caps). They 
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were placed in the same FS conditions and then introduced to the SOCs at a concentration 

of 2 µM. To control the results, several reactors had only solutes, meaning no membranes 

were present. This process ensured that the influence of the solutions was taken into 

account along with any potential compound losses from adsorption on bottle walls and 

caps. The bottles were placed on a stirrer at a speed of 300 rpm and agitated for 96 h, 

which is adequate for representing complete pseudo-equilibrium. Aliquots of 1 mL were 

removed from the reactor bottles for HPLC analyses. 

 

7.2.5 Computational methods 

The initial structures of the FO and RO membranes used in the simulations consisted of 

five repeating units of the CTA and BW-30 polyamide monomers, respectively. The 

coordinates of the membranes and the target SOCs were optimized with dispersion-

corrected density functional theory [240, 241] using the BLYP functional and the 6-

31++G(d,p) basis set in TeraChem [242, 243]. The initial configurations for the 

molecular dynamics (MD) simulations were obtained by optimizing fragments of the FO-

SOC and RO-SOC complexes by following geometry optimization procedures described 

in Zaib et al. [244]. The complexes were solvated with a box of TIP3P water molecules 

of dimensions 65 Å  × 72 Å  × 56 Å , and the force fields for the FO, RO, and SOCs were 

generated using the antechamber module in AMBER 11 [245]. Simulations were 

performed in the NPT ensemble at 1 atm and 300 K using Langevin dynamics with a 

collision frequency of 2 ps
–1

 for temperature control. The particle mesh Ewald was used 

to compute the long-range electrostatic interactions, and the cut-off limit for non-bonded 

interactions was set at 8 Å  [246]. The solvated complexes were heated to about 300 K 
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over a period of 50 ps after an initial optimization. A constant pressure MD simulation 

was performed for 50 ps to stabilize the system density at 1.0 g cm
–3 

and to ensure 

structural relaxation. In the above simulations, the geometry of the complexes was 

restrained with a weak harmonic force of 2.0 kcal mol
–1

 Å
–2

, while the hydrogen bonds 

were constrained using the SHAKE algorithm [247]. The restraint for the complexes was 

subsequently removed, and the system was equilibrated at 300 K for 500 ps. A 20-ns 

production run was conducted in the NPT ensemble, and the coordinates were saved 

every 20 ps. A total of 100 conformational snapshots were extracted from the production 

simulations at 200-ps intervals for free energy calculations. 

The binding free energies between the membranes and the SOCs were computed 

using the molecular-mechanics/Poisson-Boltzmann surface area (MM/PBSA) approach 

[248], implemented in the AMBER 11 software package. This approach allows free 

energy decomposition into contributions originating from different types of interactions 

or groups of atoms. The free energy is estimated as the summation of the gas-phase 

molecular mechanic’s energy, the solvation free energy, and the conformational entropy 

upon binding, which is evaluated by means of normal-mode analysis [249].  

 

7.2.6 Analytical methods 

All of the SOC analyses were conducted with the HPLC-UV method using an Agilent 

1200 Series HPLC system (Santa Clara, CA, USA) equipped with diode array detectors 

(DAD). A Waters 5-μm LiChrosorb® RP18 analytical column was used for reverse-

phase separations. The extraction was carried out using non-gradient elution by a mobile 

phase of 50% Milli-Q®  water, acidified with 10 mM H3PO4, and 50% acetonitrile at a 
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constant flow rate of 1.2 mL min
–1

 for 7 min. The method detection limits were 

approximately 50 nM for SOCs, which corresponded to elution times for SMT, PHN, 

CBM, 4CP, ATZ, and EE2 of 2.2, 2.6, 3.0, 3.7, 5.2, and 6.1 min, respectively. Calibration 

resulted in typical standard curves, and coefficients of determination (R
2
) greater than 

0.99 in the range of the experimental concentrations were used. 

 

7.3 Results and discussion 

7.3.1 FO and RO membrane characterization 

The basic properties of FO and RO membranes were compared to determine the SOC 

retention performance based on intrinsic membrane properties, as presented in Table 7.2. 

Table 7.2 Properties of the selected FO and RO membranes. 

Membrane Material 

Water 

permeability Wp 

(10
-7

 m/s bar) 

NaCl 

permeability  

Sp (10
-7

 m/s) 

Selectivity 

Sp/Wp (bar) 

Glucose 

rejection 

(%) 

Contact 

angle
a
 (°) 

FO-CTA 
Cellulose 

triacetate 
0.858 0.195 0.227 96.6 ± 0.1 60 ± 7.2

a
 

RO-BW30 Polyamide 5.648 4.712 0.834 93.4 ± 0.9 76 ± 7
b
 

a
[29], 

 b
[30] 

 

These values were determined independently from a pressurized dead-end configuration 

of the RO unit (i.e., under RO mode) with a stirring speed of 300 rpm and at 10% 

recovery to minimize concentration polarization (CP) on the membrane surface. The 

rejection of NaCl and pure water flux of FO and RO membranes are plotted as a function 

of applied pressure to calculate the selectivity for the AL of FO and RO membranes 

based on the solution-diffusion (SD) model, as shown in Figure 7.1. 
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Figure 7.1 Pure water flux and NaCl rejection trends with respect to applied hydraulic 

pressure in the RO-mode: (a) FO membrane and (b) RO membrane. Operating conditions: 

P = 0-20 bar; NaCl = 10 mM; stirring speed = 300 rpm. 

 

In Figure 7.1, the slope of the pure water flux corresponds to Wp, and the fitting of 

the NaCl rejection curve based on Eq. 3.17 corresponds to Sp with an assumption that the 

FO and RO membranes can be correlated to L-S type asymmetric membranes adopted 

from the SD model [28, 250]. As expected, in both FO and RO membranes, the pure 
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water flux increased linearly with applied pressure from 0 to 20 bar. The RO polyamide 

membrane exhibited 6.6 times higher pure water permeability than the FO membrane 

(0.86  10
–7

 and 5.65  10
–7

 m s
–1

 bar
–1

 for FO and RO membranes, respectively). The 

NaCl rejection rose with increasing applied pressure, as expected from Eq. 3.17, and the 

typical observed rejection of NaCl was found to be as high as 92 and 98% at 20 bar of 

applied pressure for RO and FO membranes, respectively. In this study, the RO 

membrane yielded slightly lower values for NaCl rejection than the commercial, brackish 

RO membrane rejection values provided by the manufacturer; the difference in NaCl 

rejection was attributed to the differences in experimental setup, testing protocols, and 

membrane conditions. When the NaCl rejection data for the RO membrane were 

evaluated using the SD model, the fitting result value (R
2
 = 0.53) was highly sensitive, 

which is consistent with the high values for pure water flux characteristics in RO-mode 

operation. The degree of CP of salt significantly influenced membrane flux (i.e., greater 

flux levels) due to the balance of salt convection and back diffusion, which explained 

why the experimental flux deviated more in the case of the RO membrane compared to 

the FO membrane. After application of the SD model, the results for the FO membrane 

exhibited a better sigmoidal curve fit (R
2
 = 0.83) with the experimental data due to its 

comparatively low values of water flux characteristics. The RO membrane exhibited 3.7 

times higher selectivity ratios (Sp/Wp) than the FO membrane, indicating that the FO 

membrane has better NaCl separation properties than the RO membrane. Previous studies 

have frequently employed glucose organic solutes as a reference for estimating the mean 

effective pore size of membranes based on the incorporated steric, hindered convection, 

and diffusion mass transportation models [239, 251]. In this case, the results for glucose 
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rejection showed that both FO and RO membranes have a low pore size, with a 180-Da 

molecular weight cut-off (MWCO), and the FO membrane was estimated to have a 

relatively smaller membrane pore size than the RO membrane. In addition, the membrane 

ALs of both FO and RO membranes were similarly hydrophobic, with contact angles of 

62° and 72° [237, 238], respectively. 

 

7.3.2 Water and reverse salt flux behavior during the FO process  

ICP significantly influences the magnitude of water flux in FO mode, because it greatly 

reduces the driving force across the membrane from the ideal case in which there is no 

ICP. This phenomenon is specifically related to the formation of ICP in the membrane 

support layer, which reduces the flux through the differential concentration built up 

throughout the membrane support layer [28]. In the ICP model, the degree of ICP 

exponentially influences the membrane flux upon increasing concentration of DS due to 

the balance of salt convection and diffusion in the support layer. Furthermore, as shown 

in Figure 7.2, the fluxes in FO and RO membranes were greatly reduced from the ideal 

case; previous studies have pointed out that when comparing the AL-facing-DS and the 

AL-facing-FS configurations, the latter exhibited more severe ICP as a necessary 

consequence of dilutive ICP [227]. 
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Figure 7.2 Water flux and specific water flux (flux normalized by osmotic driving force) 

as a function of time for two FO membrane experiments and one RO experiment: (a) FO 

membrane (3 and 18 GPH) and (b) RO membrane. Operating conditions: the initial 

concentration of SOCs = each of 5 μM; draw solution = 1 M NaCl; cross-flow velocity 

(CFV) = 3 or 18 GPH; the temperature = 20 ± 1 °C.  

 

With the exception of the initial stage, where the CFV differed between 9.8 cm s
–1

 

(3 GPH) and 58.8 cm s
–1

 (18 GPH), the membranes exhibited similar water flux declining 

trends, and in the case of a CFV of 18 GPH, the flux increased slightly more than in the 

case of a CFV of 3 GPH, because the higher CFV can minimize the external 

concentration polarization (ECP). In addition, the RO membrane in FO-mode operation 

exhibited approximately five times lower water flux than the FO membrane when the 

same CFV of 9.8 cm
–1

 (3 GPH) was applied. This behavior could be attributed to the 

Time (min)

0 200 400 600 800 1000 1200

W
a
te

r 
fl

u
x
 (

L
 m

-2
 h

-1
)

0

8

12

16

20

24

FO-CFV = 9.8 cm s
-1

 

FO-CFV = 58.8 cm s
-1

 

Time (h)

0 20 40 60 80 100

W
a
te

r 
fl

u
x
 (

L
 m

-2
 h

-1
)

0

4

8

12

16

20

24

RO-CFV = 9.8 cm s
-1

 

Time (min)

0 200 400 600 800 1000 1200

S
p

e
c
if

ic
 w

a
te

r 
fl

u
x
 (

L
 m

-2
 h

-1
 M

P
a

-1
)

0

1

2

3

4

5

FO-CFV = 9.8 cm s
-1

 

FO-CFV = 58.8 cm s
-1

 

Time (h)

0 20 40 60 80 100

S
p

e
c
if

ic
 w

a
te

r 
fl

u
x

 (
L

 m
-2

 h
-2

 M
P

a
-1

)

0

1

2

3

4

5 RO-CFV = 9.8 cm s
-1

 

(a.1)  

(b.1) (b.2) 

(a.2)



 

144 

structural differences in the skin and support layers of the membranes [238, 252, 253]. 

The RO membrane supporting layer parameter was an order of magnitude denser than 

that of the FO membrane. This difference in density could be attributed to the support 

layers’ tortuosity and porosity, which were clearly visible by SEM, as shown in Figure 

7.3. The SEM images of the enlarged cross-section and backside of the FO membrane 

(Figure 7.3a.2 and 7.3a.3) show the difference compared to that of the thin-film 

composite (TFC) RO membrane (Figure 7.3b.2 and 7.3b.3). The supporting layer of the 

FO membrane is comprised of polyester fibers with voids on the order of several tens of 

micrometers, which are clearly visible on the backside. In contrast, the SEM image of the 

RO membrane indicates that a dense, non-woven fabric layer existed on the supporting 

layer, which provided mechanical strength. The porous and spacious supporting layer of 

the FO membrane contributed to the significantly minimized ICP. 

No flux reduction was observed for the RO membrane, but a flux reduction of 

approximately 30% was observed in the FO membrane with 3 GPH. Surprisingly, the FO 

membrane with 18 GPH exhibited a dramatically reduced water flux (22.8 to 11.4 L m
–2

 

h
–1 

(LMH)), which corresponds to a reduction of about 50%. The reduction in flux could 

be attributed to the apparent driving force, which also gradually decreased as water 

passed through the membrane from the FS to the DS side. Thus, the specific water flux 

term (flux normalized by the reduced osmotic pressure, refer to the dilution effect of DS) 

can be used to compare the flux decline in FO mode, as shown in Figure 7.2a.2 and 

7.2b.2. Generally, in all cases, the specific water flux increased, indicating that it had no 

connection with SOC solute fouling and CP during the filtration process. The slight 

increase in specific water flux was attributed to the stabilization of the FO process. 
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Interestingly, the specific water flux of FO membranes (both of 3 and 18 GPH) was 

shown to increase slightly, while the specific water flux of RO membranes increased far 

more over longer filtration times. This behavior cold be explained by the severe ICP, 

which may have led to compensation of the initial drop in the flux reduction and to less 

dilutive ICP from less tortuosity and porosity in the supporting layer of the RO 

membrane [227]. 
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Figure 7.3 SEM image of FO-CTA and RO-BW30 membrane: (a.1) FO membrane cross-section (150), (a.2) FO membrane cross-

section of supporting layer (1K), (a.3) FO membrane back side (1K), (b.1) RO membrane cross-section (150), (b.2) RO membrane 

cross-section of supporting layer (1K), and (b.3) FO membrane back side (1K).  
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The reverse solute flux through the FO and RO membranes from the high 

concentration DS side to the FS side was evaluated by measuring conductivity of the feed 

water side, as shown in Figure 7.4. 

 

 

Figure 7.4 Reverse salt flux as a function of time for two FO membrane experiments and 

one RO experiment: (a) FO membrane (3 and 18 GPH) and (b) RO membrane. Operating 

conditions: the initial concentration of SOCs = each of 5 μM; draw solution = 1 M NaCl; 

cross-flow velocity (CFV) = 3 or 18 GPH; the temperature = 20 ± 1 °C. 
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Unlike in ideal semi-permeable membrane conditions, real membranes with AL-

facing-FS configurations exhibited reverse solute permeation from the DS entering the 

porous support as a result of the water flux from the FS to the DS (convection). As shown 

in Figure 7.4, the reverse salt flux at a CFV of 18 GPH was higher than that at a CFV of 3 

GPH. The FO membrane exhibited six times higher reverse salt flux compared to the RO 

membrane. The reverse salt flux decreased over time for both membranes. These reverse 

salt flux curves were nearly identical to the water flux trends, thereby indicating that the 

dilutive ICP, ECP, and osmotic driving force played dominant roles in reverse salt flux 

and was consistent with previous water flux behavior [254]. 

 

7.3.3 SOCs retention by FO and RO membranes  

Bench-scale FO tests were performed to evaluate the removal of relatively 

hydrophilic compounds (log Kow < 2.5) in a simple matrix with an AL-facing-FS 

configuration. Under this condition, permeate water flux behavior in the FO membrane 

(13.25 ± 0.25 LMH) was greater than that in the RO membrane (1.62 ± 0.13 LMH). The 

CTA-based membranes exhibited higher water flux compared to TFC polyamide 

membranes during FO-mode processing. This behavior was attributed to the fact that the 

FO membrane has high water affinity on the membrane AL and lower structural 

characteristics in FO-mode operations. The rejection values of the SOCs by each FO and 

RO membrane are presented as a function of permeate volume in DS, as shown in Figs. 

7.5–7. 
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Figure 7.5 Comparison of (a) SOCs concentration in permeate and (b) SOCs retention as 

a function of time with FO membrane in the FO-mode at the cross-flow velocity of 3 

GPH. Operating conditions: the initial concentration of SOCs = each of 5 μM; pH = 7; 

draw solution = 1 M NaCl; the temperature = 20 ± 1 °C. 
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Figure 7.6 Comparison of (a) SOCs concentration in permeate and (b) SOCs retention as 

a function of time with FO membrane in the FO-mode at the cross-flow velocity of 18 

GPH. Operating conditions: the initial concentration of SOCs = each of 5 μM; pH = 7; 

draw solution = 1 M NaCl; the temperature = 20 ± 1 °C. 
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Figure 7.7 Comparison of (a) SOCs concentration in permeate and (b) SOCs retention as 

a function of time with RO membrane in the FO-mode at the cross-flow velocity of 3 

GPH. Operating conditions: the initial concentration of SOCs = each of 5 μM; pH = 7; 

draw solution = 1 M NaCl; the temperature = 20 ± 1 °C. 
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retentions were calculated by mass balance and thus reflected the dilution factor, which 

was influenced by the mass of the previously collected DS. However, although some 

experimental error is present, a general trend could be observed: all of the SOC 

concentrations increased on the DS side as the filtration process progressed. The transport 

of SOCs through the FO-mode process ranged between 64–173, 45–163, and 29–126 μg 

L
–1

, for FO-3 GPH, FO-18 GPH, and the RO membrane at the end of permeate, 

respectively. The removal of SOCs was between about 20 and > 98% over the whole 

process, depending primarily on molecular size and charge. For FO membranes with a 

CFV of 3 and 18 GPH, the average retentions of SOCs at the end of the accumulated 100-

mL permeate followed the declining order: SMT (66.5 ± 3.4% and 89.7 ± 3.1%) ≈ CBM 

(68.2 ± 3.0% and 82.6 ± 4.1%) >> ATZ (34.2 ± 0.6% and 48.7 ± 2.6%) > 4CP (28.3 ± 4.4% 

and 38.6 ± 2.8%) > PHN (20.9 ± 0.9% and 21.9 ± 9.3%), respectively. In FO membranes, 

retentions of the negatively charged dominant species in some SOCs (CBM and SMT, by 

their pKa values) were greater than 67%, excluding the chlorinated pesticide compound 

ATZ, which has a triazine ring and amines, while the rejection of the nonionic and 

relatively small MW size of other SOCs (PHN and 4CP) was more variable, between 

approximately 21 and 34%. These results agreed well with previously reported studies 

that indicated that high CFVs could increase solute rejection in AL-facing-FS 

configurations. The increase of co-current CFV had a significant influence on the 

diffusive movement (hindered diffusion of SOCs) and interfered with reverse salt flux by 

decreasing the ECP [239].  
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Figure 7.8 Comparison of (a) SOCs retention between FO and RO membrane and (b) the 

normalized SOCs adsorbed mass onto FO and RO membrane. Operating conditions: the 

initial concentration of SOCs = each of 5 μM; pH = 7; draw solution = 1 M NaCl; cross-

flow velocity (CFV) = 3 or 18 GPH; the temperature = 20 ± 1 °C. Adsorption 

experimental conditions: the initial concentration of SOCs = each of 5 μM; total 

membrane area = 20 cm
2
; contact time = 96 h. 

   

As shown in Figure 7.8, the SOC retention tended to rise with increasing MW, 
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SOC sizes significantly influenced the SOC retention behavior during the FO process. 

The poor retention of ATZ by FO membranes (compared to CBM and SMT) could be 

attributed to its lower affinity for the membrane polymer and size-exclusion contributions, 

because the MW of ATZ is slightly less than that of CBM, although they have similar 

hydrophobicity. There is no apparent explanation for this behavior except adsorption 

affinity onto the FO membrane. This behavior was clearly indicated by the adsorption 

experiment (the specific adsorption mechanism will be discussed in more detail later) 

with an equivalent concentration and membrane area corresponding to FO-mode, as 

summarized in Figure 7.8b. The adsorption data were obtained by normalizing the 

adsorbed SOC capacity by membrane area. The adsorbed mass by the FO and RO 

membranes were 1.07 and 0.75 μg cm
–2

 (PHN), 0.93 and 6.65 μg cm
–2

 (4CP), 0.05 and 

1.54 μg cm
–2

 (ATZ), 1.09 and 1.45 μg cm
–2

 (CBM), and 1.28 and 0.1 μg cm
–2

 (SMT), 

respectively. These results indicated that the amount of adsorbed ATZ was significantly 

lower than for the other SOCs. In the RO membrane, the average SOC retentions 

followed the declining order: ATZ (93.7 ± 3.0%) > CBM (84.3 ± 4.2%) > SMT (75.2 ± 

4.6%) > 4CP (60.9 ± 4.9%) > PHN (47.3 ± 5.2%). In general, the RO membrane 

exhibited higher removal efficiency than the FO membrane. The higher removal 

efficiency of the RO membrane could be attributed to the positively coupled effects from 

size exclusion, electrostatic repulsion (Donnan exclusion), and adsorption to the 

membrane surface, while the relatively small water flux in the RO membrane negatively 

influenced the SOC retentions. In addition, the higher ICP generated by the dense 

supporting layer may have allowed increased partitioning of SOCs and, thus, increased 

the SOC retention compared to that observed in the FO membrane.  
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Along with the previous results, these results indicated that high electrostatic 

repulsion and severe ICP mechanisms affected the SOC retentions simultaneously, even 

though the selectivity of salts was lower in the RO membrane than in the FO membrane. 

The retention of negatively charged SOCs (CBM, SMT, and ATZ) was greater than 75%, 

while the rejection of the nonionic SOCs (PHN and 4CP) was approximately between 47 

and 61%. However, SMT exhibited slightly lower retention than expected based on its 

size, although SMT compounds were previously found to be highly retained by FO 

membranes. This unexpected result is likely due to hydrophobic interactions and/or weak 

hydrogen bonding between SMT and the RO membrane. Among similarly sized 

compounds, the lower log Kow of SMT exhibited a weak influence on its rejection; an 

increase in rejection with increasing log Kow was observed in the case of CBM and ATZ. 

This phenomenon is in agreement with Kiso et al. [255], who observed that the rejection 

of most hydrophobic molecules by CTA membrane material increased with increasing 

affinity of the solute for the membrane. It should be noted that SOC retentions in the FO-

mode experiments were comparatively low in this study. While ionic SOC retentions 

were greater than about 80% at the initial stage, the general retention of these SOCs was 

significantly lower than expected based on membrane characteristic experiments, which 

demonstrated that sodium chloride and glucose were efficiently removed with rejection 

ranging from approximately 85 to 97%. (The FO-mode is not a pressure-driven process, 

but its retention mechanisms are expected to follow those of conventional RO processes.) 

These less optimal SOC retentions might be explained by the following: (i) the relatively 

low water flux through the membrane can permit solute transportation substantially well 

across the membrane by hindered diffusion mechanisms [256]; (ii) the relatively low 
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surface charge of the FO membrane compared to the RO membrane might reduce SOC 

retentions, while the RO membrane still has higher SOC retention compared to that of the 

FO membrane [235]; (iii) the high initial concentrations of spiked SOCs were in the 

range of 485–1,280 μg L
–1

, which might have affected the higher ECP and SOC diffusion 

on the membrane surfaces [257], leading to poor removal performance. 

 

7.3.4 Influence of compound characteristics and membrane properties on 

adsorption 

The initial membrane adsorption of SOCs could be a trivial factor, because the 

membranes were quickly saturated, and adsorption decreased over long-term operation. 

However, it is worthwhile to isolate the effect of initial adsorption and predict the exact 

SOC retention trends for the most appropriate correlations between membrane and SOC 

properties [127]. Therefore, batch adsorption experiments were employed to determine 

the FO and RO membrane adsorption capacities under equilibrium conditions (Figure 7.9) 

as an example of the significant variation in adsorption trends between FO and RO 

membranes. For comparison, the membrane adsorption tendencies of various hydrophilic 

SOCs over time were compared with those of EE2. In this experiment, a sufficiently-

large membrane area was employed so that SOC adsorption on the membranes could be 

maximized and free of competitions among the SOCs (membrane area = 100 cm
2
, Co = 

each of 2 μM SOCs).   
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Figure 7.9 Comparison of SOCs adsorption onto (a) FO membrane and (b) RO 

membrane as a function of time. Adsorption experimental conditions: the initial 

concentration of SOCs = each of 2 μM; pH = 7; total membrane area = 100 cm
2
; contact 

time = 0-96 h.  
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equilibrium (removal, 96 h): EE2 (91.7 ± 0.4%) >> 4CP (39.4 ± 0.8%) > CBM (31.2 ± 

0.1%) > SMT (27.7 ± 0.6%) > ATZ (22.8 ± 0.3%) >> PHN (6.9 ± 0.1%). The 

comparatively hydrophilic SOCs, including SMT, CBM, and ATZ, were observed to 

have lower adsorption affinity onto the FO membrane compared to EE2 based on their 

hydrophobicity. However, SMT, CBM, and ATZ did not exhibit any correlation based on 

log Kow values. In particular, phenolic compounds (PHE and 4CP), which have 

relatively low MWs compared to the other SOCs used in this study, exhibited different 

adsorption trends (6.9% for PHE, 39.4% for 4CP) because of their different 

characteristics (i.e., phenol is highly soluble in water compared to 4CP). The adsorption 

of 4CP (log Kow = 2.39, pKa = 9.1) was higher than that of PHN, as expected, based on 

the hydrophobicity of these two SOCs. The charge repulsion caused by de-protonation, 

which occurred because the solution pH was higher than the compound dissociation 

constant (pKa) value, did not significantly influence the adsorption process in either 

membrane compared to log Kow. 

For the RO membrane, the adsorption affinity of SOCs roughly correlated with their 

hydrophobicity, except for phenolic compounds, which have different characteristics (the 

adsorption affinity of 4CP onto the RO membrane was remarkably higher, and 4CP 

reached a pseudo-equilibrium state faster than other SOCs). The SOC adsorption 

affinities on the RO membrane exhibited the following order of normalized C/Co values 

(removal, 96 h): 4CP (93.8 ± 0.1%) > EE2 (89.9 ± 1.5%) >> PHN (69.8 ± 1.5%) > ATZ 

(55.2 ± 3.9%) > CBM (31.8 ± 0.5%) >> SMT (6.2 ± 0.2%). In phenolic compounds, the 

higher retention by the polyamide RO membrane was caused by the following attributes 

[224, 258-260]: (i) the physicochemical properties, including the functional groups (-OH 
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and -Cl), solubility, and hydrophobicity, which impart high affinity to the polyamide 

materials, (ii) the chlorine functional group of 4CP is an electron-withdrawing group, so 

the reaction affinity with the membrane polymer might dominate, (iii) water solubility is 

generally correlated with log Kow, thus suggesting that the adsorption capacity of 4CP 

onto the RO membrane increased with lower solubility, and (iv) many studies of 

membrane adsorption have reported that SOC adsorption onto membranes is influenced 

by the membrane surface as well as by the supporting layer and the membrane pores. 

Furthermore, Yoon et al. [261] reported that adsorption is related to the membrane pore 

radius, thereby allowing relatively low MW SOCs (e.g., PHN and 4CP) to access and 

diffuse to the membrane’s internal adsorption sites. Therefore, it could be concluded that, 

overall, a weak correlation existed between all SOCs; separately between phenolic and 

other SOCs, a strong correlation was observed between hydrophobicity and adsorption 

capacity. 

 

7.3.5 Molecular modeling of SOCs adsorption behavior onto FO and RO 

membranes 

The SOCs can bind onto the surfaces of FO and RO membranes at different orientations 

depending on the medium and the nature of the interactions. Representative MD 

snapshots in Figure 7.10 show the FO-EE2 and RO-EE2 complexes in aqueous solution 

(the others are shown in Appendix A).  
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Figure 7.10 Representative MD snapshot of optimum (a) FO membrane with EE2 and (b) 

RO membrane with EE2 complexes in aqueous solution. 

 

  

 

               

(b) 

(a) 
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Figure 7.11 Binding energy of SOCs onto FO and RO membrane with respect to log 

Kow values (binding energy was computed using AMBER 11 software). 

 

In the case of the RO membrane, cross-linkage of the repeating units of the FT-30 

polyamide resulted in the formation of a curled configuration around the SOCs to 

increase interactions, while the geometry of the CTA-FO membrane remained relatively 

linear over the course of the simulation. Figure 7.11 shows the dependence of the binding 

free energies on log Kow. The free energies associated with the binding of the various 

SOCs onto the membranes show an increasing trend with increasing log Kow. As 

expected, EE2 had the greatest interaction with both the FO and RO membranes due to its 

hydrophobic nature and corresponding high log Kow value in comparison to the 

hydrophilic SOCs. In one of its lower energy configurations, shown in Figure 10, the 

methyl group is oriented away from the surface of the FT-30 RO membrane, thus 

allowing for maximum overlap of orbitals between EE2 and the adsorbent. In the case of 

the FO-EE2 pair however, periodic flips in the orientation of the methyl group towards 
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smaller π-π area of influence and a less favorable binding energy compared to that of the 

RO-EE2 pair (–1.8 vs. –3.1 kcal mol
-1

). Moreover, binding between the SOCs and the RO 

membrane was more favorable compared to binding with the FO membrane due to the 

hydrophobic nature of the FT-30 polyamide RO membrane. Snapshots of the MD 

simulations show periods of separation between the FO membrane and the hydrophilic 

SOCs. Based on the 8 a nonbonded interaction cut off limit, long range interactions 

between the membranes and SOCs at very far intermolecular separations were not 

significant and were not included in the free energy calculations. Despite the relatively 

low log Kow value of PHN, a more favorable interaction was observed between PHN and 

the RO membrane relative to 4CP and CBM. Thus, it is possible that the aromatic ring in 

PHN prefers the less polar polyamide membrane to the bulk solution [258], thereby 

increasing the propensity of PHN to bind onto the surface of the hydrophobic FT-30 RO 

membrane. This is also consistent with the result of adsorption experiments where the 

favorable binding translated to increased adsorption of PHN onto the RO membrane. In 

addition to the binding of phenol onto the surface of the RO membrane and the rapid 

disappearance of PHN can further be attributed to possible diffusion of the PHN 

molecules into the membrane pores as observed in the study by Hughes and Gale, 2012 

[258]. 

 

7.3.6 Comparison of SOCs retention and flux behavior during RO process 

RO-mode experiments were performed to verify the performance in terms of flux decline 

profile and SOC retentions as a function of the volume concentration factor (VCF), as 

shown in Figure 7.12. 
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Figure 7.12 Flux decline and SOCs retention as a function of VCF in RO-mode: (a) flux 

decline between FO and RO membrane, (b) SOCs retention with FO membrane, and (c) 

SOCs retention with RO membrane. Operating conditions: P = 20 bar; stirring speed = 

300 rpm; the initial concentration of SOCs = each of 5 μM; pH = 7. 
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The VCF could be a more meaningful parameter for adsorption characterization, 

because the retained solute concentration on the membrane surface can mechanistically 

influence the solute retentions and flux by ECP and diffusion at the interface of the 

membrane [262]. Conversely, in the comparison of flux curves for both FO and RO 

membranes, the higher water flux was observed for the RO membrane, which confirms 

that the FO membrane is mechanistically different than the RO membrane, as previously 

mentioned. The RO membrane experiences a sharper flux decline than the FO membrane; 

the flux is 15% less for the RO membrane and only 2–3% reduced for the FO membrane, 

as shown in Figure 7.12a. For the FO membrane, it is likely that the water flux was not 

influenced by the SOC concentration in the FS. Finally, the ECP layer formed in the FO 

membrane had less influence on the flux reduction due to the lack of the solute flux at the 

same applied pressure of 20 bar. For the RO membrane, higher flux led to the highest 

osmotic pressure at the membrane surface, which lowered the flux by reducing the 

effective trans-membrane pressure, because the ECP increased with increasing osmotic 

pressure. The release and breakthrough of SOCs could be affected by the variation in 

solution recovery and subsequent VCF. When the stirring speed (300 rpm) was applied to 

agitate the FS completely, it was expected that the back diffusion phenomenon would 

diminish. In this condition, to verify the effect of solution recovery between FO and RO 

membranes, SOC retentions were compared at the same VCF, as shown in Figure 7.12b 

and 12c. For all selected SOCs, the RO membranes exhibited higher retentions than the 

FO membranes, which intrinsically caused differences in zeta potential, hydrophobicity, 

density of active/supporting layers, and pore size. In addition, these results indicated that 

the membrane selectivity derived from the SD model does not adequately coincide with 
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SOC retentions in both membranes; however, the SOC retention trended with increasing 

SOC size (listed by MW) based on greater steric interactions rather than on other 

mechanisms (electrostatic repulsion and/or hydrophobicity). For phenolic compounds and 

ATZ, retentions were remarkably lower in the FO membrane than in the RO membrane. 

The results reported here, indicate that RO-mode operation with FO-type membranes 

may cause a substantial increase in permeate concentrations of SOCs based on this 

distinct breakthrough phenomenon, which is often seen in both dead-end and cross-flow 

filtration operations [131].  

 

7.4. Conclusions  

This study evaluated the removal behavior of several SOCs (PHN, 4CP, ATZ, CBM, 

SMT, and EE2) by investigating available FO and RO membranes systematically in both 

FO and RO processes. The study also included computational modeling for membrane 

adsorption. For the RO membrane in FO mode, ICP was severe and attributed to the 

lower porosity of the supporting layer of the RO membrane. The lower porosity played a 

dominant role in the reduction of water and/or reverse salt flux. Compared to the 

polyamide-based RO membrane, the CTA-based FO membrane exhibited superior water 

flux performance due to the optimized properties of its active and supporting layers in FO 

mode. However, higher removal for most of SOCs studied was achieved with the RO 

membrane at the expense of severe ICP and flux reduction. The results once again 

confirmed the dominant role of ICP, and the trade-off between flux and removal 

efficiency depends on the porous supporting layer in AL-facing-FS configurations in the 

FO process. Therefore, further investigation of this phenomenon is needed, particularly 
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with respect to membrane properties specialized for the FO process. In the removal of 

SOCs, the FO membrane, which is mostly uncharged, mainly relied on size exclusion; in 

contrast, the RO membrane was controlled by both size and electrostatic exclusion. For 

all SOC compounds studied, except for phenolic compounds, the adsorption capacity 

generally depended on the log Kow in both membranes. Although the mechanism is 

unclear, significant adsorption capacity was observed between phenolic compound 4CP 

and RO membranes. Compared to the FO membrane, the RO membrane exhibited 

superior performance in RO mode in terms of higher water permeability and SOC 

removal. In particular, for the FO membrane in RO-mode operation, possible subsequent 

breakthrough release of phenolic compounds and ATZ was observed due to their 

relatively low MWs. It is also worth noting that the comparatively small size and 

hydrophilic nature of the neutral SOCs significantly increased the transportation to the 

DS side in the FO-mode configuration, which is expected to be important for the 

application of FO in environmental water filtration for directly potable usage. Finally, 

this breakthrough release needs to be further investigated and tested in pilot-scale 

experiments. 
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CHAPTER 8 

OVERALL CONCLUSION AND FUTURE RECOMMENDATIONS 

 

Overall, the results from UF incorporated with SWNTs as adsorbents have demonstrated 

high removal efficiencies of BPA and E2/EE2 by mainly adsorption mechanisms with 

SWNTs, as well as the addition of SWNTs to the UF process did not significantly 

exacerbate the permeate flux decline and total membrane resistances. Significant removal 

of these compounds and the potential feasibility of FO membrane system to the 

environmental filtration were observed to meet more stringent treatment goals. In relation 

to the removal of EDCs from various water sources (Chapters IV and VI), the following 

conclusions can be derived: 

1) The adsorbed/delivered mass for BPA and E2/EE2 derived from the mass-balance 

during membrane filtration provided a reasonable comparison of their retention 

and adsorption trends. 

2) A strong linear correlation between the retention and adsorption of BPA and E2 

was observed, indicating that adsorption was an important mechanism for the 

retention of hydrophobic compounds and was dependent on the log Kow, in 

which preferential removal by membrane adsorption occurred for the more 

hydrophobic E2, compared to BPA, leading to increased adsorptive hydrophobic 

interactions
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3) The addition of NOM during UF filtration led to competition for adsorption sites, 

resulting in lowered adsorption of micropollutants. The adsorption of the 

relatively high hydrophobic EE2 onto CNTs is more competitive than BPA in the 

presence of NOM in ASW. For ASW, the adsorption capacity of SWNTs 

resulting from both screening effect and salting-out effect in high ionic strength, 

was relatively insignificant for all those experiments. 

4) Membrane fouling by NOM through pore blockage and cake/gel formation 

considerably impacted the transport of BPA and E2 in the SWNTs-UF systems 

due to various NOM-SWNTs-UF-BPA/E2 interactions in the solution. 

Based on the NOM removal in SWNTs-UF systems (Chapter V), the following 

conclusions can be derived: 

1) Applying the SWNTs in conjunction with UF has shown considerable advantages 

in terms of fouling rate reduction and NOM removal efficiency. 

2) The adsorption of NOM on SWNTs varies with solution pH and ionic strength, 

which could affect the flux decline and rejection trends. It is related to the point of 

zero charge on SWNTs in HA solutions because the adsorption of NOM on 

SWNTs is driven by electrostatic interactions. For IS effect, IS causes a greater 

decrease in flux decline and rejection trends, because high IS can exacerbate 

fouling by compacting the cake/gel layer, thereby increasing the HA 

concentration on the membrane surface, in addition, condensing of the HA 

structure easily allows it to pass through membrane pores, which then leads to 

lower HA rejection trends. 
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3) Considering the specific fouling resistances, SWNTs–UF resulted in greatly 

reduced membrane resistances per unit retained DOC mass. The characteristics of 

the fouling layer were more dependent on the HA deposition and HA adsorptive 

fouling since single SWNTs with a length of 5–30 µm are somewhat too large to 

block the membrane pores. 

4) The early stages of both SWNTs–UF and UF alone in unstirred conditions were 

more dependent on intermediate blocking or a combination of intermediate 

blocking and cake filtration, while cake filtration became the more dominant 

mechanism as filtration progressed. 

5) A high flux decline observed at high Jv/k values was due to concentration 

polarization (CP) and cake/gel layer formation, which hindered the transportation 

of NOM, and NOM transportation in SWNT–UF systems depends, to a significant 

extent, on the CP and cake/gel layer formation at the membrane boundary. 

Based on the removal of synthetic organic compounds by forward osmosis and reverse 

osmosis membrane (Chapter VII), the following conclusions can be derived: 

1) In comparison of membrane characteristics identified with the solution-diffusion 

model, the cellulose triacetate based FO membrane exhibited the lower selectivity 

ratios, indicating that the FO membrane has the better separation properties than 

that of polyamide based RO membrane. 

2) At the RO membrane application in FO-mode, ICP was severe due to less 

porosity of the supporting layer of RO membrane, and it played a dominant role in 

the reduction of water and/or reverse salt flux. 
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3) The FO membranes mainly relied on size exclusion since it was almost uncharged 

while RO membrane was controlled by interactions between size and electrostatic 

exclusion. 

4) The free energies associated with the binding of the various SOCs onto the 

membranes show an increasing trend with increasing log Kow because EE2 had 

the greatest interaction with both the FO and RO membranes due to its 

hydrophobic nature and corresponding high log Kow value in comparison to the 

hydrophilic SOCs 

5) It has possibility that the comparatively small size and hydrophilic neutral SOCs 

can seriously increase the transportation to the draw side in FO-mode 

configuration. 

Low pressure membranes (LPMs) employing ultrafiltration (UF) and microfiltration 

(MF) incorporated with SWNTs as adsorbents are an integral part of pretreatment 

processes for seawater desalination as well as wastewater reclamation and drinking water 

treatment. However, it should be noted that despite the high adsorption capacities of 

CNTs in water treatment and purification, they still have several challenges including 

economic feasibility, health risks, and environmental impacts for practical 

implementations. Several researchers have reported that the release of CNTs into the 

environment may cause harmful impacts on ecosystem. In particular, CNTs’ health 

effects on human life with water are still a controversial issue. Also, for the CNT use in 

drinking water treatment plants, one of the possible problems is the escape of CNTs 

during the membrane filtration process. In addition, CNTs are still relatively expensive 

for large scale applications in water treatment. However, continuous mass production of 
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CNTs will possibly provide large quantities of CNTs with economically viable prices for 

large scale applications in the near future. Although the experiments were conducted at 

high concentrations above typically reported levels in drinking water sources, the results 

still provide guidelines for SWNTs/UF hybrid membrane filtration since the retention of 

trace organics at parts per-billion or parts-per-trillion levels are independent of initial 

concentration. In addition, these FO results have shown that the membrane selectivity 

derived from the SD model does not adequately coincide with SOCs retentions in both 

membrane cases. Also, in RO-mode, for phenolic compounds and ATR, retentions were 

remarkably lower with FO membrane than those with RO membranes. The results 

observed here, consequently, reflect that RO-mode operation with FO type membranes 

may cause a substantial increase in permeate concentration of SOCs based on this distinct 

breakthrough phenomenon, therefore when the application of FO to the environmental 

filtration for directly potable usage, these breakthrough release and SOCs retention model 

for FO membrane in FO-mode needs to be further investigated and tested in pilot scale 

experiments. 
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APPENDIX A - MD SNAPSHOT OF OPTIMUM SOCS WITH FO AND RO 

MEMBRANE COMPLEXES IN AQUEOUS SOLUTION 

 

Figure A.1 Representative MD snapshot of  (a) FO-ATZ and (b)  RO-ATZ complexes in 

aqueous solution. 
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Figure A.2 Representative MD snapshot of  (c) FO-CBM and (d)  RO-CBM complexes 

in aqueous solution. 
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Figure A.3 Representative MD snapshot of  (e) FO-4CP and (f)  RO-4CP complexes in 

aqueous solution. 
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Figure A.4 Representative MD snapshot of  (g) FO-PHN and (h)  RO-PHN complexes in 

aqueous solution. 

 

 

 

       

 

       

(g) 

(h) 



 

199 

 

 

Figure A.5 Representative MD snapshot of  (i) FO-SMT and (j)  RO-SMT complexes in 

aqueous solution. 
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