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ABSTRACT

Automatic Readability Prediction for Modern Standard Arabic

Jonathan Neil Forsyth
Department of Linguistics and English Language, BYU

Master of Arts

Research for automatic readability prediction of text has increased in the last decade
and has shown that various machine learning methods can effectively address this prob-
lem. Many researchers have applied machine learning to readability prediction for English,
while Modern Standard Arabic (MSA) has received little attention. Here I describe a sys-
tem which leverages machine learning to automatically predict the readability of MSA. I
gathered a corpus comprising 179 documents that were annotated with the Interagency Lan-
guage Roundtable (ILR) levels. Then, I extracted lexical and discourse features from each
document. Finally, I applied the Tilburg Memory-Based Learning (TiMBL) machine learn-
ing system to read these features and predict the ILR level of each document using 10-fold
cross validation for both 3-level and 5-level classification tasks and an 80/20 division for a
5-level classification task. I measured performance using the F-score. For 3-level and 5-level
classifications my system achieved F-scores of 0.719 and 0.519 respectively. I discuss the
implication of these results and the possibility of future development.

Keywords: readability, Modern Standard Arabic, machine learning
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Chapter 1

Introduction

In this thesis I address the subject of readability. In general, readability is the level of

difficulty that a particular document presents to readers. Readers may be adults or children,

and may be native or non-native speakers of the language in question. This compounds

the difficulty for precisely defining readability, because readers and documents are always

different for any given situation. Consequently, researchers in readability have developed

many different ways of defining and measuring readability. A common metric for difficulty

level or readability is in terms of the years of formal education that is required, on average, to

comprehend a given document. For example, a paper published in a scientific journal about

a specialized topic will require that a reader be informed about that topic at an advanced

level—perhaps several years of study within the given field. In contrast a book written

for 7-year-old schoolchildren may require less than a year of formal education for an adult

second language learner. In order to narrow my topic I chose to look at readability from the

perspective of a second language learner.

Formal second language education utilizes many reading materials. Textbooks alone

do not provide enough material in order to learn to read fluently in the second language.

Also, it may be safe to assume that students want material that is interesting to them. The

challenge, then, is to match each individual learner’s unique interests with their reading

ability.

One solution to this challenge is to have language instructors select for the students

material which is appropriate to their reading ability. This is a practical problem, because

the instructor must spend significant time combing through documents to find those at a

target readability level. The other problem is that the instructor must choose the reading,
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and it is impractical for him or her to choose reading for each individual student’s topic of

interest, if any effort to select texts based on topics of interest is made at all.

A second solution could have the student find appropriate reading materials at a

trusted online source. This still may not avoid the problem of finding material that is

interesting to the student. The student needs guidance to read specific subject matter

because classes are geared toward developing professional language skills, which presupposes

certain subject matter. A new and more efficient solution has recently become feasible.

With the onset of computer technology, readability measurement has recently become

automated. Automatic readability measurement promises to ease the task of teachers in

selecting reading material appropriate for their students’ reading level. Furthermore an

independent second language learner might find a collection of documents online, and with

an automated readability program, determine which documents they should tackle for the

most effective learning experience.

I am working with Arabic as a subject of readability. The Arabic language includes

a diverse collection of dialects across the Middle East. A standard written form of Arabic

used by the educated Arabic world is commonly called Modern Standard Arabic (MSA). My

research focuses on MSA readability. MSA offers a special challenge to adults learning it

as a second language. For example, MSA is a morphologically complex language that also

exhibits very liberal sentence structure.

Some MSA college and university courses in the United States make heavy use of

MSA newspaper writing in their curriculum. This is a convenient solution for providing vast

amounts of material from which students can learn. However, the linguistic difficulty can

render newspaper documents less effective in engaging the student in reading, and learners’

competence in the subject area can be problematic. MSA newspaper concepts range from

topics of political science and international relations to culture and business, among others.

MSA readability research is in its infancy. Unlike early English readability research,

MSA has the advantage of benefiting from computer tools. These are only recently (in the

last 10 years) being applied to measure readability for English and other languages. Much

research is needed to understand the best practices for determining readability levels of MSA.
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The last decade has seen application of computerized methods to the readability prob-

lem for English, French, Spanish, English for persons with disabilities, and some preliminary

studies for MSA.

1.1 Overview

In Chapter 2 I review the history of readability research beginning with English.

I include research for other languages and also show how the research and formulas for

calculating readability have evolved over the last hundred years. I also discuss the recent

application of machine learning to the readability problem. Then I describe how I used

an MSA corpus and custom-developed tools for processing MSA documents, plus a tool

for implementing machine learning. Next I describe my methodology, which combines MSA

linguistic processing tools, a machine learning tool, an MSA frequency dictionary, and various

features from the literature along with novel features to create a system for automatically

predicting MSA document readability. I then present and discuss the performance results of

my MSA readability system. Finally, I conclude with prospects for further MSA readability

research in my system and by others.
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Chapter 2

Literature Review

Since the beginning of readability research, English has been the principal language

of investigation, although scholars have researched readability in several other languages,

including French (François and Watrin, 2011), German (Hancke et al., 2012), and even MSA

(Al-Khalifa and Al-Ajlan, 2010). This overview of the literature, therefore, takes English

readability as a point of departure. Some researchers have shown that the factors affecting

English readability can be useful for readability research in other languages, including MSA.

This thesis will show that many of these features, as well as additional novel features, will

transfer over well to MSA.

2.1 History of Readability Research

Early on in readability research, Sherman (1893) examined sentence length in his ef-

forts to apply statistical analysis to English documents. Sherman observed that: 1) sentence

length tends to be consistent for a given author, 2) sentence length has decreased over time

in English writing. He hypothesized that shorter sentences and more concrete terms are

easier for readers to understand. He believed that reporting statistical measures of English

prose to students could be a useful way to engage them with documents and that these

measures objectively indicated document difficulty. His methods of measurement proved to

be applicable in subsequent readability research where average sentence length served as a

proxy for syntactic complexity. Furthermore, his observation that authors use consistent

sentence lengths was useful for early manual calculations of readability because they relied

on samples of a document rather than the entire document to determine average sentence

length.
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Researchers have used various characteristics of a document for calculating readabil-

ity. These include average sentence length or average word length (Flesch, 1948; Dale and

Chall, 1948).

Thorndike’s (1921) word frequency list functioned as another feature for predicting

readability for English. It lists the 10,000 most frequent words from various English doc-

uments, but Thorndike did not specify the base corpus from which he generated this list.

Lively and Pressey (1923) used Thorndike’s list to rate the vocabulary difficulty of various

documents used in elementary, middle school, and college-level U.S. educational institutions.

They measured vocabulary burden in terms of the number of different word types, number

of words not in Thorndike’s list, and the weighted median index of the words from the same

list. These metrics correlate fairly well with documents selected from these predetermined

education levels. Following Thorndike, Horn (1928) oversaw a national survey of U.S. first

grade students resulting in a 2,596-word list that these students knew. Dale (1931) derived

a 769-word list by taking words which were common between Horn’s list and the first 1,000

words of Thorndike’s list. In the same publication, Dale noted a problem with all of these

lists—they do not count words by their semantics but by their form only, which ignores that

readers may know one meaning of a word form and not another.

McCall and Crabbs (1926) created a more robust criterion through testing student

readers on comprehension of various English test passages. These test passages provided a

criterion against which to measure subsequent readability formulas which used these tests

for validating their formulas. Many researchers created formulas based on these lists and

on many features including the surface features: average sentence length and average word

length.

As a solution to the impracticality of applying multi-featured formulas, Lorge (1944)

authored the Lorge formula. It simplified readability measurement by only including three

features that were manually calculated. His features were proxies for syntax and lexical

complexity and included the average sentence length, number of prepositional phrases per

100 words, and number of words not in the Dale List. He found these features to correlate

well with the test results of McCall and Crabbs’s (1926) grade school test experiments.
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Efforts increased dramatically in the 1940s to find ways to improve and formalize

readability measurements; prominent among these formulas were the Flesch Reading Ease

formula (Flesch, 1948) and the Dale-Chall formula (Dale and Chall, 1948). Both formulas

used the criteria from McCall and Crabbs to measure their results, and both used average

sentence length. Flesch measured word length in syllables per word; he first tried to measure

affixes per word, but found them to be less useful. Dale and Chall used a list of 3,000 words

known to 80% of 4th graders surveyed on a larger list.

The Dale-Chall Formula remained popular for decades after this period and Dale and

Chall revised it much later (1995). Flesch Reading Ease formula was revised by Kincaid et

al. (1975) in a readability study sponsored by the U.S. Navy. This revised version, known

as Flesh-Kincaid Grade level is still in wide use today.

Zipf (1949) conducted statistical research of lexical features that are widely applicable

to readability. He showed that, for a given corpus, a small percentage of the word types are

extremely common and that word rankings (according to a rank by frequency) are inversely

related to word frequencies. He also noted that the most frequent words tend to have shorter

written forms. This can explain the effectiveness of word rankings, ratio of a document’s

words found on a frequency list and word length for the formulas previously mentioned.

For a long time, readability prediction methods involved gathering document statistics

through manual counts. This has limited the features available to readability formulas as

well as their accuracy. Chall and Dale (1995) even promoted hand calculation methods as

late as 1995.

Establishing a well-defined standard for readability measurements is difficult in large

part because the reading audience and the reading material are different for each study.

Readability formulas are not based on a single objective standard of measurement. Stenner

(1996) developed the Lexile Framework as a solution to this problem. According to Chall

and Dale (1995) the publication of the Lexile Theory (Stenner et al., 1987) restored interest

in traditional readability methods and formulas which had waned since the 1970s. Lexile

normalizes measurements in relation to the population being measured in order to establish

a zero level that can be compared to other populations. To make this possible, Lexile

measures individuals from different populations relative to their representative population’s
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mean scores. For features, Lexile makes use of the mean of the raw frequency of a frequency

list based on a 5-million word corpus of educational documents compiled by Carroll et al.

(1971). For syntactic complexity, Lexile uses the mathematical log of average sentence length.

Lexile and other modern readability efforts use corpora for building readability models

and as subjects of readability predictions. Corpora are collections of documents that may be

annotated with additional information about the document such as the syntactic structure

of sentences or the part-of-speech of words. Researchers use the terms ‘type’ and ‘token’ to

refer to the items being counted in a corpus which may include words and punctuation. A

token is an occurrence of any counted item in a corpus; often, the count of all the words in

a given corpus is considered the token count. However, those working with corpora must

decide whether to include punctuation, numbers, and other items in the token count. The

written or surface form of a token is known as its type. In other words, all tokens with the

same surface form are counted as one distinct type regardless of how many tokens of that

surface form appear in the corpus. Researchers must also decide whether to count different

inflections of the same word as different types, for example whether to consider the plural

form of a noun as a separate type from its singular form.

2.1.1 The ILR Levels As A Readability Metric

Starting in the 1950s, U.S. government agencies began development of standard lan-

guage proficiency levels called the Inter-Agency Language Roundtable (ILR) Scale. The ILR

system is used today to objectively determine different skill levels in the four areas of lan-

guage proficiency—reading, writing, speaking, listening—for government positions requiring

foreign language proficiency (Clark and Clifford, 1988; Lowe, 1987). The modern result of

these efforts is shown in Table 2.1 taken from the published online rating system.1 The

ILR Scale represents a standard or list of categories to which documents may be classified

according to their reading difficulty.

1http://www.govtilr.org/Skills/ILRscale4.htm
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Reading 0 No Proficiency
Reading 0+ Memorized Proficiency
Reading 1 Elementary Proficiency
Reading 1+ Elementary Proficiency, Plus
Reading 2 Limited Working Proficiency
Reading 2+ Limited Working Proficiency, Plus
Reading 3 General Professional Proficiency
Reading 3+ General Professional Proficiency, Plus
Reading 4 Advanced Professional Proficiency
Reading 4+ Advanced Professional Proficiency, Plus
Reading 5 Functionally Native Proficiency

Table 2.1: ILR Reading Levels

2.2 Machine Learning

Looking at readability as a classification problem is useful for purposes of machine

learning, which is a method for classifying things automatically. In working with corpora

researchers often use machine learning to gather and classify the data into separate categories.

For an in-depth understanding of machine learning see Witten et al. (2011).

Machine learning is applicable to many different kinds of statistical problems, both

linguistic and non-linguistic and can take two general approaches—supervised or unsuper-

vised learning. In supervised learning the data include distinct entities with preassigned

labels, one for each entity, representing their respective class or category. The researcher’s

goal is to train an algorithm to ‘learn’ how to predict the correct category on new input

through processing a collection of exemplary training entities. In unsupervised learning, the

entities are not labeled with a category. A common goal of unsupervised learning is to find

patterns in the data which group similar entities together.

Many machine learning specialists choose to split the data such that 80% of the data

is used for training, and 20% is used for testing (or evaluation). This is called an 80/20 split,

and often allows for a more precise model to be created of the testing data. Both the training

and testing sets profit from a greater number of documents—the training set to improve the

quality of training, and the testing set to increase the significance of the results. Thus the

split that gives more data to one set decreases the effectiveness of the other. Another useful
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approach is to further split the training set into another 80/20 split and set aside the testing

set, called the development test (devtest) set.

Another common way to split the data for training and testing is to use cross valida-

tion. In cross validation the researcher divides test data into a number of sections of equal

size called folds; often they choose ten folds (10-fold cross validation), but there can be more

or less. Then, they train the program on all but one fold. Finally, they run that one fold as

the test and record the result. A variation of this is called leave-one-out in which they use

all items (e.g. documents in the case of readability) except one for training, and they test

the one document which was left out. They repeat this train and test procedure on all but

one document until all documents have taken a turn as the test document. The main benefit

of cross fold validation is that it maximizes the training set size. It also provides sound test

results, based on many outcomes, which are more generalizable.

The performance of the classifications can be measured in various ways, but perhaps

the most common is known as the F-score. Two performance measures related to the F-

score are precision and recall. Precision is the percentage of predictions that were correct

with respect to all predictions for a specific class. Recall is the percentage of documents

with a specific preassigned class that were correctly predicted with their class label. The

F-score captures both precision and recall in one measure and is also known as the harmonic

mean of precision and recall. The F-score is roughly the same as accuracy, though it is

more comprehensive. F-scores are calculated per class, then averaged to provide an overall

F-score.

Machine learning methods are gaining interest in current research in automated read-

ability. Previous methods—traditional readability formulas—only accounted for a few fea-

tures because they required human counts. In contrast, a machine learning approach is

scalable to a large number of features and can accept features generated automatically from

electronic documents. Machine learning performs advanced computations that account for

interactions between features, and this approach is optimal for development because one can

easily adjust the number of features and retest efficiently. Repeated cycles of adjustments

and retests can effectively determine the optimal feature set by comparing the results of

different permutations of feature sets. For instance, Vajjala and Meurers (2012, p. 169)
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reported results of applying a machine learning algorithm to their corpus of 2500 docu-

ments and compared the performance of 12 different feature sets containing between 2 to 46

individual features in each set.

Si and Callan (2001) demonstrated that traditional formulas do not scale well to web

documents when they reported the results of applying Flesch-Kincaid Grade level on their

91-document web corpus. Traditional formulas like Flesch-Kincaid need more data than they

are afforded in many cases by new kinds of non-traditional documents such as web pages.

Additionally, traditional formulas do not have enough features to provide maximal

accuracy, and were not intended to do so. Rather they were designed for the purpose of

providing human raters a simple approximation of the difficulty of a given document. As an

example, Chall and Dale (1995) report the revised version of the 1948 Dale-Chall formula

and include a worksheet for a human rater to record counts that he/she gathers manually

from samples of a document.

2.3 Machine Learning and Readability

Readability researchers often provide machine learning algorithms data which they

derive from statistical pre-processing. A very common pre-processing technique is building

N-gram models from a large corpus. N-grams are sequences or chains of words where N

represents the length of the chain. N-grams with a length of one or two are called unigrams

and bigrams respectively. N-gram models provide the statistical probability of certain N-

grams occuring. These probabilities are calculated by the actual rate of occurrence of the

N-grams in a model corpus.

Si and Callan (2001) created apparently the first machine learning model to address

readability prediction. The data inputs to their model were the average sentence length

and a unigram language model. They frame their approach as an attempt to solve the

problem of returning web search results which correspond to a certain readability level. For

features, they used a unigram language model and average sentence length as input features

to a classifier in order to predict 3 different classes K-2, 3-5, 6-8 in terms of U.S. school

grade levels. They downloaded their corpus, consisting of 91 documents, from the web. The

authors of these web documents provided the grade level of each document. Si and Callan
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used 10 documents from each of the 3 levels for training. They applied the Flesch-Kincaid

formula as a baseline (average sentence length and average word length are the only two

features of Flesch-Kincaid). Flesch-Kincaid performed poorly, at 21.3% accuracy, while their

unigram language model achieved 75.4% accuracy. However, Si and Callan do point out a

problem with applying Flesch-Kincaid to their corpus because this traditional formula has a

range of levels beyond their corpus. They explained the poor performance of Flesch-Kincaid

as a function of web document writing style which often includes partial sentences—unlike

traditional documents—and has insufficient prose length for Flesch-Kincaid to work properly.

They also showed that the Flesch-Kincaid formula is not robust enough when applied to

new, unconventional web documents which often include fragments of a document and show

irregular or non-existent sentence boundaries. Several studies have applied machine learning

algorithms to the readability prediction problem since this study as well as addressed the

need for web search results to be automatically filtered for readability.

Building on Si and Callan, Collins-Thompson and Callan (2005) used a machine

learning classifier and educational web documents for automated readability prediction, and

they added smoothing to their unigram language model, which is a process for accounting

for words with zero probability (i.e. words that have no occurrences in the corpus used to

create the model). Their model made predictions at 12 U.S. school-grade levels—1st through

12th grades—and demonstrated a Pearson correlation of 0.79. Their corpus consisted of 550

documents with 415,330 tokens. The document genres covered fiction, nonfiction, history

and science. Accuracy was measured with root mean squared error in order to count close

predictions as less accurate than exact predictions rather than simple true/false predictions.

The best result they obtained was a root mean square error of 1.92. This means that the

predictions differed from the correct level by about 2 grade levels (1.92) on average.

Pitler and Nenkova (2008) showed that discourse connective features perform well in

readability scoring and readability ranking for English. Discourse connectives are words and

multi-word expressions that connect units of text larger than single words. For example, the

English word ’however’ is a discourse connective often used to connect two sentence units.

The units connected by discourse connectives may be larger or smaller than full sentences.

For their study, Pitler and Nenkova use the Wall Street Journal section of the Penn Discourse
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Treebank (PDTB), a corpus annotated with discourse connective information (Prasad et al.,

2008). They created an automated English readability assessment model that matched

human ratings given by college students on various news articles from this corpus. They

used a large feature set and found document length and discourse relations between clausal

arguments of explicit discourse connectives to be the most significant factors in training

a model to match discrete human ratings. Features also significant in their model were

vocabulary probability—based on frequency lists that they generated from large corpora of

newspaper documents—and the average verb phrases per sentence.

Weekly Reader is an English educational reading website2 for children and their teach-

ers and has served as a corpus for several machine learning studies in readability in recent

years. The advantage of Weekly Reader as with the corpus gathered by Si and Callan is

that authors provided human readability ratings, which avoids the expensive process of test-

ing with human readers to establish a standard of measurement. Weekly Reader does not

document what criteria the authors follow in production.

In one Weekly Reader study, Feng et al. (2010) used a machine learning program

for classifying documents from a Weekly Reader corpus they had compiled previously (Feng

et al., 2009) (1433 articles across 4 grade levels). They created language models for their

study which were based on the same corpus that they were using to evaluate their model.

In order to do this properly they used a ‘hold-one-out’ approach in which they trained the

language model on all the training data and tested on the data that was left out in order

to prevent bias. This overcomes the problem that Schwarm and Ostendorf (2005) reported

in their Weekly Reader readability study in which performance deteriorated when they split

their training/testing set such that there was not enough data for training to produce reliable

judgments of classes/levels. Feng et al. used some of the same discourse features from

their 2009 study for adults with intellectual disabilities. They also used 5 part-of-speech

(POS) feature sets based on the following categories: nouns, verbs, adjectives, adverbs and

prepositions. Each set had 5 features among which were percentage of the given POS tokens

and percentage of the given POS types per document. Their noun-based POS feature set was

the best performing out of all the POS-based feature sets—achieving alone 58.15% accuracy.

2http://www.weeklyreader.com
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This was expected, they reported, because noun phrases include entities that a reader must

keep in working memory as she is reading a document.

In a study on German web documents, Hancke et al. (2012) use machine learning for

making predictions. They gathered electronic documents from 2 German news sites which

were written for adults and children aged 8-14, Geo3 and GeoLino4 respectively. Their

system made binary predictions between these two document sources. They ranked their

top ten features in terms of informativeness: the top three were: 1) average word length

(traditional feature) 2) ratio of the number of 2nd person verbs to the number of finite

verbs (novel feature), and 3) number of syllables per word (traditional feature). They found

that morphological features proved very telling of readability in a binary classification task

of German online news documents. Their classifier achieved 85.4% classification accuracy

based on a set of morphological features alone.

2.4 Arabic Readability

Arabic readability research is in its very early stages; Shen et al. (2013) published a

recent example. They used machine learning to create general classifiers for 4 languages:

Arabic, English, Dari, and Pashto. Their feature set is small and includes traditional,

language-independent features. The 2 categories of features they label are: 1) word us-

age and 2) shallow length features. The word usage category only includes weighted word

frequency from their training corpus. The shallow length category includes average sentence

length in words, number of words per document, and average word length in characters.

They normalized these three length features using a method to make the scores more com-

parable. They split their corpus (including the Arabic section) into an 80/20 training/testing

split. Their corpus consisted of 1,394 documents across 7 of the 11 ILR levels: 1, 1+, 2, 2+,

3, 3+ and 4. The number of documents was relatively equal across these classes with about

200 documents per class. They reported results in terms of root mean squared error. Their

data set is much larger than mine, though it is comparable because they also use a cor-

3http://www.geo.de
4http://www.geolino.de
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pus annotated with ILR levels. They could improve their feature set by modeling linguistic

characteristics of Arabic more deeply.

In a preliminary study, Al-Khalifa and Al-Ajlan (2010) collected a document corpus

from educational materials for elementary, intermediate, and secondary schools in Saudi Ara-

bia. Their corpus had 150 documents—50 documents from each level—comprising 57,089

tokens. They processed the documents of their corpus to generate 5 features: average sen-

tence length, average word length in letters and syllables, term frequency (ratio of duplicated

words), and an N-gram (bigram) language model. They built 3-way machine learning clas-

sifiers to classify the documents in this corpus across the 3 education levels. For evaluation

they used an 80/20 training/testing split. They compared performance between two differ-

ent sets of features—their entire feature set and a subset of the best three features: average

sentence length, the bigram language model, and term frequency. To measure performance

they used the F-score. They averaged the F-scores across the three levels to give an over-

all accuracy. Table 2.2 summarizes their results. The results set a fairly high preliminary

standard for performance in Arabic readability classifiers.

Level All Features Feature Subset
Easy 1.00 1.00
Medium 0.545 0.667
Difficult 0.615 0.667

Average F-score 0.720 0.778

Table 2.2: F-scores for Classification Using All Features and the Best-Performing Subset

2.5 Arabic Features

I have described several features that researchers have applied to readability. These

features may also be effectively applied to MSA readability. One traditional feature discussed

above is word length in terms of syllables, affixes, or characters per word. Because Arabic

is so rich in its morphology, the number of morphemes may be an informative readability

feature. Habash (2010) explains that in Arabic morphology, multiple affixes and clitics
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that can be attached to a lexical stem. He uses an example of a verb stem plus multiple

attachments shown in Figure 2.1, which I took from Habash (2010).

wasayaktubuwnahA
wa+ sa+ y+ aktub +uwna +hA

and will 3person write masculine-plural it
’and they will write it’

Figure 2.1: Example of MSA Morphological Complexity

Figure 2.1 shows optional morphemes including the conjunction word ‘and’, the future

marker, and the direct object attached to the end, ’it’. As with verb stems, noun stems can

also take several affixes and clitics. These morphemes must be parsed by a reader and thus

may add to the difficulty in comprehension.

Arabic commonly uses a noun phrase structure called the idafa. An idafa is a chain

of two or more syntactically bound nouns. In MSA curriculum the idafa is sometimes called

the genitive construct among other terms. According to Ryding, “[t]he noun-noun genitive

construct is one of the most basic structures in the Arabic language and occurs with high

frequency” (see Ryding, 2005, chapter 8). Idafas have no prepositions between their noun

members. They are versatile in use and often translate into English as compound words or

phrases expressing possession. Furthermore, idafa chains can become very long, particularly

in genres that are scientific, political, or otherwise intended for a highly educated readership.

I provide an example of a five-term idafa construction in Figure 2.2 taken from Ryding (2005,

p.216):

taTbiiq-u jamiic-i qaraaraat-i majlis-i l-’amn-i
the application of all of the resolutions of the Security Council

Figure 2.2: A Five-Term Idafa Noun Construction

Another complex construction in Arabic is the discourse connective. Al-Batal (1990)

has studied these lexical structures extensively and wrote that “MSA seems to have a con-
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necting constraint that requires the writer to signal continuously to the reader, through the

use of connectives, the type of link that exists between different parts of the document. This

gives the connectives special importance as text-building elements and renders them essential

for the reader’s processing of text” (p 256). These connectives frequently take the place of

punctuation. Furthermore, punctuation is often unreliable and inconsistent for demarcating

sentence boundaries in MSA.

Alsaif and Markert (2011) developed the first model for automatic discourse connec-

tive identification for MSA. They based the features of their model on a corpus that they

created themselves—the Leeds Arabic Discourse Treebank (LADTB; Alsaif and Markert,

2010)—an excerpt of the Penn Arabic Tree Bank (Maamouri and Bies, 2004), which com-

prises newspaper documents. Alsaif and Markert found through comparing their corpus to

the PDTB that discourse connectives for MSA are more ambiguous than their English coun-

terparts. They also report that Arabic writers make use of explicit discourse connectives

much more frequently in the newspaper genre than is found in the same genre for English.

In comparing the two corpora, they found that 70% of sentence pairings in the LADTB are

connected with an explicit discourse connective while the same statistic of the PDTB is only

12%. Even leaving out the most common discourse connective, /wa/ (‘and’), the LADTB

shows 30% of sentences with an explicit discourse connective (Alsaif and Markert, 2011, pp.

740-741). Therefore, Arabic discourse connectives may be very valuable in matching human-

rated readability baseline as Pitler and Nenkova show that they are for English. They may

be even more significant for MSA over English given the more frequent use of connectives in

the LADTB compared to the PDTB.

Alsaif and Markert published their comprehensive discourse connective list online5.

Their purpose was to disambiguate the authentic use of discourse forms as functional dis-

course connectives from the same forms that were not functional as discourse connectives.

I’ve explained where readability research started and how it has advanced to using

computational methods to automatically detect readability level. I also looked at several

features that I believe will be useful in deriving readability levels automatically from MSA

documents. In the following chapter I will discuss the tools I used for extracting useful

5http://www.arabicdiscourse.net/annotation-tool/
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linguistic information from MSA documents and for computing accurate predictions for

readability levels of the same.
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Chapter 3

Resources & Methods

In the present chapter I describe the resources and methods that I employed to build

and evaluate an automated readability prediction system for MSA. My resources include a

corpus of documents annotated for readability level, a frequency dictionary of MSA, feature

extraction tools, and a supervised machine learning system. I explain each and how I applied

them to readability prediction of MSA documents.

3.1 The Corpus

In May 2013 I downloaded a corpus from the online curriculum1 of the Defense Lan-

guage Institute (DLI) Foreign Language Center, the principal language educational institu-

tion for members of the U.S. military. Their site is open to the public and includes several

language instruction materials. The DLI corpus contains documents which are based on

authentic MSA materials, ranked by the authors according to the Inter-agency Language

Round table (ILR) standard levels. As explained earlier, the ILR levels comprise eleven pro-

ficiency levels (Clark and Clifford, 1988; Lowe, 1987). The DLI corpus includes five of these

proficiency levels: 1, 1+, 2, 2+, and 3 from easiest to most difficult. The corpus has a total

of 179 documents and 74,776 tokens. Shen et al. (2013) used a similar corpus, also rated

by the ILR standard and also originating from the DLI, in their readability study described

above. There is not an even distribution of corpus documents across these levels (See Table

3.1).

I randomly partitioned the DLI Corpus into three sections: training, development test

(devtest), and evaluation—a common method in machine learning experiments to prepare

for a final experiment. The training and development test sets together comprised 80% of

1http://gloss.dliflc.edu/Default.aspx
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Level # of Texts Train DevTest Evaluation
1 20 13 3 4
1+ 14 9 2 3
2 80 51 13 16
2+ 40 26 6 8
3 25 16 4 5

Total 179 115 28 36

Table 3.1: DLI Corpus Document Levels and Distributions

the corpus with 58,565 tokens, and the evaluation set comprised the remaining 20% with

16,211 tokens. The training and development test sets are further subdivided by another

80/20 split. The final number of documents in each partition can also be seen in Table 3.1.

This allows for development and improvement of the classifier while preserving the integrity

of the final results.

3.2 Feature Engineering

Previously, I discussed the use of features in readability research which are derived

from different types of word lists. Modern frequency lists are more robust than early ones

because they are typically based on multi-million word corpora. For my work I used ‘A

Frequency Dictionary of Arabic’ (Buckwalter and Parkinson, 2011), a published 5000-word

frequency dictionary based on a 30-million word corpus. 10% of the base corpus that the

authors used to compile the dictionary consists of spontaneous spoken Arabic while 90%

is a balanced collection from 5 subcategories: 1) daily newswire; 2) newspaper editorials,

opinion essays, regular columns; 3) academic and formal writings; 4) internet discussion

forums; 5) literary and fictional publications. Because dialectal Arabic is increasingly used

in formal communication contexts which were typically restricted to MSA in the recent past,

the authors try to account for the rise in dialectal Arabic. Dialectal words appear in the

list of entries where such words are highly frequent and have a wide range across the 5

subcategories. Each dictionary entry represents a base form (or lemma) of a word which

usually has several variations on this base form (e.g. the plural form of nouns).
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Based on the lemma, part-of-speech, rank, raw frequency, and range provided by the

frequency dictionary, I generated features for the corpus documents . Most of my readability

features were derived from this dictionary. In order to identify and categorize words in a

way which would allow me to compare them to the frequency list, I required an Arabic

morphological processing tool.

MSA usage is often ambiguous in its written form. A single written form taken out

of context frequently has multiple meanings. This ambiguity owes largely to the fact that

authors of MSA rarely include most diacritics in written form. These include short vow-

els, elongated consonants, and other distinguishing orthography. Two processes are needed

to handle morphological ambiguity in MSA. The first—morphological analysis—provides

all possible morphological interpretations of a surface form taken out of context. The sec-

ond—morphological disambiguation—chooses the correct morphological analysis given the

context. I utilized a state-of-the-art program that achieves both tasks for MSA known

as MADA2 (Morphological Analysis and Disambiguation of Arabic; Habash et al., 2009).

MADA provides full morphological disambiguation, part-of-speech tagging, English glosses

and other useful information. MADA can group or separate morphemes in a variety of

user specified ways—a process called tokenization. This tokenization is performed after full

morphological analysis and disambiguation.

MADA’s morphological analysis specifies, for each word, up to four proclitics, the

lemma, and a possible enclitic. It includes 22 other features such as POS, full diacritiza-

tion, and distinctive lemma code. In addition to these 22 features, MADA outputs a user

customized tokenization of the original input document. I obtained all of my features with

the support of MADA’s features and tokenization output. I included lexical and discourse

features in my model. Lexical features are a strong and consistent feature in all of the

forementioned readability research with measurements based on word length, word lists, or

N-gram language models. I employed word lengths, a word list, and novel lexical features in

my model. I used discourse connective word ratios. I expected that the set of lexical features

would perform the best.

2I used MADA version 3.2
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Alsaif and Markert created a program to disambiguate discourse connective forms

between their functional use as discourse connectives and non-functional use as discourse

connectives, but their program is not publicly available. Therefore, I used those discourse

connective surface forms which they found to be used more than 50% of the time as authentic

discourse connectives in their corpus. Coordinated connective pairs, such as the English ‘if

then’ are found in MSA also, but I exclude these from my subset of discourse connectives.

I chose to use full delineation of individual morphemes because these include several

prepositions used in discourse connectives which would otherwise be ambiguous as I used

a simple search pattern to find multi-word and single word discourse connectives. My use

of discourse connective features was inspired by Pitler and Nenkova’s application of dis-

course connectives to English readability (2008). Discourse connectives are very salient and

important cohesive lexical items in MSA as mentioned previously.

For the main lexical feature of this model, I counted the number of MADA-lemmatized

tokens in the document that appear in the 5000-lemma list of the frequency dictionary

(Buckwalter and Parkinson, 2011). I was required to normalize this 5000-lemma list to

match MADA’s lemma codes. Then, I divided this count by the total number words in

the document to obtain the frequency ratio feature. I counted only tokens which have a

morphological analysis provided by MADA excluding punctuation. I borrowed a statistic

from Lively and Pressey’s early vocabulary study (1923) which is the median index from

Thorndike’s 10,000 frequent word list of the frequent words found in the document. Lexile

uses the mean of the log word frequencies from their training corpus because these correlated

best with the rankings of their criteria—the Peabody Individual Achievement Test (Dunn

and Markwardt, 1970). I used both of these measures.

Buckwalter and Parkinson divided the corpus on which their dictionary is based

into 191 logical subsections, and they provide a measure for each lexical entry showing its

dispersion across these subsections. I derived various features from this measure because

this is not used in previous research. For example, I took the average dispersion for each

document’s frequent lexical items. (See Appendix B for all dispersion-based features.)

I compared the words in the frequency dictionary with the MADA lexeme code to

match against. This is how I counted the frequent tokens in a document. The dictionary has
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a register value for about half the entries, but I decided this was not enough to be useful as

a readability feature. The dictionary entry information which I used includes rank, lemma,

POS, gloss, and range.

The type-to-token ratio feature is common to several studies and I included it in

my experiments. For English readability research the type-to-token ratio is calculated by

counting the number of unique word types, and dividing them by the count of total running

words or tokens. I necessarily altered this process of computing the type to token ratio for

MSA because its lexical stems usually accept several different affixes and clitics. Even some

function words accept clitic attachments. Therefore, two instances of the same stem would

be counted as separate items if they had a single difference in their attached morphemes.

This would certainly lead to a token counting problem in which similar tokens that differ only

in an attached preposition would be counted as separate tokens. The solution I implemented

was to count total unique lemmas and omit function words, then divide the lemma type

count by the total lemma tokens. This decision excluded clitics and affixes from the type-

to-token ratio. A derivative of this feature is the root of the type-to-token ratio which I

borrowed from Vajjala and Meurers (2012).

I used the POS-based ratio features inspired by Vajjala and Meurers, but adjusted

them to match MSA POS classes provided by MADA. As a reminder, Vajjala and Meurer’s

POS-based ratio features were the ratio of the individual POS type occurrences to the token

count in the document. I believed that the noun type ratio would be the most informative

for Arabic because noun features show the best success in previous research including that

of Vajjala and Meurers. I included these feature names and the token count of the base POS

for each in the table in Appendix A.

I also included average sentence length. I demonstrated above that both modern

and traditional readability methods have included sentence length measures with positive

results. Sentence length features originated from the traditional formulas. These previous

sentence length measures are in terms of the average number of tokens per sentence. I also

used average number of tokens per sentence. I only used punctuation to delineate sentences,

as the authors of this corpus were consistent in their use of punctuation to mark sentence

boundaries.
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Another set of lexical features I included, which are novel for readability, are the

homograph features. Homographs are words that have the same surface form but have have

different semantic interpretations. I identified homographs according to the lemmas in the

frequency dictionary that had the same form. This effectively limited the homographs to

those that are frequent. I believed this effectively limited the homographs to only those that

are likely to present challenges to readers at a high frequency. I accounted for how many

entries each homograph had in the dictionary because I believed this would indicate an even

more frequently ambiguous homograph. Then, I counted homographs in a document and

looked at their form to associate them with their dictionary entry count. I produced five

homograph features: the average count of dictionary-based homographs per document, the

raw count of the entries, the ratio of homographs to tokens, the ratio of homographs to

types, and the ratio of homograph tokens to homograph types.

Altogether I developed 165 features. I’ve included a full list of the 165 features in

Appendix B. Most of these features are derived from the frequency dictionary, while all of

them depend on the output of MADA.

I developed a script that composes the features into an appropriate format for machine

learning—a feature vector. Each document’s feature vector is inserted into a training or

testing file for input.

3.3 A Machine Learning Approach—TiMBL

I collected the features above for use in a machine learning system. TiMBL is a

machine learning program that uses a strategy known as memory-based learning (Daele-

mans et al., 2010)3. Memory-based learning relies on the theory that humans classify new

information using analogy and proximity to the experiences they retain in memory. This

study is novel in applying TiMBL to automated readability and, specifically, to MSA docu-

ments. Much of the prior research reported above has applied machine learning with other

approaches to predict readability. I do not provide here any comparisons between TiMBL

and other machine learning methods, but this would be a possibility for future work.

3I used TiMBL version 6.4.4.
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TiMBL can be applied to a wide range of prediction problems. I specify the appli-

cation of TiMBL to my task—the readability prediction of documents. For example, where

the documentation uses ‘item’ or ‘instance’ to represent an entity, I use ‘document’. Also,

my use of the word ‘document’ in connection with TiMBL is not the actual Arabic text,

but rather it is a numeric representation of the document. This representation is a feature

vector, a list of 165 measurements—also called feature values—which I computed for each

document. Associated with this list of measurements is the original document’s ILR reading

level. This is the format that TiMBL requires for machine learning.

A key element of TiMBL’s learning phase is its use of nearest neighbors. Nearest

neighbors for our purposes are documents stored in memory that are similar to a test doc-

ument, one that has not yet been seen or processed. TiMBL ranks the similarity of nearest

neighbors to a new test document on an ordinal scale of positive integers. The variable k

represents how many levels of similarity to include nearest neighbors. The value of k can

be set by the user, but the default is 1. Multiple nearest neighbors can be grouped at each

level of proximity or distance. For example, if k is set to 2 then the set of nearest neighbors

will include the first and second ranked documents in terms of proximity. Nearest neighbors

influence TiMBL’s ultimate readability level prediction.

To measure the ‘neareness’ of a nearest neighbor to a test document, TiMBL uses

one of several metrics. I chose to use the Overlap metric which compares each feature value

of a test feature vector to each corresponding feature value of each feature vector stored in

memory. It calculates a distance score for each feature value pair, and sums all distance

scores together to derive an overall distance score between two feature vectors.

When calculating the distance scores the features can be weighted; this is beneficial

since different features vary in their predictive power of the true reading level of a test

document; I used gain ratio, a weighting scheme provided by TiMBL, to assign varying

weights to features. It looks at the probability distribution of feature values for each feature

with respect to the reading levels and thereby assigns a weight to the feature.

After determining the hierarchy of nearest neighbors, TiMBL takes a vote tally where

each nearest neighbor’s reading level is a single vote to assign that reading level to the test

document. Voting can also be weighted to give a bias to nearer neighbors. I used a vote-
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weighting bias called inverse linear in which the first nearest neighbors receive a weight of 1

and the weight decreases progressively until the kth nearest neighbors which receive a vote

weight of 0. This gave the 9th ranked nearest neighbors a weight of 0 in my experiments. The

voting results with inverse linear weighting determined the prediction of each test document’s

reading level. I set TiMBL to provide evaluation of these predictions using precision, recall,

and F-scores.

3.4 Evaluation Approach

In order to evaluate my automated readability system, I used two approaches: an

80/20 training-to-testing split and 10-fold cross validation. To apply 10-fold cross validation

I divided the documents of each level randomly into 10 partitions or folds, as is commonly

done in readability applications. I configured TiMBL to leave one fold out as testing data

(10%) and to include the remaining folds as training data (90%). This is repeated every

10 trials where each fold takes a turn as the test data. I also iterated this cross validation

procedure 10 times with a random set of documents assigned to each fold each time. This

provided an even better sample across the documents than a single 10-fold cross validation

iteration could. Finally, I averaged all results over all 10-fold cross validation iterations to

report here. I automated this process with computer scripting and programming.

I tuned TiMBL classifiers using 10-fold cross validation before applying them to the

evaluation data set. Tuning involved running a trial and adjusting TiMBL settings and the

included features based on the results to improve future results. The 80/20 split method was

not as useful for tuning the classifiers before the final evaluation because the risk of having

a testing set that was a poor sample and consequently performed unusually well or poorly.

I found that the results of repeated cross validation trials were less unstable and sporadic

than for repeated 80/20 trials and more indicative of performance across samples.

I used the training set to train and test TiMBL as I added features and fine-tuned its

settings. Then, I tested TiMBL on the development test set. Next, I combined the training

and development test sets to create a new training set and performed 3-way and a 5-way

10-fold cross validation. I then combined all sets to create a superset of all documents—the

combination of training, development test, and evaluation sets—and also performed 3-way
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and 5-way 10-fold cross validation. Lastly, I performed a 3-way and a 5-way 10-fold cross

validation over both the training and devtest sets combined and the evaluation set.

In my final results I included an experiment in which I used the evaluation set as

the 20% testing data, then I combined it with the new training set and ran 10-fold cross

validation experiments for both 3-way and 5-way classifiers. I report details of the final

evaluation results in the following section.

Feature Category # of Features
POS-based Frequency Features 96
Type-To-Token POS Ratio Features 23
Token & Type Frequency Features 19
Discourse Connective Features 7
Homographic Features 5
Frequency-based Discourse Connective Features 4
Type-To-Token Features 4
Word Length Features 3
Sentence Length Features 2
Token count Feature 1
Foreign Word Feature 1

Table 3.2: Features Grouped by Category and the Count of the Features Contained in Each
Category (See Appendix B for the Full List of Features.)

I used 162 of the 165 total features. Table 3.3 lists the features that I excluded.

The range feature refers to the range measure provided in the frequency dictionary; it was

very sparse because any given document is very likely to have a lexical item with a range

of 100—an item found in all subcorpora which comprise the base corpus of the frequency

dictionary I used (Buckwalter and Parkinson, 2011). The other two excluded features were

both based on ranks of highly frequent lexical items, the preposition fy ‘in’ and the definite

article Al ‘the’ which led to virtually no distinction in this measure across document levels.

The TiMBL settings I employed in all of the experiments below were the same. The

algorithm was IB1 with the Overlap Metric, Gain Ratio feature weighting, a K-value of

9, and Inverse Linear vote weighting. I chose these settings based on experimental tuning

of the parameters. For the K-value I found that a value of 9 worked the best across all
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Feature Name Description
maxTypeFreqRange max frequent word type range
minFreqPrepRank min frequent preposition rank
minTypeFreqRank min frequent word type rank

Table 3.3: Excluded Features for Final Experiment

the experiments. While some lower and some higher K-values performed slightly better in

some preliminary experiments, the results tended to deteriorate when lowering or raising the

K-value from 9.

All the cross validation experiments were iterated 10 times with a random division

made between the training and testing sets for each iteration. I combined the counts for true

positive, false positive, true negative, and false negative predictions across each iteration.

Then, I calculated the precision, recall, and F-score for each class using these cumulative

counts. Finally, I calculated the average F-score across the class F-Scores which I obtained.

I refer to each applied instance of the TiMBL system as a classifier, consistent with

other machine learning research in automated readability. N-way classifiers represent the

number of ways/levels that a document can be classified (i.e. the number of levels included

in the training set). I used both 3-way and 5-way classifiers which predicted among 3 and 5

levels respectively. A diagram of the readability system is shown in the figure in Appendix

C.
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Chapter 4

Results

I ran preliminary evaluations in order to provide a context for the final evaluations.

These preliminary evaluations treated 80% of the DLI corpus (the train and devtest sets

from Table 3.1). I used 3-fold, 5-fold, and 10-fold cross validation, as well as leave-one-out

for both 3-way and 5-way classifiers. For the final evaluations I ran 3-fold and 5-fold, but

I also added an 80/20 split. In all experiments I used 162 features, leaving out 3 original

features that proved ineffective due to their sparseness. I did not try every possible subset

of the 162 features generated in these experiments, which would have been impractical even

if I discounted the variable TiMBL settings that could be set for each. I do not report

results of an 80/20 split for the train and devtest sets because evaluations of these were

not calculable since some levels did not have enough documents for adequate training of the

TiMBL classifiers. I next discuss features and feature sets that were the most effective in

my experiments.

TiMBL provides a ranking of each feature according to its informativeness in pre-

dicting the outcome. Table 4.1 shows the top 20 features according to their informativeness

rank. All of these features are from the POS-based frequency feature set except for the for-

eign word feature. All except three of these features are based on pronouns or conjunctions.

These particular pronoun and conjunction features are likely to be limited in the variety of

measurements across documents. Therefore, they may receive the most weight because of

their relative sparseness. This is apparently the case for the other three features as well—

ratio of foreign words to tokens, minimum frequency rank of all part* tokens (all tokens

whose POS begins with ‘part’), and minimum frequency rank of noun quant tokens. As a

group these features are apparently helpful. The pattern of their combined measurements

seems to be their value as predictive features.
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Feature Name
minimum frequency rank of pron rel tokens
ratio of frequent pron dem tokens to all pron dem tokens
minimum frequency rank of conj sub tokens
minimum frequency rank of pron dem tokens
median frequency rank of pron rel tokens
ratio of frequent pron rel to all pron rel tokens
minimum frequency rank of all conj* tokens
minimum frequency rank of all pron* tokens
range of frequency ranks of pron rel tokens
median frequency rank of pron dem tokens
range of frequency ranks of pron dem tokens
maximum frequency rank of pron rel tokens
maximum frequency rank of pron dem tokens
maximum frequency rank of conj tokens
minimum frequency rank of all part* tokens
minimum frequency rank of conj tokens
ratio of foreign words to tokens
median frequency rank of conj sub tokens
minimum frequency rank of noun quant tokens
median frequency rank of all pron* tokens

Table 4.1: Top 20 Features Ordered by Informativeness

The feature sets that were the most informative in making predictions are ranked in

Table 4.2. I determined this order of features based on the average informativeness rank

of all features within the set. I excluded the foreign word ratio feature, which is the sole

feature in its set, because it is too sparse to be helpful when acting alone. The first feature

set in this rank is the POS-based frequency feature set. This is not surprising given that

the top 20 informative features are all from this set, except for the foreign word ratio. The

next two feature sets in the ranking are both based on discourse connectives which supports

the argument that discourse connective features are important in Arabic writing. The least

informative feature set is the set of word length features. Arabic word lengths widely vary,

and do not necessarily add a lot of complexity with increased length.
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Feature Set
POS-based Frequency Features
Frequency-based Discourse Connective Features
Discourse Connective Features
Sentence Length Features
Token Count Feature
Type-To-Token POS Ratio Features
Homographic Features
Type-To-Token Features
Token & Type Frequency Features
Word Length Features

Table 4.2: Performance by Feature Set

4.1 Preliminary Evaluation

In the preliminary evaluations my system had already ‘seen’ the data on which it was

testing, and I was able to improve the performance by adjusting the features and TiMBL

settings incrementally. My experiments demonstrated that 10-fold cross validation produced

the best results among all evaluations using the training and devtest sets combined.

Each of the preliminary results shown in Tables 4.3 and 4.4 represents the highest

average F-scores I achieved with various features and TiMBL settings. These tables show

that the 3-way classifier performed the best, as expected because there are fewer levels

to choose between. Results are similar for all levels. The 5-way classifier showed more

variance between the individual levels. Notably, it performed very poorly on level 2+. In

fact this performance is barely above a baseline of choosing level 2 for each prediction which

would achieve 44.7%. The reason for this unimpressive performance may be that level 2+

documents were very similar to the neighboring levels. This may be due to the vagueness

for the ILR plus levels.1

4.2 Final Evaluation

I did two types of experiments for the final evaluation. First, I ran an 80/20 split

experiment using the 143 documents of the training and devtest sets combined for the 80%

1Troy Cox, personal communication, March 4, 2014
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Level Precision Recall F-Score
1 & 1+ 0.840 0.777 0.807

2 0.724 0.810 0.765
2+ & 3 0.825 0.736 0.778

Average F-Score 0.783

Table 4.3: 10-Fold Cross Validation 3-Way Classifier—Preliminary Evaluation.

Level Precision Recall F-Score
1 0.764 0.487 0.595

1+ 0.602 0.427 0.500
2 0.558 0.760 0.644

2+ 0.292 0.184 0.226
3 0.698 0.615 0.654

Average F-Score 0.523

Table 4.4: 10-Fold Cross Validation 5-Way Classifier—Preliminary Evaluation.

training portion and the 36 unseen documents of the evaluation set for the 20% testing

portion. Table 4.5 shows results for this experiment.

Table 4.5 shows no valid precision or F-score level 1+ because there were no predic-

tions made at this level. This is a function of having a small corpus that is unbalanced in the

number of documents per level. In fact, level 1+ had the lowest representation with only 16

training and 4 testing documents. Therefore, the F-score is only averaged over the 4 levels

with calculable results.

Of the other levels, level 2 performs the best with an F-score of 0.650. I attribute this

better performance to the unbalance of the corpus—level 2 had the most documents in its

training partition and testing partition with 64 and 16 documents in each respectively. The

training process had an advantage of many more level 2 documents than the other levels.

Level 1 performed the best with an F-score of 0.857, while level 3 performed the worst (not

considering level 1+) with an F-score of 0.222.

I also conducted 10-fold cross validation tests on the data to overcome the problem

of data sparseness across levels. I used 3-way and 5-way classifiers for the cross validation;

results are shown in Tables 4.6 and 4.7 respectively.
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Level Precision Recall F-Score
1 1.00 0.750 0.857

1+ - 0.000 -
2 0.541 0.812 0.650

2+ 0.400 0.250 0.307
3 0.250 0.200 0.222

Average F-Score 0.509

Table 4.5: 80/20 Split 5-Way Classifier

Level Precision Recall F-Score
1 & 1+ 0.818 0.582 0.680

2 0.663 0.795 0.723
2 & 2+ 0.791 0.718 0.753

Average F-Score 0.719

Table 4.6: 10-Fold Cross Validation 3-Way Classifier

Level Precision Recall F-Score
1 0.813 0.610 0.697

1+ 0.724 0.150 0.248
2 0.653 0.856 0.740

2+ 0.460 0.290 0.355
3 0.503 0.624 0.557

Average F-Score 0.519

Table 4.7: 10-Fold Cross Validation 5-Way Classifier

The individual level statistics in Table 4.7 show that TiMBL predicted levels 1, 2

and 3 much more accurately than levels 1+ and 2+. The advantage seems to be partly that

levels 1+ and 2+, being plus levels are more vague. The better performance of level 2 over

the non-plus levels is likely because of abundant training examples. Level 2 has the most

documents in training.

The difference in performance between the preliminary and final evaluations is such

that the 3-way classifiers’ F-scores decreased from 0.783 to 0.719. This is to be expected

because the final evaluation was on unseen data. Likewise, the 5-way classifiers’ F-score

decreased from 0.523 to 0.519.
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My automated readability prediction system achieved the best results with 3-way

classifiers and using all but 3 features which were found to be sparse in the training set.

This is slightly lower than the results achieved by Al-Khalifa and Al-Ajlan (2010) in their

preliminary study for their 3-way classifier—0.778 F-score. These two results, though, are

not entirely comparable because they derive from different corpora. The DLI Corpus is

written for adult readers of Arabic as a second language, while Al-Khalifa and Al-Ajlan used

a grade-school corpus.
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Chapter 5

Conclusion

Readability has been an important research problem for nearly a century, though

research into readability for Arabic (MSA) is in the very early stages. My thesis is an

important contribution to the state-of-the-art for automated Arabic readability prediction.

It is the first study to employ TiMBL in readability prediction for any language and shows

that this can be done to good effect in Arabic.

A limitation of my study was that I used a very small corpus. Larger corpora are

advantageous because they provide larger training sets for machine learning classifiers. The

classifiers can be improved thereby since a larger training set is more representative of a

set as a whole. I anticipate that, as for other languages, more MSA corpora annotated for

readability will be made available in the future.

My system used lexical and discourse features, but omitted syntactic features. MSA

has very rich syntax that reflects a wide range of complexity. I excluded syntactic features

because of the difficulty in applying syntactic parsing to my data set. Syntactic features

have shown positive contributions in previous readability research. Ongoing work on Arabic

parser development will render them more robust to data like mine.

Other research has employed N-grams to model readability. I substituted a frequency

dictionary for this method. N-gram models are more robust with larger corpora than the

DLI corpus.

I only applied my classifiers to data rated by the ILR system. Thus, I only target

ILR readability levels. As other scales become available the system could be retrained.

Furthermore, of the 11 ILR reading levels, only 5 are represented in the DLI corpus, and

thus available for my classification system.
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A possibility of future work is to compare TiMBL’s performance with other machine

learning programs using the same features. Other systems might perform better with the

same features.

Other features known to be useful for multiple languages are yet untried for MSA

readability. Noun-based features have been especially useful for English readability. Since

MSA has a high noun density due to frequent multi-noun constructions this may be a fruitful

source of features. I deferred to future work the use of some noun-based features that may

be useful for readability in MSA but difficult to implement.

A very helpful application for future work would be a graphical user interface for

inputting Arabic documents, to produce a readability score. This could be made widely

available to students and teachers in web-based context. Similarly, web search engines could

build upon this research to return results according to specific readability levels. Applications

like this could use crowdsourcing to evaluate their performance.

A final area of further development may be to build domain-specific classifiers. Such

classifiers would be more accurate by leveraging vocabulary information and other unique

information of a given domain. Separate domain-based classifiers could be bundled together

and invoked according to the need for readability prediction in their respective domains,

thus improving readability for many domains.

In conclusion, I developed the first TiMBL-based system for distinguishing MSA doc-

uments annotated with ILR readability levels. I used some novel features, most of which

were derived from a frequency dictionary. This is the only modern MSA readability predic-

tion system that uses a frequency dictionary. Using standard machine learning evaluation

techniques, I was able to show that the system produced state-of-the-art results, even with

a smaller corpus than used in comparable studies. My study has shown that the combi-

nation of several lexical, discourse, and traditional features are effective indicators of MSA

readability and that further research to improve MSA readability is worthwhile.
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Appendix A

POS Ratio Features

Feature Name Count

adj-to-token ratio (Adjective) 8,365

adj comp-to-token ratio (Comparative Adjective) 464

adj num-to-token ratio (Numeric Adjective) 385

adv-to-token ratio (Adverb) 235

adv rel-to-token ratio (Relational Adverb) 147

conj-to-token ratio (Conjunction) 1,182

conj sub-to-token ratio (Subordinating Conjunction) 1,949

noun-to-token ratio (Noun) 29,921

noun num-to-token ratio (Numeric Noun) 1,453

noun prop-to-token ratio (Proper Noun) 2,888

noun quant-to-token ratio (Quantitative Noun) 685

part-to-token ratio (Particle) 57

part focus-to-token ratio (Focus Particle) 35

part interrog-to-token ratio (Interrogative Particle) 95

part neg-to-token ratio (Negative Particle) 579

part verb-to-token ratio (Verb Particle) 201

prep-to-token ratio (Preposition) 7,718

pron-to-token ratio (Pronoun) 494

pron dem-to-token ratio (Demonstrative Pronoun) 981

pron rel-to-token ratio (Relative Pronoun) 1,308

punc-to-token ratio (Punctuation) 7,244

verb-to-token ratio (Verb) 7,707

verb pseudo-to-token ratio (Pseudo Verb) 372

Table A.1: POS Features and Count of Tokens with the Base POS in the DLI Corpus
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Appendix B

Features for Readability Prediction

POS-Based Frequency Features
ratio frequent adj tokens to all adj tokens
ratio frequent adj* tokens to all adj* tokens
ratio frequent conj sub tokens to all conj sub tokens
ratio frequent conj tokens to all conj tokens
ratio frequent conj* tokens to all conj* tokens
ratio frequent noun num tokens to all noun num tokens
ratio frequent noun prop tokens to all noun prop tokens
ratio frequent noun quant tokens to all noun quant tokens
ratio frequent noun tokens to all noun tokens
ratio frequent noun* tokens to all noun* tokens
ratio frequent part* tokens to all part* tokens
ratio frequent prep tokens to all prep tokens
ratio frequent pron dem tokens to all pron dem tokens
ratio frequent pron rel tokens to all pron rel tokens
ratio frequent pron* tokens to all pron* tokens
ratio frequent verb tokens to all verb tokens
maximum frequency rank of adj tokens
maximum frequency rank of all adj* tokens
maximum frequency rank of all conj* tokens
maximum frequency rank of all noun* tokens
maximum frequency rank of all part* tokens
maximum frequency rank of all pron* tokens
maximum frequency rank of conj sub tokens
maximum frequency rank of conj tokens
maximum frequency rank of noun num tokens
maximum frequency rank of noun prop tokens
maximum frequency rank of noun quant tokens
maximum frequency rank of noun tokens
maximum frequency rank of prep tokens
maximum frequency rank of pron dem tokens
maximum frequency rank of pron rel tokens

Continued on next page
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Table B.1 – Continued from previous page
maximum frequency rank of verb tokens
mean frequency rank of adj tokens
mean frequency rank of all adj* tokens
mean frequency rank of all conj* tokens
mean frequency rank of all noun* tokens
mean frequency rank of all part* tokens
mean frequency rank of all pron* tokens
mean frequency rank of conj sub tokens
mean frequency rank of conj tokens
mean frequency rank of noun num tokens
mean frequency rank of noun prop tokens
mean frequency rank of noun quant tokens
mean frequency rank of noun tokens
mean frequency rank of prep tokens
mean frequency rank of pron dem tokens
mean frequency rank of pron rel tokens
mean frequency rank of verb tokens
median frequency rank of adj tokens
median frequency rank of all adj* tokens
median frequency rank of all conj* tokens
median frequency rank of all noun* tokens
median frequency rank of all part* tokens
median frequency rank of all pron* tokens
median frequency rank of conj sub tokens
median frequency rank of conj tokens
median frequency rank of noun num tokens
median frequency rank of noun prop tokens
median frequency rank of noun quant tokens
median frequency rank of noun tokens
median frequency rank of prep tokens
median frequency rank of pron dem tokens
median frequency rank of pron rel tokens
median frequency rank of verb tokens
minimum frequency rank of adj tokens
minimum frequency rank of all adj* tokens
minimum frequency rank of all conj* tokens
minimum frequency rank of all noun* tokens
minimum frequency rank of all part* tokens
minimum frequency rank of all pron* tokens
minimum frequency rank of conj sub tokens
minimum frequency rank of conj tokens

Continued on next page
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Table B.1 – Continued from previous page
minimum frequency rank of noun num tokens
minimum frequency rank of noun prop tokens
minimum frequency rank of noun quant tokens
minimum frequency rank of noun tokens
minimum frequency rank of prep tokens
minimum frequency rank of pron dem tokens
minimum frequency rank of pron rel tokens
minimum frequency rank of verb tokens
range of frequency ranks of adj tokens
range of frequency ranks of all adj* tokens
range of frequency ranks of all conj* tokens
range of frequency ranks of all noun* tokens
range of frequency ranks of all part* tokens
range of frequency ranks of all pron* tokens
range of frequency ranks of conj sub tokens
range of frequency ranks of conj tokens
range of frequency ranks of noun num tokens
range of frequency ranks of noun prop tokens
range of frequency ranks of noun quant tokens
range of frequency ranks of noun tokens
range of frequency ranks of prep tokens
range of frequency ranks of pron dem tokens
range of frequency ranks of pron rel tokens
range of frequency ranks of verb tokens
Type-To-Token POS Ratio Features
adjective-to-token ratio
comparative adjective-to-token ratio
numeric adjective-to-token ratio
adverb-to-token ratio
relational adverb-to-token ratio
conjunction-to-token ratio
subordinating conjunction-to-token ratio
noun-to-token ratio
numeric noun-to-token ratio
proper noun-to-token ratio
quantitative noun-to-token ratio
particle-to-token ratio
focus particle-to-token ratio
interrogative particle-to-token ratio
negative particle-to-token ratio
verb particle-to-token ratio

Continued on next page

43



Table B.1 – Continued from previous page
preposition-to-token ratio
pronoun-to-token ratio
demonstrative pronoun-to-token ratio
relative pronoun-to-token ratio
punctuation-to-token ratio
verb-to-token ratio
pseudo verb-to-token ratio
Token & Type Frequency Features
frequent type-to-token ratio
maximum dispersion of frequent types
maximum frequency rank of frequent types
mean dispersion of frequent tokens
mean dispersion of frequent types
mean frequency log of frequent tokens’ dictionary frequency count
mean frequency log of frequent types’ dictionary frequency count
mean frequency rank of frequent types
mean frequency rank of frequent tokens
median dispersion of frequent tokens
median dispersion of frequent types
median frequency rank of frequent types
median frequency rank of frequent tokens
minimum dispersion of frequent types
minimum frequency rank of frequent types
range of dispersion of frequent types
range of frequency ranks of frequent types
ratio frequent tokens to morpheme tokens
ratio of frequent types to morpheme types
Discourse Connective Features
all connectives count
average connectives per sentence
multi-word connective count
ratio of single word connectives to all connectives
ratio of multi-word connectives to all connectives
ratio of multi-word connectives to single word connectives
single word connective count
Homographic Features
average of: each frequent homograph token count x its dictionary entry count
frequent homograph type-to-token ratio
ratio of frequent homograph tokens to morpheme tokens
ratio of frequent homograph tokens to morpheme types
sum of: each frequent homograph token count x its dictionary entry count

Continued on next page
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Table B.1 – Continued from previous page
Frequency-based Discourse Connective Features
frequent single word connective count
non-frequent single word connective count
ratio of non-frequent single word connectives to all connectives
ratio of frequent single word connectives to all connectives
Type-To-Token Features
lexeme type-to-token ratio
morpheme type-to-token ratio
square root of morpheme type-to-token ratio
square root of lexeme type-to-token ratio
Word Length Features
average character length of surface forms
average length of diacritized words
average morpheme length of words
Sentence Length Features
average sentence morpheme length
average sentence token length
Token Count Feature
token count
Foreign Word Feature
ratio of foreign words to tokens

Table B.1: Full Feature List Grouped By Sets (All POS Features Are Based on MADA’s
POS Output.)
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Appendix C

Automated MSA Readability Prediction System

Remove
Markup

Corpus Files Text Files

Extract
Features

Text Files Feature Vectors

Machine
Learning

Feature Vectors Prediction Results

Figure C.1: Overview of the MSA Automated Readability Prediction System
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