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ABSTRACT 
 

Fluency Features and EI as Oral Proficiency Measurement 
 

Carl Christensen 
Department of Linguistics and English Language 

Master of Arts 
 

 The objective and automatic grading of oral language tests has been the subject of 
significant research in recent years. Several obstacles lie in the way of achieving this goal. 
Recent work has suggested a testing technique called elicited imitation (EI) can be used to 
accurately approximate global oral proficiency. This testing methodology, however, does not 
incorporate some fundamental aspects of language such as fluency. Other work has suggested 
another testing technique, simulated speech (SS), as a supplement to EI that can provide 
automated fluency metrics. In this work, I investigate a combination of fluency features extracted 
for SS testing and EI test scores to more accurately predict oral language proficiency. I also 
investigate the role of EI as an oral language test, and the optimal method of extracting fluency 
features from SS sound files. Results demonstrate the ability of EI and SS to more effectively 
predict hand-scored SS test item scores. I finally discuss implications of this work for future 
automated oral testing scenarios.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: Second language oral proficiency, Elicited Imitation, Simulated Speech, Automatic 
Speech Recognition, language modalities, speech signal processing, computerized oral test  
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Chapter 1 – Introduction 

1.1 Background 

The need to establish methods for accurately and efficiently determining the oral 

proficiency of second language learners of a language has received attention from researchers for 

decades (Henning 1983, Lazaraton 2002). Second-language tests use a variety of methods and 

theories in order to assess either a particular linguistic skill or global oral proficiency. Most tests 

rely on test prompts and spontaneous speech in order to evaluate the ability of the learner to 

produce speech that can be evaluated according to specific criteria. Often, the final scores are 

holistic in nature. One problem with spontaneous-speech tests that assess global oral proficiency 

is the difficulty of scoring such tests. Graders are normally asked to assign scores according to 

test rubrics, which attempt to establish a set of criteria to standardize scoring. But even under the 

best of scenarios, objectivity in grading is difficult to achieve in oral-language tests.  

Recent advances in technology have led many second-language researchers to investigate 

automated scoring for oral tests. Automated scoring offers the potential benefit of being 

objective and uniform. The difficulty for automated scoring in oral testing lies in the somewhat 

generic and abstract factors usually considered when assigning a score. These factors include 

correct use of grammar and vocabulary, fluency, correct pronunciation, etc. The accurate 

measurement of many of these linguistic features is currently beyond the current abilities of 

technology, making test automation either very difficult or completely impossible. As a result, 

the standard methods of oral testing usually require human testers or scorers. 

 Involving human testers and scorers makes oral testing expensive and slow. Various 

testing methodologies have been proposed that require minimal human scoring and make use of 

automated computer administration and automated scoring via automated speech recognition 
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(ASR). The difficulty in the use of automated technology, especially in oral testing, comes from 

the imperfect science of ASR, and the multi-faceted nature of oral testing already discussed. As 

one might expect, grading a student with an instrument based on an imperfect platform presents 

problems for automated testing (Mostow and Aist 1000). While ASR quality has improved 

substantially in the last decade, many of the gains require calibration usually involving reciting a 

number of predefined phrases, reading a passage of text, and inputting various personal 

characteristics for the particular speaker – something not feasible in most testing scenarios. Even 

with calibration, ASR for spontaneous speech for non-native speakers is a challenging task. 

  One testing methodology that makes use of automated components is elicited imitation 

(EI). Test items consist of sentences that can be recorded beforehand. The test can be 

administered on a computer via either a stand-alone program, or a web-based application. The 

subject hears the stimulus and repeats the sentence. The subject’s responses are recorded and 

either stored locally or sent to a server. Because the desired responses to the test items are known 

a priori, ASR can be used with a high level of accuracy (Graham et al. 2008); therefore, the 

problems mentioned above are less of an issue in this context. 

 EI also allows for unique test-item construction, which helps target particular 

grammatical structures or lexical items (Graham et al. 2008, Weitze and Lonsdale 2011). Oral 

test construction usually involves compiling a list of stimuli that will set up a particular scenario 

and linguistic environment to elicit from the subject the language features being tested. The 

responses normally follow a particular script or language pattern, but are spontaneous. Specific 

judgments about the subject’s syntactic and lexical abilities are reflected in the holistic score. 

This process is another factor that makes automation difficult. EI enables more targeted testing 

of the sort that is more suitable for automation. 
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 In contrast with the spontaneous-speech model used for oral testing, EI requires the 

response to mirror the stimulus. As already mentioned, this does allow for improved accuracy in 

ASR-based scoring. The possibility of controlling the responses directly allows for engineering 

test items to include particular linguistics features. This control over the subject’s response also 

mitigates other issues with spontaneous tests, issues such as data sparsity. For example, eliciting 

a particular verb form or particular vocabulary item(s) via elicited imitation requires only 

constructing stimulus sentences that contain the desired features. In spontaneous forms of oral-

language testing, the test items can specify a particular way to answer a question (narrative) or 

can focus on a particular subject, but rely on the response to provide the necessary data for 

correctly determining whether a linguistic feature has been mastered. These advantages to the EI 

testing method have led many to further investigate its utility in automatically and accurately 

assessing oral proficiency. Results from numerous studies have shown that EI is a good indicator 

of global oral proficiency (Hendrickson et al. 2008, Lonsdale et al. 2009). 

 By definition, EI does not incorporate various language phenomena that occur in 

spontaneous speech that are important indicators or global oral proficiency. Chief among these 

phenomena is oral fluency. Language fluency is an indispensable—if often difficult to directly 

define and measure—component of most oral language testing methodologies. Researchers have 

identified various way of quantifying fluency via features such as hesitation patterns, turn-taking, 

length of narration, and discourse management (Ellis 1993, Freed et al. 2004). Other forms of 

oral-language testing (such as the OPI) are geared to identifying and testing these features much 

more accurately. These interview-style oral tests take advantage of normal discourse patterns to 

evaluate the control of a language learner over various aspects of language. However, as already 

mentioned, this makes ASR-scoring more difficult. Recent work has focused on using 
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automatically identified fluency features to serve as a measurement for grading (Koponen and 

Riggenbach 2000, Segalowitz 2010).  

 One method of testing that has recently garnered significant attention is referred to as 

semi-direct or simulated speech (SS). The description of the test as semi-direct and simulated 

derives from the testing methodology requiring a monologue type response to the stimulus in a 

simulated environment instead of a dialog- or interview-style test.  This method relies on 

computerized test administration in order to reduce the linguistic resource burden of supplying 

test administrators for each oral test. It does not, however, typically make use of automated 

scoring, though many efforts in this area are on-going. These automated methods of scoring 

usually rely on using a limited vocabulary language model for the ASR engine, phrase or word-

spotting, or feature extraction (Zhang et al. 2007). The automated method I will explore is that of 

feature extraction, specifically fluency-feature extraction. Essentially, many of the fluency 

features that constitute the grading rubric for other oral language testing methodologies can also 

be found in a computer-administered test—such as an SS test—that elicits spontaneous speech. 

The SS samples can then be processed via an ASR engine to calculate metrics that can be used 

for grading. 

 Matsushita (2011) investigated the utility of the combination of the EI score and a 

simulated speech test in predicting OPI scores for Japanese. He identified eleven features that he 

could extract from the test responses using the Julius recognition engine. Table 1 identifies the 

features that he used in his study. The results were promising and invite validation in English. 

Therefore, in my study, I will adjust some of the features used in his study to account for 

available technology and language differences, but will attempt to demonstrate similar 

advantages in the combination of SS fluency features and EI test scores.  
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Table 1: Fluency features used in Matsushita (2011) 

 

1.2 Thesis Structure 

 In order to explore the potential for combining EI with fluency features extracted from 

SS, particularly in automated testing, I will direct my research into four inter-related areas in 

order to answer the following questions: 

1. What information does comparing the results of EI with results of other language 

tests give in respect to better understanding the role of the EI test in language testing? 

2. Which tool is ideal for extracting fluency features from SS test result files?  

3. Can machine-learning and statistical techniques utilize the fluency features that are 

extracted in order to accurately predict holistic SS scores? 

4. How do the SS and EI correlate, and does adding automatically extracted fluency 

features to EI scores better account for a holistic score assigned to an SS test then EI 

alone?  
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1.3 EI and Other Language Modalities 

The distinct characteristics of the EI test have already been discussed in detail, but these 

fundamental characteristics require more probing investigation in establishing the relationship 

between EI and other modalities of language testing. Most of the oral-testing methods discussed 

above are graded largely on the basis of considerations completely inapplicable to the EI test. 

This investigation of the combination of SS and EI tests as a more accurate method of 

determining global oral proficiency proceeds on the assumption that EI provides a reliably 

accurate measurement of oral production. And while researchers have demonstrated a good 

correlation between EI and other oral tests (Graham 2006), the test remains a fundamental outlier 

in oral-language testing. 

 In this vein, beyond oral-language testing, I will study the correlation of EI test scores 

with scores in other language-testing areas, such as grammar, reading, and listening. The unique 

aspects of the EI test have led many to question which aspect of language is really being tested – 

the listening or comprehension, or the speaking (Hood and Lightbrown 1978, Vinther 2002). 

Understanding this distinction in modality is fundamental to correct usage of the EI test. As 

previously mentioned, the possibility of designing test responses allows research into language-

acquisition testing not directly possible in most other oral-language tests. Because of the quick 

and direct access to particular language features, EI could serve as a supplement to various 

testing methods to reduce uncertainty about acquisition of particular linguistic features, and 

provide useful insight into the cross-over of various language modalities into the oral realm.   
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1.4 Fluency-Feature Extraction Tool 

 The definition of oral fluency is often elusive. Regardless of the exact interpretation of 

the concept of fluency, oral-language testing proceeds on the basic assumption that particular 

characteristics or features of oral speech are both desirable and indicative of global proficiency. 

As previously mentioned, Matsushita (2011) investigated the utility of an ASR engine for 

extracting fluency features. The main supposition underlying his study was that although 

transcription of open vocabulary, non-native sound files via ASR is flawed, it is predictably 

flawed. This is, however, not always the case. Modern language models and acoustic models are 

dependent largely on a window of prior context. With varying acoustic or language context, 

results could conceivably vary considerably (Mostow and Aist 1999).  

 I will attempt to contrast this ASR-based feature-extraction methodology with a 

methodology relying solely on signal processing or lower-level analysis of the speech signal’s 

properties. Because signal processing does not rely on context-dependent models as does ASR, 

results can be expected to be more accurate, if less complex and detailed. The number and type 

of features available in these differing systems are not the same; therefore, I will identify 

candidate features for each independently. More features are available for ASR extraction simply 

because of the additional resources available in the system. However, one could expect the 

accuracy of the extracted features from the signal-processing method to be significantly higher 

without the increased complexity. This comparison will provide useful insight into the 

methodology that should be used to extract fluency features. 
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1.5 Fluency Features and Machine Learning 

 Researchers use various ways to map fluency features to test scores (Higgins et al. 2011). 

For this study, I will analyze the features using machine learning (ML). Machine learning has 

found growing application in the field of linguistics and language learning in the last decade. By 

passing the fluency features extracted via the tools into a ML component, I will be able to model 

the importance of the features in correctly predicting scores on an SS test and in demonstrating 

the correlation of these scores and the holistic outcome of the test. The ML will also be useful in 

determining which extraction method is superior by making it possible to compare the accuracy 

of the ML model produced by the set of features extracted via the ASR to the accuracy of the 

model created by relying on the signal-processing method. Statistical modeling is also relevant 

and applicable for this type of research. Inputting the fluency features into a regression model 

makes it possible to calculate the amount of variance accounted for by these features. The 

regression model can also be called upon to predict or extrapolate SS scores. The scores 

predicted via the models will serve to complement the EI ASR-based scores and provide better 

correlation with a holistic score. 

 

1.6 EI and SS Testing Battery 

 While many other language-testing batteries are more standard, I will explore the 

advantages of a battery of tests composed of SS and EI exams. Besides allowing for automatic 

scoring, as I have already indicated, both of these tests can be graded objectively. While a variety 

of scoring methods do exist for both fluency-style features and EI-test items (Tomita et al. 2009; 

Matsushita 2011), for the purpose of this study I will choose only the most standard or logical 

choices for scoring. Because all scoring is automatic and based solely on features or 
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characteristics static across test examinations and test subjects, other methods of scoring should 

map naturally into this method. Thus other methods will remain peripheral to this study.  

I will investigate the utility of the combination of these tests for more accurately 

predicting other oral-language measurements than can be done with either of the tests separately. 

By combining the strengths of both the EI test and a spontaneous-speech test such as the sLAT, I 

will investigate the correlation of automated scoring with human scoring.  If the automated 

results can be obtained quickly and predictably for the EI and SS tests, while maintaining a high 

correlation for other oral global-language measurements, it will demonstrate potential efficiency 

gains for second-language testing. These gains could indicate an quicker, easier and more 

efficient way in which to provide a global measure for a second language learner 
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Chapter 2 – Literature Review 

 
 

 In this chapter I will discuss the body of research conducted by scholars in the area of 

elicited imitation (EI) and simulated speech (SS). I will examine studies on differing L2 

language-test modality correlations and their application to fundamental questions about EI. 

Finally, I will also survey the work done in the area of fluency-feature extraction for L2 language 

analysis and discuss the importance of choosing correct fluency features in order to reach the 

goal of this study. Familiarity with the history of the EI and SS testing methodologies allows for 

greatly improved understanding of the role of each test in current language-testing research and 

in real-world applications. The historical development of SS testing will also frame the issues 

surrounding methods of extracting fluency features from the test results. Similarly, the historical 

use of the EI test also provides insight into the research of various types of language modality 

overlap and how that overlap can affect correct use of EI tests today. 

 

2.1 Elicited Imitation Background 

 The basic concept of using EI as a language assessment tool has been analyzed in various 

studies. The procedure for EI usage is quite uniform: a subject hears an utterance and repeats it 

back verbatim (Chaudron 2003). Tests usually consist of multiple-stimulus sentences which elicit 

a target grammatical construction, morpheme, lexical item, etc. The actual linguistic processes 

involved are, however, still under debate (Hood and Lightbrown 1978, Jessop et al. 2007). 

The EI test relies on the assumption that a subject’s ability to repeat the stimulus is a 

reflection of his ability to process the input. According to the theory, the stimulus is processed by 

chunking the sentence into existing language structures in the brain and storing the 
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representation in working memory (Bley-Vroman and Chaudron 1994, Vinther 2002). The 

subject must then reconstruct the utterance from the memory, once again using his available 

language resources to repeat the utterance. Figure 1 below illustrates the round-trip between 

stimulus and response according to EI theory as depicted by Matsushita (2011), following the 

stimulus through the subject’s language comprehension and production faculties. In the limit, 

native speakers of a language will not be able to repeat a phrase of arbitrary length because of 

working memory constraints. However, for sentences under a particular length threshold, the 

level of proficiency of a language—both for non-native speakers and children—seems to directly 

influence the ability of a subject to correctly repeat the utterance, (Hendrickson et al. 2008, 

Natalica 1976). 

 

 

Figure 1: EI theory schematic from Matsushita (2011) 

 

 The main variable that contributes to the difficulty of an EI test item is the length, 

measured most commonly by the number of syllables the utterance contains (Chapman and 

Miller 1975). For extremely short sentences, otherwise difficult components can be stored in 

working memory without being processed or completely understood, which results in the subject 

essentially parroting the stimulus.  For arbitrarily long items, the constraints of working memory 

are exceeded regardless of the proficiency in the language. However, inside a band of item 



12 
 

 
 

lengths, particular linguistic features also seem to have significant impact on subjects’ ability to 

chunk and repeat the stimulus correctly (Hendrickson et al. 2008).   

A substantial amount of legacy work in the EI field has been in the area of first-language 

acquisition (e.g. Menyuk 1964, Hood and Lightbrown 1978, McDade et al. 1982). In particular, 

many studies focused largely on the capacity of the EI methodology to measure grammatical 

acquisition (Carrow 1974, Ambridge and Pine 2006). A recent study conducted by Valian et al. 

(2006) explored the effect of direct-object predictability on EI test items for first-language 

acquisition among children. They showed that the predictability of the direct object reliably 

correlates with item scores. Essentially, as the naturalness of the verb-object combination 

increased, so did test scores. An item with an improbable or odd combination seemed to require 

the children to memorize more and chunk less. The study has direct relevance in the second-

language acquisition research into EI items as test item design has shown to affect L2 learners as 

well (Christensen et al. 2010). In essence, this study demonstrates that either the production or 

comprehension components of a subject are affected by the syntactic complexity of a test item. 

This finding aligns with more recent work indicating that the EI test is a measure of linguistic 

knowledge, not merely memory capacity (Okura and Lonsdale 2012).  

 Research into the usage of EI as a language-assessment tool for second-language 

learners has increased markedly in the last few decades. Just as in studies of L1 acquisition, EI 

research for L2 learners has largely focused on grammatical structures or lexical items. Various 

studies have investigated which features affect the difficulty of an EI test item. Graham et al.  

(2010) conducted a study in which they constructed items from particular lexical frequency 

bands. The lexical density of an item showed a distinct correlation with the subject’s ability to 

repeat the stimulus correctly. Hendrickson et al. (2008) investigated the role of features in a 
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particular syllable band. Their study identified various syntactic, morphological, and lexical 

features that are statistically significant. These studies underscore the ability of EI to test various 

aspects of a language learner’s linguistic knowledge. 

 The differences between EI and natural scenarios of repetition (such as classroom 

interaction) are highlighted by Jessop et al. (2007). These researchers cite the laboratory settings 

and the content of target grammatical structures that make EI unique. They also point out that 

this form of testing allows researchers to elicit structures otherwise difficult to observe in natural 

repetition or other oral-testing scenarios. This potential research application, however, also 

creates issues with naturalness and predictability, as pointed out above. Jessop suggests that 

corpus linguistics can resolve some issues of sparsity, which would also alleviate naturalness 

concerns for EI repetition and the use of contrived EI items for global oral-proficiency 

investigation.  

 Previous investigation into using corpus resources in order to identify target features 

inside of naturally occurring sentences has shown that extracting items from real-world 

utterances significantly impacts the EI test results and their correlation with other oral-

proficiency testing methods (Christensen et al. 2010). Beyond enhancing direct-object 

predictability, extracting sentences from existing corpora provides for items that are less stilted 

and contrived. As demonstrated in the Valian et al. (2006) study for L1 learners, the less natural 

and predictable the item, the more the subject must memorize the stimulus. This effect 

apparently applies similarly for L2 EI test items. 

 The tools discussed in our earlier work (Christensen et al. 2010) also make it much easier 

to generate test items. As already discussed, much of the focus on EI has been regarding 

particular grammatical features, lexical entries, morphology, etc. In order to elicit the desired 
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linguistic features, linguists would be required to arbitrarily generate sentences which, besides 

the side-effect of producing often being strange and improbable items, took a nontrivial amount 

of time to create. The item-generation tool thus allows for fast and targeted test-item generation 

from a large test bank of EI items. This serves to move toward easier test automation. 

 

2.2 Language-Test Modality Correlations 

 A long-standing complaint about the EI test from linguists is that the test is 

simultaneously a listening or comprehension test as well as a speaking or production test, as 

depicted in Figure 1. This indictment initially slowed the interest in the use of the test 

substantially. This overlap of modalities thus makes the results too ambiguous as to whether the 

subject’s comprehension or production is tested (Hood and Lightbrown 1978, Vinther 2002, 

Jessop et al. 2007). The counterargument holds that the need to disambiguate is not pressing 

since the test can still be used to accurately approximate global oral proficiency. A more detailed 

and nuanced understanding of the production/comprehension overlap in EI is, however, 

desirable.  

There is significant prior work investigating the acquisition of varying language 

modalities in both L1 and L2. Payne and Whitney (2002) showed that development of chatroom-

writing skills produced a substantial gain in oral skills. Feyten (1991) analyzed both the 

correlation of listening skills and language achievement in general and oral proficiency in 

particular, as well as the ability to predict language achievement based solely from listening 

skills. Feyten points out that there are different levels of listening and that they serve different 

purposes. His discrimination among listening skills is easily understood by contrasting the type 
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of listening required to do a task such as EI versus the listening skills required to answer 

comprehension questions. 

 Despite the recent surge in interest regarding EI, little work exists disambiguating the 

nature of the test as either a production- or comprehension-focused test. The majority of work 

has focused on the production aspect of EI (Hakansson and Hansson 2000, Fujiki and Brinton 

1987), despite the original objects of researchers as to the dual nature of the test.  Because the 

written modality of language can also be classified under production or comprehension (reading 

vs. writing), the correlation of EI with non-oral modalities could also provide helpful evidence as 

to just how much the correlation between oral tests can be relied on to accurately profile the 

comprehension and/or production measure in the EI test. 

 Additionally, although EI has no written component, EI is also unique because of its 

strong focus on grammatical structures and lexical items, otherwise difficult to elicit during an 

oral test (Naiman 1974). This gives it potential overlap with components from writing and 

reading modalities as well, modalities in which grammar and vocabulary are more often the 

focus. 

 

2.3 Elicited Imitation Scoring and Automation 

Because of the unique nature of the EI test among oral language tests, scoring has 

evolved considerably through continued research. Initially items or tests were scored holistically, 

in the same fashion that scoring was done on more traditional oral tests (Keller-Cohen 1981). 

Subsequent research has identified more objective and standardized methods of scoring.  

Graham (2006) proposed a syllable-based scoring procedure in which each syllable in the 

test item is given a binary score of correct or incorrect. The cumulative test-item score is then 
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calculated by summing all the correct syllables in the utterance. Subsequent research has strongly 

validated this method of scoring as highly internally consistent among human graders (see 

Lonsdale et al. 2009). The development of various tools to automate the scoring of EI using this 

syllable-scoring method, including the development of an aid to human graders and a process for 

fully automated scoring via automatic speech recognition (ASR), has yielded promising results. 

The first attempt at fully automatic scoring of EI test items was documented by Graham 

et al. (2008). This study demonstrated the ability of an ASR engine to return scores for EI test 

items that are highly consistent with the scores returned by a human scorer. Using the SPHINX 

ASR engine (Lee 1989) and custom recognition grammars designed for use in EI scoring, the 

researchers reported a correlation of 88% between ASR and human-scored items. These results 

highlighted the potential to achieve a fully automatic EI test. A more detailed discussion of the 

grammar and process will be given in Chapter 5, as this process was also implemented to score 

the EI tests used for this study. 

More recent work has moved researchers closer to full EI test automation and real-world 

application. A few of these studies are as follows: 

1. Cook et al. (2011) use EI test results to automatically predict OPI scores for English. 

2. Lonsdale and Christensen (2011) propose a system of machine learning that will 

identify the most ideal next item for a student given past responses, for 

implementation in a predictive test environment. 

3. Matsushita (2011) and Millard and Lonsdale (2011) discuss the implementation of 

ASR for EI for Japanese and French respectively. 

Despite these advances, much of this research into the potential for using elicited 

imitation tests for assessing global oral proficiency has focused largely on methods of scoring 
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and demonstrating that there is a high correlation between EI test results and more standard 

proficiency measures, such as the oral proficiency interview (OPI), provided by Language 

Testing International (LTI), which has standardized guidelines that target particular language 

features for assessing oral proficiency (ACTFL 1999) . The goal of the studies cited above was 

to propose the EI test as a viable alternative to more expensive, slower forms of oral language 

testing. Until quite recently, however, these studies have not addressed a fundamental issue at 

stake in an EI oral test: namely, that oral fluency is a fundamental component of almost all other 

oral-language testing methods and receives significant attention when grading these tests 

(Housen and Kuiken 2009) and is completely absent in the scoring of EI tests, and arguably 

absent from the test as well. Some work in the area of researching fluency metrics extracted from 

EI test responses has proved unfruitful (Matsushita and LeGare 2010) because the speech 

samples were too short and lacked the characteristics of spontaneous speech.  

Another study that examined pseudo-fluency features from EI items provided slightly 

better results, but not promising enough to justify hope that automatically generated scores could 

effectively be substituted for human grading (Müller et al. 2009). Müller, in advancing an 

alternative to the automatic scoring method proposed by Graham (2006), tried to incorporate 

both accuracy and fluency metrics in the calculation of a score for a test item. For their human-

scored metrics, Müller and his colleagues attempted a dual-scoring holistic-style rubric, which is 

demonstrated in Figure 2. While this combination of scoring methods is attracting substantially 

more interest in current research and is the direction of this study, it is applied very differently. 

Müller’s attempt to extract pseudo fluency features convolutes the nature of the EI scoring to 

some degree, and attempts to quantify fluency in test items that have been demonstrated to not 

contain sufficient fluency information (Matsushita and LeGare 2010). In practice, the differences 
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between the scales depicted in Figure 2 are insufficient to base both fluency and accuracy 

measurements on. 

 

Figure 2: Grading scales from Müller et al. (2009) – (a) fluency of EI item, (b) accuracy of the item 

 

 In the last year, studies by Matsushita and others (Matsushita and Lonsdale 2012) have 

identified the need to incorporate other automated testing methods in order to increase the 

effectiveness of the EI test, and to more accurately mimic the global nature of interview-style 

exams.  

 

2.4 Simulated Speech 

 Another language-testing method that has widespread application and has received 

significant attention within the last few decades in respect to automatic scoring is referred to as a 

semi-direct oral test (O’Loughlin 2001), or simulated speech (SS). This method of testing 

historically incorporates technology in various ways. Originally, SS tests could be administered 

via tapes (Malabonga et al. 2005). In most modern applications that implement the SS test, the 

test stimuli are delivered via computer (Malone 2007). The application then records the subject’s 

response (as well as other peripheral information) to a sound file to be scored later. The stimuli 
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will give the examinee situations in which he or she will respond appropriately with a 

description, response, or other speech act (Bernstein et al. 2010). 

 Findings have indicated that SS tests also correlate strongly with OPI-style tests. One SS-

style test—called the Simulated Oral Proficiency Interview (SOPI)—reports correlation of 

between 0.89 and 0.93 (Clark and Li 1986, Shohamy et al. 1989).  Despite these promising 

correlation statistics, other researchers have highlighted the differences—such as the lack of 

turn-taking, and discourse strategies (Koike 1998)—between  the normal interview-style test and 

SS-style tests. 

 The SS test shares some of the advantages of the EI test while maintaining desirable 

characteristics of face-to-face tests, most notably that of requiring the subject to produce 

spontaneous speech. Applications of this testing method are currently much more widespread 

than those of EI. Currently, the internet-based TOEFL test (iBT), the SOPI, and the Computer 

Assisted Screening Tool (CAST) all make use of the SS testing methodology (Clark and Li 1986, 

Malone 2007). 

 The advantage of SS testing is its utility in providing a simplified and more standardized 

administration procedure. Fewer graders are required because tests can be graded remotely. As 

already mentioned, substantial work has already been done to increase the possibility of 

incorporating automatic-grading capabilities in these types of tests. While some aspects of oral 

language are typically omitted in this type of test (such as turn-taking, discourse management, 

etc.), this type of omission must be expected in tests where interaction with another speaker is 

not available. The decision as to whether the cost/benefit ratio of losing some linguistic 

knowledge about a subject while gaining the possibility of increased test automation must be 

made on a case-by-case basis.  
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2.5 Simulated Speech and Elicited Imitation as Test Battery 

 As documented in 2.1 sections and 2.2, both the EI and SS tests offer numerous 

advantages. However, both come with significant drawbacks for linguists attempting to create a 

fully automated language-testing method. While significant advancements have been made in 

using both testing methodologies independently, a strong argument has been made in favor of 

combining these tests to provide better global assessment of oral proficiency.  

 The strength of the EI test includes its utility in eliciting particular linguistic structures 

and lexical items otherwise difficult to obtain. It also allows for fully automatic grading based on 

current ASR technology which focuses totally on the accuracy of the utterance without requiring 

any judgment of quality or fluency (Graham et al. 2008). Because of the unique nature of the EI 

test, various linguistic features can be investigated more in depth in the EI test by requiring the 

subject to try to mimic the stimulus regardless of whether he or she has acquired the lexical item 

or grammatical structure in question (Naiman 1974). 

 On the other hand, the SS test permits the subject to produce spontaneous speech and 

produce linguistic cues not evident or available in the EI test. The SS test has been widely 

researched with respect to fluency features. Numerous features have been identified as effective 

indicators of oral proficiency that can automatically be extracted from the SS results (Ellis 1993, 

Laver 1994, Chambers 1997). By using the extracted fluency features to assess overall fluency in 

the language and using EI as an oral accuracy measurement, linguists can create a more complete 

and sophisticated type of automated language assessment. This testing battery is particularly 

attractive because administration and scoring can be done objectively and without any manual 

processes. 
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 This combination was proposed by Matsushita (2011). Though both tests are used 

independently in the testing community, using them in concert to predict global oral language 

proficiency is an innovative approach. Matsushita investigated this testing combination in 

Japanese and found that it provided a significantly better correlation with the OPI than did either 

test independently. With these encouraging results, the same technique merits investigation in 

English in order to compare and validate and conclusions drawn from the Matsushita study. 

 

2.6 Extracting Fluency Features 

 Significant work has gone into identifying what features of oral language are indicative 

of global oral proficiency and fluency, or, for our purposes, fluency features. Recently, 

researchers have been most interested in which fluency features can be extracted via automated 

techniques. Two main methods of extracting features have emerged: feature extraction via ASR, 

and feature extraction via a signal-processing tool.   

 The nature of the features extracted through these two methods differs. ASR-based 

features vary widely; however, they all reflect the capacity of the ASR acoustic model and 

language model either to provide insight into the subject’s fluency as indicated in acoustic scores 

and/or language scores for words, or to provide high-level understanding of the subject’s abilities 

via the recognized output produced by the whole of the ASR engine (Müller et al. 2009). This 

use of ASR output always relies on data beyond the textual output of the system, such as time-

stamps and then uses various post-processing techniques to calculate metrics for features that 

apply to fluency (Cucchiarini et al. 2000, Neumeyer et al. 2000, Xi et al. 2008). Most systems 

rely on a combination of these in order to give the most complete understanding of the subject’s 

overall fluency. 
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 The difficulty with the ASR approach lies in the fact that ASR is imperfect technology. 

Any system that relies on the output of the models is assuming that the engine gives a more-or-

less accurate representation of the original utterance or—at a minimum—that the results are at 

least predictably inaccurate. However, the underlying complexity of ASR technology introduces 

significant variability. From the mapping from acoustic signal to candidate phonemes (via 

acoustic models) to mapping phonemes to dictionary entries (via specialized ASR dictionaries) 

to mapping candidate dictionary entries to strings of words (via language models), the output is 

too often unreliable in unpredictable ways.  

 ASR research has made significant strides in open-vocabulary language recognition in 

the past decade; however, many of these advances require custom adjustments for the acoustic 

model for the speaker or a customized language model for each speaker. These adjustments are 

difficult but not completely unfeasible, but the added complexity of non-native speakers makes 

high recognition quality nearly impossible. Despite these difficulties, the implementations of 

fluency-feature extraction systems with ASR technology have proved successful in 

approximating either global or target areas of oral proficiency (Ginther et al. 2010). 

 Signal-processing tools have also been used to extract fluency features with favorable 

results (De Jong and Wempe 2009). The PRAAT tool in particular has found wide-spread use in 

feature extraction from sound files (Préfontaine 2010). These systems differ in that they rely on 

no underlying models to correctly, successively map output to input. The approach is simple and 

straightforward in that the features are calculated by analyzing the acoustic signal for silence, 

voicing, syllable nuclei, etc. as determined by heuristics. 

 Both methods of feature extraction have provided excellent results in measuring fluency 

and estimating characteristics of oral proficiency. However, the fundamental differences in 
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approach highlight the need to identify which extraction technique provides the optimal results 

for use in automated scoring. 
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Chapter 3 – Elicited Imitation vs. Other Language Tests 

 

 One of the most fundamental questions facing linguists using the elicited imitation (EI) 

testing methodology in the past has been the fundamentally dual nature of the test. Because the 

test involves listening to and presumably comprehending the test item and then repeating or 

(re)producing it back, it is unclear whether the test scores more fully represent the 

comprehension ability or the production ability of the subject (Hood and Lightbrown 1978, 

Vinther 2002, Jessop et al. 2007). Most studies have assumed that production is the more 

important ability tested in EI.  Despite the ubiquity of the discussion about the production and 

comprehension duality of EI in the literature, opinions differ about the significance of this 

distinction. As expressed in Chapter 1, this work aims to address the question of the role of EI 

among other language tests by comparing the scores of other language tests with those of EI. 

 In recent decades, pragmatists have demonstrated that, regardless of which capacity is 

most represented in test scores, EI scores correlate well with scores from other global oral-

proficiency measures. Vinther (2002) argued, however, that it would be possible to attribute 

improved EI scores to listening comprehension if a subject had received listening training. 

Vinther also points out that a subject with good listening-comprehension skills but bad 

production skills and a subject with poor listening comprehension skills and good production 

skills could end up with the same results from an EI test. Naiman (1974: 1) makes the clearest 

statement on the distinction by stating that EI is a “conservative estimate of second language 

comprehension skills and a non-conservative estimate of second language production skills.”  

 A clear elucidation of the relationship of EI with a listening exam, and the relationship of 

EI with another speaking exam is necessary to better clarify the role of EI in comprehension or 



25 
 

 
 

production testing. Various experimental methods could be employed to better ascertain the 

focus of EI. However, for this study, I will examine EI by comparing test results from various 

testing modalities with results from EI in an attempt to gain greater understanding from a global 

perspective. While it is safe to assume that the production vs. comprehension modality question 

can be investigated by contrasting results from aural and oral exams with results from EI, it is 

also possible to gain insight and additional evidence of the focus of the EI test by investigating 

the correlation—or lack thereof—between the scores from EI and the scores from parallel textual 

tests, such as a grammar (writing) test, focusing on production, or a reading test, focusing on 

comprehension. One of the strengths of EI that is often emphasized is that it gives researchers a 

way to access grammatical knowledge (Vinther 2002, Jessop et al. 2007). Thus one would 

expect the correlation between EI and grammar tests to reflect a greater overlap than would be 

accounted for by the similarities in their focus on language production. 

 

3.1 Methodology and the Data 

 In order to better understand the role and nature of the EI test, I compared scores from EI 

with the scores from four other language tests including speaking, listening, grammar, and 

reading. By comparing the scores of EI against those of these other tests for all the subjects, I 

obtained correlation statistics that help to better understand what the EI test measures and how 

similar it is with other oral or aural tests.  

 The testing data used to examine the relationship between EI and other test modalities 

were acquired from the English Language Center (ELC) at Brigham Young University, which is 

an English for Academic Purposes (EAP) institution. The ELC administers a battery of tests for 

placement at the beginning of semesters and a series of final exams at the ends of semesters. At 
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the end of the semester, the students complete a series of Language Achievement Tests (LAT), 

which include tests of grammar, reading, listening, and speaking (sLAT). An EI test is 

administered simultaneously. The reading, listening, and grammar tests are traditional fill-in-the-

blank and multiple choice style tests, while the sLAT is a simulated speech (SS) style test where 

the students hear a stimulus and then respond in monologue fashion. These tests are given as 

semester-ending achievement tests designed to measure improvement and achievement. Tests are 

designed to adequately test all levels of language learners – from basic to academic level – with 

scores placing the subject somewhere on the scale between those extremes. The scores used for 

this test were well distributed between the beginning level learners and academic speakers, with 

scores for comprehension test slightly higher on average than for the production-focused test. 

 For this study, data from three semesters were used, with the number of students having 

completed the tests for each semester running between 169 and 190, for a total of over 500 

student tests. Each student took all five tests, though not all students successfully completed all 

tests. Additionally, some grading data were not available; therefore, the total number of student 

tests for each test analyzed here is 492. 

 Both the reading and listening tests are designed to target comprehension skills. The 

grammar and speaking tests are more geared to measure production. Each test is scored 

automatically. The descriptive statistics for the data are shown in Table 2.  
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Table 2: Details of the data used for comparison of EI and other test modalities 

 
Descriptive Statistics 

 N Minimum Maximum Mean Std. 
Deviation 

sLAT 492 1 7 3.99 1.038 
Listening 492 233 853 671.74 93.300 
Grammar 492 100 1100 629.41 151.489 
Reading 492 100 806 615.19 96.498 
EI 492 0 523 376.63 54.753 
Valid N 
(listwise) 

492 
    

 
  

 The EI scores used for comparison in this study are those procured via ASR scoring. As 

mentioned in Chapter 2, significant previous work has focused on the ability of ASR to score EI 

accurately (Graham et al. 2008). In order to validate this method for the scenario under 

consideration, I undertook a small validation experiment from a subset of the data. 

 The work reported on in Graham et al. (2008) found that the correlation of ASR-scored 

EI items and hand-scored items was r = 0.88. Using the Julius recognition engine1 after 

investigating various techniques to build language models specifically for the test in question, 

Matsushita (2011) reported correlation of r = 0.91 at the item level for Japanese EI. These studies 

provided the impetus for significant further work in automatic grading of EI.  

 In order to obtain ASR-scored data for the tests included in this dataset, I implemented 

the same framework that was established for the prior work discussed previously in Chapter 2. In 

order to verify the prior work in the context of the ASR-scoring results for the data used in this 

work, several scorers supplied by the Pedagogical Speech and Software Technology research 

                                                             
1 Available at http://julius.sourceforge.jp/. See also Lee and Kawahara (2009) for more technical 
details. 
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group hand-scored the data for one of the semesters. I then compared the hand-scored results and 

the ASR-scored results from the corresponding semester. A correlation coefficient of r = 0.84 

was obtained for subject-level scores. Although this coefficient indicates that the level of 

correlation in this study is not quite as high as has been reported in other seminal studies in this 

area, it is sufficiently high to deem the findings of the previous work pertaining to the automatic 

scoring of EI as a legitimate scoring methodology as  relevant in comparison with hand-

generated scores in this analysis. As the improvement of EI scoring techniques is not the focus of 

this study, I conducted no further investigation. Figure 3 shows the scatterplot for the hand-

scored and ASR-scored subject scores for the winter 2011 semester. Points lying below the best-

fit line denote subject-level scores that are lower for the ASR-grading method relative to the 

hand-scoring method, and conversely, the points above the line denote subject-level scores 

higher for ASR-grading relative to hand-scoring results. 

 

 
 

 Figure 3: Scatter-plot showing correlation of ASR and hand-scored subject-level EI scores  
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3.2 Production vs. Comprehension 

 Modality distinctions in language are made in various ways for different fields of 

linguistic research—written and spoken, production and comprehension distinctions being the 

most common (Feyten 1991, Hakansson and Hansson 2000). EI is unquestionably categorized 

under an oral modality. But because both comprehension and production are used in repeating 

the stimulus sentence, it remains largely unclear as to whether to classify EI in the production 

modality or in the comprehension modality. I investigated this distinction in two ways. First, I 

compared the correlation of scores from EI with scores from sLAT, on the one hand, with the 

correlation of scores from EI with scores from the listening LAT, on the other. Second, I used a 

regression model to compare the scores from both production tests (the sLAT and grammar) and 

from both production tests (listening and reading) with the scores from EI.  

 For the oral-aural tests, scores from the EI tests correlated slightly better with the scores 

for listening than with those from the sLAT. The correlation coefficient for listening scores and 

EI scores was r = 0.534 (N = 492, p < 0.01). The sLAT scores and EI scores returned a 

correlation of r = 0.463. Both of these correlations easily reach the level of statistical significance 

(p < 0.05 is used as the level of statistical significance in this work), indicating that a relationship 

exists between EI and both of these tests. Using the Fisher r-to-z transformation, I compared the 

correlation statistics and found that the difference between the correlation statistics does not, 

however, reach statistical significance (p = 0.139). This seems to signify that EI does not clearly 

focus solely on production or on comprehension. In Figure 4 the correlation of the EI and 

listening tests is depicted via a scatterplot. The scatterplot shows a definite relationship, but also 

demonstrates that the relationship is not tightly linear. 
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Figure 4: Correlation results of LAT listening for all semesters and EI test score 

 

 In order to further investigate the production/comprehension distinction beyond the 

spoken realm, I used multiple regression to investigate the relationship between EI and 

production tests (grammar/writing and speaking), and EI and comprehension tests (reading and 

listening). The models produced results as shown in Table 3 and Table 4 which demonstrates that 

while comprehension tests provide a slightly better model of the data, the results, once again, do 

not give conclusive evidence of a particular distinction in EI between comprehension and 

production. Therefore, no conclusion about the focus on the test can be made. Both regression 

models demonstrate a similar R value (both R values are statistically significant (p < 0.01), 

indicating that both production and comprehension elements of language play similar roles as 

factors of the EI test. In the context of using EI as an oral proficiency measure, this could be seen 

as a less-than-desirable overlap as other oral language exams do not have this dual focus. 
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 Table 3: Regression model statistics for EI and comprehension tests (p < 0.01) 

 
Model Summary 

Mode
l 

R R Square Adjusted R 
Square 

Std. Error of 
the Estimate 

1 .535a .286 .283 46.362 
a. Predictors: (Constant), Reading, Listening 

 

Table 4: Regression model statistics for EI and production tests (p < 0.01) 

 
Model Summary 

Mode
l 

R R Square Adjusted R 
Square 

Std. Error of 
the Estimate 

1 .519a .270 .267 46.885 
a. Predictors: (Constant), Grammar, sLAT 

 

3.3 Grammar Test 

 Researchers have long used EI tests to assess the acquisition of grammatical features 

(Jessop et al. 2007). Because EI requires subjects to produce and/or comprehend grammatical 

structures regardless of whether they have learned the structure yet, the EI test, in theory, is 

somewhat analogous to a grammar test. Traditional grammar tests are textual, and therefore 

should still be starkly different from an oral-aural test, regardless of the grammatical focus. 

However, if the focus of EI is truly testing a subject’s grammatical ability, one would expect a 

stronger relationship to exist between EI and grammar tests than between EI and textual tests 

focused on other aspects of language. Thus, the correlation between scores from the grammar 

LAT and the scores from EI should be significantly different from the correlation between the 

scores from the reading LAT and those from EI.  
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In fact, the scores from the reading test returned a correlation with the scores from EI of r 

= 0.296, which is well above the level of statistical significance (N = 492, p < 0.01). The scores 

from the grammar test, however, correlated even more strongly with the scores from EI, with an 

r value of 0.380 (N = 493, p < 0.01). Although the difference in correlations did not reach 

statistical significance (p = 0.139), the difference in correlations is greater than the difference in 

correlations for production and comprehension tests. Because this difference in correlations is 

below the level of statistical significance, no conclusions can be drawn from this about the ability 

of EI to test grammar acquisition in comparison to other linguistic modalities. However, more 

data could show this slightly larger correlation to be significant, therefore more research is 

necessary. 

 

3.4 Discussion  

 This study demonstrated that EI cannot be satisfactorily classified as either a production 

test or as a comprehension test. Although much has been made of the need to disambiguate the 

dual nature of the EI test, it remains unclear how much this distinction matters in practice. It 

seems clear that the EI test is simultaneously a representation of some aspects of listening skills 

and some aspects of oral production. This duality has historically been the issue that has caused 

some to regard EI skeptically (Hood and Lightbrown 1978, Vinther 2002, Jessop et al. 2007). 

However, despite the conceptual ambiguity inherent in this test, it seems abundantly clear from 

the body of research that EI can be used as a good approximation of global oral proficiency. 

 The use of EI as a grammar-testing tool seems to be trending toward validation by this 

research but it is certainly not the case that EI is a strong indicator of grammar test scores. 

Although the EI test that was administered in these exam iterations was not specifically designed 
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to focus on grammatical acquisition, a moderate correlation (usually defined between 0.3 and 

0.7) still exists between results from a traditional grammar test and those from EI. 
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Chapter 4 – Extracting Fluency Features from SS Test 

4.1 The Data 

The simulated speech (SS) data used to examine the optimal method of extracting fluency 

features were also included in the LAT testing described in Chapter 3. The sLAT is a computer-

administered test that consists of a series of questions that prompt spontaneous speech responses 

– thus an SS test. The responses are recorded by a testing application at the ELC and then given a 

holistic score by a human grader on a scale of 1 to 7. Each test is double-scored by raters at the 

ELC according to a grading rubric provided at the ELC. The test-administrator then runs the 

scores though Facets (Many-Facet Rasch Measurement) for an in-depth analysis of rater bias. 

Finally, a weighted average score is assigned each test. The test files in this study ranged 

between 20 seconds to just under 2 minutes, and the average length of file for each student was 

between 50 seconds and a minute.   

 For this study, I examined data from all three of the 2011 sLAT test administrations. For 

each semester included in the data, the test was administered to between 179 and 196 students. 

The test results for the sLAT constitute one holistic score for the entire 10-item test. For both the 

ASR and Praat feature-extraction systems, I calculated sLAT fluency features for both the ASR 

and signal-processing methodologies for approximately 500 student tests (5000 sound files). 

 

4.2 Feature and Tool Selection 

 In order to set up the dichotomy between fluency features extracted via an ASR engine 

and those extracted via low-level signal processing objectively, I first tried to identify the most 

prevalent and successful features used in similar studies. A list of some of the identified features 

from similar studies is shown in Table 5. A more comprehensive list of common fluency features 
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extracted from an ASR-based system is outlined in Matsushita (2011). Likewise, for signal-

processing-feature extraction, a variety of features are listed in Table 5 as well, though the 

possibilities of features extracted via signal-processing methods are much more limited.  

Many of the features extracted, either via ASR or via signal-processing, can be more 

accurately quantified by human graders. However, some features presumably cannot be assigned 

by a human grader, such as articulation rate or acoustic model. In either case, for the hand-

scoring of SS tests, one can assume that the grader does not consciously quantify these metrics 

but rather takes into account an abstract representation of the subject’s fluency comprising some 

combination of these metrics and other factors in the subjective assignment of a grade. The use 

of these computationally extracted fluency features can therefore be viewed more as an attempt 

to quantify the perception of a speaker’s fluency. The accurate identification of the most 

influential and discriminative features is consequently of utmost importance. 

Although a variety of features exist for both signal processing and ASR, these features by 

and large map semi-directly from tool to tool. For example, the token count of words that can be 

calculated via ASR maps straightforwardly to a syllable count (Graham et al. 2008) which can be 

extracted via signal processing. This similarity in features further highlights the need to identify 

which of the tools is better at extracting features of comparable types. This work seeks to directly 

answer the question posed in Chapter 1: Which tool is ideal for extracting fluency features from 

SS test result files? 

 



36 
 

 
 

Common ASR-based Fluency 
Features 

Common Signal-processing-based 
Fluency features 

Acoustic model score 

Language model score 

Pausing or silence information 

Articulation rate 

Length of speech runs in words or 

time 

Unique number of words (types) 

Total number of words (tokens) 

Pausing or silence information 

Speech rate 

Articulation rate 

Total file duration 

Table 5: Brief compilation of common features based on numerous ASR studies 

 
 I chose two studies in particular to model – Matsushita (2011) and De Jong and Wempe 

(2009). This modeling ensures that the results from the comparison should be an accurate 

representation of the utility of ASR versus signal-processing in real-world applications.  The 

features selected for use in this study were those used by Matsushita (2011), with the exception 

of the number of fillers, or disfluencies consisting of the subject’s uttering a meaningless word or 

sound. Although the filler feature proved significant in the results as the fifth most influential 

variable of the eleven used in of Matsushita study, some doubts about the usefulness and 

relevance of fillers have been raised in other studies. In particular, Ginther et al. (2010) 

enumerate the uses of fillers in ways that are not detractors from fluency but instead serve 

pragmatic functions in language. Also, the ability to extract fillers is complicated in this study as 

a result of the varying L1s of the subjects.  In light of such prior research and other concerns, I 

have omitted this feature from this study.  

I selected features for the signal-processing-based method based on the study by De Jong 

and Wempe (2009), including the additional features added from more recent work based on 

their findings. It should be noted that the De Jong and Wempe study was focusing on the 
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potential for using these fluency features to quantify speech rate in particular and to compare the 

automatically assigned speech rate score with scores given by human graders. While speech rate 

has been shown to be a strong indicator of oral proficiency in many studies, that was not the 

focus of these researchers. Table 6 below shows all the features used for both the ASR and 

signal-processing systems. 

 

       Table 6: Fluency features used for Sphinx and Praat systems 

SPHINX Features Praat features 

Speech Time Per Run 

Speech Rate (number of phonemes per 

second) 

Word Types/Speech Length 

 Tokens Per Run 

 Speech Length 

Silence Length 

Number of Word Types 

Number of Word Tokens 

Number of Runs 

Number of Pauses 

Number of Syllables 

Number of Pauses 

Duration of File 

Phonation Time 

Speech Rate (number of syllables/duration of 

file) 

Articulation Rate (number of syllables / 

phonation time) 

Average Syllable Duration (speaking 

time/Number of Syllables) 

  

   

 I used the Sphinx ASR engine built at CMU for the extraction of fluency features. 

Although this was not the same ASR engine used by Matsushita (2011) (which was the Julius 

ASR engine for Japanese), it was preferable to maintain one ASR engine for use in this work. As 

already documented, the SPHINX system has been tuned extensively for work with the EI 

system; therefore, it was deemed easier to adjust the SPHINX system to extract the necessary SS 
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features than it would have been to adjust the Julius engine to provide EI-item syllable scores in 

English. Differences between the Julius and SPHINX engines should not yield results 

substantially different from those in the Matsushita (2011) study. SPHINX is recognized as one 

of the premier open-source ASR systems and is used in many similar applications and thus is a 

natural choice for this study. I contrast the feature results obtained from SPHINX against those 

extracted via Praat tool, which served as my signal-processing component, and was also used in 

the De Jong and Wempe (2009) study. Praat is an open-source signal-processing and acoustic-

analysis tool developed at the University of Amsterdam (Boersma and Weenink 2005).  

Once the features are extracted from both of these systems, I used machine-learning and 

statistical modeling in order to determine which set of features better explains the scoring data. 

This analysis addressed the third research question posed in Chapter 1: Can machine-learning 

and statistical techniques utilize the fluency features that are extracted in order to accurately 

predict holistic SS scores? For the machine learning (ML) component, I used both the ASR and 

Praat features listed in Table 6 to predict sLAT scores. The role of ML in computational 

linguistics has grown steady in the last decade, and ML here serves as an effective means of 

obtaining item-score predictions based on a feature set. In this case it serves the dual purpose of 

predicting the sLAT scores and providing a common framework in which to compare the results 

produced by each system. For the ML component in this study, I used the Tilburg Memory 

Based Learner (TiMBL) to analyze the features and to identify the features that lead to a more 

accurate prediction of the human-assigned sLAT score. The TiMBL program is commonly used 

in the ML field, though usually in the context of language analysis and related issues (Daelemans 

et al. 2010). 
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For the statistical modeling of the features, I calculated correlations and regression 

models that demonstrated the relationship of fluency features with the sLAT score. By 

investigating the features via both ML and statistical modeling, I was able to determine which 

features are the most representative of oral proficiency. 

 As previous mentioned, the SPHINX system is currently used in many language-testing 

applications (Mostow and Aist 1999). Because the system allows for custom-built language 

models and acoustic models, the ASR engine can be tuned to optimize performance for any 

given task. As previously discussed in the explanation of the choice of the SPHINX engine for 

this study, substantial work has gone into creating the optimum scoring procedure for EI test 

items using a custom grammar, a procedure that has produced excellent results. However, for SS 

only generic components were employed for two reasons: first, the data are not known a priori 

and therefore represent an open-vocabulary type recognition task that makes custom 

development of components time-consuming, and second, generic components are used in other 

similar studies.  

 

4.3 ASR Fluency-Feature Extraction 

 In order to extract the fluency features from the sLAT test items, the files were first 

converted from the .aiff audio format to .wav format – the type of audio format that Sphinx 

recognizes natively. The input audio also had to be normalized to 16-bit 16000 Hz mono. For the 

language model (LM), there were a few publicly available options that that I tried, including the 

Hub 4, GigaWord, and Wall Street Journal (WSJ) models. There were also various acoustic 

models to experiment with, such as the Communicator, Hub 4, and WSJ models. The best 

configuration was determined qualitatively by running several files through the engine and 
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comparing the results to the sound file manually. While this process was not ideally automated or 

empirically verifiable, it was necessary in the absence of the requisite body of sLAT 

transcription data and needed only to be completed once in order to obtain the results for all the 

data. The ideal configuration of the system was a combination of the Hub 4 language model and 

the WSJ acoustic model.  

 I had to resolve several questions also, such as, what length of silence constitutes the end 

of a speech run?  What length of silence duration as marked by ASR stamps should be included 

in the total silence duration? Previous work (Freed et al. 2004, Matsushita 2011) has used a 400 

millisecond boundary for the minimum silence duration to separate continuous speech runs. This 

boundary was also initially used in this study. But when I investigated a portion of the data 

empirically, a shorter minimum seemed to reflect human-perceived pauses better and also 

improved results; accordingly, I shortened the silence duration employed. I omitted from silent-

feature calculations any long silences at the beginning or end of the sound files.   

The output of the SPHINX ASR engine can be given either at the word level with 

timestamps, or at the phoneme level with timestamps.  In order to compare this work most 

closely with that of Matsushita, I used the word-level timestamp output. The recognized results 

of each file produced text files with time-aligned text results, as shown in Figure 5. As evidenced 

from this figure, the ASR results have an incredibly high word error rate (WER), which one 

could assume would affect fluency features based on ASR type count, and potentially token 

count. The high WER is indicative of the difficulty of transcribing non-native speakers in an 

open-vocabulary scenario. As will be demonstrated later, the effects of the high WER do not 

seem, however, to adversely affect the ability to get relatively accurate fluency features and 

promising results. 
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Figure 5: Sphinx ASR time-aligned word output 

 

 With the output for all the data, I ran a post-processing script that I created over the text 

files in order to calculate the metrics for each test item. I then aggregated the item totals on a per-

student basis, which allowed me to create a feature vector for each student that could be used in 

the ML components. Each item vector consisted of the 10 aggregate ASR fluency features listed 

in Table 6 for the student along with his overall sLAT score. 

 

4.4  Praat Feature Extraction 

The construction of the Praat component required only a little adjustment to the updated 

script made available2 from the De Jong and Wempe study (2009). The adjustments consisted 

solely of minor changes to the file processing in order to navigate the directory tree and file 

structure of the sLAT repository easily. The main disadvantage of this script is that it currently 

cannot be run in console mode, and therefore requires the Praat program to be open and running. 

This disadvantage hinders the current automation potential. However, the time required to 

perform the feature extraction is considerably less than that required to employ the ASR 

component. This time differential is a serious consideration when discussing a broadly 

                                                             
2 https://sites.google.com/site/speechrate/ 
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implemented testing system with potential for calculating real-time scores. The Praat program 

also requires fewer external resources, such as the language model and the acoustic model.  

The configuration of the Praat script requires manual calibration of settings, such as the 

minimum threshold length for silence, a decibel threshold tuning parameter (defining silence 

within a speaker’s utterance), as well as the minimum decibel dip (defining the distinction 

between syllable peaks). These settings were calibrated as follows: three-tenths of a second as 

the minimum length of silence, -25 decibels as the tuning parameter for silence, and 2 decibels as 

the minimum dip between syllables. 

Once configured, the script processed all of the sound files and printed the fluency 

feature results in the Praat script output window. Figure 6 shows the Praat output text for a few 

of the sound files. Once all the files were processed, I ran a post-processing script over the 

results, a script similar to the script necessary to process the SPHINX output.  

 

 

Figure 6: Praat script fluency feature output (student names removed) 
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4.4 ML Results 

I ran both sets of feature vectors through TiMBL and obtained test prediction accuracy 

scores via the leave-one-out method of prediction. The ASR training file consisted of 484 vectors 

consisting of the ten fluency features extracted from the ASR transcription results, while the 

Praat training file had 536 vectors consisting of the seven fluency feature extracted from the 

sound files, including a few sounds files that were not successfully recognized by the ASR 

system. The TiMBL system calibrates a model in order to predict future results. The results 

returned the predicted score given the model calibrated with the fluency features.   The accuracy 

of the model is then scored by comparing the actual outcome versus the predicted outcome of the 

SLAT. TiMBL also includes ranked features in the results, showing the relative information gain 

provided by the features incorporated in the model, or the quality of the feature in assisting in 

accurately predicting the correct outcome. The outcome for both the ASR and Praat features is 

depicted in Table 7 below. Besides determining the exact-match score showing the number of 

predictions that were entirely accurate, I also calculated the within-one (or adjacent-score) 

accuracy. The scores used to train the system in this case were weighted averages, which were 

used because human scores often differ by a point or more. This additional margin for error is 

consistent with human-rating scores. While no system’s exact accuracy was as high as the results 

reported in Matsushita (2011), some degradation in prediction accuracy must be expected as the 

sLAT grading score is a 7 point scale (7 outcomes) as compared to the 3 or 4 level scale (3 or 4 

outcomes) being employed in that study. 
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Table 7: TiMBL accuracy predication rates for fluency features 

 ASR Praat 

Exact Accuracy 0.3908 0.3645 

Within-one 
Accuracy 

0.8376 0.8299 

 

 

The results demonstrate that both ASR and Praat achieve exact accuracy above 30%. 

That increases meaningfully for within-one scores to an accuracy of between 83% and 84% for 

both systems. Based on a statistical analysis of the correlations of the predicting scores from the 

two models, these differences are statistically insignificant (p = 0.69) showing that both models 

are equally good at predicting sLAT scores based on their respective features. The results also 

demonstrate that for within-one prediction, ASR and Praat prediction of sLAT scores gives 

reasonably good results and either should be considered a prime candidate for the automation of 

fluency-feature extraction techniques. 

 Interestingly, the ranking of the variables and the information-gain supplied to the model 

(that is, the gain in the statistical power of the ML model to predict outcomes accurately) for the 

ASR features was quite similar to that reported by Matsushita. Despite the use of the different 

ASR engine and the differing target language and L1 backgrounds of the subjects, the same 

variables proved to be the most discriminative among test takers as shown in Table 8. Although 

the order of the most influential variables was not the same, of the five most influential variables 

from that study, four appeared among the most influential variables for this study. The top five 

discriminative features in this study were: (1) Number of Runs, (2) Number of Pauses, (3) 

Number of Word Types, (4) Number of Word Tokens, and (5) Tokens Per Run.  
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Among the Praat features, speech rate emerged as the top discriminative feature. Other 

discriminative features included number of syllables, articulation rate, and average syllable 

duration. Another feature that overlapped with ASR features—number of pauses—proved 

significant in both models by appearing in the top three discriminative features in both ASR and 

Praat results. Not surprisingly, the simplest score extracted, total duration of the file, had the 

least discriminative effect on the predicted scores. Many of the features that have equivalents in 

the ASR feature set (e.g. number of syllables, number of pauses) proved influential in both the 

ASR and Praat features. One obvious exception was speech rate, which as calculated by Praat 

proved to be the most discriminative feature, but in SPHINX came up next to last in importance. 

This variation in feature importance could be a reflection of the quality of the speech rate as 

calculated by ASR versus by Praat, or it could just be a reflection of the inherent inaccuracy of 

the pseudo-phonemes used by counting letters in orthography.  
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Table 8: TiMBL results for fluency features 

Variables by order of significance 

SPHINX Features Praat features 

1. Number of Runs  

2. Number of Pauses 

3. Number of Word Types  

4. Number of Word Tokens  

5. Tokens Per Run  

6. Silence Length 

7. Speech Length 

8. Speech Time Per  

9. Speech Rate (number of phonemes per 

second)  

10. Run Word Types/Speech Length 

1. Speech Rate (number of 

syllables/duration of file) 

2. Number of Syllables 

3. Number of Pauses  

4. Articulation Rate (number of syllables / 

phonation time) 

 5. Average Syllable Duration (speaking 

time/Number of Syllables) 

6. Phonation Time 

7. Duration of File 

 

 

4.5 Statistical Results 

 The results from ML contrast slightly with those obtained via a regression model. In 

Table 9, the model summaries show that the Praat features yield a slightly better regression 

model than the ASR features. Both of the models are statistically significant (ASR model: F = 

25.459, p < 0.01; Praat model: F = 41.536, p < 0.01). 
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(a) ASR Model Summary 
Mode
l 

R R Square Adjusted R 
Square 

Std. Error of 
the Estimate 

1 .586a .343 .329 .912 
     

 
(b) Praat Model Summary 

Mode
l 

R R Square Adjusted R 
Square 

Std. Error of 
the Estimate 

1 .596a .356 .347 .896 
 

Table 9: The regression model statistics for the features from the two feature extraction systems. 

 

 The significance of the individual features and their respective impact on the model was 

also analyzed by t-tests for each feature. The results of the analysis are displayed in Table 10. 

For the ASR model, the features that reached the level of statistical significance (p < 0.05) are 

(1) number of word types, (2) silence length, (3) speech length, and (4) number of runs. The 

features that reached statistical significance for the Praat model were (1) number of syllables, (2) 

file duration, (3) articulation rate, and (4) phonation rate. These results overlap only partially 

with the ML results.  
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(a) ASR Feature Coefficientsa 
Model Unstandardized 

Coefficients 
Standardized 
Coefficients 

t Sig. 

B Std. Error Beta 

 

(Constant) 3.518 .312  11.271 .000 
Speech time per run -.022 .072 -.033 -.303 .762 
speechRate .000 .009 .001 .029 .977 
typesDivSpeechLength .051 .082 .076 .615 .539 
tokensPerRun -.045 .039 -.068 -1.172 .242 
speechLength -.107 .043 -.548 -2.490 .013 
silenceLength -.146 .035 -.582 -4.136 .000 
numTypes .117 .029 1.761 4.045 .000 
numTokens .030 .031 .510 .951 .342 
numRuns -.142 .060 -.648 -2.383 .018 
numPauses -.023 .016 -.250 -1.465 .144 

a. Dependent Variable: sLAT FAIR 

 
 

(b) Praat Feature Coefficientsa 
Model Unstandardized 

Coefficients 
Standardized 
Coefficients 

t Sig. 

B Std. Error Beta 

 

(Constant) 4.043 .715  5.653 .000 
numSyl .016 .004 .450 3.948 .000 
npause .020 .013 .119 1.631 .103 
dur -.089 .016 -.328 -5.445 .000 
phonationTime .038 .016 .268 2.309 .021 
speechRate -.099 .130 -.055 -.763 .446 
artRate .321 .117 .180 2.735 .006 
ASD -.100 .141 -.028 -.713 .476 

a. Dependent Variable: SLAT FAIR 

 

Table 10: Individual feature analysis in the regression models of (a) ASR and (b) Praat features 
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4.6 Discussion and Implications 

  A fundamental difference between the Matsushita study and this study lies in the values 

being predicted. Whereas this study had direct access to human-scored SS test items, Matsushita 

used the class level as designated by the placement procedure as the outcome variable in the 

feature vector through which he identified the most salient fluency features.  

 Because the dependent variable in this study (the sLAT score) is the same as the score 

that we want to more accurately generate, the outcome of the machine learning from this study 

directly yields a model that can be used to predict these scores for future SS tests. On the other 

hand, in the Matsushita study, the ML was used to identify which features should be used in 

another algorithm to directly score the SS items. For this study, the hand-graded sLAT scores 

provide more accurate assessment of oral proficiency as determined by this test than the class-

level variables Matsushita was forced to use. Additionally, because the purpose of this work is to 

demonstrate the utility of EI and SS fluency features in better predicting the human-graded SS 

score, EI and fluency features can be used directly in ML and statistical modeling to demonstrate 

improved results attained by combining EI and fluency features which will be discussed in 

chapter 5. 

 Also, the granularity of these studies differed. Whereas Matsushita used fluency features 

at both the test-item level and at the subject level as feature vectors, I aggregated the scores from 

the full SS test and averaged the features to obtain one fluency-feature vector per student. This 

was done in order to maintain consistency in scoring granularity of the SS test. Each sLAT test at 

the ELC is assigned a single holistic score, and since fluency features can vary between sound 

files, I determined that it was advisable to aggregate the features in order to use the holistic score 

more appropriately. 
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 The Praat results, while not quite as good as the ASR results, did not perform  

appreciably worse. This is important to note because, despite the numerous fundamental 

differences already discussed in Chapter 2 and above in 4.2, the model yielded results 

substantially above the baseline of chance (~14%) and quite well for within-one predictions. The 

additional features available to the ASR system did not, in this study, increase the utility of the 

ML model in correctly predicting the score.  Advantages of an automated SS system that 

implemented a Praat feature extraction would include increased speed of extraction and simpler 

processing without the need of additional models.    

 The comparable nature of the available features in both systems is evident in these 

results. However, it is quite likely that a combination of the features from both systems would 

provide even better results. Although the majority of the Praat features are available in some 

manner via the ASR outputs already available, the diminished complexity and quicker access to 

the features present compelling reasons to use lower-level processing where available for feature 

extraction. Other fluency features available via the ASR system but not analyzed in this study 

may also provide improved results. The additional complexity of the ASR features appears to 

have been of no additional help in the correct prediction of SS scores. 
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Chapter 5 – EI and Fluency Features 

 
 

 So far, I have investigated the utility of the elicited imitation (EI) test as an oral 

production measurement and have weighed options for extracting fluency features from a 

simulated speech (SS) test for the purpose of combining EI and SS fluency features. The purpose 

of the EI test is to measure the linguistic accuracy of a non-native speaker. Because of the 

automatic grading available for the EI test, much of the burden of manual test grading can be 

alleviated. However, as already discussed, more spontaneous speech tests require more nuanced 

and complicated measures. Much of this complexity originates from the multifaceted nature of 

oral speech, complexity that makes it challenging to measure characteristics such as fluency and 

accuracy. By assessing the accuracy of the subject via EI and the fluency of the speaker via 

fluency features extracted from an SS test, researchers can rapidly and effectively assess two of 

the major speech characteristics used for rating global oral efficiency. As demonstrated in 

Chapters 3 and 4 respectively, EI and fluency features independently correlate moderately with 

the sLAT results. Because of the overlap between the results that these two automated tests yield, 

using them in concert should augment the correlation coefficient and prediction accuracy. My 

final research question, how do the SS and EI correlate, and does adding automatically extracted 

fluency features to EI better account for a holistic score assigned to an SS test then EI alone, is 

investigated in this chapter. 

 As indicated in Chapter 4, the two available extraction tools for assessing fluency 

features appear roughly equivalent in their utility; consequently, either one should yield similar 

results when combined with EI. Therefore, I will base my work in this chapter on the ASR 

results in order to more closely parallel the methodology employed by Matsushita (2011). Using 
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the ASR features, I will explore two ways to validate the combination of EI and SS fluency 

features: First, I will combine the EI scores with the fluency features and run them through 

TiMBL to demonstrate the superior predictive power of this procedure. Second, I will use 

regression models to show the significance of the EI scores alongside the fluency features in 

creating a stronger relationship with the sLAT scores. 

 These statistical and ML techniques are relevant here, just as they were in Chapter 4, 

because the EI score can be seen as another feature used in predicting the sLAT score. Because 

hand-scored results for the SS test are available, the regression model is applicable, because the 

combination of EI and SS fluency features will better reflect the FAIR average test score of the 

sLAT.  

 

5.2 ML Results 

 Placing the ASR-generated EI scores in the feature vector of fluency features for each 

student had the hoped-for effect of dramatically improving the utility of the ML results in 

predicting SS scores. Not surprisingly, the EI score was the single most discriminative feature. 

The information-gain metrics were affected for the other features by the addition of EI, but the 

order of feature importance did not vary. The difference in the prediction accuracy was 

significant, with exact accuracy jumping to 49%, a 10% increase from the ML results reported in 

Chapter 4. The within-one accuracy reached more than 86%, a 3% increase. Figure 7 shows the 

hand-scored and predicted values of the sLAT test scores’ relationship with EI. The boxplots 

reveal the similar predicted trends of the sLAT predictions vs. EI but also underscore the 

difficulty of predicting values particularly at the upper-end of the range. 
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The composite of the fluency features and the EI test yields a noticably improved 

reflection of the global oral profiency measure assigned manually. This validates the assumption 

that the information overlap between EI test scores and fluency features extracted from an SS 

test does not reach the level where no additional information about oral proficiency can be 

gleaned when the results from one are added to the other. Although the nearly 50% accuracy is 

still not at the accuracy level reported in Matsushita (2011), it does approach the human-

agreement metrics for the scoring of the sLAT files. 

 

  
 

(a) EI and predicted sLAT boxplot          (b) EI and hand-scored sLAT boxplot 

 
 Figure 7: Boxplots showing the relationship between EI ASR versus predicted sLAT scores and hand-

scored sLAT scores  

 

5.3 Regression Results 

 Similar improvement of results is evident in the regression-model improvement. Table 11 

gives additional model statistics.  The overall improvement in model R2 was 0.124. The 

difference in the R values is significantly higher with EI results included (p < 0.03) as 
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determined by the Fisher r-to-z transform. The R2 value of this new model approaches 0.5, 

indicating the about half of all the variance in the sLAT test scores can be accounted for by EI 

and fluency features.  As demonstrated with the ML results as well as this regression model, EI 

scores give significant additional information to the fluency features and improve the ability of 

the models to predict sLAT scores.      

 

 
Model Summary 

Mode
l 

R R Square Adjusted R 
Square 

Std. Error of 
the Estimate 

1 .684a .467 .455 .821 
 

ANOVAa 
Model Sum of 

Squares 
df Mean 

Square 
F Sig. 

1 
Regression 279.000 11 25.364 37.647 .000b 
Residual 317.998 472 .674   

Total 596.998 483    
 

 Table 11: Regression model statistics and ANOVA for ASR fluency features and EI scores 

 

 The analysis of the individual features of the model provides results similar to those for 

the model outlined in Chapter 4, a.467 model that did not include EI. As expected and 

demonstrated in section 5.1 in ML results, EI scores produced the most significant t value. 

Importantly, none of the significant features in the fluency-feature-only model were made 

obsolete by the addition of the EI scores. The significant features were reordered in their level of 

significance, however.  As identified by this regression model, the order of the most significant 

fluency features (excluding EI) is (1) silence length, (2) number of runs, (3) number of word 
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types, (4) speech length. Table 12 shows the additional statistical-feature information for the 

regression model (compare with table 10a). 

 

Coefficientsa 
Model Unstandardized 

Coefficients 
Standardized 
Coefficients 

t Sig. 

B Std. Error Beta 

 

(Constant) .965 .402  2.401 .017 
Speech time per run .000 .066 .000 -.005 .996 
speechRate -.006 .009 -.035 -.750 .453 
typesDivSpeechLeng
th 

.039 .075 .059 .513 .608 

tokensPerRun -.065 .038 -.090 -1.706 .089 
speechLength -.109 .039 -.561 -2.805 .005 
silenceLength -.106 .033 -.424 -3.249 .001 
numTypes .076 .027 1.144 2.851 .005 
numTokens .053 .029 .898 1.827 .068 
numRuns -.157 .055 -.710 -2.879 .004 
numPauses -.023 .015 -.249 -1.576 .116 
EI ASR .008 .001 .398 9.914 .000 

 

Table 12: Regression model statistics for individual variables of the ASR-based fluency features 

combined with EI scores 

 
 
 The significant improvement of the regression model after the addition of the EI scores is 

evidence of the utility of the model in correctly predicting sLAT scores. Figure 8 plots the 

regression model predictions by their actual hand-graded sLAT results. Once again, the variance 

still present in the model is somewhat representative of human upper-bound on grading 

consistency for spontaneous speech tests, such as the sLAT. Despite the advanced statistical 

processing of the sLAT human-assigned grades which produced the FAIR results being used in 
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this analysis, a degree of variance is still to be expected because of the variance inherent in the 

human scoring. 

 
  

5.3 Implications and discussion 

 The results from both the TiMBL ML system and the regression model validate for the 

English language the work done by Matsushita (2011) in Japanese. Although the process used 

for validation of EI and SS fluency features is considerably different than that used by 

Matsushita, the results are no less promising or relevant. The use of the fluency features and EI 

in this work to predict the FAIR sLAT score is comparable to their use for predicting OPI scores.  

 
 

  Figure 8: Scatterplot of regression model predicted values and sLAT FAIR scores 
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 Both regression and ML appear to provide more than adequate means of utilizing and 

compiling the features and EI scores to produce a model that can be used to predict sLAT scores 

with accuracy that neither test could achieve independently. This independence from modeling 

technique further serves to validate these features as accurate broad-spectrum measures of global 

oral proficiency. Despite variable orderings of the features in their significance for the model, a 

representative model of oral proficiency can be created from fluency features and EI. Though 

fluency features for this analysis were limited to those identified in other studies, it seems clear 

from other research in area that other fluency features can be extracted and used successfully in 

the measurement of oral proficiency. The combination of these other features and EI may yet 

yield significantly better results. Because the results account for less than 50% of the variance in 

sLAT scores, additional work must be done to further identify significant features. The within-

one scores do demonstrate, however,  that the EI results and fluency features do give a good 

approximation of oral proficiency which could be used in lower-stakes testing scenarios. 
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Chapter 6 – Conclusions 

 
 

 The goal of this inquiry has been that of advancing linguistic understanding of the role 

and potential applications of elicited imitation (EI) in English and in second-language testing 

techniques. To achieve this end, my work focused on four research questions:  

1. What information does comparing the results of EI with results of other language tests 

give in respect to better understanding the role of the EI test in language testing? 

2. Which tool is ideal for extracting fluency features from SS test result files?  

3. Can machine-learning and statistical techniques utilize the fluency features that are 

extracted in order to accurately predict holistic SS scores? 

4. How do the SS and EI correlate, and does adding automatically extracted fluency 

features to EI scores better account for a holistic score assigned to an SS test then EI 

alone?  

 The research conducted into these four questions has enhanced understanding of EI and 

of its potential applications. While the study of the EI techniques is not new, significant progress 

has been made in understanding the advantages of the test and the role it can play in the test 

community. This research provides additional insight and advances current understanding of the 

role of the EI test in English as a second-language test. Moreover, by comparing the utility and 

advantages of feature extraction using different automated tools, this study enables linguists to 

improve their targeted use of these tools in identifying accurate fluency features of ASR and 

acoustic analysis respectively. While the correlation and prediction accuracy of the models in 

this work does not reach the level where an automated exam would suffice for a high-stakes test, 



59 
 

 
 

it does demonstrate the potential of using this style of testing battery to identify the approximate 

oral proficiency of a speaker quickly and efficiently. 

 

6.1 EI as a Production and Comprehension Test 

 Many researchers have wondered whether EI provides a better measure of a subject’s oral 

production ability or of a subject’s language comprehension (Jessop et al. 2007). By comparing 

EI to a simulated speech test (the speaking Language Aptitude Test or sLAT) and to an aural 

comprehension test, this study made it clear that both aspects are represented in the scores of an 

EI test. The dual production/comprehension nature of the EI test came into sharper focus when 

EI results were compared with the results from a reading and aural modality comprehension test, 

on the one hand, and the results from grammar and oral production tests, on the other. Slightly, 

though not statistically significant, stronger correlation with a grammar test over a reading test 

could be an indication of the ability of EI to test syntactic skills and grammar acquisition better 

than other language skills such as reading but would require additional investigation in order to 

identify a significant correlation trend. 

 

6.2 The Optimal Fluency Feature Extractor 

 Both automatic speech recognition (ASR) and signal processing methods have been 

widely used in studies to assess a subject’s oral fluency. This assessment is accomplished by 

extracting features of speech that are indicative of fluency. By contrasting these two methods of 

extracting features to quantify fluency, I have established that the features extracted via either 

system yield comparable results in predicting overall proficiency scores returned by an SS test. 

This finding is remarkable and significant for a number of reasons. Most notably, in 
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demonstrating that either system can provide an accurate assessment of the subject’s fluency, this 

study has given a reason for linguists to consider other factors such as speed of use, 

implementation feasibility, and sound file quality when choosing which system to use in a real-

world application scenario. The results have also made it apparent that the added complexity of 

the ASR system yields little extra information, and in some cases may even distort the results.   

 In order to compare the work of Matushita (2011) and De Jong and Wempe (2009), this 

study has deliberately omitted some of the available features from the analysis. The additional 

features for ASR, such as language model and acoustic model scores, might increase the quality 

of final model. However, the key feature—number of word types—appears to have been washed 

out by recognition inaccuracy and become a less accurate word-count metric, a metric which can 

more reliably be directly mapped to the syllable count extracted by the signal-processing 

methodology. 

 

6.3 Fluency Features and SS 

 The fluency features provided a relatively good account of the data. While the prediction 

accuracy for the ML model of the SS scores was not extremely high, the regression model 

demonstrated that over a third (approximately 35% - R2 = 0.343 for ASR and R2 = 0.356 for 

Praat) of the variance in scores can be explained solely by the fluency features extracted. These 

results identify a relatively strong relationship between fluency and overall SS scores. The 

quality of automatically extracted fluency features also appears to be high. 
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6.4 EI and SS Fluency Features Combined 

 The distinction Matsushita (2011) makes between linguistic fluency and accuracy holds 

also for English testing. As indicated by Matsushita, the EI test results are a good indication of a 

subject’s accuracy-related language skills and the features extracted from the SS test represent a 

good approximation of the subject’s oral fluency. These conclusions are borne out in the results 

of both his study, and the work conducted here. The significant improvement of both the ML and 

regression model with the addition of the EI results clearly demonstrates that differing skills are 

represented in the respective tests. The increase of over 12% in the explanatory power of the 

regression model and the 10% jump in the predictive power of the TiMBL model indicate the 

value of the new information available in the EI test, information not represented in the fluency 

features. 

 The advantages of using this dual approach to automated testing over using either method 

separately are obvious. Because EI can be accurately scored via ASR, and used to target a 

subject’s particular vocabulary, syntactic, and morphological acquisition level, the addition of 

the automatically extracted fluency features serves to greatly augment the accuracy of any 

automatically generated scores for test subjects. As both fluency and accuracy are fundamental to 

the considerations of human graders in the assignment of a grade for an oral proficiency exam, 

neither EI or fluency features by themselves can give an accurate and complete picture of the 

global oral proficiency of the speaker. 

 

6.5 Research Limitations 

 This work on fluency features and EI relies heavily on the use of the SPHINX ASR 

engine. The SPHINX engine is a good representation of ASR functionality. However, other 
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engines might provide better results. Similarly, the use of Praat and the script designed for 

extraction of features reflects a choice of only one of the available tools that could be utilized. 

 All the tests used for comparison in this study were tests already implemented at the 

ELC. Consequently, no refinements or adjustment to test items, administration, or scoring were 

made to the listening, grammar, or reading tests that might have allowed for closer comparison 

with the EI test.  Hand-scored sLAT test items were also not available.   

 

6.6 Future Work 

 The potential applications of the EI/SS testing battery require further investigation. In 

previous work, an adaptive EI test was proposed and outlined (Lonsdale and Christensen 2011). 

The addition of the SS test to this process could lead to even more promising results. More work 

in the area of test-item generation and engineering for both EI and SS could help linguists better 

apply these tests to identify the accuracy and fluency, respectively, of a subject’s use of a given 

feature. 

 Although the results of this study demonstrate the fundamentally dual modality of the EI 

test, significant further investigation is required to identify how the use of a simultaneous 

production/comprehension test affects a subject’s test scores. As Vinther (2002) suggests, 

additional understanding of EI can be acquired by giving subjects additional listening training 

without significant oral instruction or practice and measuring the effects of this training on the 

test outcome. Targeted grammar tests that correlate with grammar elements in an EI test would 

also shed further light on the use of EI as a grammar-testing tool.  

 Language pronunciation is an important element of perceived language ability, yet it has 

received no attention in this study or in many of the previous studies in automatically scoring EI 
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tests. Once again, the possibility of predicting the test response a priori should allow for use of 

ASR techniques in scoring pronunciation for the learner on given phonemes. Additional 

modifications to the acoustic model could be made to account for L1 language backgrounds that 

would target specific pronunciation errors and so refine the EI test score to reflect these 

particular errors. The use of pronunciation scoring in the EI scoring currently implemented in the 

automatic testing procedure also requires attention in order to acquire a more complete picture of 

global oral proficiency of a test subject. 
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