
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2016-12-01

A Framework for Evaluating Recommender
Systems
Michael Gabriel Bean
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Linguistics Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu.

BYU ScholarsArchive Citation
Bean, Michael Gabriel, "A Framework for Evaluating Recommender Systems" (2016). All Theses and Dissertations. 6195.
https://scholarsarchive.byu.edu/etd/6195

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6195&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F6195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6195&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/371?utm_source=scholarsarchive.byu.edu%2Fetd%2F6195&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/6195?utm_source=scholarsarchive.byu.edu%2Fetd%2F6195&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu

A Framework for Evaluating Recommender Systems

Michael Gabriel Bean

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Arts

Deryle Lonsdale, Chair
Mark Davies

Stephen Liddle

Department of Linguistics & English Language

Brigham Young University

Copyright c© 2016 Michael Gabriel Bean

All Rights Reserved

ABSTRACT

A Framework for Evaluating Recommender Systems

Michael Gabriel Bean
Department of Linguistics & English Language, BYU

Master of Arts

Prior research on text collections of religious documents has demonstrated that viable
recommender systems in the area are lacking, if not non-existent, for some datasets. For ex-
ample, both www.LDS.org and scriptures.byu.edu are websites designed for religious use.
Although they provide users with the ability to search for documents based on keywords,
they do not provide the ability to discover documents based on similarity. Consequently,
these systems would greatly benefit from a recommender system.

This work provides a framework for evaluating recommender systems and is flexible
enough for use with either website. Such a framework would identify the best recommender
system that provides users another way to explore and discover documents related to their
current interests, given a starting document. The framework created for this thesis, RelRec,
is attractive because it compares two different recommender systems. Documents are con-
sidered relevant if they are among the nearest neighbors, where “nearest” is defined by a
particular system’s similarity formula.

We use RelRec to compare output of two particular recommender systems on our
selected data collection. RelRec shows that LDA recommeder outperforms the TF-IDF
recommender in terms of coverage, making it preferable for LDS-based document collections.

Keywords: LDA, TF-IDF, recommendation systems, LDS Scripture Citation Index, RelRec,
topic modeling

www.LDS.org
scriptures.byu.edu

ACKNOWLEDGMENTS

I thank Dr. Deryle Lonsdale for his comprehension of computational linguistics

and his ability to teach it with zeal and effectiveness. He kept me in my seat, awestruck by

how amazing studying syntax could be.

I thank Dr. Eric Ringger for his comprehension of natural language processing and

his ability to teach critically rather than by rote. He tackled every question with ease and

foresight.

I thank Dr. Alan K. Melby for his vigor and zeal. He taught me that linguistics

can be fun, even if computers are not involved, teaching me that even the humanities side

of things can leave you pondering for days.

I thank Dr. Mark Davies for being a friend and colleague. Being able to participate

in helping prepare the corpora for GloWbE (Davies, 2013), one of the largest English dialect

corpora in the world, was an amazing experience to say the least!

I thank LoriAnne Spear for being a great department secretary, always keeping

things in order. She even corrected the formatting of this very page not knowing I would

acknowledge her attention to detail.

I wish to thank my wife, Wendy Bean, who guided me to this field of study and

supported me throughout it. She has been my friend, peer, and confidant. She has proven

to be true help-meet for me, especially when times get tough (such as when a database gets

corrupted or when I think you are a victim of an amazingly pernicious virus and is willing

to help you change all your passwords at a moment’s notice—true story).

I thank my daughter for spilling cereal on me when I needed a reason to take a break,

and for being one of my best friends. Of course, I have to thank my son for distracting her

more often than not.

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1

2 Review of Literature: Algorithms, Models, and Evaluation 3

2.1 Introducing Query Search and Recommender Systems 3

2.2 Relevant Algorithms . 4

2.2.1 TF-IDF . 4

2.2.2 LDA: A Model and Algorithms to Build It 7

2.3 Using the Models to Compute Recommendations 9

2.4 Evaluation . 11

3 Methodology 15

3.1 Introduction . 15

3.2 Corpus Characteristics and Preparation . 17

3.3 Corpus Pre-Processing: Cleaning + Normalization 17

3.4 Models + Parameters . 19

3.4.1 LDA RS . 19

3.4.2 TF-IDF RS . 20

3.5 Evaluator . 20

iv

3.6 Programming Languages . 22

3.7 Code Management/Organization . 22

3.7.1 Docker + Docker-compose . 24

3.8 Sanity Checks . 26

3.9 Conclusion . 27

4 Results & Evaluation 29

4.1 Interpreting Results . 31

5 Conclusion 34

5.1 Discussion . 34

5.2 Future Work . 35

5.2.1 Evaluating With Other Metrics . 36

5.2.2 Other Topic Models . 36

5.3 Improvements . 37

5.4 Contributions . 38

Bibliography 39

A All Catalog Coverage Values Measured 43

B Tools Used for This Thesis 47

v

List of Tables

3.1 Settings and parameters. 23

4.1 Recommendation set of size 5 for the document The Word of Wisdom 31

4.2 Catalog coverage values for all models (k=1 through k=20). Precision is set
to 5 significant digits. Higher values for each run are shown in bold. 33

A.1 Catalog coverage values for all models (k=1 through k=25). Precision is set
to 5 significant digits. 43

A.2 Catalog coverage values for all models (k=26 through k=50). Precision is set
to 5 significant digits. 44

A.3 Catalog coverage values for all models (k=51 through k=75). Precision is set
to 5 significant digits. 45

A.4 Catalog coverage values for all models (k=76 through k=100). Precision is
set to 5 significant digits. 46

B.1 Tools and libraries used. 47

B.2 Continuation of Table B.1. 48

vi

List of Figures

3.1 RelRec 1.0 Framework Flow . 16

3.2 Entire Process . 21

4.1 Catalog Coverage Values for All Models . 32

vii

Chapter 1

Introduction

Information retrieval within large sets of textual data is a common problem. Two

main approaches to this problem are search and recommendation. Search involves a user

entering a text-based query and the computer retrieving documents based on that query.

An example of this is the keyword-based Google search engine. A weakness with search-

based approaches is that rely on a user having preconceived notions of what is within the

dataset and how to determine the best search query to access the desired information using

vocabulary specific to the dataset. The goal of a recommender system (RS) is to generate

meaningful recommendations for items or products, either based on content similarity or—in

the case of user-specific recommendations—based on content as well as user meta-data (e.g.

profiles, history, ratings, and social network). Real-world operational examples of large-

scale recommender systems involve suggestions for books on Amazon or movies on Netflix.

“The design of such recommendation engines depends on the domain and the particular

characteristics of the data available” (Melville and Sindhwani, 2010). Like query systems,

recommender systems have limitations and biases based on the specific algorithms chosen,

available data, and domain.

In this thesis we address the subject of recommender systems for large textual datasets,

in particular with the corpus of LDS General Conference talks (GC). This dataset grows

at least bi-annually and presently contains over 5k documents. It is frequently accessed

because it is available to the public on the web. The LDS Church, consisting of over 15

million members (see http://www.mormonnewsroom.org/facts-and-statistics), asks its

members to use GC as a source of personal study and a teaching resource. Therefore it

is important for users to be able to locate documents that have meaningful and pertinent

1

http://www.mormonnewsroom.org/facts-and-statistics

connections—by topic if possible. The sheer size of the corpus makes it difficult to sift

through. Computational helps are already available but more are possible.

Currently users who desire to use LDS religious documents found in the GC can

use three websites to help them: LDS.org, scriptures.byu.edu, and the BYU Corpora

General Conference website1. The first two of these sites are similar in that they have a

query system that returns entire documents from a collection. However, they do differ. At

LDS.org users can perform a search or browse by topic. At scriptures.byu.edu users can

search for talks by using the parameters of year, speaker, and user query. In both instances,

a user may lack vocabulary needed to find desired talks/information. The BYU GC website

is powerful, especially for more advanced users. It calculates word frequency, creates colorful

visualizations of key-word(s) in context, and allows per-speaker granularity by utilizing its

virtual corpora abilities. These operations generally start by accepting a text query which

also accept part of speech specifications.

This thesis presents a new framework for evaluating different recommender systems.

In doing so we compare two ways of building a recommender system. They are evaluated

using the catalog coverage metric.

1http://www.lds-general-conference.org/

2

LDS.org
scriptures.byu.edu
LDS.org
scriptures.byu.edu
http://www.lds-general-conference.org/

Chapter 2

Review of Literature: Algorithms, Models, and Evaluation

2.1 Introducing Query Search and Recommender Systems

In our information-based society consumers of text, such as researchers, want to de-

rive useful data or make meaningful connections from textual corpora. This is a problem of

information retrieval (IR) and related applications such as query search (QS), recommenda-

tion (or recommender) systems (RS), and automatic summarization (Mani, 2001). These IR

applications are not without drawbacks. QS, for example, often requires that a user have

at least some knowledge of the corpus being queried, including some knowledge of pertinent

vocabulary in the corpus. For people who are inexperienced with a body of data (e.g. new

Church members accessing the GC), this is not an entirely reasonable expectation. For

example, upon submitting a search query, a person might be able to locate a handful of doc-

uments of interest, but finding more can quickly become an increasingly difficult process of

sifting through lower and lower-ranked search results, unless the user expands the search by

trying a variety of related vocabulary. Having to submit a second or third query to Google

search to find desired content is an example of this problem that Google, a long-time search

engine, has yet to completely solve.

When users lack the required vocabulary, or already know of one document they like,

recommender systems can be helpful. Given some starting document, a recommender system

can find documents that are characterized as recommended or similar. When this is done in

real time, it uses an online algorithm; when pre-computed, an offline algorithm.

Query search is a type of recommender system that uses the query itself as a document

to match against all other documents. The similarities between QS and RS extend to some

of the algorithms, metrics, and evaluation techniques used by them. For that reason, both

QS and RS will be described in this chapter.

3

These systems typically involve processing phases: (1) measurable features are dis-

covered and assigned to items in the dataset and (2) an algorithm matches items of similar

features. When available, personal data (e.g. ratings, profiles, or other preferences) may be

subsequently leveraged to provide personalized recommendations.

While many techniques (algorithms, models, metrics, evaluative measures) have been

implemented in QS and RS, we will focus on some that are typical for use on textual cor-

pora, namely: TF-IDF in search and recommendation, Latent Dirichlet Allocation (LDA) in

recommendation, k-Nearest Neighbor (k-NN), (Collapsed) Gibbs Sampling, and Variational

Inference.

2.2 Relevant Algorithms

2.2.1 TF-IDF

The first major model-algorithm is TF-IDF, which is short for term frequency-inverse

document frequency. Term frequency measures how frequent a term is throughout the docu-

ment collection; document frequency measures how frequent the word is within a document.

These two, when multiplied together, constitute a weight that denotes the overall value of a

word for a given document in a document collection. TF-IDF is built to weight words accord-

ing to their overall frequency and document frequency. Words that are common throughout

the corpus will have an overall low value even if they are very common within a docu-

ment. These are typically function words such as conjunctions, determiners, and pronouns.

Words that are not common throughout the corpus—but are common within a document

are weighted, or valued, high. These high-weight words constitute the core words of the

document: a topical wordprint (think ‘fingerprint’) of a document. Documents with similar

wordprints are deemed related/similar.

TF-IDF is a bag-of-words model, which means that words of a certain range (the doc-

ument) are considered together, irrespective of their relative word order. For programmers,

TF-IDF is a readily available model because it is well-known, easy to understand, and is

included in various open-source programming toolkits such as Apache Lucene (McCandless

et al., 2010), Apache Solr (Serafini, 2013; Smiley and Pugh, 2015), NaturalNode’s natural

(NaturalNode, 2016), and Elasticsearch (Elasticsearch, 2016). This means that for tools such

4

as the LDS Scripture Citation Index (SCI), both the QS and RS can potentially share a code

base, maintaining a simple overall code architecture. This is a desirable characteristic for

time/money-constrained engineering projects, especially those that strive for simplicity of

maintenance.

Spärck Jones (1972) wrote the seminal paper on TF-IDF. Her work inspired other

computer scientists such as Robertson to conduct research in TF-IDF. They collaborated to

create Okapi BM25 and later improved versions, a set of functions used in document retrieval

that uses TF-IDF principles. Later, Robertson worked to develop the Bing search engine.

Open-source tools such as Apache Lucene (McCandless et al., 2010), Luke (Bialecki, 2013),

and AntConc (Anthony, 2013) result from widespread usage of TF-IDF. The LDS SCI uses

Luke, and LDS.org search results are typically so similar to LDS SCI that it appears to

also use TF-IDF behind-the-scenes (or something that produces the same frequency-based

results).

TF-IDF stores the weight for each word in a matrix, consisting of a vector of vectors.

Each sub-vector corresponds to a document. The scalars within the vector are the weighted

value of the word that the dimension represents, which is any word that is not an ignored

word, otherwise known as a stopword. If no stopwords are provided to the model, every word

in the document collection’s vocabulary would be associated with a particular dimension in

every vector.

TF-IDF weighting is inspired by Zipf’s law, which led to the observation that some

words are used many times while the majority of words occur less often. The weight, or

value, of a word is in inversely proportional to the number of occurrences, hence IDF (inverse

document frequency). “The term-frequency factor was originally thought to be indicative of

document topic [Luhn 1958], and the inverse document-frequency (IDF) is reasoned [Spärck

Jones 1972] on the basis of Zipf’s law.” (Wu et al., 2008) Note, though, that not all IDF

score metrics attempt to respect Zipf’s law. One such example of this is the unary IDF

scoring, which simply assigns a value of 1 to all IDF scores.

Building on raw frequency to compute the TF scores of the TF-IDF model, Manning

et al. (2008) mention three possible methods, namely: (1) Boolean “frequencies,” (2) log-

arithmic scale, and (3) augmented frequency. These all affect the algorithm by adjusting

5

the built-in bias to avoid giving excess weight to terms found in longer documents. Long

documents have a better chance of having key words more frequently, but more words does

not always yield additional information. Similarly, the IDF portion can be calculated in a

variety of ways. Variations of IDF, such as smoothing or a probabilistic approach affect the

bias of how important any given word is in a document collection. All of these variants

can pose a challenge for researchers as they must determine the best biases to select for a

particular project. Another way to compute document similarity for search is to use word

correlation factors (WCF) (Won Lee and Ng, 2007).

TF-IDF can also drive a recommender system with all the same bias adjustments

mentioned previously. Each document has a corresponding TF-IDF vector. Researchers

employ a variety of algorithms to compare the vectors to make meaningful connections.

Where more than one textual metadatum exists for each document, each metadatum can be

considered separately, then weighted appropriately (Manning et al., 2008). Examples of this

would be textual titles and textual content. Although separate, they may both be used for

matching purposes. Wu et al. (2008) provide a novel use of TF-IDF by creating both local

relevance that “only applies to a specific document location, and [non-local], common, type

is the ‘document-wide’ relevance that applies to the entire document. The model combines

the local relevance for every location of a document by the document-wide relevance decision

of the document.” So TF-IDF continues to be employed.

Overall, TF-IDF is considered to be a powerful tool for information retrieval by ex-

perts in the field. Robertson (2004) said, “The class of weighting schemes known generically

as TF*IDF1, which involves multiplying the IDF measure (possibly one of a number of

variants) by a TF measure (again possibly one of a number of variants, not just the raw

count) have proved extraordinarily robust and difficult to beat, even by much more carefully

worked out models and theories.” A notable example includes Netflix’s use of context (Bell

and Koren, 2007).

1Note the asterisk in place of the hyphen.

6

2.2.2 LDA: A Model and Algorithms to Build It

Other researchers have continued to work on ways to improve text document collection

modeling. Another text corpus technique involves Latent Dirichlet Allocation (LDA) (Blei

et al., 2003a). LDA can overcome weaknesses in previous models, since TF-IDF “provides

a relatively small amount of reduction in description length and reveals little in the way

of inter- or intra-document statistical structure.” Pre-dating LDA, the models used by

researchers were Latent Semantic Indexing (LSI) and later Probabilistic Latent Semantic

Indexing (pLSI). Blei et al. (2003a) describe pLSI as follows:

“pLSI is incomplete in that it provides no probabilistic model at the level of

documents. In pLSI, each document is represented as a list of numbers (the

mixing proportions for topics), and there is no generative probabilistic model for

these numbers. This leads to several problems: (1) The number of parameters

in the model grows linearly with the size of the corpus, which leads to serious

problems with overfitting, and (2) It is not clear how to assign probability to a

document outside of the training set.”

LDA is a generative probabilistic model, so in these respects, it is an improvement over pLSI.

In machine learning, the terms ‘overfit’ and ‘overfitting’ are used to describe a model

that is calibrated too much on noise. This occurs when too many variables exist (without

enough data), when the model is not trained the right way, or when the model is tested with

data with which it was trained. This especially occurs with models that ‘memorize’ data

because such models are guaranteed to always give the right answer in such cases, leading

to a sense of accuracy when in fact the model is biased towards the testing data. This is

akin to having a line that goes through every point of data rather than generalizing and

going through the ‘middle’ of a set of points: the moment that previously unseen, novel data

points are mapped onto the space to see where they lay on the line, the model is shown to

be inaccurate; it is overfitted. LDA overcomes some of the overfitting issues inherent with

LSI and pLSI models.

LDA has been used by many researchers for topic modeling and it has also been

applied to word-sense disambiguation (Boyd-Graber et al., 2007), DNA research (Pritchard

7

et al., 2000; Huelsenbeck et al., 2006; Shivashankar et al., 2011), and query search (Wei and

Croft, 2006). Thus LDA, like TF-IDF, is both popular and flexible for information retrieval

tasks.

LDA implements Bayesian statistics. According to Jeffreys (1973), “[Bayes’ theorem]

is to the theory of probability what the Pythagorean theorem is to geometry.” In the LDA

model, the observable variables of words are used to discover the latent (hidden) variables

of topics in the corpus using Bayesian statistics by using a Dirichlet, a type of probability

distribution. When applied to text, LDA identifies latent topics.

Like TF-IDF, LDA is a bag-of-words model. This means that the positions of words

within a given document are interchangeable. However, for cases when a model’s topic tags

need to be ordered (e.g. in the same order that the words originally appeared), implementa-

tions of the algorithm do exist that maintain word order. Although LDA is a bag-of-words

approach, it is probabalistic, so algorithms that infer the LDA model will treat two identical

documents in the corpus differently. LDA algorithms that check for identical documents (or

even nearly identical documents) apparently do not exist, although such documents could

easily be identified and handled with front-end processing. This would increase complex-

ity of the algorithm which would make it less elegant. Gibbs Sampling, an algorithm for

building the LDA model, will initially tag words with random topics according to mixtures

described by the model’s settings. During this process documents are not checked for equiv-

alency or similarity. LDA contrasts with the way TF-IDF functions, which inherently treats

two equivalent documents identically; because of its probabilistic nature, even if two bags of

words are very similar, LDA is less consistent in treating the bags than is TF-IDF.

In deriving the LDA model, an assumption is made to allow the formula to be sim-

plified using Bayesian rules. The simplification, as it applies to text, is the assumption

that topics do not influence each other. This is a core weakness to the basic LDA model.

Nevertheless, the model does well at tagging words as belonging to particular topics. For

some applications, ignoring this assumption will not be appropriate. “Although standard

topic models like LDA (Blei et al., 2003b) assume that topic proportions in a document are

uncorrelated, there is strong evidence that topics are dependent (Blei and Lafferty, 2007; Li

8

and McCallum, 2006): economics and politics are more likely to co-occur than economics

and cooking.” Arora et al. (2013).

Receiving as input the document collection itself, LDA also accepts other parameters

such as number of topics to infer, number of inner loops of the main algorithm to run, and

what topic mixture is expected. The topic mixture describes how common each topic will be.

This can be a difficult proposition: telling a model to find topics with certain probabilities

before knowing what topics are in the corpus. Choosing to set the topics as being equi-

probable is reasonable for simple approaches. Other models can even be used to influence

the initial mixture, but such approaches, of course, could be considered non-eloquent and

complex—some might argue that LDA is complex enough as is.

The LDA model can be inferred (i.e. computed) by using Variational Inference,

Variational Bayes, Collapsed Variational Bayes (Teh et al., 2006; Blei and Jordan, 2006;

Hoffman et al., 2010), Gibbs Sampling, or Collapsed Gibbs Sampling (Porteous et al., 2008).

This paper uses Collapsed Gibbs Sampling for LDA as implemented in the Mallet toolkit

(McCallum, 2002), an open-source machine learning package.

2.3 Using the Models to Compute Recommendations

The TF-IDF and LDA models alone are not recommender systems. However, they

are simplified, abstracted, structured models of unstructured data. Both lend themselves

to use in recommender systems by using similarity metrics that compute distances between

documents. For the LDA model, a distribution over topics is used for points of comparison;

for TF-IDF, vectors of token counts constitute the compared objects. By using a distance

metric appropriate for the space, recommendations can be calculated.

Since TF-IDF and LDA are different model types rather than instantiations of the

same model, their models end up in different spaces. (All things being equal, such as nor-

malization settings, many TF*IDF variants would produce different models within the same

space.) Although both LDA and TF-IDF contain a second-order tensor (Turney and Pantel,

2010), or matrix, vectors from each matrix is in a different space. In TF-IDF, the space is

lower-bounded by 0, having an upper bound which is collection-dependent. This space can

9

be described approximately with the following rules, some of which are stated explicitly to

contrast with those of LDA:

1. The sum over the scalars in any vector does not need to sum to 1.

2. The sum over the scalars in any vector should always be positive.

3. The sum over the scalars should generally be non-zero. (A sum of 0 indicates all the

words of the document were purposefully ignored by the algorithm as stopwords, or the

document was mis-retrieved/removed as sometimes happens with documents posted

on the internet.)

Stopwords are typically high-frequency words that provide little meaning by them-

selves. Examples include words ‘the’, and ‘it’. They are sometimes referred to as functional

connectors between more specific words.

For LDA, the vectors are in the probability simplex (Blei et al., 2003b), or T -space.

The space can be approximately described with the following rules:

1. All scalars in any vector are non-negative.

2. All scalars in a vector lie within the range of [0, 1].

3. The sum over these scalars equals 1 for any vector.

Since TF-IDF and LDA models are in mathematically different spaces, the similar-

ity metrics used on them differ as well. An algorithm, k-NN, can apply to both models

to locate recommendations for any document, but since their spaces are different, the dis-

tance/similarity metric within k-NN must differ. For TF-IDF’s vector-frequency space, a

cosine similarity metric is appropriate. In LDA’s space, the Hellinger or Jensen-Shannon

metrics are appropriate. Hellinger is a simplification of Jensen-Shannon which increases the

speed of k-NN without any negative impact (Krstovski et al., 2013). The speed-up algorithm

takes advantage of the observation that the square root portion of the distance formula is

not necessary to compute relative distance. (It would be required for computing the actual

distance between documents. For recommender systems that do not expose similarities as

10

distances, the two metrics are functionally equivalent, with Hellinger being faster (Krstovski

et al., 2013).) Similarly, a simplified form of the standard metric can also speed up TF-IDF’s

cosine metric by removing the square root from its computation, again with the effect that

exact distances are not computed.

2.4 Evaluation

Once an RS is built and recommendations are made, it is good practice to compare

the results to either a baseline, or gold standard, or to the results of another RS. This same

practice applies to other IR tasks such as QS whose output is ranked results. When a model

is novel, human judges may help build a gold standard. Other common evaluation methods

are offline evaluations and online evaluations. We next summarize these methods.

A user study requires the researcher to create a controlled study and have willing

testers. Typical problems associated with these types of studies include sample bias and

the challenge of making a realistic test. Recommender systems can also be tested online

by recording metrics including click-through rate (CTR), link-through rate (LTR), and cite-

through rate (CiTR). These measurements can be difficult to interpret because these are not

controlled feedback and there is no way to ask the user why they made the choices they did

like in a user study, but some seem to favor user studies (Beel and Langer, 2015).

In the offline evaluation mode, a system is either compared to some baseline or an-

other metric is to determining goodness of results. Offline modes are more common: 69%

of research database recommender systems were evaluated offline (Beel et al., 2013b). Only

7% were evaluated online, while 21% were user studies, and the remaining 6% were not

evaluated at all (Beel and Langer, 2015). “Offline evaluations typically measure the accu-

racy of a recommender system based on a groundtruth, but also novelty or serendipity of

recommendations can be measured.” (Ge et al., 2010)

Beel et al. (2013a) found that “results of offline and online evaluations often contradict

each other.” They propose that this is due to a variety of ‘human factors’ and state that

“We doubt that researchers will ever be able to reliably predict whether human factors affect

the predictive power of offline evaluations.” This leads them to conclude that unless one is

working with the assumption that the ground truth (or computer’s results) is inherently

11

better than human intuition and biases, offline testing may not be ideal. As Ge et al. (2010)

discuss, “high-quality recommendations need to be fitting their intended purpose and the

actors behind this purpose are the ultimate judges of the quality of recommendations.” In

other words, the tests used to evaluate effectiveness ought to be based upon the ultimate

goal of the project.

One way to evaluate QS or RS results is to use precision and recall measures. These

are used on binary variables (either the results should or should not be listed). Precision

is the fraction of results that are relevant. Recall is the fraction of relevant results that

were returned. Balancing precision and recall is important. By optimizing for precision, but

ignoring recall, a system may leave out results that are relevant. By optimizing for recall,

it might show everything as a result, inundating the user with results. To balance these

measures we compute the F1 score or f-measure, which is the harmonic mean of the two.

These metrics only work when a baseline (a.k.a. gold standard) exists: when the best results

are known a priori for some test portion of the dataset.

Having humans create a gold standard by hand is often resource-intensive (training,

time, money), especially for several result sets. The workload could be reduced by filtering

out obvious bad results. Intrinsic metrics could also serve to select a baseline model from

automatically-selected results. An automatically-selected baseline is not strictly a gold stan-

dard. A common method to overcome these problems is to inspect results, use them in a

system, and detect which results never get clicked (i.e. the CTR, CiTR, and LTR). First

results may get clicked because they are listed first, so randomly switching the first and the

second could help. Another approach is to determine when users agree that the results are

good. For Google, this likely reflects time spent after clicking, whether other results were

ever clicked, and whether the user revised the query in order to get slightly different results.

Developing a gold standard is costly for corpora that never stop growing such as GC,

and hence may not be an option. In such cases it is pertinent to ask whether we actually

need a gold standard. Does the system need to provide all the answers or just help find

some? Recall that QS and RS aim to assist the user in search and discovery. For QS, a user

might expect a query to locate a result immediately while for users of RS, a journey and a

series of hops while navigating between related content is much more acceptable.

12

Spending time honing results may not be the best way to expend resources.

Developing novel tools to ease other burdens may be more effective. Google improves the

QS experience by detecting when users misspell words and in some cases automatically

searching with a corrected version of the user’s query. Google warns users when this

happens, inviting them to choose to use the query as it was typed if they want to do so.

For example, for the query “brds in trees”, Google responds with “Showing results for birds

in trees...Search instead for brds in trees” (https://www.google.com/search?q=cts+and+

dogs&oq=cts+and+dogs&aqs=chrome..69i57j69i60l5.2445j0j7&sourceid=chrome&ie=

UTF-8#safe=active&q=brds+in+trees; emphasis added). Regardless of how we approach

researching QS or RS in an area without a gold standard, we may want to build some

models, inspect them, and choose which to implement initially.

Serendipity is a measure for determining the quality of results. It measures a system’s

ability to provide results that are surprising rather than obvious (Ge et al., 2010). It does

not require results to be in a specific order, just that they are surprising or novel to the user,

but still relevant. Serendipity requires a baseline to exist; it is an extrinsic metric.

When results are ordered—which is the case for some search and discovery-based

methods—measures in the nDCG family can be used (Wang and McCallum, 2006). nDCG

measures the similarity of the results that two systems provide. When measuring two novel

systems, the one with a higher nDCG measure will be considered better. However, this is an

extrinsic metric; like serendipity, it requires the use of a baseline. The gold standard does

not have to be complete, but it should be statistically significant, requiring sufficient queries

and query results for comparison. With few query result sets, nDCG could prefer a system

that randomly appears to perform better than another system, but actually underperforms.

Another metric is catalog coverage, which gauges a system’s ability to provide results

throughout a data collection rather than favoring certain documents often. For systems

that will be used heavily by users, this may help keep results serendipitous because greater

coverage will expose the user to more content. Catalog coverage does not require any gold

standard or baseline; it is an intrinsic metric. Ge et al. (2010) note “Catalog coverage can

be a particularly valuable measure for systems that recommend lists of items.” (2010). In

13

https://www.google.com/search?q=cts+and+dogs&oq=cts+and+dogs&aqs=chrome..69i57j69i60l5.2445j0j7&sourceid=chrome&ie=UTF-8#safe=active&q=brds+in+trees
https://www.google.com/search?q=cts+and+dogs&oq=cts+and+dogs&aqs=chrome..69i57j69i60l5.2445j0j7&sourceid=chrome&ie=UTF-8#safe=active&q=brds+in+trees
https://www.google.com/search?q=cts+and+dogs&oq=cts+and+dogs&aqs=chrome..69i57j69i60l5.2445j0j7&sourceid=chrome&ie=UTF-8#safe=active&q=brds+in+trees

this thesis, we use this metric because it is sound, can be applied to multiple runs, and does

not require a baseline.

Some or all of these metrics may be important for a given user. A person inexperienced

with a new data collection may prefer coverage whereas a more experienced user may prefer

serendipitous (unexpected) results.

The research in these related areas is fairly fragmented and disparate. In this thesis we

propose is a unified framework to effectively apply recommender technology to an arbitrary

document collection. To accomplish this we use a combination of open source tools and

custom code to develop an evaluation framework for recommender systems.

14

Chapter 3

Methodology

3.1 Introduction

In the previous chapter we discussed algorithms for two recommender systems: TF-

IDF and LDA. Based on the literature, our hypothesis is that the LDA-based RS would

have higher catalog coverage than the TF-IDF system. Furthermore, we wanted to quantify

its advantages over TF-IDF. To do that in a principled way, I designed and implemented

a framework that enabled this experiment, but also provided a framework for others to

carry out similar experimentation with arbitrary recommenders. The goal was to make the

framework generalizable to other data collections and other recommenders.

In this chapter we introduce RelRec. See Figure 3.1. This chapter describes the

components of the system, the output at each stage, and the processes involved in using the

framework. We also discuss the associated data corpus, models, model parameters, metrics,

code management, tools, and evaluation. We also present an experiment carried out with

the framework. Based on this experiment, we will confirm that the LDA-based model indeed

has greater catalog coverage than an TF-IDF RS that uses an off-the-shelf formula, for 1-100

recommendations. Runs consisting of more than 100 recommendations were not evaluated.

This chapter discusses each of the components of this framework:

1. corpus collection and pre-processing,

2. implementation of an LDA-based recommender system,

3. implementation of a TF-IDF recommender system, and

4. comparative evaluation of the outputs from each system.

15

Figure 3.1: RelRec 1.0 Framework Flow. Dotted lines are optional. Hexagons are open
source tools.

16

3.2 Corpus Characteristics and Preparation

The framework requires as input a corpus. The corpus I chose to use was the GC

provided by Dr. Liddle as a MySQL database, which he used for LDS SCI at that time.

The authorship dates for these talks fall within the range of 1942-2013. They total over

5000 documents. Some were extemporaneously given while others were scripted—sometimes

being revised when speakers deviated from pre-written talks. The intended audience was

either the male members of the church, female members of the church, or the entire church.

The size and the extent of internationality of the audience has been increasing over time,

with translations being provided in several languages. The corpus we use only includes the

English versions.

3.3 Corpus Pre-Processing: Cleaning + Normalization

Initially the corpus was formatted as HTML web pages, which does not lend itself

to text mining with the models under discussion. The HTML contained JavaScript, HTML

elements, website boilerplate (i.e. CSS, menu, headers), titles, speaker name, images, and

references (e.g. ‘See 1 Cor. 15:1’). Removing all of these would simplify the content down

to the essence of the corpus. TF-IDF would probably end up considering HTML elements

as akin to function words and therefore automatically ignore them, but they risked con-

founding the LDA model. The task of converting HTML into simple text seemed at first

a fairly straightforward process, but it turned out to be somewhat complicated, because

the documents had been produced by a variety of different means over the years, using a

number of different formats. Furthermore, JavaScript does not support as many advanced

regular expression operations (e.g. positive look-behind operation) as other languages. This

required more coding effort and less elaborate regular expressions. (On the flip side, less

elaborate regular expressions are more readable by software developers.) After applying the

regular expressions, I found that portions of some documents were due to improper HTML.

After downloading more recent versions of these HTML documents, I found that by using

a different set of regular expressions they could also be pared down to their core content.

The end result of all this was a cleaned, normalized, text-only format of the corpus with

documents produced in the date range of 1942-2013.

17

I wanted to ensure that the LDA and TF-IDF systems were placed on even grounds.

Although tools like the Mallet toolkit would downcase input by default, I made sure to do it

myself. I also removed formatting such as bold, italics, underlines, blockquotes, subscripts,

and superscripts.

I removed apostrophes in contractions such as we’ll so that contractions would be

treated as readable words rather than parsed as separate words during Mallet toolbox in-

dexing. In other words, I did not want we’ll to be seen as we and ll in the LDA model

while in the TF-IDF model it would could end up being seen as we’ll. I could have opted

to replace every instance of ’ll with will, but to be more true to how the text was spoken, I

opted to simply remove the apostrophes. I could have just as easily (1) left them alone with

the result of having ll be part of the vocabulary, or (2) expanded the contractions. Either

of these options was possible because I never planned to display these representations of the

documents to end-users as original text. The normalized version of each documents is its

simplified form for use by the recommender systems.

While apostrophes required special handling because of contractions, other punctu-

ation was more straightforward: they were removed. This included removing punctuation

including hash mark, question mark, exclamation sign, dollar sign, percentage sign, amper-

sand, braces, arithmetic symbols, tilde, colon, semi-colon, underscore, quote signs, comma,

and full stop. In other words, anything that was not alphanumeric was removed.

Previous work showed that certain words confound the LDA model (Bean and Ring-

ger, 2013). Although these words are important in a Christian religion, they are so common

within the corpus that they confound the models in the same way function words do. The

words were jesus, christ, god, and gods. These words were found by using Luke, a tool used

to perform queries on a TF-IDF index. Applying lessons learned from that work meant

adding these words to the default stopword list that the Mallet toolkit provides. I used the

downcased forms of the words since I had downcased the corpus as mentioned earlier. The

total number of stopwords was 529.

Following is a sampling of Mallet toolkit stopwords, from a through com, then skip-

ping to rather through s :

18

a, able, about, above, according, accordingly, across, actually, after, afterwards,

again, against, all, allow, allows, almost, alone, along, already, also, although,

always, am, among, amongst, an, and, another, any, anybody, anyhow, anyone,

anything, anyway, anyways, anywhere, apart, appear, appreciate, appropriate,

are, around, as, aside, ask, asking, associated, at, available, away, awfully, b,

be, became, because, become, becomes, becoming, been, before, beforehand, behind,

being, believe, below, beside, besides, best, better, between, beyond, both, brief,

but, by, c, came, can, cannot, cant, cause, causes, certain, certainly, changes,

clearly, co, com . . . rather, rd, re, really, reasonably, regarding, regardless, regards,

relatively, respectively, right, s . . .

Note that cant is a stopword (can’t without apostrophe) but re is also a stopword,

which is the contracted form of are. This list also contains we’ll and we’re, but without apos-

trophes. The default stopword list appears to have been created to fit various normalizing

strategies, which means not all 529 words will apply to the corpus I use here.

3.4 Models + Parameters

This section briefly describes how the models are built and how they are used to

produce recommendations. Note that the framework is flexible enough that either or both

of the recommender systems could be supplanted or modified.

3.4.1 LDA RS

The LDA RS is built by using the Mallet toolkit and custom code. The Mallet toolkit

is needed to build a Mallet-compatible index of the corpus. Both the cleaned corpus and

the customized stopword list are parameters to the indexing process. Mallet then uses this

index to generate a topic model. That model is consumed by custom code to generate a

topic-based ranked recommendation list based on nearest neighbors is created. The Hellinger

distance metric was used because LDA’s vectors are in the probability simplex.

While other forms of LDA, such as hierarchical LDA, would be interesting to use on

this corpus, it was not immediately apparent how it could be bootstrapped for such a use,

19

so I chose instead the LDA model introduced by Blei et al. (2003a). Furthermore, I had

experience using the latter.

3.4.2 TF-IDF RS

While open-source tools for TF-IDF exist, they were not readily available in nodeJS

at the onset of this project. As a result, I wrote the TF-IDF code myself in nodeJS, the

language of choice given its flexibility and parallelization features: I wanted to ensure that

the TF-IDF code would allow for easy substitution of distance metrics for future work. The

resulting code would also prove forward-compatible with later work.

The matrix model builder uses a TF-IDF formula to produce a word-value matrix,

given the cleaned corpus. Optionally, stopwords may be passed to this process, but I opted

not to include them because TF-IDF tends to be robust against high-frequency words. Like

the LDA model, a recommender consumes the model builder’s output to rank documents

by similarity by using k-NN and an appropriate similarity metric—in this case, the cosine

metric.

3.5 Evaluator

The evaluator takes ranked lists from the two recommender systems and does com-

putations to quantify the results.

RelRec compared the output of both systems using the catalog coverage metric de-

scribed by Ge et al. (2010). Although other metrics such as similarity or serendipity would

generally be viable for comparing recommender systems (Ge et al., 2010), they are not pos-

sible here because no shared baseline or gold standard exists to which the two systems may

be compared.

Following is a high-level view of the process to build and compare the systems, the

last step of which is the actual comparison step:

1. Run the TF-IDF matrix builder,

2. Run k-NN with a cosine distance metric for the TF-IDF model,

3. Run Collapsed Gibbs Sampling, using Mallet, to infer the parameters of an LDA model,

20

4. Run k-NN with a Hellinger distance metric for the LDA model, and

5. Compute the catalog coverage metrics for each recommender.

Figure 3.2: The entire process for the thesis work outlined as phases with modules. Phases
that are higher on the diagram are performed before lower ones. Parallelization of some sub-
phases is possible, but was not performed in this work.

Figure 3.2 illustrates the key steps and the order in which they were performed. This

chapter describes each of these in detail. While some steps are not novel themselves, the

way that they are pieced together is novel: the comparison of two recommender systems for

21

the GC is novel for this thesis. Some code produced in particular steps was also innovative

and is indicated where appropriate.

Section 3.6 discusses some of the finer details of the project. For reproducibility,

Table 3.1 shows the values, settings, and configurations I selected for the algorithms.

3.6 Programming Languages

This section describes code management, programming language selection, sanity

checking (helpful when debugging), and code versioning.

I used both cutting-edge programming languages and well-established ones for this

project. The result is code that is easy to follow, maintainable, mainstream, and capable.

The goal was to make the code configurable, re-executable, measurable, and share-able.

In software development, cutting-edge technologies are considered stable and new

while bleeding-edge technology is less stable. At first I used nodeJS while it was still bleeding-

edge, which proved problematic. Fortunately, nodeJS over time evolved and became more

mainstream. It matured rapidly and became reliable enough to use in the final code of this

project.

Many scripting and programming languages were used in this project, including

bash, shell, Make, docker.io (hereafter ‘docker’), docker-compose, nodeJS, Java, and YAML.

MySQL was used for some database storage, and HTML was the original format for corpus

documents.

I committed both the code and the corpus documents to a publicly accessible (Git)

repository1. This tracks code modifications to the original corpus when they should not

happen—or when some other process does so (e.g. Dropbox syncing).

3.7 Code Management/Organization

Early on in the project, it was clear that there would be great value in coding the

main steps of the project as separate modules. Originally, this meant putting code specific

to each high-level step of the project into separate folders—one for ‘remove HTML’, one for

‘run LDA’, etc.. Each folder had a main high-level function that would be individually called

1http://linguistics.byu.edu/thesisdata/relrec.html

22

Algorithm Variable
Name

Variable
Type

Input
Value

Use Reason

k-NN k integer 1
through
100

Sets number of
neighbors to return
for each document.

Allows for commensurate
comparison of systems.

Gibbs Sam-
pling

t integer 200 Sets number of top-
ics to find

Previous research deter-
mined that 200 was an
appropriate setting.

Gibbs Sam-
pling

iterations integer 1000 Sets number of in-
ner loops of sam-
pling to perform.

A setting that is too
low will yield an incom-
plete model. Previous
work determined 1000 it-
erations was sufficient.

k-NN distance
metric for TF-
IDF model

distance function cosine Distance metric
allows algorithm to
measure distance
between documents
in the model.

Intuitive and well known.
Others functions exist for
this, but are left to future
work to use.

k-NN distance
metric for LDA
model

distance function Hellinger Distance metric
allows algorithm to
measure distance
between documents
in the model.

Well known and works
for vectors in the proba-
bility simplex.

TF-IDF stop
words

list of
word
strings

none Sets words to ig-
nore in model.

TF-IDF is robust against
high-frequency words
since they automatically
receive low TF and low
IDF values.

Build Mallet
index

stop
words

list of
word
strings

default
Mallet
list +
5 hand-
selected
words

Remove stop words
at indexing time.

Helps LDA (it is not
robust against high-
frequency words).

normalization ‘to
lower
case’

boolean true If true, tells algo-
rithm to downcase
all text.

Force all subsequent
algorithms to ignore
case by downcasing
everything.

Table 3.1: Settings and parameters.

23

by a Makefile target. This was clean and organized, though some facets of the project were

problematic at times. This was especially true when different programming language versions

were required by different modules, or when I needed to upgrade to a later version of a

programming language for a particular module. For example, I had to install different nodeJS

versions depending on which step I was running or depending on which open source projects

I included. To overcome these issues, I applied a dockerization strategy to the project,

associating Makefile targets with docker containers. With docker, the code requirement

surface of this project decreased, while maintainability and share-ability increased; docker

abstracted away dependency management into separate docker files.

3.7.1 Docker + Docker-compose

To take full advantage of docker, I used docker-compose. This is a docker utility that

makes it easy to define multiple docker containers, mount filesystem volumes to them, and

set environment variables.

Docker-compose YAML files have a notion of targets, where a target corresponds

to a container that can be run. They are like individual virtual machines (VMs) that can

be configured and spun up on demand–each with their own environment variables, ports,

volumes, and hosts file. Like the Makefile targets, each container corresponds with a high-

level process of this project, such as ‘build LDA model’. I build the Make code such that the

docker daemon built each target upon being directed by Make to do so, and directories were

mapped to the image as volumes. This allowed the docker containers to be both modular and

systematic. Each docker target had a corresponding file called Dockerfile which instructed

the docker daemon to obtain requisite packages or programming languages for the module

that runs the code best tailored to the task of that module. For example, I used a Java-based

image to run the Collapsed Gibbs Sampler because the sampler was part of the Java-based

Mallet toolkit. For TF-IDF, I used a nodeJS-based image. Whenever a module’s code

ran and completed, the docker container terminated and the next would be allowed to be

initiated by Make according to the order I defined.

Each key step of the project is coded such that a docker container exists with in-

puts from a previous step and with outputs to subsequent docker containers (e.g. the

24

clean+normalize container’s output is mapped as input to the build TF-IDF model con-

tainer). I mapped docker inputs as read-only and outputs as read-write. This means that

each module cannot modify the previous module’s output. This immutability is helpful when

programming because it means that although two recommender systems depend on the same

corpus, they will not influence each other while each runs and builds. This is also helpful

when debugging. Even simple operations on a corpus of this size can take a long time to

run, especially if the programming language runs slowly when dealing with string operations,

such as regular expression operations (e.g. find, find+replace). This keeps the modules from

influencing each other unless directed to do so.

For simplicity, I mapped inputs and outputs to the root of each docker container’s

file system as /input and /output, respectively. The first docker container has one input:

the MySQL database containing the raw corpus data, containing pre-downloaded HTML

documents critical to jump-starting this project. Modularizing the steps as separate docker

containers with read-only protections is apparently a novel approach to building and com-

paring recommender systems and an innovation introduced by this thesis.

Nomenclature of Docker-compose Targets

I named each docker target logically so that upon querying the docker daemon for

the list of ‘images’ (i.e. list of programs); each would be intuitive to execute manually:

1. compute clean and normalize: to normalize documents by removing boilerplate HTML,

JavaScript, references from talks (nearly anything in parenthesis), then downcasing ev-

erything;

2. build mallet : to compile the Mallet toolkit from source;

3. compute mallet index : to index data for use with Mallet;

4. compute lda: to build the LDA model via Collapsed Gibbs Sampling

5. compute lda recommendations : to compute recommendations based on the (LDA)

topic model; and

25

6. compute tf idf recommendations : to build the TF-IDF matrix, then compute recom-

mendations using it;

7. compute compare recommendation sets : to apply the evaluative metric (catalog cover-

age) on results from both recommender systems such that the comparison is system-

agnostic; recommendations—not recommender systems—are provided as input to this

module.

3.8 Sanity Checks

Even when code is provided in toolkits such as Mallet, one must verify that the code

is performing correctly. Debugging is one way to do this. Building tests is another way.

Throughout the phases of this project, I tested core functions to ensure that the “numbers

added up”. For example, I inspected the output of the LDA model. Inspection of that model

was important to know that sufficient burn-in time (iterations of Collapsed Gibbs Sampling)

was used. I provide a sample of this output here.

The results of LDA as a topical index on this corpus are available at http://bean5.

github.io/lds-talks-by-topic/ which shows an interactive index of an LDA model with

150 topics.

Following is a selection of topic clusters and their most common words which LDA

identified. I combine singular and plurals where appropriate. The words in the topic remain

downcased since that is how the model sees the words. Although LDA does not attempt to

label a topic, I label them here for reference:

1. addressing remarks : sisters, brothers, love, church, conference, brethren, lives, lord,

people, great, work, spirit, good, grateful, bless, today, hearts, wonderful, gospel

2. testimony : testimony, witness, bear, true, truth, gospel, testimonies, prophet, father,

lord, son, lives, joseph, smith, savior, knowledge, living, testify, power

3. family + family responsibilities : children, home, parents, homes, family, mother, fa-

ther, teach, love, fathers, mothers, child, responsibility, son, taught, families, teaching,

respect, care

26

http://bean5.github.io/lds-talks-by-topic/
http://bean5.github.io/lds-talks-by-topic/

4. questions to life: question(s), answer, spirit, heart, asked, words, mind, man, voice,

soul, life, answered, heard, experience, speak, told, feeling, found

5. lost sheep: sheep, lost, shepherd, feed, son, father, flock, lambs, fold, back, brother,

peter, parable, savior, saith, bring, shepherds, find, return

6. early church history : joseph, oliver, smith, cowdery, plates, church, book, witnesses,

mormon, work, sacred, translation, hyrum, angel, martin, whitmer, harris, received,

gold

7. parable of the 10 virgins : individual, oil, officers, make, soul, ideals, virgins, lamps, fool-

ish, duty, responsibility, fellow, inspiration, truth, meet, guide, bridegroom, workers,

wise

8. virtues : virtue, kindness, holy, dominion, righteousness, knowledge, love, presence,

thoughts, meekness, confidence, faith, pure, long, gentleness, patience, spirit, persua-

sion, soul

9. sabbath day : day, sabbath, holy, sunday, thy, lord, worship, days, rest, commandment,

observance, offer, seventh, unspotted, sacraments, prayer, house, fully, week

10. fasts + offerings: fast, fasting, day, offering, poor, prayer, offerings, law, meals, house,

esther, month, principle, days, spring, time, generous, food, deal

Providing output similar to this from the TF-IDF model is not possible. The TF-

IDF model, although simple and straightforward to build and understand, is basically just a

series of numbers that indicate which words appear in a document and how important they

are to the document and overall corpus. I did verify that they added up to 1 where they

should—and they did.

3.9 Conclusion

This project incorporates many algorithms, metrics, and technologies to achieve its

purpose. I paid careful attention to organization, structure, and open-source projects to

build maintainable, functional, scalable, modern code.

27

To run this code on a corpus of similar size would theoretically require around one

hour of configuration and four hours of actual run-time. This timing assumes that the source

corpus has already been filtered and normalized, since that step is highly corpus-dependent.

I versioned code using Git, so getting up and running with a direct copy of this project

would be a matter of forking the source code, installing Make, docker, and docker-compose,

then by running the Make target ‘thesis’. Docker abstracts away the remaining dependencies

without installing them on the user’s system, keeping the host system clean.

28

Chapter 4

Results & Evaluation

The purpose of this thesis is to develop a framework for comparing two or more

recommender systems in order to determine which would be best suited for an arbitrary

document collection (e.g. the GC). In this case, one recommender leverages a TF-IDF

model while the other uses an LDA (word topic) model. The models are therefore structured

abstractions of the otherwise ‘unstructured’ text. The hypothesis was that the framework

could identify a best recommender system, based on the selected evaluation metrics.

The core function of a recommender system is to independently retrieve relevant and

helpful information for the user. The recommender should be able to provide users with what

they desire and inspire confidence so that users are satisfied that the system has provided

useful results. There are a number of characteristics upon which recommender systems can

be quantitatively evaluated and compared, including accuracy (via precision, recall, or a

combination of the two), serendipity, and catalog coverage. Of these, only catalog coverage

is appropriate for use on this work because (1) it does not require a baseline, which GC does

not have and (2) it does not require human judges.

Catalog coverage is a measurement of the percentage of documents that are recom-

mended at least once in a corpus. Each catalog coverage value exists the interval of (0, 1],

where a 1 indicates complete coverage. (The zero-value coverage is excluded since an RS

that never makes a suggestion is not really a system worth comparing.) A theoretical rec-

ommender that selects any document at random as a recommendation could achieve high

coverage quickly, but would not be useful and users would likely not perceive it as intelligent

(digital advertisements sometimes elicit this response). A balance must be struck between

low coverage and high coverage. Because catalog coverage is one of the evaluative metrics

most appropriate to this thesis, it is the main value used in charts and graphs in this chapter.

29

LDA uses topic mixtures to represent documents whereas TF-IDF uses term counts.

LDA is a more descriptive model of underlying structure since it was engineered to locate

latent topics. One goal of this thesis was to show that an LDA-based RS would have higher

catalog coverage than the RS based on TF-IDF. Position (rank) of recommendation does

not matter to this evaluative metric, although the system ranks recommendations from best

to worst.

RelRec’s process of measuring catalog coverage proceeds as follows:

1. choose k: number of top recommendations to select;

2. calculate N , the number of documents in the corpus;

3. calculate n, the number of documents recommended at least one time within k recom-

mendations; and

4. solve for catalog coverage, C, where C = n/N .

Theoretically, the number of recommendations could vary from document to docu-

ment, but consideration should be taken to ensure a fair comparison to another model. At

a minimum, both systems should have the same number of total recommendations. Even

more parity could be achieved by generating the same number of recommendations for the

same document. In this work, I assume that if either system were used for LDS SCI, a fixed

number of recommendations would be presented to users, regardless of document.

A sample topic cluster from the LDA model, after unsupervised learning, is wisdom,

tobacco, word, health, liquor, drink, alcohol, smoking, body, drinking, cigarette, habit, drugs,

coffee, alcoholic, treasures, smoke, promise, great. In one run of LDA, the document which is

most made up of this topic is the talk by Theodore M. Burton entitled The Word of Wisdom.

A recommendation set based solely on this topic dimension is shown in Table 4.1. This is a

simplification of the real model because the LDA-based RS used by RelRec takes all topics

into account.

One expects that if the user requests more recommendations, the catalog coverage

would increase. Presenting too many recommendations initially would likely overwhelm the

user by reducing usability and perception of quality. To get a better perspective on how the

30

Rank Title LDS SCI Document
ID

% Similar

1 Why Be Foolish? 555 0.30396
2 Eat Flesh Sparingly 331 0.28482
3 Scientific Proof for the Word of Wisdom 212 0.27833
4 Liquor Advertising 300 0.27401
5 The Evils of Cigarette Smoking 1403 0.23218

Table 4.1: Recommendation set of size 5 for the document The Word of Wisdom

two recommender systems perform for various numbers of recommendations, I calculated

catalog coverage for sets of recommendation of varying size. In other words, I calculate C

for every value of k from 1 to 100, inclusive.

Figure 4.1 shows the catalog coverage for each recommender system, referred to by

their core algorithm, either TF-IDF or LDA. Based on the values, I would suggest using

a default of 5-25 recommendations, since beyond that there are diminishing returns. On

average, the system that provides greater catalog coverage will expose a user to more recom-

mendations. This may mean that the system is more serendipitous or insightful, or at least

appears to be so. Proving this would require either measurements of human reaction (e.g.

asking users whether the results they received were surprising yet relevant) or a baseline for

comparison. Consequently, this must be left for future work.

Figure 4.1 shows only a fitted line. For more precise values (to 5 significant figures),

see Table 4.2, that shows the actual measures for 1-20 recommendations. Appendix A

contains tables which show all values used for evaluation in this work.

4.1 Interpreting Results

The LDA-based recommender system consistently produces recommendations that

encompass more documents on average. Although the catalog coverage values are consis-

tently higher for the LDA-based RS, this is an empirical value. As the corpus grows (or is

replaced with another one entirely), LDA may not continue to prevail. However, in general

LDA will perform best when many topics are inferred by the Collapsed Gibbs Sampling al-

gorithm because at lower numbers of topics the ‘fingerprint’ of any given document probably

31

Figure 4.1: Catalog coverage values for all models (k=1 through k=100), depicted as a fitted
line.

becomes less clear. For this reason, there is a solid benefit to using LDA since it yields

higher catalog coverage with fewer recommendations, but not so many that it functions like

a random recommender.

As the number of recommendations increases for a given document, coverage increases

monotonically. This is not an empirical quality for this dataset—it will occur on any corpus

because recommendations are not made more than once in any recommendation set. In other

words, no list of recommendations for any document has repeats. They are mathematical

sets—not lists. So as the number of recommendations increases, so does the coverage. The

characteristics we need to focus on when measuring catalog coverage are rate of increase, and

when its performance exceeds that of an alternate system. For this corpus, whenever 1-100

recommendations are generated, the LDA-based RS always has a higher catalog coverage

value, achieving 13.0% coverage at 5 recommendations and 21.7% at 10 recommendations.

These are both approximately 50% higher than the catalog coverage that the TF-IDF RS

produces.

32

Algorithm
of Recommendations TF-IDF LDA
1 0.03378 0.03558
2 0.05097 0.06216
3 0.06596 0.08655
4 0.08095 0.11033
5 0.09194 0.13032
6 0.10194 0.14831
7 0.11353 0.16730
8 0.12233 0.18329
9 0.13412 0.20108
10 0.14411 0.21707
11 0.15151 0.23306
12 0.15831 0.24725
13 0.16570 0.26004
14 0.17170 0.27124
15 0.17809 0.28723
16 0.18149 0.30062
17 0.18769 0.31361
18 0.19268 0.32660
19 0.19808 0.33780
20 0.20388 0.34999

Table 4.2: Catalog coverage values for all models (k=1 through k=20). Precision is set to 5
significant digits. Higher values for each run are shown in bold.

33

Chapter 5

Conclusion

5.1 Discussion

The purpose of this thesis was primarily to produce a framework for vetting recom-

mender systems against a document collection. We illustrated this by providing the GC

corpus as input to the framework, using TF-IDF and LDA-based recommender systems.

Such a system could be used in any application, such as LDS.org, that displays

documents from the same corpus. In this thesis we built two systems and compared them

using the catalog coverage metric. RelRec confirmed the hypothesis that the LDA-based RS,

RelRec, would out-perform a TF-IDF RS.

With the needs of LDS SCI in mind, the goal was to identify which recommender

system would yield a higher catalog coverage, but have intuitive results as well. Both TF-

IDF and LDA were verified as providing intuitive recommendations (per visual inspection

and wide-spread use), but RelRec showed that LDA provides the best catalog coverage when

showing the 5 recommendations for each document. This is in fact true for any number of

recommendations from 1 to 100, as shown in the tables and graph in Chapter 4.

In its current form, this work is ready for use with other corpora and other recom-

mender systems. However there are simplifications, optimizations, and modifications that

can be made to the base code.

34

LDS.org

5.2 Future Work

The experiment and code described in this work could be pursued in various research

directions. It can be easily adapted for use with different corpora. Stopword lists can be

generated dynamically. The normalization functions, distance metrics, evaluative metrics,

and number of LDA-discovered topics can be easily modified.

An area where this work might be particularly interesting and novel would be to

perform the same steps done in this work, but using chapters of scripture as the corpus

documents. This can be applied to a restricted set of documents within a religion or to

documents of multiple religions, such as The Holy Bible and The Qur’an, or The Book of

Mormon and The Doctrine and Covenants. Perhaps the most interesting combination of

documents for the LDS Church would be to run RelRec on a combined set of The Holy

Bible, The Book of Mormon, The Doctrine and Covenants, and The Pearl of Great Price as

input. The models could even be used to enhance current LDS scriptural footnotes. In such

a case, cross-references could potentially be used as a baseline, thus enabling a larger set of

available evaluative metrics than the one available to this work. The cross references in the

standard works are a much smaller set than what the experts originally created, so research

that consumes cross references should considering using the larger set.

Another way to build on this work would be to explore using word correlation fac-

tors (WCF). WCFs can be used to measure similarity of documents by measuring simi-

larity of phrases. Won Lee and Ng “consider the correlation factors of different words in

any two phrases of two different documents to determine the degree of similarity of the

phrases, which in turns can determine the similarity of the documents based on the number

of matched phrases/sentences in the documents.” They also say that “experimental results

show that [their] phrase-matching approach is accurate and outperforms the word-based sim-

ilarity matching approach.” (Won Lee and Ng, 2007) Note that they introduce WCF as a

way to remedy the problem of duplicate or near-duplicate documents in search results. Simi-

larly, depending on the application, documents that are duplicated in recommendations (e.g.

a talk given a second time) can sometimes be considered to be bad recommendations. Thus

a balance should be struck so that results are serendipitous yet relevant. An interpolated

model, (e.g. WCF combined with TF-IDF) may produce relevant recommendations.

35

5.2.1 Evaluating With Other Metrics

Initially, I hoped to use the formulas as provided and described by Ge et al. (2010),

but serendipity was not suitable to use because no baseline exists for GC. Future work can

do this by comparing to a baseline; recommendations made by RelRec recommenders may

suffice. Once a gold standard is created, even if it only exists for a subset of the documents,

work may proceed with more metrics than were suitable for this work as long as the set is

statically significant.

5.2.2 Other Topic Models

Other forms of LDA could be interesting to use on this dataset, such as hierarchical

LDA. However, there are non-LDA topic models that are more modern. Research as early as

2012 indicates that some algorithms for inferring topic models can have provable guarantees

(Arora et al., 2012), which is an improvement over LDA. One algorithm uses anchor words

and assumes the topics are correlated (Arora et al., 2012). In contrast, Anandkumar et al.

(2012) present an algorithm that assumes topics are not correlated. To quote Arora et al.

(2012), “Both algorithms run in polynomial time, but the bounds that have been proven

on their sample complexity are weak and their empirical runtime performance is slow. It

is also unclear how they perform if the data does not satisfy the modeling assumptions”

(Arora et al., 2013). In this same article, Arora et al. present an algorithm with provable

guarantees that is also practical (it does not violate model assumptions).

“Our algorithm performs as well as collapsed Gibbs sampling on a variety of

metrics, and runs at least an order of magnitude faster, and as much as fifty

times faster on large datasets, allowing real-time analysis of large data streams.

Our algorithm inherits the provable guarantees of [previous algorithm] and results

in simple, practical implementations. We view this work as combining the best of

two approaches to machine learning: the tractability of statistical recovery with

the robustness of maximum likelihood estimation....

[These new] algorithms for topic modeling...are efficient and simple to implement

yet maintain provable guarantees. ” (Arora et al., 2013; emphasis added)

36

Their algorithms also tend to be faster. Whether the algorithms introduced by Arora et al.

lend themselves to recommender systems is not mentioned in their article, but it seems

intuitive that it would be the case since LDA is a topic model and was adapted for use as

a recommender system for this work. Note that all these works (Arora et al., 2012, 2013)

were published after the programming portion of this thesis commenced.

5.3 Improvements

For simplicity, elegance, and maintainability, I had to strike a balance between

cutting-edge and bleeding-edge. If I had used programming tools that were even more

state-of-the-art when I first started this work years ago, I probably would have used the

Elastic Stack. Now that it is more widely used, for future work I would advise using it

for both monitoring and debugging as well as for visualizing data. Since Elasticsearch uses

Lucene, Elasticsearch is especially promising for systems that depend on TF-IDF. However,

Elastic Stack can be helpful to any system that requires visual inspection of stopwords.

At the start of this work, nodeJS was a technology which promised to be fast, es-

pecially for generating responses to web site requests. Since I initially planned to have the

model used by SCI and http://bean5.github.io/lds-talks-by-topic/, nodeJS was a

language of choice. Although it proved to be difficult and cumbersome and was constantly

changing at first—it was bleeding-edge technology at the time—it soon stabilized as it be-

came more widely used (and widely updated). My final framework contains nodeJS code,

although personally I believe an open-source TF-IDF project such as Elasticsearch would be

an appropriate choice in future work.

In hindsight, it would have made more sense to map inputs at /opt/, while map-

ping outputs to /var/log/. It would not change results nor run-time, but it would improve

readability and maintainability of this project’s source code.

The dataset used in this work is already 2 years out-of-date. This is because I did not

want to re-manufacture and re-evaluate the module which removes HTML from the corpus.

Now that this work is complete, this is certainly a next step before augmenting LDS SCI or

similar systems with the LDS-based content.

37

http://bean5.github.io/lds-talks-by-topic/

This work leveraged previous work to select stopwords. This means that stopwords are

not dynamically-selected according to the corpus. Therefore, once new documents are added

to the corpus, the set should be revisited for possible revision. The best way to do this would

be to either use something simple and fast such as AntConc or to use Elasticsearch to query

for most frequent words. Using more stopwords will yield run-time improvements to both

recommender systems developed here because the search space will be smaller, particularly

for the current implementation of TF-IDF.

In reviewing the module that removes HTML, I found the code to be less as ele-

gant than I was hoping it would be. As it turns out, nodeJS, a JavaScript-tied program-

ming language inherits the same disadvantages of built-in regular expression operations—and

JavaScript’s regular expression engine is not as full-fledged as those of other languages. This

makes resultant code more bulky, repetitive, and less elegant. This complaint applies mainly

to HTML-based corpora that are inconsistently formatted. Other corpora may not have

such problems.

5.4 Contributions

By building a framework for comparing recommender systems, we were able to prove

that an LDA RS outperformed a TF-IDF RS for the GC. The framework is flexible: updating

or replacing variables, parameters, inputs, outputs, and models is simple. Rather than

requiring each module to use the same programming language and shared libraries, we built

a system that uses the toolboxes and languages that make the most sense for the operation:

Java-based docker images were used for running modules that required the Mallet toolkit

while nodeJS was used in other modules. The RelRec framework is generalizable to other

corpora and runs in under 4 hours on the GC.

38

Bibliography

Anima Anandkumar, Yi-kai Liu, Daniel J Hsu, Dean P Foster, and Sham M Kakade. A
Spectral Algorithm for Latent Dirichlet Allocation. In Advances in Neural Information
Processing Systems, pages 917–925, 2012. 36

Laurence Anthony. Developing AntConc for a new generation of corpus linguists. In Pro-
ceedings of the Corpus Linguistics Conference (CLC 2013), pages 14–16, 2013. 5

Sanjeev Arora, Rong Ge, and Ankur Moitra. Learning topic models–going beyond SVD. In
Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pages
1–10. IEEE, 2012. 36, 37

Sanjeev Arora, Rong Ge, Yonatan Halpern, David M Mimno, Ankur Moitra, David Sontag,
Yichen Wu, and Michael Zhu. A Practical Algorithm for Topic Modeling with Provable
Guarantees. In International Conference on Machine Learning (2), pages 280–288, 2013.
9, 36, 37

Michael Bean and Eric Ringger. Theological topics through time: An application of Gibbs-
sampled LDA and post-hoc metrics to compare religious venues. [Online; accessed on 2014-
09-01], December 2013. URL http://bean5.github.io/research/CLDSGCT-LDA-ToT.

pdf. 18

Joeran Beel and Stefan Langer. A Comparison of Offline Evaluations, Online Evaluations,
and User Studies in the Context of Research-Paper Recommender Systems. In Research
and Advanced Technology for Digital Libraries: 19th International Conference on Theory
and Practice of Digital Libraries, TPDL 2015, Poznań, Poland, September 14-18, 2015,
Proceedings, pages 153–168. Springer International Publishing, 2015. 11

Joeran Beel, Marcel Genzmehr, Stefan Langer, Andreas Nürnberger, and Bela Gipp. A
Comparative Analysis of Offline and Online Evaluations and Discussion of Research Pa-
per Recommender System Evaluation. In Proceedings of the International Workshop on
Reproducibility and Replication in Recommender Systems Evaluation (RepSys ’13), pages
7–14, New York, NY, USA, 2013a. ACM. 11

Joeran Beel, Stefan Langer, Marcel Genzmehr, Bela Gipp, Corinna Breitinger, and Andreas
Nürnberger. Research Paper Recommender System Evaluation: A Quantitative Literature
Survey. In Proceedings of the International Workshop on Reproducibility and Replication
in Recommender Systems Evaluation (RepSys ’13), pages 15–22, New York, NY, USA,
2013b. ACM. 11

Robert M. Bell and Yehuda Koren. Lessons from the Netflix Prize Challenge. SIGKDD
Explorations Newsletter, 9(2):75–79, December 2007. 6

39

http://bean5.github.io/research/CLDSGCT-LDA-ToT.pdf
http://bean5.github.io/research/CLDSGCT-LDA-ToT.pdf

Andrzej Bialecki. Luke - Lucene Index Toolbox. [Online; accessed on 2013-11-14], November
2013. URL http://code.google.com/p/luke/. 5

David M Blei and Michael I Jordan. Variational inference for Dirichlet process mixtures.
Bayesian analysis, 1(1):121–143, 2006. 9

David M Blei and John D Lafferty. A correlated topic model of science. The Annals of
Applied Statistics, pages 17–35, 2007. 8

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation. Journal
of Machine Learning Research, 3:993–1022, March 2003a. 7, 20

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal of
earch, 3(Jan):993–1022, 2003b. 8, 10

Jordan L Boyd-Graber, David M Blei, and Xiaojin Zhu. A Topic Model for Word Sense
Disambiguation. In EMNLP-CoNLL, pages 1024–1033, 2007. 7

Mark Davies. Corpus of Global Web-Based English: 1.9 billion words from speakers in 20
countries. [Online; accessed on 2013-10-24], October 2013. URL http://corpus.byu.

edu/glowbe/. iii

Elasticsearch. Elasticsearch — elastic, August 2016. URL https://www.elastic.co/

products/elasticsearch. [Online; accessed on 2016-08-14]. 4

Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. Beyond Accuracy: Evaluating
Recommender Systems by Coverage and Serendipity. In Proceedings of the Fourth ACM
Conference on Recommender Systems, RecSys ’10, pages 257–260, New York, NY, USA,
2010. ACM. 11, 12, 13, 20, 36

Matthew Hoffman, Francis R. Bach, and David M. Blei. Online Learning for Latent Dirichlet
Allocation. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Cu-
lotta, editors, Advances in Neural Information Processing Systems 23, pages 856–864.
Curran Associates, Inc., 2010. 9

John P Huelsenbeck, Sonia Jain, Simon WD Frost, and Sergei L Kosakovsky Pond. A
Dirichlet process model for detecting positive selection in protein-coding DNA sequences.
Proceedings of the National Academy of Sciences, 103(16):6263–6268, 2006. 8

Harold Jeffreys. Scientific Inference. Cambridge University Press, 1973. 8

Kriste Krstovski, David A. Smith, Hanna M. Wallach, and Andrew McGregor. Efficient
Nearest-Neighbor Search in the Probability Simplex. In Proceedings of the 2013 Conference
on the Theory of Information Retrieval, ICTIR ’13, pages 22:101–22:108, New York, NY,
USA, 2013. ACM. 10, 11

Wei Li and Andrew McCallum. Pachinko allocation: DAG-structured mixture models of
topic correlations. In Proceedings of the 23rd international conference on Machine learning,
pages 577–584. ACM, 2006. 8

40

http://code.google.com/p/luke/
http://corpus.byu.edu/glowbe/
http://corpus.byu.edu/glowbe/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/elasticsearch

Inderjeet Mani. Summarization Evaluation: An Overview. 2001. URL http://research.

nii.ac.jp/ntcir/workshop/OnlineProceedings2/sum-mani.pdf. [Online; accessed on
2016-11-]. 3

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Scoring, term weight-
ing, and the vector space model. In Introduction to Information Retrieval, pages 100–123.
Cambridge University Press, 2008. Cambridge Books Online. 5, 6

Andrew Kachites McCallum. MALLET: A Machine Learning for Language Toolkit. Tech-
nical report, University of Massachusetts at Amherst, 2002. URL http://mallet.cs.

umass.edu. 9

Michael McCandless, Erik Hatcher, and Otis Gospodnetic. Lucene in Action, Second Edition:
Covers Apache Lucene 3.0. Manning Publications Co., Greenwich, CT, USA, 2010. 4, 5

Prem Melville and Vikas Sindhwani. Recommender Systems, pages 829–838. Springer US,
Boston, MA, 2010. 1

NaturalNode. Natural, August 2016. URL https://github.com/NaturalNode/natural.
[Online; accessed on 2016-08-09]. 4

Ian Porteous, David Newman, Alexander Ihler, Arthur Asuncion, Padhraic Smyth, and Max
Welling. Fast Collapsed Gibbs Sampling for Latent Dirichlet Allocation. In Proceedings
of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’08, pages 569–577, New York, NY, USA, 2008. ACM. 9

Jonathan K. Pritchard, Matthew Stephens, and Peter Donnelly. Inference of Population
Structure Using Multilocus Genotype Data. Genetics, 155(2):945–959, 2000. 7

Stephen Robertson. Understanding inverse document frequency: on theoretical arguments
for IDF. Journal of Documentation, 60(5):503–520, 2004. 6

Alfredo Serafini. Apache Solr Beginner’s Guide. Packt Publishing Ltd, December 2013. 4

S Shivashankar, S Srivathsan, Balaraman Ravindran, and Ashish V Tendulkar. Multi-view
methods for protein structure comparison using latent dirichlet allocation. Bioinformatics,
27(13):61–68, 2011. 8

David Smiley and David Eric Pugh. Apache Solr Enterprise Search Server - Third Edition.
Packt Publishing Ltd, 3 edition, May 2015. 4

Karen Spärck Jones. A statistical interpretation of term specificity and its application in
retrieval. Journal of documentation, 28(1):11–21, 1972. 5

Yee W Teh, David Newman, and Max Welling. A Collapsed Variational Bayesian Inference
Algorithm for Latent Dirichlet Allocation. In Advances in Neural Information Processing
Systems, pages 1353–1360, 2006. 9

Peter D Turney and Patrick Pantel. From Frequency to Meaning: Vector Space Models of
Semantics. Journal of Artificial Intelligence Research, 37(1):141–188, 2010. 9

41

http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings2/sum-mani.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings2/sum-mani.pdf
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
https://github.com/NaturalNode/natural

Xuerui Wang and Andrew McCallum. Topics over Time: A non-Markov Continuous-time
Model of Topical Trends. In Proceedings of the 12th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’06, pages 424–433, New York,
NY, USA, 2006. ACM. 13

Xing Wei and W. Bruce Croft. LDA-based Document Models for Ad-hoc Retrieval. In
Proceedings of the 29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’06, pages 178–185, New York, NY, USA,
2006. ACM. 8

Jun Won Lee and Yiu-Kai Ng. Using Fuzzy-Word Correlation Factors to Compute Document
Similarity Based on Phrase Matching. In Fuzzy Systems and Knowledge Discovery, 2007.
FSKD 2007. Fourth International Conference on Fuzzy Systems and Knowledge Discovery,
volume 2, pages 186–192. IEEE, 2007. 6, 35

Ho Chung Wu, Robert Wing Pong Luk, Kam Fai Wong, and Kui Lam Kwok. Interpreting
TF-IDF Term Weights As Making Relevance Decisions. ACM Transactions on Information
Systems, 26(3):13:1–13:37, June 2008. 5, 6

42

Appendix A

All Catalog Coverage Values Measured

Algorithm
of Recommendations TF-IDF LDA
1 0.03378 0.03558
2 0.05097 0.06216
3 0.06596 0.08655
4 0.08095 0.11033
5 0.09194 0.13032
6 0.10194 0.14831
7 0.11353 0.16730
8 0.12233 0.18329
9 0.13412 0.20108
10 0.14411 0.21707
11 0.15151 0.23306
12 0.15831 0.24725
13 0.16570 0.26004
14 0.17170 0.27124
15 0.17809 0.28723
16 0.18149 0.30062
17 0.18769 0.31361
18 0.19268 0.32660
19 0.19808 0.33780
20 0.20388 0.34999
21 0.20927 0.36098
22 0.21327 0.36858
23 0.21927 0.37577
24 0.22367 0.38557
25 0.22846 0.39396

Table A.1: Catalog coverage values for all models (k=1 through k=25). Precision is set to 5
significant digits.

43

Algorithm
of Recommendations TF-IDF LDA
26 0.23186 0.40536
27 0.23746 0.41235
28 0.24225 0.41875
29 0.24785 0.42674
30 0.25305 0.43474
31 0.25825 0.44333
32 0.26164 0.44913
33 0.26564 0.45633
34 0.26944 0.46452
35 0.27484 0.47332
36 0.28003 0.48251
37 0.28303 0.48971
38 0.28783 0.49530
39 0.29242 0.50270
40 0.29542 0.50849
41 0.29782 0.51289
42 0.30102 0.51809
43 0.30402 0.52429
44 0.30642 0.53108
45 0.30841 0.53748
46 0.31061 0.54247
47 0.31341 0.54727
48 0.31621 0.55107
49 0.31881 0.55727
50 0.32081 0.56266

Table A.2: Catalog coverage values for all models (k=26 through k=50). Precision is set to
5 significant digits.

44

Algorithm
of Recommendations TF-IDF LDA
51 0.32461 0.56826
52 0.32560 0.57286
53 0.33000 0.57745
54 0.33280 0.58185
55 0.33600 0.58645
56 0.33860 0.59244
57 0.34100 0.59744
58 0.34419 0.60164
59 0.34659 0.60544
60 0.34899 0.61003
61 0.35219 0.61643
62 0.35499 0.61923
63 0.35739 0.62323
64 0.35978 0.62782
65 0.36278 0.63162
66 0.36558 0.63522
67 0.36838 0.63882
68 0.37298 0.64381
69 0.37478 0.64761
70 0.37637 0.65281
71 0.37877 0.65641
72 0.38077 0.65960
73 0.38277 0.66480
74 0.38517 0.66780
75 0.38797 0.67080

Table A.3: Catalog coverage values for all models (k=51 through k=75). Precision is set to
5 significant digits.

45

Algorithm
of Recommendations TF-IDF LDA
76 0.39157 0.67460
77 0.39456 0.67699
78 0.39616 0.68019
79 0.39876 0.68299
80 0.40136 0.68559
81 0.40296 0.68699
82 0.40496 0.68899
83 0.40616 0.69198
84 0.40855 0.69398
85 0.41075 0.69738
86 0.41395 0.70078
87 0.41555 0.70438
88 0.41615 0.70658
89 0.41795 0.70937
90 0.42035 0.71117
91 0.42295 0.71357
92 0.42574 0.71557
93 0.42754 0.71797
94 0.42914 0.72077
95 0.43294 0.72337
96 0.43494 0.72497
97 0.43694 0.72636
98 0.43994 0.72956
99 0.44273 0.73176
100 0.44493 0.73576

Table A.4: Catalog coverage values for all models (k=76 through k=100). Precision is set to
5 significant digits.

46

Appendix B

Tools Used for This Thesis

Tool/Library Use Link(s)
Git code versioning; code shar-

ing
https://git-scm.com/about

Latex, Google
Docs, Microsoft
Office

Composing versions of this
document

https://www.latex-project.org/,
https://docs.google.com,
https://products.office.com/en-us/word

AntConc Indexing of files to discovery
high-frequency words (stop-
words).

http://www.laurenceanthony.net/

software/antconc/

“docker”
(docker dae-
mon, docker-
compose, docker
containers)

Containerization and mod-
ularization of each module
such that when running,
code for each module only
contains input, the neces-
sary code, output, and op-
erating system tools.

https://www.docker.com/

Docker For Mac Running docker daemon in
hypervisor VMs

https://www.virtualbox.org/,
https://docs.docker.com/engine/

installation/mac/

SCI database
(mysql)

Input into first module (link not available)

MySQL server,
MySQL client

hosting + querying of SCI
database

http://dev.mysql.com/

GNU Make orchestration of modules
(i.e. the command make
thesis runs each module
that hasnt been run, mak-
ing sure to do so in the cor-
rect order

https://www.gnu.org/software/make/

Table B.1: Tools and libraries used.

47

https://git-scm.com/about
https://www.latex-project.org/
https://docs.google.com
https://products.office.com/en-us/word
http://www.laurenceanthony.net/software/antconc/
http://www.laurenceanthony.net/software/antconc/
https://www.docker.com/
https://www.virtualbox.org/
https://docs.docker.com/engine/installation/mac/
https://docs.docker.com/engine/installation/mac/
http://dev.mysql.com/
https://www.gnu.org/software/make/

Tool/Library Use Link(s)
nodeJS, bash,
sh, zsh

orchestration of modules
(i.e. the command make
thesis runs each module
that hasnt been run, mak-
ing sure to do so in the cor-
rect order

https://nodejs.org/en/,
https://www.gnu.org/software/bash/

npm hosting of open-source
nodeJS code

https://www.npmjs.com/

Atom, vi code editors https://atom.io/,
http://www.vim.org/

Mallet indexing of files in prepara-
tion for LDA; Gibbs Sam-
pling to infer parameters of
LDA topic model

http://mallet.cs.umass.edu/

Luke (Lucene
Index Toolbox)

ranking words by frequency
to identify stopwords

http://www.getopt.org/luke/

Mac OS-X Host system running VM,
hosting code

http://www.apple.com/osx/

Bitbucket code hosting https://bitbucket.org/

GitHub code hosting; location of
open-source tools used
in the project including
nodeJS and Mallet

https://github.com/

less, more, cat,
wc, grep, egrep,
z, oh-my-zsh

general modification or
searching of files in *nix

https://en.wikipedia.org/wiki/Less_

(Unix),
http://linux.die.net/man/1/more,
http://linux.die.net/man/1/grep,
http://linux.die.net/man/1/egrep,
http://linux.die.net/man/1/wc,
https://github.com/rupa/z,
https://github.com/robbyrussell/

oh-my-zsh

regular expres-
sions

easy removal of boiler plate
HTML from documents

https://en.wikipedia.org/wiki/Regular_

expression

Table B.2: Continuation of Table B.1.

48

https://nodejs.org/en/
https://www.gnu.org/software/bash/
https://www.npmjs.com/
https://atom.io/
http://www.vim.org/
http://mallet.cs.umass.edu/
http://www.getopt.org/luke/
http://www.apple.com/osx/
https://bitbucket.org/
https://github.com/
https://en.wikipedia.org/wiki/Less_(Unix)
https://en.wikipedia.org/wiki/Less_(Unix)
http://linux.die.net/man/1/more
http://linux.die.net/man/1/grep
http://linux.die.net/man/1/egrep
http://linux.die.net/man/1/wc
https://github.com/rupa/z
https://github.com/robbyrussell/oh-my-zsh
https://github.com/robbyrussell/oh-my-zsh
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression

	Brigham Young University
	BYU ScholarsArchive
	2016-12-01

	A Framework for Evaluating Recommender Systems
	Michael Gabriel Bean
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Review of Literature: Algorithms, Models, and Evaluation
	2.1 Introducing Query Search and Recommender Systems
	2.2 Relevant Algorithms
	2.2.1 TF-IDF
	2.2.2 LDA: A Model and Algorithms to Build It

	2.3 Using the Models to Compute Recommendations
	2.4 Evaluation

	3 Methodology
	3.1 Introduction
	3.2 Corpus Characteristics and Preparation
	3.3 Corpus Pre-Processing: Cleaning + Normalization
	3.4 Models + Parameters
	3.4.1 LDA RS
	3.4.2 TF-IDF RS

	3.5 Evaluator
	3.6 Programming Languages
	3.7 Code Management/Organization
	3.7.1 Docker + Docker-compose

	3.8 Sanity Checks
	3.9 Conclusion

	4 Results & Evaluation
	4.1 Interpreting Results

	5 Conclusion
	5.1 Discussion
	5.2 Future Work
	5.2.1 Evaluating With Other Metrics
	5.2.2 Other Topic Models

	5.3 Improvements
	5.4 Contributions

	Bibliography
	A All Catalog Coverage Values Measured
	B Tools Used for This Thesis

