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ABSTRACT

byubaselinestretch2 Computerized Oral Proficiency Test for Japanese: Measuring
Second Language Speaking Ability with ASR Technology

Hitokazu Matsushita
Department of Linguistics and English Language

Master of Arts

Developing a time- and cost-efficient method for second language (L2) oral pro-
ficiency measurement is one of the research topics that has attracted much attention in
recent decades. The purpose of this study is to develop a computerized oral testing sys-
tem for L2 Japanese using automatic speech recognition (ASR) technology. Two testing
methods called elicited imitation (EI) and simulated speech (SS) are proposed to quan-
tify L2 accuracy and fluency via ASR processing. This study also suggests systematic
EI item creation leveraging corpus technology and discusses the effectiveness of the test
items created through analyses of item difficulty. Further, refinement of the EI grading
system is described through a series of statistical investigations. For SS, this study re-
ports the five most influential L2 fluency features identified through machine learning
and proposes a method to yield individual SS scores with these features based on pre-
vious studies. Lastly, several methods to combine the EI and SS scores are presented to
estimate L2 oral proficiency of Japanese.

Keywords: L2 oral proficiency, EI, SS, ASR, computerized oral test
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Chapter 1

Introduction

1.1 Overview

Development of a reliable and time-efficient second language (L2) oral proficiency

test is currently of great interest in the field of language testing. The main reason for this

motivation is because a common approach in L2 speaking assessment is to interview a

learner. Measuring speaking ability per this approach involves complex processes: (1) a

test taker must be able to produce speech samples recorded for evaluation, and (2) two or

three human evaluators typically listen to the collected speech samples to evaluate oral

proficiency based on a stipulated rubric, and raters’ judgments are averaged to produce

a single score. Regarding (1) and (2), the following conditions exist during test adminis-

tration and evaluation from testers’ and test takers’ perspectives.

Table 1.1: Conditions in Typical Interview-based Tests (cf. Newfields 1994)

Tester Test Taker

Test Administration Needs substantial amount of
time to test multiple test tak-
ers

Needs to be well-informed
about the testing procedure

Test Evaluation

Needs to be well-trained to
yield consistent scores or rat-
ings based on a rubric in a
short time

Needs to wait longer to ob-
tain a score or rating and
feedback with receptive skill
tests

As Table 1.1 above indicates, using interview-based tests requires a great deal of

work and time for both testers and test takers. Considering this situation, the grading

process is especially labor-intensive because a rating is produced through averaging two

1



or three raters’ respective judgments, as mentioned above. Because of this complexity, it

is necessary that the raters spend substantial time to yield well-justified ratings. How-

ever, this is not acceptable in most language institutions because of the time constraints

and the limited availability of qualified raters. Therefore, administering interviews is

very difficult, especially in programs for less commonly taught languages, due to limited

resources, although it is essential to examine students’ oral skill development regularly

(Kenyon and Malabonga 2001).

Another issue is the cost of commercially available interview tests. For instance,

oral proficiency interviews (OPIs), provided by Language Testing International (LTI), are

widely administered tests which have been regarded as a recognized standard for mea-

suring oral proficiency of various target languages. However, the administration of OPIs

is very costly: a single OPI costs approximately 130 US dollars for a 30-minute interview

and evaluation1. Because of the cost, the OPI is regarded as a high-stakes test for learners

to demonstrate their L2 oral proficiency for official documentation. Therefore, the OPI is

not necessarily suitable to assess L2 speaking ability regularly at language institutions for

formative and summative purposes.

To develop a cost- and time-efficient test, it is crucial to identify the problems re-

lated to L2 oral proficiency measurement. Furthermore, it is inevitable to utilize some

sort of computer technology to realize such efficiency. In the following section, I will fo-

cus on two important aspects that are frequently discussed in studies on L2 oral language

production, namely, accuracy and fluency.

1.2 Problem: Quantification of Accuracy and Fluency Features

Accuracy and fluency in speech production are essential constructs in measuring

L2 oral proficiency (Housen and Kuiken 2009), and many oral proficiency tests take these

constructs into account in the test development and evaluation processes (e.g., the Test of

Spoken English (TSE) Scale by the Educational Testing Service (ETS); Common European

Framework of Reference (CEF) of Council of Europe; see Luoma 2004 for more detail). For

example, the OPI guidelines (ACTFL 1999) incorporate accuracy and fluency factors in the

1See http://www.languagetesting.com for more detail.
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descriptions of its rating scale. Table 1.2 enumerates the representative characteristics of

L2 accuracy and fluency pointed out in the OPI guidelines:

Table 1.2: Accuracy and Fluency Factors in OPI Guidelines

Accuracy Features Fluency Features

pronunciation hesitation patterns
vocabulary choice turn taking

(morpho-)syntactic formation length of a narration
discourse structures discourse management

These accuracy and fluency factors are further explained in detail for the basis

of final ratings2 in the evaluation procedure. As one can imagine, interpreting these

descriptions accurately and generating ratings which are consistent with other evalua-

tors requires substantial experience because this type of grading procedure is inevitably

subjective (McNamara 2000). Moreover, the manifestation of accuracy and fluency fea-

tures can be quite different in every interview because the topics to be covered are de-

termined during the initial conversation according to several factors such as test takers’

background, and thus the linguistic information gained in an interview is basically un-

predictable before it starts. Therefore, multiple raters are inevitably necessary to ensure

the high stability of ratings in such disparate testing and grading procedures (Hughes

2003).

The first problem that needs to be addressed in this study is to obtain accuracy and

fluency features in a quantifiable manner for the development of an efficient oral test. For

this it is necessary to ensure that the testing system is able to retrieve these two types of

features from speech samples at a satisfatory level of precision consistently. However, this

problem highlights the limitation of current computer technology: It is not possible for a

computer system to handle speech samples with unpredictable language usage correctly,

2There are ten sublevels in OPI: Namely, Superior, Advanced(High, Mid, Low), Intermediate(High, Mid,
Low), and Novice(High, Mid, Low). For raters’ final judgment, detailed descriptions on expected perfor-
mance in each sublevel are provided.
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because the performance depends largely on language data, or corpora, provided for the

system training (Nagatomo et al. 2001). In other words, the level of precision in speech

processing with computers is likely to be very limited if the input speech samples are out-

side the domain of the language data. This situation is highly probable in this study, and

in particular, it makes obtaining reliable accuracy features very difficult, because of the

nature of L2 speakers’ speech samples, which are more unpredictable and unorganized

than first language (L1) speakers’.

1.3 Solution: Separation of Accuracy and Fluency Measurement

The computerized oral proficiency test proposed in this study is not designed to

function with speech samples collected from random topics because of the limitation of

speech processing technology. Thus, it is imperative to use more rigidly regulated test-

ing methods than the interview-based counterpart so that the system can successfully

obtain and process the structured speech data to extract accuracy and fluency features.

To accomplish this, I propose a testing system using two objective testing methods called

elicited imitation (EI) and simulated speech (SS). This approach has two advantages: (1)

it limits the variety of learners’ speech samples obtained in the testing phase in order

to make feature extraction more manageable with the computer system, (2) it allows the

computer system to be trained in a domain-specific manner according to the employed

testing methods and to process the speech samples in an analytic manner. Figure 1.1

shows the basic concept of this approach.

The main purpose of this study is (1) to develop a fully computerized oral testing

system for L2 Japanese using automatic speech recognition (ASR) technology (Jurafsky

and Martin 2008), (2) to inform systematic EI test item creation with corpus data, and (3)

to evaluate learners’ test performance with the EI and SS grading results provided by the

system. My approach, however, does not aim to implement the same testing and grading

procedures as in interview-based exams, because of the limitation of speech recognition

technology mentioned above. The testing system I propose here contains the following

capability: (1) it handles multiple test takers concurrently with a computer-mediated test,

4



L2 Oral Proficiency

Elicited Imitation (EI) Simulated Speech (SS)

Computer Process Computer Process

Accuracy Features Fluency Features

Combined Oral Proficiency Measurement

Figure 1.1: Basic Concept of the Proposed Computerized Testing System

and (2) it extracts various linguistic features from collected speech samples without re-

quiring any human labor.

This thesis is organized as follows. In Chapter 2, I will explain the development

of EI as an accuracy measurement and SS as a fluency measurement, based on various

previous studies. In Chapter 3, the EI item creation procedure with corpus technology

will be discussed. In Chapter 4, the system development of the EI grading system will be

explained, based on our previous studies. In Chapter 5, I will describe the fluency feature

extraction with the grading system and the process of combining EI and SS results to

predict overall L2 oral proficiency. Chapter 6 will be the conclusion.
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Chapter 2

Review of Literature

In this chapter, I will describe the development and analyses of EI and SS as viable

testing methods based on available literature. EI and SS have been investigated based

on fundamentally different backgrounds. The former has mainly been used in the fields

of language acquisition and psycholinguistics research for several decades as an effective

experimental data collection technique, whereas SS has been considered as an alternative

testing procedure to labor-intensive interview tests especially for less commonly taught

languages. In the following sections, I will explain the strengths of these methods through

previous studies and how these two can be combined to measure L2 oral proficiency with

ASR technology.

2.1 Elicited Imitation

2.1.1 Basic Concept

Elicited imitation (EI) has been receiving attention as a viable language testing

method in various fields, especially in second language acquisition (SLA). Although there

are some slight differences in administering EI among various studies, the basic proce-

dure of EI is as follows:

The procedure involves preparing a stimulus string . . . that illustrates some

grammatical feature . . ., and subjects are instructed to repeat exactly what they

hear. (Chaudron 2003)

This simple process is repeated several times to collect multiple speech samples to exam-

ine whether the learner has acquired the target grammatical structures or lexical items

incorporated in the model sentences, based on the assumption that “success at exact imi-
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tation demonstrates the learner’s possession of the target features in his or her linguistic

knowledge store” (Chaudron 2003).

Despite its simplicity, EI requires learners to employ multiple linguistic skills to

successfully reproduce a series of target sentences. Figure 2.1 and the following descrip-

tions illustrate the fundamental processes that learners need to execute during an EI per-

formance (Vinther 2002).

︸ ︷︷ ︸

Comprehension Skills

Listening Decoding

Production Skills
︷ ︸︸ ︷

Interpreting Recalling Producing
Input Output

Figure 2.1: EI Processing Model (Based on Vinther 2002)

Listening. The test taker perceives a sound sequence contained in an EI item phonolog-

ically to process it as a series of linguistic units (e.g., sound sequences, words, phrases,

etc.) in the decoding phase.

Decoding. Bley-Vroman and Chaudron (1994) state that the input is decomposed as

chunks, or meaningful linguistic units in the short-term or working memory when it is

heard. They say that the size of the chunks varies depending on the test taker’s grammati-

cal knowledge: the more familiar the test taker is with the target language, the more accu-

rately he or she is able to process the model sentence at this stage because the knowledge

helps form a larger size of chunks and store the linguistic information without exceeding

memory capacity.

Interpreting. Vinther (2002) mentions that the meaning of the decomposed units of in-

formation are to be syntactically and semantically processed at this stage. She also points

out that if the test taker understands the meaning of the stimuli but fails to produce an

accurate repetition, it is possible to reason that the grammar system of the target language
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has not been developed sufficiently to reconstruct the level of complexity contained in the

presented sentence at this stage1.

Recalling. McDade et al. (1982) discuss the relationship between the timing and accuracy

level of the performance (either immediate or delayed imitation). Based on their study,

they claim that if the test taker fails to interpret model sentences properly, the imitation

is significantly hindered even if the test taker is asked to repeat stimuli immediately. On

the other hand, sentences that he or she understands are correctly repeated even if there

are time intervals between listening and repetition. This result indicates that recalling

the stimuli for imitation is highly determined by L2 comprehension capacity or success-

ful processes in the preceding stages. This also implies that it is impossible to produce

sentences without internalized productive knowledge and mechanisms of the target lan-

guage (cf. Levelt 1995).

Producing. Similar to recalling, Vinther (2002) maintains that EI measures production

ability, although the accuracy of EI repetitions is highly determined by the preceding

comprehension due to the nature of the task. She claims that EI requires developed L2

speaking ability because it is possible that poor imitation occurs even if the subject has

been able to understand the model sentences successfully.

Although there are still a number of unknown aspects regarding EI processing,

the model above clearly indicates that EI is a highly complex language task that requires

several factors of L2 knowledge for successful imitation, not just a memory test. The

various applications of EI based on this assumption are reported in the literature. In the

following subsection, applications of EI in language testing are discussed.

2.1.2 Applications

EI has been utilized as an experimental data collection method for more than four

decades in psychology and language acquisition studies such as child language develop-

ment (e.g. Fraser et al. 1963, McDade et al. 1982) and implicit knowledge measurement

1I indicate the interpreting stage as both comprehension and production skills because the interpretation
is analogous to Levelt’s (1995) conceptualizer, which precedes the process to transfer the idea to linguistic
representations, according to the explanation of Vinther (2002).

9



(Ellis 2005, Erlam 2006, Ellis 2008, Erlam 2009) and its instructional impact (see the de-

tailed overview in Ellis 2010). Although the research slowed down temporarily during

the 1980s due to severe criticism of the methodology, it regained research attention in the

late 1990s again and started being regarded as a viable testing method (Jessop et al. 2007).

The noteworthy studies in terms of this present research are those which focus on

the application of EI to L2 testing. Naiman (1974) discusses the usefulness of EI for mea-

suring L2 ability. He developed twelve carefully designed EI sentences along with com-

prehension and production tests and conducted experiments with 112 young students

who were learning L2 French in an immersion program. His results show a strong associ-

ation between scores on imitation and other types of production tests. He claims that EI is

a more effective testing method to examine L2 production skills than spontaneous speech

counterparts because it is easily implemented to identify L2 learners’ morphosyntactic ac-

quisition patterns explicitly and examine the development of their productive grammar

effectively.

Bley-Vroman and Chaudron (1994) provide a detailed investigation of previous

psycholinguistic and SLA studies and discuss the potential of EI as an L2 proficiency

measurement. They delineate the concept of chunking (see 2.1.1) and explain how lin-

guistic representations formed through chunking are stored in the short-term memory.

They point out, based on the claim by Forster (1987), that the representations are encoded

at stratified control levels, which regulate the interpretation of presented linguistic in-

formation in short-term memory. Furthermore, they claim that several control levels are

activated during the EI task and a successful or poor EI performance is determined by the

intensity of the activation. Based on these theoretical assertions, they maintain that the

length of the model sentences has a significant effect on a subject’s ability to produce EI

repetitions because it provides a direct impact on chunking and representation formation

processes regulated by L2 proficiency and short-term memory capacity.

Inspired by Bley-Vroman and Chaudron (1994) and Chaudron’s subsequent study

(Chaudron et al. 2005), research on EI as an L2 proficiency measurement has been con-

ducted by Graham (2006) and others. In a pioneering study, Graham (2006) reports that

he and his colleagues developed and refined sixty English EI items with designated syl-
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lable lengths (5–25) through the test validation process. They administered the test to

156 students at an intensive English program (IEP) in the US and conducted correlational

analyses between EI scores and ratings of other oral tests such as the OPI. They mention

that there was a moderately strong correlation between EI and OPI (r ≈ 0.65) in the ex-

periment and conclude that EI has a potential to be a highly reliable testing technique for

oral language skills.

Furthermore, he and his colleagues conducted subsequent studies: Graham et al.

(2008b), Hendrickson et al. (2008), Weitze and Lonsdale (in print), Weitze et al. (2009). The

important findings of these studies are summarized as follows:

1. Sentence length based on the syllable count (i.e., the number of syllables in an EI

sentence) influences L2 learners performance most crucially, which conforms to the

claim by Bley-Vroman and Chaudron (1994).

2. Lexical frequency and lexical density (i.e., the number of content words in an EI

item) are minor factors that affect EI item difficulty.

3. Morphological density and morphosyntactic features do not account significantly

for learners’ EI performance.

4. There is a strong association between EI score patterns and the acquisition order

proposed by DeKeyser (2005), and the score distributions are highly unified regard-

less of learners’ L1.

5. Overall, EI scores predict OPI ratings within two sublevels of margin of error (be-

tween Novice Low and Superior)2.

2.1.3 Computer Scoring

Scoring EI is one of the important issues discussed in the literature. Although there

are some differences among studies, many researchers employ holistic scales as a grading

method. As a typical example, Keller-Cohen (1981) uses a 1-to-7 scale continuum (1 for

no repetition and 7 for perfect imitation) in the EI study for L1 lexical acquisition. This

2See the footnote in 1.2 on OPI ratings.
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approach, however, requires complex subjective grading procedures observed in typical

interview-based tests and causes the same evaluation problem described in 1.1 and 1.2.

Charting a new direction, Chaudron et al. (2005) introduced a scoring method in

the development of EI-based language assessment batteries by taking advantage of the

limited variety of EI responses. In the scoring process, they counted mispronounced syl-

lables in each repetition to yield a score ranging from four points (the highest) if the repeti-

tion is a perfect imitation, to zero if four or more errors are made. Based on this approach,

Graham (2006) further proposed a binary scoring method, in which one point is given for

each correctly pronounced syllable in an EI utterance and zero otherwise, and the total

number of correct syllables in all the items is used as a test score. Obviously, these two

scoring methods are highly objective, which does not require graders to be well trained

native speakers to ensure consistent scoring. Lonsdale et al. (2009) report that agreement

in approximately 175,000 double-graded syllable scores yielded by fifty graders (includ-

ing both native and non-native speakers of English) was as high as 91% with the binary

scoring method proposed by Graham (2006).

In concert with the establishment of these objective EI grading methods above,

various attempts were made to develop an automated grading system using ASR tech-

nology. As a landmark study, Graham et al. (2008a) present a detailed validation study

with an experimental ASR grading system. They used SPHINX, an ASR engine devel-

oped at Carnegie Mellon University (Lee 1989) and recognition grammars designed to

score EI items systematically. They conducted correlational analyses against randomly

selected human-generated scores reported in Graham (2006). With this method, they re-

ported that they attained an 88% correlation coefficient between human and ASR scores

although there are some technical limitations with the proposed system, such as its in-

ability to produce syllable-level scores.

Based on the results shown byGraham et al. (2008a), ASR-based systems for Japanese

EI have been investigated in a series of our studies. The detailed descriptions of the de-

velopment of Japanese EI systems will be provided in Chapter 4.
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2.2 Simulated Speech

2.2.1 Development

Simulated Speech (SS) is another testing method to measure L2 oral proficiency

which has been used for many years in the field of language testing. The basic procedure

of this method is described as follows:

One speaker produces a long turn alone without interacting with other speak-

ers, but they also typically include extracts of situations where the exami-

nees say something in a particular situation, possibly in response to another

speaker whose turn is heard . . . Luoma (2004:44-45)

The tests using this method are frequently referred to as “semi-direct” oral tests

(O’Loughlin 2001) in contrast with direct tests such as OPIs discussed in Chapter 1, which

involve face-to-face or phone interviews, because those tests requires test takers to speak

in a rather communicatively confined environment although they still need to employ

their various L2 strategies for production (Shohamy 1994). This testing method started

being utilized in 1980s, especially when the simulated oral proficiency interview (SOPI)

was introduced for L2 Chinese oral proficiency assessments (Clark and Li 1986). The

motivation for the development of SOPI was to make oral proficiency assessment more

accessible to learners of less commonly taught languages because it was common that

well-trained interviewers of the OPI or other oral interviews for those languages were not

readily available at many language institutions. A number of validation studies of SOPI

were actively conducted in 1990s. Those studies mainly reported that the high concurrent

validity of SOPI, indicating the correlation between OPI and SOPI for various languages

ranged from 0.89 to 0.93 (Clark and Li 1986, Stansfield et al. 1990, Shohamy et al. 1989,

among others). Although some of them point out that there are some critical differences

between these two types (see Shohamy 1994 and Koike 1998 for more detail) and caution

that ratings produced by semi-direct tests are not necessarily equivalent to those of direct

tests, many studies indicated that semi-direct oral tests are the optimal second choice for

measuring L2 speaking ability if oral interviews are not available (Clark and Li 1986).
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Based on the findings of the investigations of SOPI and other semi-direct speaking

tests, the possibility of computer-mediated tests has been examined intensively for the

last two decades (Malone 2007). The computerized oral proficiency interview (COPI),

for example, is a computer-mediated version of SOPI which provides more features than

the tape-mediated SOPI was not able to offer, such as an adaptive testing procedures

based on the test taker’s self-assessment and the test taker’s control over preparation

and response time (Malabonga et al. 2005). The oral proficiency interview by computers

(OPIc) is another computer-mediated oral test proposed by the LTI and used in recent

years based the concept similar to COPI (Malone and Montee 2010)3.

2.2.2 Computer Evaluation

Themajor characteristic of SS discussed in 2.2.1 is that themain focus of this testing

method is on the ease of test administration by utilizing technology in lieu of trained in-

terviewers who are not always available, especially for less commonly taught languages.

However, this does not mean that rating processes are also eased with this technique.

In fact, SOPI, COPI, and OPIc still require human raters who evaluate collected speech

samples based on the American Council on the Teaching of Foreign Languages (ACTFL)

grading scales which are used for the OPI evaluation. Of course, human evaluation en-

sures that ratings for these semi-direct tests are comparable to those of OPIs with the same

grading rubric. However, this situation makes these tests unaffordable in many cases for

most learners and prevents them from being used other than for criterion-referenced pur-

poses. To overcome this issue, various attempts have been made to develop automatic

grading systems with computer technology.

This area of research began in the last two decades along with the advancement of

computer processing power and the field of natural language processing (NLP) including

speech processing technology (Jamieson 2005). Some studies investigate the possibilities

of utilizing the technology for automatic evaluation systems. Hansen and Rowe (2006)

developed a semi-directed speech testing system called the fully-automated speech test

(FAST) based on Hansen (2001), which points out that there are strong associations be-

3See http://www.languagetesting.com/kgic/ for more detail.
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tween L2 speaking capability and temporal features such as length of speech and silence

time. In this study, they administered computer-mediated semi-direct tests with video

prompts to elicit monologic speech samples to 210 English-as-a-second-language (ESL)

learners in the US, in order to examine whether the temporal features correctly predict

the proficiency levels measured by the placement test offered at the institution. Based

on their analyses, they claim that the temporal features they focused on and proficiency

levels indicate a strong statistical association and the combination of speech technology

with these evaluation features will provide an effective method for L2 ability assessment

as well as language acquisition and attrition research.

Similarly, Beigi (2009) reports that he implemented an automatic classification sys-

tem which distinguishes seven levels of human English OPIc ratings (Novice Low to Ad-

vanced) based on temporal features such as the time lengths of audio samples and actual

speech segments. In his study, he used 973,000 OPIc speech samples collected in actual

OPIc administrations and corresponding human ratings for system training. Based on the

results, he mentions that the system attained approximately 53% accuracy of agreements

between computer-generated and human ratings although the features concerned in this

study were temporal features only.

Research on the automatic evaluation system called SpeechRaterSM, which has been

investigated at ETS for several years, is one of the most current and comprehensive stud-

ies regarding computer evaluation for semi-direct oral tests (Xi et al. 2008, Zechner et al.

2009, Yoon et al. 2010, Higgins et al. 2011, among others). In their most recent study,

Higgins et al. (2011) used more than 20,000 L2 English speech samples (45 to 60 seconds

each) obtained from the Internet-based Test of English as a Foreign Language (TOEFL-

iBT) and TOEFL Practice Online (TPO) test for the ASR-based grading system develop-

ment. First, they examined three multiple regression models as possible score estimators,

which generated numerical values predicting test scores based on the fivemost influential

speech features in human rating. They obtained moderately strong correlations (r ≈ 0.7)

with all three regression models between human and machine scores in this step. Based

on these results, they further developed a logit scoring model with 90% prediction inter-

vals to provide approximate score ranges that the test taker is likely to gain with human-
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generated scores. These ETS studies will be used as the basis of the fluency measurement

with SS in Chapter 4.

2.3 EI and SS: Testing Methods for Accuracy and Fluency Measures

The most important aspect of the previous EI and SS studies cited in 2.1 and 2.2

is to explicate how EI and SS function to measure L2 oral accuracy and fluency in terms

of the development of the oral proficiency testing system in this research. The critical

characteristic of EI is that test takers are required to use particular grammatical features

presented in the test items in their production. Therefore, it is reasonable to think that

avoiding or failing to reproduce the features accurately indicates tangible information

on the limitation of learners’ current oral production capability. Regarding this aspect,

Naiman (1974:34) describes as follows:

The advantage of using imitation as a technique for collecting data comes from

the fact that whatever sound or grammatical structures the researcher wishes

to look at can be elicitedwithout having to record hours of spontaneous speech

. . .. Spontaneous speech data . . . suggest that speakers of a second language

will go to considerable length to avoid the use of a sound or grammatical struc-

ture that is particularly difficult for them.

In other words, the test taker of EI is forced to produce sentences with specific

features regardless of whether he or she has already acquired those features in the target

language. Therefore, as described in 2.1.1 and Vinther (2002), both comprehension and

production are hindered significantly if those features are absent in the current interlan-

guage, which leads to less accurate production in the EI task. Because of the objective

grading with EI mentioned in 2.1.2, the differences in production accuracy can be distin-

guished with quantified scores. This is the basis for the assumption in this study that EI

is a powerful technique to tap the test taker’s L2 oral accuracy. At the same time, this

fact further indicates that (1) creating EI test items which are able to classify learners’ L2

accuracy in a gradable manner is very crucial in developing an effective EI test, and (2)

dictating EI responses with ASR accurately is crucial to attain precise objective grading
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proposed by Graham (2006). Regarding these issues, I will propose a proceduralized item

development technique in Chapter 3 and an optimal language model development for EI

grading using ASR in Chapter 4.

The main reason that I chose SS for fluency measurement is rather obvious. A sub-

stantial number of studies have been conducted to measure L2 fluency based on various

features. Typically, these studies examine several quantifiable fluency features to illus-

trate the role of fluency observed in production activities and indicate the relationship be-

tween those features and L2 oral proficiency (Koponen and Riggenbach 2000, Segalowitz

2010). Table 2.1 shows the empirical and theoretical fluency studies and their focused

features.

Table 2.1: L2 Fluency Studies and Focused Features

Study Features

Ellis (1993) temporal variables and hesitation phenomena
Laver (1994) filled and unfilled pauses
Freed et al. (2004) speech rate, total words spoken, duration of speaking

time, etc.
Garcı́a-Amaya (2009) speech rate, repetitions, repairs, total number of

words, etc.
Chambers (1997) number of pauses, length of run, place of pauses, L1

transfer of pause patterns, etc.
Kormos and Dénes (2004) speech rate, phonation-time ratio, mean length of

runs, etc.

Interestingly, these fluency features play critical roles inmeasuring oral proficiency

in computer-based SS tests such as the TOEFL test. See Table 2.2, which shows the L2

proficiency features investigated in Higgins et al. (2011).

Note that the majority of variables indicated in Table 2.2 are fluency-related fea-

tures. Therefore, the computer-generated scores in Higgins et al. (2011) are fundamentally

based on fluency features obtained through semi-direct test items used in their study. Fur-

ther, retrieving most temporal features mentioned in Table 2.2 with ASR does not require
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Table 2.2: Oral Proficiency Variables in Higgins et al. (2011)

Variable Name Feature Type Feature Description

wpsec Fluency Speech articulation rate
tpsecutt Fluency and Vocaburary Uniquewords normalized by speech du-

ration
tpsec Fluency and Vocaburary Unique words normalized by total word

duration
wdpchk Fluency Average length of speech chunks
wdpchkmeandev Fluency Mean absolute deviation of chunk

lengths
longpmn Fluency Mean duration of long pauses
silmean Fluency Mean duration of silences
silpwd Fluency Duration of silences normalized by re-

sponse length in words
lmscore Grammar Language Model score
longpwd Fluency Number of long pauses normalized by

response length in words
amscore Pronunciation Acoustic Model score

the high-precision dictation capability because those features are basically determined by

the presence or absence of utterances in the speech samples, regardless of learners’ L2

speaking ability. In other words, the ASR settings for fluency measurement are not neces-

sarily trainedwith ample L2 acoustic and corpus data to obtain such information. Because

of these reasons, it is safe to say that retrieving fluency features from an SS test with ASR

is an optimal approach considering the limitation on the available ASR capability.

In Chapter 3, I will focus on the creation of optimal EI test items with a systematic

procedure based on corpus technology.
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Chapter 3

EI Item Creation

3.1 Systematic Item Creation

Creating optimal EI items is the first important stage for the development of effec-

tive EI tests. Several studies which discuss criteria for EI item creation are found in SLA

and psycholinguistics literature. The following items indicate some of the typical condi-

tions pointed out in those previous studies on this issue:

Sentence Length: EI items must exceed participants’ short-term memory capacity to

avoid rote repetition. This includes controlling sentence length based on the number

of syllables or words (Jessop et al. 2007).

Target Features: Lexical and morphological features in EI items must be carefully chosen

because they may make items too easy or difficult for learners to imitate, which greatly

affects EI performance and scores (Tomita et al. 2009).

Feature Positions: Ideally, the target features must be placed in the middle position of the

stimuli (Erlam 2006).

However, these criteria are rather vague and difficult to interpret in creating items for

a particular target language. In the case of Japanese EI, for example, it is reasonable to

assume that the maximum sentence length of test items should be considerably longer

than those of English items due to the fact that the amount of information contained

in a syllable (or mora1) is significantly small compared with English (Maddieson 2005).

Also, the complex morphosyntactic features are often unavoidable even with a short

Japanese sentence because of the agglutinative nature of the language, which causes high

morphological complexity due to consecutive morpheme attachment in single words

1A mora (pl. morae) is a phonological unit used for the binary scoring in this study. See Chapter 4 in
Tsujimura (2007) for detailed description from a linguistic viewpoint.
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(e.g., causative passives, see Shibatani 1990). Further, verb formation and compound-

ing constructions are linguistically significant characteristics of Japanese (Kageyama 1993,

Matsumoto 1996) but those features are almost always located at the end of the sentence

because the language is typologically verb-final. Undoubtedly, these language-specific

characteristics should be taken into account in the production of optimal Japanese EI

items along with the suggestions on item creation above.

Moreover, it is important to develop a method to constantly create a sufficient

number of new items with various difficulty levels in order to avoid the practice effect

(Brown 1988) that comes from multiple exposure to the same prompts over time. Also, it

is necessary to proceduralize an item management system to classify test items according

to difficulty levels and to properly reflect test takers’ oral proficiency by using such as-

sorted items retrieved from the item database. Logistically, this involves much time and

effort if the process relies solely on native speakers’ intuition. Therefore, developing a

systematic procedure is imperative to address such a issue.

In this chapter, I will propose a structured method to create quality EI items from

a linguistic and pedagogical point of view, based on the study conducted by Christensen

et al. (2010). Further, I will examine the effectiveness of newly created items with two

statistical analyses.

3.2 Previous Study

Christensen et al. (2010) examined amethod to create English EI items utilizing var-

ious NLP techniques, based on the item creation criteria suggested by Jessop et al. (2007).

They point out that manually created items found in previous studies such as Graham

et al. (2008b) and Valian and Prasada (2006) significantly lack naturalness due to exces-

sive emphasis on specific features such as word order and lexical complexity for the sake

of the research purpose. They claim that such artificial test items do not necessarily reflect

learners’ L2 proficiency and emphasize the use of sentences that occur in corpora to en-

sure accurate predictions of L2 oral proficiency. To systematically produce EI items which

contain target features from L1 corpus data, they developed a comprehensive NLP tool

leveraging various language resources to retrieve test item candidates. This tool exam-
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ines lexical density, word frequency, syllable length and grammatical features in queries

in the process of sentence searches from the various corpora they used. They report that

the correlation of the scores of EI items selected with this tool to the ratings of an oral

proficiency test administered at an English-for-academic-purposes (EAP) institution was

significantly stronger than those of the manually created EI items in Graham et al. (2008a).

They further mention that this item creation method is far more time-efficient than the

manual creation approach and enables them to create EI tests for specific purposes by

using different types of corpora as needed.

Interesting aspects of their study include EI items based on natural language in-

stances obtained from a spoken data corpus and on the effectiveness of corpus-based

EI items in measuring oral proficiency. I claim that their approach is also desirable to

Japanese EI item creation because (1) some of the similar tools and language resources

used in their study are also available to replicate this study, and (2) this approach may

open a path to overcome the ceiling effect seen in Matsushita and LeGare (2010) (see also

4.3) more easily than addressing it with a manual item creation approach.

However, this item creation method is not applicable unconditionally because of

the language-specific aspects mentioned in 3.1 above. To customize this approach to

Japanese item creation, the following points should be considered:

(1) Christensen et al. (2010) mainly focused on sentence length, lexical frequency and

complexity, and morphological features based on the annotation information pro-

vided by the language resources used in their study. However, I argue that these

features are not enough to create optimal Japanese EI items which draw clear dis-

tinctions, especially between those who are rated as Advanced Mid and Advanced

High or Superior under the OPI criteria. This is mainly because the inflectional

morphemes are largely salient and regular in Japanese (Kageyama 2010), and thus

it is unlikely that those features affect difficulty in EI performance significantly2. In

terms of Japanese EI item creation, there is a strong need to take into considera-

2Matsushita et al. (2010) reported that the EI test used in Matsushita and LeGare (2010) did not differ-
entiate between advanced learners and native speakers based on the comparison between EI scores and
OPI ratings. We claimed that this was mainly because the test items used in the study focused solely on
grammatical features.
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tion a higher level of language phenomena based on a viewpoint of theoretical and

empirical linguistics in order to incorporate desirable difficulty levels in EI items.

(2) To accomplish (1), it is necessary to list language phenomena that contribute to the

enhancement of item quality in a systematic manner. To address this task, identify-

ing such language phenomena through careful examination of (psycho)linguistic lit-

erature and statistical item analyses with the empirical data are important. Further,

establishing an effective procedure to identify item candidates that contain such

phenomena with existing and/or custom-made corpus tools is also important.

(3) It is essential to create EI items according to the needs and interests of learners and

instructors. Therefore, using grammatical features taught in a language program as

criteria for item development should also be considered. Regarding this, the method

suggested by Christensen et al. (2010) is useful because the typical features covered

in language programs are identifiable with most NLP resources available in public

use.

In the rest of this chapter, I discuss the item creation process based on (1) – (3)

above. In this particular study, I developed thirty corpus-based Japanese EI items accord-

ing to (a) the scheduled acquisition order based on the topics covered in the textbooks

used in the Japanese program at Brigham Young University (BYU), and (b) the syntactic

and semantic phenomena which are unique to the language and not covered in the text-

books specifically. Section 3.3 will discuss the theoretical background of syntactic and se-

mantic phenomena in (b) above. Section 3.4 will illustrate the item engineering approach

discussed in Matsushita et al. (2010) as a comparison with the corpus-based approach dis-

cussed in the subsequent sections. The rest of the sections will discuss the corpus-based

approach and the statistical analyses based on an empirical study.

3.3 Syntactic and Semantic Features in Japanese

There are numerous linguistic features that make the Japanese language distinct

from other languages. However, it is impossible to enumerate all of them and examine

whether they are ideal for EI item creation in this single study. In this section, I discuss
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only three linguistic phenomena: noun-modifying clauses, embedded clauses contain-

ing pro-dropped pronouns, and evidentiality based on several theoretical and empirical

linguistic studies.

3.3.1 Noun-Modifying Clauses

Various psycholinguistic studies indicate that Japanese relative clauses are one of

the complex syntactic structures that require high memory load and cause a garden path

effect (Carroll 2008). For example, Sawa (2005) reports on a study of reading time and

comprehension in a self-paced reading test containing various relativized sentences with

22 native speakers of Japanese. He indicates that SS and SO sentences3 delayed reading

speed and SS sentences resulted in the highest error rates in comprehension tasks. He

ascribes these results to the garden path effect caused by these sentence structures. In-

terestingly, Sawasaki (2009) conducted a similar study with 84 L2 Japanese speakers and

reported that SS and SO sentences also caused the longest reading time.

Further, Comrie (2010) explains the unique characteristic of Japanese relative clauses

compared to their English counterparts. The following examples illustrate the difference

in the flexibility of NP extraction in the process of relativization between Japanese and

English:

(3.1) a. The person who kept the dog died.

b. *The dog [that the person who kept died] came to the station every evening to

greet his master.

(3.2) a. Inu o kawaigatte kureta hito ga nakunatta.

b. [Kawaigatte kureta hito ga nakunatta] inu ga maiban eki made kainusi o

mukae ni kita.

(Comrie 2010:41)

3SS: the head noun serves as a subject in both relative and matrix clauses; SO: the head noun serves as
an object in the relative clause and as a subject in the matrix clause.
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There are several syntactic frameworks which describe the phenomenon above.

For instance, from the government and binding (GB) perspective (see Chomsky 1981),

(3.2b) is called a violation of subjacency (Chomsky 1977) and cannot be perceived as a

relative clause for the English counterpart depicted in (3.1b). Therefore, Comrie (2010)

refers to such relative clauses as noun-modification clauses which are distinctively differ-

ent from the conventional relativization patterns discussed in Keenan and Comrie (1977).

As a similar case, Nakayama (2002) introduces a pragmatic complex NP, an example of

which is shown below:

(3.3) [Yuumei-na
famous

haiyuu-ga
actor-NOM

nesshin-ni
ardently

shashin-o
photo-ACC

totta]
take-PST

sakuhinshuu-ga
collection-NOM

saikin
recently

chuumoku-sare-ta.
attention-CAU-PST

‘The collection of the photos the famous actor took recently attracted attention.’

(Nakayama 2002:410)

The interesting aspect of this structure is that there is no empty category that has

a connection with the head noun to indicate an argument role in the relativized clause in

the bracket. However, the embedded clause still behaves as a modifier of the head noun

following it. Regarding the processing of these noun-modification formations, Nakayama

(2002) indicates that L1 speakers address such complex NPs based on the valency infor-

mation of the verbs inside the modifying clauses while parsing the sentences and make

constant predictions of the sentence endings based on the saturation of argument require-

ments.

Regarding EI item development, there are several advantages to using such noun-

modification clauses. First, the structure makes it possible for verb constructions to locate

in the middle of prompt sentences by utilizing the prenominal modification in Japanese.

Second, unlike English, creating short sentences with noun-modification clauses is rela-

tively easy with pro-drop (Tsujimura 2007), which makes it possible to create syntactically

complex EI prompts with a few simple lexical items. Third, these structures are very com-

mon in Japanese, which enables a corpus search tool to provide a substantial number of

instances effectively.
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The pro-drop phenomenon is also a very common linguistic feature in Japanese

and provides an interesting syntactic and semantic influence to structurally complex sen-

tences. The following subsection will discuss the relationship between embedded clauses

and pro-drop.

3.3.2 Embedded Clauses and pro-Drop

Along with the noun-modification constructions, sentence embedding and its ef-

fects are extensively discussed in the field of cognitive science. Regarding embedded

clauses, Bader and Bayer (2006) discuss sentence structures which are not processable for

most native speakers of English because of the memory overload with multiple nomina-

tive NPs. As shown in (3.4), the following type of sentence is very difficult to process

although it is perfectly grammatical:

(3.4) #The administrator who the intern who the nurse supervised had bothered lost the

medical reports.

(Bader and Bayer 2006:21)

They explain that this is mainly because the embedded clauses are nested hierar-

chically, which causes memory overload in processing the sentence. See the following

diagram:

(3.5) CP1

The administrator CP2 lost the ... reports

who the intern CP3 had bothered

who the nurse supervised

(Bader and Bayer 2006:21)
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Miyamoto (2008) also discusses the same issue in the case of Japanese. He men-

tions that the following Japanese sentence is not processable for most native speakers of

Japanese either:

(3.6) #Sensei-ga
teacher-NOM

gakusei-ga
student-NOM

onnanoko-ga
girl-NOM

syoonen-o
boy-ACC

mikake-ta-to
say-PST-that

hanashi-ta-to
tell-PST-that

it-ta.
say-PST

‘The teacher said that the student told that the girl saw the boy.’

(Miyamoto 2008:240)

The hierarchical structure of (3.7) is analogous to the one shown in Bader and Bayer

(2006):

(3.7) CP1

sensei-ga CP2 itta

gakusei-ga CP3 hanashita-to

onnanoko-ga syoonen-o mikaketa

(Based on Bader and Bayer 2006)

This center-embedding construction, however, is not completely impossible in Japanese.

With pro-dropped pronouns mentioned above, the following sentence is perfectly sound

and processable for native speakers:

(3.8) ∅

pro(=I)
nani-ga
what-NOM

gen’in-nano-ka
cause-COP-Q

∅

PRO(=I)
wakara-nai-no-ga
understand-NEG-COMP-NOM

ichiban
most

komari-mashita.
trouble-PST

‘What baffled me most is that I didn’t know what caused it.’
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(3.9) CP1

pro(=watashi-ga) CP2 ichiban komari-mashita

PRO(=watashi-ga) CP3 wakaranai-no-ga

nani-ga gen’in-na-no-ka

c-
co

m
m

an
d

Comrie (2010) mentions that semantically vacuous lexical morphemes such as -no

may be linked to the flexible structures in noun-modification structures discussed 3.3.1.

This explanation may be applicable to this center-embedded construction above, along

with pro-drop. However, the concrete reasons for this phenomenon remain to be seen,

and it is not the main focus of this study. The main focus here is whether L2 speakers of

Japanese, especially those who speak English as their L1, are capable of repeating such

sentences in EI if the structure is not possible in their L1 in any case. Based on this per-

spective, this structure is also considered in item development in this study.

3.3.3 Evidentiality

The semantic feature I chose for this study is evidentiality (McCready and Ogata

2007). Japanese evidentials imply sources of information the speaker relies on. Different

evidentials exhibit different connotations according to the sources. The following exam-

ples show typical evidentials and subtle differences among them. These evidentials are

not clearly distinctive, but each evidential can be used to cover a specific domain of se-

mantic types of references.

(3.10) a. Kono
PROX

kusuri-wa
medicine-TOP

yoku
well

kiku
work-INF

rashii.
EVID

‘I infer from what I heard that this medicine works well.’
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b. Kinoo
yesterday

mo
also

daremo
anyone

ko-na-katta
come-NEG-PST

node,
so

kyoo
today

mo
also

daremo
anyone

ko-nai
come-NEG

mitai
EVID

da.
COP

‘No one came yesterday, so it seems that no one will come today, either.’

c. Koizumi-sooridaijin-wa
Koizumi-PM-TOP

aitsu-o
him-ACC

kubi
neck

ni
to

suru
do

soo
EVID

da.
COP

‘Prime Minister Koizumi is going to fire him (I heard).’

McCready and Ogata (2007:154–160)

The examples above show a critical difference between epistemic modals and ev-

identials. In (3.10a), the speaker implies that (s)he has come to realize the efficacy of the

medicine through some inference based on reading an advertisement, and so forth. The

speaker in (3.10b), on the other hand, makes the statement based on his or her previous

experience gained the day before. In (3.10c), the speaker makes this comment based on

hearsay. According to McCready and Ogata (2007), each evidential is perceived as an

indirect inferential, a judgmental, or a hearsay type respectively, and none of these are

deterministic on the facts implied with the main clauses. Because of this, native Japanese

speakers can perceive these statements not only as epistemic but also as referential ex-

pressions which indicate where the knowledge comes from.

Evidentials are also one of the salient features, and the combination with a complex

sentence structure, as in (3.10b), commonly occurs in Japanese. In this study, this feature

is considered in the item creation process.

3.3.4 Application of the Theoretical and Empirical Notions to Item Creation

The linguistic features in the preceding subsections are discussed in the theoretical

and empirical linguistics literature. However, there are few previous studies applying

these features to Japanese EI or other similar testing methods. We (Matsushita et al. 2010)

recently investigated these syntactic and semantic features with the item engineering or

manual item creation approach and compared them with items used in Matsushita and

LeGare (2010), which were selected from the Simple Performance-Oriented Test (SPOT,
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Kobayashi et al. 1996, Ford-Niwa and Kobayashi 1999)4, in order to examine the effec-

tiveness of those items. The following section will sketch some findings of the study and

describe the direction toward corpus-based item creation proposed in the present study.

3.4 Item Engineering Approach

Matsushita et al. (2010) examined additional eight EI items containing the afore-

mentioned linguistic features along with those selected from SPOT. The item creation

with this approach is as follows:

1. Select target syntactic and semantic features as described in 3.3.

2. Create several item candidates for each target feature.

3. Consult with several native speakers. Examine the naturalness of each sentence.

Decide which candidate sounds most plausible.

4. Adjust sentence length and lexical items as needed.

Based on this process, the new items were carefully designed to contain approxi-

mately the same mora lengths as the SPOT items used in Matsushita and LeGare (2010).

The lexical items in these new sentences were also carefully chosen from basic vocabulary

lists used in the introductory courses to avoid excessive influence from the lexical items

on EI performance. With these EI items, we compared the scores yielded by the binary

scoring method proposed by Graham (2006) to those of the SPOT items. We adminis-

tered these eight items along with the sixty SPOT items to 157 subjects using a computer-

delivered testing tool in Winter 20105. Figure 3.1 shows the score difference among three

groups classified according to the courses that the subjects enrolled at the time of the data

collection (100: first-year, 200: second-year, and 300: third-year Japanese courses)6.

4The reasons that we chose SPOT for item selection are because (1) the test procedure is very similar
to EI: the test taker listens to a series of prompts while reading the same sentences on the answer sheet
and fills in blanks in the printed sentences very quickly (two seconds for each item), and (2) therefore, the
lengths and the morphosyntactic features contained in those SPOT sentences are sufficiently processable
for L2 learners in EI tasks as well.

5Refer to 4.2 in Chapter 4 for more detail on the testing tool.
6See also 3.6.1 in this chapter for further descriptions on these courses and the textbooks.
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Figure 3.1: New and Old Item Score Comparison (Matsushita et al. 2010)

Clearly, the additional eight items with complex syntactic and semantic features

weremore challenging than the SPOT items for all the subject groups based on these mean

score patterns. Further, we showed the detailed score differences of the high achievers in

these subject groups, as seen in Table 3.1.

As indicated, only subjects 78, 38, and 76 achieved higher scores on the eight new

items than on the SPOT items. According to a pre-test survey the participants answered,

these three learners were near-native speakers who received formal education in Japan,

whereas all of the others had limited or no overseas experience. Matsushita et al. (2010)

point out that these eight items effectively distinguished learners with substantial L2

capability from those with less L2 experience and concluded that the ceiling effect was

greatly lessened by these carefully engineered EI items.
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Table 3.1: Comparison of Top 10 Scores of SPOT Items and New Items (Matsushita et al. 2010)

Subject ID SPOT Items (%) New Items (%)

78 99.21 100.00
38 98.07 100.00
42 97.89 84.02
76 97.81 100.00
80 97.54 82.25
28 96.84 64.50
43 96.14 72.78
66 95.88 78.11
41 95.00 64.50
70 94.74 92.31

These results indicate that the item feature identification based on language-specific

phenomena is effective for optimal EI test creation. However, item creation based on the

item engineering approach is time-consuming, and it is difficult to developmultiple items

with the same linguistic features in a short time. The corpus-based approach is a method

that overcomes these disadvantages. I will discuss the basic procedure of item creation

with this approach in the following section.

3.5 Corpus-Based Approach

The basic concept of corpus-based item creation is depicted in Figure 3.2. As the

figure indicates, the process of the corpus-based approach is simple. Using annotated

corpora, multiple sentences with particular target features are retrieved based on various

corpus queries. Then optimal item candidates are selected among those retrieved sen-

tences and modified according to EI item criteria such as the maximum mora length if

necessary. The important aspect of this approach is the corpus tool which enables us to

identify desirable sentences contained in the corpora in an efficient manner.

For this study, I used ChaKi.NET (Iwatate et al. 2011) as a corpus tool. This tool

contains a wide variety of functions to enable users to search for sentences in a similar

manner to Christensen et al. (2010). Figure 3.3 shows the screenshot of ChaKi.NET.
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Figure 3.2: Schema of Corpus-Based Item Creation

Figure 3.3: ChaKi.NET

Matsushita et al. (2010) discuss the possibility of using such a corpus tool to find

item candidates with the item retrieval procedure shown in Figure 3.2. As an example, we

identified a sentence with a internally headed relative clause (IHRC, see Tsujimura 2007)

from a collection of large-sized spoken data called the Corpus of Spontaneous Japanese
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(CSJ, Maekawa 2003, Furui et al. 2005)7 based on the sentence with the syntactic structure

in their study as a prototype. Figure 3.4 shows the engineered and CSJ-based sentences.

(a) Engineered Sentence (b) CSJ Sentence

Figure 3.4: Internally Headed Relative Clause of Japanese (Matsushita et al. 2010) (a) IHRC
sentence manually engineered by native speakers (b) IHRC sentence retrieved from CSJ data

In 3.5.1, I will describe each stage of the corpus-based approach and the item anal-

ysis in detail.

3.5.1 Prototype Generation

As shown in Figure 3.2, the first stage of item creation is to generate prototypical

cases that embody the target constructions for a corpus search, based on the identified

linguistic features discussed in 3.3. This process involves such tasks as creating sample

sentences and extracting the common syntactic constructions in those sentences. In this

respect, the corpus-based approach is exactly the same as the item engineering approach.

However, the advantage of this corpus-based approach is that perfectly formed proto-

types are not necessary at this stage because the prototypes are used as search queries

and acceptable only if sentence fragments are generated for the corpus search.

Based on those prototypes, search queries are created. Chaki.NET covers most of

the search functions utilized in Christensen et al. (2010): regular expressions, dependency

7Refer to 4.3 for further descriptions on CSJ.
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search, word list search, and so forth. Figure 3.5 shows an example of the dependency

search query for simple relative clauses8.

Figure 3.5: Example of Dependency Search Query

Of course, the tool suggests multiple sentences based on the queries. Therefore,

it is necessary for humans to examine the appropriateness of those sentences as possible

EI items. In 3.5.3, I will describe the selection and adaptation process using an actual

sentence.

3.5.2 Corpus Processing

Along with prototype generation, corpus processing is a preparatory stage for cor-

pus searching. As Christensen et al. (2010) indicate, plain corpora need to be annotated

with morphological and syntactic information in order to search for sentences with vari-

ous strategies. In this study, I used the morphological analyzerMecab 0.989 to decompose

the CSJ sentences into morphemes and add lexical information (part of speech (POS), pro-

nunciation, conjugation and declension classes, etc.) to the morphemes10. Further, I used

8As shown in 3.5, ChaKi.NET utilizes a dependency grammar framework to manage the constituency
relations (see Yamada andMatsumoto 2003). In the field of Japanese NLP as well as linguistics, using a syn-
tactic unit called bunsetsu is the mainstream approach for syntactic analysis, and the concept is incorporated
in this tool as well. Kurohashi and Nagao (2003) illustrate the application of bunsetsu to corpus annotation
and parsing with detailed description based on their large-scale automatic corpus annotation project.

9http://mecab.sourceforge.net/
10Although CSJ is annotated with detailed information, I processed it with the tools discussed above

because the tagging and dependency strategies of CSJ are slightly different from the format used for
ChaKi.NET. In a future study, I will investigate a method to incorporate the CSJ annotation information
directly in ChaKi.NET.
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the Japanese dependency structure analyzer CaboCha 0.5311 to create dependency rela-

tions of the morphemes decomposed with MeCab.

3.5.3 Selection / Adaptation

Ideal items are selected at this stage among the suggested sentences through the

process discussed in 3.5.1. However, it is unlikely to find optimal EI items directly in the

corpus data in many cases because those sentences tend to contain undesirable lexical

items and mora lengths excessive for EI test items. Therefore, it is necessary to do some

minor modification to tailor those sentences manually. For example, the sample sentence

used to explain the relationship between pro-drop and the center-embedded structure in

Example 3.8 was actually found in CSJ using the corpus-based item creation approach

discussed here. See Figure 3.6.

1:初めは

2:赤ちゃんだから

D

4:ないと

D

3:仕方が

D

5:思っていましたが

D

13:困りました。

D

6:半年

7:過ぎても

D

8:収まらず

D

10:原因なのか

D

9:何が

D

11:分からないのが

D

D

12:一番

D

14:

D

(a) Original Sentence

1:何が

2:原因なのか

D

3:分からないのが

D

5:困りました。

D

4:一番

D

6:

D

(b) Tailored Sentence

Figure 3.6: Center-Embedded Clause Sentence as an EI Item (a) Center-embedded clause
sentence found in CSJ (b) Center-embedded clause sentence tailored for EI use (D denotes
“dependent”)

11http://chasen.org/ ˜ taku/software/cabocha/
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Figure 3.6(a) shows the sentence directly retrieved from CSJ (67 morae, 13 bun-

setsu). Obviously, this sentence is not ideal for EI use because of the length and complex-

ity. However, the tree structure clearly shows that the sentence can be shortened while

retaining the center-embedded feature by trimming the two branches (the one with 1 to

5 and the other 6 to 8). With this simple process, the sentence is modified as 3.6(b) (27

morae, 5 bunsetsu). The graphical dependency relations of the tailored sentence is shown

in Figure 3.7.

Figure 3.7: Graphical Diagram of an EI Item with Center-Embedded Clause Structure

By conducting this selection and adaptation process cyclically, it is possible to pro-

duce multiple EI items with the same feature with relative ease and in a short period of

time. The search queries, selected sentences, and tailored sentences can be saved in the

database12 for future use.

Although this corpus-based approach still requires native speakers’ linguistic in-

tuition throughout the procedure, the burden on item creation is lighter than the item

engineering approach because actual spoken sentences are used as models, rather than

12ChaKi.NET contains SQLite as its component.
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sentences generating manually. The other advantage is authenticity. Because these sen-

tences were actually used in speech by native speakers, they are more natural than those

artificially generated based on linguistic notions only.

With this process, I created thirty EI items to examine the effectiveness of this ap-

proach. In the following section, I will discuss in detail the statistical analyses of the items

created with this method.

3.6 Item Effectiveness Analyses

3.6.1 Method

Using EI items created with the corpus-based approach, a study was conducted to

analyze item effectiveness. The method is described as follows.

Items. The items were created based on the textbooks used in the courses offered at BYU

(the 100 level: first-year, focusing on basic vocabulary, conversation, and grammar skills;

the 200 level: second-year, focusing on further practice in conversation and basic reading

and writing skills; and the 300 level: third-year, focusing more on reading, writing, and

culture). Refer to Jorden and Noda 1987, Jorden and Noda 1988, Jorden and Noda 1990,

Watabe 1979, Watabe 1982 for the content covered in these courses. Also, items with the

syntactic and semantic features described in 3.3 were also created. Both types of items

were found through the corpus-based process discussed in the previous section. In this

study, 26 textbook-based EI items were selected with grammatical features covered in

those textbooks and four sentences with the aforementioned syntactic and semantic fea-

tures. The textbook-based items were classified according to the class number and item

level as shown in Table 3.2 (see also Table 4.6) and the other four were categorized as

superior based on the assumption that their difficulty exceeds the other 26 items. The

breakdown of items is summarized in Table 3.2.

The total number of subjects examined in the analyses below is 231. The test was

administered with the testing tool mentioned in 3.4 above. The EI scores were generated

using the latest version of the EI grading system called System III. Thus, the statistical
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Table 3.2: Corpus-Based EI Items

Item Level Class Number # Items # Morae # Bunsetsu

100 Level
101 4 13–14 2–4

102 4 13–15 3–4

200 Level
201 4 17–20 4–5

202 4 17–20 3–4

300 Level
301 5 22–24 4–5

302 5 24–25 4–5

Superior 4 25–31 5–6

analyses discussed below are based on results obtained through this grading system. Re-

fer to 4.4.3 for other details on the subjects, test administration, and grading system.

3.6.2 Factorial ANOVA

Figure 3.8 illustrates the scores according to the item levels indicated in Table 3.2

and the class levels of subjects mentioned in 4.4.3. As indicated in Figure 3.8, the mean

scores of the 100-level, 200-level, and 300-level subject groups decreases significantly as

the item level increases whereas those of the native subject group are stable. Also, the

score decrease trends are uniquely different from one group to the next. As the interac-

tion plot indicates, there is an interaction between class and item levels (FClass Level(3,222) =

337.85, p < 0.0001 and FItem Level(3,222) = 225.67, p < 0.0001, respectively). Therefore, it is

safe to say that these corpus-based EI items functioned effectively to classify these sub-

jects according to their proficiency levels.

Table 3.3 below shows the Tukey post-hoc test based on the factorial ANOVA anal-

ysis above. Along with Figure 3.8, this table indicates that the score differences of respec-

tive class level pairs are uniquely distributed. In other words, these results indicate that

each level of items functioned effectively to differentiate these subject groups.
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Figure 3.8: Interaction of Subject and Item Levels

Table 3.3: Score Difference Analysis with Tukey HSD between Subject Groups (the numbers
in the table are mean differences; *p < 0.05, **p < 0.01, ***p < 0.001)

Subject Groups 100 Level Items 200 Level Items 300 Level Items Superior Items

L200-L100 15.78*** 14.15*** 5.39 3.76
L300-L100 27.10*** 40.46*** 36.50*** 30.92***

Native-L100 33.96*** 58.07*** 66.81*** 65.05***
L300-L200 11.32*** 26.31*** 31.12*** 27.15***

Native-L200 18.18 43.92*** 61.43*** 61.29***
Native-L300 6.86 17.60 30.31** 34.14**

39



3.6.3 Rasch Model Analysis

Another method used in this study to examine item effectiveness is a Rasch model.

The main purpose of this analysis, however, is different from the conventional approach

used in the item response theory (IRT) analysis, which is a commonly used statistical anal-

ysis method for item effectiveness evaluation (see also Doran 2005). Rather than focusing

on the difficulty of each item here, I treat these EI items as components of individual test

batches classified according to the item levels described in 3.6.1, in order to enable EI to

measure oral proficiency in a discrete manner. See Figure 3.9.

L100 EI

L200 EI

L300 EI

Superior EI

Success

D
iffi

cu
lty

Le
ve

l

Success

Success

Success

Failure

Failure

Failure

Failure

Figure 3.9: Alternative EI Testing Approach

This figure indicates that the person who can reproduce EI items of a certain item

level with satisfactory accuracy will be considered as a successful learner at that level;

otherwise, the learner is considered unsuccessful at that level and to not have reached

that level of proficiency. The rationale for this alternative EI testing method is described

as follows:

1. The binary scoring method in Graham (2006) (see also Equation 4.1) does not pro-

vide information on which item level is difficult for learners to repeat because it

treats all the morae in a test equally in its calculation procedure. On the other hand,
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this approach enables us to identify the particular level of items that posed a chal-

lenge for learners. If these items are created effectively based on stratified difficulty

levels, this approach will also show the effectiveness of these items as well.

2. In this item effectiveness study, I used only thirty corpus-based items. This ap-

proach will tell us whether this number is sufficient to examine learners’ ability.

Based on these perspectives and the approach depicted in Figure 3.9, I categorized

the EI items according to (1) item levels and (2) class numbers described in Table 3.2, and

conducted an one-parameter unconstrained Rasch model analyses. As mentioned, each

item is regarded as a component of item sets categorized according to class levels or class

numbers, and raw scores calculated with Equation 4.1 are not accumulated. In this anal-

ysis, if a test taker achieves more than 80% for all items in the item level or class number,

the person is considered as successful, which is denoted as 1 in the parameter, and 0 oth-

erwise. The item information criteria plots with the Rasch model in Figure 3.10 show

the respective results. Figure 3.10(a) indicates that the item level difficulties differentiate

the subjects’ ability. The test information function, however, depicts a fluctuated curve,

which may indicate the item-level categorization does not function with these test items.

Figure 3.10(b) indicates that the subjects’ ability is also clearly differentiated according

to the class number, except for 200-level item groups, due to identical trends in the item

characteristic curves. The item information function, which reaches its peak at around

1.5, is rather stable. In terms of the Rasch model analysis, it is probably safe to say that

the class number approach is more reliable than the item level counterpart for the discrete

grading process in Figure 3.9.

3.7 Discussion

The item analyses in the previous section clearly show that the corpus-based items

function effectively for this test in both the conventional scoring method and the item

level classification method illustrated in Figure 3.9. Regarding the Rasch model approach

above, it is reasonable that class number categorization functions more effectively than

the item level counterpart because it reflects the scheduled acquisition order designed in
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Figure 3.10: Item Information Criteria Analyses of Corpus-Based Items
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the Japanese program. Pedagogically speaking, this approach is more suitable to observe

students’ progress in the program longitudinally.

The superior items with syntactic and semantic complexities functioned effectively

in this study. In both factorial and Rasch model analyses, these items required high L2

capability to be reproduced accurately. Interestingly, native speakers’ performance was

not significantly hindered with these items although their scores slightly decreased as

the item level increased. This is also a promising result because these items are totally

acceptable for these native speakers despite the syntactic and semantic complexities in-

herent in the language while non-native speakers’ performance is greatly affected by the

difficulties.

In the next chapter, I will discuss the development of the ASR-based EI grading

system in detail.
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Chapter 4

Japanese EI Grading System and Results

4.1 System Development

As mentioned in Chapter 2, another important aspect in the development of the

automatic EI grading system is attaining high accuracy of dictation for reliable score gen-

eration based on the binary scoring protocol proposed by Graham (2006). To accomplish

this, we conducted a series of studies to develop a robust grading system through the

investigation of optimal language model (LM) creation. The first approach (System I)

uses LMs with very limited language resources based on the assumption that variation

in EI responses is small enough to produce desirable EI dictation with such LMs. The

second approach (System II), on the other hand, utilizes a large L1 corpus coupled with

the language resources used in System I to gain wider coverage to handle unexpected

EI repetitions. The third approach (System III) adds artificially created learner corpora

to System II to increase the capability to deal with interlanguage-influenced EI responses

more accurately. In this chapter, I will depict each approach according to the findings

from the previous Japanese EI studies and propose a method to enhance robustness of

the grading system.

4.2 System I: Grammar-Based Approach

Matsushita and LeGare (2010) investigated an ASR-based grading system for Japa-

nese EI (System I1) based on English EI studies conducted by Graham et al. (2008a) and

Lonsdale et al. (2009). In this study, we selected sixty Japanese EI items with appropri-

ate sentence lengths (10 – 25 morae) containing semantically generic lexical items (i.e.,

free from gender-oriented words, proper nouns and interjections) from SPOT (see 3.3.4).

1I call this System I to compare it easily with subsequent systems (System II and System III).
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We administered this SPOT-based EI test to 98 learners of Japanese enrolled in Japanese

courses at various proficiency levels at BYU in Fall 2009 and scored the collected speech

samples with System I. Table 4.1 shows the ASR specifications in this study.

Table 4.1: System I Specifications (Matsushita and LeGare 2010)

Component Description

ASR Engine Julius 4.1.43

LM Training Tool Palmkit 1.0.314

Language Models Sixty LMswith correct EI sentences and those with different case
marking (kaku-joshi) and binding particle (kakari-joshi)5 patterns

Acoustic Models Hidden Markov Model (HMM) triphone model trained with
20,000 sentences (Mainichi Shimbun newspaper corpus) read
aloud by 120 native speakers of Japanese

In this design, each LM was specifically trained with each model sentence and its

case marking variations based on the assumption that learners’ EI repetitions are very

similar to the model prompts with slight modifications such as case marking patterns.

Because of this assumption, it is safe to say that the recognition with these LMs is basi-

cally equivalent to a finite-state grammar approach (Shikano et al. 2007), which stipulates

a number of possible morpheme sequences in speech samples represented by a finite set

of states and transition paths in a form of a directed graph, with limited-sized dictionar-

ies5. During dictation, the grading system switched LMs one after another because each

grammar-based LMwas specifically trained according to a specific EI item to be processed

for the sake of precise dictation. For comparison with ASR-generated scores, seven raters

(four native and three non-native speakers of Japanese) scored the same speech data via a

browser-mediated grading tool. Both ASR and human grading processes were conducted

2Available at http://julius.sourceforge.jp/ . See also Lee and Kawahara (2009) for more tech-
nical details.

3Available at http://palmkit.sourceforge.net/ .
4See Chapter 4 (Morphology) in Tsujimura (2007) on case particles.
5From now on, I call this approach grammar-based recognition in this study for the sake of simplicity.
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based on the binary scoring method proposed by Graham (2006). The screenshots of ASR

and human graders are shown in Appendix A.

In this grading process, either zero or one was assigned to each mora of all the

collected EI responses. To generate individual item and/or subject scores, Equation 4.1

below is used:

EI Score =

∑
i

Mi

∑
j

Mj

× 100 (i ≤ j) (4.1)

where ∑iMi indicates the total number of correctly pronounced morae and ∑jMj indi-

cates the total number of morae in an item or an entire test.

Based on the human- and ASR-generated binary values and EI scores with Equa-

tion 4.1, Matsushita and LeGare (2010) conducted two statistical analyses to examine

the effectiveness of System I. First, we produced the inter-rater reliability (IRR) statistics

based on Lonsdale et al. (2009) to observe differences between ASR and human binary

scores. We then analyzed the correlations of subject- and item-level scores to examine the

strength of the linear relationship. See Table 4.2 and the corresponding regression and

residual analyses shown in Figure 4.1.

Table 4.2: IRR and Correlation Analyses between Human and System I Scores in Matsushita
and LeGare (2010)

(a) IRR Analysis

IRR Statistic Value

Robinson’s R (%) 84.3

Unweighted κ 0.65

Rater Bias 0.53

(b) Correlation Analysis

n r r2 p

Subject-Level 98 0.98 0.9604 2.2× 10−16

Item-Level 5880 0.84 0.7056 2.2× 10−16

The strong correlation shown in Table 4.2 and Figure 4.1 above indicates that Sys-

tem I is capable of yielding reasonably accurate subject-level scores with the simple LMs.
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Figure 4.1: Regression Analysis of Matsushita and LeGare (2010) (a) the scatterplot and
corresponding regression line and with human- and ASR-generated subject-level scores and
(b) the corresponding residual analysis (Cook’s distance < 0.5)

However, the results also exhibit problems inherent in the grammar-based recognition.

As shown in 4.1(a), the lower-half of the ASR scores are rather favorably generated com-

pared with the human counterparts. Figure 4.2 depicts the situation more clearly.

As indicated in the first histogram, low ASR scores generally start around 40%

whereas human scores spread to lower than 40%, although the mean and standard devi-

ation of both scores are almost identical to each other. We concluded that this favorable

grading was caused by the grammar-based LMs, which lacked wider coverage to dictate

highly inaccurate EI responses due to learners’ low proficiency. Due to this limited dic-

tation capability, System I assigned wrongly pronounced morphemes to correct ones in

the recognition process, which led to better ASR scores than those of humans. Further,

these descriptive statistics indicate that there were a large number of high score achievers

in this EI test which caused a ceiling effect (Hughes 2003) with this SPOT-based EI test.

Matsushita and LeGare (2010) assumed this was because of low difficulty of the chosen

EI items. Refer also to Section 3.4 regarding this item difficulty issue.
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Figure 4.2: Distribution of System I and Human Scores (Matsushita and LeGare 2010) (the
points and arrows below the boxplots indicate the mean values and one standard deviation
ranges)

To overcome the favorable grading issue above, Matsushita (2010) and Matsushita

et al. (2010) proposed a new grading system (System II) with LMs incorporating a large-

scale L1 speech corpus. I will discuss details of System II in the following section.

4.3 System II: Corpus-Based Approach

Based on the findings in Matsushita and LeGare (2010), Matsushita (2010) and

Matsushita et al. (2010) investigated a new approach in developing a grading system (Sys-

tem II) to produce fair scores throughout all the levels of proficiency. The main foci of

these studies are as follows:

(a) Our basic assumption was that it is necessary to include additional language re-

sources to attain wider coverage than that of System I in order to cope with EI

repetitions which are unexpectedly different from the model prompts. However,

it is essential to identify optimal corpora that have the capability to augment the

previous system effectively.
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(b) Increasing LM coverage leads to more perplexity, or a increased number of possible

choices at any given point in the speech recognition processes, which may cause the

grading system to become more sensitive to subtle mispronunciations and cause

harsher grading even on EI responses deemed essentially correct by human raters.

Therefore, it is important to manipulate the distribution of word occurrences in the

training corpora to retain the dictation capability of System I.

Regarding (a), these studies chose to use CSJ, a large-scale corpus, briefly explained

in 3.5. Matsushita et al. (2010) report that CSJ has several advantages for EI system grad-

ing: (1) the corpus is composed of large-sized pure spoken data rather than written texts

such as newspapers, which is desirable in dealing with variations of EI responses as de-

scribed in 4.2, (2) a wide variety of speech-specific language phenomena including disflu-

ency features (e.g., fillers and fragments, repairs, word coalescence, vowel devoicing, etc.)

are precisely annotated, and (3) the language data are stored in an XML database, which

enables users to easily customize the provided linguistic information at their disposal.

Table 4.3 below summarizes the contents of the CSJ6.

Table 4.3: Summary of the Content of CSJ

Characteristic Description

# Speakers 1,417 (947 males and 470 females)

Types academic presentations, extemporaneous presentations,
interviews, dialogues, reading transcriptions, etc.

# Hours 658.8

# Tokens 7.5 million

To incorporate the CSJ language data in the grading system, the lexical items and

corresponding annotation information were retrieved and converted to the text format

for LM training. A simple Perl script was used to retrieve the necessary language data

(morphemes, pronunciation, POS information, and so on) in 3,286 XML files in the CSJ

6The detailed specifications of CSJ are found in NINJAL (2006).
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package and to reorganize the information according to the Cambridge-CMU toolkit for-

mat7, as shown in Figure 4.3.

(a) XML Format (b) Cambridge-CMU Toolkit Format

Figure 4.3: Format Conversion of CSJ Data

Regarding the perplexity issue mentioned in (b) above, Matsushita et al. (2010)

report that the occurrence of correct EI items in the LMs was increased to make those

sentences stochastically dominated in the training copora (at least 70% of the total size) to

ensure that the correct sentences would be favorably recognized. The other specifications

of System II are summarized in Table 4.4.

With this system, Matsushita et al. (2010) conducted the IRR and correlational anal-

yses with the same dataset used in Matsushita and LeGare (2010). Additionally, a second

round of human grading was conducted by three more native and non-native speakers of

Japanese for comparison. The results of the analyses are shown in Table 4.5 and Figure 4.4.

7See http://mi.eng.cam.ac.uk/ ˜ prc14/toolkit.html . Palmkit, the LM toolkit used in our
studies, conforms to this format as well.

8Compared with the acoustic model used in Matsushita and LeGare (2010), Matsushita (2010) reports
that the recognition accuracy of EI responses was significantly improved with this CSJ model. See also
Nanjo et al. (2004) for more technical details.
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Table 4.4: System II Specifications (Matsushita et al. 2010)

Component Description

ASR Engine Julius 4.1.4

LM Training Tool Palmkit 1.0.31

Language Models Sixty LMs with CSJ and EI item sentences

Acoustic Models CSJ acoustic model9, an HMM triphone model trained with 2496
conference presentation data (486 hours worth)

Dictionary Size 20,000

Table 4.5: IRR and Correlation Analyses with Human Scores in Matsushita et al. (2010) (H-
H: Human-Human Comparison; H-I: Human-System I Comparison; H-II: Human-System II
Comparison)

(a) IRR Analysis

H-H H-I H-II

Robinson’s R (%) 93.8 84.6 83.6

Unweighted κ 0.86 0.66 0.64

Rater Bias 0.53 0.57 0.44

(b) Correlation Analysis

H-H H-I H-II

Correlation Coef. 0.9986 0.9840 0.9886

Mean Residual 0.94 3.16 2.89

Figure 4.4(b) and Table 4.5 indicate that the regression model with System II fits

better than that of System I in Figure 4.1(a) although the IRR statistics are slightly lower

than System I counterparts.

Note that the mean residual is also improved with System II although it is still

considerably larger than that of human scores. This indicates that the biased ASR grading

for low scores is lessened due to the additional language information provided with CSJ.

Figure 4.5 also show that System II treated low scores more appropriately than System

I. As shown in Figure 4.5 below, the overall score distribution of System II became more

similar to that with human scores, without causingmuch distortion inmean and standard

deviation from those of human and System I scores.
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Figure 4.4: Regression Analysis of Matsushita et al. (2010) (a) the scatterplot and regression
line of 1st and 2nd human-graded scores and (b) 1st human and System II Counterpart (cf.
Figure 4.1(a))
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Figure 4.5: Distribution of System II and Human Scores (Matsushita et al. 2010) (cf. Figure 4.2)

The newly emerging issue is that the majority of ASR scores over 60% are lower

than those from humans, as shown in Figure 4.4(b). It is obvious that System II was in-
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fluenced by the perplexity associated with the CSJ data, although the occurrences of cor-

rect sentences were significantly increased in the LMs. A possible explanation of this is

that disfluency phenomena (repair, fillers, etc.) and collocations that were unlikely in the

training data caused deviation from the actual EI responses due to the lack of such infor-

mation in the LMs while the system was determining word sequences based on n-gram

representations9. This assumption also indicates that there is a significant discrepancy be-

tween L1 and L2 production which cannot be filled with L1 speech corpora such as CSJ.

Therefore, it is necessary to consider incorporation of L2 language data to System II to

overcome the problem. In the following section, I discuss another grading system using

a machine-learning mechanism to maximize the effect of small learner corpus data.

4.4 System III: Analogical-Modeling Approach

This section will describe the most current grading system developed in the series

of Japanese EI studies so far, based on Matsushita and Tsuchiya (2011). The significant

characteristic of System III is the incorporation of EI transcription data using a machine-

learning system called analogical modeling (AM, Skousen 1989, Skousen et al. 2002). In

the following subsections, I will depict the rationale for this approach, compare this sys-

tem with the previous versions, and suggest future directions with this approach.

4.4.1 AM-Generated Corpora: AM as a “Virtual” Learner

The most reasonable solution to the problems observed by Matsushita et al. (2010)

is to integrate learner corpora in order to capture the speech patterns that occur particu-

larly in L2 production. The questions that need to be addressed here are (1) what types of

learner corpora are optimal for EI grading and (2) how can those corpora can be incorpo-

rated in the existing grading system to enhance its evaluation capability without losing

original advantages.

Regarding (1), it is obvious that the most reliable language resource for the system

development is EI transcription data obtained from past test administrations. The main

reason is that the most probable L2 irregularities that are likely to occur in the EI task

9See Manning and Schütze (2002:441) on beam search for more detail.
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are easily obtained from the EI speech samples, whereas learner corpora available for

public use do not necessarily contain such L2 phenomena because of the high possibilities

of avoidance (Laufer and Eliassona 1993) if the language sources are from spontaneous

speech (e.g., Uemura 1998). Also, multiple speech samples of the same model prompts

are available from EI transcription data. This enables us to identify error patterns of

particular EI items that can be incorporated in new LMs.

The problem with the use of available transcription data is that the size is still sig-

nificantly small, which means that using the raw data for LM training does not provide

a probabilistic impact in the LMs especially when it is merged with large-scale corpora

such as CSJ. Therefore, it is necessary to develop a method to identify the characteristics

of EI speech observed in the transcription data and to artificially create EI responses con-

taining those characteristics in a systematic manner. A conventional approach to address

such a problem is creating either rule-based grammars or statistical n-gram models based

on the obtained data to enumerate all the possible sentence patterns. However, general-

izing grammars manually is quite difficult especially with L2 data, and it is also difficult

to obtain reasonable outputs with n-gram models based on such a small dataset as EI

transcription. To address this issue, Matsushita and Tsuchiya (2011) proposed use of ana-

logical modeling (AM, Skousen 1989, Skousen et al. 2002), an exemplar-based machine

learning system. The advantages of AM for creating artificial EI responses are summa-

rized as follows:

1. AM captures regularities in seemingly irregular language phenomena in a small

amount of language data. As described in 2.1.1, learners are highly likely to commit

certain speech errors in the EI repetitions when they imitate sentences in which the

contained morphosyntactic features exceed their current linguistic knowledge. Fur-

ther, it is natural to assume that the error patterns in EI responses exhibit some sort

of unified patterns unlike open-ended speech, if not perfectly regular, considering

the confined environment in the EI task. If this assumption is correct, AM is an ideal

tool to identify such regularities and suggest reasonably possible EI speech patterns

with the small amount of transcription data.
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2. AM predicts multiple outcomes if the linguistic behaviors conditioned by the train-

ing dataset are nondeterministic. This feature makes it feasible to create a larger

number of artificial EI responses than the original data size.

Based on these advantages, Matsushita and Tsuchiya (2011) propose the following

process to create an artificial learner corpus with AM via bootstrapping.

EI Transcription

Approx. 20% of Data

AM Database

300–500 Exemplars

BNF Grammar

Sentence Creation

Learner Corpus

5,000 Instances

Training Data Morphemes Sentences

Figure 4.6: AM-Based Learner Corpus Creation (Matsushita and Tsuchiya 2011)

Matsushita and Tsuchiya (2011) report that about 20% of the transcribed responses

for each corresponding EI prompt were randomly selected to create 300 – 500 AM ex-

emplars as a training dataset. Each transcribed EI response was first decomposed into

morpheme sequences. Each morpheme in the sequence was used as an outcome in an ex-

emplar and aligned with the corresponding morphemes in the prompt sentence and with

the output pattern information (correct (C), insertion (I), deletion (D), and substitution

(S)) to form a feature vector. This process was repeated to create an AM dataset for each

EI item used in this study. An example screenshot of the dataset is shown in Figure 4.7.

The test sets for the prompt sentences were manually created to obtain the possi-

ble outcomes based on the datasets using the AM system written in Perl10. The feature

vectors in the test set were basically identical except for the fact that the same feature

vectors with different output pattern information were applied to obtain as many possi-

ble morpheme predictions at every morpheme position in the EI input as possible. With

this method, AM behaved as a virtual learner, performing EI tasks one morpheme at a

time according to the knowledge provided by the datasets. The morpheme outcomes

were categorized according to the positions in the sentence. Taking the AM outcomes as

10Available at http://humanities.byu.edu/am/ .
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Figure 4.7: Screenshot of AM Dataset

transitions, finite-state grammars notated in Backus Naur Form (BNF), a widely used syn-

tactic rule notation format for computer languages (see also Jurafsky and Martin 2008),

were created. These grammars were used to produce 5,000 sentences by permuting mor-

pheme patterns provided by AM. The created artificial sentences for EI prompts were

then recorded as artificial learner corpora in the text files. Figure 4.8 shows one of the

AM-based corpora.

With this method, the small-scale EI transcription data are increased systematically

for incorporation into statistical LMs in the new grading system, System III. To retain the

capability of System I and System II, the correct EI sentence and CSJ data were also added

to the LMs as well. In the following subsection, I will describe the components of System

III.

4.4.2 System Components

As mentioned, System III is a combination of System I and System II with AM-

generated learner corpora. Therefore, the acoustic model, LM tool, and speech recog-
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Figure 4.8: Example of AM-Generated Learner Corpus

nition engine are the same as System II, described in Table 4.411. Figure 4.9 shows the

schematic representation of System III. Note that EI sentences, CSJ, and AM-generated

corpora were all incorporated to create an item-specific LM to grade each EI item. This

process was repeated according to the number of EI items, as described in 4.2.

EI Sentence

AM-Generated Corpus

CSJ Data

LM Toolkit
Statistical LM

&
Dictionary

ASR Engine

EI Speech Sample

Acoustic Model

Dictation / Score
Conversion

EI Score

Figure 4.9: System III Schema (Matsushita and Tsuchiya 2011)

11Julius 4.1.5.1 was used for this study instead, but the functionality of it was about the same as the
previous version.
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4.4.3 Method

The research design for this study is described below.

Participants. Two hundred and thirty nine learners who were enrolled in introductory-

to graduate-level Japanese courses offered at BYU in Fall 201012 participated in this study.

The majority of the participants (approx. 93%) are native speakers of English. The rest of

them are native speakers of Korean, Spanish, Chinese, or Japanese. The proficiency levels

of those learners were divided according to course numbers (100, 200, and 300 or above)

as follows.

Table 4.6: Subject Demographic

Class Level # Participants

100 82

200 35

300 or above 120

Native 2

Test Administration. The participants were asked to take the test during the two weeks

close to the end of the semester. The test was administered with Macintosh desktop

computers at the testing lab. The newly created sixty EI items13 were presented using

a computer-mediated testing tool, shown in Figure 4.10 below. This tool was preinstalled

in those lab computers before the test administration. The EI responses of the participants

were recorded as uncompressed .wav audio files and stored locally, and then uploaded

to server space with an applescript.

Grading. The audio files were downloaded from the server space to a local computer

for grading. Sampling frequencies, volumes, and bit rates were converted with SoX14,

12The number of subjects used in the analysis was decreased to 231 due to the poor quality of some
recordings in the data collection process.

13Along with the thirty corpus-based test items described in Chapter 3, additional thirty items retrieved
directly from the textbooks cited in 3.6.1 were also used in this study.

14http://sox.sourceforge.net/
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(a) Pre-Test Survey (b) EI Test

Figure 4.10: EI Tester

ffmpeg15 and normalize-audio16 for dictation with Julius. The grading system then pro-

cessed each audio file to produce dictation texts of EI responses and convert them to the

binary scores with a Perl script. The item- and subject-level EI scores were generated with

Equation 4.1. In addition, two native speakers of Japanese the transcribed EI responses

manually to facilitate IRR analyses shown in Table 4.7 below. The transcription data were

decomposed to morae withMeCab17, a Japanesemorphological analyzer and a Perl script

to conduct the binary grading. for score generation, and the binary scores were calculated

with the same grading protocol as ASR scores with Equation 4.1.

4.4.4 Results

The scores generated by the three grading systems were compared with IRR and

correlation analyses as in the previous studies (Matsushita and LeGare 2010, Matsushita

et al. 2010). As shown in Table 4.7, scores generated with System III exhibit the best agree-

15http://www.ffmpeg.org/
16http://normalize.nongnu.org/
17http://mecab.sourceforge.net/
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ment and correlation coefficient against human scores among the three systems. The dis-

crepancies in terms of human and ASR scores observed in Figure 4.1(a) and 4.4(b) are also

rectified as shown in Figure 4.11(a). The means and standard deviations in Figure 4.11(b)

are almost identical, although there are some differences in the score distributions.

Table 4.7: IRR and Correlation Statistics with Human-Generated Scores of Three Grading
Systems

System I System II System III

Robinson’s R (%) 84.8 83.8 86.0

Unweighted κ 0.686 0.669 0.713

Rater Bias 0.550 0.441 0.500

Item-Level r 0.9024 0.8940 0.9088

Subject-Level r 0.9815 0.9799 0.9852
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Figure 4.11: Regression and Score Distribution Analyses of System III

61



4.5 Discussion

In this chapter, I have discussed the development of the three ASR-based EI grad-

ing systems. As shown in 4.4, System III using AM for learner corpus creation is the most

effective grader among the three approaches. The significant aspect of System III is that

it improved the IRR and correlation statistics with only 20% of the entire transcription

data. Therefore, it is possible to enhance grading accuracy further by incorporating more

transcription data in the AM exemplars as more test iterations are conducted with the

same items. The best practice to ensure consistent grading performance with System III

is to use newly created items along with the actual items in test administrations in order

to obtain substantial transcription data with the collected speech samples. This process is

also useful to examine difficulty levels of those experimental items, thereby determining

whether they are optimal for future use. Therefore, both item and system development

can be investigated concurrently with this approach. See Figure 4.12.

Experimental Items

Test Items

Item Difficulty Analysis Retain/Discard Items

Manual Transcription AM Exemplars

System III Grading

Grading Results

Optimal Items

AM Learner Corpora

Figure 4.12: System III and Item Development Cycle

Further, the corpus-based item development approach discussed in Chapter 3 can

be combined effectively with the process of grading system refinement. Figure 4.13 shows

the comprehensive schema which combines Figure 4.12 and Figure 3.2. As shown in

Figure 4.13 below, the item creation process is connected to the item analysis and man-
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ual transcription through EI test administration. The effectiveness of the experimental

items is investigated as conducted in this study, and the result will return to the proto-

type generation as feedback to the next item creation. Regardless of whether the exper-

imental items are optimal or not, the transcription data can be utilized for AM learner

corpus creation for the augmentation of System III, if the transcription contains ample

interlanguage-influenced production phenomena.

EI Test Administration

Prototype
Generation

Corpus
Processing

Corpus Tool Selection /
Adaptation

Experimental Items

Test Items

Item Difficulty Analysis

Factorial Analysis
Rasch Model Analysis

Retain/Discard Items

Manual Transcription AM Exemplars

System III Grading

Grading Results

Annotated Corpus

Modification

Corpus Queries

Refinement

Analysis Results

Optimal Items

AM Learner Corpora

Figure 4.13: Combination of Corpus-Based Item Creation and System III

Thus, System III and the test items used in Chapter 3 are the components of the

current version of the testing and grading system developed through a series of Japanese

EI studies. Although there is still much room for improvement, this Japanese EI testing

system provides valuable information on learners’ proficiency in terms of L2 accuracy

based solidly on the targeted linguistic concepts using an automatic grading procedure.

The scores generated with this testing system integrate L2 accuracy information with SS

scores as fluency measurement for L2 proficiency assessment.

In the following chapter, I will discuss the SS system and the combination of EI

and SS results to measure L2 oral proficiency.
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Chapter 5

Japanese Simulated Speech and its Combination with EI

5.1 Japanese Simulated Speech: Basic Approach

As described in Chapter 2, Simulated Speech (SS) is another method for oral pro-

ficiency measurement used in the field of language testing. In the previous two chapters,

I mentioned that EI is used to measure L2 oral accuracy by designing test items which

reflect learners’ L2 capability effectively and by carefully setting up the ASR system to

yield precise grading results. In this chapter, I will discuss the use of SS to measure L2

oral fluency, which is another aspect of L2 oral proficiency addressed by this system.

In Matsushita (2010), we investigated several fluency factors with EI speech samples, but

this attempt has not been fruitful simply because EI speech samples are too short to extract

desirable fluency features. The time lengths of EI repetitions produced by typical learn-

ers range from one to thirteen seconds with the prompts used in the current Japanese EI

test. Although some relevant features are observable with those EI speech samples (e.g.,

hesitation, fillers, length of repetitions, etc.), it is still difficult to retrieve a majority of the

fluency features enumerated in Table 2.2 from such short speech samples. On the other

hand, SS allows us to obtain various fluency features due to the less controlled speech

environment provided with this testing method, as discussed in 2.2.

There are several considerations in processing SS speech samples with ASR: (1) it

is unlikely that precise dictation with such open-ended speech samples will be accom-

plished, especially with samples produced by non-native speakers, and (2) learners’ per-

formance in SS depends on a wide variety of latent factors other than their pure L2 ca-

pability (e.g., prior knowledge of and/or experience with the topics presented by the test

items, etc.), which requires complex procedures to design appropriate test items for fair

grading (see Luoma 2004).
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As mentioned in Chapter 1, the main reason for the separation of accuracy and

fluency measures with EI and SS is to overcome the limitation of ASR capability. By rel-

egating EI to L2 production accuracy measurement, the ASR system for SS is dedicated

solely to fluency feature extraction, and the problem (1) above is not as significant with

this approach. Although the SS system is still required to process speech samples with

a certain level of precision in dictation to retrieve several fluency features, this approach

enables us to develop the ASR system with more generic specifications than the EI coun-

terpart.

The item difficulty issue mentioned in (2) above is beyond the scope of this study

and still remains to be addressed in future studies. Therefore, I chose existing SS items

available for public use rather than creating original items, for the sake of simplicity. The

following section will describe the selected test items for this study.

5.2 SS Test Items

Test items used in this studywere selected from the Japanese SOPI test (CAL 1995),

with permission from the Center for Applied Linguistics. The effectiveness of these test

items has been thoroughly tested in actual SOPI administrations and they are deemed

viable items based on the analyses developed in a series of previous studies on SOPI

items for other languages (see Clark and Li 1986 and Stansfield et al. 1990).

These items are categorized in three groups according to task type: picture tasks,

topic tasks, and situation tasks (four picture tasks, five topic tasks, and five situation

tasks are enclosed in the test package). In the picture tasks, test takers are asked to pro-

vide detailed descriptions on the topics related to the presented pictures according to the

questions asked by a native speaker. In the topic tasks, questions on particular topics

(e.g., school life) are given, and the subjects are asked to answer the questions and give

the justifications for their answers. In the situation tasks, subjects are asked to imagine

that they are in particular situations described in the test directions and to play roles (e.g.,

offering advice, apologies, etc.) in the hypothetical situations. These items are also clas-

sified as Intermediate, Advanced, and Superior based on the anticipated task difficulty.

There are three Intermediate, eight Advanced, and three Superior items in the test.
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Among these fourteen items, I chose five for the computerized SS test. Table 5.1

provides descriptions of the selected items.

Table 5.1: SS Test Item Descriptions (CAL 1995)

Test Item Level Prep. Time Response Time Task Type

Picture 1 Intermediate 15 sec. 1 min. 20 sec. Describe a typical shopping
mall to a Japanese tourist

Topic 1 Intermediate 15 sec. 45 sec. Give a description of the
kind of weather he or she
likes

Situation 1 Intermediate 10 sec. 45 sec. State what kind of hotel
room he or she wants, state
the length of stay, and ask
about restaurant hours

Topic 3 Advanced 20 sec. 1 min. 15 sec. Give a step-by-step descrip-
tion of how a Japanese stu-
dent can find a summer job

Situation 3 Superior 20 sec. 1 min. Apologize to a host mother
for returning home very
late after missing the last
train home

The criterion for choosing these test items is familiarity of the topics to the subjects.

All three Intermediate items were chosen for the Japanese SS test to ensure that even

low-level learners are able to produce a certain amount of speech with these tasks. I

also selected the other two high-level items based on consultation with an experienced

teaching assistant in the Japanese program, in order to select items with topics which

are covered in the class materials. The related assumption is that learners are able to

perform well in the test by applying their learning experience to these high-level but

familiar topics.
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With these items, a study was designed to investigate the effectiveness of the pro-

posed Japanese SS system. I will describe the experiment, the system specifications, and

targeted fluency features in the following section.

5.3 Method

The overall data collection procedure and subject demographics were already de-

scribed in 4.4.3. The following sections provide additional detail concerning the SS test

administration in this study.

Participants. In addition to the 231 subjects described in Table 4.6, SS data were also

collected from twelve additional native speakers of Japanese using the same testing tool

explained in 4.4.3. Further, nineteen non-native subjects were randomly selected among

the 231 subjects to take OPI tests for comparison with EI and SS scores.

Testing Procedure. The testing procedure used in this study was basically identical to the

Japanese SOPI besides the fact that ours was computer-delivered. The SS items were pre-

sented to the subjects as the second portion of the speaking test following the completion

of the EI test discussed in Chapter 3 and Chapter 4. At the beginning, general instructions

were provided with the test administration tool to briefly explain the nature of SS. The

written instructions for each test item taken from the SOPI booklet were displayed on the

screen when the audio description of the item started. A picture was also presented in

a separate window for the picture task. After the audio instruction was completed for

an item, the preparation and response time were displayed in a countdown clock on the

screen in order for the test takers to be able to pace their thinking and speaking processes.

When the test takers reached the last five seconds in the response time, a small warn-

ing beep sounded. Once they finished an item, they were requested to press a button to

proceed to the next item. Figure 5.1 shows an example screenshot of the picture task.

The data management process is the same as described in 4.4.3. The SS speech

samples were saved as .wav files on the local desktops and uploaded to the designated

server space with a batch script along with the EI speech files.
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Figure 5.1: Screenshot of Computer-Based Japanese SS Test

ASR Specifications for Fluency Feature Extraction. Because the collected data consisted

of open-ended speech, generic ASR components of Julius were used for fluency feature

extraction. A single language model trained with CSJ data (see 4.3 for more detail) was

incorporated in Julius to dictate all five test items. The acoustic model was the same as

the one used for Systems II and III, described in Table 4.4. By utilizing various types of

information provided in the dictation process, the following fluency features were ex-

tracted with Julius. The time frame counts (100 milliseconds per frame) provided during

the forced alignment processes were used to measure speech and silence lengths. Also,

the number of phonemes were counted in the test items from the forced alignment in-

formation as well. Regarding pauses, I used 400 milliseconds as a threshold to divide

continuous speech runs, based on the study by Freed et al. (2004). Julius denoted such

pauses as “<sp>” (i.e., a short pause) in the dictation outputs when it encountered si-

lence spans which exceeded the threshold in the recognition processes, as indicated in

Figure 5.2(a).

The number of pauses, tokens (the total number of morpheme instances), and

types (the number of unique morphemes) were counted by parsing the dictation results

with a Perl script in the post-processing stage. Regarding filled pauses, dictation results
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(a) Output for Type, Token and Pause Counts (b) Output for Filler Counts

Figure 5.2: Screenshots of Dictated Speech Samples

with POS information tagged to the dictated morphemes (see 5.2(b)) were produced sepa-

rately to identify the filler instances efficiently. The information on the number of tokens,

types, and filled pauses provided by ASR dictation outputs was regarded to be satisfacto-

rily accurate, if not perfectly precise, for the analyses of L2 fluency in this study because

the main purpose of the ASR dictation for SS is to roughly differentiate types of mor-

pheme instances in the speech samples1 along with the extraction of temporal features.

Therefore, it is reasonable to assume that the approximate estimates of these L2 fluency

phenomena are readily attainable with this type of generic ASR system.

Feature Descriptions. Based on the dictation results obtained through the ASR procedure

above, the eleven fluency feature values listed in Table 5.2 were obtained. As mentioned

in 2.3, the rationale for extracting these features for fluency measurement are based on

previous studies by Xi et al. (2008) andHiggins et al. (2011), which assert that these fluency

features provide critical information on L2 proficiency in the evaluation process using

semi-direct oral tests such as SS.

1See the ASR output (Situation 1) shown in 5.2(a) to confirm the accuracy level of the dictation.
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Table 5.2: Fluency Features Extracted with SS

Feature Description

(1) # Tokens Number of morpheme tokens in a test item

(2) # Types Number of morpheme types in a test item

(3) # Pauses Number of short pauses in speech

(4) Speech Length Total speech duration in a test item

(5) Silence Length Total length of silence in a test item

(6) Speech Rate Number of phonemes per second

(7) # Fillers Number of filled pauses in a test item

(8) # Runs Number of fluent speech runs in a test item

(9) Tokens per Run Number of tokens normalized by fluent speech runs

(10) Speech Time per Run Speech length normalized by fluent speech runs

(11) Types per Speech Length Number of types normalized by speech length

5.4 Analysis

In this section, I examine the eleven fluency features described in the previous

section in an effort to develop an optimal SS grading method using a two-step approach.

First, I use two machine learning (ML) systems to determine the most influential features

for score calculation. Second, based on the study conducted by Higgins et al. (2011), a

simple score generation model with the selected features is proposed.

5.4.1 First Stage: Machine Learning Process

Unlike EI analyses laid out in Chapter 3 and 4, there are no human-evaluated

scores or ratings for benchmarks in this SS study. Therefore, a different approach to pro-

cess the data is required for the development of SS score generation. The first step I use

for SS scoring is using two ML systems to identify the most significant fluency factors.

For this approach, I use TiMBL (Daelemans and van den Bosch 2005), and WEKA (Hall

et al. 2009), ML tools extensively utilized to address NLP problems.
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TiMBL is a amemory-basedmachine learning system based on the k-nearest neigh-

bor (k-NN) algorithm. This tool is frequently used to address problems with language

phenomena which are unsolvable with conventional rule-based, theoretical approaches

(e.g., Ernestus and Baayen 2003). The strength of this system is the use of a statistical

model based on the given unstructured data to predict the general behavioral patterns

based on the model. This tool is desirable for this SS analysis because it has the capabil-

ity to order the features according to the amount of information gained in the training

process. This capability enables us to identify the most influential features for SS score

generation.

To analyze the obtained fluency data with TiMBL, the feature vectors were created

and stored as input files, as shown in Figure 5.3.

Figure 5.3: TiMBL Feature Vectors

The eleven fluency features of each test item response were aligned according to

the order shown in Table 5.2 to form a feature vector. Here the class level of the sub-

ject in Table 4.6 was considered as the output of each vector, based on the assumption

that the class level is an approximation of the subject’s proficiency level. The class level

information was placed at the end of each vector.

The formed feature vectors were consolidated to create datasets for statistical learn-

ing. The datasets were classified as (a) those with the twelve additional native speakers’

data mentioned in 5.3 and (b) those without them. The learning process was conducted
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with these datasets containing the vectors for each test item and those with all the test

items combined. For the analysis, I used the leave-one-out validation process to obtain

the results.

Table 5.3 shows the results of the TiMBL predictions. As shown, the prediction

accuracy of (a) is higher than (b), due to the addition of twelve native speakers. The most

important aspect of these results is the five influential factors indicated in the last two

columns. Although the order of the variables is slightly different, the same five fluency

features (# Tokens, # Types, # Pauses, # Fillers, and # Runs) are considered as influential

in all the datasets.

Table 5.3: TiMBL Results (the numbering of variables corresponds to Table 5.2; the order of
the five variables is according to the information gain ratio/values)

Top 5 Influential VariablesTest Item (a) With 12 NS (b) Without 12 NS
(a) (b)

Picture 1 0.754630 0.710744 2, 7, 8, 3, 1 8, 2, 7, 3, 1
Topic 1 0.768519 0.702479 3, 8, 2, 7, 1 8, 3, 2, 7, 1
Situation 1 0.717593 0.661157 7, 2, 8, 3, 1 8, 2, 7, 3, 1
Topic 3 0.800926 0.753086 8, 3, 2, 7, 1 3, 8, 2, 1, 7
Situation 3 0.708333 0.669421 8, 2, 3, 7, 1 8, 7, 3, 2, 1
All 0.922517 0.715670 2, 8, 3, 1, 7

Further, to confirm that the five features found with the TiMBL models are also

influential in the other framework, the same datasets were processed with WEKA, a data

mining system using various decision tree models constructed via the support vector

machines (SVM, see Burges 1998).

The J48 classification method (C4.5 decision tree models) was used for this anal-

ysis. The results in Table 5.4 show the prediction accuracy rates based on the created

decision trees. It clearly shows that the prediction rates between the trees with all the

features and with the five features are almost identical. This trend is shown in datasets

both with and without the twelve additional native speakers. Therefore, it is safe to say

that these five fluency features are the most dominant factors inmaking predictions about
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learners’ proficiency levels and other features are inconsequential for score generation in

this study.

Table 5.4: WEKA Results

Prediction Accuracy Rate (%)

Test Item With 12 NS Without 12 NS

All Features 5 Features All Features 5 Features

Picture 1 86.1111 82.8704 80.5785 80.1653
Topic 1 82.4074 79.6296 78.9256 76.4463
Situation 1 80.5556 79.1667 76.4463 71.9008
Topic 3 84.2593 81.4815 81.4185 78.6008
Situation 3 83.3333 81.9444 80.5785 76.8595
All 89.3916 82.0593 79.8061 74.7981

5.4.2 Second Stage: Score Generation

In the second stage, the fluency features identifiedwith theML processes above are

used to generate SS scores for individual subjects. Unlike EI, calculation is not straight-

forward because it is necessary to identify a particular calculation formula with these fea-

tures to combine them and yield reasonable scores. Again, the conventional regression

model is not appropriate for this analysis due to the lack of human-graded scores.

Higgins et al. (2011) analyzed the features in Table 2.2 to develop a multiple regres-

sion model with human- and ASR-generated scores of the TOEFL iBT speaking test items.

Table 5.5 shows the features that they selected according to statistical significance in the

model and the associated mathematical treatment to normalize each feature and to yield

the best fit with the regression model. Note that these score calculation features in Ta-

ble 5.5 aside from amscore and lmscore2 include the majority of the ML-selected features

in Table 5.3.

2Zechner et al. (2009) mention that although these features were incorporated in their scoring process as
in 5.5, they cannot be significant numbers evenwith the mathematical treatment because of the probabilistic
nature. Therefore, I simply ignore these features in this study.
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Table 5.5: Features of Regression Model and Mathematical Treatment in Higgins et al. (2011)
(see also Table 2.2)

Feature Calculation Assigned Weight Transformation

amscore3 logP(x|w) 4 Inverse

wpsec # Tokens
Item Time Length 2 —

tpsecutt
# Types

Speech Length 2 —

wdpchk
# Types
# Runs 1 Logarithmic

lmscore α × logP(x) + β × N 1 Inverse

It is reasonable to assume that these weights and mathematical treatments in Ta-

ble 2.2 are also applicable to the SS score generation in this study. One concern about

their approach is, however, that the calculation of tpsecutt and wdpchk are highly likely

to interact with each other due to the same numerator used in the calculation. Therefore,

I change one of the these formulas by incorporating the # Fillers feature, which is not in-

corporated in this table. Thus, the SS score generation formula is defined as in Table 5.6.

Table 5.6: SS Score Generation Features

SS Score Factor Calculation

Factor 1 ( f1) 2× # Tokens
Item Time Length

Factor 2 ( f2) 2× # Tokens−# Tokens
Speech Length

Factor 3 ( f3) log
(
# Types
# Runs

)

SS Score = ∑
i

fi

3See Kawahara and Lee (2005) for the detail of the probabilistic calculation of AM and LM scores.
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# Pauses is not incorporated in this formula. The reasons for this are because (1)

I assume that pause counts generally interact strongly with # Runs because they appear

alternatively in speech samples, and (2) this feature seems not to behave monotonically

(either a constant increase or decrease according to the class levels), which makes it quite

complex to develop a particular mathematical treatment for it. Figure 5.4 depicts the dis-

tribution of pausesmade by the subjects in all five SS items. Interestingly, this pause count

feature is salient only with the 300-level subjects in terms of the mean and distribution,

but other subject groups’ are similarly distributed. Because of this peculiar characteristic,

this feature is excluded for the calculation in this study.
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Figure 5.4: Pause Count Distribution (the points and arrows on the boxplots indicate the
mean values and one standard deviation ranges)

5.4.3 Results

Based on the formula in Table 5.4.2 above, SS scores for the 231 subjects were

generated. Figures 5.5(a) and (b) show the SS item score differences according to class
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levels and the interaction between the item type and the class level based on the associ-

ated factorial ANOVA results. The differences for test items and for class levels are both

statistically significant (FItem Type(4,222) = 4.5478, p < 0.001 and FClass Level(3,222) = 311.2628,

p < 0.0001, respectively). However, the differences in test items are not uniformly signif-

icant according to the Tukey post hoc test (only Topic 1–Situation 1 and Topic 3–Topic 1

pairs, p < 0.01). Therefore, the stipulated item difficulties of the five SOPI items used in

this study (see Section 5.2) do not affect subjects’ SS scores generated with the calculation

method above.
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Figure 5.5: SS Score Distribution (a) the score differences according to item type and class
level (b) the interaction between item type and class level
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Figures 5.6(a) and (b) show the differences and distribution of the total scores of

the five SS items. The ANOVA analysis shows that the difference between the class level

groups are significantly different (FClass Level(3,222) = 108.1, p < 0.0001). Also, the associ-

ated Tukey HSD analysis indicates that the differences among all the subject groups are

significant (the p values are ranging from 0.03 to less than 0.0001). Further, the score dis-

tribution exhibited in Figure 5.6(b) seems bimodal, but the Anderson-Darling (AD) test

indicates its strong normality with p < .0001 (A = 2.297). Therefore, it is safe to say that

this SS score generation method is reasonably useful in measuring learners’ performance

concerning the ML-selected features in an efficient manner.
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Figure 5.6: SS Total Score Differences (a) Total score differences according to class levels (b)
Distribution of SS scores

5.5 Combination of EI and SS Scores

Finally, I will discuss the combination of the EI scores obtained with System III,

discussed in Chapter 4, and the SS scores above. Figure 5.7(a) indicates the simple two-

dimensional distribution of these scores. There is a moderate correlation between these

scores (r = 0.83), but the regression model itself is not statistically significant (p = 0.974).
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This is promising because it indicates that these two types of language testing method-

ologies focus on different but weakly related aspects of L2 oral production.

Figure 5.7(b) shows the same scatterplot superimposedwith nineteen subjects’ OPI

ratings on the associated EI–SS scores. The OPI ratings are indicated with the initials

(NM: Novice-Mid, NH: Novice-High, IL: Intermediate-Low, IM: Intermediate-Mid, IH:

Intermediate-High, and AL: Advanced-Low). Additionally, the two native speakers are

regarded as Superiors in this analysis, and their scores are marked as SP. As shown, the

Novice-level scores are clustered in the lower-left portion of the graph; the Intermediate-

level scores are on the middle to the upper-right portion; and the Advanced to Superior

scores are located around the upper-right edge. Interestingly, EI scores for one subject

with an AL rating are almost identical to the native speakers’, but the corresponding SS

score is clearly lower than theirs. The opposite phenomenon can be observed with an-

other AL subject’s SS score: the SS score is close to the those of native speakers’, but the

corresponding EI score is lower than theirs. Therefore, it is possible to observe some char-

acteristics associated with OPI ratings and EI–SS scores with this simple score alignment

method.
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Figure 5.7: Scatterplot of EI and SS Score (a) the simple scatterplot of EI and SS scores and
(b) the scores superimposed with the associated OPI ratings
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An alternative comparison strategy is to use the discrete EI scoring method dis-

cussed in 3.6.3 to differentiate proficiency groups more clearly. To illustrate the score

distribution, I calculated EI binary scores based on the following procedure:

1. As described in 3.6.3, the item scores are separated according to the item levels and

and class numbers in Table 3.2.

2. The binary scores are added if the subject attains 80% of accuracy on all the items in

the item level or class number. If this is not the case, the scores are not included in

the total scores.

3. The accumulated binary scores satisfying the condition in (2) are processed with

Equation 4.1.

Figures 5.8(a) and (b) depict the EI–SS score distribution with the discrete scoring

method above. Overall, the class number approach is more conservative than the item

level counterpart, and the majority of the EI scores in Figure 5.8(b) are lower than (a). The

ratings on the right side of each score cluster tend to be higher than those on the left side.

The significant aspect of this grading approach is that the AL rating with the low EI score

is more clearly separated from those of native speakers in both Figure 5.8(a) and (b) than

that in Figure 5.7, which enables us to observe the difference of advanced-level learners

from (near-)native speakers more easily.

Although it is still impossible to discriminate test takers in the same classification

levels as the OPI (i.e., ten sublevels), this EI–SS approach provides a good estimation of

the L2 oral proficiency in a very effective manner. Lastly, Figure 5.9 shows the approx-

imate OPI rating distribution pattern according to Figure 5.8(b). Because of the scarcity

of OPI ratings in this study, OPI ratings with Novice Low, Advanced Mid, Advanced

High were not available. Therefore, the OPI distribution clusters including those ratings

shown in Figure 5.9 are based solely on my assumption. Definitely, more data are needed

to investigate the effectiveness of this EI–SS approach in further research.
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Figure 5.8: Discrete EI Scoring and OPI Ratings (a) The OPI distribution in the class level EI
and SS scores (b) The OPI distribution in the class number EI and SS scores
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Chapter 6

Conclusion

6.1 Significance of This Study

In this study, I discussed an approach to measuring L2 oral proficiency using two

separate testing and scoring methods, and I addressed the effectiveness of these two

methods from various perspectives. This proposed approach is innovative compared

to many of the existing computer-mediated oral language testing systems because these

systems put great emphasis only on structured speech tasks which heavily circumscribe

the speech patterns of test takers (e.g., Bernstein et al. 2010, Müller et al. 2009) or on com-

pletely open-ended speech tasks (Cucchiarini et al. 2000). The twomost significant aspects

of this study are (1) combining structured and open-ended speech tasks, namely EI and

SS, as a joint speaking test and administering it with a computer-based testing system,

and (2) evaluating the speech samples obtained through the test administration with two

ASR-based grading systems, which are configured independently to maximize the ASR

capability to observe L2 oral proficiency globally, as schematized in Figure 1.1.

From a language administration point of view, there are several advantages of us-

ing EI and SS as an integrated test battery as follows:

1. Unlike typical oral interviews, test takers are allowed to have multiple “fresh starts”

(Hughes 2003) during the EI/SS test by providing a substantial number of test items

(thirty EI and five SS items), which is frequently pointed out as one of the character-

istics of effective oral tests.

2. The combination of EI and SS helps increase the face validity of the test, which is

hardly guaranteed with only structured speech tasks such as EI.
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3. The test administration is very time-efficient. The required time for completion of a

single test is less than thirty minutes. This indicates that a substantial number of test

takers are able to complete the test within a day if multiple computers with good

quality headsets are available.

Also, the following are advantages from the perspective of test evaluation:

1. The grading process is virtually automatic with the ASR systems. Although it takes

several hours to complete the entire grading process, this is much more time- and

cost-efficient than evaluating the speech samples with human labor, which is favor-

able for language institutions with fewer resources.

2. Unlike criterion-referenced tests, the EI/SS results are strictly numeric due to the

objective and analytic nature of the test. Therefore, the test results are applicable

to both longitudinal and cross-sectional studies to examine learners’ progress and

compare their performance.

3. The speech samples collected in the test administration can be used later for quali-

tative studies as well. These samples are useful in various situations such as when

educators or researchers need to investigate learners’ particular characteristics (e.g.,

error-making patterns) in the EI and SS tasks. It is also possible to conduct similar

qualitative studies to the one illustrated in 3.4 (see also Matsushita et al. 2010), ex-

amining the relationship between learners’ test performance and their learning ex-

perience. In fact, the findings obtained through such qualitative analyses are highly

important and necessary for further testing and grading procedure refinement.

These advantages clearly indicate that the ASR-based EI/SS testing system de-

veloped in this study is a solution for the time- and cost-efficiency problems posed in

Chapter 1. However, it is still premature to say that this testing system is a satisfactory

alternative to existing interview-based tests, which can offer us more details regarding

L2 oral proficiency. The following discussion will describe some of the limitations of the

system proposed in this research.
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6.2 Limitations of This Study

The following points summarize some of the issues that have not been addressed

in this study:

1. Clearly, not all the L2 accuracy factors listed in 1.2 are encompassed in EI. For ex-

ample, pronunciation accuracy is not considered in this study although this factor

plays some role in the ASR processing. To refine EI grading, it is necessary to investi-

gate what types of pronunciation patterns were unacceptable to human graders and

how those phonologically abnormal EI responses were treated with the EI grading

system through qualitative analyses. Also, no accuracy factors related to social and

cultural appropriateness, such as vocabulary choice in a particular context, are taken

into account in either EI or SS due to the test format and grading capability. There-

fore, it is not possible to incorporate such factors with the current EI and SS grading

criteria. Ideally, these features should be obtained and processed through SS, which

provides test takers with a less-controlled speech environment; however, it is not

feasible for the current SS system to accurately capture and incorporate such factors

in evaluation due to its heavy emphasis on fluency features and the system con-

figuration. Presumably, this may be the main reason that there were no significant

differences in SS scores among the five SS items, as indicated in Figure 5.5(a).

2. Related to the issue above, the critical disadvantage of the current SS gradingmethod

is that the system is not able to scrutinize the content of the produced speech before

extracting fluency features for grading. Therefore, there is no method to identify

situations where learners speak about unrelated matters and to avoid grading such

speech samples.

3. Further, this study does not discuss a systematic method for SS item creation al-

though this is also a critical aspect for constantly developing new versions of the

test for the future administrations.

4. Test score calibration processes against existing oral tests such as OPIs have not been

thoroughly conducted. In this study, I mainly used class levels as rough approxi-
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mations for proficiency levels, which are obviously not perfect correlates with OPI

ratings. Therefore, it is critically important to conduct further statistical analyses

to increase the reliability and validity of the EI/SS test and produce scores closely

comparable with such oral tests.

The limitations enumerated above clearly show that there are still many issues to

be addressed to improve the current EI/SS testing system in order to ensure more effec-

tive testing and grading processes. Needless to say, it is critically important to conduct

further literature review and data collection in order to identify possible solutions to these

issues.

6.3 Future Work

Along with the limitations described in the previous section, the development of

new tools and the addition of language resources are the other issues to be considered

in future studies. To realize more fine-tuned testing and scoring systems, the following

future work and suggested possible approaches need to be investigated.

6.3.1 Manual Transcription Tool

Regarding the EI grading system, manual transcription is essential to create AM

training datasets for LM development and to identify new optimal EI items through item

analyses, as schematized in Figure 4.13. The problem inherent in this process is, however,

that it is difficult to unify the transcription notations (e.g., kanji vs. hiragana, etc.) among

human transcribers, which often makes annotation with NLP tools unstable and conse-

quently impede the AM exemplar creation process. To stabilize transcription processes,

the development of a comprehensive transcription tool to assist transcribers is necessary.

One could envision a tool that suggests desirable transcription notations according to the

transcribers’ input based on the previously transcribed data and conducts annotation of

the transcribed EI responses under the CSJ annotation standard concurrently.
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6.3.2 SS Scoring Improvement

In this study, I used the formula proposed by Higgins et al. (2011) to generate SS

scores based on the fluency features selected by TiMBL and WEKA, the ML systems.

Although this approach satisfactorily functioned for proficiency estimation, there is much

room for further improvement of score generation in various aspects. For example, I

did not take into account the weights on relevant fluency features provided by TiMBL,

which may contain important information for SS scoring, because the order of the fluency

features are uniquely varied for each test item. In this study, I treated these features

equally in the scoring process. This might be another reason that there were no significant

difference among item types in terms of score distribution, as indicated in Figure 5.5(a).

Therefore, it is reasonable to assume that the combination of these weights and the feature

valuesmay yieldmore effective SS item and total scores than the current version’s. Also, it

may be possible to integrate the # pauses feature into the score calculation, which was not

attempted in this study due to the peculiar distribution pattern illustrated in Figure 5.4,

by utilizing its corresponding weight in the calculation process. To investigate this, it is

necessary to develop or improve the current score calculation methods. This study should

be conducted be conducted in the immediate future.

6.3.3 Simultaneous EI/SS Scoring

It is desirable to grade EI and SS items during the test administration in order to

provide test takers with scores upon the completion of the test. This is also advantageous

for test administrators as well because it accelerates the entire evaluation procedure by

delegating the scoring processes to multiple local computers used for testing, rather than

spending several hours for grading with a single computer. This is attainable by incor-

porating the core libraries of Julius to the test administration tool described in 4.4.3. In

theory, it is possible that the incoming speech is processed as direct input via microphone

and the dictation results for binary scoring are produced as each item is completed. The

audio input can be exported as .wav files at the same time for other processes such as
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transcription. This is reasonably attainable by leveraging incorporated functions in the

Julius libraries and plugins.

6.3.4 Acoustic Model Training

Dealing with speech samples containing the test takers’ English utterances1 with

the current ASR system is another problem with the grading processes. Although it is im-

possible to identify all the possible L1 utterances that can occur in the EI and SS tasks, in-

corporating common English expressions often used during EI and SS performance in the

acoustic model can reduce the influence on grading results. de Wet et al. (2010) conducted

a study of acoustic model development to process accented English speech samples with

ASR. They report that incorporating accent features to the acoustic model does not sig-

nificantly increase overall recognition accuracy. However, considering the appreciable

difference in the phonological patterns between English and Japanese, it is worthwhile to

investigate integration of English speech instances to the CSJ acoustic model using HTK

Toolkit2 in future studies.

6.3.5 Language Model Training for SS grading

In this study, I used a generic LM trained only with the CSJ data for the SS feature

extraction procedure, based on the rationale mentioned in 5.3. However, it is still neces-

sary to increase recognition accuracy to ensure retrieval of more accurate token, type and

pause counts, which are among the most influential fluency factors in this study. Also,

recognition accuracy in SS grading is inseparably tied to the issues of the vocabulary pat-

tern identification for discrimination of unrelated speech (see section 6.2). To improve

the grading system in this respect, it is important to incorporate corpus data containing

instances related to SS item topics. The main issue for this LM development is collecting

appropriate corpus data. A possible approach for this task is selecting language data with

a web tool based on context-vector models (see Billhardt et al. 2002), frequently used in

1I focus only on English here because the majority of our subjects are native speakers of English.
2http://htk.eng.cam.ac.uk/
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information retrieval. If this LM augmentation approach is possible, we will be able to in-

tegrate pragmatic and sociolinguistic factors into the current SS evaluation criteria, which

are considered as important aspects of L2 proficiency along with accuracy and fluency in

many interview tests.

6.3.6 EI Item Creation Tool

In Chapter 3, I discussed the corpus-based approach to create optimal EI items

and its effectiveness. One of the weaknesses in this approach is that the available cor-

pora are not necessarily able to provide item candidates with particular types of syntactic

and semantic structures; therefore, it is possible that users may not find desired sentences

with this approach. A possible solution for this problem is creating an item engineer-

ing tool which consolidates syntactic fragments obtained from corpora to form possible

EI candidates. In some respect, this approach resembles the item engineering method

discussed in 3.4. The main difference, however, is developing a method engineering sen-

tences based on corpus data, rather than creating items according to linguistic intuitions

only. An eventual solution would require as input various NLP resources such as a lex-

ical conceptual structure (LCS) database3, Japanese WordNet4, subcategorization frame

dictionaries5, and so forth.

6.4 Comprehensive EI/SS Schema

Figure 6.1 shows a comprehensive schematic representation of the current EI/SS

testing and grading system as it would incorporate the new functions and tools suggested

in the previous section. It is necessary to conduct a number of empirical studies and sys-

tem refinement processes to ensure the robustness of such a system to reach the optimal

level of functionality. The ideal system depicted here will probe L2 learners’ oral profi-

ciency in a more effective manner and provide valuable information on their L2 speaking

ability for various purposes.

3http://cl.it.okayama-u.ac.jp/rsc/lcs/
4http://nlpwww.nict.go.jp/wn-ja/index.en.html
5http://www.gsk.or.jp/catalog/GSK2007-D/catalog.html
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Dordrecht: Kluwer Academic Publishers.

Laufer, Batia, and Stig Eliassona. 1993. What causes avoidance in L2 learning. Studies
in Second Language Acquisition 15.35–48.

Laver, John. 1994. Principles of phonetics. Cambridge, UK: Cambridge University Press.

95



Lee, Akinobu, and Tatsuya Kawahara. 2009. Recent development of open-source speech
recognition engine Julius. Asia-Pacific Signal and Information Processing Associa-
tion Annual Summit and Conference.

Lee, Kai-Fu. 1989. Automatic speech recognition: The development of the SPHINX
system. Boston, MA: Kluwer Academic Publishers.

Levelt, Willem J. M. 1995. The ability to speak: from intentions to spoken words. Euro-
pean Review 3.13–23.

Lonsdale, Deryle, Dan P. Dewey, Jeremiah McGhee, Aaron Johnson, and Ross Hen-
drickson. 2009. Methods of scoring elicited imitation items: an empirical study.
Paper presented at American Association for Applied Linguistics (AAAL), Denver,
CO.

Luoma, Sari. 2004. Assessing Speaking. Cambridge Language Assessment Series. Cam-
bridge, UK: Cambridge University Press.

Maddieson, Ian. 2005. Issues of phonological complexity: Statistical analysis of the re-
lationship between syllable structures, segment inventories and tone contrasts. UC
Berkeley Phonology Lab Annual Report.

Maekawa, Kikuo. 2003. Corpus of Spontaneous Japanese: Its design and evaluation.
Proceedings of IEEE Workshop on Spontaneous Speech Processing and Recognition,
7–12, Tokyo.

Malabonga, Valerie, Dorry M. Kenyon, and Helen Carpenter. 2005. Self-assessment,
preparation and response time on a computerized oral proficiency test. Language
Testing 22.59–92.

Malone, Margaret E. 2007. Oral proficiency assessment: The use of technology in test
development and rater training. Center for Applied Linguistics.

——, and Megan J. Montee. 2010. Oral proficiency assessment: Current approaches and
applications for post-secondary foreign language programs. Language and Linguis-
tics Compass 4.972–986.

Manning, Christopher D., and Hinrich Schütze. 2002. Foundations of Statistical Natural
Language Processing. Cambridge, MA: The MIT Press, 5th edition.

Matsumoto, Yo. 1996. Complex predicates in Japanese: A syntactic and semantic study
of the notion “word”. Stanford, CA / Tokyo: Center for the Study of Language and
Information / Kuroshio.

Matsushita, Hitokazu. 2010. Computerized oral testing: Optimal models for elicited
imitation in Japanese. Paper presented atNorthwest Linguistics Conference (NWLC)
2010, Surrey, BC, Canada.

96



——, and Matthew LeGare. 2010. Elicited imitation as a measure of Japanese L2 profi-
ciency. Paper presented at Association of Teachers of Japanese (ATJ), Philadelphia,
PA.

——, Deryle Lonsdale, and Dan Dewey. 2010. Japanese elicited imitation: ASR-based
oral proficiency test and optimal item creation. Corpus, ICT and Language Edu-
cation, ed. by George R. S. Weir and Shin’ichiro Ishikawa, 161–172. Glasgow, UK:
University of Strathclyde Publishing.

——, and Shinsuke Tsuchiya. 2011. The development of effective language models for
an EI-based L2 speaking test: Capturing Japanese interlanguage phenomena with
ASR technology. Paper presented at American Association for Applied Linguistics
(AAAL), Chicago, IL.

McCready, Eric, and Norry Ogata. 2007. Evidentiality, modality and probability. Lin-
guistics and Philosophy 30.147–206.

McDade, Hiram L., Martha A. Simpson, and Donna Elmer Lamb. 1982. The use of
elicited imitation as ameasure of expressive grammar: A question of validity. Journal
of Speech and Hearing Disorders 47.19–24.

McNamara, Tim. 2000. Language Testing. Oxford Introductions to Language Study.
Oxford, UK: Oxford University Press.

Miyamoto, Edson T. 2008. Processing sentences in Japanese. Oxford Handbook of
Japanese Linguistics, ed. by Shigeru Miyagawa and Mamoru Saito, chapter 9, 217–
249. New York: Oxford University Press.

Müller, Pieter, Febe de Wet, Christa van der Walt, and Thomas Nielser. 2009. Automat-
ically assessing the oral proficiency of proficient L2 speakers. Proceedings of SLaTE
2009.

Nagatomo, Kentaro, Ryuichi Nishimura, Kumiko Komatsu, Yuka Kuroda, Akinobu
Lee, Hiroshi Saruwatari, and Shikano Kiyohiro. 2001. Complemental backoff algo-
rithm for merging language models. IPSJ SIG Notes 2001.49–54.

Naiman, Neil. 1974. The use of elicited imitation in second language acquisition research.
Working Paper on Bilingualism 2.1–37.

Nakayama,Mineharu. 2002. Sentence processing. TheHandbook of Japanese Linguistics,
ed. by Natsuko Tsujimura, 398–424. Malden, MA: Blackwell Publishing.

Nanjo, Hiroki, Tatsuya Kawahara, Takahiro Shinozaki, and Sadaoki Furui. 2004.
Onsei ninshiki no tame no onkyoo moderu to gengo moderu no shiyoo [Specifica-
tions of Language and Acoustic Models for Speech Recognition]. http://www.kokken.
go.jp/katsudo/seika/corpus/public/manuals/asr.pdf , National Insti-
tute for Japanese Language and Linguistics.

97

http://www.kokken.go.jp/katsudo/seika/corpus/public/manuals/asr.pdf
http://www.kokken.go.jp/katsudo/seika/corpus/public/manuals/asr.pdf


Newfields, Tim. 1994. Oral proficiency testing: One approach for college classes. Tokai
University Foreign Language Education Center Journal 14.185–190.

NINJAL. 2006. Nihongo hanashikotoba kopasu no kochikuho [The construction of
the Corpus of Spontaneous Japanese]. http://www.ninjal.ac.jp/products-k/
katsudo/seika/corpus/csj_report/CSJ_rep.pdf , National Institute for
Japanese Language and Linguistics.

O’Loughlin, Kieran J. 2001. The equivalence of direct and semi-direct speaking tests.
Studies in Language Testing. Cambridge, UK: Cambridge University Press.

Sawa, Takashi. 2005. Comprehension of the relative clause structure in Japanese: Ex-
perimental examination for Japanese sentence processing by the self-paced reading
method. Proceedings of Tokyo Gakugei University 56.329–333.

Sawasaki, Koichi. 2009. Nihongo gakushuusya no kankeisetsu rikai: Eigo, kankokugo,
chuugokugo bogo wasya no yomi jikan kara no koosatsu [Processing of relative clauses
by learners of Japanese: a study on reading times of English/Korean/Chinese L1 speakers].
Daini Gengo to shite no Nihongo no Shuutoku Kenkyuu [Acquisition of Japanese as a
Second Language] 12.86–106.

Segalowitz, Norman. 2010. Cognitive Bases of Second Language Fluency. Cognitive
Science and Second Language Aquisition Series. New York: Routledge.

Shibatani, Masayoshi. 1990. The languages of Japan. Cambridge, UK: Cambridge Uni-
versity Press.

Shikano, Kiyohiro, Katsutada Ito, Tatsuya Kawahara, Kazuya Takeda, and Mikio Ya-
mamoto. 2007. Onsei Ninshiki Shisutemu [Speech Recognition System]. Tokyo, Japan:
Ohmsha, 7th edition.

Shohamy, Elana. 1994. The validity of direct versus semi-direct oral tests. Language
Testing 11.99–123.

Shohamy, Elena, Chambers Gordon, Dorry M. Kenyon, and Charles W. Stansfield. 1989.
The development and validation of a semi-direct test for assessing oral proficiency in
Hebrew. Bulletin of Hebrew Higher Education 4.4–9.

Skousen, Royal. 1989. Analogical Modeling of Language. Dordrecht: Kluwer Academic
Publishers.

——, Deryle Lonsdale, and Dilworth B. Parkinson. 2002. Analogical Modeling: An
exemplar-based approach to language. Amsterdam/Philadelphia: John Benjamins
Publishing Company.

Stansfield, Charles W., Dorry M. Kenyon, Ricardo Paiva, Fatima Doyle, Ines Ulsh, and
Maria A. Cowles. 1990. Development and validation of the Portuguese speaking test.
Hispania 73.641–651.

98

http://www.ninjal.ac.jp/products-k/katsudo/seika/corpus/csj_report/CSJ_rep.pdf
http://www.ninjal.ac.jp/products-k/katsudo/seika/corpus/csj_report/CSJ_rep.pdf


Tomita, Yasuyo, Wataru Suzuki, and Lorena Jessop. 2009. Elicited imitation: To-
ward valid procedures tomeasure implicit second language grammatical knowledge.
TESOL Quarterly 43.345–349.

Tsujimura, Natsuko. 2007. An Introduction to Japanese Linguistics. Malden, MA: Black-
well Publishing, 2nd edition.

Uemura, Ryuichi. 1998. Uemura Corpus. http://www.env.kitakyu-u.ac.jp/
corpus/ .

Valian, Virginia, and Sandeep Prasada. 2006. Direct object predictability: Effects on
young children’s imitation of sentences. Journal of Child Language 33.247–269.

Vinther, Thora. 2002. Elicited imitation: A brief overview. International Journal of
Applied Linguistics 12.54–73.

Watabe, Masakazu. 1979. Nihongo ga umaku naru hon [Toward better Japanese]. Tokyo:
Bunkyosha.

——. 1982. Japanese history and literature: Intermediate reader. Provo, UT: Brigham
Young University.

Weitze, Malena, and Deryle Lonsdale. in print. The effect of syntax on English language
learning. LACUS Forum XXXVI. Linguistics Association of Canada and the U.S.

——, Jeremiah McGhee, and C. Ray Graham. 2009. Variability in L2 acquisition across
L1 language families. Paper presented at Second Language Research Forum (SLRF),
Kalamazoo, MI.

Xi, Xiaoming, Derrick Higgins, Klaus Zechner, and David M. Williamson. 2008. Auto-
mated scoring of spontaneous speech using SpeechRater v1.0. ETS Research Report
No. RR-08-62. Princeton, NJ: Educational Testing Service.

Yamada, Hiroyasu, and Yuji Matsumoto. 2003. Statistical dependency analysis with
support vector machines. Proceedings of International Conference on Parsing Tech-
nologies.

Yoon, Su-Youn, Lei Chen, and Klaus Zechner. 2010. Predicting word accuracy for the
automatic speech recognition of non-native speech. Proceedings of Interspeech, 773–
776.

Zechner, Klaus, Derrick Higgins, Xiaoming Xi, and David M. Williamson. 2009. Auto-
matic scoring of non-native spontaneous speech in tests of spoken English. Speech
Communication 51.883–895.

99

http://www.env.kitakyu-u.ac.jp/corpus/
http://www.env.kitakyu-u.ac.jp/corpus/


100



Appendix A

EI Graders

(a) ASR Grader

(b) Human Grader

Figure A.1: ASR and Human Graders (a) Mora alignment of correct and dictated EI items
and corresponding binary scores generated by System I (b) Web-based human scoring system
with the binary grading method
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Appendix B

Decision Trees
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Figure B.1: Decision Tree for All 12 Features
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> 9
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200 (4.0/1.0)

<= 45
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> 45
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<= 65
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200 (2.0)

<= 45

100 (4.0/1.0)

> 45
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<= 69
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> 69

X.Pauses

<= 18

X.Runs

> 18

X.Types

<= 17

X.Fillers

> 17

X.Runs

<= 62

100 (3.0/1.0)
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Native (4.0)

<= 10

X.Pauses

> 10

100 (2.0/1.0)

<= 16

300 (2.0)

> 16
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<= 4

X.Types

> 4
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<= 52

X.Runs

> 52

300 (11.0/1.0)

<= 13
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> 13

X.Fillers

<= 76
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300 (3.0/1.0)

<= 8

X.Pauses

> 8

X.Pauses

<= 29

300 (2.0/1.0)

> 29

100 (3.0)

<= 26

200 (3.0/1.0)

> 26

Native (6.0/2.0)

<= 9

X.Pauses

> 9
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<= 21
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> 21

300 (5.0/1.0)

<= 19
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> 19

300 (3.0)

<= 10
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> 10
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<= 20
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> 20
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<= 14
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> 14

X.Fillers

<= 15
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> 15
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<= 14
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> 14
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<= 23

X.Tokens

> 23
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<= 55
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> 55
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<= 37
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<= 12

300 (3.0)

> 12
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<= 20

200 (4.0/1.0)

> 20

200 (3.0/1.0)

<= 29

300 (2.0)

> 29

200 (3.0)

<= 77

X.Types
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100 (2.0)

<= 53

200 (2.0/1.0)
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X.Tokens

<= 93

X.Fillers
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200 (3.0)

<= 72

X.Pauses
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<= 38

X.Fillers
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100 (4.0/1.0)

<= 33

300 (6.0/2.0)

> 33

200 (2.0)

<= 8

100 (21.0/4.0)

> 8

X.Types

<= 7

X.Runs

> 7

100 (7.0/2.0)

<= 68

200 (2.0)
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<= 26
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<= 41

X.Fillers
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200 (4.0/1.0)
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300 (15.0/5.0)
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<= 27
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<= 28

X.Tokens

> 28
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> 19
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<= 15

Native (11.0/2.0)

> 15

X.Types

<= 12

300 (8.0/1.0)

> 12

X.Runs

<= 79

Native (3.0)

> 79

300 (3.0)

<= 9

X.Pauses

> 9

300 (2.0)

<= 19
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X.Pauses
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300 (2.0)
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Native (6.0)

<= 24

300 (3.0/1.0)
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X.Types

<= 132

X.Pauses
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300 (64.0/10.0)

<= 86

100 (2.0/1.0)
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X.Runs

<= 47

300 (42.0/7.0)
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X.Tokens

<= 25

X.Fillers
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Native (3.0)

> 218
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<= 13

300 (7.0/1.0)

> 13

Figure B.2: Decision Tree for 5 Selected Features
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